
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. X, MONTH YYYY 1

A Novel Approach for Integrating IEC 61131-3
Engineering and Execution into IEC 61499

Peter Gsellmann1, Martin Melik-Merkumians1, Member, IEEE, IES, Alois Zoitl2, Member, IEEE, IES,
and Georg Schitter1, Senior Member, IEEE

Abstract—Automation system engineering becomes more com-
plex, due to the trend towards more flexible, reconfigurable, and
modular design approaches, like Industry 4.0. For the modeling
and design of the according software, two standards are present:
IEC 61131-3 and IEC 61499. In order to satisfy the requirements
for modern, large scale, highly-distributed applications while
also supporting still existing legacy systems, the demand for a
combined development framework arises, where the best of breed
tool can be chosen for a given automation task. Considering that,
the IEC 61499 model is extended to allow the dual development
and execution of IEC 61131-3 programs, and enabling easy
and correct interaction between the two paradigms. In order
to verify the validity of the chosen approach, an IEC 61499
development tool and a runtime environment is modified to
support IEC 61131-3. A sample application is implemented,
which comprises a pure IEC 61131-3 part with a 1 ms cycle time,
a pure IEC 61499 part, and a part with interaction between both
subparts, in order to evaluate possible interference between the
runtime parts. Experimental results show that no interference
is occurring, and the chosen development approach allows the
seamless integration of IEC 61131-3 and IEC 61499 in one
combined development framework.

Index Terms—IEC 61499, IEC 61131, interoperability

I. INTRODUCTION

IN CURRENT automation systems, control software is the
main driver for functionality and innovation, and therefore

is a significant component. Hence, its development makes a
large share of the overall costs. Considering nowadays trend
towards Industry 4.0, the requirements regarding interoper-
ability, flexibility, and reconfigurability gain importance [1].
Currently, when developing such systems, engineers have to
choose between two prominent standards: the IEC 61131-
3 – Programmable controllers: Programming languages [2]
and the IEC 61499 – Function blocks [3]. The IEC 61131-
3 standard’s main focus was on easy-to-use programming
languages, and single Programmable Logic Controller (PLC)
systems, each controlling a defined section of the production
process. With the move to modern large scale applications,
the control software development had to deal with features
like adaptability, reusability, and distributability. IEC 61131-
3 evolved (e.g., object-oriented extensions, IEC 61131-5 for
communication) to meet these new needs, though it was never

Manuscript received July 7, 2020; revised September 18, 2020; accepted
October 19, 2020.

1P. Gsellmann, M. Melik-Merkumians, and G. Schitter are with the Au-
tomation and Control Institute, TU Wien, Vienna, 1040 Austria.

2A. Zoitl is with the LIT Cyber Physical Systems Lab, JKU, Linz, 4040
Austria.

Corresponding author: gsellmann@acin.tuwien.ac.at

designed with these developments in mind [4]. Consequently,
a new architecture, the IEC 61499, was developed to satisfy
these emerging requirements.

Nevertheless, IEC 61131-3 based systems are still prevalent
in industry, due to legacy systems and well-trained staff for
this type of programming model. There have been initiatives to
support the transition by enabling re-use of the already existing
PLC applications. Several studies analyzed and realized tools
for a semantic transformation from IEC 61131-3 to IEC 61499
[5], [6], [7]. However, in the recent years, due to the trend
towards highly-distributed Cyber-Physical Production System
(CPPS), the distribution aspect of control systems became
more relevant. This is where IEC 61499 excels, as this distri-
bution aspect was considered in the design process. Although,
IEC 61131-3 could be extended to support model driven design
and planning of distributed control, this is a nontrivial task
[8]. In this aspect, IEC 61499 is superior to the IEC 61131-3
model, as distribution is an inherent part of IEC 61499 system
design.

Another important aspect of system engineering is the
needed programming effort and resulting code complexity, as
this directly affects engineering, commissioning, and mainte-
nance effort. A recently conducted study [9] gives an objective
comparison between IEC 61499 and IEC 61131-3 applica-
tions based on code measures. Typical application classes in
industrial automation, a sequential control and a PI control
application, have been developed in both programming models
and then evaluated for the suitability of each programming
model for the given task. The results show, that the imple-
mentation effort for the sequential task is significantly less
for IEC 61499 APPLICATIONs, whereas the IEC 61131-3
Structured Text (ST)/Function Block Diagram (FBD) imple-
mentation excels for control algorithms. Each programming
model has its strengths and weaknesses, which translates
directly into programming effort and code complexity.

These new requirements demand for a combined framework
for IEC 61499 and IEC 61131-3 compliant systems, in order
to offer the best of breed tool for a given automation task, and
thus motivate the contribution of this article. Alongside to the
development of a concept for a combined IEC 61499-based
Runtime Environment (RTE) and an engineering approach to
model IEC 61499 and IEC 61131-3 applications, also the
means to achieve easy interaction are taken into account.
Furthermore, a sample application is presented, showing the
validity of the presented approach. Finally, measurements
are conducted to prove that the two execution units within
the same device are not disturbing each other, even while

Post-print version (generated on 21.10.2020)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: P. Gsellmann, M. Melik-Merkumians, A. Zoitl, and G. Schitter, “A Novel Approach for
Integrating IEC 61131-3 Engineering and Execution into IEC 61499,”IEEE Transactions on Industrial Informatics, 2020.
DOI: 10.1109/TII.2020.3033330
c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/TII.2020.3033330

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. X, MONTH YYYY 2

exchanging data.
In Section II, an analysis of existing approaches and eval-

uation of their deficiencies are presented. The integration
approach for the combined IEC 61131-3 and IEC 61499
framework is discussed in Section III. Section IV deals with
the implementation of the particular development and runtime
environment. It is followed by the presentation and evaluation
of a demonstration implementation in Section V. Finally,
Section VI concludes the paper.

