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Abstract—A model of the diffusion kinetics in multiphase finite one-dimensional binary diffusion couples
is presented. The mathematical description of the diffusion process based on the analytical solution of
Fick’s laws allows the time evolution of the microstructure, i.e. the number of phases present in samples
and their thickness, to be predicted from the known values of diffusion coefficients and the known
homogeneity ranges. Conversely, the diffusion coefficients can be calculated in all phases of a finite sample
from the movement of phase boundaries. As a first approach the Hf~N and Nb-C systems were treated.
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1. INTRODUCTION

Gas/solid diffusion couples offer an exceptional
opportunity to study both diffusivities and the phase
equilibrium in certain binary systems at high
temperatures. Generally no problems exist in
supplying an appropriate amount of diffusing species,
in contrast to solid/solid diffusion couples where
substantial problems may be encountered in contact-
ing the two halves of the couple at high temperatures.
In gas/solid couples the in-diffusing species need not
necessarily be a gas in pure form. Thus (together with
nitrides and oxides) carbides, borides and sulphides
can be prepared by using carbon, boron and sulphur
containing gases or media, which promote a
transport reaction. The diffusion process is easier to
perform and to describe if the surface concentration
of the diffusing species is constant at a given
temperature, i.e. if a constant gas pressure is applied.

Upon in-diffusion of non-metals, all phase
boundaries move to the centre of the sample during
the diffusion process. Consequently, the thickness of
the outer phases (i.e. the phases located outside the
core) increases, whereas the core phase (i.e. the phase
with the lowest concentration of diffusing atoms)
becomes narrow. After a certain time the phase
currently in the centre of the sample disappears.
Layer growth and disappearance of central phases
continue successively until only the phase having the
highest possible concentration remains in the
specimen. The concentration in the single phase rises
and the concentration profile consequently becomes
flat. When the concentration is equal to the maximum
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concentration given by the gas/solid equilibrium
conditions, the diffusion process is finished.

The diffusion-controlled phase boundary move-
ment is usually described by the well-known
parabolic law as long as the diffusion geometry can
be regarded as semi-infinite. If, however, the diffusion
process is performed in plane-sheet samples, the
proportionality between the layer thickness and the
square root of time is no longer constant. The layer
thicknesses also increase with decreasing size of the
diffusion couple [1]. It has been observed in a recent
study [2] that this effect can prevail for sample
thicknesses that would be estimated to be safely
quasi-infinite. An influence on the layer thickness was
already observed when the sample thickness was 100
times larger than the sum of the layer thicknesses of
all intermediate phases formed.

A model of the diffusion process based on the
classical Boltzmann-Matano theory [3-6] cannot
explain the observed layer growth enhancement.
Similarly, it is not able to interpret the disappearance
of central phases. Both phenomena were considered
by Pawel [1, 7], but he solved the diffusion equations
by using numerical methods that cannot accurately
reproduce the behaviour of diffusion couples in
extreme cases (disappearance of a phase, very narrow
phases, etc.).

In the present study an analytical formalism is
developed that describes the time evolution of phase
band thicknesses in reaction diffusion couples with
restricted plane-sheet diffusion geometry in which
only the non-metal diffuses. This assumption is valid
to a large extent for practically all transition
metal-non-metal systems (an exception being Fe-O,
for example). In contrast to the numerical solution,
the analytical formalism allows the evolution of
phase bands having a very narrow homogeneity
range to be predicted. Advantages of the analytical
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solution of the diffusion equation were demonstrated
by Kidson [5] and Crank [8], for instance.

2. DIFFUSION PROCESS IN FINITE SYSTEMS

In gas/solid diffusion couples, the diffusion flow of
the non-metal decreases with increasing distance
from the surface. If the diffusivity of the penetrating
atoms can be characterized by a constant diffusion
coefficient within every phase, the diffusion flow
decreases as a Gaussian function. The diffusion flow
would then be equal to zero very far away from the
gas/solid interface. As an infinite diffusion couple, a
sample in which the diffusion flow vanishes before its
centre is usually considered. Behind the plane with
zero diffusion flow, the spatial changes of the
diffusion flow are also equal to zero. Consequently,
according to the continuity equation, the time
changes of the concentration are equal to zero as well.

Diffusion couples often cover narrow phases,
which does not permit unambiguous detection of a
phase band, or they may be too thin to be able to
measure homogeneity ranges of phases. For tech-
niques commonly used (metallography, electron
probe microanalysis) it is useful if all phases are
appropriately thick. In infinite samples, a sufficient
thickness can only be achieved by using a very long
diffusion time.

In real (finite) diffusion couples the diffusion flow
does not usually vanish before the centre of the
sample. Exactly the same case occurs in the second
half of a symmetrical specimen. The atoms penetrat-
ing through opposite sample surfaces arrive at the
centre of the sample in the same quantity (with the
same diffusion flow). The process can be mathemat-
ically treated as a superposition of two opposite
diffusion flows within the core, assuming formally
that the diffusing atoms penetrate into the second half
of the specimen. Another description is based on the
assumption that the central phase is created by a
non-permeable wall that prevents the penetration of
atoms through the core. The returned atoms reduce
the diffusion flow in the core. Both approximations
give exactly the same result. Practically, the second
description agrees more with reality, but the central
plane cannot be regarded as an absolutely non-per-
meable wall. At the centre of the sample, random
fluctuations of diffusing atoms can be observed.
Nevertheless, as far as macroscopic diffusion flow is
concerned, random fluctuations have no effect on the
diffusion process.

