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Abstract

Multivariate times series occur in many application areas and are challenging to model. They
are used in very various areas such as signal processing, pattern recognition, econometric and
mathematical finance, weather forecasting or electroencephalography.
A common approach is therefore to assume that the observed time series can be decomposed into
latent components with different exploitable properties. Popular models for time series modelling
are for example moving average or autoregressive models. In some of these models especially non-
stationary components are of interest.
In the following we will consider in more details the so called Stationary Subspace Analysis approach
(SSA). This work considers two questions. On the one hand, how to separate non-stationary
components from stationary components within a multivariate time series? On the other hand
how to identify the right number of non-stationary components within a multivariate time series?
In order to answer these questions we fill first introduce some definitions and properties needed to
develop the differents methods that once can implement to perform SSA. Once we have explained
these methods we will demonstrate them in a simulation study.
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Chapter 1

Introduction

The definitions and properties presented in this chapter are based mainly on [16] for time series
concepts and on [1] for bootstrap notions.
Here we will introduce some definitions and properties needed to understand what we will develop
later on. We will first define a probability space and a stochastic process and we will use this
concept to define time series. Among time series we will distinguish between stationary and
nonstationary time series and within stationary time series we will differentiate between weak
and strong stationarity. In order to define stationarity we will see that we need to define some
statistical moments. After defining time series, we will present some classical models for univariate
time series.
The second part of this introduction will focus on bootstrap and how one can use this method in
the context of time series. We will present the general principles of bootstrap and then explain
how they can be adapted to fit the specificities of time series.
In this work vectors and multivariate quantities will be written in bold to help differentiate them
from scalars.

1.1 Time series

First we define the concept of stochastic process and how it is linked to time series. To introduce
this concept we need to introduce the notion of probability space. Then we also define the first
and second order moments of a time series as well as its autocovariance. In Section 1.1.2 we will
see how we can use these properties to characterise the stationarity or nonstationarity of a time
series.

1.1.1 Definitions

We first need to begin with the notion of probability space which is the space where our time
series will then be defined. In order to properly construct a probability space we need to introduce
σ-algebras and probability measures.
We start with the definition of a σ-algebra.

Definition 1 (σ-algebra). Let E be some set and P(E) its power set (e.g. the set of all subset of
E including the empty set and E itself). A subset A ∈ P(E) is called a σ-algebra if:

• E ∈ A.

• A is closed under complementation: ∀B ∈ A, B̄ ∈ A.

• A is closed under countable unions: ∀p ∈ N, p ≥ 2 and p finite, if A1...Ap ∈ A then
A1

⋃

, ...,
⋃

Ap ∈ A.

A probability space is composed of two important parts: a σ-algebra and a probability measure
which is a measure with some specific additional properties.

Definition 2 (Probability measure). A function P is called a probability measure on a σ-algebra
A if:
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• ∀A ∈ A, P(A) ∈ [0, 1].

• P(∅) = 0 and P(A) = 1.

• P satisfies the countable additive property: for any finite set A1,...,Ap of elements of A
pairwise disjoint it holds that P(

⋃p

i=1 Ai) =
∑p

i=1 P(Ai).

Eventually we use the definitions of σ-algebra and probability measure as basis to build prob-
ability spaces.

Definition 3 (Probability Space). A probability space consists of three parts:

1. A sample space, Ω , which is the set of all possible outcomes.

2. A set of events A, where each event is a set containing zero or more outcomes.

3. The assignment of a probability measure P to the events.

The next definition justifies the introduction of the construct of probability space. Probability
spaces are spaces on which stochastic processes can be build and we will see that to understand
time series it is easier to be familiar with stochastic processes.

Definition 4 (Stochastic Process). A stochastic process (Xt|t ∈ T) is a collection of real value
random variables defined on a common probability space (Ω,A,P) where Ω is a sample space, A is
a σ-algebra and P is a probability measure. In this definition T designates the set of time on which
the stochastic process is defined. It can be either discrete or continuous.

Ultimately we come to the definition that might be of highest interest in this work: what is a
time series.

Definition 5 ((univariate) Time series). A time series is a series of data points indexed in time.
Most commonly a time series is a sequence taken at successive equally spaced point in time. Thus
it is a sequence of discrete-time data.
It is usually denoted as:

xt, t ∈ 1, ..., T.

A time series is thus a realisation of a stochastic process (Xt).

Note that a time series can be univariate (at each time point we consider a single value) or mul-
tivariate (for each time point we then consider a vector instead of a single value). In the univariate
case the time series will be represented as a vector whereas in the multivariate case the time series
will be represented through a matrix where each line corresponds to a different time point.
In this thesis we will only consider discrete processes e.g. processes where T ⊆ Z or T ⊆ N.
After defining what a time series is, a legitimate question arises: how to categorise or differentiate
between different time series? We will come to that with the notions of stationarity and nonsta-
tionarity but first we define the first and second statistical moment of a time series as well as its
covariance. Later on we will develop why these statistical measures are of importance.

Definition 6 (Expected value). The expected value of a univariate sotchastic process X on a
probability space (Ω,A,P) is defined through:

E(X) =

∫

Ω

XdP =

∫

R

xdXP(x),

if this integral is absolutely convergent i.e
∫

Ω
|X|dP < +∞.

For a time series we write E(Xt) = µ(t) =
∫

Ω
Xt.

The mean measures the location of a random variable: it roughly tells where the majority of
the values are located. Next, we also define the variance.

Definition 7 (Variance). The variance of a univariate stochastic process X is the expected value
of the squared deviation from µ, the mean of X:

V ar(X) = E[(X − µ)2].
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The variance is a dispersion measure: it indicates how spread are the values around the mean.

Definition 8 (Covariance). Let X and Y be two univariate stochastic processes then the covariance
of X, Y is defined as:

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))].

Covariance can be used to measure the joint variability of two stochastic processes.

1.1.2 Properties

After defining time series and their first and second order moments we will see how these are related
to the notion of stationarity. Among stationarity one has to separate strong from weak stationarity.
Eventually if we talk about stationarity we also have to define the concept of nonstationarity.
As in this work we will mainly deal with mulitvariate time series, the definitions and properties
that follow are written for multivariate time series.

Definition 9 (Strong Stationarity). A stochastic process (xt|t ∈ T) is called strong stationary if
the distribution of (xt1+k, ...,xts+k), for all finite subsets {t1, ..., ts} ∈ Z and for every k ∈ Z is
independent of k.

Because the above definition can be very restrictive statisticians also work with the concept of
weak stationarity.

Definition 10 (Weak Stationarity). A stochastic process (xt|t ∈ T) is called weak stationary if
∀s, t ∈ Z

1. E(xtx
t
t) = Σ < +∞.

2. E(xs) = E(x0).

3. E(xtx
t
s) = E(xt−sx

u
0 ).

The last condition is equivalent to Cov(xt,xs) = Cov(xt−s,x0). It is to say that the covari-
ance of the process only depends on the distance between two time points.
With the concept of stationarity we can introduce a new statistical measure.

Definition 11 (Autocovariance). If the stochastic process (xt|t ∈ T) is squared integrable i.e
E(x2

i,j) < +∞ ∀ i ∈ N
∗, ∀ j ∈ Z and (weak) stationary then we define the autocovariance of the

stochastic process (xt|t ∈ T) as:

Cov(xt,xs) = E[(xt − µ(t))(xs − µ(s))t].

Definition 12 (Autocovariance function). The autocovariance matrix of a (weak) stationary pro-
cess (xt, t ∈ Z) is defined as:

γ : Z → R
p×p

k 7→ γ(k) = Cov(xt+k,xt).

A nonstationary time series is then a time series for which one of the above criteria does not
hold. In case the first condition is violated we then talk of nonstationarity in variance; if the
second condition is disturbed, the time series exhibits nonstationarity in mean; and if the third
condition is not met we qualify the time series as nonstationary in covariance. Common examples
of nonstationarity in mean are for example trend, seasonal or cyclic behaviour.
One other statistical measure of interest that one can use to characterize a time series is its
autocorrelation function. This measure is based on the autocovariance.

Definition 13 (Autocorrelation function). The autocorrelation matrix of a (weak) stationary pro-
cess (xt, t ∈ Z) is defined as:

ρ : Z → R
p×p

k 7→ ρ(k) = Corr(xt+k,xt).

The (i, j)-th element of the matrix ρ(k) is the correlation between the variable xi,t+k and xj,t

defined as,

ρi,j(k) =
γi,j(k)

√

γi,i(0)γj,j(0)
.
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This function tells us how strongly the different terms of the time series are correlated with
each other and how far in the past or future this correlation goes.

Property 1. For the autocorrelation γ function of a stochastic process (xt|t ∈ T) it holds:

γ(k) = γ(−k), ∀k ∈ Z.

1.1.3 Popular time series model

There exist several classical models to simulate or fit univariate time series. We will use these
models later on in our simulations.

Definition 14 (Moving Average Process). A (univariate) time series (xt) follows a moving average
model of order q - MA(q) - when,

xt = µ+ ǫt + θ1ǫt−1 + ...+ θqǫt−q,

where the innovations ǫi are independent identically distributed white noise and θ1, ..., θq are the
parameters of the model.

If one takes for example a MA(q) process it means that the output variable e.g.the value at time
t depends linearly on the current and past values of the stochastic process (ǫ). In this model the
elements of the stochastic process (ǫ) can be interpreted as random shocks. The definition of the
process shows that these shocks are directly propagated to future values of the time series. Within
a MA(q) process, a shock affects the current value and the next q future values of the process: in
the process definition the terms ǫt to ǫt−q are taken into consideration.

Figure 1.1: Moving Average Process of order 2.

In Figure 1.1 we show an example of a (univariate) moving average process of order 2 with
coefficients 0.38, 0.22 and innovations drawn from a normal distribution N (0, 1).

