

Mauterndorf 2020

21st International Winterschool New Developments in Solid State Physics

Abstract Book

23-28 February 2020

Castle of Mauterndorf A-5570 Mauterndorf Province of Salzburg, Austria www.jku.at/hfp/mauterndorf winterschool@jku.at

Laser Level Selection in Terahertz Quantum Cascade Lasers using a Magnetic Field

A.M. Andrews^{1,3*}, M.A. Kainz^{2,3}, S. Schönhuber^{2,3}, B. Limbacher^{2,3}, H. Detz³, M. Beiser^{1,3}, M. Giparakis^{1,3}, W. Schrenk³, G. Strasser^{1,3}, G. Bastard⁴, K. Unterrainer^{2,3}

¹Institute of Solid-State Electronics E362, TU Wien, Vienna, Austria
²Photonics Institute E387, TU Wien, Vienna, Austria
³Center for Micro- and Nanostructures E057-12, TU Wien, Vienna, Austria
⁴Laboratoire Pierre Aigrain, Ecole Normale Superieure, Paris, France

Quantum cascade lasers (QCLs) utilize unipolar intersubband (ISB) transitions to emit in the midinfrared (3-30 μ m) and terahertz (60-300 μ m), covering the molecular fingerprint region [1]. The optical transitions can be designed through bandgap engineering [2]. THz QCL are the only solid-state lasers which emit in the range below the reststrahlen band (5—20 meV). By using an applied magnetic field parallel to the growth direction, ISB transitions and scattering mechanisms can be investigated due to the suppression of non-radiative relaxation channels.

A high-temperature three-well GaAs/AlGaAs THz QCL was studied, with two upper laser levels $|4\rangle$ and $|3\rangle$ and a lower laser level $|2\rangle$ with the optical lasing transitions $|3\rangle \rightarrow |2\rangle$ and $|4\rangle \rightarrow |2\rangle$, labeled as LT_{32} and LT_{42} . Level $|1\rangle$ is the extractor level, coupled to the LO-phonon transition $|2\rangle \rightarrow |1\rangle$. The design is identical to the GaAs/Al_{0.21}Ga_{0.79}As active region that reached a T_{max} of 196 K at a frequency of 3.8 THz [3,4]. The QCL is processed into a 2550 μ m \times 120 μ m ridge in the metal-metal waveguide geometry with 15 μ m Ni side absorbers to suppress higher order lateral modes.

At 12.2 kV/cm, the LT_{42} transition around 3.8 THz has a larger matrix element and thus stronger emission than the LT_{32} transition. At 12.5 kV/cm, the LT_{42} and LT_{32} transitions have similar matrix elements and at higher biases the LT_{32} transition is stronger. The temperature dependent L-J-V device behavior is as follows: The lasing threshold current density J_{th} increases typically with the heat sink temperature, while the peak output power and dynamic range decrease. Emission spectra were taken at 5, 80, and 140 K for different current densities. At all temperatures, the LT_{42} is the first emission, due to the greater dipole matrix element z_i . With increasing bias, the LT_{32} emerges at low temperatures, while it is largely suppressed at higher temperatures. To determine whether the two laser states occur next to each other in the same active region or in neighboring periods, a magnetic field of 0-7.5 T was applied to the QCL. The J_{th} decreases with increasing magnetic field, which is due to the reduction in scattering processes. Above 6 T, the J_{th} increases again and the output power falls, due to continued suppressed scattering. Applying the magnetic field results first in the reduction in emission of $LT_{
m 32}$ and then at higher fields reduction in the emission of $LT_{
m 42}$. The magnetic field hinders the scattering from level $|4\rangle \rightarrow |3\rangle$. Due to the low energy separation between $|4\rangle$ and $|3\rangle$, this is an efficient scattering process without the magnetic field. The LT_{42} emission increases with the applied magnetic field up to 4.1 T, as the scattering to level |3) is suppressed.

_

^[1] B. Williams, Nat. Photonics 1(9), 517 (2007).

^[2] R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417(6885), 156 (2002).

^[3] M. A. Kainz, S. Schönhuber, A. M. Andrews, H. Detz, B. Limbacher, G. Strasser, and K. Unterrainer, ACS Photonics 5(11), 4687 (2018).

^[4] M. A. Kainz, S. Schönhuber, B. Limbacher, A. M. Andrews, H. Detz, G. Strasser, G. Bastared, and K. Unterrainer, APL 114, 191104 (2019).

^{*} Corresponding author: email: aaron.andrews@tuwien.ac.at

- III-7 Andrea Barone, University of Pavia
 Photonic Crystal Cavities with comb-like spectrum for integrated nonlinear optics
 in silicon
- III-8 Natalia Fiuczek, Institute of High Pressure Physics "Unipress", PAS Warsaw Nanoporous metamaterials for nitride DBRs
- III-9 Maximilian Beiser, TU Vienna, Institut für Festkörperelektronik
 Interband Cascade Laser Frequency Comb generation and high-speed detection
- III-10 Hanh Hoang, TU Vienna, Institut für Festkörperelektronik Fabrication of ZnO/ZnMgO-based optoelectronic devices
- III-11 Marcin Siekacz, Institute of High Pressure Physics "Unipress", PAS Warsaw

 Vertical integration of nitride based edge emission laser diodes by tunnel juncti
- III-12 Edgar David Guarin Castro, Universität Würzburg

 Electroluminescence emission in a GaAsSb/AlAsSb resonant tunneling diode with

 emitter prewell
- III-13 Aaron Maxwell Andrews, TU Vienna, Institut für Festkörperelektronik

 Laser Level Selection in Terahertz Quantum Cascade Lasers using a Magnetic Field
- III-14 Dohyun Kwak,TU Vienna, Institute of Photonics

 Hybrid InP Quantum Dots-Black Phosphorus Photodetector
- III-15 Martin Kainz, TU Vienna, Institute of Photonics
 Thermoelectrically Cooled THz Quantum Cascade Lasers
- III-16 Michael Jaidl, TU Vienna, Institute of Photonics

 Multi-mode emission from a THz Quantum Cascade Ring Laser
- III-17 Julia Slawinska, Institute of High Pressure Physics "Unipress", PAS Warsaw Arrays of nitride micro-LEDs defined by ion implantation
- III-18 Mikołaj Chlipała, Institute of High Pressure Physics "Unipress", PAS Warsaw Efficient nitride LEDs for application in cryogenic temperatures
- III-19 Alexander Reiner, Universität Augsburg MOF@SAW
- III-20 Dominik Theiner, TU Vienna, Institute of Photonics

 Spectrally Resolved Gain Dynamics in Heterogeneous Terahertz Quantum Cascade
 Lasers
- III-21 Zbig Wasilewski, Uni Waterloo, Canada
 Room Temperature THz Intersubband Transitions in Continuously Graded AlxGa1xAs Parabolic Quantum Well Arrays
- III-22 Grzegorz Muziol, Institute of High Pressure Physics "Unipress", PAS Warsaw
 Observation of efficient optical transitions in wide InGaN quantum wells despite
 the piezoelectric field
- III-23 Ulrich Czopak, Universität Innsbruck
 Towards an Unconventional Photon/Polariton Blockade
- III-24 Nikola Opačak, TU Vienna, Institut für Festkörperelektronik
 Theory of frequency modulated combs in semiconductor lasers