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Abstract. A pseudo density topology optimization approach is introduced in nonlinear electromagnetism, which follows the
SIMP (Solid Isotropic Material with Penalization) method. The adjoint approach is used to arrive at the sensitivity of the objective
function. The elaborated optimization procedure includes nonlinearity of the ferromagnetic material. On the other hand, an
applied linear characteristic of the ferromagnetic material results in a too small or wrong electromagnetic actuator dimension.
Non-conforming grids are used to achieve a high accuracy by computing the discrete form. At the same time the number of finite
elements decreases strongly. The implementation is applied to an electromagnetic actuator in 2D and 3D.
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1. Introduction

There are different approaches in literature to optimize electromagnetic actuators. In general, they can be
divided into deterministic and metaheuristic algorithms as discussed in [1]. Considering the computational
effort of stochastic methods as demonstrated in [2], we are focused on a gradient based optimization
method.

In [3], a level set method is applied for the geometrical shape parameterization of an electromagnetic
actuator. Therein, the sensitivity is computed by the adjoint method. Further shape optimizations of
electromagnetic actuators are carried out in [4]. General approaches for determining sensitivities are
presented in [5]. Mutual energy method is used in [6] to optimize a transformer core. A density based
method for electromagnetism is introduced in [7], which follows the ideas in [8] for stiffness optimization.
Optimized material distribution (OMD) in electromagnetism is presented in [9]. The SIMP (Solid
Isotropic Material with Penalization) method from [10], which is constructed for the stiffness optimization
in structural mechanics is introduced in electromagnetism by [11]. The approaches above do not consider
material nonlinearity, which is of outermost importance for realistic magnetic field computations in
ferromagnetic materials.
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Nonlinear material behaviour is considered in [12] for optimizing an electromagnetic actuator. Therein,
design variables take into account via the magnetic permeability. Additionally, the adjoint method is
derived by the use of the continuum approach. In [13] the magnetic reluctivity is modified by design
variables to achieve a better convergence. The magnetization direction is considered for a density based
optimization method in [14] and [15]. Based on the discrete equilibrium, the adjoint method was derived
in [16]. Therein, a nonlinear density based optimization method for electromagnetism is used. The
approach was limited to a nonlinear problem considering a 2D nodal finite element formulation with
conforming grids. In [17], multiple design variables for a simultaneous optimization of domains with
different material properties are introduced. A concurrent coil and yoke optimization in electromagnetism
is performed in [18]. A magnetic field optimization driven by a permanent magnet is considered in [19].
The magnetic energy in a harmonic excited magnetic field is maximized in [20]. The design dependency
is introduced via the magnetic permeability. All the mentioned approaches are applied to 2D problems.
Besides, conform meshes are used in the different approaches. By the authors best knowledge a density
based optimization approach for nonlinear electromagnetism was not applied to electromagnetic actuators
in 3D considering nonlinear material behaviour and using non-conforming grids.

With this in mind, we extend our SIMP approach for the magnetostatic case from [16], to perform
nonlinear electromagnetic optimizations in a 3D edge finite element formulation. The design variables
are introduced via the magnetic reluctivity. In addition, non-conforming interfaces are used to minimize
numerical errors caused by distorted elements as the research in [21] shows. The implementation is
applied to an electromagnetic actuator, for which the yoke domain is optimized.

2. Physical equations

According to Maxwell’s equations the magnetic flux density B is divergence free
∇ ⋅ 𝑩 = 0. (1)

To guarantee a solenoidal field, a magnetic vector potential A is introduced by
𝑩 = ∇ × 𝑨 (2)

and the partial differential equation (PDE) for the magnetostatic case excited by current reads as [22]
∇ × 𝜈∇ × 𝑨 = 𝑱𝑖. (3)

Therein, 𝜈 denotes the magnetic reluctivity and Ji the impressed current density. The standard finite
element approach results in the algebraic system as

𝑲𝐴 = 𝑓, (4)

with the global stiffness matrix K, the vector of unknowns A, and the right hand side vector f . A detailed
derivation is given in [23].