Definition 15 (Autoregressive Process). A (univariate) time series (xt) follows an autoregressive
model of order p - AR(p) - when,

xt = µ+ φ1xt−1 + ...φpxt−p + ǫt,

where the innovations ǫi are independent identically distributed white noise and φ1, ..., φq are the
parameters of the model.

In an AR(p) process a shock affects the values of the process infinitely far into the future. In
the equation defining the process at state t appears only the shock at time t e.g. the term ǫt but
as we are also looking at terms xt−1 to term xt−p we are then also considering the effects of shocks
ǫt−1 to ǫt−p. If the process is stationary the effects of the shocks diminish until becoming zero
in the limit. An example of an (univariate) AR(2) process is presented in Figure 1.2 below. The
coefficients are 0.70, 0.25 and innovations are drawn from a normal distribution N (0, 1).
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Figure 1.2: Autoregressive Process of order 2.

Definition 16 (Autoregressive Moving Average Process). A (univariate) time series (xt) follows
an Autoregressive Moving Average model of order (p, q) - ARMA(p,q) - when it is a combination
of two: an autoregressive process of order p and a moving average process of order q.

We illustrate this definition by displaying the plot of an ARMA(2,2) process in Figure 1.3
below. The coefficients for the moving average and the autoregressive process are the same as in the
example above: the signal plotted here is the exact association of the MA(2) and AR(2) processes
displayed in Figure 1.1 and Figure 1.2. Innovations are still drawn from a normal distribution
N (0, 1).

Figure 1.3: ARMA Process of order (2,2).

For all three models conditions on the parameters θ and φ are made to guarantee stationarity.
Usually the innovations are considered to be normally distributed.

1.2 Bootstrap

This section is not about time series themselves but rather on how to process them. We will explain
the well known bootstrap method and then show how it can be specifically adapted to time series.
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1.2.1 General Principles

Traditional bootstrap is a resampling method by independently resampling with replacement and
using the resampled data to perform inference. If one wants to determine characteristics of a
population, often one cannot test or compute statistics over the population. But one can select
one original sample and the additional samples, also referred to as bootstrap samples, are drawn
from this original sample. One can think of these as outcomes of independent and identically dis-
tributed random variables with a certain probability density function f and a certain cumulative
distribution function denoted by F . The samples are then used to make inference about a chosen
population characteristic.
There are two main strategies when bootstrapping a set of data: either parametric or non-
parametric bootstrap.
In the parametric case the cumulative distribution function of the data is fully specified by a finite
set of parameters Ψ and we aim to make inference about a population characteristic θ which can
be a component of Ψ or a function of Ψ. We then estimate the parameter(s) of interest and use
them to get a fitted model and then we draw samples from this fitted model.
In case of a non-parametric model for the population we use non-parametric bootstrap. In this
case we sample with replacement from the empirical distribution function.

1.2.2 Bootstrapping times series

For bootstrapping times series one has to take into account the order within the data. Independent
bootstrap is not meaningful in this case. Two main strategies exist for bootstrapping time series.
Additional information on bootstrapping time series can be found in [17].

Residual based bootstrap

If a model for a time series has innovations assumed to be independent and identically distributed
(iid) then it is possible to perform classical bootstrap directly on those residuals. Fit the model
based on the available data and then bootstrap the so obtained residuals to generate new time
series.

Example Consider an AR(p) model:

1. Estimate the parameters φ1, ..., φp for the centered time series (xt − x̄t).

2. Estimate the residuals ǫ̂j = xj −
∑p

i=1 φ̂ixj−i, j = p+ 1, ..., T .

3. Center the residuals ǫ̂cj = ǫ̂− ¯̂ǫ.

4. Sample with replacement: ǫ∗ from ǫ̂cj T+1 bootstrap innovations.

5. Construct the bootstrap time series x∗
t =

∑p

i=1 φ̂ix
∗
t−i + ǫ∗t and add the mean once again.

Block bootstrap

If we want to preserve some of the serial dependence within the data we can bundle the observations
in blocks and then sample from the blocks.
For a time series x of length n we assume n can be written n = bl where b is the number of blocks
and l is the average block length. Then,

z1 = (x1, ...,xl), z2 = (xl+1, ...,x2l), ...

We sample from the blocks z1,...,zb with replacement. This is called non-overlapping block boot-
strap. The idea is that if the block length is long enough then enough of the dependence structure
will be kept in the bootstrap times series and the approximation, such as test statistics, made on
the bootstrap times series will still hold.
There exists an overlapping version of the block bootstrap. Different weights are then given to the
edges of the data which are then often considered to be circular. The observations then appear
equally often within the blocks.
Note that the strategies presented above are nonstationary. However if we chose blocks with dif-
ferent lengths coming from a geometrical distribution with mean l then we can overcome this
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nonstationarity issue. We need to generate enough block lengths so that the sum exceeds the time
series length. Then we create non-overlapping blocks and sample directly from them.

Semiparametric non overlapping block bootstrap of hypothesis testing

In Chapter 4 we will use a semiparametric model for hypothesis testing. In hypothesis testing,
the null hypothesis often suggests some of the parameters of the model. Assuming we are working
with a sample of size n yielding the test statistic T0, then the semiparametric bootstrap strategy
is:

1. Sample using the null model m samples of size n.

2. Compute the corresponding m test statistics T ∗.

3. The bootstrap p-value is then defined as:

#(T ∗ > T0) + 1

m+ 1
.

The R-code used to perform our bootstrap strategy is available in Appendix in Section D.
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Chapter 2

Stationary Subspace Analysis

The approach we present below is detailed in [21], [20].

2.1 Principles

The main idea of Stationary Subspace Analysis (SSA) is to decomposed a p-variate time series
(xt) into a stationary part and a nonstationary part:

xt = Azt = [AnAs]

(

nt

st

)

. (2.1)

In the previous equation xt designates an observed p-variate time series with several components
among which it is difficult to distinguish stationary and nonstationary elements. The stationarity
or nonstationarity of the components could be detected in the unobservable latent sources zt. The
sources are composed of a signal part corresponding to the nonstationary components and a noise
part corresponding to the stationary components. We are interested in the signal part. The link
between the observed time series xt and the sources zt is established through the usually unknown
p×p full rank mixing matrix A. The mixing matrix and the the sources can be decomposed into a
nonstationary part An and nt and a stationary part As and st. We assume in the following that
nt is composed of independent components. Latent refers here to the fact that the sources are not
directly observable. One can only observe the time series xt and from there infer the sources: if
the mixing matrix is known - which is often not the case - then by multiplying the signal by the
inverse of the mixing matrix, W (defined as W = A−1) then we could theoretically access the
sources where it is observable which component is stationary or nonstationary. Examples of this
duality are given later on when we discuss the chosen settings for our simulations in Chapter 4.
We would like to be able to access these latent components to focus the analysis on the nonsta-
tionary part of the process. Separating the subspaces of nt and st is then the goal of stationary
subspace analysis. From now on we denote k as the number of nonstationary components. Note
that we can estimate only the subspaces corresponding to nt and st and those subspaces can only
be estimated up to a rotation. To solve this non uniqueness issue we will transform our matrices
into orthogonal projection matrices. This way we will define unique linear projection subspaces.
Starting from the matrix p × k B with linear independent columns we can define an orthogonal
projection matrix P by setting,

P = B(BBt)−1Bt.

In our case the matrix B will be either the inverse of W n = A−1
n if we are interested in finding

the projection to the nonstationary subspace or the inverse of W s = A−1
s if we are interested in

projecting to the stationary subspace.
Now in order to detect the nonstationary components, we divide the original time series xt into
K intervals and compute for each interval first and second order statistics. We then compare
these statistics and use these comparisons to determine the stationarity or nonstationarity of a
component. The idea behind this decomposition is that if the time series is stationary in mean
then the mean will be constant over all the K intervals. However if the time series is not stationary
in mean then the mean will take different values depending on the intervals. Same idea can be
applied for the variance (or any other statistics).
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Issue with this approach is that the comparison focuses only on deviations in mean and variance
but not in autocorrelation and we do not investigate which specific type of nonstationarity is at
play (for example for the mean we would like to know if the nonstationarity is coming from a trend
or from a seasonality pattern within the data).

2.2 Dimension Reduction

In dimension reduction methods like Principal Component Analysis (PCA) the idea is to compute
the eigenvalue decomposition of the covariance of a time series to isolate the principal dimensions.
For definitions regarding PCA we use as reference [18] and [8].
The principal components are defined as the directions with the largest possible variance e.g. the
direction accounting for as much of the variability in the data as possible and each succeeding
component in turn has the highest variance possible under the constraint that it is orthogonal to
the preceding components.
In SSA one looks for a matrix M summarising the stationarity state for some statistics (mean,
variance, covariance or mixed nonstationarities) and then computes the eigenvalue decomposition
of this matrix M . The eigenvectors whose corresponding eigenvalues are 0 (or statistically close to
0) are then the ones corresponding to the stationary components. These components do not contain
a lot of information or variation as they are equivalent to noise. We can write this decomposition:

M = UDU t,

where the matrix U contains as columns the eigenvectors of the matrix M and the matrix D is a
diagonal matrix whose diagonals elements are the eigenvalues of M ordered in decreasing order.
We then select the k non-zero eigenvalues in D representing the nonstationary components and

write

(

Un

U s

)

where Un is a k × p matrix whose rows contain the eigenvectors belonging to the

non-zero eigenvalues and U s is a (p−k)×p matrix whose rows contain the remaining eigenvectors.

