
Semi-Automatic Video Annotation
Tool for Generation of Ground

Truth Traffic Datasets

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Florian Groh, BSc
Matrikelnummer 01168186

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Mag. Dr. Margrit Gelautz

Wien, 7. Juli 2020
Florian Groh Margrit Gelautz

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Semi-Automatic Video Annotation
Tool for Generation of Ground

Truth Traffic Datasets

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Florian Groh, BSc
Registration Number 01168186

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Mag. Dr. Margrit Gelautz

Vienna, 7th July, 2020
Florian Groh Margrit Gelautz

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Florian Groh, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. Juli 2020
Florian Groh

v

Danksagung

Ich möchte mich bei meiner Betreuerin Margrit für ihre Geduld und Unterstützung im
Laufe der Entstehung dieser Diplomarbeit bedanken. Ein großer Dank geht auch an Lisa,
die immer an meiner Seite steht. Vielen Dank an meine Familie für die emotionale und
finanzielle Unterstützung, welche mir ermöglicht hat all meine Interessen zu verfolgen.

Diese Diplomarbeit wurde von dem Projekt CarVisionLight (Proj.-Nr. 861251) unterstützt,
welches von der Forschungsförderungsgesellschaft (FFG) unter dem Programm „IKT
der Zukunft“, einer Initiative des Bundesministeriums für Verkehr, Innovation und
Technologie (BMVIT), gefördert wird.

vii

Acknowledgements

I would like to thank my supervisor Margrit for her patience and support during the
development of this thesis. A big thanks also goes to Lisa, who is always at my side.
Many thanks to my family for their emotional and financial support, which has enabled
me to pursue all my interests.

This diploma thesis was supported by the project CarVisionLight (Project No. 861251),
which is funded by the Austrian Research Promotion Agency (FFG) under the programme
“IKT der Zukunft”, an initiative of the Federal Ministry of Transport, Innovation and
Technology (BMVIT).

ix

Kurzfassung

Im Rahmen dieser Diplomarbeit wurde ein semi-automatisches Annotationstool („CVL
Annotator“) für die Generierung von bounding box ground truth Daten in Videos
entworfen, implementiert und evaluiert. Das Ziel ist die Annotation von nächtlichen Ver-
kehrsszenen, welche in öffentlich vorhandenen Referenz-Datensätzen nur in beschränktem
Ausmaß enthalten sind. Effiziente semi-automatische Annotation bildet eine wichtige
Grundlage für die Neuentwicklung von Verfahren des maschinellen Lernens, welche große
Mengen an ground truth Daten zum Trainieren und Testen der Netzwerk-Architekturen
benötigen. Eine am Beginn der Arbeit durchgeführte Literaturrecherche dokumentiert,
dass insbesondere ein Mangel an anspruchsvollen nächtlichen Verkehrsvideos mit hochdy-
namischen Lichtverhältnissen inklusive Reflexionen von Scheinwerfern und Lichthöfen
des Gegenverkehrs besteht. Weiters wird aufgezeigt, dass bestehende Annotationstools
zumeist nur auf lineare Interpolation als Unterstützungsmechanismus für die manuel-
le Annotation setzen. Im Gegensatz dazu wird das neu entwickelte Annotationstool
„CVL Annotator“ mit einer Reihe verschiedener state-of-the-art Tracking-Algorithmen
ausgestattet. Die Auswahl der Tracker erfolgt auf Basis einer quantitativen Analyse
der Algorithmen unter Verwendung eines bestehenden synthetischen Datensatzes. Die
Benutzeroberfläche wurde mit der Prämisse, Benutzerinteraktionen zu minimieren und
alle für den Benutzer relevanten Informationen auf einen Blick zu visualisieren, entwickelt.
Es wurde eine Vorstudie zur Benutzbarkeit durchgeführt, welche das neu entwickelte An-
notationstool mit einem bereits veröffentlichten Annotationstool („Scalabel“) vergleicht.
Dabei wurden insbesondere der Zeitaufwand und die Anzahl der benötigten Klicks, die
für die Erstellung von ground truth Annotationen von Videoverkehrsszenen erforderlich
sind, ermittelt. Zusätzlich wurde die Genauigkeit der Annotationsergebnisse verglichen.
Es konnten sowohl in der Zeit- und Klickanalyse, als auch in der Genauigkeitsstudie
Verbesserungen erzielt werden.

xi

Abstract

In the context of this diploma thesis a semi-automatic annotation tool (“CVL Annotator”)
for the generation of bounding box ground truth data in videos was designed, implemented
and evaluated. The goal is the annotation of night-time traffic scenes, which are only
to a limited extent contained in publicly available reference datasets. Efficient semi-
automatic annotation is an important basis for the development of machine learning
methods that require large amounts of ground truth data for both training and testing
of network architectures. A literature review conducted at the beginning of the thesis
documents that there is a particular lack of sophisticated night-time traffic videos with
highly dynamic lighting conditions including reflections from headlights and halos of
oncoming traffic. Furthermore, it is shown that existing annotation tools mostly rely
only on linear interpolation as a support mechanism for manual annotation. In contrast,
the newly developed annotation tool “CVL Annotator” is equipped with a number of
different state-of-the-art tracking algorithms. The selection of the trackers is based on
a quantitative analysis of the algorithms using an existing synthetic dataset. The user
interface was developed with the premise of minimizing user interaction and visualizing
all information relevant to the user at a glance. A preliminary user study was conducted,
comparing the newly developed annotation tool with an already published annotation
tool (“Scalabel”). In particular, the time required and the number of clicks needed to
create ground truth annotations of video traffic scenes were determined. Additionally,
the accuracy of the annotation results was compared. Improvements could be achieved
in the time and click analysis as well as in the accuracy study.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Contributions . 3
1.3 Outline of the Thesis . 3

2 Background and Related Work 5
2.1 Semi-Automatic Annotation Algorithms 5

2.1.1 Semantic Segmentation . 5
2.1.2 Bounding Box Tracking . 8

2.2 Annotation Tools . 9
2.2.1 VATIC . 10
2.2.2 ViTBAT . 11
2.2.3 BeaverDam . 12
2.2.4 Scalabel . 14
2.2.5 CVAT . 14
2.2.6 Comparison . 16

3 Datasets 19
3.1 Ground Truth Datasets . 19

3.1.1 Multi-Sensor Annotation . 20
3.1.2 Computer Vision Algorithms . 21
3.1.3 Computer Generated Imagery 23
3.1.4 Manual Annotation . 25

3.2 CVL Dataset . 27
3.2.1 Example Footage . 28
3.2.2 Statistics . 31

3.3 Comparison . 33

xv

4 CarVisionLight Annotation Tool 37
4.1 Implementation . 37

4.1.1 Browser Implementation . 37
4.1.2 Python Implementation . 39

4.2 User Interface . 42
4.2.1 Information at a Glance . 43
4.2.2 Minimizing Clicks . 44
4.2.3 Object Tracker Inclusion . 44
4.2.4 Visibility Enhancement . 45

5 Evaluation 49
5.1 Tracker Evaluation . 49

5.1.1 Clip Selection . 50
5.1.2 Tracker Selection . 50
5.1.3 Performance Metrics . 52
5.1.4 Evaluation Results . 54

5.2 Preliminary User Study . 55
5.2.1 Results . 57

6 Conclusion and Future Work 63
6.1 Summary . 63
6.2 Synopsis of our Contributions . 64
6.3 Future Work . 64

List of Figures 65

List of Tables 69

Acronyms 71

Bibliography 73

CHAPTER 1
Introduction

Modern cars are equipped with an abundance of assistive technologies ranging from
Anti-lock Braking System (ABS) to Lane Keeping Assist (LKA), Advanced Front-lighting
System (AFS) and more. Over time, the car industry has added so many sophisticated
electronic systems to their vehicles, such that we are now at a point where one can argue,
that car manufacturers have pivoted to the “PC-on-wheels” business, rather than their
actual car business. This diploma thesis is carried out as a part of the CarVisionLight
(CVL) Project, which aims to develop a smart AFS using stereo vision and adaptive
headlights for “glare free high beam control”. The envisioned system adaptively illuminates
the scene in front of the car so that most of the scene is illuminated by the bright, long
distance, lights (high beams) and only the parts where traffic participants might be
blinded are left unlit. In the following section, we will give a more detailed definition of
the problem we are trying to solve, and explain our motivation for trying to solve it.

1.1 Motivation and Problem Statement
For a car to be able to have an intelligent headlight system, that adapts to the world
around it, the control algorithms need to understand the scene in front of the car. In
other words, the system has to identify Areas of Interest (AOI) (cars, trucks, motorbikes,
humans, lanes or similar) in its sensor data in an automated and quick fashion. Speaking
in terms of the computer vision field, we are dealing with object detection and object
tracking. Both detection and tracking have been challenging and interesting problems in
the field of computer vision and a variety of different approaches have been developed for
their specific use cases [AT13].

These approaches can vary in complexity and can be as simple as grayscale thresholding
(all pixels above a threshold value are counted as significant, the rest is ignored), which
might be sufficient in a controlled environment such as a production line where the
algorithm could be used to count parts. Or they can be more sophisticated algorithms

1

1. Introduction

such as the “Scale-Invariant Feature Transform (SIFT)”. For this algorithm, David Lowe
[Low99] combined techniques like Bayesian probability analysis, Hough transform voting
and linear least squares in order to find a mathematical representation of feature points
in an image, which does not change under rotation, translation or even lighting changes.
Another approach, which has gained a lot of popularity in recent years, is to gather
large amounts of data, and apply machine learning algorithms to automatically identify
features and patterns in order to solve the task of object detection and tracking. Machine
learning approaches have risen in popularity in recent years. We can see a particular
increase in interest ever since the first deep neural network called “AlexNet” won the
ImageNet challenge of 2012 [KSH12]. The success of “AlexNet” has lead many computer
vision researchers to focus on machine learning for solving various problems (classification,
tracking, style transfer, etc.) on which they achieved great successes. One great advantage
of machine learning compared to more classical computer vision approaches is that the
authors of the algorithm do not have to identify formal rules or patterns, but instead
can let the computer find these patterns in the data itself. But this advantage is also
closely linked to the main disadvantage of machine learning: it requires a lot of data.
The amount of available data is the most important factor which defines whether the
machine learning algorithm can be successfully used to solve a task. That is because the
algorithm can only derive its model and tune its parameters based on the data it is given.
So it is important that the data covers as many aspects of the problem that needs to
be solved as possible. A general rule of thumb is: the more complex the problem, the
more data needs to be gathered for the learning algorithm to derive a successful model.
Generating such data can be very tedious and time consuming. This is particularly true
when dealing with what is called a supervised learning algorithm, for which every piece of
training data has ground truth information attached to it (e.g. grayscale image of parts
on conveyor with the correct number of parts shown) and the goal is to find patterns
which lead from the given input data to the given ground truth. Supervised datasets
generally need the involvement of humans, who create the ground truth data attached to
the raw sensor data. In contrast, there also exist unsupervised learning algorithms, which
do not need any ground truth information attached to the raw data. These algorithms,
however, are less equipped to find a particular desired output (e.g. how many parts
there are on the conveyor) but instead they can be used to find clusters with similar
characteristics in the data, which can then be further analyzed by human analysts. So,
in general, unsupervised algorithms are more suited for exploring a dataset instead of
answering specific questions.

The CVL Project focuses on developing supervised machine learning algorithms to enable
an adaptive headlight control system, where the ground truth data is labelled by humans
to help the algorithm automatically find patterns in the data, which can be generalized
for real-world applications.

To be able to generalize for real-world applications, the training data has to be represen-
tative of the kind of problems the algorithms have to solve in the future. Initial research
into published automotive data sets for computer vision algorithms at the beginning of

2

1.2. Contributions

this diploma thesis has shown that most of them ([GLU12][BFC09][COR+16][YXC+18])
do not include nighttime scenes, which are the main focus of the CVL Project. A notable
exception are the SYSU and CUHK datasets [CHX+17], containing only nighttime scenes
of still images as opposed to videos. There also is research into synthesizing these kinds of
images, with datasets such as [RSM+16] or [RHK17]. Unfortunately, the cited datasets
do not fit the needs of the CVL Project, as is further explained in Chapter 3 (Datasets).
Thus, we deemed it necessary to create a dataset specifically for the needs of this project.
During our work on the project and the thesis, many more datasets have been published,
some of which include nighttime scenes with high temporal density (e.g. the BDD100K
MOT extenstion to [YXC+18]), showing that interest into this topic is very high.

In order to create a ground truth dataset, one needs to use an appropriate tool to
annotate the data at hand. Our research into published annotation tools found that most
of the tools focus primarily on still image annotation or video annotation using linear
interpolation. To reduce annotation time, we specifically address the incorporation of
suitable tracking algorithms, which are able to cope with challenges such as high dynamic
contrast, halos or reflections, which are typically present in automotive night scenes.
Chapter 5 will go into more detail about our evaluation of tracking algorithms.

1.2 Contributions
The main contributions of this work are:

• We perform analysis of the current state of the art in autonomous vehicle datasets.

• We develop a semi-automatic annotation tool, CarVisionLight Annotator (CVLA),
for bounding box ground truth generation in videos.

• We carry out a systematic evaluation of tracking algorithms for nighttime footage
datasets.

• We conduct a preliminary user study, comparing the speed of annotation using our
tool CVLA compared with an existing annotation tool.

1.3 Outline of the Thesis
In Chapter 1, we have given a short introduction and problem statement to explain
the motivation behind creating a novel annotation tool with semi-automatic tracking
capabilities to improve the process of creating an entirely new ground truth dataset
from videos. In Chapter 2, we present some related work and discuss the current state
of the art in the scientific community regarding semi-automatic annotation algorithms
and publicly available video annotation tools. Chapter 3 reviews publicly available
datasets, their respective sizes and variability of scenery and annotation types. We also
share details of our own CVL dataset with statistics on bounding box sizes and class

3

1. Introduction

distributions. This is followed by Chapter 4, where we talk about the implementation of
our Annotation Tool and the User Interface (UI) decisions we made to optimize the
work flow of annotating videos. Chapter 5 presents our Tracker Evaluation, in which
we tested state-of-the-art tracking and propagation algorithms on synthetic nighttime
road scenes to assess their applicability for our annotation tool. It also includes our
Preliminary User Study, in which we evaluate our tool in comparison to a previously
published tool using accuracy, time and click analysis as parameters. In Chapters 3, 4 and
5 we include excerpts from our paper “A tool for semi-automatic ground truth annotation
of traffic videos”, which was published by, and presented at Electronic Imaging 2020. In
the end, we will present our final thoughts and provide an outlook on possible future
work.

