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Abstract—An accurate analytic model of a parametrically
driven resonant MEMS mirror is proposed using a Fourier series
based approximation for out-of-plane comb drive torque. The
analytic model consists of slow evolution equations of the ampli-
tude and phase derived by the averaging theorem of perturbation
theory. Based on the model, analytic expressions of the primary
frequencies and Jacobian are derived, which are computationally
efficient and provide additional information on the steady state
solutions and local dynamics. Measurement results of frequency
response show less than ±0.04 % in frequency errors from
the model for various input voltages, i.e. less than ±0.8 Hz
for the case of a mirror with 2 kHz natural frequency. The
eigenfrequency and damping of the Jacobian matrix show a good
agreement with measured local dynamics as well. This verifies
the high accuracy of the proposed model, which can be used
for improvement of the MEMS mirror design parameters and
control design for large amplitude operation.

Index Terms—MEMS Mirror, Parametric Resonance, Duffing
Equation, Perturbation Theory, Discrete Fourier Transform,
Bessel Function, Automotive Lidar

I. INTRODUCTION

MEMS scanning mirrors of the resonant type have re-
ceived much attention for various applications such as

beam steering in automotive lidars thanks to their compact-
ness, robustness, scalability, compatibility for integration in
electronic systems, long life time, and low unit costs in large
volume production [1], [2]. Especially for long range lidars,
resonant MEMS mirrors are of high interest as a supporting
technology for autonomous driving in various harsh driving
conditions such as a wide range of temperature, pressure
and vibration [3]–[9]. If equipped with electrostatic actuation,
MEMS mirrors represent a parametrically driven oscillator
because of the explicit dependence of the driving torque on
the state variable of the oscillator, i.e. the position. Accurate
modeling of such resonant MEMS mirrors is crucial to derive
design requirements from application, to evaluate the perfor-
mance of a given design, and to improve design parameters,
operation conditions, and control design for MEMS scanning
systems [10]–[15]. Furthermore, the model should properly
describe the behavior at large amplitudes, which are operating
points for most applications.
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Analytic models of MEMS mirrors with torsional out-of-
plane comb drive actuators are mainly used for qualitative
analysis, e.g. for finding unstable regions of the parametric
resonance. The accuracy of the analysis depends on the
approximations of the comb drive torque. A cubic polynomial
approximation is most popular for stability analysis at small
amplitudes [12], [16], [17] since it directly leads to the
renowned Hill’s equation and given results of Floquet theory.
Pioneering work has investigated the instability regions of
the first five parametric resonances for a MEMS oscillator
and investigated the effects of cubic nonlinearities [18]–[21].
The derivative of the Gaussian function has been used as
an approximation of the comb drive torque for an analysis
of rectangular voltage inputs with various duty cycles [10],
[11]. A piecewise approximation is proposed for an analysis
of stiffness variation by extra comb drives [22]. Rational
functions and hyperbolic functions are also used for analytic
approximation of the vertical movement of a cantilever or
comb drive torque [23]–[25]. However, cubic models are
accurate only for small amplitudes [16], [25], piecewise mod-
els contain non-analytic points, and the other approximations
by Gaussian, rational, and hyperbolic functions usually have
limited accuracy to describe the highly nonlinear torque of the
out-of-plane comb drives.

For modeling at large amplitudes, brute force ODE simu-
lation is typically used instead to evaluate the MEMS mirror
frequency response [11], [14]. Continuation technique [26],
[27] is also applied for analysis of the stable and unstable
branches [12], [28]. However, such numerical evaluations are
typically time-consuming and provide limited analytic infor-
mation about stationary solutions. A linearized local model
at large amplitudes is derived for a phase locked loop (PLL)
based on the timing control concept under assumptions of a
rectangular input waveform and a specific phase constraint in
operation [15]. For other MEMS devices such as gyroscopes,
translational motions for a nonlinear harmonic oscillator with
longitudinal in-plane comb drives are described by analytic
models using perturbation technique [29], [30]. Thanks to
a fine approximation of the comb drive force, the analytic
models can accurately describe the hardening and softening
behavior of the frequency response including large amplitudes.
For parametrically driven MEMS mirrors with out-of-plane
comb drive actuators, however, there is no analytic model yet
that accurately describes the behavior of the mirror over its
full operation range [12], especially at the large amplitudes
that are routinely reached in applications.
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Fig. 1. Perspective view of an out-of-plane electrostatic comb drive for a
resonant MEMS mirror. At non-zero deflection angle, an actuation voltage
between the stator and the rotor generates a torque acting in the opposite
direction, i.e. pulling the drive towards the zero angle state with the maximum
capacitance.

The main contribution of this paper is an accurate an-
alytic model of the parametrically driven resonant MEMS
mirror for a wide amplitude range. The comb drive torque
is approximated by a finite set of analytic functions using
discrete Fourier transform (DFT). A frequency domain anal-
ysis of the driving torque function is chosen instead of the
conventional Taylor expansion in the spatial domain because
of the highly nonlinear dependency on angle and because it
can be generalized to arbitrarily shaped driving terms. The
perturbation technique in [29]–[31] with the Fourier series
based torque approximation leads to a slow flow evolution of
the amplitude and phase with a series of Bessel functions.
This provides an analytic form of the frequency response
for the global dynamics and a Jacobian that describes the
local dynamics of the MEMS mirror. The analytic solution
also allows computationally efficient numerical simulation and
permits additional analysis of stationary solutions, e.g. the
crossover between the solutions at large amplitudes.

