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Abstract

This note presents sufficient conditions for the property of strong metric subregularity
(SMSr) of the system of first order optimality conditions for a mathematical programming
problem in a Banach space (the Karush-Kuhn-Tucker conditions). The constraints of the
problem consist of equations in a Banach space setting and finite number of inequalities.
The conditions under which SMSr is proved involve Fréchet differentiability of the data,
strict Mangasarian-Fromovitz constraint qualification, and second-order sufficient optimal-
ity condition. The obtained result extends the one known for finite-dimensional problems.
Although the applicability of the result is limited in the truly Banach space setting (due to
the Fréchet differentiability assumptions and the finite number of inequality constraints), the
paper can be valuable due the self-contained exposition, and provides a ground for extensions
that are applicable in calculus of variations and optimal control.

Keywords: optimization, mathematical programming, Karush-Kuhn-Tucker conditions,
metric regularity

AMS Classification: 90C48

1 Introduction

Let X and Y be Banach spaces, and let the mappings

f0 : X → R, fi : X → R (i = 1, . . . , k), g : X → Y

be twice continuously Fréchet differentiable. Consider the optimization (mathematical program-
ming) problem

min f0(x) (1)

subject to g(x) = 0, fi(x) ≤ 0 (i = 1, . . . , k). (2)

∗This research is supported by the Austrian Science Foundation (FWF) under grant No P31400-N32.
†Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland osmolov@ibspan.waw.pl
‡Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Austria,
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The following system of equations and inequalities is known as Karush-Kuhn-Tucker (KKT)
system associated with problem (1)–(2):

f ′0(x) +
k∑
i=1

αif
′
i(x) + (g′(x))∗y∗ = 0,

g(x) = 0,

αifi(x) = 0, i = 1, . . . , k,

fi(x) ≤ 0, αi ≥ 0, i = 1, . . . , k,

where x ∈ X, y∗ ∈ Y ∗ (Y ∗ denotes the dual space to Y ), and α := (α1, . . . , αk) ∈ Rk. Moreover,
“primes” indicate Fréchet derivatives, and (g′(x))∗ : Y ∗ → X∗ is the adjoint of the continuous
linear operator g′(x) : X → Y .

Under additional conditions, usually referred to as (versions of) “Mangasarian-Fromovitz
constraint qualification”, the existence of a pair (y∗, α) ∈ Y ∗ × Rk such that the KKT system
is fulfilled is a necessary condition for x ∈ X to be a local solution of problem (1)–(2). The
relations in the last two lines of the KKT system can be equivalently rewritten as

f(x) ∈ NRk
+

(α),

where f = (f1, . . . , fk), Rk+ is the set of all elements of Rk with non-negative components, and
the normal cone to the set Rk+ is defined as usual:

NRk
+

(α) :=

{
{λ ∈ Rk : 〈λ, β − α〉 ≤ 0 for all β ∈ Rk+} if α ∈ Rk+,
∅ if α 6∈ Rk+,

where 〈·, ·〉 is the scalar product in Rk. Consequently, one can reformulate the KKT system as

F (x, y∗, α) :=

 f ′0(x) +
∑k

i=1 αif
′
i(x) + (g′(x))∗y∗

g(x)
f(x)

− {0} × {0} ×NRk
+

(α) 3 0, (3)

Therefore, F : X × Y ∗×Rk ⇒ Z := X∗× Y ×Rk is called optimality mapping, while its inverse
is called (in the case of a finite-dimensional space X, see [4] and [6, p. 134]) KKT mapping.

Regularity properties of the mapping F with respect to perturbations are of key importance
in the qualitative analysis of optimization problems as (1)–(2), including convergence of numer-
ical methods. In this paper we focus on the so-called Strong Metric sub-Regularity (SMSr) (see
e.g. [6, Chapter 3.9 ] and the recent paper [2]).

We recall its definition in terms of the mapping F .

Definition 1.1 The mapping F is strongly metric subregular at (x̂, ŷ∗, α̂) for zero if 0 ∈
F (x̂, ŷ∗, α̂) and there exist a number λ and neighborhoods U of (x̂, ŷ∗, α̂) and V of 0 ∈ Z such
that for every z ∈ V and for every (x, y∗, α) ∈ U satisfying z ∈ F (x, y∗, α), it holds that

‖x− x̂‖+ ‖y∗ − ŷ∗‖+ ‖α− α̂‖ ≤ λ‖z‖.