2.3 Assumptions

Assume that (xt) is the p-variate time series observed at time t, t ∈ {1, ..., T} and let T1...TK be K

disjoint intervals used for the comparison of the statistics of interest (mean, variance, covariance).
We do not detail here the choice of K but we specify that K has to be large enough to capture
statistical changes and narrow enough to detect slight variations within the observed time series.
We would like each interval to contain sufficient time points for a good estimation of the properties
of interest. Optimally the cut points of the intervals should allow the quantities to be as different
as possible. This is difficult to chose but at least we try to have intervals of different length so that
seasonality effects are easier to detect. In all of our computations we will set K = 11.
We define then:

mTi
=

1

|Ti|

∑

t∈Ti

(xt), (2.2)

and,

Sτ,Ti
=

1

|Ti| − τ

∑

t∈Ti

(xt −mTi
)(xt+τ −mTi

)t. (2.3)

Note that the covariance of the time series (xt) is equal to S0,T .
We will use these as measures to detect nonstationarity in mean or variance between the K intervals.
We also make the following assumptions:

(A1) cov(st,nt+τ ) = 0, ∀τ ≥ 0.

(A2) E(st) = 0 and cov(st) = Ip−k.

(A3) cov(nt) = Dt where Dt is a diagonal matrix with positive diagonal elements.

The first assumption states that the nonstationary and stationary part are uncorrelated throughout
time and the second assumptions fixes the location and covariance of the stationary part. This is
done only for convenience. The third assumptions states that the nonstationary components are
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uncorrelated.
As in dimension reduction to allow the comparisons between the different components we work
with a whitened time series. We introduce:

yt = S0,T (xt)
− 1

2 (xt −mT ).

Based on this transformation we extract U the matrix of eigenvectors of the separation method
matrix M . This matrix changes depending on the type of nonstationarity studied. It measures
the deviation of a statistic within the intervals to the global statistic. The matrix M is computed
based on the time series (yt) In Chapter 3 we will develop more detailed definitions of M . We can
then compute the transformation matrix to the nonstationary subspace:

W n = UnS0,T (x)
− 1

2 ,

and the transformation matrix to the stationary subspace,

W s = U sS0,T (x)
− 1

2 .

Interested readers in theoretical backgrounds and theories underlying SSA can refer to [20],
[21], [7], [4].
In Chapter 3 we describe and explain which methods can be implemented to perform SSA.
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Chapter 3

Separation Methods

Within a time series there can be different types of nonstationarities. Different methods exist to
detect these non-stationarities: specific methods build for specific nonstationarities (for example in
mean, variance or in the covariance strucutre) or combination methods efficient with mixed non-
stationarities. The idea of the separation does not depend of the type of nonstationarity. First, one
defines a square separation matrix M which reflects the nonstationary behaviour. Then one takes
the eigenvalue decomposition of M (which exists because M is always defined to be a squared
matrix):

M = UDU t.

where U is a square orthogonal matrix containing the eigenvectors of M ordered according to the
decreasing order of the eigenvalues of M contained in the square diagonal matrix D. To allow the
comparisons as introduced in the following subsections we define the time series y:

yt = S
− 1

2

0,T (xt −mT (x)).

The first two methods introduced below are inspired from [13] for the first one (SIR) and [19] for
the second one (SAVE).

3.1 Non stationarity in mean - SIR

If the time series exhibits mean nonstationary behaviour then the idea is to slice it into intervals
where one can differentiate between parts with non stationary mean and parts with stationary
mean. With this in mind we define the square matrix M such that:

MSIR =

K
∑

i=1

|Ti|

T
mTi

(yt)mTi
(yt)

t.

Nonstationarity in location can be due to trend, cyclic or seasonal patterns, structural breaks or
mean shift. Seasonal patterns are patterns that repeat with a fixed period of time.
M is then the covariance between the means of the different intervals weighted by the interval
length. It is easy to see that for all components with a stationary mean the eigenvalue of MSIR

should be zero and those components with non-zero eigenvalues then correspond to nonstationary
components. If we then write the eigenvalue decomposition:

MSIR = UDU t,

where U =

(

Un

U s

)

are the eigenvectors of M arranged such that Un is the k×p matrix containing

as rows the eigenvectors belonging to the non-zero eigenvalues and Us contains the remainings
eigenvectors. The final unmixing matrices are then:

W n = UnS
− 1

2

0,T (xt),

and,

W s = U sS
− 1

2

0,T (xt).

The matrices W n and W s respectively project the observed time series to the subspace of com-
ponents with nonstationary mean and the subspace of components with stationary mean.
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3.2 Non stationarity in variance - SAVE

If we now consider nonstationarity in variance then we can define the square matrix:

MSAV E =
K
∑

i=1

|Ti|

T
(Ip − S0,Ti

(yt))
2.

This matrix evaluates the distance between the intervals variance and the global variance.
The separation process is then the same as in the SIR method. We compute the eigenvalue
decomposition of the matrix MSAV E and then deduce the projection matrices:

W n = UnS
− 1

2

0,T (xt),

and,

W s = U sS
− 1

2

0,T (xt).

Additional robust methods for time series with nonstationarity in variance are developed in details
in [11].

3.3 Non stationarity in the covariance structure

To detect nonstationarity in the covariance structure, one should use the following matrix:

M cov,τ =

K
∑

i=1

|Ti|

T
(Sτ,T (yt)− Sτ,Ti

(yt)).

As the matrix Sτ,T − Sτ,Ti
evaluates the deviation between the global covariance and the lagged

covariance within interval Ti this separation matrix M enables us to detect the changes in the
time series covariance structure.
We compute the eigenvalue decomposition of the matrix M and deduce then the matrices W n

and W s (the computation steps are identical to the steps in the SIR and SAVE methods).

3.4 Mixed non stationarities

In the previous methods detecting either nonstationarity in mean (SIR), variance (SAVE) or in the
covariance structure, the separation matrix M targets only one specific kind of nonstationarity. If
the exact nature of the nonstationarities remains unknown or if we know that we have more than
one type of nonstationarity then it may be useful to resort to combination methods.

3.4.1 Joint Diagonalisation

The ideas developed in this subsection are inspired from [10]. Goal is to find a matrix M that gives
the best diagonalized matrix approximation of the following matrices MSIR = M1, MSAV E =
M2, M cov,τ = M3. We search for the diagonal matrix U that maximizes:

3
∑

i=1

||diag(UM iU
t)||2.

Only a subset of these matrices or some natural lags could be used but the principle remains the
same. Several algorithms exist for joint diagonalization see for example [10] for details. To perform
the joint diagonalization of the three separation matrices we will use in this work the R-Package
JADE which applies Jacobi angles (see [3]).
Based on U one computes then Di = diag(di,1, ..., di,p) and then Un collects the nonstationary
components as all the columns of U such that

∑

i di,j 6= 0. As before Di is the matrix containing
the eigenvalues of the matrix M i (i = 1, 2, 3) in decreasing order.
Note that in this method the three matrices that are jointly diagonalized measure nonstationarity
in mean, variance and covariance. Thus this method can detect nonstationarity in mean, variance
and covariance structure.
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3.4.2 Analytic Stationary Subspace Analysis (ASSA)

For this separation method the idea is again the same as for the SIR, SAVE methods but the
separation matrix MASSA is defined to detect nonstationarity in both mean and variance. Details
can be found in [20]. We define:

MASSA =
1

T

K
∑

i=1

{mTi
(yt)mTi

(yt)
t +

1

2
S0,Ti

(yt)S0,Ti
(yt)

t} −
1

2
Ip.

Then again the projections matrices as obtained as in the SIR and SAVE methods.
Drawbacks of this method are that it cannot not detect nonstationarity in the covariance strucutre
and is also not able to detect the precise type of nonstationarity the components exhibit: for
example in case of nonstationarity in mean the ASSA method will detect the nonstationarity but
not if it is a due to a trend, a cyclic or seasonal component.

3.4.3 Average orthogonal projection - AOP

The ideas presented in this section are all developed in [6].
If one suspect nonstationarity in mean, variance and covariance - or just two of these different
types - one might want to try to find a subspace that is the closest possible to the corresponding
subspaces for each type of nonstationarity. This is the idea of the AOP method. If one consider
the AOP in the case of nonstationary in mean, variance and covariance then we can say that the
projector corresponding to the AOP is the orthogonal projection projecting to the subspace closest
to the subspace of nonstationarity in mean, the subspace of nonstationarity in variance as well as
the subspace of nonstationarity in covariance.

Definition 17 (Crone and Crosby distance, see [15] (1995)). For two orthogonal projectors P 1

and P 2 that have equal rank, the Crone and Crosby Distance is defined as:

D2
w(P1,P2) = 1−

tr(P1,P2)
√

(tr(P1)tr(P2))
.

If the subspaces are not of equal dimensions then we define a new distance.

Definition 18 (Distance between subspaces in case of arbitrary ranks). For two projection matrices
P1, P2 with respective ranks k1 and k2, we define the weighted distance:

D2
w(P1,P2) =

1

2
||w(k1)P1 − w(k2)P2||.

Weights are used in order to make the projection matrices P1 and P2 which have different
ranks more comparable. Some interesting choices of the weights are, for k > 0:

• wa(k) = 1,

• wb(k) =
1
k
,

• wc(k) =
1√
k
.

