
 



Optimal Route Planning for Electric Vehicles with Special

Consideration of the Topography and Battery Lifetime

Theresia Perger1,∗, Hans Auer1

Abstract

In contrast to conventional routing systems, which determine the shortest distance or the
fastest path to a destination, this work designs a route planning specifically for electric
vehicles by finding an energy-optimal solution while simultaneously considering stress on
the battery. After finding a physical model of the energy consumption of the electric vehicle
including heating, air conditioning, and other additional loads, the street network is modeled
as a network with nodes and weighted edges in order to apply a shortest path algorithm that
finds the route with the smallest edge costs. A variation of the Bellman-Ford algorithm, the
Yen algorithm, is modified such that battery constraints can be included. Thus, the modified
Yen algorithm helps solving a multi-objective optimization problem with three optimization
variables representing the energy consumption with (vehicle reaching the destination with
the highest state of charge possible), the journey time, and the cyclic lifetime of the battery
(minimizing the number of charging/discharging cycles by minimizing the amount of energy
consumed or regenerated). For the optimization problem, weights are assigned to each
variable in order to put emphasis on one or the other. The route planning system is tested
for a sub-urban area in Austria and for the city of San Francisco, California. Topography
has a strong influence on energy consumption and battery operation. Depending on the
starting and destination point, the results are different depending on the weight of the
optimization variable. Also, the tests are conducted for different outside temperatures and
weather conditions, as well as for different vehicle types.

Keywords: Electric vehicles, Route planning, Yen algorithm, Multi-objective optimization,
Battery lifetime

Nomenclature

The modeling and optimization variables used for the route planning system are listed
below:
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Vehicle parameters
m mass
cw drag coefficient
A cross sectional area
SoC state of charge of the battery
w/h width/height
v velocity

Road parameters
s length of a road section
q slope of a road section in %
α slope of a road section in rad

External parameters
T outside temperature
g gravitational constant
ρ air density
fR rolling resistance coefficient

Energy consumption
Froll rolling resistance
Fair air resistance
Fgrad gradient resistance
Fdrive driving force
Pdrive power for driving
Pheat power for heating

Edrive energy for driving
Eregen regenerative energy from driving
Eacc energy for accessories
Ehc energy for heating and cooling
Eout energy from the battery

Efficiencies
ηd final drive
ηm/ηg motor/generator
ηinv DC-AC inverter
ηacc accessories
ηhc heating and cooling
ηcha/ηdis battery charging/discharging

Topography data
Rearth earth radius
φ/ψ coordinates in longitude/latitude
∆x/∆y distances
∆z height difference

Multi-objective Optimization
a minimum battery capacity factor
γ/δ weights for optimization

f
(k)
i /g

(k)
i /h

(k)
i costs to node i (kth iteration)

di,j/ti,j/ai,j edge costs from i to j
Emin/Tmin/Amin optimization results

1. Introduction

Combustion engine driven cars have been dominating our world for more than a century.
With global warming concerns and increasingly stringent environmental policies ahead, ve-
hicles with electric motors could be part of the solution, a precondition being that electrical
power comes from renewable sources. In addition, further challenges come up with this new
technology option in transportation. Despite higher efficiency than combustion engines, the
task to store energy in the vehicle is still challenging. The battery offers a much more lim-
ited range compared to conventional cars. Moreover, re-charging an electric vehicle is more
time-consuming than refilling a tank. This leads to a more complex trip planning with an
electric vehicle. A good advice is to identify the location of charging stations beforehand
and to plan the route accordingly. Energy consumption can vary significantly depending on
the path chosen. This work elaborates on optimal route planning to a desired destination
while considering the special characteristics of electric vehicles. The main focus lies on im-
proving the battery lifetime, as well as minimizing energy consumption and journey time
while taking into account impacts of topography.

The first objective of this work is to find a route from a starting to a destination point
with the least amount of energy used. This task is expanded such that it is possible to
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calculate the shortest journey time as well as the best route to maximize battery lifetime.
Those route planning options are combined into a weighted multi-objective optimization
problem. Shortest path algorithms are used in networks consisting of nodes, edges, and
edge costs to solve the optimization problem. With the help of these algorithms, it is pos-
sible to find the path from one node to another with the smallest edge costs. Based on
a model of the electric vehicle, which describes the physics of different driving modes, the
energy consumption and travel time are approximated. It includes the energy required for
driving as well as additional loads for air conditioning and other accessories. The model also
considers engine operation as either a motor or as a generator and thus respects regenerative
energy.

The following Section 2 gives an overview of relevant work covering this topic. Section
3 explains the methodology. This includes the model, which is used to calculate the ve-
hicle’s energy consumption, and the impact additional loads and efficiencies have on the
vehicle. Furthermore, the street network model, the shortest path algorithm, and the multi-
objective optimization are explained. Section 4 presents the results of the optimization
algorithm tested for an urban as well as a sub-urban area. In addition, a sensitivity analysis
investigates the effects of temperature and different vehicle models from different manufac-
turers. Section 5 presents conclusions and elaborates on still open questions in this field of
research.

2. State of the Art

Creating an optimal route planning system for electric vehicles is multi-disciplinary and
requires profound knowledge of electric vehicles, batteries, route planning algorithms, and
dynamic optimization.