The SMSr property was introduced under this name in [5], but has also been used under
several other names (see also [11, Chapter 1] for the related but stronger property of (strong)
upper regularity). A more detailed historical account can be found in [2, Section 1].
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In the present paper, SMSr of the optimality mapping is proved under strict Mangasarian-
Fromovitz conditions together with second-order sufficient conditions (formulated in Section 3).
In the case of finite-dimensional spaces X and Y the result is known from [4, Theorem 2.6] and [2,
Section 7.1]. We mention that in the first of the quoted papers also local non-emptiness of F−1

is proved, as well as a number of related results that substantially use the finite dimensionality.
More about regularity properties of problem (1)–(2) in the finite-dimensional case can be found
in [11, Chapter 8] and [1, Chapter 5.2].

Various Lipschitz stability results related to problem (1)–(2) (in Banach spaces) and the
associated Lagrange multiplies are obtained in [1, Chapter 4], which, as far as we can see, do
not imply the result in the present note.

As stated in the abstract, the Fréchet differentiability assumption involved restricts the ap-
plicability of the result in truly infinite-dimensional problems. However, the purpose of this
research report is to present a detailed and self-contained proof of the SMSr property of the
optimality map. It will provide a basis for our further investigation of the strong metric subreg-
ularity of the optimality system associated with problems of calculus of variations and optimal
control.

The authors wish to express their gratitude to Asen Dontchev, who made numerous impor-
tant suggestions for improving the exposition of the paper.

2 Preliminaries

In order to make the exposition more enlightening, in this section we recall some basic facts,
mainly concerning systems of linear inequalities and equations.

Let X be a Banach space, X∗ its dual space. If Ω is a cone in X, then Ω∗ denotes its dual
cone, consisting of all linear functionals x∗ ∈ X∗ nonnegative on Ω. The following theorem is a
simple consequence of the separation theorem (see [7], [3]).

Theorem 2.1 (Dubovitskii - Milyutin) Let Ωi ⊂ X, i=1,. . . ,k be nonempty open convex
cones, Ω ⊂ X a nonempty convex cone. Then(

k⋂
i=1

Ωi

)⋂
Ω = ∅

if and only if there are functionals x∗i ∈ Ω∗i , i = 1, . . . , k and x∗ ∈ Ω∗, not all equal zero and
such that

k∑
i=1

x∗i + x∗ = 0.

Let l ∈ X∗ be a nonzero functional, and Ω = {x ∈ X : 〈l, x〉 < 0} an open half-space. It is
easy to realize that x∗ ∈ Ω∗ if and only if x∗ = −αl with some α ≥ 0.

Further, let li ∈ X∗, i = 1, . . . , k be nonzero linear functionals. Consider a system of linear
inequalities

〈li, x〉 < 0, i = 1, . . . , k. (4)

The following lemma easily follows from the Dubovitskii - Milyutin theorem.
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Lemma 2.1 System (4) is inconsistent if and only if there exist reals α1, . . . , αk such that

αi ≥ 0, i = 1, . . . , k,
k∑
i=1

αi > 0,
k∑
i=1

αili = 0. (5)

We say that li, i = 1, . . . , k are positively independent if

αi ≥ 0, i = 1, . . . , k,
k∑
i=1

αili = 0 ⇒ αi = 0, i = 1, . . . , k. (6)

Lemma 2.1 implies the following proposition.

Proposition 2.1 The functionals li, i = 1, . . . , k, are positively independent if and only if there
is an element x̃ ∈ X such that

〈li, x̃〉 < 0, i = 1, . . . , k. (7)

We will use the following important estimate which holds for positively independent func-
tionals.

Proposition 2.2 The functionals li, i = 1, . . . , k, are positively independent if and only if there
is a constant c > 0 such that

‖
k∑
i=1

αili‖ ≥ c
k∑
i=1

αi ∀α = (α1, . . . , αk) ∈ Rk+. (8)

Proof. If the functionals li ∈ X∗, i = 1, . . . , k are positively dependent, then, obviously, there
is no c > 0 such that estimate (8) holds.

Conversely, suppose that there is no c > 0 such that estimate (8) holds. Then there is a
sequence αn ∈ Rk+ such that

k∑
i=1

αni = 1 and ‖
k∑
i=1

αni li‖ → 0 as n→∞. (9)

Without loss of generality we can assume that αn → α ∈ Rk+ as n → ∞. Passing to the limit

in (9), we get
∑k

i=1 αi = 1 and
∑k

i=1 αili = 0. The latter means that the system of functionals
li ∈ X∗, i = 1, . . . , k is positively dependent. 2

In the future, we will use the same notation c for various constants of this kind, hoping that
this will not lead to confusion. We will also need the following proposition.