In general if we compare subspaces of equal rank then we use the Crone and Crosby distance
but if we compare subspaces of different ranks then we will have to use the second definition. In
the following, as the number of non stationary components will be known, we will know that the
subspaces being compared have equal rank. We will then use the Crone and Crosby distance which
is equivalent to using the second definition with weights set to w(k1) = w(k2) = 1. When we refer
to subspaces being close to each other it means in our context that the Crone and Crosby distance
or the generalised distance between the two subspaces is small.
The idea between the average orthogonal projection is following: we consider different orthogonal
projections P1, ...,Pn and combine them to find the average orthogonal projection P based on the
weights w1, ..., wn as the projection that minimizes the objective function:

σ2
w(P) =

1

n

n
∑

i=1

D2
w(Pi,P)
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where the distance function D is either the Crone and Crosby distance in case of equal ranks
between the matrices P1, ...,Pn or the generalised distance in case the n matrices have different
ranks.
To apply this method we take as original matrices the same as in the joint diagonalization algorithm:
MSIR = M1, MSAV E = M2, M cov,τ = M3. For each of this separation matrix we compute
the associated projection matrix to the nonstationary subspace (the same can be done for the
stationary subspace). Then we use this projection matrices as P1,P2,P3 and then perform AOP
on this set of matrices.
This method detects different nonstationarities but we cannot say exactly if we are confronted to
nonstationarity in mean, variance or covariance. As in the joint diagonalization method if we want
to change the kind of nonstationarities we are mixing we can define new separation matrices and
perform AOP on the new set of projection matrices. Also we do not have to limit ourself to three
type of nonstationarities we could chose more.
Now that we have an overview of the different separation methods we will compare them.
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Chapter 4

Evaluation

4.1 Evaluation of the separation methods performances

4.1.1 Settings

In order to test the performances of the separation methods we evaluate the distance between
the true and estimated nonstationary and stationary subspaces. The six methods presented in
Chapter 3 have been compared for different times series lengths.
For all settings under consideration we compare the methods for seven different times series lengths
namely: 1000, 2000, 4000, 8000, 16000, 32000, 64000. We consider 8-variate times series. Accord-
ing to the notation in Chapter 2.1 it is equivalent to p = 8. We will set the number of nonstationary
components to k = 3. This means we will be working with 8-variate time series composed of 3
nonstationary components and 5 stationary components. Note that in this first part we assume
the the dimensions of the two parts are known.
We chose for the mixing matrix an orthogonal mixing matrix. Knowing the mixing matrix allows
us to compute the true nonstationary and stationary subspaces. We use the distance defined in
Chapter 3 to compute the distance between true and estimated subspaces. As we know that the
different subspaces are of equal rank, 3 for the true and estimated nonstationary subspaces and 5
for the stationary ones, we can directly use the Crone and Crosby distance. For each method we
follow Algorithm 1.
We apply Algorithm 1 for each separation method. The settings will be defined later on. We have
defined three different settings: the first one is an 8-variate time series exhibiting nonstationarity
in mean, the second one is an 8-variate time series whose nonstationary components are nonsta-
tionary in variance and the third setting is an 8-variate time series with nonstationarity in the
covariance structure. Through these settings we want to see the performances of the algorithms
defined in Chapter 3.
The R-Code for all the simulation and evaluation functions in available in Appendix in Section D.
All the computations were carried out in R (version 3.6.0). We used the following R-packages
JADE [12], LDRTools [14], pracma [2] and BSSasymp [9].
For all the simulation we have used an orthogonal mixing matrix. We use this type of mixing ma-
trix because it ensures that the distance between true and estimated subspaces does not depend on
the mixing matrix. This result is proven in Appendix in the Section A. More on affine invariance
can be read in [5].
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Input: Mixing matrix A, separation method, time series x, number of nonstationary
components k.

Compute W true = A−1.
Use k, the predefined number of nonstationary components, to compute the matrices
W true

n and W true
s .

Compute the orthogonal projection matrices P true
n and P true

s .
Initialisation: i = 1.
for i ≤ 1000 do

1. Use the simulation function defined in Input to simulate one time series x.

2. Based on x compute the separation matrix as defined in the separation method chosen in
Input.

3. Compute W based on M which is the separation matrix obtained through the separation
method defined in the Input (see Step 2).

4. Use k, the predefined number of nonstationary components, to compute the matrices W n

and W s.

5. Compute the orthogonal projection matrices P n and P s based on W n and W s.

6. Compute Di
n = D2(P true

n ,P n) which is the squared distance between true and estimated
nonstationary subspaces and Di

s = D2(P true
s ,P s) the squared distance between true and

estimated stationary subspaces.

7. i = i+ 1

end

Compute the average distance between true and estimated nonstationary subspaces:
Dn = 1

1000

∑1000
i=1 Di

n.
Compute the average distance between true and estimated stationary subspaces:
Ds =

1
1000

∑1000
i=1 Di

s.
Algorithm 1: How to evaluate the performance of one separation method.

Setting 1: nonstationarity in mean

We describe here the simulation setting to simulate a time series whose first three components
are non stationary in mean. With this simulation function we would expect the SIR function to
perform better than the others. The settings we used to simulate the sources are:

• Season: MA(1) with coefficient (0.7) + c where c is a constant whose value is −1.52 for the
first half of the time then 1.38 for the second half. The idea is here to have a stationary
process whose mean varies depending on seasons (here 2 seasons corresponding to 2 different
values). This seasonality affects the mean but not the variance of the time series. When
computing the covariance between the means of the different slicing intervals we expect to
see some variations indicating nonstationarity in mean.

• Season: MA(1) with coefficient (0.5) + c where c is a constant whose value is −0.75 for the
first third of the time then 0.84 for the second third, −0.45 for the last third.

• Season: MA(1) with coefficient (0.3) + c where c is a constant whose value is 1 for the first
quarter of the time then 2 for the second quarter, 3 for the last quarter, and eventually c = 4
for the last quarter.

For the five stationary components below the innovations are drawn from a normal distribution
N (0, 1).

• z4 = MA(2) with coefficients (0.72, 0.24).

• z5 = AR(3) with coefficients (0.34, 0.27, 0.18).

• z6 = ARMA(3,2) with coefficients (0.34, 0.27, 0.18). and (0.72, 0.15).
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• z7 = AR(2) with coefficients (0.11, 0.58).

• z8 = MA(1) with coefficients (0.78).

Below the first figure, Figure 4.1, represents the observed time series corresponding to the Setting
1. The second figure, Figure 4.2, represents the sources deriving from Setting 1. We see that in
the time series we cannot distinguish between stationary and nonstationary components but in the
sources we can already see which components belong to the signal and which ones are noises.

Figure 4.1: Observed time series for Setting 1 with time series length T = 8000.

Figure 4.2: Sources for Setting 1 with time series length T = 8000.

Next we will carry out similar simulation for nonstationarity in variance and in covariance.
For these simulations we will keep the same 5 stationary components and just adapt the first
3 nonstationary components so they exhibit the right kind of nonstationarity. All the plots are
displayed for T = {1, ..., 8000}.

Setting 2: nonstationarity in variance

We describe here the simulation setting to simulate a time series whose first three components are
non stationary in variance. As mentioned before the 5 stationary components remain the same as
in Setting 1.

• z1 = ǫ+α where ǫ is randomly drawn from a normal distribution N (0, 1) and α is a function
of t defined as α(t) = 3× sin( t

6×π
) for the first third of the time interval, then for the second

third α(t) = (cos(t)+sin(t))
sin(2×t) and eventually for the last third α(t) = 10 × tanh(0.0001 × t) ;

then we filter the values so that all the values stay in the interval [−30; 30].
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• z2 random walk: we take a series of independent random variables where each variable
is either 1 or −1 with a probability of 1

2 for either value and then we take the sum of
these variables. The sum defines then a new series of random variables. The random walk
corresponds to this newly created series. As each random variables constituting the sum has
expectation 0 and variance 1 the sum has expectation 0 and is nonstationary variance. If we
consider the n-th term of the series of sums it has variance n. This random walk exhibits
then stationarity in mean but nonstationarity in variance.

• z3 it is the concatenation of four normal distribution with same mean but different variances
N (0, 1), N (0, 2), N (0, 4) and N (0, 8). Each block as length one quarter of the total time
series length.

For the five stationary components below the innovations are drawn from a normal distribution
N (0, 1).

• z4 = MA(2) with coefficients (0.72, 0.24).

• z5 = AR(3) with coefficients (0.34, 0.27, 0.18).

• z6 = ARMA(3,2) with coefficients (0.34, 0.27, 0.18) and (0.72, 0.15).

• z7 = AR(2) with coefficients (0.11, 0.58).

• z8 = MA(1) with coefficients (0.78).

Below in Figure 4.3 and Figure 4.4 we show one realisation of Setting 2 for T = 8000. As
before the first figure, Figure 4.3, corresponds to the observed time series and it is not possible to
determine which components are stationary or nonstationary in this representation. However we
can see in Figure 4.4 corresponding to the sources that the first three components are nonstationary
in variance. In the first component the variance depends on which third of the time interval we
are located in. The second component is the random walk. Eventually in the third component the
means remains constant but the variance is increasing with time.

Figure 4.3: Observed time series for Setting 2 with time series length T = 8000.
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Figure 4.4: Sources for Setting 2 with time series length T = 8000.

Setting 3: nonstationarity in the covariance structure

For this next setting the idea is to simulate some changes in the covariance structure of the time
series. To this extend we simulate two components z2 and z3. We cut z2 into 2 parts and z3
into 3 parts. Within a component the different parts have equal mean and variance but there are
differences between the covariance structures. We get the following setting:

• z1 = ǫ+10× tanh(0.0001× t)) where ǫ is randomly drawn from a normal distribution N (0, 1)

• z2 is a superposition of three different settings: for the first third AR(1) with coefficient (0.5)
and innovations from N (0, 1), AR(1) for the second third with coefficient (0.2) and inno-
vations from N (0, 1.28) and for the third part AR(1) with coefficient (0.8) and innovations
from N (0, 0.48)

• z3 is composed of two components: MA(1) with coefficient (0.5) and innovations from N (0, 1)
for the first part and MA(2) with coefficient (0.9, 0.17) and innovations from N (0, 0.68) for
the second part.