The rest of the paper is organized as follows. First, a
single degree of freedom (SDoF) model of the MEMS mirror
is described in Section II. Then section III describes an
approximation of the comb drive torque by a Fourier series and
derives a slow flow model, the analytic solution of the primary
frequencies, and the Jacobian matrix. The proposed model is
verified by measurement data of the frequency response and
the local dynamics in Section IV. Then Section V summarizes
the main outcomes of the paper.

II. SDOF MODEL OF RESONANT MEMS MIRROR

Consider a single degree of freedom (SDoF) model for the
mechanical deflection angle θ of the resonant MEMS mirror
as a generalized Duffing equation [14], [32]

Iθ̈ + c(Θ)θ̇ + k(θ)θ =
1

2

dC
dθ

V 2(t), (1)

where I denotes the inertia of the mirror, c is the averaged
damping function of the amplitude of the mirror Θ [14], and

k denotes the nonlinear stiffness function defined as

c(Θ) = c0 + c1Θ+ c2Θ
2 + c3Θ

3 + c4Θ
4 + c5Θ

5, (2)

k(θ)θ = k1θ + k3θ
3 + k5θ

5 + k7θ
7, (3)

where ci denotes the nonlinear damping coefficient of the
i-th polynomial term of Θ and ki denotes the nonlinear
stiffness coefficient of the i-th polynomial term of θ in (1).
The averaged damping function is an approximation of the
damping behavior as a function of amplitude that is based
on the average energy loss per mirror period, which can be
identified by the measured energy loss per period during a
passive decay [14], [33]. The constant terms of (2) and (3),
i.e. c0 and k1, represent the linear terms of damping and
stiffness, e.g. viscous damping and Hooke’s spring constant,
respectively. The orders of (2) and (3) are chosen as 5 and 7
based on a prior study [14], respectively, to obtain a close fit
of the measured data. The specific polynomial orders could
also be chosen lower or higher for the purpose of the present
analysis without changing the principal insights provided by
the following derivations.

The actuation torque is described by the angular derivative
of the comb drive capacitance dC/dθ and the actuation voltage
of V (t). For convenience of the analysis, the input voltage is
set by a square rooted sine as [16]

V (t) = U

√
1 + cosΩt

2
, (4)

where U is the peak input voltage and Ω denotes the actuation
frequency. Due to the unidirectional pulling torque by out-
of-plane comb drive actuators, the resonant MEMS mirror
is parametrically excited. This results in oscillations within
certain instability regions of the parameter space (U × Ω).
The first order parametric resonance requires twice the mirror
frequency for the actuation frequency in steady state [34].

III. ACCURATE ANALYTIC MODEL OF MEMS MIRROR

A. Fourier Series Based Approximation of a Out-of-Plane
Comb Drive Torque

For perturbation analysis, the nonlinear dynamics of (1)
are desirably analytic for all mirror angles. However, the
derivative of the comb drive capacitance is highly nonlinear
and varies with the structure of the comb drive. Fig. 1
illustrates a perspective view of an out-of-plane comb drive
actuator. The electrode overlap area of the rotor and the stator
defines the rough capacitance, which can be described by a
piecewise function of the angle in large amplitude operation
[22]. Including the fringe effect between the stator and the
rotor, the precise capacitance and its angular derivative are
highly nonlinear in general and are also dependent on the
specific comb drive design.

A Fourier series based approximation is proposed for an
accurate model of the angular derivative of the comb drive
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Fig. 2. (a) Measured angular derivative of the comb drive capacitance and
its approximation by Fourier series for various NL. (b) magnitude of Fourier
coefficients of a0(n) and b0(n) for N = 512. The 50th index is indicated by
a magenta dashed line for NL.

capacitance as

dC
dθ

= a0(0) +

NL∑

n=1

2a0(n) cos
(πnρ0

N
θ
)

+

NL∑

n=1

2b0(n) sin
(πnρ0

N
θ
)
, (5)

where a0(n) and b0(n) denote Fourier coefficients by DFT,
which are scaled for convenience of the analysis as

a0(n) =
1

N

N/2−1∑

l=−N/2

dC

dθ

∣∣∣∣
θ=2ρ−1

0 l

cos

(
2πnl

N

)
, (6)

b0(n) =
1

N

N/2−1∑

l=−N/2

dC

dθ

∣∣∣∣
θ=2ρ−1

0 l

sin

(
2πnl

N

)
, (7)

where N denotes the even number for discretization of the
comb drive torque, and NL denotes the finite number of sum-
mands for the approximation. The scaling factor of ρ0 defines
a span to the maximum amplitude Θmax, i.e. ρ0 = N/Θmax.
The maximum amplitude is chosen to be larger than the range
of the scanning angle since (5) defines dC/dθ as a periodic
function of periodicity 2Θmax, i.e. the approximation is not
valid for θ > Θmax. Essentially, (5) is a representation of a
Fourier series based approximation and the DFT in (6) and
(7) is a tool to find the Fourier coefficients in (5). In addition,

(5) is defined by even and odd functions via the respective
coefficients in (6) and (7). For most resonant mirrors, however,
only coefficients b0(n) of the sine terms can be sufficient
since dC/dθ is typically dominated by odd contributions and
vanishes at zero angle [12], [14]. This is a consequence of the
typical symmetric design of the comb drive actuator relative to
the rotation axis and the use of the same layer in the fabrication
process for the stator and the rotor in most devices.

