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Abstract
Time series segmentation is employed in various domains and continues to be a relevant topic of research. A segmentation
pipeline is composed of different steps involving several parameterizable algorithms. Existing Visual Analytics approaches can
help experts determine appropriate parameterizations and corresponding segmentation results for a given dataset. However, the
results may also be afflicted with different types of uncertainties. Hence, experts face the additional challenge of understanding
the reliability of multiple alternative the segmentation results. So far, the influence of uncertainties in the context of time series
segmentation could not be investigated. We present an uncertainty-aware exploration approach for analyzing large sets of
multivariate time series segmentations. The approach features an overview of uncertainties and time series segmentations,
while detailed exploration is facilitated by (1) a lens-based focus+context technique and (2) uncertainty-based re-arrangement.
The suitability of our uncertainty-aware design was evaluated in a quantitative user study, which resulted in interesting findings
of general validity.

CCS Concepts
• Information systems → Uncertainty; •Human-centered computing → Visual analytics; Visualization techniques; • Com-
puting methodologies → Visual analytics;

1. Introduction

Time series segmentation is the process of dividing time series
into meaningful consecutive segments and assigning labels for the
most likely activities represented by these segments. Before apply-
ing segmentation algorithms, the time series data requires multiple
pre-processing steps—especially in the case of multivariate time
series (MVTS). In order to tune these steps to a specific dataset,
we employ multiple parameterizations and compute a large set
of alternative time series segmentations—further called segmen-
tation results. Röhlig et al. [RLK∗15] use interactive analysis to
evaluate segmentation pipelines using parameter-dependent explo-
ration. The approach allows exploration of the label probabilities
to identify areas where the segmentation algorithm showed low ac-
curacy due to ambiguous activities being detected. The probabil-
ities computed by the segmentation algorithm are one of several
types of uncertainty introduced along pre-processing and modeling
routines [BHJ∗14, BBGM18], and more specifically segmentation
pipelines (details on the segmentation pipeline used in this paper
can be found in [BBB∗18]). These approaches identified a need for
uncertainty-aware exploration of the segmentation results. Multiple
types of uncertainty need to be taken into account for an informed
decision over the most appropriate segmentation result. Besides (1)
uncertainties of the validity of segmentation results, i.e., label and
segment probabilities, uncertainties may be (2) a-priori present in

the data, or (3) might have been introduced by the segmentation
pipeline (including data pre-processing).

One major obstacle to observing activities in a recorded MVTS
is the high dimensionality. Dimensionality reduction can be ap-
plied [BHR∗19], however, without contextualization this does not
give any further insights into how to interpret the data. Alterna-
tively, by combining an abstract time series representation with
results from automated segmentation and labeling algorithms, the
time series can be adequately partitioned for subsequent analy-
sis. Moreover, capturing uncertainty introduced alongside the em-
ployed pipeline can be used as additional qualitative measures to be
analyzed [BBB∗19]. To this extent, the main challenge of finding
a good segmentation result a large number of results from the
pipeline is maintaining an overview while still considering differ-
ent types of uncertainty is challenging. We break down these tasks
into analyzing (1) the quality of a segmentation result for a spe-
cific parameter configuration, (2) the influence of uncertainty on
segmentation results, specific time intervals, and individual times-
tamps, (3) the relation between types of uncertainty, and (4) the
transition characteristics between segments. In their investigation,
analysts more closely explore the computed segments, their indi-
vidual lengths, the distribution of segments across the individual
results, and the associated labels. Furthermore, the rate at which
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Figure 1: Visualization of 300 segmentation results stacked on top
of each other. On the right-hand side the computed segments are
colored according to the assigned label. On the left-hand side the
parameter values for 4 parameters are represented. The parameter
grey scale ranges from dark for low values to light for high values.

(a) The regular segmentation result
design: result uncertainty is shown in
a line chart below the segments.

(b) The Uncertainty Heatmap design
only encodes uncertainty as satura-
tion.

(c) The Gradient Uncertainty design
extends the regular segmentation re-
sult label view by encoding uncer-
tainty as saturation.

(d) The Threshold Uncertainty de-
sign only shows segment labels for
areas with uncertainty below a 40%
threshold.

Figure 2: Visualization designs showing result uncertainty for
uncertainty-aware segmentation result overview: the highlighted
areas (A,B) show how time intervals were segmented by varying
parameter settings and introduced uncertainty differently.

label probabilities decrease and increase indicate algorithm sensi-
tivity to detect segment transitions.