Proposition 2.3 Let the functionals l̂i ∈ X∗, i = 1, . . . , k, be positively independent and ĉ > 0
be the corresponding constant as in (8). Let the functionals li ∈ X∗, i = 1, . . . , k, satisfy

‖li − l̂i‖ < ε, i = 1, . . . , k, 0 < ε < ĉ.

Then, for the functionals li ∈ X∗, i = 1, . . . , k, inequality (8) holds with c = ĉ− ε.
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Proof. Let α ∈ Rk+. Then

‖
k∑
i=1

αili‖ ≥ ‖
k∑
i=1

αi l̂i‖ − ‖
k∑
i=1

αi(li − l̂i)‖ ≥ ĉ
k∑
i=1

αi − ε
k∑
i=1

αi.

2

Now, let Y be a Banach space, A : X → Y a surjective linear continuous operator, that is
AX = Y . In this case the adjoint operator A∗ : Y ∗ → X∗ is injective and has a closed image
A∗Y ∗ ⊂ X∗. By the Banach open mapping theorem the inverse operator (A∗)−1 : A∗Y ∗ → Y ∗

is bounded, and hence there is a constant a > 0 such that

‖A∗y∗‖ ≥ a‖y∗‖. (10)

Each functional of the form x∗ = A∗y∗ vanishes on kerA. The opposite is also true: if x∗

vanishes on kerA, that is x∗ ∈ (kerA)∗, then there exists a uniquely defined functional y∗ ∈ Y ∗
such that x∗ = A∗y∗. (Hereafter, for a subspace L ⊂ X, we denote by L∗ the set of all linear
functionals vanishing on L).

Again, let li ∈ X∗, i = 1, . . . , k be nonzero linear functionals and A : X → Y a surjective
linear continuous operator. Consider a system of linear inequalities and equality

〈li, x〉 < 0, i = 1, . . . , k, Ax = 0. (11)

The Dubovitskii - Milyutin theorem easily implies the following lemma.

Lemma 2.2 System (11) is inconsistent if and only if there are reals α1, . . . , αk and a functional
y∗ ∈ Y ∗ such that

αi ≥ 0, i = 1, . . . , k,
k∑
i=1

αi > 0,
k∑
i=1

αili +A∗y∗ = 0. (12)

For the system of functionals li and the operator A consider the following condition

α ∈ Rk+, y∗ ∈ Y ∗,
k∑
i=1

αili +A∗y∗ = 0 ⇒ αi = 0, i = 1, . . . , k, y∗ = 0. (13)

It can be easily realized that condition (13) is equivalent to the following one: AX = Y and
the functionals li : kerA→ Y , i = 1, . . . , k (the restrictions of the functionals li to the subspace
kerA) are positively independent. In this case we say that A is surjective and li, i = 1, . . . , k
are positively independent on kerA; then there is x̃ ∈ kerA such that 〈li, x̃〉 < 0, i = 1, . . . , k.

The following lemma has the spirit of the so called Hoffman’s lemma originally proved in [8]
in the case when X is finite dimensional.

The following lemma has the spirit of the so called Hoffman’s lemma, originally proved in
[8] in the case when X is finite dimensional.

Lemma 2.3 Let A : X → Y be a surjective linear continuous operator and li ∈ X∗, i = 1, . . . , k,
be positively independent on kerA. Then there is a constant CH > 0 such that, for any ξ =
(ξ1, . . . , ξk) ∈ Rk, η ∈ Y and x0 ∈ X satisfying

〈li, x0〉 ≤ ξi, Ax0 = η, (14)
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there is a solution x′ to the system

〈li, x0 + x′〉 ≤ 0, A(x0 + x′) = 0 (15)

such that
‖x′‖ ≤ CH

(
max{ξ+

1 , . . . , ξ
+
k }+ ‖η‖

)
, (16)

where ξ+
i = max{ξi, 0}.

Proof. Unlike the Hoffman lemma, which does not suppose the positive independence of li, the
proof of this lemma is rather simple. It is enough to show that there exists a solution x′ to the
system

〈li, x′〉+ ξi ≤ 0, i = 1, . . . , k, Ax′ = −η, (17)

satisfying estimate (16). Then x0 + x′ satisfies (15).
Since AX = Y , then by the Banach theorem there is a constant a > 0 such that for any

y ∈ Y there exists x ∈ X such that Ax = y and ‖x‖ ≤ a‖y‖. Let xη be such that Axη = −η
and ‖xη‖ ≤ a‖η‖. Let us find x′′ ∈ kerA such that

〈li, xη + x′′〉+ ξi ≤ 0, i = 1, . . . , k. (18)

Then we can put x′ = xη + x′′, because A(xη + x′′) = Axη = −η.
Since li, i = 1, . . . , k are positively independent on kerA, then, in view of Proposition 2.1,

there exists x̃ ∈ kerA such that 〈li, x̃〉 < −1, i = 1, . . . , k. Set x′′ = λx̃ with

λ = a‖η‖max
i
‖li‖+ max

i
ξ+
i .