Modeling Electric Vehicles. Energy efficiency and battery conservation are the main goals
of the proposed optimal route planning system. Therefore, the electric vehicle is described
based on a physical model in order to enable calculation of the energy consumption. In this
context, one special characteristic of electric vehicles is the ability to regenerate energy from
braking or driving downhill. In [1] the energy flow from regenerative braking is modeled in
detail. Another detailed model of the vehicle’s energy consumption is presented in [2]. The
goal is to find a high-resolution powertrain efficiency estimation. The energy consumption
is described by the physical forces acting on the moving vehicle. A similar concept can be
found in [3], where an energy consumption simulator is presented. An alternative approach
to estimate the energy consumption of an electric vehicle is found in [4], where a range
estimator is created by using different drive cycles, which are originally based on combustion
engines and then adapted for electric vehicles. However, this approach avoided modeling
the physics of an electric vehicle.

Battery Lifetime in Electric Vehicles. Having batteries as an energy storage in vehicles comes
along with many new challenges compared to cars with conventional combustion engines.
Apart from their costly production, batteries have a limited lifetime. According to [5], by
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2020 nearly one million electric vehicle battery packs will be ’retired’ in the United States
alone, meaning that they cannot be used in electric vehicles anymore. This happens when (i)
the battery only provides less than 80% of the original capacity and maximum power, or (ii)
there are functional failures occurring. Several models to describe the battery degradation
can be found in [6], where cycle aging as well as calendar aging mechanisms are considered.
[7] proposes an optimal charging energy management that minimizes the degradation of the
battery as a function of temperature and depth of discharge. In [8] a battery degradation
model of the cycle losses is used, which is linear dependent in cumulative current throughput,
but quadratic in temperature. One interesting result is found in [9], where capacity fade of
commercial Li-ion batteries caused by driving and vehicle-to-grid usage is studied. Battery
degradation was found to be related to the amount of energy processed in the battery, while
the depth of discharge has less effects on the battery lifetime. The importance of methods
to increase the battery lifetime corresponds with the work in [10], where it is shown that
replacing a battery frequently may harm the environment and increases the risk of toxicity
(e.g. for humans and freshwater) and metal depletion impacts.

Route Planning Algorithms. Route planning problems are typically solved by applying short-
est path algorithms. The Dijkstra algorithm [11] is a very efficient method to work with
weighted graphs and is widely used in network theory. A Dijkstra-based speed-up technique
for constrained shortest path problems is applied in [12], where route planning is conducted
for bicycles. The Dijkstra algorithm is also applied in [13]. In that work, route planning
in urban areas with influences of traffic is considered. The Bellman-Ford [14] algorithm has
a higher complexity than Dijkstra, but can be used in networks with negative edge costs,
which is useful for route planning for electric vehicles. Despite its high complexity, the
Bellman-Ford algorithm works well with street networks. The Yen algorithm [15] is based
on Bellman-Ford, but it is generally able to solve the shortest path problem faster than [14].

Route Planning for Electric Vehicles. It is mentioned in [16] that many people, who tested
electric vehicles, experience so-called range anxiety. It turns out that many drivers would
change their driving behavior and especially their route-choices to the destination. In or-
der to find an optimal route that can extend the range of the vehicle, Dijkstra’s shortest
path algorithm is applied. The goal is not to simply find the energy-minimal route, but
also to help with range anxiety, making drivers feel more comfortable with e-mobility. In
[17] a range estimation for on-line use is created, which is based on calculating the energy
optimal route. The vehicle’s energy consumption is modeled including influences of traffic
and with a shortest path algorithm (Bellman-Ford) the range can be estimated. In [18] bat-
tery switch station are included in the network and a modification of Dijkstra’s algorithm
is used. This modification is done by using Johnson’s shifting technique (see [19]) in order
to include regenerated energy of the electric vehicle. In practice, battery switch stations
are not established, but charging stations become increasingly visible. In [20], the approach
is similar to [18], but including charging stations instead of battery switch stations. It is
also proposed to work on a multi-criteria optimization that includes the journey time and a
maximum number of recharging events.
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The present work implements a multi-objective optimization approach determining a path
that seeks to meet best the drivers’ requirements. In detail, the optimization algorithm uses
weighting factors on these three optimization variables:

(i) Energy consumption: The electric vehicle should reach the destination with the highest
possible state of charge of the battery.

(ii) Time: The journey time should be as short as possible.

(iii) Battery lifetime: In order to increase the battery lifetime of the electric vehicle, the
number of charging and discharging cycles should be as small as possible, therefore
the cumulated energy flow should be minimized.

The goal of this paper is to include the drivers’ preferences in a very flexible way. For exam-
ple, the drivers can choose a single-objective optimization of either of the above-mentioned
variables, or give equal weights to all three. Charging stations for electric vehicles are not
included in this work.

3. Methodology

3.1. Optimization Problem

The objective of this work is to design a route planning system for electric vehicles in
order to optimize the battery lifetime, energy consumption, and journey time. A weighted
multi-objective optimization approach is used to prioritize one aspect or the other.

3.2. Flowchart

To achieve the objective of this work - finding the weighted optimal path to a desired
destination with an electric vehicle - it is important to have a model describing the energy
consumption of the electric vehicle and the street network. Then, shortest path algorithms
can be used for optimization. A flow chart (see Figure 1) presents an overview of this opti-
mization problem. At first, a starting and a destination point have to be defined. Then, it is
necessary to have a road network that includes topography information. Each road section
has a defined length s, a velocity v, and a slope q in %, calculated from the topography
information. The next step is to define the vehicle parameters. The initial state of charge
of the battery SoCinit and its maximum capacity SoCmax are necessary, as well as the mass
m, the drag coefficient cw, and the cross sectional area A of the vehicle. When having infor-
mation on the outside temperature T , all parameters are available for the calculation of the
energy consumption model of the electric vehicle and the journey time on all the possible
roads of the network.

