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Abstract—Investigation of a concept for remote detection of
malfunctioning grid supporting devices using minimal data is
proposed in this work. The operation of future electricity grids
highly depends on the behaviour of these devices and their
support functions such as reactive power dispatch used for
voltage control. Synthesising and utilizing operational data of
a distribution grid, a functionality is being developed to enable
better surveillance of grid connected devices ensuring security of
supply and resiliency. In a first step, data driven approaches for
anomaly detection are explored. They are applied to the opera-
tional data of the device to detect unwanted behaviour. Results
show first indicators of applicability and possible obstacles.

I. INTRODUCTION

Nowadays, power grid operators face many challenges con-
nected to the fundamental changes the energy system is under-
going. However, this transformation is essential in the shift to a
new green and sustainable energy system. The decentralization
of power generation causes many of these problems [1]. These
include regulatory issues, environmental concerns as well as
technological challenges, such as transmission and storage of
electrical energy. Especially a high density of photovoltaic
(PV) power generation has big influence on grid operation [2]:
PV generation exceeding local energy demand leads to reverse
power flows from lower voltage levels to the transmission
system as well as voltage rises.

Globally this can impact the system frequency. Locally
violations of the admissible voltage magnitude, the so called
voltage band, are a common consequence. To limit renew-
able energy generation as little as possible but avoid such
unfavourable effects at the same time, control strategies are
needed. To integrate distributed generation in distribution net-
works, voltage regulation is regarded as the principle measure
[3]. This is implemented through grid supporting function-
alities (frequency, voltage, etc.) provided by the generation
units. These include curtailing the active power dispatched as
well as controlling the reactive power dispatch of generation
units with inverters, most commonly via a local droop control
[4]. The functions of these controls are shown in Figure 1: as
depicted on the left, the power factor, and therefore also the
reactive power is controlled depending on the active power.
The right side of Figure 1 depicts a voltage control varying
the reactive power. Generation units are obliged to exercise
certain control mechanisms as stated in national regulations
[5]. A reactive power control depending on the local voltage
has to be implemented even by the generation units with the

Fig. 1: Q(P) (left) and voltage droop control (right) schemes [6].

least rated power listed. Furthermore, the proper amount of
reactive power actually has to be dispatched.

A data driven approach for monitoring these functions is
recommendable as it keeps the required knowledge about
network components characteristics to a minimum. Grid com-
ponents data is in many cases not updated regularly or often
faulty. Therefore, an approach using operational data is of
advantage [7]. However, this data is not always available at all
connection points. This can be due to the lack of measurements
or legal restrictions on usage of these for reasons of data
privacy. Means of surveillance ought yet to be developed to
detect and distinguish transformer malfunctions or wrongly
paramaterized PV inverters under these circumstances. In this
paper, a first approach on detecting the latter is described. This
paper also gives a first outlook on which measurements, such
as voltage, are best suited for this task, as well as how high a
quality of these measurements is necessary.

The paper is organized as follows: Section II outlines the
state-of-the-art in the domain, targeted scenarios are intro-
duced in Section III. An overview of the methodological
approach is presented in Section IV, whereas preliminary
results are discussed in Section V. Finally, a conclusion and
an outlook on the work-in-progress is given in Section VI.

II. RELATED WORK

To ensure the intended behaviour is actually being executed
by devices, anomalies during operation have to be detected.
Therefore, methods to detect these anomalies are needed. Nev-
ertheless, no framework covering the entirety of this task can
be found in literature. Yet, many approaches exist presenting
solutions to parts of the challenges raised.

In [8], a number of algorithms are implemented and com-
pared, including k-means or fuzzy c-means. These are applied
on data of medium voltage transformers at main substations
to cluster their consumption patterns. Followingly, to identify
unusual consumptions in hourly load data, the local outlier



factor (LOF) is used. Certain traits of the consumption such
as irregular peak unusual consumption, broadest peak demand,
sudden large gain and nearly zero demand unusual consump-
tion are employed to characterize unusual patterns. Whether
the characteristics utilized for detection can be applied on a
wider spectrum of problems is yet to be determined.