Then
〈li, xη + x′′〉+ ξi ≤ ‖li‖a‖η‖ − λ+ ξ+

i ≤ 0, i = 1, . . . , k.

Moreover, ‖x′‖ ≤ ‖xη‖ + ‖x′′‖ ≤ a‖η‖ + λ‖x̃‖. Consequently, estimate (16) holds with CH =
a+ amaxi ‖li‖‖x̃‖+ ‖x̃‖. 2

Now let us prove a proposition similar to Proposition 2.2.

Proposition 2.4 Suppose that AX = Y and li, i = 1, . . . , k are positively independent on kerA,
that is condition (13) is fulfilled. Then there exists a constant c > 0 such that

‖
k∑
i=1

αili +A∗y∗‖ ≥ c (
k∑
i=1

αi + ‖y∗‖) ∀α ∈ Rk+, ∀ y∗ ∈ Y ∗. (19)

Proof. Since the condition (19) is positively homogeneous, it suffices to prove it for pairs
(α, y∗) ∈ Rk+×Y ∗ such that

∑k
i=1 αi+‖y∗‖ = 1. Suppose that the proposition is not true. Then

there is a sequence (αn, y
∗
n) ∈ Rk+×Y ∗ such that

∑k
i=1 αin+‖y∗n‖ = 1 and ‖

∑k
i=1 αinli+A

∗y∗n‖ →
0 (n→∞). Without loss of generality we can assume that αn → α ∈ Rk+. Then ‖

∑k
i=1 αili +

A∗y∗n‖ → 0 (n→∞). Consequently A∗y∗n strongly converges to some x∗ ∈ (kerA)∗. The latter
implies that x∗ = A∗y∗ with some y∗ ∈ Y ∗. Then we have that ‖A∗y∗n − A∗y∗‖ → 0, whence
‖y∗n − y∗‖ → 0 as n → ∞. Consequently,

∑k
i=1 αili + A∗y∗ = 0 and

∑k
i=1 αi + ‖y∗‖ = 1. We

came to a contradiction. 2

The following proposition is similar to Proposition 2.3.

6



Proposition 2.5 Suppose that ÂX = Y and l̂i, i = 1, . . . , k are positively independent on ker Â.
Let ĉ > 0 be the constant for the system l̂1, . . . , l̂k, Â as in (19). Let the functionals li ∈ X∗,
i = 1, . . . , k and operator A : X → Y satisfy

‖li − l̂i‖ < ε, i = 1, . . . , k, ‖A− Â‖ < ε, 0 < ε < ĉ.

Then, for the system l1, . . . , lk, inequality (19) holds with c = ĉ− ε.

Proof. Let α ∈ Rk+, y∗ ∈ Y ∗. Then

‖
k∑
i=1

αili +A∗y∗‖ ≥ ‖
k∑
i=1

αi l̂i + Â∗y∗‖ − ‖
k∑
i=1

αi(li − l̂i)‖ − ‖(A∗ − Â∗)y∗‖

≥ ĉ(
k∑
i=1

αi + ‖y∗‖)− ε(
k∑
i=1

αi + ‖y∗‖). 2

3 Statement of the problem

In this section we formulate the needed assumptions and some basic facts concerning problem
(1)–(2) as describes in the first lines of the Introduction.

Let x̂ be an admissible point. Define the set of active indices

I = {i ∈ {1, . . . , k} : fi(x̂) = 0}.

Assumption 3.1 (a) g′(x̂)X = Y . (b) There exists x̃ ∈ X such that g′(x̂)x̃ = 0 and 〈f ′i(x̂), x̃〉 <
0 ∀ i ∈ I.

In the case whereX and Y are finite dimensional, these conditions are often called the Mangasarian-
Fromovitz constraint qualification.

According to Lemma 2.2, Assumption 3.1 is equivalent to the condition:

αi ≥ 0 (i ∈ I), y∗ ∈ Y ∗,
∑
i∈I

αif
′
i(x̂) + (g′(x̂))∗y∗ = 0 ⇒ αi = 0 (i ∈ I), y∗ = 0.

We formulate the well-known first-order necessary optimality condition in problem (1)–(2)
under Assumption 3.1 (see e.g. Theorem 4 in Chapter 1, [10]).