As this work formulates an optimization problem with constraints, the boundary conditions
have to be defined. Naturally, the state of charge of the battery SoC cannot be negative or
above the maximum capacity. In the interest of the vehicle owner, the SoC should not fall
below a certain minimum capacity, because deep discharge can decrease battery lifetime. A
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factor a, 0 ≤ a < 1, is added to the optimization problem, such that the constraint equation
becomes

aSoCmax ≤ SoC ≤ SoCmax. (1)

The task will be extended to a multi-objective optimization with the variables energy, time,
and battery lifetime. The factors γ and δ, with γ + δ ≤ 1, are used to give weights to the
optimization variables. The last step is to apply a shortest path algorithm.

Figure 1: Flowchart of the optimization problem

3.3. Modeling the Energy Consumption

3.3.1. Energy Consumption for Driving

We start with the calculation of the energy consumption of an electric vehicle for driving.
The basic principles of the calculations are similar to conventional vehicles. The driving force
Fdrive is calculated as the sum of the rolling resistance Froll, the air resistance Fair, and the
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gradient resistance Fgrad, while other factors are neglected for simplicity:

Fdrive = Froll + Fair + Fgrad (2)

= mgfR cos(α) +
1

2
ρcwAv

2 +mg sin(α). (3)

With the simplification of velocity and slope staying constant over the time t ∈ [t1, t2], we
have

Pdrive = Fdrive · v, (4)

and then finally
Edrive = Pdrive ∆t, (5)

with ∆t = t2 − t1.

3.3.2. Total Energy Consumption of the Electric Vehicle

Apart from regenerative energy from braking or driving downhill, the battery is the only
source of energy in electric vehicles. Other loads than driving must be covered by the battery
as well. The major consumers are the heating and cooling, which are powered directly by
the high voltage battery (around 400 V), without any DC-DC converter (see [21]). Other
so-called accessory loads are headlights, fan, windshield wipers, rear window heating, and
radio. These need low voltage (12 V) and therefore a DC-DC converter.

Figure 2 and Figure 3 show the energy flow from the battery to the components of the
vehicle with the engine operating as a motor or as a generator, respectively. Eout is the
energy the battery provides. Eacc and Ehc represent the low voltage accessories, and the
heating and cooling, respectively. Edrive is used for driving, as in (5). The amount of energy
E that decreases the state of charge of the battery considering efficiency factors is

E =
1

ηdis

(
1

ηdηmηinv

Edrive +
1

ηacc

Eacc +
1

ηhc

Ehc

)
, (6)

if the engine operates as a motor (Figure 2). With electric vehicles, recharging the battery
with regenerated energy from braking or driving downhill is possible. In this case, the
driving power Pdrive in (4) is negative and the engine operates as a generator, see Figure 3.
There are two cases to distinguish: (i) the battery charges, only if the regenerated energy is
sufficient to cover the accessory loads; (ii) the battery discharges, if the regenerated energy
cannot cover all the accessory loads. The energy Eout = −Ein can be calculated as

Eout = −ηdηgηinvEregen +
1

ηacc

Eacc +
1

ηhc

Ehc, (7)

and the total energy including charging and discharging efficiencies is

E =


1
ηdis

Eout, if Eout > 0

ηcharge Eout, if Eout < 0

0, if Eout = 0.

(8)

7



Figure 2: Energy flow - engine operates as a motor

If the efficiency of the engine operating as a generator is the same as for a motor (ηm = ηg),
Equation (6) and Equation (7) become

Eout =

(
1

ηdηmηinv

)sign(Edrive)

Edrive +
1

ηacc

Eacc +
1

ηhc

Ehc. (9)

If the charging and discharging efficiencies of the battery are equal (ηcha = ηdis), Equation
(6) and Equation (8) merge to one new equation

E =

(
1

ηdis

)sign(Eout)

Eout, (10)

with Eout as in (9).

Figure 3: Energy flow - engine operates as a generator
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3.4. Modeling the Street Network

The next task of the route planning is to model the real-life street network with its
properties such as slope, distances, speed limits, and road type. In order to solve a shortest
path problem, a specific structure of the street network is needed.

3.4.1. Networks

Networks consist of so-called nodes and edges. The nodes are connected with each other
by edges, which can have assigned values called ’edge weights’ or ’edge costs’.

Nodes. Nodes are the decision points of the network. Each node is connected to different
nodes via edges. Some nodes are directly connected, others are only reachable by passing
other nodes on the way. In the real-world street network, nodes are intersections of roads.

Edges. Edges are the roads connecting the nodes. In this network model, the edges are split
into straight sections with constant slope and constant speed limit.

Edge costs. Networks have the purpose to express relations between the nodes. There are
different ways to characterize such relations. The most elementary ones are a binary rela-
tions, describing whether there is a direct connection (an edge) or not. Edge costs can have
physical meanings, such as the distance between nodes. A shortest path algorithm finds the
path that cumulates the least amount of edge costs on its way. When the physical meaning
of the edge costs is the energy consumption of an electric vehicle, the network becomes
bidirectional. The main reason is the topography, as two nodes can be on different altitudes
and, therefore, the required energy is different for both directions.