Assuming an isotropic material, the magnetic flux density B and magnetic field intensity H is related
by

𝑩 = 1
𝜈 𝑯. (5)

The magnetic reluctivity 𝜈 is defined for isotropic ferromagnetic materials via
𝜈 = 𝜈0𝜈𝑟, (6)
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Fig. 1. Nonlinear B–H curve in electromagnetism.

with the material dependent magnetic reluctivity 𝜈r and the reluctivity defined in vacuum 𝜈0. The nonlinear
material relation between B–H for a ferromagnetic material is plotted in Fig. 1.

To solve the nonlinear PDE in (3), an operator

ℱ (𝑨) = 0 (7)

is introduced. Following the approximation in [23], a linearization of (7) results in

ℱ ≈ ℱ (𝑨𝑘) + ℱ ′(𝑨𝐾 )[𝑺] (8)

with Ak+1 = Ak + S. Therein, the term ℱ ′(AK)[S] denotes the Frechét derivative of ℱ at Ak in the direction
of S and is used as discussed in [24] and [25]. The linearized form of the Frechét derivative results in

ℱ ′(𝑨𝐾 )[𝑺] ≈ ℱ (𝑨𝑘 + 𝑺) − ℱ (𝑨𝑘). (9)

Based on [23] and [26], the weak form of the PDE in (3) reads as follows: Find A ∈ H0(curl) with the
Sobolev space

𝑯0(curl) = {𝝍 ∈ (𝐿2(Ω)3) ∣ ∇ × 𝝍 ∈ (𝐿2(Ω)3), 𝒏 × 𝝍 = 0 on Γ} (10)

such that

∫Ω
𝜈(|∇ × 𝑨|)(∇ × 𝑨) ⋅ (∇ × 𝑨′)𝑑Ω = ∫Ω

𝑱𝑖 ⋅ 𝑨′𝑑Ω (11)

for all test functions A′ ∈ H0(curl). There, 𝛺 considers a domain with boundary 𝛤 . Subsequently, we
arrive at fixed point method by

𝑲(𝐴𝑘)𝑆 = 𝑓 − 𝑲(𝐴𝑘)𝐴𝑘. (12)

Here, K is the global stiffness matrix depending on the magnetic vector potential Ak in the k-th iteration,
S is the vector of unknowns, and f is the right hand side vector. A detailed derivation can be found in [23]
and [27]. The updating procedure for the magnetic vector potential is performed by

𝐴𝑘+1 = 𝐴𝑘 + 𝜂𝑆. (13)

The variable 𝜂 in (13) takes care for a non monotonic material relation and controls the convergence
during the early steps of iteration. To determine the optimal relaxation parameter 𝜂, a line search method
as explained in [28] is used.



un
cor

rec
ted

pro
of

ver
sio

n

4 P. Seebacher et al. / A pseudo density topology optimization approach in nonlinear electromagnetism

Fig. 2. Pole force evoked due to a permeability change with 𝜇1 > 𝜇2.

The physical quantity to optimize in this approach is the electromagnetic force at an interface as shown
in Fig. 2, which is evoked by a permeability change. There are different approaches to compute the pole
force as explained in [29] and [30]. We are following the ideas in [31] and [32] to compute the force by
the use of Maxwell’s stress tensor. In [22], the Maxwell stress tensor is defined by

[𝒇𝜎,mag] = 𝑯 ⊗ 𝑩 − 1
2

(𝑩𝑯)𝑰. (14)

Therein, I stands for the identity matrix. The surface force density is obtained by

𝒇𝜎,mag = 𝑯(𝑩 ⋅ 𝒏) − 1
2

(𝑩 ⋅ 𝑯)𝒏, (15)

with the normal vector n. Finally, the pole force acting on the surface can be computed by