II. RELATED WORK

In the past, several approaches of a combined RTE for both
IEC 61131 – Programmable controllers [10] and IEC 61499
were presented with the aim of implementing a platform that
supports any control logic. These can be roughly categorized
into three classes (see Fig. 1) [11]:
(a) Separate IEC 61131 and IEC 61499 RTEs with a com-

munication interface in between.
(b) Extended IEC 61131 RTE with the means to execute

event-based IEC 61499 logic.
(c) Extended IEC 61499 RTE with the means to execute

cycle-based IEC 61131 logic.
A representative for the first class (Fig. 1a) is designed
and implemented in a previous study, where the proposed
architecture is based on loosely coupled systems [12]. Thereby,
every device can execute both IEC 61131 and IEC 61499
code by using two separated execution environments, which
can interact via a communication interface. While offering
the advantage of using existing applications on both sides,
this implementation requires a lot of engineering effort and
resources. Additionally, the re-use of software elements from
one standard in the other is infeasible.

As an implementation of the second category (Fig. 1b),
where an IEC 61131-3 RTE is extended to enable the execution
of IEC 61499 logic, ISaGRAF of Rockwell Automation is
considered. Within a RESOURCE, IEC 61499 Function Blocks
(FBs) are cyclically invoked in a predetermined order [13].
During the activation, the Execution Control Chart (ECC),
defined by means of the IEC 61131-3 Sequential Function
Chart (SFC), recognizes and processes incoming events. Al-
though this solution has the advantage that IEC 61131-3
and IEC 61499 can be used side by side, several drawbacks
appear. Besides the higher effort to implement an IEC 61499
compliant RTE, and to schedule events according to the
best execution order [14], this approach exhibits performance
penalties and an execution overhead due to the underlying
cyclic execution. Furthermore, several IEC 61499 concepts,
such as communication between application parts via Service-
Interface Function Blocks (SIFBs), are not compliantly imple-
mented in ISaGRAF [15]. Similar issues occur in a different
study, where an approach to map event-driven IEC 61499
execution to a scan-based controller system has been presented
[16], [17]. Even though this concept enables deterministic
execution behavior and thus the possibility for pre-verification,
it is not always possible to calculate a scan order to follow
the event propagation in complex Function Block Networks
(FBNs). Moreover, again the large overhead introduced due to

Co
m

m
un

ic
at

io
n

Operating System
IEC 61131-3 Runtime IEC 61499 Runtime

IEC 61131-3 Logic IEC 61499 Logic

Co
m

.

Operating System
IEC 61131-3 Runtime

IEC 61131-3
Logic IEC 61499 Emulation

IEC 61499 Logic

Operating System

IEC 61131-3 Emulation

IEC 61131-3 Logic IEC 61499
Logic

IEC 61499 Runtime

 (b) IEC 61131-3 based Solution

(a) Parallel use on one Device

(c) IEC 61499 based Solution

Figure 1: Existing concepts for the combined use of
IEC 61131-3 and IEC 61499 (based on [11]).

the cyclic triggering increases the overall response time of the
application [18]. In order to overcome these overload effects,
a synchronous approach for the execution of IEC 61499 FBNs
implementation is proposed [19]. Instead of executing an
application on a RTE, IEC 61499 APPLICATIONs, FBNs,
and FBs definition are translated into Estrel code, which
results in a deterministic finite state machine, representing
the full application. The resulting compiled Estrel program
is fully predictable, and can be compiled to, for example, C
code for specific platforms. However, this is contradictory to
main features of the IEC 61499, since important management
functionalities such as online reconfiguration are no longer
possible [20].

The third approach (Fig. 1c), where IEC 61131-3 code
is executed in an IEC 61499 system, seems to be the most
flexible and thus most advantageous of the in [11] pro-
posed approaches. It allows not only the re-use of existing
IEC 61131-3 code, but also the possibility of a tight coupling
to IEC 61499 control logic and the ability to distribute
them among several resources surpasses the other two men-
tioned approaches. Therefore, it revives the original idea of
IEC 61499 as an enabler for modeling distributed systems
and the coordination between the individual devices, which
were meant to be based on IEC 61131-3 [21]. So far, the
only comparable solution is shown by nxtControl with their
engineering tool nxtSTUDIO and their hybrid RTE nxtIECRT
[22]. Here, IEC 61499 is extended with a special IEC 61131-3
FB, to add the IEC 61131-3 programming model. This FB is
wrongly classified as a Basic Function Block (BFB), since it
comprises no explicit algorithm execution control. It is also no
representative of the Simple Function Block (SFB) type, since
it does not represent IEC 61131-3 FUNCTIONs or FBs. Hence,
this special IEC 61131-3 FB is a SIFB, which comprises a
complete IEC 61131-3 sub-system. This SIFB has a single

Post-print version (generated on 21.10.2020)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: P. Gsellmann, M. Melik-Merkumians, A. Zoitl, and G. Schitter, “A Novel Approach for
Integrating IEC 61131-3 Engineering and Execution into IEC 61499,”IEEE Transactions on Industrial Informatics, 2020.
DOI: 10.1109/TII.2020.3033330
c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/TII.2020.3033330

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. X, MONTH YYYY 3

event input named TASKI, a single event output named
TASKO, and application specific data in- and outputs. By
means of an E_CYCLE FB, the event input TASKI is triggered
and subsequently, the implemented Program Organisation Unit
(POU) is executed. When reaching the POU’s end, the output
event TASKO is sent. Although the solution of nxtControl
is a first step towards the harmonization of IEC 61131 and
IEC 61499, several issues are evident:

1) Usually in IEC 61131, with the start of a new cycle
a process mapping of the most current data inputs is
carried out. Though the implemented SIFB represents
an IEC 61131-3 TASK, it cannot be guaranteed that
multiple serially ordered TASKs operate on the same
input data. Conversely, parallel running TASKs offer no
viable solution for interaction during their execution.