3.4.2. Topography Data

Topography data is obtained from the ’USGS Earth Explorer’ website [22], where geo-
graphical data is available for download. The file obtained from USGS is a TIFF-file with
3601 × 3601 pixel, containing a digital elevation map from the NASA Shuttle Radar To-
pography Mission (SRTM). It has a high spatial resolution of one arc-second for longitude
(East-West) as well as for latitude (North-South). The height resolution is one meter. Since
two adjacent pixels are one arc-second apart, the TIFF-file covers an area of one degree in
longitude and one degree in latitude. For the calculations of the energy consumption of the
electric vehicle, it is necessary to convert the distances given in degrees into distances in
meters. The conversion is achieved by an approximation of the earth as a perfect sphere
with radius of Rearth = 6371 km = 6371000 m. φ1 and ψ1 are the coordinates of a point in
degree longitude and degree latitude, respectively. φ2 and ψ2 are the coordinates of another
point, and ∆φ = φ1 − φ2 and ∆ψ = ψ1 − ψ2 are the distances between point 1 and point
2 (in degrees). The distances ∆x for longitude and ∆y for latitude in meters are converted
using

∆y =
2πRearth

360
∆ψ, (11)

and

∆x =
2πRearth

360
cos(ψ1π/180) ∆φ. (12)
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It can be noticed that (12) depends on the coordinates of the latitude. At the equator,
we have cos(ψ1π/180) = 1. The coordinate lines of the longitude converge when moving
further away from the equator. Two places with a ∆φ of 1◦ at the equatorial line have a
higher ∆x than two places with the same ∆φ at another degree of latitude. The resolution
of one arc-second of the map obtained from NASA means having a resolution of about 31 m
North-South. It has to be mentioned that (11) and (12) are only approximations of the real
distances.

The next task is to calculate the slope of a road section that is straight and has a con-
stant gradient. The difference in altitude ∆z between the start and the end point of the
section, which is derived from the TIFF-file mentioned in the beginning of this section, is
divided by the euclidean distance between those points and multiplied by 100 in order to
get the slope q in %:

q = 100
∆z√

(∆x)2 + (∆y)2
. (13)

3.4.3. Street Network

After obtaining topographical data, the next step is to get an adequate network of roads
containing the region of interest. One option is using ’OpenStreetMaps’, a big database for
streets, roads, and paths. The use of ’OpenStreetMaps’ is problematic because many roads
are missing labels with no possibility of distinguishing if they are footpaths, waterways,
or streets. The same goes for data obtained from official government websites. Thus, a
more simple approach is chosen. First, it is decided which roads should be part of the
network. Only the main roads in the area of interest are included by taking coordinates
of road sections. Some of the roads (edges) are a few kilometers long and split up into
straight consecutive sections with a length varying from 50 m to a few hundred meters. For
the purpose of testing the algorithm, this resolution is satisfying. For an advanced route
planning system, a higher resolution would be needed. The coordinates of the start and
end points of the road segments and the matching topography information obtained, the
distances and height differences are calculated as explained in Section 3.4.2. This ensures
each segment is straight and has a constant slope.

3.5. Optimization with a Shortest Path Algorithm
The multi-objective optimization is solved by applying a shortest path algorithm. Short-

est path algorithms use networks made of nodes and edges. The goal of shortest path
algorithms is to find the path with the least amount of edge costs. In this case the edge
costs represent the energy consumption, journey time, or the battery degradation. Sec-
tion 3.5.1 explains the shortest path algorithm for one optimization variable. Then, the
multi-objective optimization based on the shortest path algorithm is described in Section
3.5.2.

3.5.1. Yen Algorithm

A well known shortest path algorithm is the Bellman-Ford algorithm, see [14]. An
improved version of Bellman-Ford is the algorithm proposed by Jin Y. Yen, see [15]. Both
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algorithms find the shortest paths from all nodes of the network to one specific destination
node. The iterative search goes backwards, always starting from the destination node.
In contrast, the state of charge of the battery (SoC) is calculated forward, starting from
the starting point. The constraints are violated if the SoC exceeds the boundaries, see
(1). In addition, the goal for energy-optimal route planning is to arrive at the destination
with the highest state of charge possible. The backwards iterations of the Yen algorithm
are, therefore, not suitable for the optimization problem with SoC-constraints. Hence, the
following solution is introduced. Instead of computing all minimum paths to the destination,
all minimum paths from the start are calculated. The principles of the Yen algorithm remain
the same, but there are a few modifications. The algorithm is applied to find the energy-
optimal path in a network with N nodes in the following manner, starting with iteration
0,

f
(0)
i = d1i, (14)

where d1i are the edge costs from node 1 to node i = 2, . . . , N , representing the energy
consumption required to travel from node 1 to i. f

(k)
i are the costs from node 1, the start

node, to node i at iteration k. A distinction is made between odd and even numbered
iterations. For odd iterations, the minimum is found using

f
(2k−1)
i = min

1≤j<i
(f

(2k−1)
j + dji, f

(2k−2)
i ), (15)

f
(2k−1)
1 = f

(2k−2)
1 , (16)

with i = 2, 3, . . . , N . For even iterations, the minimization is

f
(2k)
i = min

N≥j>i
(f

(2k)
j + dji, f

(2k−1)
i ), (17)

f
(2k)
N = f

(2k−1)
N , (18)

with i = N − 1, N − 1, . . . , 2. For all iterations, the battery constraints are checked. If
SoC > SoCmax, the path is still feasible, but the current state of charge is set to the
maximum capacity of the battery (SoC = SoCmax), because no further charging is possible.