We propose a Visual Analytics (VA) approach that enables
uncertainty-aware exploration of segmentation results (i.e., assess-
ing the reliability of results) with respect to uncertainty a-priori
present in the data and/or introduced by a segmentation pipeline.
The contributions of this paper are as follows:

• Design and evaluation of uncertainty-aware visualizations to
compare and assess large sets of alternative time series segmen-
tation results (Section 2),
• Two lens-based Focus+Context (F+C) techniques for detailed

uncertainty inspection (Section 3), and
• Uncertainty-based as well as lens-based re-arrangement of seg-

mentation results (Section 3 & 2).

2. Visualization Design

The output of our segmentation pipeline consists of the segmenta-
tion and labeling results for each timestamp of the outgoing time se-
ries, the associated parameter settings that led to this result, and un-
certainties introduced along the pipeline [BBGM18]. In this work
we particularly focus on the visual encoding of two types of un-
certainty: (a) value uncertainty is quantified either directly in the
input data or it is externalized from the pre-processing operations
employed in the segmentation pipeline (e.g., a smoothing operation
to reduce noise). For every pre-processing step the introduced value
uncertainty is recorded, resulting in a multivariate set of value un-
certainties. (b) Result uncertainty, for example, can be represented
as probabilities assigned by a labeling algorithm that gradually de-
and increase over time, with the highest probability representing
the winning label. Communicating these uncertainties enables the
analyst to assess the reliability of the segmentation pipeline for a
particular MVTS. Considering tasks (1)-(4) and the different types
of uncertainties, we derived the following design rationales:

DR1 - Maintain a compact overview visualization: to show an-
alysts a comprehensive overview of all results at once, computed
with different parameter settings.
DR2 - Incorporate result uncertainty and value uncertainties in
visualization design: to make analysts aware, so they can inspect
if uncertainties had an influence on the results.
DR3 - Support different analysis goals with respect to uncer-
tainty inspection: to let analysts explore, for instance, the proba-
bility of individual labels or the rate of transitions between labels.

The visualization is designed to show the entire set of segmen-
tation results together with associated uncertainties in a compact
representation (DR1). We extend the visualization design presented
by [RLK∗15, EST19]: The results of each parameter configuration
are arranged vertically, with each line showing the different seg-
ments of one computed result over time. For a first overview of the
results, labeled segments are displayed as colored bands without
uncertainty visualization (see Figure 1). We augment this overview
with result uncertainty for each timestamp. Inspired by the results
of Gschwandtner et al. [GBFM16] we incorporate different ways
of visualizing result uncertainty. Besides the visualization of seg-
mentation results without uncertainty (see Figure 2a), the following
designs can be toggled:

Uncertainty Heatmap Plot (Figure 2b): To give an immediate
impression of uncertainties only (no segment labels), we use a
grayscale, with light values exhibiting high result uncertainty.
Gradient Uncertainty Plot (Figure 2c): To show the different seg-
ments and labels together with their uncertainties, the default Gra-
dient Uncertainty View uses color and transparency.
Threshold Uncertainty Plot (Figure 2d): To enable a more di-
rected exploration, this view shows only labels that exceed a certain
probability threshold that is set interactively. This prevents visual
clutter and facilitates the comparison of small differences between
segmentation results.

We encode value uncertainty either as area (see Figure 3a) or
brightness (see Figure 3b). The value uncertainty visualization can
be inspected on demand (Figure 4 lens bottom) to explore the in-
fluence of value uncertainties on segmentation results.
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(a) Area Uncertainty plot encoding one dimension of value uncertainty.

(b) Uncertainty Heatband view encoding one dimension of value uncer-
tainty.

Figure 3: Visualization designs for showing value uncertainty.
When using (a) Area Uncertainty plots, value uncertainties from
different sources can be stacked. An alternative visual encoding is
the (b) Uncertainty Heatband plot. The two marked areas (A, B)
show areas where value uncertainty is introduced periodically.

Juxtaposed Views

Row Lens

Figure 4: The row lens allows for vertically zooming a segmen-
tation result of interest. In this example, the lens area is used for
showing three juxtaposed views displaying (from top to bottom) the
segment label coloring , label probabilities as line plots, and the
value uncertainty as stacked area plots. The parameter values are
color-highlighted and provide detail information on mouse-over in-
teraction.