Fig. 2 illustrates a measured angular derivative of the
comb capacitance and its approximation with a finite number
of Fourier coefficients b0(n). For a good convergence in a
finite NL, a discontinuity between the positive and negative
maximum amplitude can be removed by a constraint, i.e.
dC(Θmax)

dθ = dC(−Θmax)
dθ = 0 using linear extrapolation. The

magnitude of the coefficients shows that the magnitude of high
frequency terms is gradually decreased and reaches a noise
floor around n > 50. This limited bandwidth can originate
from the geometry of the comb drive capacitance or the band-
width of the sensing circuit. By the Fourier approximation,
these noisy high frequency terms are truncated while the major
feature of the capacitance derivative is approximated with high
accuracy. In addition, the perfect symmetry of (−Θ, 0) and
(0,Θ) with respect to the origin results in only sine coefficients
b0(n) from (7), and this also limits the number of coefficients
for computation. This leads to an analytic representation of the
comb drive torque by a finite number of Fourier coefficients.

B. Slow Flow Model of MEMS Mirror

By introducing a dimensionless state variable x = θ/θ0,
amplitude A = Θ/θ0, normalized time τ = t/t0 where
t0 =

√
I/k1, which is the inverse of the linear mirror

angular frequency w0 =
√
k1/I , and the normalized actuation

frequency Ωa = Ωt0, a dimensionless dynamic equation can
be derived from (1), (4) and (5) as

ẍ+ 2µ(A)ẋ+ x+K3x
3 +K5x

5 +K7x
7 = (1 + cosΩaτ)

×
(
1

2
a(0) +

NL∑

n=1

a(n) cos (ρnx) + b(n) sin (ρnx)

)
, (8)

where the dimensionless damping and stiffness coefficients
and actuation parameters are defined by

µ(A) =
c(Aθ0)t0

2I
, K3 =

k3θ
2
0t

2
0

I
, K5 =

k5θ
4
0t

2
0

I
, K7 =

k7θ
6
0t

2
0

I
,

a(n) =
U2t20a0(n)

2Iθ0
, b(n) =

U2t20b0(n)

2Iθ0
, ρ =

πθ0ρ0
N

. (9)

Based on perturbation theory [30], [31], (8) can be rewritten
as

ẍ+ σ2x = ϵ

[
− 2µ(A)ẋ+

(
σ2 − 1

)
x−K3x

3 −K5x
5 −K7x

7

+(1 + cosΩaτ)


1

2
a(0) +

NL∑

n=1

a(n) cos (ρnx) + b(n) sin (ρnx)




 ,

(10)

where ϵ is a dimensionless parameter, which is used as a
bookkeeping device [29], [31], [35] for separating the large
terms from the small terms. For weakly nonlinear oscillators,
where the damping term is assumed small, it isolates the linear
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terms from the nonlinear terms including damping in (8). The
value of ϵ scales the nonlinearity and the full nonlinearity
is defined by ϵ = 1 [30], [35]. The normalized frequency
of the mirror is denoted by σ and equals one half of the
actuation frequency in the first order parametric resonance,
i.e. σ = Ωa/2. The term of σ on the right hand side corrects
the frequency error compared to the linear natural frequency
1/t0 on the left hands side [30]. The slow times can be
defined by scaling as Ti = ϵiτ , i.e. T1 = ϵτ , and the fast
time can be rewritten as T0 = τ . First order perturbation
theory decomposes the solution as x = x0 + ϵx1 for small
nonlinear terms. The partial derivative operators are defined
as Di =

∂
∂Ti

, i.e. D0 = ∂
∂T0

and D1 = ∂
∂T1

. Only considering
terms with ϵ0 and ϵ1, Eq. (10) can be rewritten as

D2
0x0 + σ2x0 = 0, (11)

D2
0x1 + σ2x1 = Ψ(x0, σ, T0)− 2D0D1x0, (12)

where a nonlinear function Ψ is defined as

Ψ(x0, σ, T0) = −2µ(A)D0x0 +
(
σ2 − 1

)
x0 −K3x

3
0 −K5x

5
0

−K7x
7
0 + (1 + cos 2στ)

(
1

2
a(0)

+

NL∑

n=1

a(n) cos (ρnx0) + b(n) sin (ρnx0)

)
.

Since (11) is an ordinary undamped harmonic oscillator, the
solution can be written as

x0 = A(T1) cos (σT0 + β (T1))︸ ︷︷ ︸
ω

, (13)

where A(T1) and β(T1) denote the dimensionless amplitude
and phase in slow time evolution, respectively. The dimen-
sionless amplitude has already been used in the description
of the nonlinear damping function. By solvability condition
[29]–[31], the solution of (11) and (12) satisfies

∫ 2π

0

[Ψ(x0, σ, T0)− 2D0D1x0] e
−iωdω = 0. (14)

For the calculation of the averaging integrals of the sine terms
of the comb drive capacitance in (14), the following identities
help.

Lemma 1. The average of a period for the sine terms of the
comb drive torque in (5) is given by

∫ 2π

0

sin (ρnA cosω) cosω dω = 2πJ1(ρnA), (15)
∫ 2π

0

sin (ρnA cosω) sinω dω = 0, (16)
∫ 2π

0

sin (ρnA cosω) cosω cos (2ω − 2β) dω

= 2π

(
J1(ρnA)− 2

J2(ρnA)

ρnA

)
cos 2β, (17)

∫ 2π

0

sin (ρnA cosω) sinω cos (2ω − 2β) dω

= 2π

(
2
J2(ρnA)

ρnA

)
sin 2β, (18)

where Jν(z) is the Bessel function of the first kind.