𝑭mag = ∫V
∇ ⋅ [𝒇𝜎,mag]𝑑𝑉 = ∮S

𝒇𝜎,mag𝑑Γ. (16)

The force computation by the use of Maxwell stress tensor requires a high mesh quality around the objects
of interest as discussed in [33]. This is associated with a fine mesh discretization at the interface. A
structured mesh with a high discretization rate results in an increase of computational effort due to the
major amount of unknowns. The use of an unstructured mesh leads to numerical errors caused by distorted
elements. This is why non-conforming interfaces as shown in [23] are introduced. Therein, Nitsche-type
mortaring is based on the idea of discontinuous Galerking finite element methods at the interface as shown
in [21] and [34]. The algebraic system results in

𝑲𝐴 + 𝑲Γ𝐴 = 𝑓. (17)

Therein, K𝛤 is a symmetric coupling matrix. Further information is provided in [21] and [23].

3. Nodal and edge based finite element formulation

In electromagnetism, it is important to model the interface conditions between two media with different
material properties in a correct physical manner. Thereby, the magnetic vector potential has to fulfill the
following transmission conditions

𝑨 × 𝒏 = 0 and 𝒏 × 𝜈∇ × 𝑨 = 0. (18)

A detailed derivation is given in [35]. In the 2D case, nodal elements are sufficient, because the interface
conditions are fulfilled. In the 3D case, we have to use an edge based finite element formulation. Further
information can be found in [36] and [37].
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4. Topology optimization using the SIMP approach

Element wise design parametrization – or, as it is usually called, the SIMP approach – allows to
formulate a material distribution problem of the type first discretize, then optimize. Based on the finite
element discretization, we use element wise design variables 𝜌e with the property

𝜌𝑒 = {
1 for solid material and
0 for air,

�

forming the vector 𝜌 of design elements. The efficiency and success of the SIMP approach in solving
design problems with a high number of design variables comes from the applicability of gradient based
optimizers. For this purpose, differentiability is obtained by relaxing the parametrization to continuous
variables 0 ≤𝜌e ≤1. The design variable is introduced in [12] via the magnetic permeability. The approach
in [13] and [6] shows, that sensitivity analysis is more stable by introducing the magnetic reluctivity 𝜈 as

𝜈(𝜌𝑒) = 𝜈0(1 + (𝜈𝑟 − 1)𝜌𝑒), (19)

with the magnetic reluctivity in vacuum 𝜈0 and the material dependent magnetic reluctivity 𝜈r. Elements
with a design variable 𝜌e≠ 0 or 𝜌e≠ 1 are called gray scale elements. Their material state is physically
undefined. In the classical application of the SIMP approach (elastic stiffness maximization), the design
variable is subject to an interpolation, typically power law, and some form of regularization, typically
filtering. Hence a physical design variable ̄𝜌𝑒 = ℋ (𝜌𝑒)𝑝 with filter function ℋ and a so called penalization
parameter p is used [10]. A filter technique is in the present case not required. Compared to [12], the
problem is penalized with p = 1. A general discussion of this topic is provided in [38].

The parametrization leads to design dependent element stiffness matrices 𝑲𝑒(𝜌𝑒). The design dependent
global system matrix K(𝜌) has to be recomputed at each iteration of the optimization problem. For this,
the converged stiffness matrix from the nonlinear PDE in (12) is used for assembling.