2) For event-based control, only the output event TASKO can
be utilized since the only event input TASKI is occupied
with receiving the cyclic trigger.

3) Since the output event TASKO is triggered after the exe-
cution of the IEC 61131 PROGRAM, large applications can
produce blocking behavior due to the run-to-completion
semantics of IEC 61499, to which the special IEC 61131-
3 FB also adheres to.

A. Summary

All the presented solutions allow mixed IEC 61131-3 and
IEC 61499 applications. However, all of them show significant
drawbacks. For the separated RTEs (Fig. 1a) no common
system modeling is available. This increases the difficulty
of engineering such systems, as software cannot be shared
and interactions between both system types have to be imple-
mented manually for each case. Running IEC 61499 compliant
systems on cyclic IEC 61131-3 systems (Fig. 1b) increases
execution overhead, and several IEC 61499 elements are hard
to implement due to their event triggered nature [15].

A first implementation for the approach which executes
IEC 61131-3 PROGRAMs on top of IEC 61499 compliant
systems (Fig. 1c) is implemented by nxtControl. It utilizes
a special SIFB, which couples the IEC 61131-3 cycle to the
event-driven nature of the IEC 61499 application, that can
result in unwanted side effects, such as unstable cycle times or
data inconsistencies over the whole application. Also, all three
presented solutions lack a common engineering approach,
which simultaneously allows to model applications in their
respective programming and execution models.

III. INTEGRATION APPROACH

As an initial step to create a common system modeling base,
it has to be decided if the IEC 61131-3 or the IEC 61499
model shall serve as the foundation. The analysis on the
different implementation options in Section II shows, that the
IEC 61499 is a better choice, as the IEC 61131-3 model has
no inherent support for distribution. In addition, the execution
model of IEC 61499 appears to be better suited to host an
IEC 61131-3 runtime environment, than vice versa. Although
nxtControl offers a first implementation with the IEC 61499 as
a basis, several deficiencies are evident. Hence, these reasons

motivate the development of a new combined approach based
on IEC 61499 (see Fig. 1c). An overview over the proposed
system design can be seen in Fig. 3.

A. Mapping of Model Elements

Based on an analysis of IEC 61131-3 and IEC 61499 corre-
spondences [23], the execution-driven mapping presented there
seems the obvious choice for the integration of IEC 61131-
3 model into the IEC 61499 model. As the IEC 61131-3
TASK corresponds to an IEC 61499 RESOURCE, a special
RESOURCE type EMB_PLC_RES is created to provide an
execution container for IEC 61131-3 POUs. The desired cycle
time for this IEC 61131-3 execution container is provided as an
additional resource parameter. As an IEC 61499 RESOURCE
represents an independent unit of execution, the uninterrupted
cyclic execution of the EMB_PLC_RES RESOURCE is guaran-
teed. Simultaneous execution of IEC 61499 and IEC 61131-3
is then simply achieved by dragging a standard EMB_RES
and the new EMB_PLC_RES into an IEC 61499 device
(see Fig. 2).

Contrary to the claim, that an IEC 61131-3 program cor-
responds to an IEC 61499 APPLICATION [23], no such
analogon is utilized in the presented approach. The reason
for this is, that IEC 61499 APPLICATIONs are inherently
distributable to several IEC 61499 RESOURCEs, which are
equivalent to IEC 61131-3 TASKs in this approach. How-
ever, IEC 61131-3 PROGRAMs are in their current form not
distributable over several IEC 61131-3 tasks, so the analogy
of IEC 61131-3 PROGRAMs and IEC 61499 APPLICATIONs
cannot be maintained. Instead, an IEC 61131-3 programming
environment is emulated, providing the basic needs to cre-
ate an IEC 61131-3 PROGRAM, which is then executed by
the assigned EMB_PLC_RES RESOURCE (see RTE part in
Fig. 3). In principle, every programming language defined in
IEC 61131-3 can be used, but as the FBD language has the
largest overlap with the IEC 61499, it is primarily considered
in this work.

Another important aspect of the combined programming
environment is code sharing between the two worlds, in
order to reduce maintenance and development effort. Here,
the IEC 61499 SFB [3] is an eligible candidate, originally
devised to represent IEC 61131-3 FUNCTIONs and FBs in
IEC 61499 APPLICATIONs. It therefore represents the event-
triggered analogon to IEC 61131-3 FBs without the object-
oriented extensions added in the 3rd edition of the IEC 61131-

FORTE_PC

FORTE_PC

MGR_ID
IEC61499_APPLICATION (EMB_RES)
IEC61131_3_APPLICATION

CYCLE_TIME :=
(EMB_PLC_RES)

TIME#1ms

Figure 2: A DEVICE containing both an IEC 61499 EMB_RES
RESOURCE for event-based applications, and an IEC 61131-3
RESOURCE EMB_PLC_RES for cyclic PROGRAMs. The cycle
time of the EMB_PLC_RES RESOURCE is set by a parameter.

Post-print version (generated on 21.10.2020)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: P. Gsellmann, M. Melik-Merkumians, A. Zoitl, and G. Schitter, “A Novel Approach for
Integrating IEC 61131-3 Engineering and Execution into IEC 61499,”IEEE Transactions on Industrial Informatics, 2020.
DOI: 10.1109/TII.2020.3033330
c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/TII.2020.3033330

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. X, MONTH YYYY 4

Communication Interface

Process Interface

IEC 61131-3
Task

IEC 61499
Resource

IEC 61499
Engineering Tool

IEC 61131-3
Engineering Tool

Simple Function Blocks/IEC 61131-3 FBs

IEC 61499 FBs

Development Environment Runtime Environment

IEC 61499 Resource

Figure 3: Schematic representation of the integration approach: The proposed IDE supports the engineering of IEC 61131-3
and IEC 61499 applications. Furthermore, the SFB or IEC 61131-3 FB can be used by both as common software element.
The adapted IEC 61499 RTE enables the usage of IEC 61499 EMB_RES RESOURCEs, and IEC 61131-3 TASKs embedded in
an IEC 61499 RESOURCE. All aspects of the IEC 61499 device model [3] (e.g., communication and process interface) can be
used by both resource types.