To compute the variances in z2 and z3 we used the known formula for variance in case of AR(1) or
MA(1), MA(2) processes (results are written for univariate processes as one component is univariate
and we assume that the stationarity conditions are fulfilled for the AR(1) process e.g. |θ1| < 1 ):

• MA(1): xt = µ+ ǫt + θ1ǫt−1 where ǫt ∼ N (0, σ2) then V ar(xt) = σ2(1 + θ21)

• MA(2): xt = µ+ ǫt + θ1ǫt−1 + θ2ǫt−2 where ǫt ∼ N (0, σ2) then V ar(xt) = σ2(1 + θ21 + θ22)

• AR(1): xt = µ+ θ1xt−1 + ǫt where ǫt ∼ N (0, σ2) then V ar(xt) =
σ2

(1+θ2

1
)

For the five stationary components below the innovations are drawn from a normal distribution
N (0, 1).

• z4 = MA(2) with coefficients (0.72, 0.24)

• z5 = AR(3) with coefficients (0.34, 0.27, 0.18)

• z6 = ARMA(3,2) with coefficients (0.34, 0.27, 0.18) and (0.72, 0.15)

• z7 = AR(2) with coefficients (0.11, 0.58)

• z8 = MA(1) with coefficients (0.78)
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Figure 4.5: Observed time series for Setting 3 with time series length T = 8000.

Figure 4.6: Sources for Setting 3 with time series length T = 8000.

4.1.2 Distance evaluation

We show in Appendix in Section A that the distances between true subspace and estimated sub-
space are equal in case of trivial mixing (mixing matrix is the identity matrix) and non trivial
mixing if and only if the mixing matrix A is orthogonal.
Below we show the results of our distance evaluation. We display two plots for each setting showing
the performances for the six different methods presented in Chapter 3. The numerical results are
also available in Appendix in Section B. We display two curves pro separation method: one for
the evaluation of the distance between true and estimated nonstationary subspace (later we may
refer to this distance as nonstationary distance and we denote it by Dn in all the figures below)
and the second for the evaluation of the distance between true and estimated stationary subspaces
(this distance could also be called stationary distance and, in all the figures below, we refer to this
distance as Ds).
The distances are evaluated as explained in Alogrithm 1. In each of the plots below we see that
the distance between true and estimated subspaces decreases when the length of the time series
increases. It also seems that some methods are always performing best such as the ASSA method.
We would like to know when to prefer one method to another. We will show that in case of specific
nonstationarity, in mean, variance or covariance, then the corresponding specific algorithm out-
performs the other specific algorithm. By specific algorithms we denote algorithms such as SIR,
SAVE or the procedure for nonstationarity in the covariance structure that have been specifically
designed to detect and treat specific nonstationarities - respectively in mean, variance or covari-
ance. On the other hand by combined algorithm we refer to the three following methods: joint
diagonalization, ASSA and AOP that can process more than one type of nonstationarity.

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Nonstationarity in mean

In Figure 4.7 and in Figure 4.8 we can see that the best performing specific separation method
is the SIR algorithm. Best performing means here that the distance between true and estimated
subspaces is the lowest when taking this particular algorithm. The SIR algorithm performed a
satisfying separation of nonstationary and stationary components and the corresponding estimated
subspaces are quite close to the true subspaces. For the combined algorithms we see they are all
very close but it seems that the AOP method performs slightly better than the other one.
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Figure 4.7: Setting 1: Evolution of the nonstationary distance Dn when the time series length
increases.
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Figure 4.8: Setting 1: Evolution of the stationary distance Ds when the time series length increases.

Nonstationarity in variance

In Figure 4.9 and in Figure 4.10 it appears that the best performing specific method is, as hoped,
the SAVE algorithm. Amongst the combined algorithm we can mention the AOP and the ASSA
algorithms as appearing more reliable than the joint diagonalization algorithm. It is important
here to underline that the SAVE algorithm performs better than the SIR one. It means that the
nonstationarity in variance was detected as such.
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Figure 4.9: Setting 2: Evolution of the nonstationary distance Dn when the time series length
increases.
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Figure 4.10: Setting 2: Evolution of the stationary distance Ds when the time series length in-
creases.
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Nonstationarity in covariance

In Figure 4.11 and in Figure 4.12 the best specific algorithm is in this case the algorithm for
nonstationarity in covariance. Note that for this method and setting the results from the SIR and
AOP methods are equals. It appears that for smaller time series length (also under 30000) the SAVE
algorithm outperforms the algorithm for nonstationarity in the covariance structure. However when
the time series length crosses 30000 then the algorithm for nonstationarity in covariance becomes
the best specific one. For the combined algorithms notice here that unlike for nonstationarity in
mean or in variance the AOP algorithm performs poorly. The best combined algorithm seems to
be here the joint diagonalization algorithm. The ASSA method also yields good results but only
for time series length above 30000.
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Figure 4.11: Setting 3: Evolution of the nonstationary distance Dn when the time series length
increases.
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Figure 4.12: Setting 3: Evolution of the stationary distance Ds when the time series length in-
creases.

Conclusion

We see that the performances of the different algorithms vary depending on the settings e.g. on
the type of behaviours of the time series. Performances of the separation algorithms also depend
on the time series length. It is important to notice that in case we have established a specific
nonstationarity, for example in mean, in variance or in covariance then the algorithm corresponding
(e.g. SIR in the case of nonstationarity in mean, SAVE for nonstationarity in variance and the
algorithm for nonstationarity in the covariance structure) performs better than the other specific
algorithms. Regarding the combined algorithm the ASSA method seems to systematically yield
satisfying results (at least for time series length above 30000). We can then make the following
recommandation: if we know which type of nonstationarity are underlying in our time series then
we can apply the corresponding specific algorithm. In case of uncertainty regarding the type of
nonstationarity or in case of combined nonstationarity then we should rather apply some combined
algorithm like ASSA.

4.2 Estimation of the number of non stationary components

4.2.1 Bootstraping

To apply all the methods presented above we need to know the number of nonstationary compo-
nents. This parameter is usually not known and if we have a guess regarding its value we would
like to be able to test. The hypothesis we would like to test can then be formulated as:

H0 : k0 = k.
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The value k designates here the value we think would be the most appropriate for the number of
nonstationary components and k0 designates the true number of nonstationary components.
Now that we have formulated our hypothesis we need to find a statistic to answer our question.
As explained in Chapter 2.1 when we take the eigenvalues decomposition of the separation matrix,
the eigenvalues corresponding to stationary components are close to 0. Thus if we are working
with a p-variate time series we can chose as test statistic the variance of the p − k eigenvalues
of the eigenvalues decomposition of the separation matrix. This means we take the last p − k

diagonal elements of the matrix D0 which is the diagonal matrix containing all the eigenvalues of
the separation matrix M . As the p− k are supposed to be stationary according to H0, we expect
this variance to be close to 0. In Algorithm 2 we describe how we test for one possible value of k.
Based on one original time series x0, one separation method and the number of nonstationary
components k that we wish to test, we implement the following algorithm. We execute N = 2000
repetitions of m = 200 bootstrap samples each. We use stationary non-overlapping block bootstrap
to obtain our 200 bootstrap samples. We set as mean for the underlying geometric distribution
l = 50 for all of the repetitions. We set our significance level to α = 0.05.

Input: Number of Monte Carlo simulations N , number of bootstrap samples m,
separation method, time series x, number of nonstationary components k.

Apply the separation algorithm to the original time series x with number of nonstationary
components k.
Output: W 0, D0 = diag(λ1, ..., λp).

Compute t0 = var(λk+1, ..., λp).
Use k and W 0 to compute W 0

n consisting of the first k rows of W 0 and W 0
s composed

with the last p− k rows of W 0.
Compute z0

n = (W 0
n)

−1x and z0
s = (W 0

s)
−1x respectively corresponding to the signal and

the noise.
Initialisation: i = 1.
for i ≤ N = 2000 do

for j ≤ m = 200 do

1. Compute the j-th stationary bootstrap sample zj
s by applying stationary non overlapping

block bootstrap to z0
s.

2. Build the j-th bootstrap sample xj by assembling z0
n and zj

s.

3. Apply the separation algorithm to the j-th bootstrap sample xj with number of
nonstationary components k and store Dj = diag(λj

1, ..., λ
j
p) the matrix containing

eigenvalues of the corresponding separation matrix.

4. Compute tj = var(λj
k+1, ..., λ

j
p).

end

Compute pi = #(t>t0)+1
m+1 for t ∈ t1...t2000.

end

Count how many p values are under the significance level α = 0.05 e.g. how many times
H0 was rejected.

Algorithm 2: Semiparametric bootstrap test for H0 : k = k0.

The R-Code corresponding to Algorithm 2 as well as the code used for step 1 within the second
loop are available in Appendix in Section D.
We expect that for the true number of nonstationary components (k = k0) e.g. under H0 then
only 5% of the p-values are under α; for k > k0 then the majority of the p-values should be below
the α-level; and for k < k0 we hope the p-values to be quite close to 1 (the test rejects quite
systematically H0). In this last case all the p-value should be at least above the α-level.
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4.2.2 Results

For hypothesis testing we chose the following settings: we use Setting 1 and the SIR algorithm.
Note that if we chose a poor separation algorithm (e.g. the difference between the eigenvalues of
the separation matrix corresponding to the last nonstationary component and the first stationary
component, in our case the difference between the third and the fourth eigenvalues, is too small)
then the test will perform poorly and results will not meet the chosen significance level.
We present here the results for the SIR method. For the other methods the analysis would be the
same. The code for this simulation is also available in Appendix in Section D.
The simulation was conducted with a 8-variate time series exhibiting nonstationarity in mean
simulated as described in Setting 1 and 3 nonstationary components. We made 2000 repetitions
and for each of this repetition 200 bootstrap samples were computed. During the whole procedure
the mean for the geometric distribution used for block bootstrap is l = 50. We chose as α-level
α = 0.05. The process was repeated for five different time series length: 1000, 2000, 4000, 8000,
16000. Below, in Figure 4.13 we present the results for this procedure.