4

CHAPTER 2
Background and Related Work

This chapter looks into the current state of the art in literature regarding semi-automatic
annotation algorithms and the published tools for annotation. We examine existing
semi-automatic algorithms, designed to help with the annotation process, followed by
a look at publicly available annotation tools, focusing especially on UI decisions and
propagation capabilities.

2.1 Semi-Automatic Annotation Algorithms
This section provides an overview of selected current techniques for propagating sparse
or dense image labels over time to minimize human workload during video annotation.
Generally speaking, the best case scenario is working with ground truth data with the
most accurate and dense type of annotation. This is why we first look at annotation
algorithms based on segmentation data, in which a pixel-wise mask of an object is
propagated over time. Figure 2.1 shows the segmentation of an example image. We
first take a look at previous research using Cost Volume Filtering (CVF), followed by
some deep learning approaches. Finally, we examine bounding box tracking algorithms,
which work with much sparser data in the form of four coordinate values (top, left, width,
height). This makes the task of propagating this information over time an easier task
than updating pixel-wise masks for video annotation, with the disadvantage of losing
some information density.

2.1.1 Semantic Segmentation

Cost Volume Filtering

In this section, we take a look at the work by Hosni et al. and its subsequent exentsion
by Brosch et al. Hosni et al. have developed a classic computer vision algorithm suitable
for many different labelling tasks called CVF. The paper shows promising results for

5

2. Background and Related Work

Figure 2.1: Example of pixel-perfect semantic segmentation. Background, floor and
human in blue, red and green, respectively. Original Photo by Robert Bye (unsplash user
@robertbye)

semi-automatic image segmentation using scribble annotations (see top row of Figure 2.2)
by a human annotator [HRB+12]. Brosch et al. extended their work from an interactive
image segmentation technique to the temporal domain, to support 2D to 3D conversion
of videos [BSG16]. A general overview of how the CVF technique works for image or
video segmentation can be found in [BHRG12], and can be summed up in three points:

1. Based on color models that were initialized through foreground scribbles, a cost map
that contains each pixel’s probability of belonging to the foreground is generated.

2. Smoothing the cost map with an edge-preserving filter [HST10], aggregates the
costs across neighboring pixels with similar colors.

3. Finally, pixels are assigned to the fore- or background according to the smoothed
costs.

To avoid flickering effects when applying this approach on a frame-by-frame basis, Brosch
extended this technique to the temporal domain, by applying a 3D kernel during the
filtering step, thus allowing for filtering not only in the x,y domain but also over time.

This approach leads to very good results for 2D to 3D conversion for videos where a clear
color distinction between fore- and background areas can be made. Figure 2.2 shows
an image from [BHRG12] where this technique works almost perfectly. However, when
testing the technique on our nighttime road scenes, we found that the algorithm did not
perform as well. The basic assumption that different objects have different color models
associated with them, does not apply and therefore, in the case of our test images, the
cost maps do not reflect the objects’ borders, even after filtering. An example can be
seen in Figure 2.3.

6

2.1. Semi-Automatic Annotation Algorithms

Figure 2.2: Example of nearly perfect 2D to 3D conversion using Brosch’s extended CVF
technique. Original image in Brosch’s PhD Thesis [Bro16]

Figure 2.3: Left: a test image from our nighttime road scenes. Right: the filtered
foreground region, showing that CVF in this case does not deliver meaningful results.

Deep Learning

Before taking a closer look at the different segmentation propagation techniques, we first
want to provide some background information on deep learning:

Recent interest in deep learning started to grow around the year 2012, when AlexNet
[KSH12], a deep Convolutional Neural Network (CNN), won the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC). This was the first time that a CNN performed
better than classical machine learning techniques and sparked the rebirth of AI research
in the computer vision community. What first started as relatively simple task of image
classification (the output of the network was limited to a single class correspondence
vector) has soon evolved into more sophisticated techniques in which class labels where
attached to multiple objects in the scene and finally every pixel in the image, i.e.
semantic image segmentation. The first notable achievement in this area was the Region
Convolutional Neural Network (R-CNN) architecture by Girshick et al. [GDDM14] which
operates in a two-level fashion. On the first level a number of region proposals are
extracted using any classic machine learning objectness classifier available and on the
second level an image classifier CNN is used to assign classes to the regions. This two-level
architecture was succeeded by a the Faster R-CNN architecture [RHGS15], which enables
CNNs with shared weights to handle both region proposal and classification, therefore
improving speed significantly. It also makes use of a Fully Convolutional Network (FCN),
an invention of Long, Schelhamer and Darrell [LSD15] which proved to be a small
breakthrough in the deep learning community, as it introduced deconvolutional layers,

7

2. Background and Related Work

which enabled efficient per-pixel outputs for the first time. This architecture then enabled
deep learning networks to perform semantic segmentation.

For the purpose of propagating these pixel masks over time, the Densely Annotated
VIdeo Segmentation (DAVIS) challenge [PPTM+16] was devised. It offers a set of 50 HD
videos with temporally dense ground truth mask data for the main object in the scene.
The goal of the challenge is to propagate a segmentation mask from the first frame of an
image to the rest of the clip. Through this challenge, several interesting approaches have
come forward such as:

• One-Shot Video Object Segmentation (OSVOS) by Caelles et al. [CMPT+17]
The idea behind OSVOS is that first a parent network is trained offline to distinguish
between foreground and background, and then a test network is trained online
on the particular ground-truth/image pair of the object of interest to fine tune,
which part of the foreground we are interested in. Training the test network on the
ground truth of the first annotated image in the sequence lets it focus on the specific
features found in the object of interest, enabling a further distinction between all
of the foreground elements and the one foreground element of interest.

• Lucid Data Dreaming for Video Object Segmentation (Lucid) by Khorea et al.
[KBI+17]
The main idea behind this approach is that by using a single starting frame and
synthesizing many plausible future video frames as a training set, it is possible to
forego training on a large dataset such as ImageNet.

• Fast and Accurate Online Video Object Segmentation (FAVOS) by Cheng et al.
[CTH+18]
In this technique, the main idea is to track parts of the object of interest with a
Siamese Tracker (see Chapter 5) to then create a fore- and background mask of
these parts, which can later be combined.

At the time of testing, OSVOS was one of the best performing networks in the DAVIS
challenge 2016 and the authors made the source code available to the research community,
so we were able to perform some tests with it. Unfortunately, similarly to the CVF
approach, we found that OSVOS does not perform well with limited visibility constraints
as seen in Figure 2.4. The left side of the image shows the ground truth and the right
side displays what was actually calculated by the network.

2.1.2 Bounding Box Tracking

Section 2.1.1 has indicated that our footage is too dark and contains too little texture
for the tested semi-automated algorithms to distinguish between fore- and background
pixels. We therefore decided to make a compromise in terms of potential accuracy vs.
actual accuracy and looked at 2D bounding box trackers. In other words we found that
although segmentation has the potential to provide pixel-wise masks, indicating exactly

8

2.2. Annotation Tools

Figure 2.4: (left) correct mask of oncoming traffic, (right) falsely propagated mask of
oncoming traffic by OSVOS network.

which pixels are part of an object, 2D bounding box tracking, being constrained to an
axis-aligned box, achieves better results on our predominantly dark footage with the
disadvantage of usually including some parts of the background in the box.

Bounding box tracking is a widely researched field in the computer vision community, with
benchmark challenges such as the Visual Object Tracking (VOT) Challenge [KML+16]
or the Multiple Object Tracking (MOT) Challenge [DRM+19]. Participants of these
challenges have come up with a variety of tracking algorithms ([DBKF19], [LYW+18],
[LVČZ+17]) which we will take a closer look at in Chapter 5.

Compared to segmentation propagation, the pixels identified by a bounding box will not
contain all of the pixels and only the pixels that belong to the object of interest unless
the projection of the object on the image is a perfect box. Depending on the objective of
the task at hand, it is important to choose the right bounding box placement and size. As
one can see in Figure 2.5, a bounding box which only covers the back side of a preceding
vehicle (blue) would be a bad idea for the CVL Project, since a major objective of the
project is to not blind other traffic participants. Ideally, we would be using a best-fit
3D bounding box (magenta) to cover all of the important parts of the vehicle, while at
the same time minimizing unwanted background pixels. A dataset which offers such
bounding boxes would be the KITTI [GLU12] dataset. However, 3D bounding boxes
increase the complexity of the tracking problem by adding another geometric dimension,
increasing the chance of propagation errors. In the CVL Project we decided on the
compromise of using 2D bounding boxes – hence keeping the number of dimensions to
two while covering all of the visible pixels of the AOI (red) and accepting that some
background pixels will also be covered by this box.

Given that the data recorded during the CVL Project is challenging for segmentation
propagation algorithms such as CVF (section 2.1.1) or even deep learning approaches
such as OSVOS (section 2.1.1) we have decided to take a deeper look into bounding box
tracking algorithms, which will be further examined in Chapter 5.

2.2 Annotation Tools

In this section, we take a look at video annotation tools, published by the scientific
community in order to increase the speed of video data ground truth annotation. We

9

2. Background and Related Work

Figure 2.5: Different styles of bounding boxes: (magenta) best-fit 3D bounding box, with
minimal background pixels, (blue) 2D bounding box covering parts of object, (red) 2d
bounding box covering complete object, but also some area of background pixels.

look at platform choices, UI decisions as well as data propagation mechanisms used.
Notable video annotation tools include VATIC [VPR13], ViTBAT [BNFD16], CVAT
[Sek18], Scalabel [YXC+18] and BeaverDam [She16].

2.2.1 VATIC

The Video Annotation Tool from Irvine California (VATIC) by Vondrick et al. [VPR13]
focuses on making annotations faster by optimizing the user interface for crowdsourcing
services such as Mechanical Turk.

Regarding platform choice, the authors’ plan was to work with crowdsourcing services,
so they chose to build a web application with browser technologies as the user facing
front end and a web server as the data keeping back end. The advatage of browser
technologies is that they are easily deployable to a wide range of users across the world,
with the disadvantage of browsers not having access to the same capabilities as native
applications.

Vondrick et al. have tested different UI-choices through a series of user studies using
linear interpolation as a data propagation mechanism. They discovered that users tend
to annotate videos faster when presented with pre-defined evenly placed keyframes to
annotate videos instead of letting them decide where to place the keyframes themselves.
At a first glance, this might seem counterintuitive, since evenly pre-defined keyframes
need to be placed in a frequency that accounts for the fastest changes in motion in
the video over the course of the whole video, whereas user-defined keyframes can be
adjusted to the movement needs of the subjects and timings in the video. For example,
a car moving in a straight line at constant speed only needs to be annotated at the
start and end of a sequence. Contrarily, a pedestrian who changes speed and direction
frequently would require keyframes placed at every point in time where their direction
and or speed changes. Vondrick et al. have discovered that the process of finding out
where to place these keyframes for each velocity or direction change takes more time

10

2.2. Annotation Tools

than simply adjusting a dense set of pre-defined keyframes, even if many of them are
redundant. Additionally, the authors discovered that only these pre-defined keyframes
in a slideshow without the frames in between as context can be too little information,
because annotators might mix up objects from one keyframe to the next. They therefore
decided to display the whole timeline to annotators and enable arbitrary scrubbing
through time. Figure 2.6 shows the UI that annotators are given, with the timeline at
the bottom.

Figure 2.6: VATIC User Interface. Original image in [VPR13]

The main data propagation mechanism used in VATIC is linear interpolation. In their
paper [VPR13], Vondrick et al. talk about using a dynamic programming algorithm to
incorporate constrained tracking, where the first and last frame are fixed by user input.
However, they report “poor results” and have apparently not added this functionality to
their published source code.

2.2.2 ViTBAT

With the Video Tracking and Behavior Annotation Tool (ViTBAT), Biresaw et al.
[BNFD16] focused mainly on the process of behavior annotation for both individuals and
groups. They offer point, and rectangle annotations for the spatio-temporal aspect of
annotation, and a timeline of user-definable behaviors.

When looking at the implementation details, and the platform choice of ViTBAT, we
can see that it was developed on top of MATLAB and runs locally on the annotator’s
machine. Biresaw et al. chose this setup as it enabled them to make use of the large
array of functionalities in the MATLAB computer vision toolbox. Additionally, choosing
to run the software locally removes the latency associated with network connections and
thus theoretically enables higher interactive speeds.

11

2. Background and Related Work

The UI is also implemented on top of MATLAB. An interesting aspect of ViTBAT’s UI
can be seen on the bottom left of Figure 2.7. Biresaw et al. show a timeline overview
of behaviors with a list of all the different behaviors displayed on the left edge of the
timeline and the different colors within each behavior representing the different subjects
in the video. The lengths of these colored lines represent when and for how long the
subjects display the different behaviors.

Figure 2.7: ViTBAT User Interface. Original image in [VR11]

Since ViTBAT is more focused on behavior annotation, Biresaw et al. do not use any
sophisticated data-propagation mechanisms. Instead they use simple linear interpolation
to update the positions and sizes of the rectangles in the scene.

2.2.3 BeaverDam

UC Berkeley student Anting Shen wrote his Master’s Thesis on his Video Annotation
Tool BeaverDam [She16], which focuses on minimizing both the administrator’s and
annotator’s time when annotating large datasets. Shen analyzed the UI user studies
performed by Vondrick et al. on VATIC [VR11] and incorporated and improved upon
their findings.

One of Shen’s major focus-points was the installation process and administration of
annotations for reasearchers. Shen argues, that by eliminating “pain points” such as
installation errors, a researcher’s valuable (expensive) time can be spent on actual research
instead of trying to install software. BeaverDam has been tested to install correctly on
fresh installs of Ubuntu 14.04 and 16.04. It is built as a web application and geared
towards crowd sourcing platforms such as Mechanical Turk.