3 standard. The IEC 61499 standard describes the SFB as a
special type of SIFB, where each available input event triggers
an associated algorithm provided by the SFB. The first issue
with this definition is, that a SFB is a SIFB, which means its
functionality is defined outside the scope of IEC 61499 and
therefore only predefined SFBs can be used. For the proposed
system this definition is changed, so that a SFB is a kind
of simplified BFB without an ECC and only supporting a
single algorithm to be executed. This directly leads to a second
change: the original definition allows multiple algorithms,
triggered by an associated input event, but as there is no
event interface in IEC 61131-3 such a distinction cannot be
made. Therefore, SFBs in the proposed system can only have
a single input event REQ to trigger a single algorithm, and
a single output event CNF to signal the end of execution
of this algorithm. As a consequence of this all data inputs
are associated with the single event input via the IEC 61499
WITH construct, and all data outputs are associated with the
single event output. Now, when the IEC 61499 FB event head
is removed, a one-to-one mapping from IEC 61499 SFBs to
IEC 61131-3 FBs is achieved (see Fig. 4). With this modified
SFB, implementations can be shared across the IEC 61499
and IEC 61131-3 subsystems and thus enables code sharing
(compare development environment part of Fig. 3).

B. Interaction between IEC 61131-3 and IEC 61499

With the mapping concept presented so far, the IEC 61499
and IEC 61131-3 subsystems can coexist in one system
solution, but no interaction is possible. Interaction is here
defined as the ability to exchange data. As IEC 61499 directly

F_AND
1.0

IN1
IN2

OUT

REQ CNF
F_AND
1.0

IN1
IN2

OUT

Figure 4: With the modified Simple Function Block (SFB)
concept, SFBs can be used as IEC 61131-3 FBs, reducing
development effort for dual standard environments. Here, the
F_AND FB is shown in its dual representations.

adopts the data types as defined in IEC 61131-3, from a pure
data view this interaction is trivial, with only the method
of exchange missing. The chosen approach provides an ex-
plicit modeled interaction channel, utilizing the IEC 61499
communication FBs. Two different communication models
are defined: unidirectional interaction via the PUBLISH and
SUBSCRIBE FBs and bidirectional interaction via CLIENT
and SERVER FBs. This communication model is used in
IEC 61499 for inter-DEVICE, but also for inter-RESOURCE
communication. Again, in order to share code between the
subsystems, these FBs are transferred to the IEC 61131-3
subsystem. However, these and other FBs (e.g. I/Os) need
an INIT event to be brought into a ready state. In order
to provide this mechanism in the IEC 61131-3 subsystem,
the INIT event of all FBs which require an initialization are
triggered in the IDLE to RUN transition of the RESOURCE.
With this mechanism in place data can be exchanged between
the two subsystems.

C. Execution Behavior

At last, the execution behavior for the implemented
IEC 61131-3 FBD PROGRAM is defined. Here, the IEC 61131-
3 standard provides a set of rules for the algorithmic static
calculation of the execution order:

• Evaluation of a network element starts when all inputs
are available.

• Evaluation of a network element shall not be complete
until the states of all of its outputs have been evaluated.

• Evaluation of a network is not complete until the outputs
of all of its elements have been evaluated.

An exemplary FBD sequence evaluation according to these
rules is shown in Fig. 5. After the input scan, which updates all
INs, the FBs are evaluated according to the above mentioned
set of rules. After all FBs have been evaluated, the output scan
is performed, publishing the calculated values to the outputs.
The Roman letters indicate the calculated sequence. For the
proposed system all I/O inputs and all receiving parts of the
communication FBs (e.g. the FBs outputs) are considered to
be inputs for the evaluation algorithm. Outputs in the sense
of the evaluation algorithm are all I/O outputs and all sending
parts of communication FBs (e.g. the FBs inputs). For all other
FBs the execution order has to be calculated.

Post-print version (generated on 21.10.2020)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: P. Gsellmann, M. Melik-Merkumians, A. Zoitl, and G. Schitter, “A Novel Approach for
Integrating IEC 61131-3 Engineering and Execution into IEC 61499,”IEEE Transactions on Industrial Informatics, 2020.
DOI: 10.1109/TII.2020.3033330
c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/TII.2020.3033330

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. X, MONTH YYYY 5

In a formal definition, a FB can be described as a 2-
tuple F = (I,O), where I are the FB inputs and O are
the FB outputs. In this representation, a PROGRAM input can
be expressed as (∅, Om), whereas a PROGRAM output can
be as (In, ∅). Consequently, the execution semantics can be
described as a 4-tuple P = (ΣI ,ΣO,ΣF , C), where

• ΣI denoting the set of all FB inputs and PROGRAM
outputs In,

• ΣO denoting the set of all FB outputs and PROGRAM
inputs Om,

• ΣF denoting the set of all FBs Fj ,
• C denoting the |ΣI |×|ΣO| unweighted connection matrix

of all connections between the elements of ΣI and ΣO.
Thus, by considering a IEC 61131 FBD PROGRAM represented
as a 4-tuple P , the calculation of the static execution sequence
is enabled and realized as a search procedure presented in
Algorithm 1. With the assumption, that FBD models with
implicit and/or explicit feedback loops are correctly solved
by assigning valid initial values, according to the IEC 61131
standard, a correct execution sequence is always computable.

The execution sequence calculation takes a list of the inputs
I , a list of the outputs O, a list of the FBs F , and a list of the
connections C as parameters. After removing all preinitialized
inputs from I , the algorithm searches for FBs in F which have
no inputs in the input list I . If this is the case, the FBs are
added to the execution sequence S, which is defined as an
ordered set of FBs. Subsequently, all of the FBs outputs and
consequently all inputs connected via the connections in C are
removed from the I and O list, respectively. Thereafter, also
the FBs are removed from F . This procedure is repeated until
F is empty, which means that all FBs are set in the correct
order for execution.