3. Interactions

To enable a detailed inspection of segment labels and uncertainties
(DR3) we provide details on demand. Thus, we have designed two
interactive lens views [TGK∗17], the row lens and the temporal
lens, to support exploration of both, result and value uncertainty on
timestamp and segment level.

The row lens enlarges a single segmentation result to take up
more vertical space. Depending on the zoom factor (defined by user
interaction), we provide different composite visualizations (DR2,
DR3). If vertical space does not permit multiple views, only one
detail visualization is shown. Figure 4 (lens top) shows the distri-
bution of segments and associated labels throughout the time series.
Figure 4 (lens center) allows close inspection of the label distribu-
tion. Different representations can be toggled to show result uncer-
tainties in detail. Figure 4 (lens bottom) plots value uncertainty over
time so that analysts can relate value uncertainty influences to seg-
ments or intervals. The row lens does not distort the temporal axis
(x-axis). This makes it easier to relate the currently magnified seg-
mentation result to the remaining results. To also enable detailed
inspection on a timestamp level, we designed the temporal lens,
which magnifies both the vertical axis and the horizontal tempo-
ral axis. This allows us to display details about result and value
uncertainties. Again, analysts can toggle between the different vi-
sual encodings. Figure 5 shows the lens focused on the transition
between two different segments. Moving the cursor across segmen-

Temporal
 Lens

Figure 5: A temporal lens that magnifies a segment boundary near
the mouse cursor and shows the exact temporal change of label
probabilities as a stacked area plot.

tation results allows exploration of the underlying probabilities of
labels and segments for each timestamp.

Moreover, segmentation results might be mostly identical, with
differences only surfacing in the associated result and value un-
certainties, e.g., at the transitions between segments. In order to
facilitate comparison of two segmentation results, it is sensible
to position them in close proximity. We provide an assisted re-
arrangement to address these issues. Segmentation results are
sorted according to their result uncertainties and value un-
certainties. The re-arrangement of rows is based on [EST19,
RLK∗15]: Rows in the overview visualization are permuted so that
similar segmentation results are grouped to facilitate comparison.
In our uncertainty-based re-arrangement approach, value and re-
sult uncertainties are used as sorting comparators. To determine
the similarity of two segmentation results, uncertainty value dif-
ferences are summarized for each timestamp. The smaller the sum,
the more similar two segmentation results are to each other. In ad-
dition, we provide lens-based re-arrangement: The lenses can be
used as a probing tool to identify and more effectively select in-
teresting segmentation results and properties. If one or more inter-
esting segmentation results were found through the lens, they can
be marked as references for automatic rearrangement. The sorting
algorithm then automatically reorders the rows based on the uncer-
tainty types and temporal intervals, and segmentation result char-
acteristics of the currently employed lenses.

4. Evaluation of Uncertainty Visualizations

We evaluated the appropriateness of the different visual encodings
of uncertainty with a quantitative between-subject user study with
111 participants (details about the study and analysis of results can
be found in the supplementary material). We provided participants
with two or more alternative segmentation results for the same time
interval and used different types of visual encodings of uncertainty,
while participants had to choose the result with the highest or low-
est uncertainty. We measured participants’ error rate and task com-
pletion times to investigate the following hypotheses:

H0 The Gradient Uncertainty plot (Figure 2c) does not perform
worse than the regular visualization of segmentation results as col-
ored bars plus an additional line plot showing result uncertainty
(Figure 4 lens top and center).
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H1 The Gradient Uncertainty plot (Figure 2c) does not perform
worse than the Uncertainty Heatmap plot (Figure 2b) showing re-
sult uncertainty.
H2 The Gradient Uncertainty plot (Figure 2c) is more effective
than a Threshold Uncertainty plot (Figure 2d) for assessing result
uncertainties of a large number of segmentation results, H2a espe-
cially with limited vertical space available.
H3 The Uncertainty Heatband plot (Figure 3b) does not perform
worse than the Area Uncertainty plot (Figure 3a) for showing value
uncertainty.

From our study results we draw the following conclusions (con-
sidering the significance level of the p-value≤ 0.05): (1) Hypothe-
ses H0 and H1 could be confirmed which shows that the Gradient
Uncertainty plot is not inferior to a composite view (showing the
regular visualization of segmentation results as colored bars plus an
additional line plot), although this designs provides more details.
One reason for this might be that in the composite view segment
label and uncertainty of this label had to be compared vertically
instead of having both types of information encoded in one view.
The Gradient Uncertainty plot is also not inferior to the Uncertainty
Heatmap plot, although this design solely focuses on communi-
cating uncertainty values and does not give additional information
about labels.

