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Abstract

The observation that a socioeconomic agent with a high reputation gets a disproportionately higher
recognition for the same work than an agent with lower reputation is typical in career development and
wealth. This phenomenon, which is known as Matthew effect in the literature, leads to an increasing
inequality over time. The present paper employs an optimal control model to study the implications
of the Matthew effect on the optimal efforts of a scientist into reputation.

The solution of the model exhibits, for sufficiently low effort costs, a new type of unstable equilib-
rium at which effort is at its upper bound. This equilibrium, which we denote as Stalling Equilibrium,
serves as a threshold level separating success and failure in academia. In addition we show that at
the Stalling Equilibrium the solution can be abnormal. We provide a clear economic interpretation
for this solution characteristic.

Keywords: optimal control, history-dependent solution, abnormal solution, career planning,
Matthew effect

1. Introduction

The quality of his/her published work is certainly an important input to increase a scientist’s
reputation. However, delivering good work does not guarantee recognition in academia. One of the
underlying problems is that reputation is self-enforcing in the sense that contributions of relatively
unknown researchers receive disproportionately less attention and recognition than the work of well-
established scientists. This self-enforcement effect concerning the reputation for scientific work is
known as the Matthew effect in the literature. The name of the effect refers to a passage in the Gospel
of Matthew, which reads:

“For unto everyone that hath shall be given, and he shall have abundance; but from him that hath
not shall be taken away even that which he hath.”

This biblical parable has been transferred to scientific production by Merton (25) and has also
been applied later to socioeconomic issues; compare Merton (27) and the rich literature cited in this
essay.

The Matthew effect is visible, for example, in scientific conferences. The plenary talks are inher-
ently held by prominent speakers, who further increase their visibility by giving these presentations.
The Matthew effect can also be present in the event of submitting papers to peer-reviewed journals.
In an ideal world the quality of the paper, and not the reputation of the authors, should decide about
getting a paper published or not. In reality it is not without reason that some journals enforce a
double-blind peer review process to ensure fairness, or check with all coauthors if they contributed to
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the paper,1 see e.g. Wislar et al. (40). A high reputation helps to obtain a position as a full professor,
which in turn raises access to resources leading to an increased scientific output. Even just narrowly
losing in the job application process could damage a scientific career. In a study analyzing early career
academic funding in The Netherlands, Bol et al. (11) find that - despite similar academic background
- winners of academic funding accumulate more than twice as much funding as non-winners with
near-identical but slightly lower review scores.2 Azoulay et al. (4) study the impact of becoming a
Howard Hughes Medical Institute Investigator on citations and obtain that winning the recognition
leads to a citation boost for less known researchers, while the effect for known researchers is small.
Merton (25) is obviously the first who translates the biblical parable into the secular accumulation of
advantage and disadvantage for scientists. Since then a large number of papers related to the sociology
of science has emerged, see for example Merton (26), Dannefer (15), Allison et al. (1), DiPrete and
Eirich (17), Mayer (23), Bask and Bask (6, 7).

There are certain factors a scientist cannot influence (at least not immediately), which strengthen
the Matthew effect. Such factors include the current position of a scientist (being full professor is
more impressive than being assistant or associate professor) and the reputation of the researcher’s
university. Clauset et al. (13), who studies factors affecting the faculty hiring process, finds that there
are reputational benefits associated with working at a prestigious institution. Cole (14) obtains that
papers of equal quality, but written by authors of greater scientific reputation, will receive rapid peer
recognition, as assessed by the larger number of citations assigned to them. Moreover, he could identify
a distinct advantage of scientists located in departments of US - elite universities. Ethnicity, religion,
or gender of a scientist can also contribute to the Matthew effect. Women being denied recognition
for their work is also known as Matilda effect in the literature, see Rossiter (29).

To study the impact of the Matthew effect we use a continuous-time optimal control framework. We
consider the scientist’s effort as control variable and his/her reputation as state variable, an approach
which is analogous to modeling the accumulation of human capital over the life cycle; see Becker
(8), Ben-Porath (9), Blinder and Weiss (10). For an application of life cycle models to scientific
productivity we refer to McDowell (24), Levin and Stephan (22), and the survey of Stephan (36,
sect. 8). A more recent analysis of the development of scientific production over time is provided by
Seidl et al. (30) and ? ). Yegorov et al. (41) studies how the market access of a scientist affects his or
her success and finds that the outcome can be history-dependent in the sense that it depends on the
initial value of the scientist’s human capital and the market access.

The present paper also obtains that the development of a research career can be history-dependent,
but this time it is due to the Matthew effect and the fact that the scientist’s available effort needed to
create scientific output is limited. If the initial reputation is low, it is impossible for the scientist to
build up a sufficiently high reputation needed to prevail in academia. A scientist can only be successful
if the reputation at the beginning of the planning period is already large, caused for instance by his/her
well-known institution or if he or she had already built up a substantial reputation before the career
actually had started (e.g. during the writing of the Master thesis or during early stages of the PhD
studies). We find that in case of low cost of scientific effort there exists a threshold between success and
failure, which we will denote as Stalling Equilibrium.3 At the Stalling Equilibrium the corresponding
reputation level has the interesting property that the scientist has to use maximal efforts to stay
put. Working less would lead to a loss of reputation from which it is not possible to recover, whereas
increasing reputation is not possible as the scientist is already employing maximal effort. Reputation

1A form of fraud that has been observed in academia is adding a famous author without his or her agreement or even
knowledge to the list of co-authors to improve the chances of being published.

2Note, however, that for US data Wang et al. (38) find that near-miss applicants outperform successful candidates in
the long-run

3The term Stalling Equilibrium originates from aerodynamics and aviation, where it denotes the separation point at
which the flow at a foil becomes turbulent and the lift reaches its maximum, see e.g. Stengel (35).
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just being slightly above this threshold would guarantee a bright future in academia with less efforts
required in the long run due to the Matthew effect.

By the introduction of the concept of the Stalling Equilibrium, we extend the literature on history-
dependent solutions, see e.g. Grass et al. (18), Wagener (37), Kiseleva and Wagener (20), Caulkins
et al. (12). If, in addition to having low cost of scientific effort, which is a necessary existence condition
for the Stalling Equilibrium, also the positive influence of the Matthew effect is relatively large and
the scientist is able to put a lot of effort in increasing his or her reputation, the Stalling Equilibrium
has the property that the solution is abnormal at this particular point. Abnormality means that the
instantaneous contribution to the objective has to be ignored at this particular point to derive the
optimal strategy, see e.g. Halkin (19). Abnormal solutions have found little attention in economic
problems as they were considered - as the name says - as something abnormal that can only occur
in ill-posed models. We find, however, that in a well-posed model, the abnormality results from the
upper bound on the control variable, which is the scientific effort in our case. In particular we obtain
that in close proximity of the Stalling Equilibrium, the costate variable measuring the marginal value
of reputation gets very large whereas it is infinite at the Stalling Equilibrium itself. Intuitively this
can be explained as follows. At the Stalling Equilibrium the control effort is at its upper bound, and
reputation stays at the same level. If it would have been possible to increase effort further, which
is thus not the case, reputation would grow and the decision maker could substantially increase the
objective value. Hence, raising its reputation level is not possible for the scientist at the Stalling
Equilibrium, but it would have been possible, however, if the state variable has an infinitesimally
larger value. A solution with an infinite value of the costate is not an admissible solution by means of
the maximum principle. The only way to find a feasible solution is therefore to resort to the abnormal
problem.

A history-dependent solution where a Stalling Equilibrium separates solution paths with qualita-
tively different long-run outcomes, just can occur for relatively low effort costs. To give a complete
picture of the solution of the model, we have to study other scenarios as well. To do so, in addition we
analytically derive conditions for the admissibility and optimality of a stable interior steady state as
well as of the Stalling Equilibrium, and threshold equilibria where effort is not maximal. The latter
points to the existence of what is known as a Skiba point in the literature.4 Furthermore, we discuss
the occurring bifurcations, i.e. we determine sets of parameter values at which the optimal solution
changes qualitatively.

The paper is structured as follows. In Section 2 the model is presented. Section 3 states the
necessary optimality conditions using Pontryagin’s maximum principle. Section 4 provides a detailed
analysis of the structure of the solutions. The bifurcation analysis presented in Section 5 delivers
valuable insights into the qualitative optimal dynamic behavior of the scientist. Section 6 analyzes
how certain model assumptions affect the optimal solution. Section 7 concludes.

2. Model description

We consider an optimal control framework with one state variable K(t), denoting the (scientific)
reputation of the decision maker, a scientist. Reputation can increase in two ways. First, the scientist
can conduct scientific effort to improve his or her reputation. This can be done by doing research, by
active participation in scientific events, by networking, by competently contributing to the peer review
process, etc. The amount of effort is denoted by the control variable I(t). Second, K(t) is influenced
by the so-called Matthew effect. The core idea behind the Matthew effect is that reputation grows on
its own when it is high. However, when K is small, this feedback effect is negative.

4The point is also sometimes denoted as DNSS or indifference point to acknowledge contributions by Sethi (32, 33),
Skiba (34), Dechert and Nishimura (16).
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The reputation stock develops according to the usual capital accumulation equation enriched by a
term M(K), which we denote Matthew function, and which measures the Matthew effect. The state
equation reads

K̇(t) = I(t)− δK(t) +M(K(t)),

where δ denotes the depreciation rate, or rate of forgetfulness, of reputation. It is essential that the
Matthew function M(K) is positive for large values of K, but negative for a small reputation. In
particular, we define the Matthew function as

M(K) := a− d

K
. (1)

The idea is that recognizable scientists have an advantage in the sense that reputation is self-
enforcing when K is large. In such a situation reputation grows by itself, which can even happen
without conducting effort. On the other hand, if the reputation is small, it is almost impossible
to succeed in the scientific world. Parameter a denotes the self-enforcement rate of reputation and
describes how much reputation can grow at most on its own when reputation is large. Parameter d is
denoted as discrimination parameter as it measures the extent to which a lack of reputation negatively
affects its growth. Both parameters account for factors such as the scientist’s position, the reputation
of the scientist’s university, but also (in some environments) for the scientist’s ethnicity or gender.
Note that the division of d by K reflects that discrimination is a larger problem for the scientist when
his or her reputation is small. Parameters a and d also incorporate individual characteristics of the
scientist, as personal appearance can have a substantial impact on whether or not being accepted or
finding support within the peer group.

The parameter Imax denotes the capacity of the scientist. It reflects that there exists a maximal
number of hours per day that a scientist is able to work:

I(t) ≤ Imax.