5. Sensitivity analysis by using the adjoint method

Our motivation is to maximize the attractive force Fmag in (16), typically acting on a specified interface.
Equivalently, we may maximize the magnetic flux density B within a specified region. Any objective
function to be optimized needs to provide a scalar value. We introduce the field function

𝐽𝐵(𝒙) = ⟨𝑩(𝒙), 𝑫(𝒙)𝑩(𝒙)⟩. (20)

Therein, a selection matrix 𝑫 ∈ ℝdim×dim allows to select a desired direction of the magnetic flux density
as discussed in [14] and [15]. In the discrete finite element setting, (20) can be rewritten as

𝐽 𝑒
𝐵 =

𝑁ip

∑
𝑖=1

𝐴𝑒(ℬ
⊤
𝑒,𝑖𝑫𝑒 ℬ𝑒,𝑖)𝐴𝑒. (21)

In (21) 𝐽 𝑒
𝐵 is the field function for element e, Ae is the element solution vector for the magnetic vector

potential, ℬ𝑒 is the element wise curl operator to be evaluated at all N ip quadrature points, and D the
selection matrix on element level. This follows the standard approach for setting up the finite element
system, see [39] for more details.
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The optimal design with respect to maximum force Fmag would be

𝐽 int
𝐵 = ∮A

𝐽𝐵(𝒙) 𝑑𝒙, (22)

in which x is the location, or in discrete form

𝐽 sum
𝐵 =

NA

∑
𝑒=1

Nip

∑
𝑖=1

𝐴𝑒(ℬ
⊤
𝑒,𝑖𝑫𝑒 ℬ𝑒,𝑖)𝐴𝑒, (23)

with the set of chosen elements NA. We can formally write (23) also in terms of the global finite element
system as

𝐽 glob
𝐵 = ⟨ℬ𝐴, 𝐷 ℬ𝐴⟩. (24)

The optimization problem to maximize the magnetic force via the magnetic flux density can now be stated
as

�
max ⟨ℬ𝐴, 𝐷 ℬ𝐴⟩

subject to 𝑲(𝜌)𝐴 = 𝑓,
𝜌𝑒 ∈ [0; 1], ∀𝑒 ∈ 𝑁Ω.

⎫⎪
⎬
⎪⎭

(25)

In this approach we add a resource constraint for all design variables within the set of element indices N𝛺.
In [12] the sensitivities are obtained from the continuum based equilibrium. In this approach we use

the discretized equilibrium. The equivalent augmented cost function reads as

Φ𝐵 = ⟨ℬ𝐴, 𝐷 ℬ𝐴⟩ + 𝜆⊤(𝑲(𝜌)𝐴 − 𝑓). (26)

Deriving (26) with respect to the design variable and sorting the state dependent terms results in

dΦ𝐵
d𝜌𝑒

= (2 𝐴⊤(ℬ⊤𝐷ℬ) + 𝜆⊤𝑲(𝜌))
𝜕𝐴
𝜕𝜌𝑒

+ 𝜆⊤
𝜕𝑲(𝜌)

𝜕𝜌𝑒
𝐴. (27)

The expression 𝜕𝐴
𝜕𝜌𝑒

in (27) is expensive to compute. Hence, we choose 𝜆 such that the first term in (27)
becomes zero, which is obtained when 𝜆 solves

𝑲(𝜌) 𝜆 = −2 (ℬ⊤𝐷 ℬ)𝐴. (28)

Therein, we make use of a symmetric system matrix K(𝜌). To compute the adjoint system (28), we use
the converged system matrix K. Using a direct solver, based on LU decomposition, the solution of the
additional adjoint system comes by a minor cost. Since 𝜆 solves (28), the objective function in (27)
computes as

dΦsum
𝐵

d𝜌𝑒
= 𝜆⊤

𝜕𝑲(𝜌)
𝜕𝜌𝑒

𝐴. (29)

For numerical efficiency, (28) can be implemented on element properties, similar to (23). As 𝜕𝑲(𝜌)
𝜕𝜌𝑒

has
only contributions from a single element, (29) can be efficiently implemented as

dΦsum
𝐵

d𝜌𝑒
= 𝜆⊤

𝑒

𝜕𝑲𝒆(𝜌)
𝜕𝜌𝑒

𝐴𝑒. (30)
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Fig. 3. Optimization workflow for a topology optimization using SIMP method.