The research in [9] presents a combined model of Gaussian
distribution and polynomial regression. Using these, anomalies
are detected in the modelled electrical energy consumption
data of various schools. For anomaly detection on a household
or grid connected device level, this approach is well suited.
Nevertheless, it will most likely be necessary to create models
for each application automatically, which is not included in
this approach.

Extraction of typical consumption profiles of buildings is
presented in [10]. Classification of buildings into categories
s done beforehand. These reflect several characteristics such
as type, physical properties or environmental conditions, for
example the weather. For each class, typical load profiles are
modelled based on these. The authors indicate the possibility
to apply the method presented on fault detection and diagnosis
(FDD). However, a discussion about the details of implemen-
tation of such an application is missing.

Summarising, an approach for anomaly detection and clas-
sification tailored to the power distribution grid is yet to be
explored. Therefore, the particular challenges of identifying
models automatically as well as the applicability of algorithms
to the data at hand have to be addressed.

III. TARGETED SCENARIOS

Both a solution applicable to public as well as to industrial
distribution grids is desirable. Therefore, scenarios are to
be explored taking into account the peculiarities of both:
in industrial environments distribution distances are rather
short, power densities are frequently high. For these reasons
the grid experiences heavy loading. Furthermore, regulations
applying to public power grids, such as ones concerning data
protection, might not be relevant for industrial grids [11]. The
prevalence of big, fast varying loads in industrial grids such
as excavators also leaves an impact on protection schemes as
mentioned in [12]. This makes the detection of malfunctions
particularly interesting here. Moreover, surveillance of the
correct scheduling of such loads in a context of factory
automation for production planning with regard to demand
side management can potentially be a rewarding use case [13].
In general only detection of non dynamic operational changes
are addressed. Therefore, only data in minute resolution or
lower is going to be necessary and used. The cases targeted
include the surveillance of the correct switching of loads or
the proper dispatch of energy by generation units, which are
all non transient events.

IV. METHODOLOGICAL APPROACH

Data driven approaches as machine learning algorithms
should be implemented and evaluated. Furthermore, the data
used has to be synthesised.

A. Anomaly Detection

Kernel principle component analysis (kPCA) [14] seems to
be a fitting solution for anomaly detection. As presented in
[15], it can be used to build a statistical model of a systems
nominal state. In cases where several anomalous states are pos-
sible but only little information is accessible about them, but a
stable nominal state is usually encountered, kPCA is especially
well suited. Foremost because it is unsupervised. For both grid
participants at the low voltage level as well a transformer
this can be expected. An alternative method incorporating
information from labeled, unlabeled and partially labeled data
is posed by the partially hidden structured support vector
machine (pSVM) based on [16]. This method can help by
revealing hidden structures in the data. Additionally, relations
between ’stable’ and ’different’ events can be captures using
[15]. Furthermore, [17] explores a one class support vector
machine for anomaly detection in Heating, Ventilation and Air
Conditioning (HVAC) systems. It’s pointed out, that abnormal
events do not cause the biggest variance in the data, but the
regular operation of the system does. This is also applicable
to households or PV generators showing usual functionalities.
Therefore, on the low voltage level the usage of primary
component analysis (PCA) for anomaly detection appears
advisable. On the medium voltage level applying a support
vector machine (SVM) seems promising.