0.00

0.25

0.50

0.75

1.00

4000 8000 12000 16000
Time series Length

P
er

ce
nt

ag
e 

of
 R

ej
ec

tio
ns

Number of nonstationary components k = 2 k = 3 (H0) k = 4 alpha−level

Figure 4.13: Rejection frequencies the SIR methods over 2000 repetitions with 200 bootstrap
samples each.

In Figure 4.13 the α-level is represented through the purple horizontal line set to 0.05. The
red line correspond to the case k = 2 and we see that as hoped the percentage of rejections for
this case is often close to 1 and always well above the α-level. This case demonstrates the power of
our test: the probability to reject H0 is high when H0 is false. The green line displays the results
for the case corresponding to H0: k = 3. We see that the number of rejections is very close to the
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α-level as it should be. The blue line illustrates the results for k = 4. In this case we are always
under the α-level and as expected also always under the number of rejection for the case k = 3.
The numerical results are available in Appendix in Section C.
For other simulation settings or other methods the methodology would be the same and we hope
that the results would also be very similar.

Conclusion

On the one hand we see that under the null-hypothesis, corresponding to the settings where k = 3
the number of rejections by the test is well around the α-level set to 0.05%. In case where the
H0-hypothesis is not respected, e.g. in case where k = 2 we see that the percentage of rejections is
very close to or equal to 1. Through this case we can determine the power of our test which is the
probability of rejecting the H0-hypothesis knowing that it is incorrect. For the third and last case
k = 4 we have shown that this case was somewhat included into the H0-hypothesis: when we take
4 eigenvalues instead of 3 as we have really only three nonstationary components then the fourth
eigenvalue will statistically be very close to 0 so will not contribute much to the variance.
Knowing how this test performs we can also use it if we do not know what the number of non-
stationary components might be. We test for all the possible values and then chose the values at
which the test start rejecting less. For example in our case the switch would happen between k = 2
and k = 3 so we would probably chose k = 3.
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Chapter 5

Conclusion

We showed in this work that we dispose of at least six different separation methods to separate
nonstationary components from stationary components within a time series. We evaluated these
methods and established that one of them, namely ASSA seems to be performing better than the
others no matter what the setting is. As we do not always know with which kind of nonstationarity
we are dealing we would then recommend using this method in case of uncertainty. In case we
are dealing with specific nonstationarity in mean, variance or covariance, we have shown that the
specific algorithms yield very satisfying results.
But before separating the components we also need to know how many components we need to
isolate. For this we came up with a statistical test: if we assume that the p-variate time series we
are studying have k nonstationary components (H0: the number of nonstationary components is
k) then based on the variance of the p−k last eigenvalues of the separation matrix as test statistic
we can test whether the data support this hypothesis or not.
Further steps would be to apply the semiparametric bootstrap testing to other methods. We
only tested it for the SIR method here but it should also work for the other separation methods
presented in this work. The principle would stay the same but it could be interesting to explicitly
see the numerical results and performances for these methods.
One other question one could ask is how to detect more in details the types of nonstationarity
observed. For example if our data are exhibiting nonstationarity in mean then it would be nice
to know whether it is a trend, a cyclic or seasonal behaviour. Eventually we could think of some
enhanced way to detect combined nonstationarities and to disclose the processes behind these
nonstationarities.
At the end of the day we tested our separation algorithms and test process on simulated data but
we could also try to implemented them for real life phenomena.
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Chapter 6

Appendix

A Demonstations

We prove here that the distance in case of non-trivial and trivial mixing matrices are the same if
and only if the mixing matrix is orthogonal.
Let A be the mixing matrix, xt the observed signal at time t and zt the corresponding sources.
To prove that if the distances are equal then the mixing matrix is orthogonal we use the contra-
positive. The computation shows that if the mixing matrix is not orthogonal then the distances
are not equal. Just take any random invertible non orthogonal non mixing matrix and try to
compute the distance between true and estimated projector in case of non-trivial mixing (through
the selected mixing matrix) and in case of trivial mixing. They will not be equal.
Now let assume that the mixing matrix A is orthogonal. We denote by xt the signal obtained
through the orthogonal mixing matrix A and by x∗

t the corresponding signal but without the
mixing. We can write:

[B2P ( ˆW (xt))−B2P (W (xt))][B2P ( ˆW (xt))−B2P (W (xt))]
t

= ((At)
1

2 )
−1

[B2P ( ˆW (x∗
t ))−B2P (W (x∗

t ))][B2P ( ˆW (x∗
t ))−B2P (W (x∗

t ))]
t](At)

1

2 .

Then if we take the trace of each side of the equation they are equal and we get that

||B2P (W (xt))][B2P ( ˆW (xt))−B2P (W (xt))||F = ||B2P ( ˆW (x∗
t ))−B2P (W (x∗

t ))||F .
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B Distance Evaluation Numerical Results

In the three tables below, Table 6.1, 6.2 , 6.2, we denote by Dn the distance between true and
estimated non-stationary subspaces and by Ds the distance between true and estimated stationary
subspaces. The distances are computed according to Chapter 3. T designates here the time series
length.

Separation Method T Dn Ds

1000 0,2204 0,1673
2000 0,1106 0,0795
4000 0,0553 0,0386

SIR 8000 0,0291 0,0201
16000 0,0144 0,01
32000 0,0074 0,0051
64000 0,0037 0,0025
1000 0,5251 0,3428
2000 0,275 0,1585
4000 0,1347 0,0704

SAVE 8000 0,0689 0,0341
16000 0,0332 0,0162
32000 0,0167 0,008
64000 0,0083 0,004
1000 0,4894 0,3168
2000 0,2532 0,1435
4000 0,1271 0,0662

Covariance 8000 0,0654 0,0326
16000 0,0325 0,016
32000 0,0167 0,008
64000 0,0082 0,0039
1000 0,2807 0,2127
2000 0,1305 0,0929
4000 0,0633 0,0436

Joint Diagonalization 8000 0,0325 0,0221
16000 0,016 0,0109
32000 0,0081 0,0055
64000 0,004 0,0027
1000 0,2285 0,1731
2000 0,1115 0,0801
4000 0,0563 0,0392

ASSA 8000 0,0295 0,0203
16000 0,0146 0,0101
32000 0,0075 0,0051
64000 0,0037 0,0025
1000 0,1718 0,1043
2000 0,1894 0,1302
4000 0,0381 0,0291

AOP 8000 0,0271 0,0198
16000 0,0122 0,0082
32000 0,0066 0,0061
64000 0,007 0,0051

Table 6.1: Distance evaluation for Setting 1.
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Separation Method T Dn Ds

1000 2,0829 1,5943
2000 2,0065 1,2834
4000 1,5707 1,0054

SIR 8000 1,2702 0,9599
16000 1,1975 0,9583
32000 1,177 0,9586
64000 1,181 0,9582
1000 0,7388 0,0127
2000 0,6614 0,0028
4000 0,6384 0,0012

SAVE 8000 0,6249 0,0008
16000 0,5835 0,0005
32000 0,5634 0,0002
64000 0,5513 0,0001
1000 2,3618 1,6868
2000 2,3481 1,5954
4000 2,1642 1,2212

Dovariance 8000 1,6533 0,9839
16000 1,487 0,9756
32000 1,4472 0,9762
64000 1,44 0,9779
1000 0,6894 0,1384
2000 0,5066 0,0023
4000 0,4754 0,0011

Joint Diagonalization 8000 0,4662 0,0009
16000 0,4401 0,0005
32000 0,4227 0,0002
64000 0,4219 0,0001
1000 0,5719 0,031
2000 0,379 0,0041
4000 0,3333 0,0018

ASSA 8000 0,3304 0,0013
16000 0,3069 0,0006
32000 0,2916 0,0003
64000 0,294 0,0001
1000 0,1718 0,1043
2000 0,1894 0,1302
4000 0,0381 0,0291

AOP 8000 0,0271 0,0198
16000 0,0122 0,0082
32000 0,0066 0,0061
64000 0,007 0,0051

Table 6.2: Distance evaluation for Setting 2.
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Separation Method T Dn Ds

1000 1,9977 2,3168
2000 1,7485 1,9176
4000 1,7153 1,8352

SIR 8000 1,7034 1,8227
16000 1,7011 1,817
32000 1,6833 1,8048
64000 1,6771 1,8005
1000 1,9796 2,1585
2000 1,6024 1,8579
4000 0,9719 1,0676

SAVE 8000 0,7605 0,8988
16000 0,1569 0,3058
32000 0,0166 0,0416
64000 0,0051 0,0138
1000 1,9578 2,1126
2000 1,6063 1,8474
4000 0,9809 1,0572

Covariance 8000 0,8539 0,9559
16000 0,2515 0,4388
32000 0,0186 0,0497
64000 0,0054 0,0148
1000 1,9896 2,1516
2000 1,097 1,2805
4000 0,972 1,0444

Joint Diagonalization 8000 0,8733 0,9577
16000 0,3219 0,4254
32000 0,0161 0,0412
64000 0,0048 0,0134
1000 2,0171 2,2732
2000 1,2719 1,4942
4000 1,0328 1,1244

ASSA 8000 0,9578 1,0187
16000 0,7145 0,8526
32000 0,0798 0,1793
64000 0,0066 0,0203
1000 1,9977 2,3168
2000 1,7485 1,9176
4000 1,7153 1,8352

AOP 8000 1,7034 1,8227
16000 1,7011 1,817
32000 1,6833 1,8048
64000 1,6771 1,8005

Table 6.3: Distance evaluation for Setting 3.
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C Bootstrap Hypothesis Testing Numerical Results

In Table 6.4 we present the rejection frequencies of our semiparametric bootstrap test to determine
whether the number of non-stationary components was correctly determined. Our null-hypothesis
is: H0 : k = k0.