Algorithm 1 Execution sequence calculation
Input: List of inputs I, list of outputs O, list of FBs F, list
of connections C
Output: execution sequence S

1: Remove all preinitialized inputs from I
2: while F is not empty do
3: if Any Fi have zero inputs then
4: S ← Fi

5: Remove all outputs Oi of Fi

6: Remove all via C connected inputs Ii
7: Remove Fi from F
8: end if
9: end while

IV. IMPLEMENTATION

From this conceptual design, a concrete prototype imple-
mentation is presented for both an Integrated Development
Environment (IDE) and a combined RTE.

A. Integrated Development Environment

For the implementation of the extended IEC 61499 system
presented in Section III-A, the open source IEC 61499 en-
vironment Eclipse 4diac™ is used as a base system. Eclipse

4diac comprises the extensible IEC 61499 compliant devel-
opment environment 4diac IDE, along with the modular RTE
4diac FORTE. This first implementation considers only the
IEC 61131-3 FBD language without object-oriented extension.
Therefore, only slight modifications and additions to 4diac
IDE are required in order to enable side-by-side development.
The existing editor for IEC 61499 APPLICATIONs is used
as a basis for the IEC 61131-3 PROGRAM editor. In a first
step the display of event heads and event connections is
deactivated, since these features are superfluous for cycle-
based IEC 61131-3 PROGRAMs. However, this guarantees
that already existing SFBs, such as the event-driven pendants
of IEC 61131 FUNCTIONs and FBs, can be used without
modifications in both application types and thus enhances
reusability. Furthermore, the SFB editor enables the design
of custom IEC 61131-3 FBs, consisting of data inputs and
outputs, and one encapsulated algorithm. For the specification
of start and end points of FB sequences, input and output
elements are added which then can be linked to hardware
registers or physical I/Os. The execution sequence of the so-
developed IEC 61131-3 FBDs is then evaluated by the rules
mentioned in Section III-C.

By adding the new IEC 61131-3 resource type
EMB_PLC_RES to 4diac IDE, which provides a cycle
time parameter (see Section III-A), IEC 61499 DEVICEs are
able to contain both IEC 61131-3 and IEC 61499 runtime
units and thus enable mapping of the according applications.
An exemplary device with both types of resources is shown
in Fig. 2.

B. Runtime Environment

The concurrent execution of cyclic IEC 61131-3 task and
an event-based IEC 61499 runtime is achieved by adapting the
IEC 61499 compliant runtime 4diac FORTE.

For the sake of clarity the event-driven execution model of
4diac FORTE is recapped [18]:

IN1
IN2

IN3

OUT1
OUT2

FB1

FB2

FB4

FB3

FB5

Input Scan Program Scan Output Scan

II

III

V

IV

VI

I VII

Figure 5: Static FBD execution order calculation: According
to the IEC 61131-3 [10], first the inputs are read, then the
program execution starts. Therefore, the FBD activation rules,
described in Section III-C, come into effect. A FB is activated
when all its input values are available. After activation, all FB’s
outputs are published for subsequent FBs. In this example the
network elements’ execution order is outlined by blue Roman
numerals. After all FBs have been activated, the outputs are
updated.

Post-print version (generated on 21.10.2020)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: P. Gsellmann, M. Melik-Merkumians, A. Zoitl, and G. Schitter, “A Novel Approach for
Integrating IEC 61131-3 Engineering and Execution into IEC 61499,”IEEE Transactions on Industrial Informatics, 2020.
DOI: 10.1109/TII.2020.3033330
c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/TII.2020.3033330

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. X, MONTH YYYY 6

... FB2.INIT FB1.REQ FB2.REQ FB3.INIT FB4.REQ ...

START END

(a) Event queue execution: Occurring events are added to the list
and are processed consecutively. After execution, the event entry is
removed. The START pointer indicates which event is executed next,
whereas the END pointer indicates where the next occurring event is
added.

FB1.REQ FB2.REQ FB4.REQ FB3.REQ FB5.REQ

(b) Event queue adaption for the IEC 61131-3 cyclic execution model:
FBs (actually their REQ events) are added in the calculated sequence
(see Fig. 5), but are, in contrast to Fig. 6a, never removed. After the
last FB has been activated, the event queue stops until the next clock
cycle, establishing a constant cycle time.

Figure 6: Execution principle of the (a) IEC 61499 event queue
and (b) the proposed IEC 61131-3 execution model based on
the event queue.

• If events occur, they are added in order of their temporal
occurrence to the event queue.

• As soon as the event queue contains one or more regis-
tered events they are executed consecutively.

• After execution, the event entry is deleted.
• If no events occur, the event queue stays empty.

The used event queue mechanism is illustrated by the linear
representation of the circular event buffer (see Fig. 6a).

In order to create the recommended cyclic execution model
from IEC 61131-3, the existing event-driven model is ex-
tended. As the IEC 61131-3 FBs are realized as SFBs ac-
cording to Section III-A, they only have a single REQ event
input. Thereby, this REQ event serves solely as a calling
mechanism for the SFBs. Consequently, only the REQ events
of the FBs have to be added to the event queue in the statically
calculated execution order of the FBD. Since the IEC 61131-
3 PROGRAM remains unchanged during the execution, the
content of the event queue stays constant and thus the deletion
of the executed events is disabled. Synchronized with the start
of the execution, also a watchdog timer with a preset cycle
time is started in a separate thread. After the last event is
processed, the process waits for the expiration of the watchdog
timer in order to start the next cycle (see Fig. 6b). In case that
the PROGRAM’s execution exceeds the configured cycle time,
malfunctioning behavior is assumed and the watchdog timer
thread shuts down the IEC 61131-3 runtime.