The procedure is repeated until the convergence criterion is fulfilled. Density based topology optimization
problems come with a large number of design variables and a first order sensitivity information which
asks for a special class of optimizers. We have best results using SNOPT [40] and the Method of Moving
Asymptotes (MMA) based SCPIP [41]. Alternatively the open source code IPOPT [42] may be used.
The workflow of the optimization procedure is shown in Fig. 3 and is implemented in the finite element
software CFS++ [43].

6. Numerical results

The electromagnetic actuator in 2D which has to be optimized is displayed in Fig. 4(a). It consists
of a yoke, an anchor and a copper coil. A nonlinear material behaviour is assumed for the yoke and the
anchor. Applying non-conforming interfaces based on Nitsche-type mortaring, we arrive at a non-conform
mesh as shown in Fig. 4(b). The discretized configuration is optimized by a density based optimization
approach. The copper coil is impressed by a current density

𝑱i = 𝐼𝑁𝑐
Γ𝑐

𝒆𝐽 . (31)
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Fig. 4. 2D reference configuration for optimization.

Fig. 5. Optimization of the electromagnetic actuator from Fig. 4(a). An initial design variable was assumed by 𝜌e = 0.4. The
air gap distance between yoke and anchor was 1 mm. Additionally, a nonlinear material behaviour was assumed for yoke and
anchor.

Therein, I is the impressed current, Nc are the windings, 𝛤 c is the coil cross section and eJ is the vector
pointing into the direction of the current. An electromagnetic field is generated in the yoke. The field
lines between yoke and anchor are closed via an air gap. Furthermore, a nonlinear material behaviour was
assumed for yoke and anchor. For discretization quadrilaterals with nodal elements of first order were
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Fig. 6. Comparison of the magnetic leakage flux for the nonlinear case in the air gap between the poles of the yoke along the
dashed line from Fig. 4(a) between reference configuration (see Fig. 4(a)) and optimized design (see Fig. 5(a)). Here, the variable
𝛿 represents the range from the coil towards the anchor.

used. Furthermore, the outer boundary of the surrounded air domain has to fulfill the condition

𝑩 ⋅ 𝒏 = 0 → 𝑨 × 𝒏 = 0, (32)

with n defined as the normal vector. Our goal is to increase the magnetic force between anchor and yoke
by optimizing the yoke domain. Besides, SNOPT from [40] was used as optimizer. The air gap distance
between yoke and anchor was assumed with 1 mm. The finite element simulation was performed with
a non-conform grid as shown in Fig. 4(b). Figure 5(a) shows the optimized result by the use of a non-
conform mesh. The magnetic flux density is uniformly distributed over the cross section of the geometry.
In contrast to the nonlinear solution presented in [12], the obtained result does not show any holes in the
optimized topology. The convergence behaviour of the force is plotted in Fig. 5(b).

Obviously, a leakage flux between the two poles of the yoke (crossing the dashed line in Fig. 4(a)) can
be minimized by expanding the gap between the two poles of the yoke as shown in Fig. 6. Therein, the
magnetic leakage flux is plotted along the dashed line from Fig. 4(a). The variable 𝛿 in Fig. 6 represents the
range from the coil towards the anchor as shown in Fig. 4(a). A further material reduction is performed
in the upper and lower corners of the actuator as Fig. 5(a) shows. Moreover, the optimization results
depend on the air gap distance between yoke and anchor as shown in Fig. 7. Therein, the air gap between
yoke and anchor was varied in the range of 0.05 mm until 2 mm. Moreover, the initial design variable
was chosen with 𝜌e = 0.4 to obtain results under equal conditions. The results show a difference in the
magnetic field distribution as well as in the optimized actuator design, especially at the poles of the yoke.
The optimization was performed with a nonlinear material behaviour. Figure 8 shows the convergence of
the force during optimization. For comparison, the values were standardized to the maximum force value
of each curve. At the beginning of the optimization process there were differences in the convergence
behavior. These disappear with an increasing number of iterations. Nevertheless, minor deviations occur
due to the different material saturation states.