Note that this parameter can strongly vary between scientists as it incorporates on the one hand
preferences with respect to the work-life balance and on the other hand time restrictions arising from
care obligations for children and other dependents.

The scientist’s utility increases with his or her reputation. Utility concavely depends on reputation,
because when already famous, an additional unit of reputation does not do much. This utility can
relate to monetary rewards, as reputation gives the scientist a better bargaining position in negotiations
about his or her salary. However, it can also relate to the fact that a higher reputation makes
that the scientist is able to publish a larger number of papers, gets invited to conferences, wins
awards, gains popularity, etc. A typical concavely increasing function satisfying these characteristics
is g(K) = ln(K + 1).

While certain activities to improve reputation might certainly create satisfaction for the scientific
agent on their own (e.g. writing papers, attending conferences), we assume that conducting effort
generates (convexly increasing) disutility5 equal to c(I) = cI2. The parameter c is negatively related
to the scientist’s talent, i.e., it is less costly to build up reputation for a scientist if he or she is a good
researcher.

The objective of the scientist is to maximize the discounted utility stream net of the cost of effort.

5In Section 6 we also consider the impact of positive utility of effort.
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This implies that the complete model can now be written as

V (K0, I(·), T ) :=

∫ T

0
e−rt

(
ln(K(t) + 1)− cI(t)2

)
dt, (2a)

max
I(·),T

V (K0, I(·), T ), (2b)

s.t. K̇(t) = I(t)− δK(t) + a− d

K(t)
, (2c)

0 ≤ I(t) ≤ Imax, (2d)

K(T ) ≥ 0, (2e)

K(0) = K0 > 0. (2f)

The planning horizon is denoted by T, and is optimally determined, i.e. the scientist has the option
to leave academia. For simplicity we assume that a scientist has no benefits from scientific reputation
after quitting. We allow for the possibility that the optimal planning horizon is infinite. Despite
tertiary education having a positive effect on life expectancy, see Winkler-Dworak (39), no scientist
can stay in academia forever. However, it seems reasonable to assume that a scientist does not take
leaving because of retirement (or health issues) into account when planning to built up a sustainable
career and reputation. The scientist’s discount rate is given by r and reflects the scientist’s time
preference with respect to collecting rewards from reputation net of the cost of effort.

While the next section provides analytical results, we also have to resort to numerical calculations.
For this, the Matlab toolbox OCMat6 is used. All parameter values are strictly positive and the base case
parameter values are shown in Table 1. Note that it is not possible to generate one set of parameter
values that suits all scientists, as the different parameters strongly reflect the individual talent and
academic background of a scientist. To generate general insights, we analyze possible outcomes for
different scenarios. In particular, the values of cost parameter c, which is related to the scientist’s
talent, and a, the self-enforcement rate of reputation, are considered as bifurcation parameters.

r δ c d a Imax

0.03 0.1 ∗ 1 ∗ 1

Table 1: Base case parameter values.

3. Necessary Optimality Conditions

The appropriate way to deal with a model of this type, namely a deterministic optimal control
model in continuous time, is to apply Pontryagin’s maximum principle (see, e.g. 18). To do so,
we introduce the current-value Hamiltonian, in which we explicitly have to consider the factor λ0,

7

yielding

H(K, I, λ, λ0) = λ0
(
ln(K + 1)− cI2

)
+ λ

(
I − δK + a− d

K

)
,

where λ denotes the current-value costate variable. The Lagrangian, with the Lagrangian multiplier
ν for the control constraint (2d) can be written as8

L(K, I, λ, ν, λ0) = H(K, I, λ, λ0) + ν(Imax − I).

6Available at http://orcos.tuwien.ac.at/research/ocmat_software.
7An optimal control problem is called normal if λ0 = 1 and called abnormal if λ0 = 0. For an in-depth treatment of

the topic see Arutyunov (2).
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The derivative of the Hamiltonian and Lagrangian with respect to the control I yields

∂IH = −λ02Ic+ λ,

∂IL = ∂IH− ν.

From the maximum principle

I∗(t) = argmax
0≤I≤Imax

H(K∗(t), I, λ(t), λ0), (3)

the following expressions for the control and Lagrangian multipliers can be derived:

I◦(λ, λ0) :=


λ

2cλ0
for − λ02Imaxc+ λ ≤ 0

Imax otherwise
, ν(λ, λ0) =

{
0 for I < Imax

−λ02Imaxc+ λ for I = Imax.
(4)

The term I◦(λ(t), λ0) denotes the investments fulfilling the necessary optimality conditions and equals
the optimal investments I∗(t) if λ(t) is the according costate of the optimal solution. Not surprisingly,
if the marginal utility of reputation, denoted by λ, is large, it is optimal to conduct a lot of effort to
increase reputation. If it is costly to conduct effort, i.e. c is large, then effort will be low.

The canonical system is given by

K̇(t) = I◦(λ(t), λ0)− δK(t) + a− d

K(t)
, (5a)

λ̇(t) = rλ(t)− λ0
K(t) + 1

− λ(t)

(
d

K(t)2
− δ
)
. (5b)

Hence, equilibria of this canonical system satisfy

I◦(λ, λ0)− δK + a− d

K
= 0, (6a)

rλ− λ0
K + 1

− λ
(
d

K2
− δ
)

= 0. (6b)

An optimal solution (K∗(·), I∗(·), T ∗) has to satisfy the (limiting) transversality conditions

K∗(T ∗) = 0 and H(K∗(T ∗), I∗(T ∗), λ(T ∗), λ0) = 0, for T ∗ <∞, (7a)

or

lim
t→∞

e−rt λ(t) = 0, for T ∗ =∞. (7b)

To explain expressions (7), we need to distinguish two cases. First, expression (7a) applies when the
optimal planning horizon is finite. The academic career stops when reputation equals zero. Note that,
when reputation K is declining and approaches zero, the negative feedback effect in the Matthew
function M(K) causes K to reach zero at a finite point in time. Furthermore, the Hamiltonian has
to be zero at the end of the planning horizon as a positive value would imply that increasing the
planning horizon would improve the objective value, and a negative value that shortening the time
horizon is beneficial. Second, if the length of the optimal planning period is infinite, we have to
consider expression (7b). The discounted marginal utility of reputation has to approach zero over
time. A positive/negative discounted costate value, which measures the marginal utility of reputation
would imply under- or over-investments into reputation.

8We omit taking the control constraint I ≥ 0 into account, since it never becomes binding.
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Solution paths approaching equilibria of the canonical system fulfill the infinite time horizon
transversality conditions. We next determine their existence and properties. For notational sim-
plicity we introduce I, which denotes the minimal admissible effort level such that the roots of the
state dynamics (2c) exist for I ∈ [I, Imax]:

I :=


0 2

√
dδ − a ≤ 0

2
√
dδ − a 0 ≤ 2

√
dδ − a ≤ Imax

∞ otherwise.

(8)

Proposition 1 determines when equilibrium condition (6a) can be satisfied for feasible effort levels.

Proposition 1. Let Imin := 2
√
dδ − a. Then Eq. (6a) has solutions for I ∈ [Imin,∞) and these are

related as follows:

K1,2(I) =
I + a∓

√
(I + a)2 − 4dδ

2δ
, (9a)

which implies

K1(Imin) = K2(Imin) =

√
d

δ
,

d

dI
K1(I) < 0, and

d

dI
K2(I) > 0, I ∈ [Imin,∞) (9b)

and

Ki(I) > 0, i = 1, 2, lim
I→∞

K1(I) = 0, lim
I→∞

K2(I) =∞. (9c)

For I = Imax we define
K̃i := Ki(Imax), i = 1, 2. (10)

Then, the following cases can be distinguished

I < Imax: for every I ∈ [I, Imax] there exist two roots of Eq. (9a).

I > Imax: no equilibrium exists.

I = Imax: the only equilibrium candidate has reputation level K =
Imax + a

2δ
.

Proof. Simple calculations yield a quadratic equation for the equilibria of (6a) for 0 ≤ I ≤ Imax:

I − δK + a− d

K
= 0,

δK2 −K(I + a) + d = 0,

resulting in (9a). The solutions are real valued if the discriminant D fulfills

D := (I + a)2 − 4dδ ≥ 0. (11a)

For I + a ≥ 0 this is equivalent to

I ≥ 2
√
dδ − a =: Imin. (11b)

Now it is easy to see that for Imax > 2
√
dδ − a ≥ 0 (9a) has two real valued solutions with

I ∈ [2
√
dδ − a, Imax].

For 2
√
dδ − a < 0 (9a) has two real valued solutions with I ∈ [0, Imax]. Further details of the proof

are shifted to Appendix A.
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Proposition 1 implies that the size of parameters a and d, which govern the Matthew effect, as
well as the depreciation rate of reputation have a substantial impact on the possible occurrence of
long-run equilibria, and therefore whether a scientist can successfully stay in academia. If the self-
enforcement rate of reputation a is large compared to d and δ, it is easy to gain reputation and we get
that a steady state can exist with high reputation. However, if the depreciation rate is high (i.e. δ is
large) or the academic environment is very discriminating (i.e. d is large), it is harder to maintain a
good reputation, and, consequently, no equilibrium exists. This implies that the only possible optimal
strategy is to quit academia after some time.9

Proposition 1 also implies that the maximum effort a scientist is willing or able to invest into his
or her reputation, Imax, plays an important role on whether a scientist can stay in academia in the
long run. The larger a or the smaller d is, the smaller is the necessary minimum investment I for
which a steady state can exist. If this minimum level of investments is larger than the maximal effort
of the scientist, no steady state can occur and the scientist has to leave academia sooner or later.

An equilibrium K̃1 at which the control is at its upper bound and where for lower values of K the
state dynamics is negative for I = Imax, will be called Stalling Equilibrium. The denotation “Stalling”
refers to the property that maximum effort has to be applied to stay at least put at this position (see
Footnote 2). In the next sections we will see that the Stalling Equilibrium K̃1 plays an important role
in determining the scientist’s optimal dynamic behavior.

Proposition 2 shows that the Stalling Equilibrium occurs for a low level of reputation when the
scientist has good opportunities to let its reputation grow.

Proposition 2. Let (Imax+a)2−4dδ > 0, implying existence of the Stalling Equilibrium (see Eq. (9a)).
Then the Stalling Equilibrium K̃1 decreases in parameters Imax and a and increases in d. Furthermore,
K̃1 is strictly positive.