Theorem 3.1 If x̂ is a local minimum in problem (1)–(2) such that Assumption 3.1 is fulfilled,
then there are multipliers α ∈ Rk and y∗ ∈ Y ∗ such that

α ≥ 0, αifi(x̂) = 0, i = 1, . . . , k, (20)

f ′0(x̂) +

k∑
i=1

αif
′
i(x̂) + (g′(x̂))∗y∗ = 0. (21)

Now fix an admissible point x̂ and denote by Λ the set of pairs (α, y∗) ∈ Rk × Y ∗ such that
conditions (20) and (21) hold (x̂ is not necessarily assumed to be a solution of (1)–(2)). Assume
that Λ 6= ∅ and let us fix an element (α̂, ŷ∗) ∈ Λ. Define two sets of indices

I0 = {i ∈ I : α̂i = 0}, I1 = {i ∈ I : α̂i > 0}.

Note that α̂i = 0 for any i /∈ I. Now we make a stronger assumption than Assumption 3.1.
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Assumption 3.2 The following implication holds for the fixed triple (x̂, α̂, ŷ∗) ∈ X × Λ:

α ∈ Rk, y∗ ∈ Y ∗, αi ≥ 0 (i ∈ I0),
∑
i∈I

αif
′
i(x̂) + (g′(x̂))∗y∗ = 0

⇒ αi = 0 (i ∈ I), y∗ = 0. (22)

We emphasize that in (22) the signs of αi for i ∈ I1 are arbitrary. In the finite dimensional
case this condition is known as strict Mangasarian-Fromovtz condition.

Condition (22) means that a) g′(x̂)X = Y , b) the functionals f ′i(x̂), i ∈ I1 are linearly
independent on ker g′(x̂), and c) the functionals f ′i(x̂), i ∈ I0 are positively independent on the
subspace

{x ∈ X : f ′i(x̂)x = 0, i ∈ I1, g
′(x̂)x = 0}.

It is known that in the finite dimensional case the strict Mangasarian-Fromovtz condition is
equivalent to single-valuedness of Λ, see e.g. [12]. This fact is also valid in the Banach space
setting.

Lemma 3.1 Under Assumption 3.2, the set Λ is the singleton {(α̂, ŷ∗)}.

Proof. For (α̂, ŷ∗) ∈ Λ, we have

f ′0(x̂) +
k∑
i=1

α̂if
′
i(x̂) + (g′(x̂))∗ŷ∗ = 0. (23)

Take any other pair (α, y∗) ∈ Λ. It satisfies conditions (20) and (21). Subtracting (23) from
(21) and taking into account the definitions of I0 and I1, we get∑

i∈I0

αif
′
i(x̂) +

∑
i∈I1

(αi − α̂i)f ′i(x̂) + (g′(x̂))∗(y∗ − ŷ∗) = 0.

In view of (22), it follows that

αi = 0, i ∈ I0, αi − α̂i = 0, i ∈ I1, y∗ − ŷ∗ = 0.

2

So, (α̂, ŷ∗) is the only element of the set Λ. Introduce the Lagrange function

L(x, α, y∗) = f0(x) +
k∑
i=1

αifi(x) + 〈y∗, g(x)〉.

We have Lx(x̂, α̂, ŷ∗) = 0. Taking into account the definitions of I0 and I1, define the critical
cone

K = {δx ∈ X : 〈f ′i(x̂), δx〉 ≤ 0, i ∈ I0; 〈f ′i(x̂), δx〉 = 0, i ∈ I1; g′(x̂)δx = 0}.

The following second-order sufficient condition for local optimality is well known, see [13,
Corollary 12.1].
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Assumption 3.3 There exists c0 > 0 such that

Ω(δx) := 〈Lxx(x̂, α̂, ŷ∗)δx, δx〉 ≥ c0‖δx‖2 ∀ δx ∈ K. (24)

Theorem 3.2 Suppose that for an admissible point x̂ the set Λ is nonempty and Assumption 3.2
is fulfilled (in this case, Λ is a singleton). Let also Assumption 3.3 be fulfilled. Then the following
quadratic growth condition for the cost function f0 holds at x̂: there exist c > 0 and ε > 0 such
that f0(x) − f0(x̂) ≥ c‖x − x̂‖2 for all admissible x such that ‖x − x̂‖ < ε. Hence x̂ is a strict
local minimizer in problem (1)–(2).

4 Strong Metric sub-Regularity

In this section we prove strong metric subregularity of the optimality mapping associated with
problem (1)–(2) under assumptions formulated below. For that we consider the perturbed system
of optimality conditions:

fi(x) ≤ ξi, i = 1, . . . , k, (25)

g(x) = η, (26)

αi(fi(x)− ξi) = 0, i = 1, . . . , k, (27)

αi ≥ 0, i = 1, . . . , k, (28)

f ′0(x) +
k∑
i=1

αif
′
i(x) + (g′(x))∗y∗ = ζ, (29)

where ξ ∈ Rk, η ∈ Y , ζ ∈ X∗.