A 3D model of an electromagnetic actuator is shown in Fig. 9(a). It consists of a yoke and an anchor
with nonlinear material behaviour. The impressed current density follows Eq. (31). On the outer boundary,
(32) has to be fulfilled. Edge elements are used to fulfill the interface conditions. The non-conforming
mesh in the air gap is shown in Fig. 9(b). Because of the major computational effort in 3D, symmetry
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Fig. 7. Optimized solution using non-conforming meshes in the air gap. The air gap distance between yoke and anchor is varied.
A nonlinear material behaviour for anchor and yoke was taken into account.

conditions are used for symmetry plane 1 and 2 as shown in Fig. 9(a). A constant air gap between yoke
and anchor of 1 mm was assumed.

The convergence behaviour is plotted in Fig. 10. Therein, a nonlinear material behaviour for the yoke
and anchor was assumed. The optimization procedure starts with an initial design variable of 𝜌e =0.4. The
obtained result is presented in Fig. 11(a). Figure 11(b) shows the optimized geometry from the front, and
Fig. 11(c) from the rear side. Equally to the 2D example, a material reduction took place in the upper and
lower corners of the yoke. The same applies to the poles of the yoke. Especially on the rear side of the yoke
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Fig. 8. Force behaviour during iteration for different air gaps. The values were standardized to the maximum force value of each
curve.

Fig. 9. 3D reference configuration for optimization.

a major material reduction was performed. For comparison, optimization was also carried out under the
assumption of a linear material behavior. The final result is presented in Fig. 12. A mentionable difference
occurs at the poles of the yoke. This can be attributed to the increased magnetic flux concentration in the
finite elements under the assumption of a linear magnetic material behaviour.
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Fig. 10. Convergence plot of a density based optimization. The reference configuration (full material) is shown in Fig. 9(a). The
optimization starts with 𝜌e =0.4. Non-conform interfaces are used in the air gap. The air gap distance between yoke and anchor
is 1 mm. Additionally, a nonlinear material behaviour is assumed for yoke and anchor.

Fig. 11. Optimized 3D geometry, assuming a nonlinear material behaviour for yoke and anchor. Interface conditions are fulfilled
by the use of edge elements. Non-conforming interfaces are used in the air gap between yoke and anchor. The air gap distance
between yoke and anchor is 1 mm.
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Fig. 12. Optimized 3D geometry, assuming a linear material behaviour for yoke and anchor. Interface conditions are fulfilled
by the use of edge elements. Non-conforming interfaces are used in the air gap between yoke and anchor. The air gap distance
between yoke and anchor is 1 mm.

7. Conclusion and outlook

We showed a pseudo density topology optimization approach for the maximization of the magnetic
force in the magnetostatic setting based on nonlinear material modeling, which is applicable in 3D.
Additionally, non-conforming interfaces were introduced to prevent numerical errors due to distorted
elements. Moreover, the number of unknowns reduces strongly.

The formulation of the objective function allows to maximize the magnetic flux density for a prescribed
direction, and thus the magnetic force in a selected region. The pseudo density topology optimization
parametrization (also known as SIMP1 model) is used in combination with the adjoint approach. The
sensitivity was derived from the discrete equilibrium. The design variables interpolate via the magnetic
reluctivity between air and iron. An increase in penalization on the design variables was not necessary
to obtain a clear distinct result. The optimization was performed without a volume constraint. By this,
the obtained designs are of optimal shape with optimal volume fraction. In 3D edge elements are applied

1Solid Isotropic Material with Penalization
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to fulfill the interface conditions. Besides, non-confoming interfaces are used to prevent numerical errors
due to distorted elements. By this, the obtained designs are of optimal shape with optimal volume fraction.
The gap between the poles in the optimized designs is such that the leakage flux is significantly below
the flux of the initial configuration. Furthermore, the sharp corners of the yoke have been removed and
results in a weight reduction.
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