T Number of Rejections
k = 2 k = 3 = k0 (H0) k = 4

1000 0.364 0.0245 0.006
2000 0.8855 0.034 0.007
4000 0.9995 0.0395 0.004
8000 1 00 0.0435 0.005
16000 1.00 0.0505 0.004

Table 6.4: Percentage of Rejection of H0 : k = k0.

D R-Code

Bootstrap Strategy

In our simulation we will use the following function to perform non-stationary non-overlapping
block bootstrap from our times series. y is the input time series we want to bootstrap from and 1

l

is the mean of the geometric distribution we sample the block lengths from.

Listing 6.1: R code – Bootstrap Sampling

nos1 <- function(y, l) {

NR <- nrow(y)

NC <- ncol(y)

ybt <- rep(0, NC)

L <- numeric ()

j <- 1

# create the block lengths

while(sum(L)<=(NR+1)) {

L[j] <- rgeom(1,1/l)

j <- j+1

}

nbBlocks <- length(L)

# sample from the blocks

# cntRows <- c(nrow(ybt))

cntRows <- c(NULL)

while (sum(cntRows) < NR+1) {

a <- sample(c(1:nbBlocks), 1)

if (a>1) {

L_aux <- L[1:(a-1)]

s <- cumsum(L_aux)[a-1]

} else {

L_aux <- L[1]

s <- 0

}

ind_start <- s+1

ind_end <- s+L[a]

if(ind_end <= NR) {

ybt <- rbind(ybt , y[ind_start:ind_end ,])

} else {

if (ind_start > NR) {

ind_start <- NR

} else {

ybt <- rbind(ybt , y[ind_start:NR ,])

}

}

cntRows <- c(nrow(ybt))

}
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ybt <- as.ts(ybt[2:(NR+1),])

return(list(boot_sample = ybt , blocks_lenghts = L))

}

The function below computes the test statistics of the bootstrap samples (created with the
above function) as well as the p-value for testing H0: the number of non-stationary component
is k | H1: the number of non-stationary component is not k For a p-variate time series the test
statistic used is the variance of the k + 1 to p eigenvalues of the eigenvalue decomposition of the
separation matrix. It takes as input:
Mix Mixing matrix to be used in the simulation function simfun

sim_fun simulation function to simulate the time serie
n length of the simulated time serie
k number of non-stationary components in the simulated time-serie according to H0

m number of bootstrap repetitions
l 1

l
is the mean of the geometric distribution used to sample the block lengths

bt_fun bootstrap function used to create the bootstrap samples
sep_fun separation function
K, tau, n.cuts parameters of the separation function

Listing 6.2: R code – Bootsrap Hypothesis Testing

boot_fun <- function(Mix , n, k, m, l, sim_fun , bt_fun , sep_fun , K, tau , n.cuts) {

x0 <- sim_fun(n, Mix)$xnt

p <- dim(x0)[2]

MEAN0 <- colMeans(x0)

xc <- sweep(x0, 2, MEAN0, "-")

S0 <- sep_fun(x0, K, tau , n.cuts)

D0 <- S0$eval

W0 <- S0$W

W0inv <- solve(W0)

z0 <- tcrossprod(xc , W0)

t0 <- var(D0[-(1:k)])

z0n <- z0[,0:k, drop=FALSE]

z0s <- z0[,-(0:k), drop=FALSE]

t <- numeric(m)

for (i in 1:m) {

zs_sample <- bt_fun(z0s, l)$boot_sample

z_bt <- as.ts(cbind(z0n, zs_sample ))

x_bt <- tcrossprod(z_bt , W0inv)

x_bt <- sweep(x_bt , 2, MEAN0, "+")

D_bt <- sep_fun(x_bt , K, tau , n.cuts)$eval

t[i] <- var(D_bt[-(1:k)])

}

p <- (sum(t>t0)+1)/(m+1)

return(list(t0 = t0, t=t, p=p))

}

The function returns the test statistic t0 of the original time series, the vector of the bootstrap
statistics t and the p-value p.

Separation Functions

Listing 6.3: R code – SIR method - Non stationarity in mean

MSIR <- function(X, K, tau , n.cuts) {

MEAN <- colMeans(X)

p <- ncol(X)

COV <- cov(X)

EVD <- eigen(COV , symmetric =TRUE)

COV.sqrt.i <- EVD$vectors %*% (diag(EVD$values^(-0.5))) %*% t(EVD$vectors)

X.C <- sweep(X, 2, MEAN , "-")

Y <- tcrossprod(X.C, COV.sqrt.i)

n <- nrow(Y)

if (is.null(n.cuts)) n.cuts <- ceiling(seq(1, n, length = K + 1))
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N.cuts <- n.cuts + c(rep(0, K), 1)

COV <- array(0, dim = c(p, p, K))

for (i in 1:K) {

YK <- Y[N.cuts[i]:(N.cuts[i + 1] - 1),]

slicemean <- colMeans(YK)

COV[, , i] <- nrow(YK)* tcrossprod(slicemean )/n

}

M <- apply(COV , 1:2, sum)

EVD <- eigen(M, symmetric = TRUE)

W <- crossprod(EVD$vectors , COV.sqrt.i)

S <- tcrossprod(X.C, W)

S <- ts(S, names = paste("Series", 1:p))

RES <- list(M = M, eval = EVD$values , W = W)

RES

}

Listing 6.4: R code – SAVE method - Non-stationarity in variance

MSAVE <- function(X, K, tau , n.cuts) {

MEAN <- colMeans(X)

p <- ncol(X)

COV <- cov(X)

EVD <- eigen(COV , symmetric =TRUE)

COV.sqrt.i <- EVD$vectors %*% (diag(EVD$values^(-0.5))) %*% t(EVD$vectors)

X.C <- sweep(X, 2, MEAN , "-")

Y <- tcrossprod(X.C, COV.sqrt.i)

n <- nrow(Y)

p <- ncol(Y)

if (is.null(n.cuts)) n.cuts <- ceiling(seq(1, n, length = K + 1))

N.cuts <- n.cuts + c(rep(0, K), 1)

COV <- array(0, dim = c(p, p, K))

for (i in 1:K) {

YK <- Y[N.cuts[i]:(N.cuts[i + 1] - 1),]

slicevar <- crossprod(YK)/nrow(YK)

COV[, , i] <- nrow(YK)*( diag(p) - slicevar )%*%t(diag(p) - slicevar )/n

}

M <- apply(COV , 1:2, sum)

EVD <- eigen(M, symmetric = TRUE)

W <- crossprod(EVD$vectors , COV.sqrt.i)

S <- tcrossprod(X.C, W)

S <- ts(S, names = paste("Series", 1:p))

RES <- list(M = M, eval = EVD$values , W = W)

RES

}

Listing 6.5: R code – Non-stationarity in the covariance structure

actau <- function(Y, tau) {

n <- nrow(Y)

Yt <- Y[1:(n - tau), ]

Yti <- Y[(1 + tau):n, ]

crossprod(Yt, Yti)/nrow(Yt)

}

Mcovtau <- function(X, K, tau , n.cuts) {

MEAN <- colMeans(X)

p <- ncol(X)

COV <- cov(X)

EVD <- eigen(COV , symmetric =TRUE)

COV.sqrt.i <- EVD$vectors %*% (diag(EVD$values^(-0.5))) %*% t(EVD$vectors)

X.C <- sweep(X, 2, MEAN , "-")

Y <- tcrossprod(X.C, COV.sqrt.i)
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n <- nrow(Y)

p <- ncol(Y)

if (is.null(n.cuts)) n.cuts <- ceiling(seq(1, n, length = K + 1))

N.cuts <- n.cuts + c(rep(0, K), 1)

S <- array(0, dim = c(p, p, K))

Sall <- actau(Y, tau = tau)

for (i in 1:K) {

slice <- Y[N.cuts[i]:(N.cuts[i + 1] - 1), ]

sli.length <- nrow(slice)

S[, , i] <- sli.length *(Sall - actau(slice , tau = tau))

%*%t(Sall - actau(slice , tau = tau ))/n

}

M <- apply(S, 1:2, sum)

EVD <- eigen(M, symmetric = TRUE)

W <- crossprod(EVD$vectors , COV.sqrt.i)

S <- tcrossprod(X.C, W)

S <- ts(S, names = paste("Series", 1:p))

RES <- list(M = M, eval = EVD$values , W = W)

RES

}

Listing 6.6: R code – ASSA method - Mixed non-stationarities in mean and variance

ASSA <- function (X, K, tau , n.cuts) {

n <- nrow(X)

MEAN <- colMeans(X)

COV <- cov(X)

EVD <- eigen(COV , symmetric = TRUE)

COV.sqrt.inv <- EVD$vectors %*% (diag(EVD$values^(-0.5))) %*% t(EVD$vectors)

X.C <- sweep(X, 2, MEAN , "-")

Y <- tcrossprod(X.C, COV.sqrt.inv)

p <- ncol(X)

if (is.null(n.cuts)) {

n.cuts <- ceiling(seq(1, n, length = K + 1))

} else {

K <- length(n.cuts) - 1

}

SStmats <- array(0, dim = c(p, p, K))

MMtmats <- array(0, dim = c(p, p, K))

N.cuts <- n.cuts + c(rep(0, K), 1)

for (i in 1:K) {

Yint <- Y[N.cuts[i]:(N.cuts[i + 1] - 1),]

nint <- nrow(Yint)

MMtmats[, , i] <- tcrossprod(colMeans(Yint))

Smati <- crossprod(Yint)/nint

SStmats[, , i] <- 0.5 * tcrossprod(Smati)

}

M <- (apply(MMtmats , 1:2, sum) + apply(SStmats , 1:2, sum ))/K - 0.5*diag(p)