The proof of the lemma is given in Appendix A. Further-
more, the integrals for cosine terms in (5) can be obtained
from the following corollary.

Corollary 2. The average of a period of the cosine terms in
the comb drive torque is given by

∫ 2π

0

cos (ρnA cosω) cosω dω = 0, (19)
∫ 2π

0

cos (ρnA cosω) sinω dω = 0, (20)
∫ 2π

0

cos (ρnA cosω) cosω cos (2ω − 2β) dω = 0, (21)
∫ 2π

0

cos (ρnA cosω) sinω cos (2ω − 2β) dω = 0. (22)

Moreover, the terms related to a(0) vanish in (14) by
trigonometric identities. With Corollary 2, this means that
even contributions of the capacitance derivative a(n) including
a(0) of an asymmetric comb drive would not influence the
mirror dynamics for parametrically driven MEMS mirrors.
This is due to the fact that the actuation frequency of the first
order parametric resonance is twice the mirror frequency. Even
torque contributions from a(n) annihilate themselves over a
full mirror period and the corresponding net energy injection
is zero.

By the lemma and corollary, the slow flow mirror dynamics
are obtained by splitting the real and the imaginary part of the
integral in (14), each of which has to vanish separately. For
positive amplitude, i.e. A > 0, the slow flow amplitude and
phase evolution of (13) for the dimensionless mirror dynamics
(8) are

dA
dT1

= −µ(A)A− σ−1J̃S(A) sin(2β), (23)

dβ
dT1

=
3K3A

2

8σ
+

5K5A
4

16σ
+

35K7A
6

128σ
− (σ2 − 1)

2σ

− σ−1
(
J̃Z(A) + J̃C(A) cos(2β)

)
, (24)

where the amplitude-dependent sine, constant, and cosine
actuation coefficients are defined by

J̃S(A) =

NL∑

n=1

2b(n)

(
J2(ρnA)

ρnA

)
, (25)

J̃Z(A) =
1

A

NL∑

n=1

b(n)J1(ρnA), (26)

J̃C(A) =
1

A

NL∑

n=1

b(n)

(
ρnAJ1(ρnA)− 2J2(ρnA)

ρnA

)
, (27)

and the primary frequency of equilibrium is

σ =

[
1 +

3K3A
2

4
+

5K5A
4

8
+

35K7A
6

64

−2J̃Z(A)± 2J̃C(A)

√
1−

(−µ(A)Aσ

J̃S(A)

)2


1/2

. (28)
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The detailed derivation is given in Appendix B. The averaged
damping is keeping its form during the derivation, indicating
that it is a part of the slow flow approximation of various
damping effects. The primary frequency can be obtained by
an iterative manner for a given amplitude, starting from σ = 1.
The backbone curve, which describes the amplitude-frequency
dependence of free oscillations without actuation, is obtained
by setting the voltage input to zero, i.e. J̃Z(A) = J̃C(A) =
J̃S(A) = 0 [32]. The peak amplitude is obtained when σ has
an equal root for A, i.e. |µ(A)Aσ| = |J̃S(A)|.

The stability of the equilibrium can be analyzed by the
Jacobian matrix at the equilibrium. Assume a solution and
its small deviations of ξ and ζ from a steady state as [36]

Ai(T1) = Āi + εξ(T1),

βi(T1) = β̄i + εζ(T1), (29)

where Āi and β̄i are the i-th equilibrium of the amplitude
and phase at the specific frequency σ, respectively. ε denotes
another dimensionless parameter for separating the local dy-
namics from the operational point. By Taylor approximation,
the Jacobian matrix is obtained as

[
ξ̇

ζ̇

]
=

[
A11 A12

A21 A22

] [
ξ
ζ

]
, (30)

where

A11 = −d
(
µ(Āi)Āi

)

dĀi
+ σ−1J̃dS(Āi) sin(2β̄i), (31)

A12 = −2σ−1J̃S(Āi) cos 2β̄i, (32)

A21 =
3K3Āi

4σ
+

5K5Ā
3
i

4σ
+

105K7Ā
5
i

64σ

+ σ−1
(
J̃dZ(Āi) + J̃dC(Āi) cos(2β̄i)

)
, (33)

A22 = 2σ−1J̃C(Āi) sin(2β̄i), (34)

with the amplitude derivative of the sine, constant and cosine
actuation coefficients as

J̃dS(Āi) =

NL∑

n=1

2b(n)

(
ρnĀiJ3(ρnĀi)− J2(ρnĀi)

ρnĀ2
i

)
, (35)

J̃dZ(Āi) =
1

Āi

NL∑

n=1

ρnb(n)J2(ρnĀi), (36)

J̃dC(Āi) =
1

Ā2
i

NL∑

n=1

b(n)
(
ρnĀiJ2(ρnĀi)− 2J3(ρnĀi)

)
. (37)

The Jacobian determines if the solution in (28) is stable or
not. In addition, it plays an important role to describe the local
dynamics near a stable equilibrium by small external distur-
bances, e.g. external vibration influence [25], [36]. Therefore,
it is important for a control design for stable operation [15].