Proof. For the proof we calculate the derivatives of K̃1 given by Eq. (9a) for a, Imax and d. These
yield

∂K̃1

∂a
=

∂K̃1

∂Imax
=

1

2δ

(
1− Imax + a√

(Imax + a)2 − 4dδ

)
< 0,

and

∂K̃1

∂d
=

1√
(Imax + a)2 − 4dδ

> 0,

and hence prove the according statements.
The positivity of K̃1 follows from expression (9a) and δ, d > 0.

Later we obtain that the Stalling Equilibrium serves as a threshold, such that for K > K̃1 it is
optimal for the scientist to stay in academia forever. Proposition 2 shows in fact that this is optimal
for a larger interval of initial reputation levels, if the scientist’s opportunities to increase his or her
reputation level are bigger.

4. Optimal Solution

This section presents the optimal solution. We first state under which conditions the necessary
conditions are sufficient for optimality.

9Note that a diverging solution with K(t) going to infinity can be excluded due to I ≤ Imax and limK→∞M(K) = a
yielding limK→∞ K̇ = −∞.
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Proposition 3. The optimal control problem (2) has an optimal solution. If T ∗ = ∞ and λ0 = 1
there is no other solution over the infinite time horizon.

For the proof see Appendix B. Note that Proposition 3 does not exclude that a finite and infinite
time horizon solution exist.

The existence and uniqueness of the optimal solution for the infinite time horizon problem is
theoretically verified by Proposition 3. However, from the state dynamics (2c) it immediately follows
that there exists a region in the state space such that even for the maximal control Imax it is not
possible to sustain a strictly positive K in the long run. Therefore, the infinite time horizon solution
is not always admissible so that the finite time horizon solution needs to be considered as well. In
addition, it will turn out that an abnormal solution with λ0 = 0 also has to be taken into account.

It follows that the solution can be history dependent. Therefore, the notion of Skiba point is
crucial, and we proceed with stating the following definition related to the one-state problem (2).

Definition 1. For every K0 ≥ 0 we introduce the set of optimal solutions of problem (2)

S(K0) := {(K∗(·), I∗(·), T ∗) : K∗(0) = K0 is an optimal solution of problem (2)} (12)

and we call an optimal solution (K∗(·), I∗(·), T ∗) with T ∗ <∞ and K∗(0) = K0 a finite time horizon
solution at K0, otherwise it is called an infinite time horizon solution at K0.

For an optimal solution (K∗(·), I∗(·), T ∗) ∈ S(K0) with T ∗ =∞ and

lim
t→∞

K∗(t) = K̂ and lim
t→∞

I∗(t) = Î ,

the point (K̂, Î) is called the long run optimal solution (for K0).
For an optimal solution (K∗(·), I∗(·), T ∗) ∈ S(K̂) with K∗(·) ≡ K̂ and T ∗ = ∞ we say that the

optimal solution stays at K̂ or we shortly say that the equilibrium K̂ is optimal.
If |S(K0)| = 1 the optimal solution is unique at K0. If |S(K0)| = 2, K0 is called a Skiba pointand

the (two) solutions of S(K0) are called the (two) Skiba solutions at K0.
Let for some ε > 0 and a state value KS the set of optimal solutions satisfy |S(K0)| = 1 for

|KS −K0| < ε, and let for |KS −K0| < ε and K0 < KS the finite time horizon solution be optimal
and for |KS − K0| < ε and K0 > KS let the infinite time horizon solution be optimal. Then KS is
called a weak Skiba point.

Essentially, three different solution patterns can emerge. The simplest pattern is the controlled
movement to zero in finite time for any initial value of K0 > 0. In any other case we encounter history
dependence of the solution paths. Then, a point KS > 0 exists that separates the regions of attractions
between the finite time solution to zero and the infinite time horizon solution to an equilibrium. In
the Skiba case, right at K(0) = K0 = KS the scientist is indifferent between the finite-time and the
infinite-time solution, which are both optimal. In the weak Skiba case the optimal solution is to stay
at KS forever.10

The next proposition presents the different solution patterns. A more detailed overview is provided
by Proposition 8 in Appendix D.

Proposition 4. Depending on the parameter constellation the optimal solution of problem (2) can be
described by one of the following cases.

1. For every K0 ≥ 0 the finite time horizon solution is optimal, and |S(K0)| = 1.

2. For K0 < K̃1 the finite time horizon solution is optimal. For K0 > K̃1 the optimal solution
converges to some K̂ > K̃1, and for K0 = K̃1 it is optimal to stay at K̃1, and |S(K0)| = 1.

10For a general discussion of the Skiba phenomenon and bifurcations of one state optimal control problems we refer
the reader to Grass et al. (18) and Kiseleva and Wagener (20, 21).
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3. For K0 < KS with KS > K̃1 the finite time horizon solution is optimal. For K0 > KS the
optimal solution converges to some K̂ > KS. The point KS is a Skiba point and the Skiba
solutions are the finite time horizon solution and a solution that converges to some K̂ > K̃1,
with |S(K0)| = 1 for K0 6= KS and |S(KS)| = 2.

In the first solution of Proposition 4 it holds that it is not optimal for a scientist to stay in academia
forever. The second and the third outcome are state-dependent: if the initial reputation is sufficiently
large, the scientist will undertake efforts such that in the long run reputation will be positive and
admit the level K̂. If the initial reputation is low, the scientist will quit academia in finite time with
zero reputation. In the second case, the threshold between success and failure is the steady state K̃1

where the control is at its upper bound. In the third case, the threshold is a Skiba point KS , where the
scientist is indifferent between a strategy requiring high efforts to success and one with lower overall
efforts leading to failure.

The difference between the second and the third case is that in the latter case the scientist actually
has the choice between the two options when reputation equals KS . However, this does not hold in
the second case if reputation equals K̃1. If at K̃1 the scientist conducts maximal effort, the result is
that reputation remains at the level K̃1. This implies that it is not possible for the scientist to raise
his or her reputation level beyond this point, so that growing to the long run steady state level K̂
cannot be achieved. We denote the threshold K̃1 as Stalling Equilibrium.

Let us focus on the second case with the Stalling Equilibrium serving as the threshold. Crucial
will be the sign of

q̃1 := r + δ − d

K̃2
1

, (13a)

which appears in the denominator for the root of the costate equation (5b) with λ0 = 1 at K̃1 as

λ̃1 :=
1

(K̃1 + 1)q̃1
. (13b)

Corollary 1. Consider case 2 of Proposition 4.

1. For q̃1 < 0 the costate satisfies

lim
K0→K̃1,K0 6=K̃1

λ(K0, 0) =∞, (14)

implying that the optimal solution is abnormal.

2. For q̃1 > 0 the costate satisfies

lim
K0→K̃1,K0 6=K̃1

λ(K0, 0) = λ̃1, (15)

implying that the optimal solution is normal.

For the proof see a detailed version of Corollary 1 formulated as Corollary 4 in Appendix D.
Figure 1 presents the two cases of Corollary 1. The abnormal solution is depicted in Figures 1a

to 1c, whereas the normal solution is shown in Figures 1d to 1f. So, if q̃1 is negative, the optimal
solution is abnormal,11 meaning that essentially the objective is ignored to determine the optimal
strategy. The reason for the optimal solution being abnormal is Figure 1b, where the costate variable
λ admits the value of infinity at the Stalling Equilibrium K̃1. However, the maximum principle requires
a finite value for the costate variable. For that reason one has to resort to the abnormal problem with

11See Appendix E for a more detailed discussion on abnormality and its occurrence in the present problem.
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Figure 1: Optimal solutions of the abnormal and the normal case in item 2 as well as the transition between the two cases
are plotted in the state-control, state-costate space and showing the objective value. In the state-control space ((a) and
(d)) the solutions of the abnormal and the normal case cannot be distinguished. The depiction in the state-costate space
reveals the differences of the abnormal case (b), divergence of the costates near K̃1, and the normal case (e), convergence
of the costates near K̃1. The nearly vertical increase/decrease of the objective value near K̃1 in the abnormal case (c)
yield the heuristic argument for the divergence of the costate, shown in (b). The different colors of the paths (equilibria)
refer to the active upper control constraint (red) and the control to be in the interior (blue). The circles refer to the
steady states, if the interior is filled it is a saddle, otherwise it is unstable. The triangle refers to the end point of the
finite horizon solution.
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λ0 = 0 to derive the optimal solution. For the economic interpretation of the infinite value of the
costate at the Stalling Equilibrium, we first note that the costate variable measures the increase of the
objective value due to an infinitesimal increase of the corresponding state variable K. It is important
to realize that at the Stalling Equilibrium the scientist cannot increase his or her reputation. In fact,
when he or she applies maximal effort, i.e. I = Imax, this is just sufficient to keep reputation equal
to K̃1. However, if reputation were infinitesimally larger, reputation would grow when the scientist
applies maximal effort, and the optimal saddle point equilibrium K̂ can be reached in the long run.
This would give a substantial increase of the objective value, which explains why the costate variable
diverges at K̃1.

For comparison the normal case is shown in Figure 1e. It can be seen that at the Stalling Equi-
librium the marginal utility of reputation is finite. Although it is not possible to increase reputation
any further as the investments are at their maximum level (compare Figure 1d), the additional gains
by approaching the higher steady state are not as large as in the abnormal case (compare Figure 1c).

It is important to know for which parameter constellation we can expect the solution to be abnor-
mal. The following proposition states when this happens.

Proposition 5. Let (Imax + a)2− 4dδ > 0 and the equilibrium solution (K(·), I(·)) ≡ (K̃, Imax) at the
Stalling Equilibrium be optimal. If

(Imax + a)2

d
> r + 5δ, (16)

the equilibrium solution is abnormal.

For the proof see Appendix C.
Proposition 5 implies that when the scientist is able to assign a lot of effort to increase reputation,

and the Matthew effect works out relatively positive on the increase of reputation, the solution is
abnormal. This is understandable, because abnormality goes along with infinite value of the costate
at the Stalling Equilibrium. And we just stated that the costate being infinite results from the fact
that at the Stalling Equilibrium K̃1 growth towards the saddle point K̂ leads to a much higher value
of the objective than keeping reputation constant at K̃1. In the scenario where Imax and a are large,
whereas d is low, growth conditions are optimal so that especially then the difference in the objective
value will be substantial.

From Proposition 2 we obtain that in the abnormal scenario, i.e. when Imax and a are large while d
is low, the threshold K̃1 will admit a lower value. This makes sense as it will be easier for the scientist
to grow towards the optimal long run level K̂. This we clearly see in Figure 1 when we compare
Figure 1a with Figure 1d.