The energy consumption f
(k)
j + dji is adapted accordingly. If SoC < aSoCmax, that path

is considered unfeasible and f
(k)
i is set to infinity, such that this path is neglected in all

further calculations. If all minimum paths fi of iteration k remain the same compared to
the previous iteration k − 1, the optimum is found:

f (k) =


f

(k)
1

f
(k)
2
...

f
(k)
N

 ≡

f

(k−1)
1

f
(k−1)
2

...

f
(k−1)
N

 = f (k−1). (19)

For time-optimal route planning, the optimum g
(k)
i of each iteration k is calculated having

the edge costs tji, the journey time from node j to node i (see Appendix A). Similarly, the
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optimum for the battery lifetime h
(k)
i works with the edge costs aji (see Appendix B). aji

represents the absolute energy flow to and from the battery.

3.5.2. Multi-objective Optimization

The multi-objective optimization has three optimization variables: energy consumption
of the vehicle, journey time, and cyclic lifetime of the battery. The algorithm applied for
this task is based on the modified version of the Yen algorithm from Section 3.5.1. The
optimal path from the start node number 1 to all nodes i is calculated in each iteration,
taking into account all three variables and their weights, as well as the battery constraints.
We start with iteration 0, setting all three variables in the same manner:

f
(0)
i = d1i, (20)

g
(0)
i = t1i, (21)

h
(0)
i = a1i. (22)

The next step is to go into the details of the odd iterations. At first,

f
(2k−1)
1 = f

(2k−2)
1 , (23)

g
(2k−1)
1 = g

(2k−2)
1 , (24)

h
(2k−1)
1 = h

(2k−2)
1 (25)

are set. Then, for the other nodes i, the energy optimal path is calculated following (15).

If at least one path is feasible, Emin = |f (2k−1)
i | is set and Tmin, the minimum in time,

and Amin, the smallest absolute energy consumption, are calculated according to (A.4) and
(B.2), respectively. All three results are combined to multi-objective optimization with the
weights γ for energy, δ for time, and 1 − (γ + δ) for battery lifetime. The optimization
problem solved for node i = 2, 3, . . . , N in iteration 2k − 1 is:

x
(2k−1)
i = min

1≤j<i

(
γ
f

(2k−1)
j + dji

Emin
+ δ

g
(2k−1)
j + tji

Tmin
+ (1− (γ + δ))

h
(2k−1)
j + aji

Amin
,

γ
f

(2k−2)
j

Emin
+ δ

g
(2k−2)
j

Tmin
+ (1− (γ + δ))

h
(2k−2)
j

Amin

)
.

(26)

All energy costs are normalized by the factor Emin, the journey time by Tmin, and the
absolute energy by Amin. The normalized values equal to one at the optimum and greater
than one for all the other paths. The deviation from the optimum is weighed with γ, δ and
1− (γ+ δ). After the minimum x

(2k−1)
i is found, the costs f

(2k−1)
i , g

(2k−1)
i , and h

(2k−1)
i are set

according to the resulting multi-objective optimal path. For even iterations the situation is
very similar. We start with

f
(2k)
N = f

(2k−1)
N , (27)

g
(2k)
N = g

(2k−1)
N , (28)

h
(2k)
N = h

(2k−1)
N . (29)
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Then, for node i the optimal values Emin, Tmin, and Amin are computed and multi-objective
optimization is performed, iterating from i = N − 1 to i = 2:

x
(2k)
i = min

N≥j>i

(
γ
f

(2k)
j + dji

Emin
+ δ

g
(2k)
j + tji

Tmin
+ (1− (γ + δ))

h
(2k)
j + aji

Amin
,

γ
f

(2k−1)
j

Emin
+ δ

g
(2k−1)
j

Tmin
+ (1− (γ + δ))

h
(2k−1)
j

Amin

)
.

(30)

3.6. Reference Values and Assumptions

The two vehicles selected for testing are the Nissan Leaf, see data sheet [23], and the
Mitsubishi i-MiEV, see data sheet [24]. All parameters necessary for the calculations are
summarized in Table 2. For the mass m, the curb weight of the vehicle, is combined with
the weight of one person, the driver. The driver’s mass is assumed to be 75 kg. To calculate
the air resistance Fair according to (3), the cross sectional area A and the drag coefficient cw
are necessary. If A is not specified in the official data sheet, it may be estimated according
to [25], knowing the width w and height h of the vehicle:

A = 0.81 · w · h. (31)

Accessory loads and efficiencies are obtained from the measurements in [26]. Some efficiency
factors cannot be found in [26], therefore they are assumed to be 100%, except for the engine
efficiency, which is assumed to be 90%.

Table 2: Parameters of the two different electric vehicles

Nissan Leaf Mitsubishi i-MiEV

Dimensions

Curb weight 1516 1090 kg
Mass with driver m 1591 1165 kg
Drag coefficient cw 0.28 0.33 -
Width with mirrors 1967 1792 mm
Width w/o mirrors w 1770 1475 mm
Height h 1550 1610 mm
Cross sectional area A 2.22 2.14 m2

Accessory loads

Heating Pheat 90 95 W/◦C
Cooling Pcool 40 30 W/◦C
Lights Plight 48 38/127 W
Fan Pair 62 48 W

Battery

Capacity SoCmax 24 16 kWh

Efficiencies

Drive ηd 1 1
Motor ηm 0.90 0.90
Inverter DC-AC ηinv 0.96 0.91
Battery ηdis 0.90-0.96 0.88-0.95
Accessories DC-DC ηacc 1 0.83
Heating/Cooling ηhc 1 1
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4. Results

4.1. Suburban Area: Near Vienna, Austria

The street network covers the main roads of the Wienerwald area West of Vienna. The
city of Vienna is excluded. The network has a total of 31 nodes and 41 edges. Different
routes were tested with the multi-objective optimization algorithm. Planning a trip from
Passauerhof to Maria Gugging provides interesting results (see Figure 4). There are two
different solutions of the multi-objective optimization. The routes are:

(a) The first path, where the electric vehicle needs the least amount of energy, starts at
Passauerhof, and passes through Katzlsdorf, Königstetten, and St. Andrä before it
reaches the destination Maria Gugging (see Figure 4).