12

2.2. Annotation Tools

Regarding BeaverDam’s UI, Shen has done an excellent analysis in his thesis. His main
findings are:

• Keyframe placement and visibility:
In contrast to Vondrick et al.’s [VR11] discovery that regular keyframe placement
leads to faster annotation time, Shen found that this is highly dependant on the
video footage. He chose to let annotators place their own keyframes, but shows
a keyframe timeline (see Figure 2.8) to give annotators an overview as well as a
quick way to jump between keyframes, which in turn increases annotation speed.

• Fast playback:
Caching the whole video in advance eliminates server timeouts on frame changes.

• Click reduction:
Drawing new objects without the need to click “new object”, and the object type
is pre-selected as the most common class (“car”) or the previous selection.

• Frame exit/enter:
Being able to drag bounding boxes outside of the frame increases speed, as annota-
tors do not have to align their mouse perfectly with the image border.

Figure 2.8: BeaverDam User Interface, with keyframe timeline at bottom. Original image
in [She16]

13

2. Background and Related Work

In his thesis, Shen claims that BeaverDam has a computer vision tracking module to
increase annotation speeds, however, the official implementation does not include1 such a
module, and the only data propagation mechanism is linear interpolation.

2.2.4 Scalabel

The Scalabel tool [YXC+18] was developed by Yu et al. at UC Berkeley to annotate
their BDD100K dataset of more than 100,000 images. Their main focus was to create a
versatile and scalable tool suitable for many different annotation tasks, that might be
needed for a driving database, such as bounding box, semantic instance segmentation
or lane detection. We will focus on its bounding box video annotation capabilites in
particular.

Scalabel is a web application geared toward crowdsourcing applications in order to scale to
a large number of annotators quickly. By developing a web application, the requirements
to run the annotation workflow are reduced to a computer with an internet browser.
There needs to be a back-end server which serves the web application to the annotator’s
internet browser and provides the dataset and annotation tasks, but the complexity for a
new annotator to start on a task is reduced to clicking a link and reading the instructions.

Similar to BeaverDam, the Scalabel UI reduces the amount of clicks compared to VATIC,
by remembering the type of object last annotated and removing the need to click/press a
button to start annotating an object. Scalabel does not have a timeline overview to see
where keyframes have been placed, however, in its video annotation UI a time slider is
shown at the bottom to show the current moment in time. Scalabel allows zooming in
and out up to a maximum factor of 5x, which can help with annotating smaller objects.
See Figure 2.9 for a screenshot of the UI.

Scalabel is geared towards many different annotation techniques and currently only
supports linear interpolation as its data propagation mechanism for video annotations
using bounding boxes or segmentation masks.

2.2.5 CVAT

The Computer Vision Annotation Tool (CVAT) by Sekachev et al. [Sek18] is an open
source tool, maintained by the OpenCV team. Its main focus is on including deep learning
components to increase annotation efficiency. Some of the implemented components
added to CVAT are automatic object detection and semi-automatic segmentation.

CVAT is built as a web application and primarily installed via docker. Even though it
is a web application, its main focus is not on crowdsourcing annotations, but rather on
reproducible builds through containerization and easy access through browser technologies.

The UI of CVAT makes it possible to do both bounding box and segmentation annotation
in the same video. For each new annotation the “create shape” button, seen in the

1Github issue, where Shen says that no tracking capabilities were implemented:
https://github.com/antingshen/BeaverDam/issues/104#issuecomment-310500517

14

2.2. Annotation Tools

Figure 2.9: Screenshot of Scalabel User Interface.

bottom right of Figure 2.10 needs to be clicked and the type of shape to be used needs
to be selected. This does not follow the best practice guideline on minimizing clicks
developed by Shen [She16], which recommends using a click-and-drag mechanism inside
the current frame for the automatic creation of a new bounding box.

Figure 2.10: Screenshot of CVAT User Interface

With regards to data propagation, onepanel2 has added a preliminary implementation
2https://www.onepanel.io/

15

2. Background and Related Work

for tracking bounding boxes over time. The feature has not yet been added to the official
implementation of CVAT, which only includes linear interpolation as its data propagation
method.

2.2.6 Comparison

This section tries to summarize our findings concerning the different annotation tools
mentioned above. We compare the tools regarding platform, user interface and data
propagation and provide an overview of our findings in Table 2.1.

Platform

With the exception of ViTBAT, the aforementioned tools work as web applications with
the browser acting as the user facing front end and a web server acting as the back end,
keeping track of all of the data. The focus on web technologies is primarily rooted in
the fact that annotation tasks can then be accessed through a simple URL and can
therefore be included into crowdsourcing services such as Mechanical Turk. The authors
of ViTBAT, on the other hand, chose to offer a tool that runs locally on the annotator’s
machine, removing the latency associated with network connections and thus theoretically
enabling higher interactive speeds.

User Interface

Regarding the UIs, we found that most tools do not have a temporal overview of the
current annotation state with the help of some sort of timeline view. BeaverDam and
ViTBAT were the exception to this rule. BeaverDam displays a line of keyframes to
show where a user has adjusted the bounding box of an object of interest (see Figure
2.8). ViTBAT, with its focus on behavior annotation, displays a timeline overview of
different behaviors in the video to quickly see when subjects perform different behaviors
(see Figure 2.7).

Data Propagation

Regarding data propagation, we found that with the exception of CVAT [Sek18], the
existing video annotation tools all offer linear interpolation between keyframes. This
can be very helpful when dealing with footage from a stationary camera. But when the
camera itself is moving, the amount of keyframes needed to follow objects in screen space
greatly increases due to abrupt movements in the camera path (e.g. road bumps, sharp
turns).

16

2.2. Annotation Tools

Tool Platform Propagation Temporal overview
VATIC [VPR13] Web Interpolation 7

ViTBAT [BNFD16] Local Interpolation Behavior

Scalabel [YXC+18] Web Interpolation 7

BeaverDam [She16] Web Interpolation Keyframes

CVAT [Sek18] Web Tracking 7

Table 2.1: Comparison of analyzed Video Annotation Tools

17

CHAPTER 3
Datasets

In this chapter, we review the existing automotive and tracking datasets in the scientific
community which we found relevant for our project. We give insight into which require-
ments we deemed necessary for a dataset to be adequate for the CVL Project and give
an overview of the dataset which we were able to create in the process of the project.

Firstly, in Section 3.1, we present an overview of the relevant existing datasets. Depending
on the availability of the information provided by their authors, we will summarize their
scope and acquisition processes, specifically focusing on the environments in which the
images were taken, the amount of time it took to label all the images, what type of classes
the images consist of and the total amount of images included in each of the datasets.

Section 3.2 describes our own dataset (CVL Dataset), which we acquired over the course
of the project and annotated using our CVLA tool proposed in Chapter 4. For the CVL
dataset, we provide some further statistical analyses regarding track lengths, bounding
box sizes and class distributions.

Finally, we present a comparison in section 3.3 with the following requirements of our
specific application in mind: non-urban roads (e.g. highway or country roads), nighttime,
at least 20FPS temporal density, realistic lighting in a real-world environment.

3.1 Ground Truth Datasets
In this section, we provide short summaries of some state-of-the-art datasets and details
on how researchers are using different techniques like (i) multi-sensor data, (ii) Computer
Vision (CV) algorithms or (iii) Computer-Generated Imagery (CGI) to aid in the creation
process of ground truth datasets. The general problem with creating large ground truth
datasets is described by Xie et al. in [XKSG16], in which they mention the term “curse
of dataset annotation”. It explains the inverse relation between number of annotated
images and annotation time needed per image. In other words, the more time consuming

19

3. Datasets

it is to annotate an image (e.g. because we want to assign an object class to every pixel,
instead of just a scene descriptor for the whole image), the fewer total images will be
in the final dataset as the effort required to provide hundreds of thousands of images is
too extensive. Figure 3.1 shows the relationship between annotation time per image (i.e.
level of detail) and dataset size.

Figure 3.1: Curse of Dataset Annotation, correlation plot between annotation time and
number of images. Original image in [XKSG16]

3.1.1 Multi-Sensor Annotation

This section shows examples of datasets that combined data from multiple sensors to aid
in the annotation process.

Argoverse

Ming-Fang Chang et al. [CLS+19] present a dataset for autonomous vehicle perception
tasks such as 3D tracking. The dataset includes 360 degree images from 7 cameras with
overlapping fields of view, stereo imagery facing forward and 3D point clouds from a
Light Detection and Ranging (LIDAR) sensor. The data contains lane annotations of
about 290km. Argoverse’s cars were deployed in two American cities (Miami, Pittsburgh)
and captured data at different times of day, including nighttime, and in a wide range
of weather conditions. In total, there are 10,572 human-annotated tracked objects in
the dataset, with a framerate of 30fps and annotated with 3D bounding boxes. To
enable faster annotations on all of the image data provided by the camera sensors, the
annotation was done via 3D cuboids on the point cloud data provided by the LIDAR
sensor, and then reprojected onto the image data. An overview of this multi sensor data
can be seen in Figure 3.2.

20

3.1. Ground Truth Datasets

Figure 3.2: Overview of LIDAR and Camera data with 3D bounding boxes. Original
image in [CLS+19]

KITTI Dataset

Andreas Geiger et al. [GLU12] used their research vehicle AnnieWay, equipped with color
and monochrome stereo cameras, a LIDAR and a Radio Detection and Ranging (RADAR)
sensor as well as a GPS/IMU navigation system to record scenes on the roads of Germany.
The raw data captured by this set of advanced sensors allowed them to calculate multiple
ground truth datasets for the tasks of stereo matching, optical flow estimation, visual
odometry, 2D/3D object detection and object tracking [GLU12]. Additionally, Geiger
et al. have also published the raw dataset [GLSU13]. All of the data provided in the
KITTI dataset was captured in Germany during daytime with good visibility. To ensure
a bit of variability within the scenes, the capture sessions took place in urban, suburban
and highway areas, the last of which is the most relevant for our purposes. Out of those
scenes, the 2D/3D object detection datasets are the only ones which meet the needs of
the CVL Project. The datasets consist of 7481 training images and 7518 test images
including 3 types of classes: car, cyclist, pedestrian. The annotation of the raw data was
done manually by hired annotators, which were given a custom annotation tool showing
the 3D pointcloud of the LIDAR system and the color images. It is not stated how long
it took for each image to be annotated. Figure 3.3 shows an example 3D object detection
dataset.

Figure 3.3: Sample of 3D bounding boxes in KITTI dataset. Original image in [GLU12].

3.1.2 Computer Vision Algorithms

In this section we show datasets which used automatic computer vision algorithms as a
starting point to aid in the annotation process.

21

3. Datasets

BDD100k

BDD100k by Yu et al. [YXC+18] is a dataset of more than 100,000 videos with fully
segmented road scene images from roads in the USA. It features image data from all
over the Bay Area as well as New York City. The images have been taken during all
times of the day, including nighttime, and in many different weather conditions. Yu et
al. have developed an annotation tool called Scalabel (see Section 2.2.4) to create the
ground truth labels in a distributed manner. Even though the dataset contains a large
amount of video data, annotation data is only provided for a single frame per video. This
is done to maximize diversity in the given scenes, however it is unfortunately not suited
for evaluating tracking algorithms (In 2020 the BDD100k MOT extension was added
to the dataset, including tracking data with a temporal density of about 5 frames per
second). To aid the annotation process, a baseline semantic segmentation model was
used as starting data, which was then refined by human annotators.

Figure 3.4: Example of fully segmented ground truth in BDD100k dataset. Original
image in [YXC+18].

CamVid

Brostow et al. [BFC09] used a consumer camera mounted on the dashboard in front of
the passenger seat to record scenes on the roads of the United Kingdom. The videos
were recorded during daytime, with high visibility and in a mainly urban to suburban
area. The dataset consists of 701 fully segmented images including 32 classes. The
classes are categorized as moving objects, road, ceiling and fixed objects. This means
that almost every pixel on an image has a corresponding class. As mentioned in Section
2.1, the process of fully annotating an image with meaningful classes is called semantic
segmentation. An example of which can be seen in Figure 3.5, which shows a sample
frame with its annotation data next to it, where only a small part of the ground truth is

22

3.1. Ground Truth Datasets

left unlabeled (black). The total amount of man-hours invested into annotating these
images is reported as 230 hours, which results in an average annotation time per image
of about 20 minutes and was done by volunteer workers recruited via facebook, which
received a small compensation. To aid the annotation process, automated segmentation
algorithms were used as a starting point which would later be refined by the annotators.
This fine-grained approach to annotating the images is well suited for our needs, however
the availability of only daytime (sub-)urban scenes makes this dataset unfit for our
purposes.

Figure 3.5: Example of fully segmented ground truth in CamVid dataset. Original image
in [BFC09].

D2-City

The D2-City dataset by Che et al. [CLL+19] contains more than 11,000 traffic videos
from various cities around China. In one thousand of the collected videos, Che et al.
provide frame-by-frame annotation data for tracking purposes, totalling in more than
700,000 annotated frames. The rest of the videos have been annotated more sparsely:
annotation data has been included every couple of frames. Che et al. chose to annotate
their dataset with a customized version of the CVAT ([Sek18], see section 2.2.5). All
annotations were created manually or by linear interpolation within very short time
frames with manual adjustments to guarantee the quality of the data.

Figure 3.6: Example scenes from D2-City dataset. Original image in [CLL+19].

3.1.3 Computer Generated Imagery

This section shows synthetically generated datasets, which aim to mimic real world
imagery in order to minimize the need for real-world footage for training further computer
vision algorithms.

23

3. Datasets

SYNTHIA

As we mentioned before, there are also researchers who create synthetic ground truth
data sets in order to enhance the performance of machine learning algorithms. Ros et al.
[RSM+16] produced a synthetic dataset using their own virtual world and software created
with the Unity game engine. In total, they provide four video sequences comprising
50,000 images each, showing the virtual world in different seasons of the year totalling in
more than 200,000 images. See Figure 3.7 for an example. All of the images were taken
during virtual daytime and do not contain any night scenes. Additionally, the quality of
the images also lacks in realism, as shown in a perceptual experiment by Richter et al.
[RHK17] (see next section).