V. PROOF OF CONCEPT

A. Example Implementation

In order to guarantee correct behavior the combined
IEC 61499 and IEC 61131 runtime, it has to fulfill the
following requirements:

• The cyclic execution of the IEC 61131-3 PROGRAM must
not be disturbed by the simultaneously processing event-
driven IEC 61499 runtime – and vice versa.

• Communication between both subsystems shall be pos-
sible, without interfering the program processing while
complying with the desired execution method.

Therefore, an appropriate example implementation for ver-
ification needs to include a pure IEC 61131-3 part, a pure
IEC 61499 part, and a part with interaction between the
IEC 61131-3 and IEC 61499 subparts. The proposed appli-
cation is designed as follows: The IEC 61131-3 PROGRAM
(see Fig. 8), running at a cycle time of 1 ms, consists of
a CTU FB, which is generating a ramp on the CV output.
Here, the FB’s preset value, reset signal, and count-up sig-
nal are provided by the IEC 61499 APPLICATION via a
SUBSCRIBE FB. The current counter value is additionally
written to an analog output via a QW FB. In order to indicate
that the counter reached the preset threshold, it’s Q output is
sent to the IEC 61499 APPLICATION via a PUBLISH FB.

In the IEC 61499 APPLICATION (see Fig. 7), a random
threshold is generated. After reasonable scaling, this value,
a start, and an end signal is transmitted to the IEC 61131-3
counterpart via a PUBLISH FB. Additionally, the threshold
value is written on an analog output via a QW FB. In order to
verify if the CTU FB in the IEC 61131-3 PROGRAM reached
the preset threshold, a boolean indicator value is transmitted
via a SUBSCRIBE FB. After reaching the threshold, the CTU
counter value is reset and a new threshold is generated. The
pure IEC 61499 APPLICATION consists of a digital output
which is toggled every 2 s. This is achieved via an E_CYCLE
FBs, generating cyclic events, and an E_T_FF FB, which
toggles its BOOL Q output at every event received.

As an embedded execution hardware, a Raspberry Pi Zero
with an 1 GHz single-core CPU is chosen, which is connected
to a Coolwell AD/DA expansion board.

B. Analysis

In order to verify the timing behavior of the implemented
combined runtime environment, an oscilloscope measurement
is carried out (see Fig. 9). The implemented test program is
continuously executed for an extended period, and then at a
randomly selected time, a 1 s time window is recorded. In
the selected time frame, the random value FB generated six
different thresholds. For every threshold change, the value
of the counter linearly increased with a constant slope. This
indicates that the cyclic execution of the IEC 61131-3 part
is not disturbed by the IEC 61499 parts, e.g. the toggling
of the digital output. On the contrary, the toggle time of the
digital output signal stays constant over the whole recording
time, showing that the IEC 61131-3 cyclic execution does
not interfere with the event-driven part. The communication
between the IEC 61131-3 and the IEC 61499 RTE also does
not interfere with their execution performance.

The analysis shows, that the demanded combined frame-
work of IEC 61499 and IEC 61131-3 compliant systems
works as users from IEC 61499 and IEC 61131-3 would
expect. The possibility to use both standards to implement
automation applications and to let them natively interact with
each other, enables the application engineer to use the most
suitable software tool for a given application.

Post-print version (generated on 21.10.2020)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: P. Gsellmann, M. Melik-Merkumians, A. Zoitl, and G. Schitter, “A Novel Approach for
Integrating IEC 61131-3 Engineering and Execution into IEC 61499,”IEEE Transactions on Industrial Informatics, 2020.
DOI: 10.1109/TII.2020.3033330
c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/TII.2020.3033330

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. X, MONTH YYYY 7

PUBLISH_3

INIT
REQ

INITO
CNF

PUBLISH_3

QI
ID
SD_1
SD_2
SD_3

QO
STATUS

FB_RANDOM

INIT
REQ

INITO
CNF

FB_RANDOM

SEED VAL

F_MUL

REQ CNF

F_MUL

IN1
IN2

OUT

BOOL2BOOL

REQ CNF

BOOL2BOOL

IN OUT

BOOL2BOOL_1

REQ CNF

BOOL2BOOL

IN OUT

SUBSCRIBE_1

INIT
RSP

INITO
IND

SUBSCRIBE_1

QI
ID

QO
STATUS

RD_1 F_EQ

REQ CNF

F_EQ

IN1
IN2

OUT

BOOL2BOOL_2

REQ CNF

BOOL2BOOL

IN OUT

F_NOT

REQ CNF

F_NOT

IN OUT

BOOL2BOOL_3

REQ CNF

BOOL2BOOL

IN OUT

E_PERMIT

EI EO

E_PERMIT

PERMIT

E_CYCLE

START
STOP

EO

E_CYCLE

DT

E_T_FF

CLK EO

E_T_FF

Q

QW

INIT
REQ

INITO
CNF

QW

QI
PARAMS
OUT

QO
STATUS

QX

INIT
REQ

INITO
CNF

QX

QI
PARAMS
OUT

QO
STATUS

F_REAL_TO_USINT

REQ CNF

F_REAL_TO_USINT

IN OUT

F_USINT_TO_WORD

REQ CNF

F_USINT_TO_WORD

IN OUT

225.0.0.1:61499

1337

REAL#10000

225.0.0.1:61500

BOOL#TRUE

1
T#2s 0

0

Figure 7: IEC 61499 part of the example implementation: The RANDOM FB generates a pseudo random number between 0.0
and 1.0, which is multiplied by a factor of 10.000 to gain reasonable output voltages. This resulting output value is set to an
analog output, and doubles as the threshold for the building-up ramp signal. The threshold, the signals for counting up and
resetting are sent via a PUBLISH FB to the IEC 61131-3 part. The SUBSCRIBE FB receives the Boolean value of the CTU
FB, which indicates when the threshold is reached. Simultaneously, a digital output is toggled every 2 s.