5. Bifurcation Analysis

This section presents a numerical two-dimensional bifurcation analysis that illustrates the patterns
described in the previous section. For the base case parameter values specified in Table 1 the a-c
parameter space is separated into three regions, see Figure 2h. Region I corresponds to Case 2 of
Proposition 4, Region II is Case 3, and Region III corresponds to Case 1. So we can conclude that for
a Stalling Equilibrium to occur it is needed that the cost of effort is small. This makes sense, because
only then it will be optimal to have maximal effort at the threshold level between success and failure.

To facilitate the numerical calculations we introduce a small parameter τ = 10−5 in the Matthew-
function (1):

M(K, τ) :=
aK − d
K + τ

. (17)

This formulation prohibits a singularity at K = 0. The solution (K(·, τ), I(·, τ)) satisfies

lim
τ→0

(K(·, τ), I(·, τ)) = (K(·, 0), I(·, 0))

and the limit is the correct solution (K(·), I(·)) for the original Matthew function (1).
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Figure 2: Bifurcation diagram for parameter values a and c is at the center. The examples are calculated for the
parameter values taken from Table 1 with a = 0.1 and increasing c. The circles refer to the steady states, if the interior
is filled it is a saddle, otherwise it is unstable. The triangle refers to the end point of the finite horizon solution, ♦ to a
Skiba point.

Region I:. In this region a locally stable and unstable equilibrium exist. The unstable equilibrium is
the Stalling Equilibrium K̃1. Starting with K(0) < K̃1 the scientist ends his or her career at some
optimally chosen finite time. For K(0) > K̃1, however, the scientist stays in academia and ends up
eventually with a reputation level that corresponds with the locally stable equilibrium. For a small
cost parameter c this locally stable equilibrium is K̃2, cf. Figure 2a, where I = Imax. For larger values
of c this equilibrium K̂ lies in the interior of the control region, i.e. Î < Imax, cf. Figure 2b.

In region I the scientist enjoys investing into reputation, because investment costs are low. There-
fore, a large domain of initial reputation levels exists for which convergence to a long run equilibrium
occurs, at which the scientist spends maximal time on doing activities to maintain a high reputation,
e.g. doing research, attending conferences, etc. If, however, the reputation is very low at the begin-
ning of the planning horizon, a scientist cannot gain ground in academia and a scientific career is not
viable for the given maximum efforts Imax that the scientist is able to invest into his or her career. It
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is optimal to put some small efforts into doing research in order to delay leaving academia. At the
Stalling Equilibrium, the scientist has to put maximum efforts into staying put at a reputation level
that allows staying in academia in the long run. Note, however, that reputation is at a very low level
and these efforts are not sufficient to improve it. At the Stalling Equilibrium, the self-enforcement
effect of reputation is not strong enough to drive further growth of reputation. Effectively, the maxi-
mum amount of effort is required to combat reputation loss due to the negative feedback effect of the
Matthew function.

Compared to Figure 2a, the scientist has larger effort costs in Figure 2b. This results in a larger
domain in which a scientific career is not viable in the long run. Here the scientist reduces efforts over
time and ends his or her scientific career at some point. If reputation is large the scientist does not
spend the maximal time possible in order to keep reputation at a very high level. This is because the
marginal effect of doing research reduces with K. Also in the long run equilibrium the scientist keeps
I below Imax.

Bifurcation curve γ1:. In the transition from Region I to Region II the Stalling Equilibrium becomes
a Skiba equilibrium. I.e. for initial values K(0) = K̃1 the scientist is indifferent between either to
stay in the equilibrium with Imax or to choose some I(0) < Imax and end the academic career in finite
time, cf. Figure 2c. Both solutions generate an equal value of the objective and hence the indifference
property of a Skiba point is satisfied. The threshold property is analogous to the behavior in Region
I. For initial reputation levels that exceed K̃1, it is optimal to approach a locally stable equilibrium
with a reputation larger than K̃1.

Region II:. In this region the Skiba equilibrium from the transition case, where the scientist is indif-
ferent between staying put and quitting academia in the long run, is replaced by a conventional Skiba
point and the Stalling Equilibrium vanishes. At the Skiba point the scientist is indifferent between
gradually reducing reputation to zero in finite time, or to conduct some extra efforts in order to ap-
proach the locally stable equilibrium with a high enough reputation level that guarantees a fruitful stay
in academia. The obvious disadvantage of the first strategy is that the scientist has to leave academia
at the moment the reputation level reaches zero, and the disadvantage of the second strategy is that
costly efforts are required to improve reputation. For lower values of c the scientist either chooses Imax

or some I(0) < Imax, cf. Figure 2d for the initial investments into reputation. However, if we increase
the cost parameter c, it will always hold that I(0) < Imax, cf. Figure 2e.

In comparison with Figure 2e, research costs are much smaller in Figure 2d. This results in a
smaller domain of initial values of K, where the kind of solution is admitted that a scientific career
ends in finite time. Another difference with Figure 2e is that for some (intermediate) values of K the
researcher wants to spend maximal time on research to increase his or her reputation.

Figure 2e confirms what we have seen before. A large initial stock of reputation results in a lifelong
scientific career, and otherwise the research ends in finite time. What is new is that at the Skiba point
effort is discontinuous. If the scientist wants to stay active in research forever, at the Skiba point it is
necessary to conduct more effort. This is because in this manner the scientist improves the reputation
such that after some time reputation begins to reinforce itself due to the Matthew effect. Thus, the
reputation improves, the scientist benefits longer from an increase in reputation, making the payoff
from research effort higher.

Bifurcation curve γ2:. In the transition from Region II to Region III the Skiba point coincides with
the locally stable equilibrium and becomes a semi-stable equilibrium K̂, cf. Figure 2f. Starting with
K(0) < K̂ the scientist’s reputation reaches zero at some optimally chosen finite time and forK(0) > K̂
reputation also decreases, but this time it ends at K̂.

Region III:. Increasing c above the bifurcation curve γ2 accomplishes that the semi-stable equilibrium
vanishes. Furthermore it holds that Region III only exists for a ≤ 0.637. Then it is always optimal
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for the scientist to end his or her career in finite time, cf. Figure 2g. This is not only because c is
large, indicating large costs of performing investment into reputation, but also because a is low. The
parameter a being low indicates that the self-enforcement effect of reputation is low, which makes it
hard and costly to improve reputation. Therefore, it makes sense to conduct low effort and stop the
career at some point.

In Figure 2f the cost of doing research is a little smaller than in Figure 2g. In this figure exactly a
long run equilibrium exists at the moment effort is at its maximal level. The qualitative implications are
enormous, because now the scientist stays active in academia, provided the initial stock of reputation
is large enough.

Despite that the scientist will stop his or her career in finite time in Figure 2g, for a large initial
reputation level it is still optimal to start increasing research efforts over time. This is because
throughout the declining phase K gets smaller, which implies that the marginal efficiency of effort
goes up. However, at a final time interval research effort will decrease. This is because the scientist
comes closer to the end of his or her career, which reduces the time he or she benefits from reputation
investments.
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Figure 3: Bifurcation diagram for parameter values d and c. Panel (a) shows the case for a = 0.5 and panel (b) that for
a = 0.1. Three main regions exist. Enclosed by the black and red curve (region I), the Stalling Equilibrium separates
solutions going to zero and the high equilibrium. Between the red and orange curve(region II), we find the Skiba region.
Outside the black and orange curve (region III) the globally optimal solution is going to zero. The blue dashed line
shows the transition from the region where the locally stable equilibrium satisfies Î < Imax and Î = Imax.

In Figure 3a and Figure 3b it can be seen that also three different regions occur if we consider
cost parameter c and discrimination parameter d for the bifurcation analysis. In particular, if in-
vestment costs and discrimination are low, whether a scientist is able to succeed in academia is
history-dependent, success and failure are separated by a weak Skiba point, i.e. if one starts exactly
at this point, one would stay put there. At this steady state the investments are at their maximum
level, meaning that here the extent of how much a scientist is able to invest into his or her career at
most can be crucial for success. In case of high investment costs, but low discrimination, the outcome
is still history-dependent, however, the threshold point is now a conventional Skiba point, where the
scientist has the choice between low efforts, which means that he or she will inevitably quit academia
after a finite, optimally determined time, or put a lot of effort into the career and succeeds in the
long run. A high discrimination rate always means that a scientist is not able to remain in academia,
which also holds in case of an intermediate discrimination rate in combination with high investment
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costs. Comparing Figure 3a and Figure 3b we find that if the self-enforcement rate of reputation is
low, discrimination is a larger problem for the success of an academic career than if it is large.

6. Fixed retirement age and positive utility of effort

To analyze how certain model assumptions affect the optimal effort policy of the scientist, we
consider how the solution is affected by changes in these assumptions. In our basic model we assume
that, besides having a positive effect on reputation, conducting effort only gives disutility. However,
the scientist might in fact also like being occupied with writing papers, collaborating with other
scientists, networking at conferences, and so on. We therefore consider in Section 6 what happens if
we consider the extended cost function C(I) := cI2 − eI, where eI accounts for the utility a scientist
obtains from undertaking scientific effort. We find that no matter whether e is small or large, the
results are qualitatively the same. For small values of c the optimal solution is history dependent where
the Stalling Equilibrium serves as threshold level, for intermediate values of c the optimal solution is
still history-dependent but then goes along with the usual Skiba point, and for a large value of c the
scientist is bound to fail.
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Figure 4: Change of the different regions of solution behavior for changing e from the extended cost function in C(I) :=
cI2 − eI from zero to one for the base case parameter values specified in Table 1 and a = 0.1.

Figure 5 shows the impact of the assumption that the time horizon is optimally determined and
either finite or infinite. Here we consider the optimal strategy of a successful scientist who needs to
take into account that at a fixed point in time he or she has to retire. It can be seen that if a fixed
time horizon is chosen the optimal strategy is initially the same as in the infinite time horizon case and
the researcher has to work hard to improve reputation unless it is already very large in the beginning.
Since there is no utility from a high reputation after retiring, a scientist would reduce investment
efforts the closer he or she is to the end of the working time. The later is the fixed retirement date,
the closer is the optimal strategy to the infinite time horizon solution.