Compared to the brute force simulation, the proposed ana-
lytical model is computationally efficient to calculate the set
of solutions by (28). The simulation of the global dynamics by
(23) and (24) is much more efficient than that by (1) because
high frequency oscillation states are omitted. The Jacobian
in (30) also allows faster calculation than the numerical
calculation of (23) and (24). The drawback of the proposed
analytic model is an approximation error compared to the
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Fig. 3. MEMS test bench and a MEMS mirror for model verification. The
mirror and the laser are precisely aligned using a camera and the PSD
measurements for varying distance zs employing a motorized linear stage.
The accurate angle conversion from the beam position measurements to the
angle is obtained by a dedicated calibration process with the stage while
the mirror is operating with a small amplitude. The comb drive capacitance
is identified by the transimpedance amplifier that measures the comb drive
current.
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Fig. 4. Conceptual drawing of the MEMS mirror rotor used in the exper-
iments. The mirror surface is elliptical with a long axis of 2.7 mm. The
electrostatic drive consists of two pairs of comb drive arms as in Fig. 1. The
restoring torque is provided by four leaf spring suspensions and two torsion
bars. The leaf springs are connected to the frame via relief springs in order
to reduce geometric hardening.

actual mirror behavior. The approximation is mainly due to
the perturbation technique of (13), i.e. the steady state solution
is a single tone sine while the exact solution is a multitone
with harmonics [31]. Therefore the analysis of the harmonic
coupling to the other rigid body modes of the scanner is not
straightforward. For weakly nonlinear dynamics of MEMS
mirrors, the approximation error can be insignificant, allowing
a fast and accurate modeling by the proposed method.

IV. MEASUREMENT VERIFICATION

This section describes a verification of the proposed model
with measurement data mainly by examining frequency re-
sponse and local dynamics. Fig. 3 illustrates a MEMS test
bench and a MEMS mirror for measurement of the deflection
angle [37]. The laser (LPS-660-FC, fiber pigtailed laser, Thor-
labs, Newton, NJ, US) shines on the MEMS mirror and then
a position sensitive detector (S5991-01, 2D PSD, Hamamatsu,
Hamamatsu City, Japan) measures the deflection trajectories of
the MEMS mirror via the beam position. The PSD processing
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unit provides signals for beam position, which are recorded by
a data acquisition card (U2531A, Keysight, Santa Rosa, CA,
US). Alignment and calibration schemes using a motorized
stage at the PSD allow accurate mirror angle measurements
of less than 0.026◦ accuracy for ±15◦ mechanical mirror
angle, whose details are found in [37]. For actuation of the
MEMS mirror, the square rooted sine input is generated by
a function generator (33522B, Keysight) via a high voltage
amplifier (WMA300, Falco systems, Katwijk aan Zee, the
Netherlands). The current from the comb drives is measured
via a transimpedance amplifier (TIA), used for a comb drive
parameter identification and an additional angle sensing of the
mirror.

The MEMS mirror used in the experiment is a variant of
the MEMS mirror in [14], [15] with an elliptic mirror with
a long axis of 2.7 mm. Fig. 4 shows a conceptual drawing
of the MEMS mirror with major features. It has two pairs
of left and right comb drive arms as in Fig. 1 on both
sides of the mirror, each arm having an inner and an outer
electrode row for an enhanced torque near zero angle and
a compactified design. The MEMS mirror features four leaf
spring suspensions extending perpendicularly to the rotation
axis and torsional bars at both ends of the rotation axis.
The restoring torque for the operational rotational motion is
almost entirely (> 97 %) provided by the leaf springs and
enables high scanning frequencies. The role of the torsion
bars is mainly the suppression of other rigid body modes.
If directly clamped to the frame, each pair of leaf springs
at each side of the mirror would essentially form a doubly
clamped beam with excessive geometric hardening. For this
reason, the leaf springs are connected to the frame via relief
springs for translational flexibility to mitigate the geometric
nonlinearities. Further design principles of the leaf spring sus-
pension structures can be inferred from [38]. The mirror also
comprises reinforcement structures below the mirror surface
to reduce dynamic deformation [39], [40].

The model parameters in (1) can be obtained either by
numerical simulation of the MEMS mirror or by experimen-
tal identification. From a three-dimensional computer-aided
design model of the mirror, the inertia and the stiffness
function can be obtained by the finite element method (FEM)
and the averaged damping can be retrieved by computational
fluid dynamic (CFD) simulations of the air damping [33].
The angular derivative of the comb drive capacitance can
be calculated from the angle-dependent geometric overlap
of stator and rotor electrodes [22] or FEM simulations of
the electrostatic force [28], which additionally account for
fringing field effects compared to the geometric overlap.
Such an approach combined with the slow-flow model would
outline a route towards a fully predictive modeling of the
dynamics. However, an individual device will deviate from
this nominal behavior due to specification tolerances, e.g.
layer thicknesses of raw material, and processing variations.
In addition, accurate CFD modeling of the nonlinear damping
behavior at large amplitudes is particularly time-consuming
and challenging. For these reasons, parameter identification
from measurements has been chosen for the present analysis
in order to demonstrate the high accuracy of the solutions of
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Fig. 5. Nonlinear stiffness function and averaged damping function from
experimental identification. The stiffness identification using only linear and
cubic terms is also drawn for comparison.

the response dynamics provided by the slow flow equations
while eliminating deviations caused by imperfect knowledge
of the real parameters.