FB_CTU

FB_CTU

CU

R

PV

Q

CV

SUBSCRIBE_3

SUBSCRIBE_3

QI

ID

QO

STATUS

RD_1

RD_2

RD_3

F_INT_TO_WORD

F_INT_TO_WORD

IN OUT

PUBLISH_1

PUBLISH_1

QI

ID

SD_1

QO

STATUS

QW

QW

QI

PARAMS

OUT

QO

STATUS

225.0.0.1:61500

225.0.0.1:61499

11

1

1

Figure 8: IEC 61131-3 part of the example implementation,
running at a cycle time of 1 ms: Via the SUBSCRIBE FB, the
signals for counting up, resetting, and presetting the threshold
are transmitted from the IEC 61499 part to the CTU FB. The
CTU FB is generating a ramp signal, which is put on an analog
output. When the CTU FB count reaches the preset threshold,
its Boolean indicator is transmitted to the IEC 61499 part via
a PUBLISH FB.

VI. CONCLUSION

This paper presents a development approach for a combined
framework with the goal to model and execute IEC 61499
APPLICATIONs and IEC 61131-3 PROGRAMs. Thereby, an
IEC 61131-3 TASK is directly mapped in IEC 61499 as a
RESOURCE, and thus enabling use of both IEC 61499 and
IEC 61131-3 within one DEVICE. The resulting mixed envi-
ronment device allows now the integration of legacy systems
and the use of already acquired IEC 61131-3 expertise, while
still maintaining IEC 61499 distribution aspects. Furthermore,
the modified SFB enables code sharing at development and ex-
ecution time. Experiments have been conducted to verify, that
both RTE parts are not affecting each other unintentionally. A
demonstration application consisting of a pure IEC 61131-3
part, a pure IEC 61499 part, and a mixed application part is
developed and analyzed. The experimental results show, that
neither the cyclic execution of the IEC 61131-3 PROGRAM,
nor the simultaneously executing event-driven IEC 61499
APPLICATION are disturbed. The presented united program-
ming approach combines the best of both worlds for improved
development efficiency.

0 200 400 600 800
0

1

2

3

Time [ms]

Vo
lta

ge
[V

]

Random Threshold Ramp Signal Event Task

Figure 9: Verification measurement for the implemented RTE:
The Random Threshold signal changes its value as soon as the
Ramp Signal has the same value, triggering the generation of
a new threshold. Simultaneously, a digital output is toggled
via the event-driven application. It can be seen, that both
coexisting RTEs do not disturb each other and perform as
expected.

Future research will focus on the incorporation of the
remaining relevant languages Ladder Diagram (LD), and SFC
of the IEC 61131-3 standard. Beyond that, also additional
software elements such as FUNCTIONs are considered. More-
over, the integration of concepts like global variables, access
paths, and directly represented variables need also further
analysis, since conceptional contradictions are present. Finally,
the possibility of distributed IEC 61131-3 PROGRAMs based
on the proposed combined development framework will be
analyzed, enabling improved development efficiency without
the prejudice to key features for industrial automation imple-
mentations.

Post-print version (generated on 21.10.2020)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: P. Gsellmann, M. Melik-Merkumians, A. Zoitl, and G. Schitter, “A Novel Approach for
Integrating IEC 61131-3 Engineering and Execution into IEC 61499,”IEEE Transactions on Industrial Informatics, 2020.
DOI: 10.1109/TII.2020.3033330
c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/TII.2020.3033330

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. X, MONTH YYYY 8

REFERENCES

[1] W. Dai, V. Vyatkin, J. H. Christensen, and V. N. Dubinin, “Bridging
Service-Oriented Architecture and IEC 61499 for Flexibility and Inter-
operability,” IEEE Transactions on Industrial Informatics, vol. 11, no. 3,
pp. 771–781, 6 2015.

[2] International Electrotechnical Commission, IEC 61131 – Programmable
controllers, Part 3: Programming languages, 2013.

[3] IEC TC65/WG6, IEC 61499: Function blocks for industrial-process
measurement and control systems – Parts 1 to 4. Geneva: International
Electrotechnical Commission (IEC), 2005.

[4] A. Zoitl, T. Strasser, C. Sünder, and T. Baier, “Is IEC 61499 in Harmony
with IEC 61131-3,” IEEE Industrial Electronics Magazine, vol. 3, no. 4,
pp. 49–55, 2009.

[5] M. Wenger and A. Zoitl, “Re-use of IEC 61131-3 Structured Text
for IEC 61499,” in 2012 IEEE International Conference on Industrial
Technology, 3 2012, pp. 78–83.

[6] M. Wenger, A. Zoitl, C. Sunder, and H. Steininger, “Transformation
of IEC 61131-3 to IEC 61499 based on a model driven development
approach,” in 2009 7th IEEE International Conference on Industrial
Informatics, 6 2009, pp. 715–720.

[7] C. Gerber, H.-M. Hanisch, and S. Ebbinghaus, “From IEC 61131 to
IEC 61499 for Distributed Systems: A Case Study,” EURASIP Journal
on Embedded Systems, vol. 2008, no. 1, p. 231630, 10 2007. [Online].
Available: https://doi.org/10.1155/2008/231630

[8] T. Hadlich, C. Diedrich, K. Eckert, T. Frank, A. Fay, and B. Vogel-
Heuser, “Common communication model for distributed automation
systems,” in 2011 9th IEEE International Conference on Industrial
Informatics. IEEE, 7 2011.

[9] P. Gsellmann, M. Melik-Merkumians, and G. Schitter, “Comparison
of Code Measures of IEC 61131-3 and 61499 standards for
Typical Automation Applications,” in Proceedings of the 2018
IEEE 23rd International Conference on Emerging Technologies
and Factory Automation, 2018, pp. 1047–1050. [Online]. Available:
https://publik.tuwien.ac.at/files/publik_271875.pdf

[10] IEC TC65/WG6, IEC 61131: Standard - Programmable controllers –
Parts 1 to 8. International Electrical Commission, 2003.