(2) On the other hand, it could not be confirmed that Gradient
Uncertainty plots outperform Threshold Uncertainty plots when
showing a large number of segmentation results or when vertical
space is limited (H2, H2a rejected). The study results even show
that for difficult scenarios with barely distinguishable uncertainties,
the Threshold Uncertainty plot performed best (threshold mean er-
ror rate 47.75% vs. overall error rate 67.79%) This plot, however,
comes also with the highest task completion times (median 26 sec-
onds), probably as a consequence of the necessary interactions of
adjusting the threshold. As a result, it is recommendable to employ
different visualization designs that can be toggled, to support swift
exploration using Gradient Uncertainty plots, and allow analysts to
switch to Threshold Uncertainty plots for difficult cases.

Moreover, (3) the evaluation of value uncertainty designs
showed equal scores and completion times for both the Heatband
and Area Uncertainty plots (H3 confirmed). This extends design-
ers’ possibilities to more appropriately visualize this type of uncer-
tainty. Favoring compactness of representation (DR1), we default
to employing the Uncertainty Heatband in our lens views. This is
particularly beneficial, if vertical space is limited: a heatband can
be employed in the row lens with small height without any disad-
vantages for the user to assess value uncertainty.

5. Discussion

Analyzing large sets of time series segmentations is challenging,
and conducting uncertainty-aware exploration further adds to the
complexity of assessing the plethora of information provided. How-
ever, there are decisive benefits to uncertainty-aware analysis of
results. Besides the obvious fact that analysts are provided with
enough information to make informed decisions about the validity
and credibility of segmentation results, there are several considera-
tions we want to point out: (1) analysts have to assess whether the

amount of uncertainty introduced into a segmentation result can
be reduced. For example, a certain parameter makes segment tran-
sitions more accurate, reducing result uncertainty between labels.
(2) The ability to estimate the influence of value uncertainties on
the result outcome. By analyzing uncertainty introduced by pre-
processing, analysts can determine how they affected the data and
if the time series is still representative of the original data. If inap-
propriate parameter values are used in the segmentation pipeline,
important patterns can be masked, rendering the segmentation in-
effective, and (3) finding a good parameterization of the segmen-
tation pipeline that can be applied to future time series data, the
trade-off between an over-fitted model with zero uncertainty and
just a bad segmentation with too much uncertainty has to be con-
sidered. Thus, some amount of uncertainty might even be desirable.

Our evaluation results showed increasing the complexity of
the segmentation results view by adding uncertainty information
did not decrease user performance. We found that the interactive
Threshold Uncertainty plot showed the highest completion times
(median overall: 19s, threshold: 26s), which we suspect was due to
the necessary interactions users had to perform. Thus, to assess the
influences of interactivity and limited vertical space on uncertainty-
aware analysis, we aim to conduct a more specific user study on
the appropriateness of Gradient Uncertainty and Threshold Uncer-
tainty plots. Also the overall interactive design of our segmentation
results visualization needs to be evaluated in future work. To fur-
ther support users in the analysis of segmentation results, we are
planning to integrate guidance methods [CGM∗17]. This applies in
particular to the use of lenses. Potentially interesting segmentation
results could be automatically recognized (e.g., based on the uncer-
tainty composition) and recommended for detailed inspection. This
could be useful to unburden the analyst to some extent as well as to
further simplify lens interaction.

6. Conclusion

We presented new visualization techniques to support uncertainty-
aware exploration of large sets of time series segmentations. We vi-
sually communicate different types of uncertainties that stem from
the data itself, the pre-processing of the data, and the uncertainty
in the segmentation results, to foster awareness about the reliability
of different results. We designed designated uncertainty visualiza-
tions as well as uncertainty-based sorting of results, and integrated
these into the overview visualization of multiple alternative seg-
mentation results to enable analysts to relate the segmentation re-
sult with different types of uncertainties that might have influenced
it. We evaluated our visual encodings in a quantitative study, testing
the performance of participants for a comparison task, which shed
light on some interesting aspects that are relevant not only for the
visualization of time series segmentation, but can be generalized
to the visualization of similar uncertainty types with similar space
constraints and tasks.
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