(b) The other route (b) is both the fastest and the shortest route, but presents more
variation in topography than (a), passing small villages such as Unterkirchen and
Hintersdorf before reaching Maria Gugging (see Figure 4).

Figure 4: Results from Passauerhof to Maria Gugging (edited screen-shot from Google Maps; Google and
the Google logo are registered trademarks of Google LLC, used with permission.)

Table 3 presents the solutions of the multi-objective optimization for various combinations
of the weights. It can be noticed that combinations with small values of γ and δ result
in option (a). This route has less variation in topography than (b), as it can be seen in
Figure 5 and 6. If γ and δ are small, the focus is on increasing the battery lifetime. In
contrast to the optimization variable for energy consumption, where the regenerated energy
has a negative sign and, therefore, helps minimizing the costs, the optimization variable
representing the battery lifetime takes the absolute value of the energy. In this case, the
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regenerated energy counts the same way as the consumed energy. Therefore, driving downhill
or braking increases the costs and is avoided by the optimization algorithm. A route with
little elevation up and down is preferred. It can be seen in Figure 6 that the absolute energy
flow to and from the battery for route (a) is smaller than for route (b). Combinations

Table 3: Results from Passauerhof to Maria Gugging with Nissan Leaf at 20 ◦C

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (a) (b) (b) (b)
0.2 (a) (a) (a) (b) (b) -
0.4 (a) (a) (b) (b) - -
0.6 (a) (a) (b) - - -
0.8 (a) (b) - - - -
1 (a) - - - - -

with a high value of δ lead to the fastest route (b). The difference in time is almost four
minutes, which is a quarter of the total journey time of route (b). The difference in energy
consumption is less significant (see Figure 5). Choosing route (a), only a few Watt-hours
are saved. If the battery lifetime is neglected (γ + δ = 1), a high value of γ and a small δ
lead to route (b), while only with γ = 1, route (a) is chosen, because the savings in energy
consumption are insignificant compared to the savings in journey time.
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Figure 5: Topography and energy consumption on route (a) and route (b) from Passauerhof to Maria
Gugging

4.1.1. Comparing Different Weather Conditions

The route planning system is also tested for different outside temperatures. During
winter, the temperatures frequently fall below zero in Austria. Therefore, heating is nec-
essary for the passengers in the vehicle. With the help of the measurements in [26], it is
possible to find a linear function of the Nissan Leaf’s power demand for heating, which is
Pheat = 90 W/◦∆C. The energy consumption is expected to rise with lower temperatures,
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Figure 6: Topography and absolute energy consumption on route (a) and route (b) from Passauerhof to
Maria Gugging

which may influence the results of the multi-objective optimization problem. Assuming an
outside temperature of T = −10◦C, we have

Phc = Pheat(T0 − T ) = 1800 W, (32)

with T0 = 20◦C. For the relatively short trip of around 20 minutes, 0.6 kWh are used only for
heating. In addition, battery (dis-)charging efficiency ηdis is decreasing due to low tempera-
tures (see Table 2). Table 4 shows the results for varying combinations of the optimization
weights. These results are not surprising considering that the energy consumption of all

Table 4: Results from Passauerhof to Maria Gugging different outside temperatures

(a) 20 ◦C

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (a) (b) (b) (b)
0.2 (a) (a) (a) (b) (b) -
0.4 (a) (a) (b) (b) - -
0.6 (a) (a) (b) - - -
0.8 (a) (b) - - - -
1 (a) - - - - -

(b) −10 ◦C

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (b) (b) (b) (b)
0.2 (a) (a) (b) (b) (b) -
0.4 (a) (b) (b) (b) - -
0.6 (b) (b) (b) - - -
0.8 (b) (b) - - - -
1 (b) - - - - -

accessories, including heating and cooling, is time-dependent. This factor makes fast routes
more attractive also when looking at energy-optimal route planning. In this case, route
(a), which has less energy consumption at 20 ◦C, now requires more energy than route (b),
making route (b) the most energy and time efficient route at temperatures of −10 ◦C outside
(see Figure 7). When focusing on the cyclic lifetime of the battery only (low γ and δ), route
(a) is still chosen because of the topography, as explained previously. Figure 8 shows that
the cumulated absolute energy consumption and regeneration of route (a) is still smaller
than that of route (b), but with a narrower margin at −10 ◦C compared to 20 ◦C.
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Figure 7: Energy consumption (cumulated) on route (a) and route (b) from Passauerhof to Maria Gugging
for different outside temperatures, 20 ◦C and −10 ◦C
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Figure 8: Absolute value (cumulated) of the energy consumed or regenerated on route (a) and route (b)
from Passauerhof to Maria Gugging for different outside temperatures, 20 ◦C and −10 ◦C
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4.1.2. Comparing Two Different Types of Electric Vehicles