Here a model-based identification is newly employed by
decoupling stiffness, capacitance, inertia, and damping pa-
rameters in independent measurements. The basic idea of
decoupled measurements is presented in [14] and used for
data-driven parameter identification for the SDOF model of
(1). First of all, the nonlinear stiffness function is identified
by the amplitude-frequency relation of the backbone curve,
which is obtained by setting voltage U to zero in (28), i.e.
the dimensionless Fourier coefficients b(n) to zero. A 7th
order polynomial function is used for a good approximation
of the measurement data as in [14]. FEM simulation data of
the restoring torque including the geometric nonlinearities of
the leaf spring suspensions similarly require terms beyond
the cubic for a satisfactory fit. By measuring the actuated
decay, i.e. the ring-down oscillation with a DC voltage applied
to the comb drives, the capacitance and angular derivative
of the capacitance are obtained via the comb drive current
with absolute dimension [14]. Using the amplitude-frequency
relation of the actuated decay, the inertia of the mirror is
obtained as a scaling parameter between normalized stiffening
parameters and actuation influence in the primary frequencies.
Finally, the averaged damping parameters are obtained from
the measured stationary solutions by a square rooted sine input
with a 120 V peak input voltage. Fig. 5 shows the normalized
nonlinear stiffness function and the averaged damping function
identified for the MEMS mirror. The amplitude and frequency
values are normalized to the maximum amplitude with a
110 V input peak voltage and the linear mirror frequency,
respectively.

A. Frequency Response

Frequency response is a set of stationary solutions of the
parametrically driven resonant MEMS mirror. The frequency
response is recorded by the beam trajectory measurements
while sweeping up and down the actuation frequency in steps
of 2 Hz. Due to a significantly hardening stiffness of the
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Fig. 6. Frequency response and amplitude-phase plot from the slow flow
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various peak input voltages. The stable and unstable solutions of the model are
represented by the solid line and the dotted line, respectively. Dark colored
triangles represent the measured lower bounds of the unstable region. The
backbone curve is drawn by a bright pink line.

employed leaf spring suspension structure [14], [15], the used
mirror can reach the maximum angle only by down-sweep first
and up-sweep after the bifurcation. For convenience, the stable
solutions at the low amplitude side and the high amplitude
side are called bottom response curve and top response curve,
respectively. The lower bound of the Mathieu instability region
[34] can be identified by the first unstable point in an up sweep
from the stable region, where no oscillation occurs, and vice
versa in a down sweep.

Fig. 6a shows the frequency response of the slow flow
model together with the measurement data. The peak input
voltages of 80, 90, 100, and 110 V are chosen to verify the
behavior with various input amplitudes. The two stationary
solutions of (28) consist of unstable (solid lines) and stable
branches (dotted lines), which stretch continuously from zero
amplitude to the peak amplitudes where (28) has the equal
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Fig. 7. Phase portrait and amplitude-phase plot (thick red lines) at the
frequency of 1.1029 with 110 V peak input voltage. From initial conditions
(circles) the slow flow dynamics lead to the stable equilibria (magenta squares)
while the unstable equilibria are given by magenta x marks. The color of the
trajectory represents its final steady state value, i.e. if it arrives at the solution
of the top response curve (blue) or of the bottom response curve (dark gray).

roots. Since the unidirectional pulling torque by the out-of-
plane comb drive adds only stiffness, both solutions lie on
the high frequency side with respect to the backbone curve.
In addition, both solutions get close to the backbone curve at
high amplitudes due to the relatively high Q-factor, i.e. the
energy injected by the comb drive per period is much smaller
than the stored energy of the MEMS mirror. Especially, the
model describes well the points of the bifurcation where
the stability at the stationary solution changes. In general,
the analytic solution of (28) shows a good match with the
measurement data at large amplitudes. For amplitudes above
0.16, the normalized frequency errors are less than ±0.0004,
which corresponds to less than ±0.8 Hz peak errors for a
2 kHz linear mirror frequency. The maximum peak amplitude
also shows a good agreement and the worst case error is
0.47 % in the 80 V peak input voltage case, which corresponds
to 0.071◦ for a 15◦ amplitude.

For low amplitudes, the trends of the bottom response
curves are similar even though the model does not show a
good agreement anymore. From the model, the lower bound
of the unstable region is represented by the zero crossing of
the unstable solution that extends from the top response curve.
The measured low bounds of the unstable solution have a large
mismatch from the model. This mismatch is mainly due to the
model error of (1), also shown by the ODE simulations in [14].

Fig. 6b illustrates the amplitude-phase plot of the model and
measurements for various peak input voltages. The phase is
calculated by zero crossing differences between the measured
input signal from the function generator and the measured
mirror angle, considering an identified delay between the input
signal and the angle measurements. Because Ωa = 2σ, the
double phase 2β of β ∈ [0, π] is drawn since it is identical
with β ∈ [π, 2π]. The model has a unique parabola-like shape,
showing a good agreement with the measurements for all
peak input voltages. The maximum amplitude is attained at
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peak input voltages.

90◦ phase, which is expected by the synchronized excitation
scheme [41].