Figure 3.7: Example of four different seasons in SYNTHIA virtual world. Original image
in [RSM+16]

VIPER

Stephan Richter et al. [RHK17] also provide a synthetic data set consisting of 254,064
fully annotated images collected while driving, riding, and walking a total of 184 virtual
kilometers through the diverse and realistic world of GTA V. The dataset contains
scenes with five different environmental conditions (day, sunset, rain, night, snow) and
annotation data for 30 different classes including many types of vehicles, as well as road,
sky, vegetation or pedestrian. They chose this game specifically because of its highly
realistic look and feel. To quantify the realism of the game Richter et al. performed
a perceptual experiment of on Amazon Mechanical Turk comparing GTA V images to
other synthetic and real datasets. The experiment was an A/B test, where users had to
decide which of two images looked more realistic. When users had 8 seconds to analyse
which of the presented images of the A/B test looked more realistic, 94% selected images
from VIsual PERception (VIPER) instead of those from SYNTHIA. Richter et al. also
compared the images with the real CityScapes dataset and surprisingly even compared
to real data 11% felt that GTA V images looked more realistic, emphasizing the visual
quality found in the VIPER dataset.

Richter et al. had various use cases in mind for their dataset: 2D and 3D bounding box
annotations, semantic segmentation, semantic instance segmentation and visual odometry,
the first of which is of importance for the CVL Project. Figure 3.8 shows a nighttime
scene with its corresponding semantic segmentation applied on the left side. The data
was created by using custom shaders and modding software to alter the game’s output
buffers on the GPU. In a previous paper, Richter et al. [RVRK16] go into further detail

24

3.1. Ground Truth Datasets

regarding the creation of the semantic segmentation ground truth and mention an average
annotation time of about 7 seconds per image. This paper also shows that learning on a
mixed dataset of real and synthetic data can improve performance significantly (up to
2.6 percentage points are reported).

Figure 3.8: On the left side of this image we see the semantically segmentation mask
overlayed and gradually faded out to one of the nighttime scenes from the VIPER dataset
on the right.

3.1.4 Manual Annotation

In this section, we discuss ground truth datasets which were generated entirely by humans,
without the help of any computer algorithms.

CityScapes

Cordts et al. [COR+16] also worked on the task of semantic segmentation. They used
cars with a stereo camera setup and a GPS sensor to record scenes in 50 different cities in
Germany. The videos were recorded during daytime and with high visibility. In total they
provide 5000 fully segmented images and 20000 coarsely segmented images containing
up to 25 different classes. See Figure 3.9 for an example. The average annotation time
per image is reported to be roughly 90 minutes [COR+16]. The annotation was done on
stereo imagery by professional annotators in-house to ensure its quality. Scene elements
were annotated back to front, such that each boundary had to be marked only once.
Additionally, this way of annotating also encodes a simple depth ordering into the classes.

Figure 3.9: Example of the fine (l) and coarse (r) segmentation within the Cityscapes
dataset. Original image in [COR+16]

25

3. Datasets

Mapillary

Neuhold et al. [NORBK17] from Mapillary Research provide a dataset containing 25
000 high resolution images with 66 object classes using fine-grained polygon annotations.
Compared to other datasets already shown in this document, the Mapillary dataset offers
a more diverse look at the world with images taken by individuals all over the globe
using a multitude of different cameras (smartphones, tablets, action cameras etc). In
addition to having photos from many different cameras, they are also taken across many
countries, during different times of day and in different weather conditions (see Figure
3.10). On top of that, the images included in the dataset do not all show scenes from
inside or on top of a car, but also street level scenes in general (i.e. they include images
taken by pedestrians as well). Annotation was done by 69 professional image annotators,
with an average annotation time of about 94 minutes per image.

Figure 3.10: Example of diverse weather and lighting conditions with corresponding
annotation data in Mapillary dataset. Original image in [NORBK17]

SYSU and CUHK Night-time Datasets

Chen et al. [CHX+17] provide two datasets consisting only of nighttime scenes. The
objects of interest within the images in the datasets are marked by a 2D bounding
box, containing the full extent of the vehicles. While the SYSU dataset comprises 402
images with a single class only (car), the CUHK dataset consists of 836 images with five
classes (car, taxi, bus, minibus, truck). The images where taken in China (SYSU) and
Hong Kong (CUHK). The authors do not state who annotated the data or how long
the annotation took to complete. In Figure 3.11 it can be seen that the quality of the
datasets does not meet our requirements as the bounding boxes are too large and there
is an undetected car, whose driver would be blinded by the headlights.

VOT Challenge

In 2013, a dataset for visual object tracking purposes called VOT2013 [KPL+13] with an
accompanying visual object tracking benchmark challenge was released. The challenge
has continued every year since then and new ground truth data, such as RGB-D images,
has continuously been added to the dataset. Annotation was done manually by the

26

3.2. CVL Dataset

Figure 3.11: Example image from the CUHK dataset showing an unmarked car as well
as bounding boxes which are too big

expert annotators in the VOT committee. Unfortunately, even though the dataset focuses
on providing a wide variety of different scenes regarding visible objects and lighting
conditions, it does not contain many automotive scenes (an example can be seen in
Figure 3.12), and completely lacks nighttime automotive scenes. However the authors’
contribution is not limited to the dataset. They have also introduced a novel evaluation
methodology for single-target tracker performance [KML+16] which we will take a closer
look at in Chapter 5.

Figure 3.12: Example scene from the VOT Challenge Dataset

3.2 CVL Dataset
The CVL Dataset was born out of the necessity to have an automotive dataset with high
temporal density, non-urban scenes and nighttime footage. The raw image data was
gathered at 30 frames per second by our project partner ZKW over the course of two
years (2018-2020) and annotated at TU Wien as part of this diploma thesis. To ensure
variability in the data, three different camera sensors with different dynamic ranges, and
resolutions were used. Additionally, the cameras were positioned at a variety of different
places both inside and outside of the vehicle. In total, there are 22420 annotated images
from 49 videos in the dataset, 44 videos or 18600 images of which were taken at night,

27

3. Datasets

and 5 videos or 3820 images taken during daytime. These annotated images contain 320
tracked objects 81 of which are at daytime and 239 at night. Figure 3.13 shows example
images of these two variations and gives an example of how dark and low in visible
information some of our nighttime footage is. Subsection 3.2.1, shows further examples
and illustrates some of the challenging scenarios included in the dataset. Subsection 3.2.2
gives further statistics and analyses regarding our dataset.

Figure 3.13: Day (left) and nighttime (right) example images from our CVL Dataset.
Bigger red bounding boxes denoting oncoming vehicles, small bounding box in nighttime
image denotes a bicycle and gives an example of how little visible information was
recorded.

3.2.1 Example Footage

In this section, we want to highlight the challenging nature of the CVL Dataset. Due to
the predominantly dark environments in which our material was recorded, most of the
time the only light sources in the scene are the headlights of the cars. This fact results in
reflections, lens flares and exposure complications such as light blooming or motion blur.

In Figures 3.14 and 3.15 we can see examples of how dark our footage can get. Figure
3.14 shows the footage of a single car driving with turned on high beams on a non-urban
road. Even with the brightest light available in the test car it is hard to see the pedestrian
next to the road, when they are more than 70m away from the vehicle. This might not
be a scenario one encounters every day, but it might still happen on a few occasions (e.g.
it could be a person with car trouble standing outside their vehicle).

Figure 3.14: Pedestrian on side of the road at distances of about 70m, 35m and 10m
(from left to right).

28

3.2. CVL Dataset

Figure 3.15 shows a simple scene of oncoming traffic on a non-urban road. We can see
that the upper two thirds of the scene are completely dark, and also the road fades into
black just behind the oncoming car.

Figure 3.15: Oncoming traffic on non-urban road, lit only by headlights.

Figure 3.16 shows the large amount of motion blur occurring in some of the recorded
scenes. This motion blur effect results out of the trade-off between trying to capture as
much information as possible by choosing a long exposure time, against trying to get fast
update times and sharp images with clear object boundaries. This trade-off has to be
made at night with limited amounts of light in the scene, whereas during daytime the
sun offers an abundance of light, enabling short exposure times and sharp images.

Figure 3.16: Motion blur on traffic signs.

Another problem we encounter in our dataset is lens flare and over-exposed headlights.
These are caused by long exposure times and wide open apertures and can be seen in
Figure 3.17 and 3.18. The images show another effect of the trade-off between wanting

29

3. Datasets

to capture as much light as possible and the desire of a sharp image. Figure 3.18 is a
pronounced example of this effect, where the combination of over-exposure and lens flares
washes out almost the entire field of view. In Figure 3.19 we see an example of lens flares
on the brake lights of the preceding car on the right, and motion blur on the traffic sign
as well as the oncoming car.

Figure 3.17: Over-exposure (white reflection on road) and lens flares (star-shaped streaks
around headlights, red dots on grass patch).

Figure 3.18: Over-exposure and lens flare of oncoming headlight affecting almost the
entire field of view.

30

3.2. CVL Dataset

Figure 3.19: Examples of motion blur (left car, traffic sign) and lens flare (right car).

3.2.2 Statistics

This section focuses on the statistical analysis of the CVL Dataset. In Figure 3.20 we
can see the partition of our data into day and night scenes, about 20% of our image data
has been taken during the day, and the rest was taken at night. The color codes of dark
blue for nighttime, and light blue for daytime footage will be continued throughout all of
the figures in this section.

The list of object classes annotated in the CVL dataset is as follows:

• bicycle

• car

• motorcycle

• pedestrian

• traffic light

• traffic sign

• truck

Figure 3.21 shows which object class has the largest presence in our dataset (cars at
68.1%) and which class has the lowest presence (bicycle at 0.5%). This information does
not come as a surprise, as most of the data was taken on country roads at nighttime in

31

3. Datasets

239 tracks

81 tracks

Day Night

18.600 images

3.820 images

44 videos

5 videos

1

Figure 3.20: Day/Night partition of the CVL Dataset

Austria, where not a lot of bicycles are to be expected. The relatively large presence of
pedestrian data can be explained by the fact, that these come from a test setup, where
we recorded a number of scenes with a pedestrian at the side of the road under different
lighting conditions.

Another interesting observation can be made about the distribution of bounding box area
sizes available in the CVL dataset (Figure 3.22). About a fifth (20.1%) of the bounding
box areas are under the size of 400 pixels (denoted as 202 in the figure caption, as it
is easier to imagine a box of 20x20 pixels to represent all bounding boxes of up to 400
pixels) and more than half (50.3%) of the annotated areas are under the size of 1600
pixels (or 402). This can be attributed to the fact that Austria’s country roads usually
see rather low traffic at night and visibility typically reaches quite far, hence a lot of
small objects can be observed in the distance. Additionally, most of the larger bounding
boxes in our dataset belong to oncoming traffic which quickly passes our field of view
and is therefore only visible for a couple of frames.

The fact that most of the bounding boxes in our dataset belong to oncoming traffic can
also be observed in Figure 3.23, where we can see that more than half (57.5% or 184)
of our total of 320 object tracks are shorter than 50 frames or 1.66s, and 80% of the
object tracks are shorter than 150 frames or 5s. The number of times we observed and
annotated preceding traffic for longer than 501 frames or 16.66s is seven.

32

3.3. Comparison

0

7500

15000

22500

30000

ca
r

tra
ffi
c_
sig

n

pe
de

st
ria

n

tra
ffi
c_
lig
ht

m
ot
or
cy
cle

tru
ck

bi
cy
cle

Figure 3.21: Histogram of number of bounding boxes per class available in the CVL
Dataset. Dark blue refers to nighttime footage, light blue is daytime footage

0

2500

5000

7500

10000

≤ 20² ≤ 40² ≤ 80² ≤ 160² ≤ 320² ≤ 640² ≤ 1280²

Figure 3.22: Histogram of different bounding box sizes observed in the CVL Dataset.
Dark blue refers to nighttime footage, light blue is daytime footage

3.3 Comparison

Table 3.1 gives an overview of various datasets (both road scenes and general scenes) we
have reviewed. Several datasets (e.g. VOT2017 [KML+16], VIPER [RHK17], D2-City
[CLL+19], BDD100K [YXC+18]) have the temporal density needed for our application.
While temporally dense nighttime scenes are included in some of them ([CLS+19],
[CLL+19]), we noticed a shortage of footage from non-urban roads. In the case of
synthetically generated videos, such as in ([RHK17]), we observed a lack of natural
lighting variability (high dynamic contrast, glaring, halos or reflections).

33

3. Datasets

0

50

100

150

200

0
to

 5
0

fra
m

es

51
 to

 1
00

 fr
am

es

10
1

to
 1

50
 fr

am
es

15
1

to
 2

00
 fr

am
es

20
1

to
 2

50
 fr

am
es

25
1

to
 3

00
 fr

am
es

30
1

to
 3

50
 fr

am
es

35
1

to
 4

00
 fr

am
es

40
1

to
 4

50
 fr

am
es

45
1

to
 5

00
 fr

am
es

lo
ng

er
 th

an
 5

01
 fr

am
es

Figure 3.23: Histogram of different track lengths in the CVL Dataset. Dark blue refers
to nighttime footage, light blue is daytime footage

We can tell from this investigation that currently there is no publicly available ground
truth dataset which fully meets our requirements. This served as motivation for us to
annotate the CVL dataset and to develop an annotation tools that support efficient
ground truth generation for self-recorded nighttime traffic scenes.

34

3.3. Comparison

Dataset Non-Urban Night ≥ 20 FPS Real
Argoverse [CLS+19] 3 3 3

BDD100k [YXC+18] 3 3 3

CamVid [BFC09] 3

CityScapes [COR+16] 3

D2-City [CLL+19] 3 3 3

KITTI [GLSU13] 3 3 3

Mapillary [NORBK17] 3 3 3

SYNTHIA [RSM+16] 3 3

SYSU & CUHK [CHX+17] 3 3

VIPER [RVRK16] 3 3 3

VOT Challenge [KML+16] 3 3

CVL Dataset (Ours) 3 3 3 3

Table 3.1: Overview of datasets regarding selected requirements.

35

CHAPTER 4
CarVisionLight Annotation Tool

This Chapter will describe the tracker-assisted annotation tool CarVisionLight Annotator
(CVLA), which was developed in the context of this diploma thesis. While existing
annotation tools reviewed in Section 2.2, contain only linear interpolation as their
propagation method, the incorporation of state-of-the-art object tracking algorithms
between frames of human input data (keyframes) is a major component of our work.
In Chapter 5 we perform an extensive test of different state-of-the-art algorithms on
synthetic night scenes from the VIPER [RHK17] dataset to determine which tracking
algorithms to include in our program. The following subsections explore implementation
choices regarding platform, UI framework and deployment system, as well as user interface
choices and our tracker integration.