7. Conclusion

The starting point of our analysis is Merton’s insight that better-known scientists tend to receive
more academic recognition than less-known scientists for similar achievements. The occurrence of this
phenomenon is not limited to career planning in academia, but also plays an important role in many
other socioeconomic fields like education, health status, income and pension dynamics. Formally,
we deal with a feedback mechanism in which the change of a state variable depends on the level of
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Figure 5: Infinite time horizon solution versus a solution with fixed end-time. In the first row (a)-(c) the solutions for
T = 50 are depicted starting at K(0) = 1.5 and K(0) = 20. Panel (a) shows the solutions in the state-control space.
The gray elements denote the equilibria and solution paths for the infinite time horizon problem. In panel (b) the state
and in panel (c) the control paths for T = 50 are plotted. In the second row (d)-(f) solutions for the different end-times
T = 25, 50 and 75 are depicted starting at K(0) = 1.5. Panel (d) shows the solutions in the state-control space and panel
(e) the state paths and panel (f) the control paths. In (d) the tunrpike property is particularly well illustrated. For an
increasing end-time the solution approaches the equilibrium of the infinite time horizon problem and finally moves away
due to the transversality condition.

the state itself. The function describing this influence of reputation is denoted as Matthew function.
The feedback effect can both be positive and negative for different regions of the state space. In the
case of scientific production, the individual stock of reputation acts as state. For large values of the
reputation, the Matthew effect is positive (“once Nobel price winner always Nobel laureate”), while
for moderate stocks of reputation, a scientist experiences disadvantages.

We design an optimal control model of the scientist with his or her reputation thus as state variable
and the scientist’s scientific effort as control variable. We explicitly take into account that the effort
level is constrained: there are only a limited number of hours a day that is available for working.
Solving the optimal control model essentially leads to two different solutions. In case the scientist is
not so talented in the sense that his or her scientific efforts are not too effective and the Matthew
feedback effects are not too positive, his or her academic career is doomed to fail. The scientist’s
reputation decreases over time and after some time the scientific career stops.

For a more gifted scientist the optimal solution is history-dependent. Still for a low level of
the initial reputation scientific life stops at some point, but otherwise a fruitful scientific career is
awaiting. We identify a threshold level of the reputation that separates these two different solutions.
For a moderate level of the cost of scientific effort this threshold is the “usual” Skiba point (Skiba
(34)), but if this cost is small we show that the threshold is a steady state where scientific effort is
at its maximum. As far as we know this is a new feature and we denote this threshold as Stalling
Equilibrium.
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Since the Stalling Equilibrium is a steady state with the control at its upper bound, it follows
that growth is not possible. So right at the Stalling Equilibrium the scientist has the choice between
conducting maximal effort for the rest of his or her academic life and keeping the reputation level fixed
at the level corresponding to the Stalling Equilibrium, or undertaking less scientific effort implying that
his or her reputation declines and academic life will end at some future point in time. We show that
the scientist being indifferent between these options only occurs at a boundary solution. Otherwise,
the scientist will always choose for maximal effort and keep the reputation at the same level until the
end of the career.

If we consider the reputation level corresponding to the Stalling Equilibrium and we increase it
with an infinitesimal amount, it is optimal for the scientist to undertake maximal effort and enter a
growth path of reputation. Then the academic career continues indefinitely and reputation level will
end up at a saddle point steady state. As we said before, right at the Stalling Equilibrium entering
the reputation growth path is not possible so this infinitesimal increase in reputation brings a new
possibility: growth. This results in a considerable increase of the objective, which is measured by the
costate variable. In some situations, i.e. when the Matthew feedback effect is very positive and the
upper bound of the effort level is relatively high, the costate variable gets an infinite value. This is not
allowed by the maximum principle, implying that we have to resort to solving the abnormal problem.
So this is another new feature of our work: we have a well-posed model in which abnormality results
from the upper bound on the control variable.

Up until now abnormal optimal control problems have found little attention in the economic
literature. To analyze the occurrence and implications of abnormal solutions in a more general way
seems to be a fruitful future research topic.
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Appendix A. Proof of Proposition 1

Continuation of the proof for Proposition 1.
For Imin = 2

√
dδ − a Eq. (9a) reduces to

K1,2(Imin) =
Imin + a

2δ
.

20



Next, we consider the derivative
∂

∂I
Ki(I), i = 1, 2, which is

∂

∂I
Ki(I) =

√
(I + a)2 − 4dδ ∓ (1 + a)

δ
√

(I + a)2 − 4dδ

= ∓
(1 + a)∓

√
(I + a)2 − 4dδ

δ
√

(I + a)2 − 4dδ

= ∓ Ki(I)√
(I + a)2 − 4dδ

≶ 0.

Therefore, the K1(I) branch is strictly decreasing and the K2(I) branch is strictly increasing, i.e. for
Imin < I1, I2 < Imax

K̃1 < K1(I1) < K2(I2) < K̃2.

Appendix B. Proof of Proposition 3

For the proof we show that the assumptions stated in Seierstad and Sydsæter (31, Th. 14,15,
p. 236–237) are satisfied. The only detail that needs specific attention is the singularity of the state
dynamics at the origin.

We start with the existence part. For the existence of an optimal solution we distinguish two cases.

(Imax+a)2−4dδ ≥ 0 and K(0) ≥ K̃1. Due to Proposition 1 for every I ∈ [0, Imax] there exist equilibria
K̃1,2 and the state dynamics satisfies

− δK(t) + a− d

K̃1

≤ K̇(t) ≤ Imax − δK(t) + a− d

K̃2

. (B.1)

Thus, for every initial state K(0) ≥ K̃1 and I(·) ≡ Imax the state path K(·) exists for all t ≥ 0 and

stays in the region
[
K̃1,max

{
K(0), K̃2

}]
. Using the inequality Eq. (B.1) we find for all admissible

pairs (K(·), I(·))

I(t)− δK(t) + a− d

K(t)
≤ Φ(t), with

∫ ∞
0

Φ(t) dt <∞

and for all K ≥ K̃1 and I ∈ [0, Imax]∣∣∣∣I − δK + a− d

K

∣∣∣∣ ≤ δ|K|+ β

and

β := Imax + a− d

K̃2

> 0.

Moreover the set

N(K, I, t) :=

{(
e−rt(ln(K + 1)− cI2) + γ, I − δK + a− d

K

)
: I ∈ [0, Imax], γ ≤ 0,K ≥ K̃1

}
is convex. Therefore, under the given assumptions an optimal solution exists over an infinite time
horizon.
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(Imax+a)2−4dδ < 0 or K(0) < K̃1. Under these assumptions there is no admissible control such that
the solution over the infinite time horizon exists. All solutions reach zero in finite time. The critical
part is the singularity of the state dynamics Eq. (2c) at K = 0. W.l.o.g. we assume that K(0) ≤ 1. If
K(0) > 1 we consider the admissible control I(·) = Imax until K(τ) = 1 for some τ . Let s0 > 0 such
that for s ∈ [0, s0], K(s) > 0 and K(s0) = 0. To handle the singularity at zero we use the following
time transformation

t =

∫ s

0
K(l) dl, s ∈ [0, s0] (B.2)

which is a diffeomorphism from (0, s0) onto (0,
∫ s0
0 K(l) dl).

Using time transformation Eq. (B.2) the state dynamics becomes

d

ds
K(s) = I(s)K(s)− δK(s)2 + aK(s)− d (B.3a)

and the objective reads as∫ S

0
e−r

∫ s
0 K(l) dl

(
K(s) ln(K(s) + 1)− cK(s)I(s)2

)
ds. (B.3b)

For I(·) ≡ Imax the ODE (B.3a) has a solution such that for some S > 0 and 0 < K(0) ≤ 1 we find
K(S) = 0. Thus, an admissible pair for the finite time problem exists.

Using K ≤ 1 we can estimate Eq. (B.3a)

d

ds
K(s) = I(s)K(s)− δK(s)2 + aK(s)− d ≤ Imax + a− d

and hence derive all necessary estimations of the dynamics to show the existence of the finite time
horizon solution. Also the convexity of the set N(K, I, t) for the transformed problem is straight
forward.

To prove that the infinite time horizon solution satisfies the Arrow sufficiency conditions we note
that we previously showed that the state path remains bounded for every admissible control. Let
(K∗(·), I∗(·)) be an optimal solution and λ0 = 1. Then there exists a costate λ(·) satisfying the
adjoint equation (5b) and the limiting transversality condition

lim
t→∞

e−rt λ(t) = 0.

This is an immediate consequence of the linearity of the adjoint equation with respect to λ and the
boundedness of the state K. Thus for every admissible pair (K(·), I(·)) the following limit exists

lim
t→∞

e−rt λ(t)(K(t)−K∗(t)) = 0.

Since the optimized Hamiltonian is concave in K the Arrow sufficiency conditions are satisfied. The
Arrow sufficiency conditions imply the uniqueness of the solutions over an infinite time horizon.

Appendix C. Proof of Proposition 5

We note that q̃1 < 0 is a necessary condition for abnormality. Let us introduce

ξ :=
4dδ

(Imax + a)2
,

and rewrite K̃1 as

K̃1 =
(Imax + a)

2δ
(1−

√
1− ξ).
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Using Taylors theorem yields√
1− ξ = 1− ξ

2
√

1− ξ̄
, with 0 < ξ̄ < ξ.

Since
√

1− ξ̄ is strictly decreasing, it follows that√
1− ξ > 1− ξ

2
√

1− ξ
.

Plugging this into the expression for K̃1 we find

K̃1 <
(Imax + a)ξ

4δ
√

1− ξ
,

or equivalently

K̃2
1 <

(Imax + a)2ξ2

42δ2(1− ξ)
=

d2

(Imax + a)2 − 4dδ
.

This is equivalent with

d

K̃2
1

>
(Imax + a)2

d
− 4δ.

We conclude that if

(Imax + a)2

d
− 4δ > r + δ or

(Imax + a)2

d
> r + 5δ,

the optimal solution is abnormal.

Appendix D. Results concerning the structure of the optimal solution

In this section we summarize results concerning the structure of the optimal solution.

Lemma 1. Let (K∗(·), I∗(·), T ∗) be an optimal solution of problem (2) with 0 < T ∗ <∞ and K∗(T ∗) =
0. Then, there exists a σ with T ∗ ≥ σ > 0 such that

0 < I∗(t) < Imax, t ∈ (T ∗ − σ, T ∗) and I∗(T ∗) = 0.

Proof. Let ε > 0 be small and K(0) = ε. Then
d

ε
� 1 such that the terms a and δK of the state

dynamics Eq. (2c) can be neglected. Then we compare solution paths K1(·) and K2(·) satisfying

K̇1(t) = I(t)− d

K1(t)
, with I(t) > 0

and

K̇2(t) = − d

K2(t)
, i.e. I(t) = 0.