Fig. 7 shows a phase portrait describing the global dynamics
by (23) and (24). The initial conditions are chosen by an
amplitude of 0.9755 and phases of kπ/6, k ∈ 0, 1, · · · , 5
for the mirror frequency σ = 1.1029 with the peak input
voltage of 110 V. The trajectories arrive at the two stable
equilibria while the shape of contours allows to identify the
unstable saddle points. Both stable and unstable solutions are
located on the amplitude-phase plot in Fig 6b, and the location
changes with frequency and peak input voltage. The size of the
attraction for the stable equilibrium varies depending on the
locations of the other solutions. For example, the attraction
of the stable solution at the top response curve becomes
smaller with increasing amplitude since the unstable saddle
point approaches the stable solution. This explains why the
synchronized excitation is difficult to attain in an open loop
sweep.

The simulation also demonstrates the low computational
effort by the proposed model. For 10,000 points of amplitudes,
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Fig. 9. Simulated evolution of the poles along the stable solutions of top
response curve and bottom response curve with a 110 V peak input voltage.
The lowest amplitude and highest amplitude are marked as circle and x
mark, respectively, to show the direction of the pole movement by increasing
amplitude (arrow direction).

the primary frequency and phase calculation by (28), (23),
and (24) takes 0.57 s and the Jacobian matrix calculation of
(30) takes 1.27 s by a Matlab 2018b script with a laptop PC
(Intel Core-i7 8850H, 2.6 GHz). The simulation of the global
dynamics in Fig. 7 takes 1.12 s average for a normalized time
5000 while the brute force simulation of (1) takes 1303.20 s.
A direct comparison is not entirely meaningful since the
information of the results is different, but it still illustrates
the benefit of the computational efficiency of the proposed
model.

B. Frequency Crossover between Solutions

The primary frequency of (28) features an interesting be-
havior of crossover between solutions. It is already visible in
zoomed figures near σ = 1.132 in Fig. 6a that the frequency
of the unstable solution is lower than the frequency of the
stable solutions for a given amplitude. This is due to the sign
change of the cosine actuation coefficients of J̃C. Fig. 8a shows
the actuation coefficients versus the amplitude. The cosine
actuation coefficient shows a sign change at the amplitude of
0.824. This sign change results in a crossover of the frequency
solution regardless of the actuation voltage, shown in Fig. 8b,
except for the 80 V case, which cannot reach amplitudes higher
than 0.824. This crossover is determined by the shape of the
angular derivative of the comb drive capacitance, i.e. it can be
controlled by the comb drive design.

C. Local Dynamics of Stable Equilibrium

Besides the global dynamics of the slow flow model, local
dynamics near a stable equilibrium are also essential for
understanding external vibration influences [25] and the design
of the controls at a specific operational point [15]. For local
dynamics, the poles of the Jacobian in (30) determine the
main dynamic behavior. Fig. 9 describes the root locus of the
complex valued poles of both top and bottom response curve.
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Fig. 10. Eigenfrequency and damping ratio of the Jacobian matrix and the
measurements for various peak input voltages.

By the location of the poles, an eigenfrequency and damping
ratio of the local dynamics are determined. The eigenfrequency
and the damping ratio are measured by analyzing the transient
response to a small change of the operational points, e.g. peak
input voltages.

Fig. 10 depicts the eigenfrequency and the damping ratio of
the local dynamics from the model and the measurements for
various peak input voltages. The overall behavior especially at
large amplitudes shows a good agreement. For the top response
curve, the eigenfrequency and the damping ratio are about
0.03 and 0.12 and do not vary much for a large angular range
while those of the bottom response curve change much with
amplitudes. For each end of the response curve, the frequency
reduces and the damping increases since the poles are closed
to or on the real axis. As a trend, higher input peak voltages
result in higher eigenfrequency and lower damping ratio. There
is a large mismatch at amplitudes near 0.4 of the top response
curve, which is due to mode coupling with the translational
y-mode of the mirror.

These results prove that the proposed slow flow model with

a Fourier based torque approximation can accurately describe
the mirror behavior at large amplitudes in characteristic prop-
erties, enabling the fast and accurate performance analysis of
the MEMS mirror prior to the fabrication.

V. CONCLUSION

This paper proposes an accurate slow flow model of a
parametrically driven MEMS mirror by a Fourier series based
torque approximation. The Fourier series based torque model
uses a discrete Fourier transform, allowing an accurate analytic
approximation of the comb drive torque with a finite number
of Fourier coefficients. By perturbation theory, the Fourier
series based torque results in a slow flow model with Bessel
functions, leading to a closed form of primary frequencies
and the Jacobian matrix representing the stability and the
local dynamics at the equilibrium points. The experimental
results demonstrate the accuracy of the proposed model in the
frequency response, showing less than 0.04 % frequency error
for large amplitudes over 16 % of the maximum amplitude
with a 110 V input peak voltage. The eigenfrequency and
the damping ratio of the local dynamics also demonstrate a
good agreement between the model and the measurement. This
proposed model allows a fast and accurate design evaluation
of the MEMS mirror prior to fabrication and a control design
considering both global and local dynamics.

As future work, the slow flow model can be extended for
a generalized input such as rectangular functions with varied
duty cycle [10], [11], enabling a fast and accurate analysis of
the most favorable and practical MEMS operation conditions.
The local dynamics can be extended to include external
vibration influence, which allows to evaluate the robustness
of the mirror operation [25]. Similar to [42], the PLL control
can be included for further analysis of the control design.

APPENDIX A
PROOF OF THE LEMMA 1

For an integer order ν, the integral form of the Bessel
function of the first kind can be expressed as

Jν(z) =
1

2π

∫ π

−π

cos (νw − z sinw) dw,

since cos (νw − z sinw) is an even function. Then each case
can be calculated as follows.