B. Software, Data Acquisition and Validation

Grid simulation is to be used to synthesize data of sce-
narios in which devices that usually provide grid support
functionalities experience malfunctions. These malfunctions
cause them to stop providing this grid support. This ought
to be detected by the impact this leaves on grid operational
data. The grid participants should therefore act as life like
as possible. This can be aided by applying real world load
curves of household or industrial loads and energy dispatch
patterns of generation units, such as PVs, to them. Data of
regular operation and abnormal behaviour, such as in the
case of load switching or incorrectly parameterized control
patterns, are needed. Data of distribution transformers as well
as low voltage grid participants data comprising of voltages,
currents, and power flows should be generated in this manner.
The low voltage data should be synthesised at the devices
in a way to mimic smart meter measurements. This can be
achieved by adding noise to the generated, clean data. The data
acquired by these steps should then be used to develop, test and
improve the anomality detection approaches presented above.
Misclassification rate or a confusion matrix representing false
negatives and false positives of the anomaly detection can
function as key performance indicators (KPIs), helping to
evaluate the applicability of the different approaches. As false
alarms ought to be avoided, false positives are of particular
interest here. Ideally, DSOs or operators of industrial grids
could provide real world data to be used to develop the concept
further and verify it. Furthermore, to test the method, the
approach could be implemented at a grid serving as a demo
site.
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Fig. 2: Grid model used to generate data.

V. PRELIMINARY RESULTS

The exploration of a functionality that is able to monitor
grid supporting devices is currently undertaken. Therefore, a
framework to synthesise the necessary data was implemented
using a grid modelling software (DIgSILENT PowerFactory)
as a solver controlled by a Python API. A typical low voltage
(LV) distribution grid consisting of 125 load terminals on
6 feeders, 3 of them in a radial configuration, the other 3
operated in an open ring topology, was modelled for this
purpose. The 0.4kV LV grid is connected to the 20kV medium
voltage level by a single 630kVA Dyn-connected distribution
transformer. Every terminal has a household load connected
to it, but only a certain share of the households are equipped
with PV. The terminals to which a PV is connected are chosen
randomly at the beginning of the simulation. The topological
setup is in a symbolic manner depicted in Figure 2. All
loads and PVs are connected to a terminal, which is in turn
connected to a feeder via a line. In the simulations, the data
is recorded at these terminals, which would represent smart
meters in the real world, as well as on the transformer terminal.
To mimic actual smart meter measurements, noise is added
to the data created. The smart meters assumed are standard
smart meters with an accuracy of 1%, meaning the error on the
reading is at max 1% of the smart meters highest displayable
value. Therefore, a Gaussian white noise, with a mean of 0 and
a standard deviation such that the distributions biggest value
is about the maximum error of the smart meter, is added to
the data.

Each household and PV follows real consumption or genera-
tion profiles, respectively. The household profiles are available
at a 1 minute time resolution, whereas the PV profiles have a
time resolution of 5 minutes. 9 different PV profiles as well as
14 household profiles are distributed randomly to the loads and
generation units. This creates various combinations of load and
generation patterns at terminals. The household load profiles
are scaled in a manner as to leave the transformer with a
maximum loading of 70% over the course of a year. The
PV profiles are scaled accordingly. The scaling also considers
the strength of a connection point in the form of its hosting
capacity normalized to the average of all terminals. The

hosting capacity here is the maximum real power drawn before
a voltage band limit is reached. All PV units are parameterized
to follow the same control curve regarding reactive power
dispatch. The curve applied is a cosφ(P) as shown on the left
side of Figure 1, only with a maximum power factor of 0.9
as required by German national regulations [18].

In the scenario simulated, the share of terminals to which
a PV is connected was chosen as about 25%, equipping 33
terminals with PV generation. The simulation is run over the
course of an entire year, with a simulation step size of 5
minutes. For every simulation run, the positions of the PVs,
the PV inverter device which is experiencing a malfunction as
well as when this malfunction occurs are chosen randomly.

The malfunction assumed in this scenario is a single PV
inverter resetting itself to its default settings for unknown
reasons. This deactivates any control curves parameterized.
In this case, this function is a reactive power dispatch curve
controlled by the active power, which influences the voltage at
the terminal the PV is connected to. This means the device is
failing to inject reactive power in times of high active power
dispatch meaning not exercising its grid support function.
From a certain point in time on, the voltage is therefore not
controlled accordingly.