4.1 Implementation

One of our goals for implementing CVLA was to be able to easily include state-of-the-art
tracking algorithms as well as providing an easy solution for deploying and installing
the application. We first present a fully web-based application, running entirely in
the browser, and then focus on a locally installed python application. The following
paragraphs explain the motivation behind our final decision for a local installation based
on python1, PyQt2 and fbs3.

4.1.1 Browser Implementation

Our first approach for developing CVLA was fully based on browser technologies, with
JavaScript running directly in the annotator’s browser. One of the biggest advantages of

1https://www.python.org
2https://riverbankcomputing.com/software/pyqt/intro
3https://build-system.fman.io

37

4. CarVisionLight Annotation Tool

such web applications is the fact that the user only needs internet access and a browser,
with which they open a Uniform Resource Locator (URL) to be able to start working
with the tool. However, there are some limitations as to what kind of technologies
can be developed with a JavaScript app alone. In comparison with a local installation,
which has a broad range of possibilities regarding the types of technologies that could be
included, web applications are limited to browser standards and their official Application
Programming Interfaces (API), or alternatively they can rely on the computing power of
a centralised back-end server.

Our first build of CVLA, see Figure 4.1, is based entirely on a JavaScript implementation
and a simple optical flow tracker. It includs a first implementation of a timeline view,
which enables a quick overview of where user input is present (see Section 4.2 for
more information). A limiting factor of this implementation is the restricted access to
the Graphics Processing Unit (GPU) of the host machine. As of writing this thesis,
JavaScript applications in current browsers can only interact with the GPU using the
Web Graphics Library (WebGL) interface whose primary use case was designed for
3D graphics applications, such as video games. This limitation is particularly bad for
state-of-the-art tracking algorithms, as most of them (e.g. Siamese Region Proposal
Network (SiamRPN) [LYW+18], Accurate Tracking by Overlap Maximization (ATOM)
[DBKF19]) are based on deep neural networks, which make use of the GPU’s capabilities
for running parallelized code. The community has built solutions around these limitations
like tensorflow.js4, but it is necessary to convert each model to be compatible, and this
does not work for some state-of-the-art modules like Jiang et al.’s Precise ROI Pooling
[JLM+18] used in ATOM. Apart from running JavaScript code, modern browsers can
also run WebAssembly code. For this, programs and libraries, which are written in C or
similar lower level programming languages, and which have to be compiled to run on
the Central Processing Unit (CPU), can be compiled to WebAssembly to enable faster
runtimes in the browser. One such library is OpenCV5. It has a WebAssembly version
called OpenCV.js, however it also comes with a few limitations, namely a complete lack of
the tracking module, which includes trackers such as MedianFlow, Kernelized Correlation
Filters (KCF) ([KMM10] and [HCMB14]).

With these limitations in mind, we had the option of implementing a back-end server
with tracking capabilities or a locally installable program. Implementing the tracking
capabilities on a back-end server introduces a question of data transmission speeds and
lag. Since the video data needs to be processed on the back-end server, it somehow
needs to find its way on to that machine. This could be done either through just in time
delivery, where each frame gets sent to the server as it gets processed, introducing lag, or
through prior upload, introducing long wait times before being able to get started. Since
both options are not ideal for our use case, we finally decided to implement CVLA as a
locally installable program built with python.

4https://www.tensorflow.org/js
5https://opencv.org

38

4.1. Implementation

Figure 4.1: Screenshot of first browser implementation with rudimentary keyframe
visibility in green timeline.

4.1.2 Python Implementation

As we already mentioned in the previous section, after a first implementation using browser
technologies, we decided to switch to a locally installable solution using the programming
language python. This decision was based on the fact that a local installation can access
all of the compute power available, including GPU access, and that there is no network

39

4. CarVisionLight Annotation Tool

latency, which could slow down the annotation experience, involved. We chose python as
the programming language, as it is the most prominent language in Artificial Intelligence
(AI) and machine learning today. Libraries such as Tensorflow6, PyTorch7 and Keras8

are some of the most widely used tools in the community and they are all based on
python. Therefore, the incorporation of open source state-of-the-art AI models can be
ensured. For the UI framework, we chose the Qt9 platform, which is widely used in C++
as a cross platform interface. It has a python wrapper called PyQt10, which enabled us
to write our UI once. Also it works on all platforms (Windows, macOS, Linux). These
considerations were taken into account in order to minimize so called “friction points”
such as requiring future researchers and annotators to build from source or manage
dependency issues. We aimed at creating an easily deployable system, which can be
installed by simply downloading an executable file for the appropriate Operating System.
To make this possible, we work with a deployment helper script by Michael Herrmann
called fman build system11. It enables us to create portable executables with all of the
dependencies bundled in for Windows, macOS and Linux. Section 4.2 will explain some
of our UI decisions in detail.

Software Architecture

The software architecture of CVLA is based around the Singleton design pattern [Gam95]
for data storage and UI event notifications (see yellow boxes in Figure 4.2). With these
two Singleton objects, we can ensure that the data displayed in the different areas of the
application is always in the same state, and that adjustments made in one particular view
(e.g. moving a bounding box in the CanvasView) will automatically appear in the other
views of the application (e.g. appearance of the keyframe indicator in the TimelineView).

Besides UI information relevant for keeping different views up to date like frame number
and brightness values, our data Singleton also stores actual bounding box and tracking
data. Figure 4.2 shows a class diagram of how our concepts of FollowedObjects and
FrameMeta enable this data storage. Each individual object of interest is stored as a
FollowedObject, with a Unique Identifier (UID) and a list of FrameMeta objects for
every frame in the video. In the FrameMeta class we store informations such as its
frame number, the associated bounding box coordinates, the FrameStatus (Keyframe,
Untracked, Tracked, Lost), and whether the bounding box is visible in this frame. For
keyframes, we store the propagation algorithm chosen by the annotator.

Propagation algorithms have to implement an abstract tracker interface (see Listing 4.1),
which is designed so that CVLA’s tracking capabilities can easily be expanded and be
kept up to date with the state of the art.

6tensorflow.org
7pytorch.org
8keras.io
9qt.io

10riverbankcomputing.com/software/pyqt/
11build-system.fman.io

40

4.1. Implementation

Data
+instance : Data
+video: ImageSequence
+selectedObjects: list(int)
+followedObjects: list(FollowedObject)
+current_frame_num: int
+frame_count: int
+brightness: float
+timelineZoom: int
+boxes_for_current_frame: list(tuple)
+last_type: str
+last_tracker_cls: str

UINotifier
+videoLoaded
+xmlLoaded()
+brightnessChanged()
+frameChanged()
+playback_started()
+playback_stopped()
+objectAdded(uid: int)
+bboxChanged(uid: int, frame_num: int)
+keyframeChanged(uid: int, frame_num: int)
+hiddenChanged(uid: int, frame_num: int)
+trackerChanged(uid: int, frame_num: int, tracker: str)
+trackedFramesChanged(uid: int, frame_num: int)
+objectDeleted(uid: int)
+shortcutHide(uid: int)
+shortcutKeyframe(uid: int)
+objectTypeAdded(position: int, type: str)
+autoTrackingChanged(state: bool)
+selectionChanged()
+timelineZoomChanged()
+programClosing()

FollowedObject
-uid: int
-frames: dict(int => FrameMeta)
-keyframes: list(int)
+object_type: str
+color: tuple(int,int,int)
+next_untracked_frame: int
+getFrame(frame_num: int, propagate: bool)
+setCurrentKeyframeStatus(checked: bool)
+setCurrentHiddenStatus(checked: bool)
+nextKeyframe(frame_num: int)
+previousKeyframe(frame_num: int)
+addKeyframe(meta: FrameMeta)
+removeKeyframe(meta: FrameMeta)
+on_tracker_changed(uid: int, frame: int)

FrameMeta
-status: FrameStatus
-setter: str
+box: tuple(float, float, float, float)
+hidden: bool
+tracker: str
+frame_num: int
+set_status(value: FrameStatus, setter: str)
+get_status() : FrameStatus

FrameStatus
KEYFRAME
TRACKED
UNTRACKED
LOST

ObjectList

+on_selection_changes()
+on_frame_changed()
+on_object_changes()
+on_playback_changed()

CanvasView
-transform: QTransform
-id_canvas: Image
-main_canvas: Image
-brightness: float
-hover_id: int
+on_object_changes()
+on_frame_changed()

TimelineView

+on_timeline_zoom_changed()
+on_object_changes()
+on_frame_changed()

Toolbar

+set_auto_tracking(state: bool)
+set_brightness(value: float)

Visual Paradigm Online Diagrams Express Edition

Visual Paradigm Online Diagrams Express Edition

Figure 4.2: UML Class Diagram, showing the associations between Singleton classes
(yellow), data structure classes (blue) and UI classes (purple).

41

4. CarVisionLight Annotation Tool

1 class AbstractTracker:
2 # setup class variables
3 def __init__(self):
4 # tracker_implementation represents the class, that
5 # actually does the tracking
6 self.tracker_implementation = None
7
8 # most data propagation algorithms work in a
9 # consecutive order, last_frame_idx keeps track of the

10 # last frame that was last updated using the tracker,
11 # such that no unintentional jumps can happen (e.g.
12 # frame 5 -> 10 is not allowed, but 5 -> 6 is)
13 self.last_frame_idx = -1
14
15 # the start and end meta data including bounding boxes
16 self.start_meta = None
17 self.end_meta = None
18
19 # override this method if the implemented tracker makes
20 # use of an end state keyframe (e.g. linear interpolation)
21 def has_endstate(self):
22 return False
23
24 # initialize tracker with the start and end metadata
25 def init_tracker(self, start, end=None):
26 self.last_frame_idx = start.frame_num
27 self.start_meta = start
28 self.end_meta = end
29
30 # to be implemented by subclass
31 def update(self, meta):
32 pass
33
34 def is_initialized(self):
35 return self.tracker_implementation is not None
36
37 # to be implemented by subclass, this is needed for creating new
38 # keyframes, which pre-select (copy) the tracker from the previous
39 # keyframe
40 def copy(self):
41 pass

Listing 4.1: Tracker Interface

4.2 User Interface

Our tool aims to reduce user interaction by minimizing mouse clicks and incorporating
tracking capabilities while also giving a clear overview of the annotation data in a timeline
view. The following paragraphs explain the main functionalities and visualizations, which
were chosen to aid in annotation speed and visual interpretation of the annotation data.
A quick recap of our UI can be seen in Figure 4.3, where a screenshot of the main window

42

4.2. User Interface

of CVLA shows the four major sections of the program:

• CanvasView: This area always shows the current frame of the video.

• TimelineView: In this area, time goes from left to right. Keyframes are shown as
white circles, and the colored horizontal bars describe objects and their respective
visible periods. This view’s vertical scrollbar is linked with the ObjectList and
the colors of the objects are shared between this view, the ObjectList and the
CanvasView for reidentification purposes.

• ObjectList: Here, we show a list of all the annotated objects in the scene. A
drop-down box on the left lets annotators choose or type what kind of object they
are annotating. Next to it, the checkboxes show the visible state of the object at the
current frame, and whether it is a keyframe for the given object. The drop-down
menu on the right lets annotators decide which propagation algorithm they want
to choose for the frames between the previous and next keyframe.

• Toolbar: In the toolbar, annotators can adjust the gamma correction of the video
in order to increase visibility on dark footage, and they can enable automatic data
propagation in a background thread.

Figure 4.3: Screenshot of main window of the CVLA tool.

4.2.1 Information at a Glance

One of our focus points in designing the UI for CVLA was having the ability to have a
quick understanding of the annotation data with regards to where keyframes were added,

43

4. CarVisionLight Annotation Tool

as well as seeing at what point in time objects enter and leave the scene. Regarding
keyframe information, we used the concept of a timeline with keyframes shown as white
dots, like Shen proposed in his work for the video annotation tool BeaverDam [She16].
We also added the ability to see whether an object is hidden at a given moment in time
without jumping to that frame using colored visibility bars. Whenever there is a colored
bar in the timeline, it denotes that the corresponding object is annotated as visible, while
a dark gray background refers to them being hidden.

This approach in combination with the ObjectList on the left makes it possible for
annotators to quickly tell which kinds of objects are present in the scene, and by scrolling
down they get an overview of the number of objects visible. Figure 4.3 shows the
TimelineView of all the objects present in one of our videos. One can see that the topmost
object has long periods without white dots, which means that the chosen tracking
algorithm (MedianFlow [KMM10]) was accurate, and the annotator did not see the need
to change the position or size of the bounding box. Another observation we can make, is
that in this video most objects are visible at the beginning or at the end of the video,
while the topmost object is visble almost throughout the duration of the video.

4.2.2 Minimizing Clicks

In his thesis for the BeaverDam tool [She16], Shen optimized the interface with the goal
of minimizing the amount of clicks necessary when compared with VATIC [VR11]. We
took his recommondations and implemented them into CVLA. When annotators want to
draw a bounding box around an object, there is no need to press a dedicated “create
object” button as in VATIC or CVAT. All an annotator needs to do is click and drag a
bounding box around the object they want to annotate. This can speed up the annotation
process significantly, especially when there are many objects in the scene. Additionally,
CVLA does not require the user to choose the object class of the currently annotated
object after every bounding box was drawn. Instead it pre-selects the class to be the
same as the previous annotation. This class selection process was also proposed by Shen
and it encourages users to first select all the objects of the same type before changing to
a different type, which has proven to be a good way to reduce clicks [She16]. In CVLA,
the same logic is applied for selecting a data propagation technique for new keyframes.
The previously chosen propagation method is pre-selected, but it can be overwritten by
user choice anytime.