The latter equation yields the end-time σ, for K2(σ) = 0, as

σ =
ε2

2d
. (D.1a)
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Moreover we have

K1(t) > K2(t), 0 ≤ t < σ. (D.1b)

Next we compare the difference of objective function Eq. (2a) for (K1(·), I(·)) and (K2(·), 0) yielding

∆V :=

∫ σ

0
e−rt

(
K1(t)−K2(t)− cI(t)2

)
dt

Using Ki(t) = Ki(0) +
∫ t
0 K̇(s) ds yields

∆V =

∫ σ

0
e−rt

(∫ t

0
I(s)− d

(
1

K1(s)
− 1

K2(s)

)
ds

)
dt− c

∫ σ

0
e−rt I(t)2 dt. (D.1c)

Due to Eq. (D.1b) the term

− d
(

1

K1(s)
− 1

K2(s)

)
> 0.

Using partial integration we find∫ σ

0
e−rt

∫ t

0
I(s) ds dt =

1

r

∫ σ

0
e−rt I(t) dt− 1

r
e−rσ

∫ σ

0
I(t) dt. (D.1d)

Now let I(·) ≡ Ī. Using Eq. (D.1d) and the last term of Eq. (D.1c) yields

1

r

∫ σ

0
e−rt Ī dt− 1

r
e−rσ

∫ σ

0
Ī dt− c

∫ σ

0
e−rt Ī2 dt =

1

r2
Ī
(
1− e−rσ

)
− 1

r
e−rσ σĪ − cĪ2

r

(
1− e−rσ

)
.

Approximating e−rσ ≈ 1− rσ

we get

= σ2Ī − cσĪ2 = σĪ(σ − cĪ) > 0

for Ī <
σ

c
. Since σ is independent of I(·) (cf. Eq. (D.1a)), this can always be achieved.

Lemma 1 immediately yields

Corollary 2. Let (K∗(·), I∗(·), T ∗) with T ∗ < ∞ then the corresponding state and costate variable
λ(·) satisfy

K∗(T ∗) = λ(T ∗) = 0. (D.2)

Proof. This immediately follows from the maximizing condition Eq. (4). For T ∗ − σ < t < T ∗

I∗(t) = I◦(λ(t), λ0) =
λ(t)

2c
.

Due to the continuity of the optimal control and costate we find

lim
t→T ∗

I∗(t) = lim
t→T ∗

λ(t)

2c
,

0 =
λ(T ∗)

2c
,

and hence

λ(T ∗) = 0.
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Next we prove that if we start from the initial conditions K(0) = λ(0) = 0 and calculate backwards
in time we get a unique solution for the canonical system. The according state and control path is the
optimal solution at least for K(t) < K̃1. To determine the optimal solution for every initial state it is
important to find the switching point, when the control reaches its maximum Imax. Subsequently, we
will see that there is a qualitative difference in the structure of the optimal solutions if this switching
point is before or after the Stalling Equilibrium K̃1.

Lemma 2. The initial value problem K(0) = λ(0) = 0 with λ0 = 1 for the ODEs

K̇(t) = I◦(λ(t), λ0)− δK(t) + a− d

K(t)
, I◦(λ(t), λ0) < Imax, (D.3a)

λ̇(t) = λ(t)q(K(t))− 1

K(t) + 1
, (D.3b)

with

q(K(t)) := r + δ − d

K(t)2
,

and

I◦(λ, 1) =
λ

2c
(D.3c)

has a unique solution (K̄(t), λ̄(t)) with K̄(t) ≥ 0, λ̄(t) ≥ 0 and ˙̄λ(t) > 0 for all t ≤ 0.

Proof. In the neighborhood of K = 0 we use the following time transformation

t =

∫ s

0
K(s) ds

which transform the ODE Eq. (D.3a) into

d

ds
K(s) =

λ(s)

2c
K(s)− δK(s)2 + aK(s)− d

d

ds
λ(s) = λ(s)

(
(r + δ)K(s)− d

K(s)

)
− K(s)

K(s) + 1
.

At the origin these ODEs can be approximated by

d

ds
K(s) = aK(s)− d

d

ds
λ(s) = − d

K(s)
λ(s)

yielding for s ≤ 0 and K(0) = λ(0) = 0

K(s) =
1

a
(1− eas) ≥ 0, s ≤ 0.

Hence the adjoint equation yields a singularity of the first kind at s = 0 with the solution

λ(s) =
1

d
(1− eas) ≥ 0, s ≤ 0.

Thus, for some ε > 0 a unique solution exists for ‖(K(·, λ(·))‖ < ε and the IVP (D.3). In a region
with K ≥ ε > 0 the dynamics of Eq. (D.3) is continuously differentiable with respect to K and λ and
hence the solution is unique. And the estimation of the ODEs

K̇(t) = I◦(λ(t), λ0)− δK(t) + a− d

K(t)
≤ λ(t)

2c
− δK(t)

λ̇(t) = λ(t)q(K(t))− 1

K(t) + 1
≤ λ(t)(r + δ)

implies the existence of a solution for every t ≤ 0.
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In the next step we consider the zeros of Eq. (5) in dependence of a (control) value I ∈ R with
λ0 = 1. The properties of these equations yield information about the existence and admissibility of
the equilibria for the canonical system Eq. (5). Thus, we analyze the following equations12

0 = I − δK + a− d

K
, (D.4a)

0 = − 1

K + 1
+ λ

(
r + δ − d

K2

)
. (D.4b)

Remember that Imin, defined in Eq. (11b), denotes the minimal value of I such that Eq. (D.4a) has a
zero, which is not necessarily positive.

Lemma 3 (Properties of the zeros for Eq. (D.4)). For I ∈ [Imin,∞), with

Imin := 2
√
dδ − a,

the zeros (K(I), λ(I)) of Eq. (D.4) consist of two branches i = 1, 2. The properties of Ki(I), i = 1, 2,
are stated in Proposition 1. For λi(I), i = 1, 2, the zeros of Eq. (D.4b), we find

λi(I) =
1

(1 +Ki(I)) qi(I)
, (D.5a)

with

qi(I) := r + δ − d

Ki(I)2
.

Let

Icrit :=

√
d

r + δ
(r + 2δ)− a, (D.6a)

then

Icrit > Imin. (D.6b)

The two branches λi(I), i = 1, 2, satisfy

λ2(I) > 0, I ∈ [Imin,∞), (D.7a)

λ1(Imin) = λ2(Imin) =

√
d

r(
√
δ +
√
d)
> 0, (D.7b)

lim
I→∞

λ1(I) = 0, lim
I→∞

λ2(I) = 0, (D.7c)

lim
I→I−crit

λ1(I) =∞, lim
I→I+crit

λ1(I) = −∞, (D.7d)

lim
I→I−crit

λ2(I) = lim
I→I+crit

λ2(I), (D.7e)

and the derivatives satisfy

∂

∂I
λ1(I) > 0, I ∈ [Imin,∞) \ {Icrit}, (D.7f)

∂

∂I
λ2(I) < 0, I ∈ [Imin,∞). (D.7g)

12In the subsequent we omit the time argument t.
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Proof. From Eq. (D.4b) we find the costate value

λi(I) =
1

(1 +Ki(I))

(
r + δ − d

Ki(I)2

) , (D.8a)

or

λi(I) =
1

(1 +Ki(I)) qi(I)
, (D.8b)

with

qi(I) := r + δ − d

Ki(I)2
,

where Ki(I) is given by Eq. (9a).
Next we derive the value Icrit. Since Ki ≥ 0, the denominator of Eq. (D.8a) becomes zero iff

qi(I) := r + δ − d

Ki(I)2
= 0 or Ki(I) =

√
d

r + δ
=: Kcrit. (D.9)

The value of the branch K2(I) can be estimated from above, using K2(I) ≥ K2(Imin)

K2(I) =
I + a+

√
(I + a)2 − 4dδ

2δ
≥
√
d

δ
,

and hence

q2(I) = r + δ − d

K2(I)2
≥ r > 0, for all I ≥ Imin,

yielding

λ2(I) > 0, for all I ≥ Imin.

Therefore Kcrit can only occur on the branch K1(I). To determine the corresponding control value
Icrit we follow

Kcrit =
I + a−

√
(I + a)2 − 4dδ

2δ
,

(I + a)− 2δKcrit =
√

(I + a)2 − 4dδ. (D.10a)

Using the identity Eq. (D.9), i.e. d = K2
crit(r + δ), and squaring Eq. (D.10a) yields

− 4(I + a)δKcrit + 4δ2K2
crit = −4K2

crit(r + δ)δ,

I + a = Kcrit(r + 2δ).

Thus, Icrit is given by

Icrit := Kcrit(r + 2δ)− a =

√
d

r + δ
(r + 2δ)− a. (D.10b)

Moreover, from the identity I + a = Kcrit(r + 2δ) we find (I + a)− 2δKcrit = Kcritr > 0 verifying the
squaring of Eq. (D.10a).

To show that Icrit, given by Eq. (D.10b), satisfies Icrit > Imin we note that

(Icrit + a)2 − 4dδ =
d

r + δ
(r + 2δ)2 − 4dδ =

dr2

r + δ
> 0

holds.
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For λ2(I) the derivative with respect to I exists for all I ∈ [Imin,∞), and for λ1(I) the derivative
with respect to I exists for all I ∈ [Imin,∞) \ {Icrit}. We can derive

∂

∂I
λi(I) =

∂

∂I

1

(1 +Ki(I))

(
r + δ − d

Ki(I)2

)

= −

∂

∂I
Ki(I)

(1 +Ki(I))

(
r + δ − d

Ki(I)2

)
 1

1 +Ki(I)
+

2d

Ki(I)3
(
r + δ − d

Ki(I)2

)


= − ∂

∂I
Ki(I)

Ki(I)3(r + δ) + 2d+ dKi(I)

(1 +Ki(I))2Ki(I)3
(
r + δ − d

Ki(I)2

)2 .

Since the last term

Ki(I)3(r + δ) + 2d+ dKi(I)

(1 +Ki(I))2Ki(I)3
(
r + δ − d

Ki(I)2

)2 > 0,

we find

sgn

(
∂

∂I
λi(I)

)
= − sgn

(
∂

∂I
Ki(I)

)
,

which proves Eqs. (D.7f) and (D.7g).

From Lemma 3 it follows that the branches λi(I), i = 1, 2, are of the form depicted in Figure D.6a.
For a complete characterization of the equilibria of the canonical system Eq. (D.4) we first note
that the control values are either Imax or satisfy 2cI = λ. Thus candidates for the equilibria are
(Ki(Imax), λi(Imax)), i = 1, 2 or where λi(I) has an intersection point with 2cI. Moreover, for an
equilibrium at Imax the corresponding Lagrange-multiplier has to be positive, i.e. λi(Imax) ≥ 2cImax.

The following proposition states these conditions explicitly.