Theorem 4.1 Let (x̂, α̂, ŷ∗) be a solution of the unperturbed optimality system (25)–(29) (that
is, with ξ = 0, η = 0 and ζ = 0) and let assumptions 3.1 –3.3 be fulfilled. Then there are reals
ε > 0, δ > 0 and λ > 0 such that if |ξ| < ε, ‖η‖ < ε, and ‖ζ‖ < ε, then for any solution (x, α, y∗)
of the perturbed system (25)-(29) such that ‖x− x̂‖ < δ, the following estimates hold:

‖x− x̂‖ ≤ λ(|ξ|+ ‖η‖+ ‖ζ‖),

|α− α̂|+ ‖y∗ − ŷ∗‖ ≤ λ(|ξ|+ ‖η‖+ ‖ζ‖).

We shall reformulate the above theorem in terms or SMSr (Definition 1.1). To shorten the
notation, we denote Ξ := X × Y ∗×Rk, ŝ = (x̂, ŷ∗, α̂). We also remind that the definition of the
optimality mapping F is given in (3).

Theorem 4.2 Let 0 ∈ F (ŝ), and let assumptions 3.1 –3.3 be fulfilled for ŝ. Then the mapping
F : Ξ ⇒ Z is strongly metrically subregular at ŝ. Moreover, the neighborhood U in Definition 1.1
can be taken of the form IBX(x̂; δ)×Y ∗×Rk, where IBX(x̂; δ) is the ball in X centered at x̂ with
radius δ > 0.
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Remark 4.1 The optimality map F defined in (3) is a sum of a Fréchet differentiable function
ϕ(s) and a normal cone, call it N(s). According to Corollary 2.2 and Remark 2.4 in [2] the SMSr
of this mapping at a point ŝ for zero is equivalent to the same property for the partially linearized
mapping, ϕ(ŝ) + ϕ′(ŝ)(s − ŝ). Notice that if assumptions 3.1–3.3 are fulfilled for the mapping
F , they also hold for the corresponding linearized functions. Dealing with linear functions only
makes the proof easier. However, we do not make use of this fact and present a direct proof
working with the possibly nonlinear functions, partly repeating in this way the argument behind
Corollary 2.2 in [2]. This allows to obtain the last claim of Theorem 4.2. Moreover, the proof
remains self-contained.

Proof. Let us analyze the perturbed system (25)-(29). Let x, α, y∗ be a solution to this system
for given ξ, η, ζ. Set ∆x = x − x̂. Since f(x) → f(x̂) as ‖∆x‖ → 0, by complementary
slackness conditions (27) we have: there exists δ > 0 such that αi = 0 for all i /∈ I, and hence
∆αi := αi − α̂i = 0 for all i /∈ I, whenever ‖∆x‖ < δ.

Assumption 3.2 implies that the functionals f ′i(x̂), i ∈ I, are positively independent on
ker g′(x̂). Then, according to Proposition 2.5 and the continuity of f ′i and g′, there exists δ > 0
and a constant c > 0 such that for every x ∈ X with ‖x− x̂‖ ≤ δ∥∥∥∑

i∈I
αif
′
i(x) + (g′(x))∗y∗

∥∥∥ ≥ c(∑
i∈I

αi + ‖y∗‖
)
.

Hence, there exists a constant C such that

|α|+ ‖y∗‖ ≤ C (30)

whenever ‖∆x‖ < δ. This implies that ∆α = α− α̂ and ∆y∗ = y∗ − ŷ∗ are also bounded.
Subtracting (23) from (29) we obtain

f ′0(x)− f ′0(x̂) +
k∑
i=1

(αif
′
i(x)− α̂if ′i(x̂)) + (g′(x))∗y∗ − (g′(x̂))∗ŷ∗ = ζ. (31)

Here
f ′0(x)− f ′0(x̂) = 〈f ′′0 (x̂),∆x〉+ o(‖∆x‖),

αif
′
i(x)− α̂if ′i(x̂) = α̂i(f

′
i(x)− f ′i(x̂)) + (∆αi)f

′
i(x̂) + (∆αi)(f

′
i(x)− f ′i(x̂))

= α̂if
′′
i (x̂)∆x+ (∆αi)f

′
i(x̂) + (∆αi)f

′′
i (x̂)∆x+ o(‖∆x‖).