This malfunction is to be detected by analysing its impact on
the grid. Figures 3 and 4 depict a first approach on this and
its preliminary result: all figures show voltages at terminals
with both households and PVs connected to them. Every graph
shows the voltage at two of these terminals plotted against
each other. Each data points x component is the voltage of the
one terminal, the y component is the voltage at the terminal
at a certain point during the simulation. A time window of 48
hours is chosen, meaning the graphs depict data starting 24
hours before the simulated malfunction and ending 24 hours
after the occurrence of the malfunction.

Figure 3 shows the raw generated data. Figure 4 presents
data with the noise described above added. The graphs on
the right side of both figures depict voltages of two terminals
plotted against each other where the PV inverters show regular
behaviour. Especially in Figure 3 it appears legitimate to
assume that voltages at terminals with correctly functioning
devices are highly correlated, easily understandable from the
datas appearance as a line. In contrast to this, the left hand
side of Figure 3 shows voltages at two terminals where one of
them has a PV generator connected that experiences the before
mentioned malfunction. The point cloud does obviously not
resemble a line quite as much in this case. This behaviour
offers the possibility to extract the point clouds primary
components as features for anomaly detection. In all graphs
the red arrow indicates the first primary component, the one
reflecting the biggest variance in the data. The green arrow
points in the direction of the second biggest variance of the
data, and is therefore the second primary component. Now
these primary components explain certain shares of variance.
In the case of the two terminals without malfunctions this
share is 0.04%. For the terminals of which one experiences
a malfunction, the second primary component explains 1.64%
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Fig. 3: Voltages plotted against each other.
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Fig. 4: Noisy voltages plotted against each other.

of the variance. Therefore, a change in this share could be
used to detect anomalies. As striking as this discrepancy is
in the raw synthesised data without added noise, the picture
becomes a whole lot more blurry when noise is added to the
data. In Figure 4 the shares of variance explained by the second
primary components have risen to 10% for the malfunctioning
case on the left and 9.35% for the terminals showing regular
behaviour on the right. The diminished, yet still existent gap,
in this share indicates that it might be harder to implement a
detection in this way, but even with noisy data it might still
be possible. This illustrates how important an evaluation of
necessary and available data quality is.

VI. CONCLUSIONS AND OUTLOOK

The inevitable integration of decentralized renewable energy
sources necessary to ensure a sustainable electric power supply
rises challenges. Problems in grid operation can be caused by
the great volatility these generation units show when providing
energy. Therefore, these units have to provide grid support
functionalities and grid operators have to be able to ensure
that the same are exercised correctly. For that reason the goal
of this work is a validated method allowing central and remote
surveillance of expected functions. This is done via detection
of changes in the behaviour of grid connected devices. These
include generation units and their inverters.

The first interim results appear to be promising. Detection
of malfunctions based on operational data, such as the voltage,
appears to be an applicable solution, especially if clean data
is available. Detection seems to be a lot more challenging on
noisy data. This underlines the importance of reproducing real
world circumstances accurately. Further investigation regard-
ing the choice of data as in which terminals to compare or
how big a time window is used for detection is still necessary.

Further work will also include classification of anomalies
detected which should help to categorize the unwanted be-

haviour and refer to a cause. This should be possible on the
medium voltage level using operational data at a transformer,
as well as on the low voltage level. Therefore, the transformer
load profile could be disaggregated into its contributions for
data mining. The approach explored should only use relevant
data for this purpose in order to limit data traffic and avoid
legal issues. The framework will also be tested with some
selected use cases in order to prove its usability. The use cases
will consist of simulation examples, but also real world data
to test the tool would be desirable. Concepts and methods on
how to develop such a tool are also expected as further interim
results.
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