4.2.3 Object Tracker Inclusion

As mentioned above, the inclusion of state-of-the-art trackers was a major component
of our work with CVLA. In this section, we talk about the UI choices we made to
let annotators easily select trackers and see the current tracking status of frames at a
glance. As mentioned in the section above, we pre-selected a propagation algorithm upon
annotation of a new object in the scene. Annotators then have two UI elements, which
let them change this pre-selected algorithm to another one. One is the drop-down menu

44

4.2. User Interface

Figure 4.4: Object Type (l) and Tracker (r) selection dropdown menus. Hidden and
Keyframe checkboxes and keyframe navigation buttons.

in the ObjectList section to the left of the timeline (Figure 4.4 right), and the other can
be seen in Figure 4.5. The name of the selected tracker is printed between keyframes,
and when clicked on also triggers a drop-down menu.

At the top of Figure 4.5 our tracker-bar UI element can be seen. This bar represents a
way to show the tracked status of an object at a given frame, without having to go to that
frame to check the tracker status. For this visualization we employed a technique used in
video editing software like Adobe Premiere12, which shows a red or green bar to denote
whether certain effects have already been rendered or not. Instead of showing the status
of rendering effects, we use the tracker-bar element on top of each object track to indicate
whether the bounding box has already been propagated by the selected algorithm or not.

Data propagation can be done in the background by enabling “Automatic Tracking” (top
right of Figure 4.3), or when going through the video on a frame-by-frame basis.

4.2.4 Visibility Enhancement

Due to our focus on night scenes in the CVL project, the main kinds of images we are
concerned with are predominantly dark. In some situations, this makes it hard to see the
objects of interest clearly, which is why we included a gamma (γ) correction slider as a
way to improve the visibility in dark areas of the image. In image processing, gamma

12www.adobe.com/at/products/premiere.html

45

4. CarVisionLight Annotation Tool

Figure 4.5: Tracker status bar on top: Green indicates tracked frames, red indicates
untracked frames. Tracker selection drop-down by clicking on Keyframe dot.

correction is used to encode non-linear image intensities in a linear space to match the
non-linearity of how humans perceive light intensities – our eyes notice slight differences in
dark areas much more than in we do in bright areas [Han95]. A typical gamma correction
function can be seen in equation 4.1 and a plot of it is seen in Figure 4.6.

Vout = V γ
in (4.1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.3 1 3

Vin

Vout

Figure 4.6: Plot of gamma correction curves at γ = 0.3, 1, 3 of gamma.

A nice feature of this gamma correction function, which we can use to our advantage,

46

4.2. User Interface

is that with gamma values smaller than 1, dark intensity values get a much stronger
brightness increase than large or bright intensity values. This makes the gamma slider,
which can be seen in Figure 4.7, an easy way to brighten dark parts of the video in order
to improve visibility on our typically dark footage.

Figure 4.7: Gamma slider and automatic tracking checkbox.

47

CHAPTER 5
Evaluation

In this Chapter, we examine the results of our tracker evaluation and the preliminary
user study we conducted. For our tracker evaluation we focus on three main metrics
(overlap, reset rate and mean time) to decide which algorithms to incorporate into our
annotation tool. In the preliminary user study we focused on relative improvements
between CVLA and Scalabel [YXC+18] regarding annotation time and accuracy.

5.1 Tracker Evaluation

In this section, we take a look at a number of state-of-the-art bounding box tracking
algorithms and analyze their respective performances with regards to nighttime road
scenes in non-urban environments. To evaluate these algorithms, we need an adequate
dataset, representative of the scenes we might encounter in real life. Unfortunately, as
we have explained in Section 3.3, we were not able to find a public dataset that meets
all of the requirements we identified for our application in Section 3. Out of all of the
considered datasets, VIPER [RHK17], appears as the most promising to us. Although
this dataset does not feature real-world imagery, it does meet the rest of the requirements
regarding scene environment and temporal density. Due to the fact that the data is
computer-generated, we expect a domain shift between the synthetic and real-world
footage. However, Richter et al. [RVRK16] have shown that that shift has only minor
negative effects on performance values, when a small amount of real-world data is added
to the dataset. Additionally, computer-generated ground truth data, like the images in
the VIPER dataset, have perfect accuracy and contain no human bias, which is another
reason why they are suitable as an evaluation basis.

The following subsections describe our considerations regarding metrics, and scene choice.
First, we give some insight into the kinds of scenes we chose from the VIPER dataset
to test against. Secondly we address the weakly correlated performance metrics overlap

49

5. Evaluation

and robustness described by Kristan et al. [KML+16] and Čehovin et al. [ČLK16] (see
Section 5.1.3).

5.1.1 Clip Selection

As mentioned in Section 3.1.3, the VIPER dataset consists of 254,064 fully annotated
images from over 184 virtual kilometers and five different environmental conditions. The
CVL Project is mainly concerned with night footage, so we chose a subset of 28,348
images from 26 different recordings of the dataset. From the 30 available annotation
classes, the three most common types of vehicles (car, van, truck) were chosen as most
representative for our use case. To qualify for our evaluations, the instances of these
vehicle annotations had to meet the following criteria:

• At least 10 consecutive frames
Object appearances shorter than 10 frames long were not interesting for our use
case as we wanted to find a suitable tracker for a semi-automatic annotation process
with user input spaced further apart than half a second of video time.

• Bounding box size of at least 30 pixels and minimum bounding box side length of
3 pixels
From our initial informal observations, we found that boxes smaller than 50 pixels
in area or with side lengths shorter than 3 pixels usually did not belong to cars far
in the distance but rather tiny parts of occluded cars, which might still be visible,
for example, through leaves of a bush (see Figure 5.1).

• Bounding box size difference between consecutive frames of at most 20%
Different to other tracking evaluation challenges such as VOT [KML+16], we had a
semi-automatic annotation process in mind, where a human annotator is always in
the loop. As such, we chose a maximum area difference of 20% between consecutive
frames to minimize scenes with abrupt occlusions. The aim was to analyze scenes
from VIPER, where a majority of the objects are visible the whole time. Our
concern was not on automatic re-identification of shortly occluded boxes, as we
want this to be done by a human annotator.

5.1.2 Tracker Selection

To assess which trackers to include in our annotation tool, we performed a test of five
different state-of-the-art trackers regarding either their qualitative metrics or their speed.
The trackers we chose to evaluate are:

• ATOM [DBKF19]

• SiamRPN [LYW+18]

50

5.1. Tracker Evaluation

Figure 5.1: Example of a bounding box with area of less than 50 pixels shown in red.
Upper right corner zooms in on the area, and highlights the car parts visible through the
bush leaves in light blue.

• MedianFlow [KMM10]

• KCF [HCMB14]

• CSRT [LVČZ+17]

The first two were chosen because of their good results in the VOT challenge [KML+16],
whereas the last three were chosen for their fast update times.

ATOM

Danelljan et al. [DBKF19] have published the source code for their tracking algorithm
ATOM. They propose a new approach for finding accurate bounding box positioning
and sizing, going beyond a simple multi-scale bounding box approach and towards a
higher-level knowledge based technique. The proposed algorithm consists of a target
estimation and a classification component. The high-level knowledge is integrated into
the target estimation component via offline learning, where they train the component
to predict the overlap between the target object and an estimated bounding box. The
classification component is trained and updated online to achieve good re-identification
in the presence of distractors.

SiamRPN

Bounding boxes highly depend on the pose and viewpoint of the object, which often
cannot be inferred by just a single input patch, but requires prior knowledge of the

51

5. Evaluation

object in question. To get accurate estimations of bounding boxes in concurrent frames,
Li et al. [LYW+18] make use of a Siamese deep neural network called SiamRPN with
a bounding box regression module. Li et al. have integrated prior knowledge to this
regression module through heavy offline learning of bounding boxes.

MedianFlow

Kalal et al. [KMM10] have developed the MedianFlow tracking algorithm. It automat-
ically tracks objects both forwards and backwards in time. Through this mechanism,
it is able to calculate a Forward-Backward error, which helps in selecting a reliable
trajectory, as well as successfully detecting tracking failures. First empirical tests that we
conducted have shown, that this tracker works well for rigid objects whose appearance
stays relatively stable and when the motion is fairly predictable. Additionally, thanks to
its’ forwards-backwards tracking, MedianFlow detects occlusions of objects well.

KCF

Henriques et al.’s [HCMB14] tracker KCF is a discriminative tracking-by-detection based
algorithm. These types of algorithms work by learning a classifier, which discriminates
between the object of interest and its surroundings by feeding it multiple patches of
environment data and constantly updating the model for the object of interest, when
new frames are added. To improve these algorithms, one could feed many different
environment patches to the classifier, which will learn that these are negative examples.
However, this can have a major impact on calculation speed. Henriques et al. have
discovered a way to increase the number of negative patches, with no significant speed
cost added to the bounding box regression by transforming the data into the Fourier
domain (going from O(n3) to O(n logn), and therefore being able to achieve frame rates
of more than 100fps. See [HCMB14] for further details.

CSRT

Lukežič et al. developed the Channel and Spatial Reliability Tracker (CSRT)[LVČZ+17],
which builds on the idea of Discriminative Correlation Filters (dcfs) first introduced by
Bolme et al. [BBDL10] and extends them with channel and spatial reliability maps. The
spatial reliability map is used to restrict the correlation filter to the parts suitable for
tracking. This is achieved by taking the initial bounding box and using the dominant
colors within to create a foreground/background color model. Channel reliability weights
are a way of ensuring that each feature channel gets an appropriately weighted filter
response. With Histogram of Oriented Gradients [DT05] and color names [VDWSVL09],
CSRT uses two well-known feature vectors.

5.1.3 Performance Metrics

Čehovin et al. [KML+16] and Kristan et al. [ČLK16] have researched various methods
for comparing and evaluating trackers and concluded that a two-score system using two

52

5.1. Tracker Evaluation

weakly correlated measures such as accuracy and robustness is a better choice than
combining these values into a hybrid measure. As described in their respective works,
the two weakly correlated measures we use are mean overlap (eq. 5.1) and reset rate (eq.
5.3). Whereas the regular overlap measure is described in equation 5.2. RGt describes the
ground truth region at time t, and RTt is the tracker’s proposed region. Overlap is also
known as Intersection over Union (IoU) as it describes the ratio between the intersection
of the ground truth and proposed region with the union of both of these regions. Figure
5.2 shows a visual explanation of this. The IoU measure (φt) is described in equation 5.2,
where RGt denotes the ground truth region at time t, and RTt is the tracker’s proposed
region. Figure 5.2 shows a visual explanation of this.

φ̂ =
∑
t

φt
N

(5.1)

φt = RGt ∩RTt
RGt ∪RTt

(5.2)

Figure 5.2: Visual explanation of IoU measure. Leftmost image shows ground truth (RGt ,
green) and tracker’s proposed region (RTt , red), middle image shows region intersection
(RGt ∩RTt , magenta), and rightmost image shows union (RGt ∪RTt , blue).

Reset rate (r̂) describes the amount of frames where the IoU went below a threshold
(τ) and had to be reset, divided by the total number of frames N . See figure 5.3 for
an example of an IoU / time graph, with two resets. The reset threshold we chose was
51%, and unlike [KML+16] who disregard measurements of the first five frames after

53

5. Evaluation

re-initialisation, we take all frames except for initialisation frames into account. This
decision was made because we are focusing on a semi-automatic approach with a human
in the loop and we noticed that the frames immediately after tracker initialisation tend to
be very important indicators of subsequent tracker success. A human in the loop would
notice bad tracking capabilities after he or she reset the bounding box and by utilizing
every frame except initialisation frames, we account for this as well.

A third important metric is mean execution time as interactivity is important when
working with a human in the loop. Unless a tracker produces 100% accurate results
all the time, it is paramount that the annotator does not have to wait too long for the
tracker results to show up in order to be able to make necessary changes in a timely
fashion.

r̂ = ||{t|φt < τ}Nt=1||
N

(5.3)

time (frames)

threshold

Io
U

Figure 5.3: Plot of IoU over time, with two tracker resets – where IoU falls below threshold
– shown in red.

5.1.4 Evaluation Results

Our evaluations on night scenes from the VIPER dataset suggest that current state-of-
the-art trackers (e.g., ATOM [DBKF19],SiamRPN [LYW+18]) are not necessarily more
suitable for our application than the simpler MedianFlow [KMM10] approach. Table 5.1
shows the results of this evaluation. ATOM [DBKF19] was the best performing tracker
with a mean IoU of 72.6% and a reset rate of 7.3%. However, MedianFlow [KMM10]
performed nearly as well, with 71.7% mean IoU and 7.2% reset rate while being much
faster at 15.4ms compared to 88.2ms.

When further analysing the evaluation results, we found that MedianFlow provides a
more predictable and stable result as long as the appearance of the object does not
change too drastically, which is generally the case for traffic participants far away from

54

5.2. Preliminary User Study

Tracker Mean IoU Reset rate Mean Time
KCF [HCMB14] 54.8% 23.5% 17.1ms

SiamRPN [LYW+18] 59.4% 20.5% 364ms

CSRT [LVČZ+17] 70.8% 10.4% 59.5ms

MedianFlow [KMM10] 71.7% 7.2% 15.4ms
ATOM [DBKF19] 72.6% 7.3% 88.2ms

Table 5.1: Tracker Evaluation results, best performing values per column shown in bold.

the camera (see Figure 5.4). ATOM performs better for scenes where appearance changes
are more pronounced (see Figure 5.5).

Since the objects in the CVL Project are mostly small and far away (see Section 3.2.2)
and the speed performance is of about 15ms, we have chosen to include MedianFlow as
the standard tracker in our annotation tool CVLA (see Chapter 4).

Figure 5.4: Scene (top) with oncoming traffic. ATOM (bottom right) has problems when
car is still small and only headlights are visible. MedianFlow (bottom left) delivers more
stable tracking results in this situation.

5.2 Preliminary User Study
To compare CVLA to a similar video annotation tool, we performed a preliminary user
study with two annotators, annotating 12 videos with 3349 frames and 150 object tracks.

55

5. Evaluation

Figure 5.5: Scene (top) with preceding traffic. MedianFlow (bottom left) can follow the
car for about 100 frames before re-initialisation, whereas ATOM does not lose track until
the very last moments, when the car’s appearance changes drastically due to turning.