Similarly,

(g′(x))∗y∗ − (g′(x̂))∗ŷ∗ = (g′′(x̂)∆x)∗ŷ∗ + (g′(x̂))∗(∆y∗) + (g′′(x̂)∆x)∗(∆y∗) + o(‖∆x‖).

Using these relations in (31), we get

Lxx(x̂, α̂, ŷ∗)∆x+
k∑
i=1

(∆αi)f
′
i(x̂) + (g′(x̂))∗(∆y∗)

+

k∑
i=1

(∆αi)f
′′
i (x̂)∆x+ (g′′(x̂)∆x)∗(∆y∗) + o(‖∆x‖) = ζ. (32)
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If i /∈ I, then αi = α̂i = 0 and ∆αi = 0. Using that I = I0 ∪ I1, we represent this equation in
the form ∑

i∈I0

(∆αi)f
′
i(x̂) +

∑
i∈I1

(∆αi)f
′
i(x̂) + (g′(x̂))∗(∆y∗)

= −Lxx(x̂, α̂, ŷ∗)∆x−
k∑
i=1

(∆αi)f
′′
i (x̂)∆x− (g′′(x̂)∆x)∗(∆y∗)− o(‖∆x‖) + ζ. (33)

Let A be the operator which takes each x ∈ X to the tuple(
〈f ′i(x̂), x〉, i ∈ I1, g

′(x̂)x
)
∈ R|I1| × Y,

where |I1| is a number of elements of I1. Due to Assumption 3.2, this operator is surjective,
and the functionals li = f ′i(x̂), i ∈ I0 are positively independent on its kernel. Applying
Proposition 2.4 to this system of functionals and operator and taking into account that all
∆αi and ∆y∗ are bounded, we obtain from (33) that

k∑
i=1

|∆αi|+ ‖∆y∗‖ ≤ c1(‖∆x‖+ ‖ζ‖) (34)

with some c1 > 0.
Recall that 〈L′′(x̂, α̂, ŷ∗)∆x,∆x〉 =: Ω(∆x). Then, ‘multiplying’ (33) by ∆x, we get

Ω(∆x) +

k∑
i=1

(∆αi)〈f ′i(x̂),∆x〉+ 〈(g′(x̂))∗(∆y∗),∆x〉

+
k∑
i=1

(∆αi)〈f ′′i (x̂)∆x,∆x〉+ 〈(∆y∗)g′′(x̂)∆x,∆x〉

+o(‖∆x‖2) = 〈ζ,∆x〉. (35)

Now we use conditions (25) and (27). Let us show that if ε > 0 and δ > 0 are small enough
and ‖∆x‖ < δ, ‖ζ‖ < ε, then

(∆αi)(fi(x)− ξi) = 0 (36)

for all i = 1, . . . , k. It is enough to prove this equalities for i ∈ I = I0 ∪ I1, because for i /∈ I we
have ∆αi = 0.

First let us show this for i ∈ I1. In view of (34) and the conditions ‖∆x‖ < δ and ‖ζ‖ < ε,
the vector ∆α can be regarded as arbitrary small. Then, for i ∈ I1 we have: αi := α̂i + ∆αi > 0
(because α̂i > 0 and ∆αi is arbitrary small). Then the complementary slackness conditions (27)
implies

fi(x)− ξi = 0, i ∈ I1. (37)

whenever ε > 0 and δ > 0 are small enough. Hence (36) follows for all i ∈ I1 and for ε > 0 and
δ > 0 small enough.

For i ∈ I0 we have: α̂i = 0, consequently, αi = ∆αi and then (27) implies (36). Thus, (36)
is proved for all i = 1, . . . , k, provided that ε > 0 and δ > 0 are small enough.
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Consequently,

k∑
i=1

(∆αi)
(
〈f ′i(x̂),∆x〉 − ξi

)
=

k∑
i=1

(∆αi)(fi(x)− fi(x̂)− ξi) + |∆α|O(‖∆x‖2)

=

k∑
i=1

(∆αi)fi(x̂) + |∆α|O(‖∆x‖2) = |∆α|O(‖∆x‖2),

hence,
k∑
i=1

(∆αi)〈f ′i(x̂),∆x〉 = 〈∆α, ξ〉+ |∆α|O(‖∆x‖2). (38)

Using (38) in (35), we get

Ω(∆x) + 〈∆α, ξ〉+ |∆α|O(‖∆x‖2) + 〈(g′(x̂))∗(∆y∗),∆x〉

+

k∑
i=1

(∆αi)〈f ′′i (x̂)∆x,∆x〉+ 〈(∆y∗)g′′(x̂)∆x,∆x〉

+o(‖∆x‖2) = 〈ζ,∆x〉. (39)

Equalities (37), the inequalities fi(x) ≤ ξi, i ∈ I0, and equality (26) imply, respectively,

〈f ′i(x̂),∆x〉 = ξi +O(‖∆x‖2), i ∈ I1,

〈f ′i(x̂),∆x〉 ≤ ξi +O(‖∆x‖2), i ∈ I0,

g′(x̂)∆x = η +O(‖∆x‖2).