So far, the tests are performed exclusively with the Nissan Leaf. In the following part,
the Mitsubishi i-MiEV vehicle is added, assuming its characteristics as given in Table 2. The
Mitsubishi vehicle is almost 30% lighter in weight than the Nissan, but its cw-value is higher
and its efficiencies are lower. In Table 5, the results for the Nissan Leaf and Mitsubishi
i-MiEV are compared. Figure 9 shows that the energy consumption on both routes, (a)

Table 5: Results from Passauerhof to Maria Gugging at 20 ◦C

(a) Nissan Leaf

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (a) (b) (b) (b)
0.2 (a) (a) (a) (b) (b) -
0.4 (a) (a) (b) (b) - -
0.6 (a) (a) (b) - - -
0.8 (a) (b) - - - -
1 (a) - - - - -

(b) Mitsubishi i-MiEV

γ/δ 0 0.2 0.4 0.6 0.8 1

0 (a) (a) (a) (b) (b) (b)
0.2 (a) (a) (b) (b) (b) -
0.4 (a) (a) (b) (b) - -
0.6 (a) (a) (b) - - -
0.8 (a) (b) - - - -
1 (a) - - - - -

and (b), is higher for the Mitsubishi despite having less weight. Another finding is that on
both routes the cumulated absolute value of the consumed and regenerated energy of the
Mitsubishi is smaller compared to Nissan. This result shows that the Mitsubishi regenerates
less energy. Only once does the result change compared to the Nissan, which is for γ = 0.2
and δ = 0.4. The absolute energy has the weight of 1 − (γ + δ) = 0.4. In this case, the
objective to be minimized in (26) is almost equal for both routes, but with route (b) being
slightly more efficient.
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Figure 9: Energy consumption (cumulated) on route (a) and route (b) from Passauerhof to Maria Gugging
comparing Nissan Leaf and Mitsubishi i-MiEV at 20 ◦C
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Figure 10: Absolute value (cumulated) of the energy consumed or regenerated on route (a) and route (b)
from Passauerhof to Maria Gugging comparing Nissan Leaf and Mitsubishi i-MiEV at 20 ◦C

4.2. Urban Area: San Francisco, California

Further tests are conducted for the city of San Francisco, California, because of its inter-
esting topography. The street network of San Francisco is fundamentally different from the
street network of Wienerwald, Austria. It is an urban area with a high road density. The
network is a grid of perpendicular streets. Each intersection represents a node of the network.
Because of the high road density, there is also a high number of nodes. Therefore, only a
small part of downtown San Francisco is selected in order to keep the network more compact.

Modeling an urban street network may be challenging because there are many factors that
are hard to predict. Traffic flow is on top of the agenda in this context. When searching
for the fastest route, the current traffic situation and the timing of traffic lights are main
concerns, other factors among many others may be being zebra crossings, stop signs, and
bus stops. They not only influence the journey time, but also the energy consumption. Nev-
ertheless, the impacts of traffic and road signs are neglected for simplification in the present
work. The focus is on the energy consumption and battery lifetime, which are expected
to be considerably impacted by the topography of the city. Multi-objective optimization is
performed with δ = 0.

4.2.1. Route: From Pier 39 to Russian Hill

Different starting and destination points are tested. One journey starts close to Pier
39, at the corner Beach Street/Grant Avenue. The destination point is Union Street/Hyde
Street, close to Russian Hill. All combinations of the multi-objective optimization weights
result in the same route (see Figure 11). Going in the opposite direction, from Russian Hill
to Pier 39, gives the result seen in Figure 11, for all values of γ. Figure 13 (dashed lines)
shows the topography of the two scenarios: Going from Pier 39 to Russian Hill (Union/Hyde
Street) and the return. The energy consumption on both trips (see Figure 13) strongly de-
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Figure 11: Results from Pier 39 to Russian Hill (screen-shot from Google Maps - Google and the Google
logo are registered trademarks of Google LLC, used with permission.)

Figure 12: Results from Russian Hill to Pier 39 (screen-shot from Google Maps - Google and the Google
logo are registered trademarks of Google LLC, used with permission.)
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pends on the topography. Since Pier 39 is almost at sea level, going to Russian Hill takes a
lot of energy, while the electric vehicle regenerates energy by going in the opposite direction
down to Pier 39. In Figure 14, it can be seen that the absolute energy flow of the return
trip is a lot smaller.

Further results of San Francisco show that focusing on the battery lifetime often results in
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Figure 13: Topography and energy consumption from Pier 39 to Russian Hill and back
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Figure 14: Topography and absolute energy consumption from Pier 39 to Russian Hill and back

routes differing from those focusing on energy efficiency. Switching the destination point to
another one close to the original results in the three routes represented in Figure 15. Figure
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16 and Figure 17 show the topography as well as the energy consumption and absolute
energy consumption of the three results. Route (a) is the result for γ = 0 and γ = 0.2. It
is longer and not as energy efficient as route (b) and (c), but shows better performance in
terms of battery-lifetime due to a different topography. Route (c) is the most energy efficient
route (γ = 0.8 and γ = 1).

Figure 15: Route options (a), (b), and (c) in San Francisco (edited screen-shot from Google Maps; Google
and the Google logo are registered trademarks of Google LLC, used with permission.)
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Figure 16: Topography and energy consumption for route options (a), (b), and (c) in San Francisco
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Figure 17: Topography and absolute energy consumption for route options (a), (b), and (c) in San Francisco
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5. Conclusion and further Developments

This work shows that route planning specifically designed for electric vehicles has more
to offer than conventional routing systems, which only consider time or distance to the
destination. The multi-objective optimization uses three optimization variables: energy
consumption, journey time, and battery lifetime. With different weights on the variables,
different solutions are obtained. Tests are performed for existing street networks. In some
cases, there is only one optimal route for all variables, while other cases show very distinct
results for one of the optimization variables.