We again used the VIPER dataset as our ground truth data and chose nighttime scenes
on non-urban roads. As a comparison tool, we picked Scalabel [YXC+18] as it was
successfully used to annotate over 100,000 images in the BDD100k dataset. We focused
on comparing the annotation process with regards to time, keystrokes, mouse movement,
clicks and annotation accuracy; the latter is represented by mean IoU. In order to ensure
a fair comparison of these values, we had to make sure that the annotators were focusing
on the same 150 object tracks regardless of the tool used. This was accomplished by
displaying a visual anchor (ground truth downsized to 40% of actual size) over the objects
of interest (see Figure 5.6). We expect this overlay to introduce a bias towards more
accurate annotations and higher IoU values. However, as the overlay was shown in both
annotation tools, we do not expect this bias to affect the relative differences in comparing
the annotation accuracy of both tools.

Since we focused on relative improvements between tools, we made sure that the individual
annotators worked on the same test sequences in both tools (i.e. annotator A did sequence
1-4 and annotator B did sequence 5-12 in both tools). To track annotation times and
clicks, we used a mouse tracking application called “Mousotron” 1, which enabled us to
keep score of the number of clicks, keystrokes, travelled mouse distance, and scroll wheel
invocations.

1http://www.blacksunsoftware.com/mousotron.html

56

5.2. Preliminary User Study

Figure 5.6: Visual anchor in red, user annotation in yellow.

5.2.1 Results

Our evaluation of the annotation time and accuracy suggests that using CVLA for video
annotation results in faster annotation speeds as well as more accurate data. Table 5.2
contains a summary of our evaluation. The total time needed to annotate the 3349
chosen frames in two different tools divided between two annotators was 18 hours and 41
minutes. 6 hours and 55 minutes were spent in CVLA, and 11 hours and 46 minutes in
Scalabel, thus resulting in a speed increase of about 1.69. Additionally, using our tool,
the mean IoU increased by about 1.06. Mouse (click, scroll) and keyboard invocations
could be significantly reduced (2.28), whereas the distance the mouse moved over the
screen was only decreased by a factor of 1.04.

Time IoU Invocations Dist.
Scalabel [YXC+18] 11h 46m 78.74% 63965 1.27km
CVL [Ours] 6h 55m 83.46% 28001 1.22km
Improvement

factor 1.69 1.06 2.28 1.04

Table 5.2: Preliminary User Study results. CVLA performs better in all measured
categories.

Figures 5.7, 5.8 and 5.9 show the measured values per video sequence and tool, while

57

5. Evaluation

also indicating which values refer to which annotator. It can be seen that there are no
inherent differences between the two annotators, and that the improvements rather vary
depending on the underlying video data. In Figure 5.7 we show the average annotation
time per bounding box, where we count each bounding box per frame separately (e.g.
3 objects of interest each visible on 5 frames result in 15 bounding boxes). This graph
shows that CVLA had a shorter time per box on all but one video of our test set with
speedup factors ranging from 0.9 to 2.6 (video 7 and 12 respectively).

Mouse and Keyboard invocations can be seen in Figure 5.7. We observed that invocations
varied a bit less when using CVLA compared to Scalabel (relative standard deviation of
31% vs. 43%), while CVLA always needed far fewer invocations (improvement factor
between 1.3 and 3.9). This consistent improvement regarding mouse and keyboard invo-
cations can most likely be explained by the fact that we keep zoom and pan information
across frames, while Scalabel loses this information on frame changes. It resets the zoom
and shows the whole frame resized to the dimensions of the view port.

0,00s

2,00s

4,00s

6,00s

8,00s

10,00s

12,00s

1 2 3 4 5 6 7 8 9 10 11 12

Scalabel CVLAnnotator BAnnotator A

Figure 5.7: Annotation time per bounding box per video and annotation tool.

Mean IoU per video is shown in Figure 5.9. Here we see more consistent improvements,
ranging from 1.02 to 1.10. The main contribution of this consistent IoU increase can be
attributed to bounding boxes with relatively small areas (up to 400 pixels) as shown
in Figure 5.10, where the mean IoU is 72.16% in CVLA vs. 57.68% in Scalabel. There
are two likely explanations for this rather large increase for small bounding boxes: (i)
unlimited zoom in CVLA and (ii) fairly consistent visual appearance for smaller objects,
which means that they are easier to track. Figure 5.11 shows a box plot of the recorded
IoU values in our preliminary study, and we can see that mean values and variance for
most bounding box sizes are comparable, but for the smallest areas (less than 400 pixels)

58

5.2. Preliminary User Study

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12

Scalabel CVLAnnotator BAnnotator A

Figure 5.8: Mouse and keyboard invocation count (summed up) per video and annotation
tool

we can see a clear improvement in mean IoU (64% to 73%) with less variance or more
consistency (standard deviation 14.5% to 9.9%). Another interesting observation we can
make from Figure 5.11, is that the number of annotated bounding boxes per tool does
vary a little bit even though we showed the visual anchor seen in Figure 5.6 as a helper
to identify all of the AOI. Luckily this difference is less than 3% 7368 (Scalabel) vs. 7580
(CVLA), and it does not change the broader meaning of the results.

59

5. Evaluation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12

Scalabel CVLAnnotator BAnnotator A

Figure 5.9: Mean IoU value comparison per video and annotation tool.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

≤ 400px ≤ 1600px ≤ 6400px ≤ 25600px ≤ 102400px ≤ 409600px

Scalabel CVL

Figure 5.10: Mean IoU value comparison grouped by maximum pixel area.

60

5.2. Preliminary User Study

Figure 5.11: IoU values as box plot graph from Scalabel (top) and CVLA (bottom).

61

CHAPTER 6
Conclusion and Future Work

In this chapter, we first give a short summary of the individual chapters of the diploma
thesis. We provide some conclusions on our findings from the tracker evaluation and
our preliminary user study. Finally, we give an outlook onto possible future topics of
research.

6.1 Summary

Chapter 1: In the first Chapter we gave a short introduction and problem statement
to explain the motivation behind our need for creating a nighttime road-scene dataset
and the need to create our own annotation tool CVLA to speed up the dataset creation
process.

Chapter 2: In this Chapter we documented our literature review on the current state
of the art in the scientific community regarding semi-automatic annotation algorithms
ranging from semantic segmentation to bounding box trackers and took a look at publicly
available video annotation tools. Regarding the annotation tools, we focused on platform
choice and data propagation capabilities.

Chapter 3: This Chapter documents our literature review of publicly available datasets,
looking at their respective sizes, scene variety and temporal density. We also shared
details of our own CVL dataset with statistics about bounding box sizes and class
distributions.

Chapter 4: Here we talk about the implementation of our Annotation Tool and the UI
decisions we made to optimize the work flow of annotating videos. We provide some details
about the first version of our tool, which was based on web technologies, and describe why
we pivoted to a locally installable program based on the python programming language.
Furthermore, features like our tracker inclusion and timeline overview are presented.

63

6. Conclusion and Future Work

Chapter 5: This Chapter talks about our tracker evaluation, in which we tested state-of-
the-art tracking algorithms on synthetic nighttime road scenes to assess their applicability
for our annotation tool. Additionally we share the promising results of a preliminary user
study we conducted to measure annotation times and speed using our tool compared to
Scalabel [YXC+18].

6.2 Synopsis of our Contributions
We introduced a semi-automatic video annotation tool (CVLA) with a focus on nighttime
traffic scenes. Our tool includes state-of-the-art tracking algorithms, which were selected
based on an evaluation analysis of the VIPER dataset [RHK17]. Furthermore, it features
a user interface that focuses on minimizing the number of clicks and keystrokes needed
to annotate video data. We have conducted a preliminary user study based on two users,
which has shown promising results regarding the speed and accuracy increase of CVLA –
using tracking algorithms – compared to an existing tool (Scalabel [YXC+18]) – using
linear interpolation as its data propagation mechanism. On average, the annotations
created with our tool have been 1.06 times more accurate in terms of mean IoU value,
while taking 1.69 times less time to create. The average number of mouse and keyboard
invocations was reduced by a factor of 2.28.

6.3 Future Work
To confirm the results from our preliminary user study, a more thorough study with a
larger group of representative annotators is a possible next step. We plan to perform
a larger user study with at least 10 participants with varying levels of experience in
annotating videos. Another interesting question, which we did not cover in our preliminary
study, is the discoverability of AOI in the scene. In our preliminary study we displayed
an overlay to help the study subjects identify the objects in need of annotation. It
would be interesting to study whether our gamma correction or other visibility enhancing
techniques like using a wavelet transform [ŁBHA13] or illumination map estimation
[GLL16] would help with identifying AOI.

64

List of Figures

2.1 Example of pixel-perfect semantic segmentation. Background, floor and
human in blue, red and green, respectively. Original Photo by Robert Bye
(unsplash user @robertbye) . 6

2.2 Example of nearly perfect 2D to 3D conversion using Brosch’s extended CVF
technique. Original image in Brosch’s PhD Thesis [Bro16] 7

2.3 Left: a test image from our nighttime road scenes. Right: the filtered
foreground region, showing that CVF in this case does not deliver meaningful
results. 7

2.4 (left) correct mask of oncoming traffic, (right) falsely propagated mask of
oncoming traffic by OSVOS network. 9

2.5 Different styles of bounding boxes: (magenta) best-fit 3D bounding box,
with minimal background pixels, (blue) 2D bounding box covering parts of
object, (red) 2d bounding box covering complete object, but also some area
of background pixels. 10

2.6 VATIC User Interface. Original image in [VPR13] 11
2.7 ViTBAT User Interface. Original image in [VR11] 12
2.8 BeaverDam User Interface, with keyframe timeline at bottom. Original image

in [She16] . 13
2.9 Screenshot of Scalabel User Interface. 15
2.10 Screenshot of CVAT User Interface . 15

3.1 Curse of Dataset Annotation, correlation plot between annotation time and
number of images. Original image in [XKSG16] 20

3.2 Overview of LIDAR and Camera data with 3D bounding boxes. Original
image in [CLS+19] . 21

3.3 Sample of 3D bounding boxes in KITTI dataset. Original image in [GLU12]. 21
3.4 Example of fully segmented ground truth in BDD100k dataset. Original image

in [YXC+18]. 22
3.5 Example of fully segmented ground truth in CamVid dataset. Original image

in [BFC09]. 23
3.6 Example scenes from D2-City dataset. Original image in [CLL+19]. . . . 23
3.7 Example of four different seasons in SYNTHIA virtual world. Original image

in [RSM+16] . 24

65

3.8 On the left side of this image we see the semantically segmentation mask
overlayed and gradually faded out to one of the nighttime scenes from the
VIPER dataset on the right. 25

3.9 Example of the fine (l) and coarse (r) segmentation within the Cityscapes
dataset. Original image in [COR+16] . 25

3.10 Example of diverse weather and lighting conditions with corresponding anno-
tation data in Mapillary dataset. Original image in [NORBK17] 26

3.11 Example image from the CUHK dataset showing an unmarked car as well as
bounding boxes which are too big . 27

3.12 Example scene from the VOT Challenge Dataset 27
3.13 Day (left) and nighttime (right) example images from our CVL Dataset.

Bigger red bounding boxes denoting oncoming vehicles, small bounding box
in nighttime image denotes a bicycle and gives an example of how little visible
information was recorded. 28

3.14 Pedestrian on side of the road at distances of about 70m, 35m and 10m (from
left to right). 28

3.15 Oncoming traffic on non-urban road, lit only by headlights. 29
3.16 Motion blur on traffic signs. 29
3.17 Over-exposure (white reflection on road) and lens flares (star-shaped streaks

around headlights, red dots on grass patch). 30
3.18 Over-exposure and lens flare of oncoming headlight affecting almost the entire

field of view. 30
3.19 Examples of motion blur (left car, traffic sign) and lens flare (right car). . . 31
3.20 Day/Night partition of the CVL Dataset 32
3.21 Histogram of number of bounding boxes per class available in the CVL Dataset.

Dark blue refers to nighttime footage, light blue is daytime footage 33
3.22 Histogram of different bounding box sizes observed in the CVL Dataset. Dark

blue refers to nighttime footage, light blue is daytime footage 33
3.23 Histogram of different track lengths in the CVL Dataset. Dark blue refers to

nighttime footage, light blue is daytime footage 34

4.1 Screenshot of first browser implementation with rudimentary keyframe visibil-
ity in green timeline. 39

4.2 UML Class Diagram, showing the associations between Singleton classes
(yellow), data structure classes (blue) and UI classes (purple). 41

4.3 Screenshot of main window of the CVLA tool. 43
4.4 Object Type (l) and Tracker (r) selection dropdown menus. Hidden and

Keyframe checkboxes and keyframe navigation buttons. 45
4.5 Tracker status bar on top: Green indicates tracked frames, red indicates

untracked frames. Tracker selection drop-down by clicking on Keyframe dot. 46
4.6 Plot of gamma correction curves at γ = 0.3, 1, 3 of gamma. 46
4.7 Gamma slider and automatic tracking checkbox. 47

66

5.1 Example of a bounding box with area of less than 50 pixels shown in red.
Upper right corner zooms in on the area, and highlights the car parts visible
through the bush leaves in light blue. 51

5.2 Visual explanation of IoU measure. Leftmost image shows ground truth (RGt ,
green) and tracker’s proposed region (RTt , red), middle image shows region
intersection (RGt ∩RTt , magenta), and rightmost image shows union (RGt ∪RTt ,
blue). 53

5.3 Plot of IoU over time, with two tracker resets – where IoU falls below threshold
– shown in red. 54

5.4 Scene (top) with oncoming traffic. ATOM (bottom right) has problems when
car is still small and only headlights are visible. MedianFlow (bottom left)
delivers more stable tracking results in this situation. 55

5.5 Scene (top) with preceding traffic. MedianFlow (bottom left) can follow the
car for about 100 frames before re-initialisation, whereas ATOM does not
lose track until the very last moments, when the car’s appearance changes
drastically due to turning. 56

5.6 Visual anchor in red, user annotation in yellow. 57
5.7 Annotation time per bounding box per video and annotation tool. 58
5.8 Mouse and keyboard invocation count (summed up) per video and annotation

tool . 59
5.9 Mean IoU value comparison per video and annotation tool. 60
5.10 Mean IoU value comparison grouped by maximum pixel area. 60
5.11 IoU values as box plot graph from Scalabel (top) and CVLA (bottom). . . 61