Meigen <- eigen(M, symmetric = TRUE)

W <- crossprod(Meigen$vectors , COV.sqrt.inv)

S <- tcrossprod(X.C, W)

S <- ts(S, names = paste("Series", 1:p))

RES <- list(W = W, eval = Meigen$values , n.cut = n.cuts , K = K, S = S)

RES

}

Listing 6.7: R code – Joint Diagonalization - Mixed non-stationarities mean

M123 <- function (X, K, tau , n.cuts) {

eps = 1e-6

maxiter = 2000

n <- nrow(X)
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MEAN <- colMeans(X)

COV <- cov(X)

EVD <- eigen(COV , symmetric = TRUE)

COV.sqrt.i <- EVD$vectors %*% (diag(EVD$values^(-0.5))) %*% t(EVD$vectors)

X.C <- sweep(X, 2, MEAN , "-")

Y <- tcrossprod(X.C, COV.sqrt.i)

p <- ncol(X)

R <- array(0, dim = c(p, p, 3))

R[, , 1] <- MSIR(X, K, tau , n.cuts)$M

R[, , 2] <- MSAVE(X, K, tau , n.cuts)$M

R[, , 3] <- Mcovtau(X, K, tau , n.cuts)$M

JD <- frjd(R, eps = eps , maxiter = maxiter)

D <- JD$D

sumdg <- diag(apply(D, 1:2, sum))

ord <- order(sumdg , decreasing = TRUE)

V <- JD$V[,ord]

W <- crossprod(V, COV.sqrt.i)

S <- tcrossprod(X.C, W)

S <- ts(S, names = paste("Series", 1:p))

RES <- list(W = W, eval = D, V = V, tau = tau , R = R)

RES

}

Distance Computation

Listing 6.8: R code – Simulation function for separation methods other than AOP

M_sim <- function(n, m, seed1, sim , k, sep_fun , Mix) {

K <- 11

tau <- 1

n.cuts <- NULL

D <- matrix(0, nrow = m, ncol = 2)

UnMix <- solve(Mix)

Wtrue_ns <- UnMix[1:k, ]

Ptrue_ns <- B2P(t(Wtrue_ns))

Wtrue_s <- UnMix[-(1:k),]

Ptrue_s <- B2P(t(Wtrue_s))

set.seed(seed1)

for (i in 1:m) {

X <- sim(n, Mix)

S <- sep_fun(X, K, tau , n.cuts)

W <- S$W

Wn <- W[1:k,]

Ws <- W[-(1:k),]

Pn <- B2P(t(Wn))

Ps <- B2P(t(Ws))

dn <- Pdist(list(Ptrue_ns, Pn), weights = "constant")

ds <- Pdist(list(Ptrue_s, Ps), weights = "constant")

D[i,] <- c(dn, ds)

}

colnames(D) <- c("non␣stationary", "stationary")

MEAN <- colMeans(D)

#return(list(D=D, MEAN=MEAN))

return(MEAN)

}

Listing 6.9: R code – Simulation function for AOP

AOP_sim <- function(n, m, seed1, sim , k, Mix) {

K <- 11

tau <- 1

n.cuts <- NULL
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D <- matrix(0, nrow = m, ncol = 2)

UnMix <- solve(Mix)

Wtrue_ns <- UnMix[1:k, ]

Ptrue_ns <- B2P(t(Wtrue_ns))

Wtrue_s <- UnMix[-(1:k),]

Ptrue_s <- B2P(t(Wtrue_s))

set.seed(seed1)

for (i in 1:m) {

# simulation

X <- sim(n, Mix)

# separation

W1 <- MSIR(X, K, tau , n.cuts)$W

W2 <- MSAVE(X, K, tau , n.cuts)$W

W3 <- Mcovtau(X, K, tau , n.cuts)$W

W1_ns <- W1[1:k,]

W2_ns <- W2[1:k,]

W3_ns <- W3[1:k,]

W1_s <- W1[-(1:k),]

W2_s <- W2[-(1:k),]

W3_s <- W3[-(1:k),]

# orthogonal projections

P1_ns <- B2P(t(W1_ns))

P2_ns <- B2P(t(W2_ns))

P3_ns <- B2P(t(W3_ns))

P1_s <- B2P(t(W1_s))

P2_s <- B2P(t(W2_s))

P3_s <- B2P(t(W3_s))

# AOP

Pn <- AOP(list(P1_ns, P2_ns , P3_ns), "constant")$P

Ps <- AOP(list(P1_s, P2_s, P3_s), "constant")$P

dn <- Pdist(list(Ptrue_ns, Pn), weights = "constant")

ds <- Pdist(list(Ptrue_s, Ps), weights = "constant")

D[i,] <- c(dn, ds)

}

colnames(D) <- c("non␣stationary", "stationary")

MEAN <- colMeans(D)

#return(list(D=D,MEAN=MEAN))

return(MEAN)

}

Simulation Functions

The functions below are used to simulate times series with specific types of non-stationarities.
They take as arugment the time serie length n and a mixing matrix A. They return the time serie
without mixing (equivalent to the case where the mixing matrix would be the identity matrix) and
the time serie with mixing. All the times series are 8-variates times series.

Listing 6.10: R code – Simulation function for a time serie with non-stationarity in mean

simSIR <- function(n, A) {

z1 <- arima.sim(n, model = list(ar = 0.7)) +

rep(c(-1.52, 1.38),c(floor(n*0.5), floor(n*0.5)))

z2 <- arima.sim(n, model = list(ar = 0.5)) +

rep(c(-0.75, 0.84, -0.45), c(floor(n/3), floor(n/3), n-2*floor(n/3)))

z3 <- arima.sim(n, model = list(ar = 0.3)) +

rep(c(1, 2, 3, 4), c(floor(n/4), floor(n/4), floor(n/4), floor(n/4)))

z4 <- arima.sim(n, model = list(ma = c(0.72, 0.24)))

z5 <- arima.sim(n, model = list(ar = c(0.34, 0.27, 0.18)))

z6 <- arima.sim(n, model = list(ar = c(0.34, 0.27, 0.18), ma = c(0.72, 0.15)))

z7 <- arima.sim(n, model = list(ar = c(0.11, 0.58)))

z8 <- arima.sim(n, model = list(ma = 0.78))

z <- cbind(z1,z2, z3, z4, z5, z6, z7, z8)

xnt <- tcrossprod(z, A)

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

xt <- z

return(list(xnt = as.ts(xnt), xt = as.ts(xt)))

}

Listing 6.11: R code – Simulation function for a time serie with non-stationarity in variance

simSAVE <- function(n, A) {

a1 <- 3*(sin((1:floor(n/3))/(6*pi)))

a2 <- (cos(2*((1+floor(n/3)):(2*floor(n/3)))) +

sin((1+floor(n/3)):(2*floor(n/3))))/ sin(2*((1+floor(n/3)):(2*floor(n/3))))

a3 <- 10*tanh(0.0001*((2*floor(n/3)+1):n))

z1 <- rnorm(n) + c(a1, a2, a3)

z1 <- sapply(z1, function(y) min(max(y,-30),30))

z2 <- rw_fun(n)

z3 <- c(rnorm(floor(n/4)),

rnorm(floor(n/4), 0, 2),

rnorm(floor(n/4), 0, 4),

rnorm((n-3*floor(n/4)), 0, 8))

z4 <- arima.sim(n, model = list(ma = c(0.72, 0.24)))

z5 <- arima.sim(n, model = list(ar = c(0.34, 0.27, 0.18)))

z6 <- arima.sim(n, model = list(ar = c(0.34, 0.27, 0.18), ma = c(0.72, 0.15)))

z7 <- arima.sim(n, model = list(ar = c(0.11, 0.58)))

z8 <- arima.sim(n, model = list(ma = 0.78))

z <- cbind(z1,z2, z3, z4, z5, z6, z7, z8)

xnt <- tcrossprod(z, A)

xt <- z

return(list(xnt = as.ts(xnt), xt = as.ts(xt)))

}

Listing 6.12: R code – Simulation function for a time serie with non-stationarity in autocorrelation

sim123 <- function(n, A) {

z1 <- rnorm(n) + 10*tanh(0.0001*(1:n))

z2a <- arima.sim(floor(n/3), model = list(ar = c(0.5),

innov=c(rnorm(floor(n/3),0,1))))

z2b <- arima.sim(floor(n/3), model = list(ar = c(0.2),

innov=c(rnorm(floor(n/3),0,1.28))))

z2c <- arima.sim(n-2*floor(n/3), model = list(ar = c(0.8),

innov=c(rnorm(n-2*floor(n/3),0,0.48))))

z2 <- c(z2a, z2b, z2c)

z3a <- arima.sim(floor(n/2), model = list(ma = c(0.5), innov=c(rnorm(floor(n/2),0,1))))

z3b <- arima.sim(floor(n/2), model = list(ma = c(0.9, 0.17),

innov=c(rnorm(n-floor(n/2),0,0.68))))

z3 <- c(z3a, z3b)

z4 <- arima.sim(n, model = list(ma = c(0.72, 0.24), ar = c(0.14, 0.45)))

z5 <- arima.sim(n, model = list(ar = c(0.34, 0.27, 0.18)))

z6 <- arima.sim(n, model = list(ar = c(0.34, 0.27, 0.18), ma = c(0.72, 0.15)))

z7 <- arima.sim(n, model = list(ar = c(0.11, 0.58)))

z8 <- arima.sim(n, model = list(ar = c(0.10, 0.10, 0.10, 0.10, 0.10)))

z <- cbind(z1,z2, z3, z4, z5, z6, z7, z8)

xnt <- tcrossprod(z, A)

xt <- z

return(list(xnt = as.ts(xnt), xt = as.ts(xt)))

}
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