1) Case
∫ 2π

0
sin (ρnA cosω) cosω dω: By trigonometric

identities,
∫ 2π

0

sin (ρnA cosω) cosω dω

=
1

2

∫ 2π

0

sin (ω + ρnA cosω) + sin (−ω + ρnA cosω) dω.

By setting a new variable ω = w + π/2, the integral interval
is shifted as

1

2

∫ π

−π

cos (w − ρnA sinw)− cos (−w − ρnA sinw) dw

=
1

2
(2πJ1(ρnA)− 2πJ−1(ρnA)) = 2πJ1(ρnA),

by J−ν(z) = (−1)νJν(z) for ν ∈ Z.
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2)
∫ 2π

0
sin (ρnA cosω) sinω dω: By similar way as in case

1),

1

2

∫ π

−π

sin (w − ρnA sinw) + sin (−w − ρnA sinw) dw = 0.

This is because the inside of the integral is an odd function.
3)
∫ 2π

0
sin (ρnA cosω) cosω cos (2ω − 2β) dω: By

trigonometric identities,
∫ 2π

0
sin (ρnA cosω) cosω cos (2ω − 2β) dω

=
1

4

∫ 2π

0
(sin (3ω + ρnA cosω) + sin (−3ω + ρnA cosω)) dω cos 2β

+
1

4

∫ 2π

0
(sin (ω + ρnA cosω) + sin (−ω + ρnA cosω)) dω cos 2β.

The second part is given by πJ1(ρnA) cos 2β. By simi-
lar way in case 1), the first term with ±3w is given as
−πJ3(ρnA) cos 2β. This leads to

∫ 2π

0

sin (ρnA cosω) cosω cos (2ω − 2β) dω

= 2π

(
J1(ρnA)− J3(ρnA)

2

)
cos 2β

= 2π

(
J1(ρnA)− 2

J2(ρnA)

ρnA

)
cos 2β.

The last line is given by the recurrence formulas, i.e.
Jν+1(z) =

2ν
z Jν(z)− Jν−1(z).

4) Case
∫ 2π

0
sin (ρnA cosω) sinω cos (2ω − 2β) dω: By

the similar way in case 3),
∫ 2π

0

sin (ρnA cosω) sinω cos (2ω − 2β) dω

= 2π

(
J1(ρnA) + J3(ρnA)

2

)
sin 2β = 2π

(
2
J2(ρnA)

ρnA

)
sin 2β.

APPENDIX B
DERIVATION OF THE SLOW FLOW MODEL

Before applying the solvability condition of (14), the deriva-
tive term is rewritten as

D1D0x0 = −∂A(T1)

∂T1
σ sinω − ∂β (T1)

∂T1
σA(T1) cosω.

Based on Lemma 1 and Corollary 2, the real part is reduced
as

0 =

∫ 2π

0

[
2Aµ(A)σ sinω cosω +

(
σ2 − 1

)
A cos2 ω

−K3A
3 cos4 ω −K5A

5 cos6 ω −K7A
7 cos8 ω + (1 + cos 2σT0)

×


1

2
a(0) +

NL∑

n=1

a(n) cos (ρnA cosω) + b(n) sin (ρnA cosω)


 cosω

+ 2
∂A

∂T1
σ sinω cosω + 2

∂β

∂T1
Aσ cos2 ω

]
dω

=
2π(σ2 − 1)A

2
− 2π

3K3A3

8
− 2π

5K5A5

16
− 2π

35K7A7

128

+ 2πσA
∂β

∂T1
+ 2π




NL∑

n=1

b(n)J1(ρnA)




+ 2π




NL∑

n=1

b(n)

(
ρnAJ1(ρnA)− 2J2(ρnA)

ρnA

)
 cos 2β,

and the imaginary part is then

0 =

∫ 2π

0

[
2Aµ(A)σ sin2 ω +

(
σ2 − 1

)
A cosω sinω

−K3A
3 cos3 ω sinω −K5A

5 cos5 ω sinω −K7A
7 cos7 ω sinω

+


1

2
a(0) +

NL∑

n=1

a(n) cos (ρnA cosω) + b(n) sin (ρnA cosω)


 sinω

× (1 + cos 2σT0) + 2
∂A

∂T1
σ sin2 ω + 2

∂β

∂T1
Aσ cosω sinω

]
dω

= 2πσµA+ 2πσ
∂A

∂T1
+ 2π




NL∑

n=1

2b(n)

(
J2(ρnA)

ρnA

)
 sin 2β.

Equations in real and complex parts lead to two partial
differential equations as

∂A

∂T1
= −Aµ(A)− 1

σ




NL∑

n=1

2b(n)

(
J2(ρnA)

ρnA

)
 sin 2β, (38)

A
∂β

∂T1
=

3K3A3

8σ
+

5K5A5

16σ
+

35K7A7

128σ
− (σ2 − 1)A

2σ

− 1

σ




NL∑

n=1

b(n)J1(ρnA)




− 1

σ




NL∑

n=1

b(n)

(
ρnAJ1(ρnA)− 2J2(ρnA)

ρnA

)
 cos 2β. (39)

By assuming A > 0 considering only the nontrivial solution
and using the ordinary differential operator, (38) and (39) lead
to (23) and (24). The primary frequency response is defined
by the stationary solutions, i.e. ∂A

∂T1
= 0 and ∂β

∂T1
= 0, leading

to (28).
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