67

List of Tables

2.1 Comparison of analyzed Video Annotation Tools 17

3.1 Overview of datasets regarding selected requirements. 35

5.1 Tracker Evaluation results, best performing values per column shown in bold. 55
5.2 Preliminary User Study results. CVLA performs better in all measured

categories. 57

69

Acronyms

ABS Anti-lock Braking System. 1

AFS Advanced Front-lighting System. 1

AI Artificial Intelligence. 40

AOI Areas of Interest. 1, 9, 59, 64

API Application Programming Interfaces. 38

ATOM Accurate Tracking by Overlap Maximization. 38, 51, 54–56, 67

CGI Computer-Generated Imagery. 19

CNN Convolutional Neural Network. 7

CPU Central Processing Unit. 38

CSRT Channel and Spatial Reliability Tracker. 52

CV Computer Vision. 19

CVAT Computer Vision Annotation Tool. 14, 16, 23, 44

CVF Cost Volume Filtering. 5–9, 65

CVL CarVisionLight. 1–3, 9, 19, 21, 24, 27, 28, 31–34, 45, 50, 55, 63, 66

CVLA CarVisionLight Annotator. 3, 19, 37, 38, 40, 43, 44, 49, 55, 57–59, 61, 63, 64,
66, 67, 69

DAVIS Densely Annotated VIdeo Segmentation. 8

dcf Discriminative Correlation Filter. 52

FAVOS Fast and Accurate Online Video Object Segmentation. 8

FCN Fully Convolutional Network. 7

71

GPU Graphics Processing Unit. 38, 39

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 7

IoU Intersection over Union. 53

KCF Kernelized Correlation Filters. 38, 52

LIDAR Light Detection and Ranging. 20, 21, 65

LKA Lane Keeping Assist. 1

Lucid Lucid Data Dreaming for Video Object Segmentation. 8

MOT Multiple Object Tracking. 9

OSVOS One-Shot Video Object Segmentation. 8, 9

R-CNN Region Convolutional Neural Network. 7

RADAR Radio Detection and Ranging. 21

SiamRPN Siamese Region Proposal Network. 38, 52, 54

SIFT Scale-Invariant Feature Transform. 2

UI User Interface. 4, 5, 10–14, 16, 37, 40–44, 63, 66

UID Unique Identifier. 40

URL Uniform Resource Locator. 38

VATIC Video Annotation Tool from Irvine California. 10–12, 14, 44, 65

VIPER VIsual PERception. 24, 33, 37, 49, 50, 54

ViTBAT Video Tracking and Behavior Annotation Tool. 11, 12, 16, 65

VOT Visual Object Tracking. 9

WebGL Web Graphics Library. 38

72

Bibliography

[AT13] Alexander Andreopoulos and John K Tsotsos. 50 years of object recog-
nition: Directions forward. Computer Vision and Image Understanding,
117(8):827–891, 2013.

[BBDL10] David S Bolme, J Ross Beveridge, Bruce A Draper, and Yui Man Lui.
Visual object tracking using adaptive correlation filters. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2544–2550.
IEEE, 2010.

[BFC09] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic
object classes in video: A high-definition ground truth database. Pattern
Recognition Letters, 30(2):88–97, 2009.

[BHRG12] Nicole Brosch, Asmaa Hosni, Christoph Rhemann, and Margrit Gelautz.
Spatio-temporally coherent interactive video object segmentation via
efficient filtering. In Joint DAGM (German Association for Pattern
Recognition) and OAGM Symposium, pages 418–427. Springer, 2012.

[BNFD16] Tewodros A Biresaw, Tahir Nawaz, James Ferryman, and Anthony I Dell.
Vitbat: Video tracking and behavior annotation tool. In International
Conference on Advanced Video and Signal Based Surveillance (AVSS),
pages 295–301. IEEE, 2016.

[Bro16] Nicole Brosch. Spatio-temporal Video Analysis for Semi-automatic 2D-to-
3D Conversion. PhD thesis, Technische Universität Wien, 2016.

[BSG16] Nicole Brosch, Tanja Schausberger, and Margrit Gelautz. Towards percep-
tually coherent depth maps in 2d-to-3d conversion. Electronic Imaging,
2016(5):1–11, 2016.

[CHX+17] Long Chen, Xuemin Hu, Tong Xu, Hulin Kuang, and Qingquan Li. Turn
signal detection during nighttime by cnn detector and perceptual hash-
ing tracking. IEEE Transactions on Intelligent Transportation Systems,
18(12):3303–3314, 2017.

73

[ČLK16] Luka Čehovin, Aleš Leonardis, and Matej Kristan. Visual object tracking
performance measures revisited. IEEE Transactions on Image Processing,
25(3):1261–1274, 2016.

[CLL+19] Zhengping Che, Max Guangyu Li, Tracy Li, Bo Jiang, Xuefeng Shi,
Xinsheng Zhang, Ying Lu, Guobin Wu, Yan Liu, and Jieping Ye. D2-city:
A large-scale dashcam video dataset of diverse traffic scenarios. Computing
Research Repository (CoRR), abs/1904.01975, 2019.

[CLS+19] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Sla-
womir Bak, Andrew Hartnett, De Wang, Peter Carr, Simon Lucey, Deva
Ramanan, and James Hays. Argoverse: 3d tracking and forecasting with
rich maps. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8740–8749. IEEE, 2019.

[CMPT+17] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixé,
Daniel Cremers, and Luc Van Gool. One-shot video object segmentation.
In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 221–230. IEEE, 2017.

[COR+16] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The cityscapes dataset for semantic urban scene under-
standing. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3213–3223. IEEE, 2016.

[CTH+18] J. Cheng, Y.-H. Tsai, W.-C. Hung, S. Wang, and M.-H. Yang. Fast
and accurate online video object segmentation via tracking parts. In
Conference on Computer Vision and Pattern Recognition (CVPR), pages
7415–7424. IEEE, 2018.

[DBKF19] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael
Felsberg. Atom: Accurate tracking by overlap maximization. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 4660–4669.
IEEE, 2019.

[DRM+19] Patrick Dendorfer, Seyed Hamid Rezatofighi, Anton Milan, Javen Shi,
Daniel Cremers, Ian D. Reid, Stefan Roth, Konrad Schindler, and Laura
Leal-Taixé. CVPR19 tracking and detection challenge: How crowded can
it get? Computing Research Repository (CoRR), abs/1906.04567, 2019.

[DT05] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 886–893. IEEE, 2005.

[Gam95] Erich Gamma. Design patterns: elements of reusable object-oriented
software. Pages 157-159. Pearson Education India, 1995.

74

[GDDM14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmentation.
In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 580–587. IEEE, 2014.

[GLL16] Xiaojie Guo, Yu Li, and Haibin Ling. Lime: Low-light image enhancement
via illumination map estimation. IEEE Transactions on Image Processing,
26(2):982–993, 2016.

[GLSU13] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231–1237, 2013.

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 3354–3361.
IEEE, 2012.

[Han95] Hermann O Handwerker. Allgemeine sinnesphysiologie. In Physiologie des
Menschen, pages 195–215. Springer, 1995.

[HCMB14] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-
speed tracking with kernelized correlation filters. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 37(3):583–596, 2014.

[HRB+12] Asmaa Hosni, Christoph Rhemann, Michael Bleyer, Carsten Rother, and
Margrit Gelautz. Fast cost-volume filtering for visual correspondence and
beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(2):504–511, 2012.

[HST10] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. In
European Conference on Computer Vision (ECCV), pages 1–14. Springer,
2010.

[JLM+18] Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yuning Jiang.
Acquisition of localization confidence for accurate object detection. In Eu-
ropean Conference on Computer Vision (ECCV), pages 784–799. Springer,
September 2018.

[KBI+17] A. Khoreva, R. Benenson, E. Ilg, T. Brox, and B. Schiele. Lucid data
dreaming for object tracking. In The 2017 DAVIS Challenge on Video
Object Segmentation - CVPR Workshops, 2017.

[KML+16] Matej Kristan, Jiří Matas, Aleš Leonardis, Tomáš Vojíř, Roman
Pflugfelder, Gustavo Fernandez, Georg Nebehay, Fatih Porikli, and Luka
Čehovin. A novel performance evaluation methodology for single-target
trackers. IEEE Transactions on Pattern Analysis and Machine Intelligence,
38(11):2137–2155, 2016.

75

[KMM10] Zdenek Kalal, Krystian Mikolajczyk, and Jiří Matas. Forward-backward
error: Automatic detection of tracking failures. In International Conference
on Pattern Recognition, pages 2756–2759. IEEE, 2010.

[KPL+13] Matej Kristan, Roman Pflugfelder, Aleš Leonardis, Jiří Matas, Fatih
Porikli, Luka Čehovin Zajc, Georg Nebehay, Gustavo Fernandez, Tomáš
Vojíř, Adam Gatt, Ahmad Khajenezhad, Ahmed Salahledin, Ali Soltani-
Farani, Ali Zarezade, Alfredo Petrosino, Anthony Milton, Behzad Bo-
zorgtabar, Bo Li, Chee Seng Chan, Cherkeng Heng, Dale Ward, David
Kearney, Dorothy Monekosso, Hakki Can Karaimer, Hamid R. Rabiee,
Jianke Zhu, Jin Gao, Jingjing Xiao, Junge Zhang, Junliang Xing, Kaiqi
Huang, Karel Lebeda, Lijun Cao, Mario Edoardo Maresca, Mei Kuan
Lim, Mohamed El Helw, Michael Felsberg, Paolo Remagnino, Richard
Bowden, Roland Goecke, Rustam Stolkin, Samantha Yueying Lim, Sara
Maher, Sebastien Poullot, Sebastien Wong, Shin’Ichi Satoh, Weihua Chen,
Weiming Hu, Xiaoqin Zhang, Yang Li, and Zhiheng Niu. The visual
object tracking vot2013 challenge results. In International Conference on
Computer Vision (ICCV) Workshops, pages 98–111, 2013.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in Neural
Information Processing Systems 25, pages 1097–1105. Curran Associates,
Inc., 2012.

[ŁBHA13] Artur Łoza, David R Bull, Paul R Hill, and Alin M Achim. Automatic
contrast enhancement of low-light images based on local statistics of
wavelet coefficients. Digital Signal Processing, 23(6):1856–1866, 2013.

[Low99] David G Lowe. Object recognition from local scale-invariant features. In
International Conference on Computer Vision (ICCV), volume 2, pages
1150–1157. IEEE, 1999.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3431–3440. IEEE, 2015.

[LVČZ+17] Alan Lukežič, Tomáš Vojíř, Luka Čehovin Zajc, Jiří Matas, and Matej
Kristan. Discriminative correlation filter tracker with channel and spatial
reliability. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4847–4856. IEEE, 2017.

[LYW+18] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High performance
visual tracking with siamese region proposal network. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages 8971–8980.
IEEE, 2018.

76

[NORBK17] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and Peter
Kontschieder. The mapillary vistas dataset for semantic understand-
ing of street scenes. In International Conference on Computer Vision
(ICCV), pages 4990–4999. IEEE, 2017.

[PPTM+16] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool,
Markus Gross, and Alexander Sorkine-Hornung. A benchmark dataset
and evaluation methodology for video object segmentation. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 724–732.
IEEE, 2016.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in Neural Information Processing Systems, pages 91–99, 2015.

[RHK17] Stephan R Richter, Zeeshan Hayder, and Vladlen Koltun. Playing for
benchmarks. In International Conference on Computer Vision (ICCV),
pages 2213–2222. IEEE, 2017.

[RSM+16] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and
Antonio M Lopez. The synthia dataset: A large collection of synthetic
images for semantic segmentation of urban scenes. In Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3234–3243.
IEEE, 2016.

[RVRK16] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun.
Playing for data: Ground truth from computer games. In European
Conference on Computer Vision (ECCV), pages 102–118. Springer, 2016.

[Sek18] Sekachev, Boris and Manovich, Nikita. Computer vision annotation
tool, 2018. [Online; https://github.com/opencv/cvat/, accessed 26-March-
2020].

[She16] Anting Shen. Beaverdam: Video annotation tool for computer vision
training labels. EECS Department, University of California, Berkeley,
Master Thesis, 2016.

[VDWSVL09] Joost Van De Weijer, Cordelia Schmid, Jakob Verbeek, and Diane Larlus.
Learning color names for real-world applications. IEEE Transactions on
Image Processing, 18(7):1512–1523, 2009.

[VPR13] Carl Vondrick, Donald Patterson, and Deva Ramanan. Efficiently scaling
up crowdsourced video annotation. International Journal of Computer
Vision, 101(1):184–204, 2013.

[VR11] Carl Vondrick and Deva Ramanan. Video annotation and tracking with
active learning. In Advances in Neural Information Processing Systems,
pages 28–36, 2011.

77

[XKSG16] Jun Xie, Martin Kiefel, Ming-Ting Sun, and Andreas Geiger. Seman-
tic instance annotation of street scenes by 3d to 2d label transfer. In
Conference on Computer Vision and Pattern Recognition (CVPR), pages
3688–3697. IEEE, 2016.

[YXC+18] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht
Madhavan, and Trevor Darrell. BDD100K: A diverse driving video
database with scalable annotation tooling. Computing Research Repository
(CoRR), abs/1805.04687, 2018.

78

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Contributions
	Outline of the Thesis

	Background and Related Work
	Semi-Automatic Annotation Algorithms
	Semantic Segmentation
	Bounding Box Tracking

	Annotation Tools
	VATIC
	ViTBAT
	BeaverDam
	Scalabel
	CVAT
	Comparison

	Datasets
	Ground Truth Datasets
	Multi-Sensor Annotation
	Computer Vision Algorithms
	Computer Generated Imagery
	Manual Annotation

	CVL Dataset
	Example Footage
	Statistics

	Comparison

	CarVisionLight Annotation Tool
	Implementation
	Browser Implementation
	Python Implementation

	User Interface
	Information at a Glance
	Minimizing Clicks
	Object Tracker Inclusion
	Visibility Enhancement

	Evaluation
	Tracker Evaluation
	Clip Selection
	Tracker Selection
	Performance Metrics
	Evaluation Results

	Preliminary User Study
	Results

	Conclusion and Future Work
	Summary
	Synopsis of our Contributions
	Future Work

	List of Figures
	List of Tables
	Acronyms
	Bibliography