Then, by Lemma 2.3, there exist a constant CH > 0 and a correction x′ such that

〈f ′i(x̂),∆x+ x′〉 = 0, i ∈ I1, (40)

〈f ′i(x̂),∆x+ x′〉 ≤ 0, i ∈ I0, (41)

g′(x̂)(∆x+ x′) = 0, (42)

and, moreover,

‖x′‖ ≤ CH

∑
i∈I0

ξ+
i +

∑
i∈I1

|ξi|+ ‖η‖

+O(‖∆x‖2)

≤ CH(|ξ|+ ‖η‖) +O(‖∆x‖2). (43)

Relations (40)-(42) imply that
δx := ∆x+ x′ ∈ K, (44)

and then, by Assumption 3.3, Ω(δx) ≥ c0‖δx‖2. Let us compare ‖δx‖2 with ‖∆x‖2 and Ω(δx)
with Ω(∆x), respectively. We have

‖δx‖2 = ‖∆x‖2 + r, (45)
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where |r| ≤ 2‖∆x‖‖x′‖+ ‖x′‖2. According to (43),

‖∆x‖‖x′‖ ≤ ‖∆x‖
(
CH(|ξ|+ ‖η‖) +O(‖∆x‖2)

)
= CH‖∆x‖(|ξ|+ ‖η‖) + o(‖∆x‖2),

‖x′‖2 ≤ 2C2
H(|ξ|+ ‖η‖)2 + o(‖∆x‖2)

(here we used: (a+ b)2 ≤ 2a2 + 2b2). Consequently, there is cr > 0 such that

|r| ≤ cr(|ξ|+ ‖η‖)(‖∆x‖+ |ξ|+ ‖η‖) + o(‖∆x‖2). (46)

Similarly, there is cΩ > 0 such that

Ω(δx) = Ω(∆x) + rΩ, (47)

where
|rΩ| ≤ cΩ(|ξ|+ ‖η‖)(‖∆x‖+ |ξ|+ ‖η‖) + o(‖∆x‖2). (48)

Hence, the inequality c0‖δx‖2 ≤ Ω(δx) implies

c0(‖∆x‖2 + r) ≤ Ω(∆x) + rΩ. (49)

Moreover, the relations g′(x̂)δx = 0 and δx = ∆x+ x′ imply

〈(g′(x̂))∗(∆y∗),∆x〉 = −〈(g′(x̂))∗(∆y∗), x′〉,

whence
|〈(g′(x̂))∗(∆y∗),∆x〉| ≤ ‖g′(x̂)‖‖∆y∗‖

(
CH(|ξ|+ ‖η‖) +O(‖∆x‖2)

)
. (50)

Using (49) and (50) in (39) and estimating from above the norm of each term, we obtain

c0‖∆x‖2 ≤ c0|r|+ |rΩ|

+|∆α||ξ|+ |∆α|O(‖∆x‖2)

+‖g′(x̂)‖‖∆y∗‖
(
CH(|ξ|+ ‖η‖) +O(‖∆x‖2)

)
+|∆α|

( k∑
i=1

‖f ′′i (x̂)‖
)
‖∆x‖2 + ‖∆y∗‖‖g′′(x̂)‖‖∆x‖2

+‖ζ‖‖∆x‖+ o(‖∆x‖2), (51)

Using (34), (46) and (48) in this inequality, we get: there exists c′0 > 0 such that

c′0‖∆x‖2 ≤ (|ξ|+ ‖η‖)(‖∆x‖+ |ξ|+ ‖η‖)

+(‖∆x‖+ ‖ζ‖)(|ξ|+ ‖η‖+ ‖∆x‖2) + ‖ζ‖‖∆x‖.
Set ω = (ξ, η, ζ), ‖ω‖ = |ξ|+‖η‖+‖ζ‖. From the previous inequality we easily obtain: there exist
ε > 0, δ > 0, and c′′0 > 0 such that if ‖ω‖ < ε and ‖∆x‖ < δ, then c′′0‖∆x‖2 ≤ ‖∆x‖‖ω‖+ ‖ω‖2,
whence

ĉ‖∆x‖ ≤ ‖ω‖ (52)

with ĉ = 1
2

(√
4c′′0 + 1− 1

)
. Together with (34) this completes the proof of the theorem. 2
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