Lemma 4. For the equilibria of the canonical system Eq. (D.4) and λ0 = 1, we have to distinguish
the following cases

Icrit ≤ 0: depending on the cost-parameter c we find (see Figure D.6b)

λ2(Imax) < 2cImax: one interior admissible equilibrium exists.

λ2(Imax) ≥ 2cImax: one admissible equilibrium at Imax exists.

0 < Icrit ≤ Imax: depending on the cost-parameter c we find (see Figure D.6c)

λ2(Imax) < 2cImax: one or three interior admissible equilibria exist.

λ2(Imax) ≥ 2cImax: one admissible equilibrium at Imax exists.

Icrit > Imax: depending on the cost-parameter c we find (see Figure D.6d)

λ1(Imax) < 2cImax: none or two interior admissible equilibria exist.

λ1(Imax) = 2cImax: one admissible equilibrium at Imax exists and none or two interior admissible
equilibria exist.

λ1(Imax) < 2cImax < λ2(Imax): one or three interior equilibria exist and one admissible equilib-
rium at Imax exists.
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λ2(Imax) ≤ 2cImax: two admissible equilibria at Imax exists.

The proof is an immediate consequence of the properties of the zero branches λi(I), i = 1, 2,
stated in Lemma 3. We omit the tedious details and refer to Figure D.6, where the different cases are
depicted.

(a) general form of λ-branches
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(b) Icrit ≤ 0
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(c) 0 < Icrit < Imax, Imin > 0
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(d) Icrit ≥ Imax, Imin > 0

Figure D.6: In panel (a) the general form of the costate branches derived in Lemma 3 are depicted. The blue line denotes
the first branch λ1(I) and the red curve the second branch λ2(I). The subsequent panels show the three main cases (b)
Icrit ≤ 0, (c) 0 < Icrit < Imax, and (d) Icrit ≥ Imax. The green line in these figures corresponds to λ = 2cI and hence
indicates the existence or admissibility of the equilibria of the canonical system, see Lemma 4.

In the following lemma we consider the stability properties of the canonical system at the Stalling
Equilibrium K̃1.

Lemma 5. Let Imax ≥ 2
√
dδ − a and λ0 = 1, then (K̃1, λ̃1) exists, with the Jacobian J̃1

J̃1 =


d

K̃2
1

− δ 0

J̃21 r + δ − d

K̃2
1

 =

(
r − q̃1 0
J21 q̃1

)
, (D.11)
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and

J̃21 :=
1

(K̃1 + 1)2
+ λ̃1

2d

K̃3
1

6= 0,

K̃1 =
Imax + a−

√
(Imax + a)2 − 4dδ

2δ
,

λ̃1 =
1

(K̃1 + 1)

(
r + δ − d

K̃2
1

) =
1

(K̃1 + 1)q̃1
,

q̃1 = r + δ − d

K̃2
1

.

The eigenvalues ξi and eigenvectors vi, i = 1, 2 of J̃1 are

ξ1 = r − q̃1 > 0, v1 =

− 1

J̃21
(2q̃1 − r)

1

 , (D.12a)

ξ2 = q̃1 S 0, v2 =

(
0
1

)
. (D.12b)

Proof. Plugging the values for (K̃1, λ̃1) into the linearization of canonical system yields Eq. (D.11).
Since the Jacobian J̃1 is upper triangular the eigenvalues are the diagonal elements, yielding q̃1 and
r − q̃1.

Next we show that J̃21 6= 0.

J̃21 =
1

(K̃1 + 1)2
+ λ̃1

2d

K̃3
1

=
1

(K̃1 + 1)2
+

1

(K̃1 + 1)q̃1

2d

K̃3
1

=
q̃1K̃

3
1 + (K̃1 + 1)2d

(K̃1 + 1)2q̃1K̃3
1

=
(r + δ)K̃3

1 + dK̃1 + 2d

(K̃1 + 1)2q̃1K̃3
1

6= 0.

To determine the eigenvector for q̃1 we solve(
r − 2q̃1 0

J̃21 0

)(
v11
v21

)
=

(
0
0

)
,

setting v21 = 1 we find

(r − 2q̃1)v
1
1 = 0,

J̃21v
1
1 = 0.

Since J̃21 6= 0, we find

v11 = 0.

To determine the eigenvector corresponding to r − q̃1 we solve(
0 0

J̃21 2q̃1 − r

)(
v12
v22

)
=

(
0
0

)
.
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Setting v22 = 1, we find

J̃21v
1
2 + 2q̃1 − r = 0,

due to J̃21 6= 0 we hence find

v12 = − 1

J̃21
(2q̃1 − r).

The following proposition formulates the condition for which the solution starting at the Stalling
Equilibrium is optimal.

Proposition 6. The constant solution K∗ ≡ K̃1 with T ∗ = ∞,K∗(·) ≡ K̃1 and I∗(·) = Imax is
optimal iff D̃ := (Imax + a)2 − 4dδ ≥ 0 and one of the following cases is satisfied:

1. There exists an ε > 0 such that for all K0 with 0 < K̃1−K0 < ε and with (K∗(K0, ·), I∗(K0, ·), T ∗(K0)) ∈
S(K0) we have I∗(K0, 0) = Imax.

2. The point K̃1 is a Skiba point and one Skiba solution (K∗S(·), I∗S(·), T ∗S) ∈ S(K̃1) satisfies T ∗S <∞

I∗S(0) = Imax and I∗S(t) < Imax, 0 < t ≤ T ∗S . (D.13)

Proof. We note that for D̃ ≥ 0 the Stalling Equilibrium K̃1 exists. In Lemma 2 we proved that the
initial value problem of Eq. (D.3) with K(0) = λ(0) = 0 for t ≤ 0 has a unique solution. Moreover we
showed that the according costate λ(t) satisfies λ(t) ≥ 0 and λ̇(t) > 0 for t ≤ 0. Therefore a σ < 0
exists such that one of the following cases applies

1. K(σ) < K̃1 and λ(σ) = 2cImax.

2. K(σ) = K̃1 and λ(σ) ≤ 2cImax.

In the first case with ε := K̃1 −K(σ) we find solutions satisfying item 1.
In the second case for λ(σ) < 2cImax the solution staying at K̃1 cannot be optimal. To prove that

we consider the maximized Hamiltonian function with λ0 = 1

H◦(K,λ) := ln(K + 1)− λ2

4c
+ λ

(
λ

2c
− δK + a− d

K

)
,

yielding the derivatives

d

dλ
H◦(K,λ) =

λ

2c
− δK + a− d

K
,

d2

dλ2
H◦(K,λ) =

1

2c
> 0.

Thus, the solution of the equation

d

dλ
H◦(K̃1, λ) = 0,

yields a strict minimum of the maximized Hamiltonian at K̃1, with respect to the costate λ. This
proves that the minimum is achieved for13

λ = 2cImax.

13That the Hamiltonian achieves its minimum at an equilibrium of the canonical system is a general result. A proof
can be found in Grass et al. (18).
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Hence for every λ 6= 2cImax we find

H◦(K̃1, λ) > H◦(K̃1, 2cImax) = 0.

Specifically this holds for λ(σ) < 2cImax. Since the objective value of a solution that satisfies the
necessary optimality conditions is given by

1

r
H◦(K̃1, λ(0)),

we find that the solution that stays at K̃1 is not optimal.
For the second case with λ(σ) = 2cImax we find that the according finite time solution achieves the

same objective value as the solution that stays at K̃1. These are the only possible solutions. Hence
K̃1 is a Skiba point and the previously described solutions are the according Skiba solutions.

For normal optimal control problems an equilibrium point usually cannot be a Skiba point as in
item 2. The reason that item 2 holds is the abnormality of problem (2) for the infinite time horizon
solution.

Corollary 3. Let the conditions of item 2 of Proposition 6 be satisfied, then the problem for the
infinite time horizon solution is abnormal.

Remark. Note that as a consequence of Corollary 3 we find that abnormality is not a property of the
problem (2) for a specific initial condition K(0) = K0. Rather it is a property of the specifically chosen
maximization. In that case maximization with respect to the infinite time or the finite time horizon.

Proof. Let item 2 of Proposition 6 be satisfied and the problem be normal. Then from the properties
of the equilibrium (K̃1, λ̃1) in the canonical system analyzed in Lemma 4 and the admissibility of the
equilibrium we find q̃1 > 0 and hence that λ̃1 ≥ 2cImax. Now let us assume that there exists a finite
time solution that is equally optimal. Consequently this has to satisfy λ(0) = 2cImax. If λ̃1 = 2cImax

the choice λ(0) = 2cImax implies λ̇(0) = 0 and hence the according costate path stays at λ̃1 forever and
cannot satisfy λ(t) = 0 for some t > 0. On the other hand if λ̃1 > 2cImax repeating the argument of the
proof for Proposition 6 we find that the according finite time solution is better than the infinite time
horizon solution. The Hamiltonian achieves the minimum at the equilibrium value. This contradicts
the assumed optimality of the equilibrium solution. Thus, we find that the problem cannot be normal
for the infinite time horizon solution and hence has to be abnormal.

An immediate consequence of Proposition 6 is that if one of the cases items 1 and 2 applies the
optimal solution for K(0) > K̃1 cannot be a finite time solution. This is formulated in the following
proposition

Proposition 7. Let the conditions of Proposition 6 be satisfied, then the optimal solution for K(0) =
K0 > K̃1, (K∗(K0, ·), I∗(K0, ·), T ∗(K0)) satisfies T ∗(K0) =∞ and

lim
t→∞

K∗(K0, t) = K̂ and lim
t→∞

I∗(K0, t) = Î . (D.14)

Proof. Let the conditions of Proposition 6 be satisfied and chose for some (small enough) ε > 0 a
K0 such that K̃1 < K0 < K̃1 + ε. Then the according optimal solution (K∗(K0, ·), I∗(K0, ·), T ∗(K0))
cannot end at the origin. Let otherwise (K∗(K0, ·), I∗(K0, ·), T ∗(K0)) be a finite time horizon solution,
then there exists σ > 0 such that K∗(K0, σ) = K̃1 and K̇∗(K0, t) < 0 for 0 ≤ t ≤ T ∗(K0). This
implies that I∗(K0, t) < Imax for 0 ≤ t ≤ σ contradicting that under the conditions of Proposition 6
the optimal control at K̃1 has to be at its maximum Imax. Therefore for all K(0) > K̃1 the optimal
solution cannot end at the origin.
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Next we show that for these initial K0 > K̃1 the optimal solutions cannot be finite time solutions.
Otherwise with 0 ≤ T ∗(K0) <∞ we have K∗(K0, T

∗(K0)) > K̃1. Then consider the solution K̄(K0, ·)
corresponding to the control Ī(K0, ·) with

Ī(K0, t) :=

{
I∗(K0, t), T

∗(K0) for 0 ≤ t ≤ T ∗(K0)

0 for T ∗(K0) < t ≤ σ(K∗(K0, T
∗(K0)),

where σ(K∗(K0, T
∗(K0))) is the time such that K̄(K0, T

∗(K0)) = 0 and K̄(K0, t) > 0 for t < T ∗(K0).
In that case

V (K0, Ī(K0, ·), T ∗(K0) + σ(K∗(K0, T
∗(K0))) > V (K0, I

∗(K0, ·), T ∗(K0)),

contradicts the optimality of (K∗(K0, ·), I∗(K0, ·), T ∗(K0)). Thus, T ∗(K0) has to be infinite. The
infinite time horizon problem has a unique optimal solution. A general result for one state infinite
time optimal control problems states that the state path is monotonous. Since the optimal state
cannot diverge we find Eq. (D.14) satisfied.