[11] C. Sünder, A. Zoitl, J. H. Christensen, H. Steininger, and J. Rritsche,
“Considering IEC 61131-3 and IEC 61499 in the context of component
frameworks,” in 2008 6th IEEE International Conference on Industrial
Informatics. IEEE, 7 2008.

[12] S. Campanelli, P. Foglia, and C. A. Prete, “Integration of existing IEC
61131-3 systems in an IEC 61499 distributed solution,” in Proceedings
of 2012 IEEE 17th International Conference on Emerging Technologies
& Factory Automation (ETFA 2012). IEEE, 9 2012.

[13] V. Vyatkin and J. Chouinard, “On comparisons of the ISaGRAF im-
plementation of IEC 61499 with FBDK and other implementations,” in
2008 6th IEEE International Conference on Industrial Informatics, 7
2008, pp. 289–294.

[14] G. Cengic and K. Akesson, “On formal analysis of IEC 61499 appli-
cations, Part B: Execution semantics,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 2, pp. 145–154, may 2010.

[15] K. Thramboulidis, “IEC 61499: Back to the well proven practice of IEC
61131?” in Proceedings of 2012 IEEE 17th International Conference on
Emerging Technologies Factory Automation (ETFA 2012), 9 2012, pp.
1–8.

[16] J. M. Lastra, L. Godinho, and A. Lobov, “Closed loop control using
an IEC 61499 application generator for scan-based controllers,” in 2005
IEEE Conference on Emerging Technologies and Factory Automation.
IEEE, 2005.

[17] J. M. Lastra, L. Godinho, A. Lobov, and R. Tuokko, “An IEC 61499
application generator for scan-based industrial controllers,” in INDIN
'05. 2005 3rd IEEE International Conference on Industrial Informatics,
2005. IEEE, 2005.

[18] A. Zoitl, Real-time Execution for IEC 61499. ISA, 2008.
[19] L. H. Yoong, P. S. Roop, V. Vyatkin, and Z. Salcic, “A Synchronous

Approach for IEC 61499 Function Block Implementation,” IEEE Trans-
actions on Computers, vol. 58, no. 12, pp. 1599–1614, 12 2009.

[20] M. Vallee, M. Merdan, W. Lepuschitz, and G. Koppensteiner, “De-
centralized reconfiguration of a flexible transportation system,” IEEE

[21] R. Schoop and A. Strelzoft, “Asynchronous and synchronous
approaches for programming distributed control systems based on
standards,” Control Engineering Practice, vol. 4, no. 6, pp. 855–861, 6
1996. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0967066196000780

Transactions on Industrial Informatics, vol. 7, no. 3, pp. 505–516, 8
2011.

[22] H. Mayer, “The bridge is built,” Computer & Automation,
2013. [Online]. Available: http://www.computer-automation.de/
steuerungsebene/steuern-regeln/artikel/93521/

[23] C. Sunder, M. Wenger, C. Hanni, I. Gosetti, H. Steininger, and
J. Fritsche, “Transformation of existing IEC 61131-3 automation projects
into control logic according to IEC 61499,” in 2008 IEEE International
Conference on Emerging Technologies and Factory Automation, 9 2008,
pp. 369–376.

Peter Gsellmann received an MSc. in Energy Sys-
tems and Automation Technology from the Vienna
University of Technology, Vienna, Austria in 2018
and is currently pursuing a PhD degree with the
Automation and Control Institute of the Vienna Uni-
versity of Technology, Vienna, Austria. His primary
research interests are on industrial automation, and
vision-based control of industrial robots.

Martin Melik-Merkumians received his master
diploma in Electrical Engineering with focus on In-
dustrial Automation at TU Wien in 2009, and started
immediately afterwards a doctoral program at the
Automation and Control Institute within the group
for Advanced Mechatronic Systems. His research
topics are component-based automation, service-
oriented methods and self-learning algorithms in
automation systems, as well as knowledge-based
development methods for industrial automation soft-
ware.

Alois Zoitl is professor of Cyber-Physical Systems
for Engineering and Production at the Johannes
Kepler University, Linz, Austria. His research in-
terests are in the area adaptive production systems,
distributed control architectures, and dynamic recon-
figuration of control applications as well as software
development and software quality assurance meth-
ods for industrial automation. Since 2009 he is an
active member of the IEC SC65B/WG15 for the
distributed automation standard IEC 61499. He was
named convenor of the group in May 2015.

Georg Schitter is Professor for Advanced Mecha-
tronic Systems at the Automation and Control In-
stitute (ACIN) of TU Wien. He received an MSc
in Electrical Engineering from TU Graz, Austria
(2000) and an MSc and PhD degree from ETH
Zurich, Switzerland (2004). His primary research
interests are on high-performance mechatronic sys-
tems, particularly for applications in the high-tech
industry, scientific instrumentation, and mechatronic
imaging systems, inline metrology systems, as well
as automation and production systems. He received

the journal best paper award of the IEEE/ASME Transactions on Mechatronics
(2018), IFAC Mechatronics (2008-2010), Asian Journal of Control (2004-
2005), and the 2013 IFAC Mechatronics Young Researcher Award. He served
as an Associate Editor for IFAC Mechatronics, Control Engineering Practice,
and for the IEEE Transactions on Mechatronics.

Post-print version (generated on 21.10.2020)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: P. Gsellmann, M. Melik-Merkumians, A. Zoitl, and G. Schitter, “A Novel Approach for
Integrating IEC 61131-3 Engineering and Execution into IEC 61499,”IEEE Transactions on Industrial Informatics, 2020.
DOI: 10.1109/TII.2020.3033330
c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/TII.2020.3033330