The results demonstrate the influence of the topography on the routes. The energy con-
sumption depends significantly on the topography. Especially with electric vehicles, which
may regenerate energy by driving downhill, there is a strong correlation between energy con-
sumption and topography. Another aspect of this work is optimization in order to increase
the battery lifetime. Minimizing the total energy flow of the battery is the goal and, there-
fore, routes with little topographical variation are preferred. The battery is an expensive
part of the vehicle and, as such, should be protected from degradation as much as possible.
The influence of additional loads such as heating, air condition, lights, and fan is significant.
Those loads are powered by the battery and therefore increase the total energy consumption,
with an important factor being the duration of the journey, as more energy is used the longer
these additional loads operate. Accordingly, the results of the multi-objective optimization
may change, due to fast routes becoming more energy efficient.

Using a weighted multi-objective optimization may be more reasonable than using a single-
objective optimization. If the second fastest route were much more energy efficient, but only
slightly slower than the fastest route, a time-only optimization leads to an unreasonable re-
sult, but when different aspects are considered at the same time, the most practical solution
is achieved. In order to use this type of route planning for real-world scenarios, some ad-
ditional information may be necessary. Traffic lights and stop signs should be included, as
well as traffic flow, as a theoretically optimal route may in practice prove to be infeasible
due to traffic holdups. Future work on this topic should also include charging stations such
that route planning is possible for a journey farther than the battery range of the vehicle.

Lastly, another important aspect to be included in future work is driving behavior. Speed
and acceleration influence the energy consumption of the vehicle. In urban areas, the journey
time is mainly dependent on the traffic situation rather than the speed, while in non-urban
areas the speed may have a significant impact. Assuming a certain speed profile could help
achieving realistic results. Either a statistical approach to obtain a speed profile, or learning
from previously obtained data of the driver’s preferences could be utilized.
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Appendix A. Time-optimal Route Planning

Compared to the search for an energy-optimal path, finding a time-optimal path is a lot
less complicated. On one hand, there are no constraints assumed concerning the journey
time. It is just about finding the fastest itinerary. On the other hand, there are no negative
edge costs. In fact, the graph is undirected if it is assumed that the same road with the same
speed limit is available for the way back. This optimization problem could be solved with a
less complex and faster algorithm than Bellman-Ford or Yen, because there are no negative
edge costs. Although, when energy and time are combined to multi-objective optimization,
it is easier to just use the same algorithm, because the computation time is not crucial in
this work. The procedure is the same as for finding an energy-optimal path. In this case
the edge costs represent the journey time. For any road segment, they are calculated as

t = v/s, (A.1)

with the assigned speed level v and the length s of the section. The journey time of a whole
edge connecting the nodes i and j is the sum of all M road segments:

tij =
M∑
l=1

tl. (A.2)

Iteration 0 is given as
g

(0)
i = t1i, (A.3)

where t1i are the edges costs from node 1 to node i = 2, . . . , N . For odd iterations, the
minimum is found using

g
(2k−1)
i = min

1≤j<i
(g

(2k−1)
j + tji, g

(2k−2)
i ), (A.4)

g
(2k−1)
1 = g

(2k−2)
1 , (A.5)

with i = 2, 3, . . . , N . For even iterations, the minimization is

g
(2k)
i = min

N≥j>i
(g

(2k)
j + tji, g

(2k−1)
i ), (A.6)

g
(2k)
N = g

(2k−1)
N , (A.7)

with i = N − 1, N − 1, . . . , 2.
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Appendix B. Energy-optimal Route Planning in Order to Increase Battery
Lifetime

The third criterion, which may be used for route planning is increasing battery lifetime.
Battery wear-off should be avoided for as long as possible, as it can decrease the capacity
as well as limit the range of the vehicle. The battery is also a very expensive part of the
electric vehicle to replace. There are some actions to be taken in order to increase the bat-
tery lifetime. First, avoiding deep discharge is helpful. This can be included in the factor a,
which can be tuned to a value that is safe for the battery.

A lithium-ion battery, which is the power source for most electric vehicles, usually has a
specific cyclic lifetime. Decreasing the total number of cycles of the battery helps to in-
crease its lifetime. This is the third criterion of the multi-objective optimization. It is
performed in a similar way as the energy-optimal planning, but takes the absolute value of
the energy as the edge costs. Power provided by the battery for driving or for accessories is
treated the same as regenerated energy from braking and driving downhill, thus increasing
the costs instead of decreasing them. The edge costs from node i to j is aij, the sum of the
absolute energy values of all road sections belonging to this edge. hi are the costs from node
1 to node i.

Iteration 0 is given as
h

(0)
i = a1i, (B.1)

where a1i are the edges costs from node 1 to node i = 2, . . . , N . For odd iterations, the
minimum is found using

h
(2k−1)
i = min

1≤j<i
(h

(2k−1)
j + aji, h

(2k−2)
i ), (B.2)

h
(2k−1)
1 = h

(2k−2)
1 , (B.3)

with i = 2, 3, . . . , N . For even iterations, the minimization is

h
(2k)
i = min

N≥j>i
(h

(2k)
j + aji, h

(2k−1)
i ), (B.4)

h
(2k)
N = h

(2k−1)
N , (B.5)

with i = N − 1, N − 1, . . . , 2.
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