The following proposition provides an exhaustive overview of all possible optimal policies that can
occur for problem (2).

Proposition 8. Let
D̃ := (Imax + a)2 − 4dδ,

be the discriminant defined in Eq. (11a) at Imax, defined in Eq. (13a). Then any optimal solution of
S(K0) can be described by one of the following cases.

1. D̃ < 0: For every K0 ≥ 0 the finite time horizon solution is optimal, and |S(K0)| = 1.

2. D̃ ≥ 0 and q̃1 < 0. Therefore, the equilibrium K̃1 exist. One of the following generic cases
applies:

(a) For K(0) < K̃1 the finite time horizon solution is optimal. For K(0) > K̃1 the optimal
solution converges to some K̂ > K̃1, and for K(0) = K̃1 it is optimal to stay at K̃1, i.e.
|S(K0)| = 1;

(b) For K(0) < KS with KS > K̃1 the finite time horizon solution is optimal. For K(0) > KS

the optimal solution converges to some K̂ > KS. The point KS is a Skiba point and the
Skiba solutions are the finite time horizon solution and a solution that converges to some
K̂ > K̃1;

(c) For every K0 ≥ 0 the finite time horizon solution is optimal, and |S(K0)| = 1.

Also, one of the bifurcation case can occur:

(a′) For K(0) < K̃1 the finite time horizon solution is optimal. For K(0) > K̃1 the optimal
solution converges to some K̂. The point K̃1 is a Skiba point and the Skiba solutions are
the finite time horizon solution and the solution that stays at K̃1.

(b′) For K(0) < K̂ with K̂ > K̃1 the finite time horizon solution is optimal. For K(0) > K̂ the
optimal solution converges to some K̂. For K(0) = K̂ the optimal solution stays at K̂.

3. D̃ ≥ 0 and q̃1 ≥ 0. Therefore, the equilibrium K̃1 exists. And one of the following generic cases
applies:

(a) For K(0) < K̃1 the finite time horizon solution is optimal. For K(0) > K̃1 the optimal
solution converges to some K̂ > K̃1, and for K(0) = K̃1 it is optimal to stay at K̃1;

(b) For every K0 ≥ 0 the finite time horizon solution is optimal, and |S(K0)| = 1.

Also, one of the bifurcation case can occur:

(a′) For K(0) < K̃1 the finite time horizon solution is optimal. For K(0) > K̃1 the optimal
solution converges to K̃1 and for K(0) = K̃1 the optimal solution stays at K̃1.
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We omit the proof since these are the immediate consequences of the results of Proposition 6 and
Proposition 7.

The following corollary formulates two structurally different case of item 3a of Proposition 8.

Corollary 4. Let the optimal solutions of the optimal control problem (2) be of type item 3a of
Proposition 8. Then there exists ε > 0 such that for K0 with |K̃1 −K0| < ε the following properties
are satisfied

I∗(K0, 0) = Imax for 0 ≤ K̃1 −K0 < ε, (D.15a)

I∗(K0, 0)


= Imax 0 ≤ K0 − K̃1 < ε, for q̃1 < 0 or

1

(K̃1 + 1)q̃1
> 2cImax

< Imax 0 < K0 − K̃1 < ε, for
1

(K̃1 + 1)q̃1
= 2cImax

, (D.15b)

T ∗(K0) <∞ for 0 < K̃1 −K0 < ε, (D.15c)

T ∗(K0) =∞ for 0 ≤ K0 − K̃1 < ε, (D.15d)

Let λ(K0, ·) be the corresponding costate of the optimal solution for K(0) = K0 and q̃1 = 0. If q̃1 < 0,
the solutions satisfy

lim
K0→K̃1,K0 6=K̃1

λ(K0, 0) =∞, lim
K0→K̃1

T ∗(K0) =∞. (abnormal) (D.16)

If q̃1 > 0, the solutions satisfy

lim
K0→K̃1,K0 6=K̃1

λ(K0, 0) = λ̃1, lim
K0→K̃1

T ∗(K0) =∞. (normal) (D.17)

In both cases the optimal solution for K0 = K̃1 is unique and satisfies

K∗(·) ≡ K̃1, I∗(·) ≡ Imax and T ∗ =∞. (D.18)

Therefore, the Stalling Equilibrium K̃1 is a weak Skiba point.

Proof. In Proposition 6 item 1 we proved that if K̃1 is an optimal equilibrium and if it is not a Skiba
point there exists a K̄ < K̃1 such that for K̄ ≤ K0 < K̃1 the optimal control I∗(K0, 0) = Imax. In
Proposition 7 we showed that for K0 > K̃1 the optimal solution converges to an equilibrium, i.e. some
long run optimal solution.

Let λ(K0, ·) be the costate corresponding to the optimal solution in S(K0). For K0 near enough to
K̃1 the optimal solution is unique. We can distinguish different cases, depending on the sign of q̃1.

14

First we note that for K0 near enough to K̃1 the optimal control is positive and hence λ(K0, 0) > 0.

• q̃1 < 0 : Due to the adjoint dynamics Eq. (5) we find

λ̇(K0, 0) = λ(K0, 0)q(K0)−
1

K0 + 1
< − 1

K̃1 + ε+ 1
,

for all 0 < K0 − K̃1 < ε, with ε appropriately chosen. This immediately yields the existence of
some K̄ such that λ(K̄, 0) = 2cImax and hence I∗(K0, 0) = Imax for 0 < K0 < K̄.

• q̃1 > 0 : In that case the equilibrium (K̃1, λ̃1) satisfies λ̃1 ≥ 2cImax. Due to the uniqueness of
the optimal solution we find

lim
K0→K̃1

λ(K0, 0) = λ̃1 ≥ 2cImax.

14We omit the case q̃1 = 0 since it needs a specific argumentation and yields no further insight.
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If λ̃1 = 2cImax we find due to λ̇(K0, 0) < 0, that λ(K0, 0) < 2cImax for K0 > K̃1 and hence
I∗(K0, 0) < Imax for 0 < K0− K̃1 < ε. If λ̃1 > 2cImax there exists K̄ such that λ(K̄, 0) = 2cImax

and we can argue as in the case with q̃1 < 0.

Appendix E. Abnormal Case

Halkin (19) gives an example for an infinite time horizon problem, that is abnormal, i.e. λ0 = 0.
Based on that paper, it seemed that the abnormal case is only of academic interest and showing that
λ0 6= 0 is mere a mathematical exercise. In the nineties Montgomery (28) proved the existence of
abnormal minimizers in a problem of Riemannian geodesics. Since then the existence and charac-
terization of abnormal solutions is an active topic in optimal control theory and related fields, see
e.g. Barbero-Liñán and Muñoz-Lecanda (5).

Anyhow, in economic applications abnormal solutions were of no interest aside from pathological
examples, like in Aseev and Veliov (3). Analyzing the example in Halkin (19) in more detail, reveals
a characteristic similarity to our problem (2). In Halkin’s model, it is optimal to choose zero as the
optimal control value, otherwise the state value, which is zero initially, increases and the solution
diverges. Importantly, for solutions where the state value is larger than zero, the direction of the drift
cannot be changed and it moves uncontrollable to the undesirable state ∞.

In our model the Stalling Equilibrium plays the comparable role of zero in Halkin’s model. Only
Imax guarantees that the solution stays put, otherwise the direction of the drift cannot be changed and
shifts the state into the undesirable position at zero. These analogies provide a plausibility argument
on why the occurrence of an abnormal solution is not surprising.

Subsequently, we prove under which conditions the Stalling Equilibrium is admissible for the
abnormal problem.

Proposition 9. Let the problem (2) be abnormal for K(0) = K̃1 and let I ≤ Imax. Then if Imax 6= Icrit
the equilibrium (K̃1, 0) with Ĩ = Imax is an admissible equilibrium of the canonical system Eq. (5).

Proof. For the abnormal problem the costate dynamics reduces to

λ̇(t) = λ(t)

(
r − d

K(t)2
+ δ

)
, (E.1)

and the Lagrangemultiplier ν becomes

ν = λ.

For Imax 6= Icrit the term

r − d

K̃2
1

+ δ 6= 0,

and Eq. (E.1) becomes zero iff λ = 0. Therefore (K̃1, 0) is an equilibrium of the canonical system and
the according Lagrange multiplier satisfies ν̃ = 0.

The following proposition formulates the condition for which the solution starting at the Stalling
Equilibrium is abnormal.

Proposition 10. Let the conditions of Proposition 6 be satisfied. If additionally q̃1 < 0, then the
problem (2) with K(0) = K̃1 is abnormal. Specifically, item 2 of Proposition 6 can only be satisfied if
q̃1 ≤ 0.
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Proof. Due to Proposition 6 the solution, staying at K̃1 is optimal. Assume that the problem (2) with
K(0) = K̃1 is normal and q̃1 < 0. For q̃1 < 0 and λ0 = 1 the according costate λ̃1 < 0 yields that the
Lagrange multiplier

ν = −λ02Imaxc+ λ̃1 < 0

and hence the equilibrium (K̃1, λ̃1) of the canonical system is not admissible. Moreover, the properties
of the equilibrium analyzed in Lemma 5 show that no other costate value can be chosen, such that
the according state costate path is admissible for every t ≥ 0.

Secondly, assume that item 2 of Proposition 6 holds and that the problem (2) with K(0) = K̃1 is
normal. Let q̃1 > 0 then the properties of the equilibrium analyzed in Lemma 5 show that (K̃1, λ̃1)
is an admissible equilibrium and that the costate dynamics at λ̃1 is zero. Therefore no finite time
solution can exist that starts at λ̃1.
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