The situation at the interface between the core and
its adjacent phase is completely different. As this
boundary is moveable (unlike the central plane), the
atoms penetrating from the opposite sample surface
(or the atoms returned from the centre) are consumed
for layer growth and phase transformation.

The dependence of the diffusion flow on the
distance from the surface calculated for finite
one-dimensional gas/solid diffusion couples is pre-
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sented in the Appendix and illustrated in Fig. 1.
However, the diffusion flow is not a measurable
quantity. Thus, we will discuss the influence of a finite
sample geometry on the concentration profile and
phasc boundary movement.

At the beginning of the diffusion process, the
diffusion couple behaves like an infinite sample
(Fig. 1(a)). The concentration in the centre remains
constant and equal to the starting concentration. The
phase growth follows a parabolic law. After a certain
time, the diffusing atoms reach the centre of the
sample (Fig. 1(b)). The core is filled from both of the
opposite sides, which leads to the steep increase in
concentration in the core. The diffusing atoms that
arrive at the next opposite phase boundary reduce the
diffusion flow coming out from this interface.
According to the continuity equation, the movement
of the innermost phase boundary is accelerated.
Physically speaking, the difference between the input
and output diffusion flow, which is the factor
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Fig. 1. Diffusion flow as a function of distance from the
surface in a two-phase diffusion couple. (a) At the beginning
of the diffusion process, the diffusion flows coming from
both surfaces vanish before the centre. (b) The reduced
diffusion flow in the core causes the accelerated phase
growth. (c¢) After a long diffusion time, only one phase
remains in the diffusion couple: the diffusion flow through
the sample surface drops. The total diffusion flow is plotted
with a dashed line.
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determining the velocity of the phase boundary
movement, becomes larger. Moreover, the acceler-
ated growth of the outer layer close to the core causes
all phase boundaries to move faster towards the
centre, because the extension of one phase modifies
the ratios of diffusion flows at every phase boundary
in the sample. As a result, deviations in the layer
growth from the parabolic law are observed.

Finally, if only one phase remains in the diffusion
couple, the diffusing atoms reach the opposite sample
surface (Fig. 1(c)). The concentration of diffusing
atoms in the sample increases and the diffusion flow
decreases. As soon as the concentration reaches its
maximum value everywhere in the specimen, the
macroscopic diffusion flow vanishes and the diffusion
process is completed.

3. PHASE BOUNDARY MOVEMENT

Upon knowledge of the diffusion flow, it is possible
to calculate the positions of phase boundaries as a
function of diffusion time and sample thickness.
According to Refs [3-5], the velocity of phase
boundary movement follows directly from the
continuity equation. It is proportional both to the
difference in diffusion flow in neighbouring phases
and to the difference in concentrations at the phase
boundary. As the concentration differences at phase
boundaries, Ac;, remain constant (equal to the width
of two-phase regions in the phase diagram at a given
temperature), the partial derivatives in the continuity
equation (equation (A3)) can be replaced by total
derivatives and by differences, respectively:

Q _JV—JV+]
(&) -1 "

where (dx/d?); is the velocity of the movement of the
ith phase boundary towards the core, Ac¢; is the
concentration difference (the concentration jump) at
the ith phase boundary and J; and J;., are the input
and output diffusion flows at the ith phase boundary.
The position of this phase boundary after the
diffusion time ¢ is given by integration of equation (1)
over the diffusion time:

xi(t) = i J’ (Ji+ Jisnde. 2)

MULTIPHASE LAYER GROWTH KINETICS

&
D, o D..
_Dn+l(cn+]_cn+l)x I

4837

In all outer phases, the diffusion flow changes with
diffusion time as l/\/;, as follows from equation
(A16). The movement of the outer phase boundaries
is then given by

exp< - )
D,
_D1+I(C:+0I_C/_¢I)>< -

AC’ i V/:
[ exp( - D,+ l>dy
(3)

The symbols x; and & denote the positions of
phase boundaries in Cartesian coordinates and in
Boltzmann variables, respectively; D; is the diffusion
coefficient in the ith phase, ¢ and ¢, are the
maximum and minimum concentrations within the
phase 7 according to the phase diagram; and Ac; is the
concentration jump at the ith phase boundary.
Phases are enumerated symmetrically from the
sample surface towards the core, starting with 1 for
the phase having the highest concentration of
diffusing atoms. The innermost outer phase is labelled
by n; the core by n + 1. Regarding phase boundaries,
the first one separates the phases 1 and 2; the second
one separates the phases 2 and 3 and so on.

Calculating the movement of the innermost phase
boundary we must taken into account the discussed
reduction of diffusion flow in the core. Compared to
the outer phases, an additional term must be
integrated over the diffusion time (see equation
(A18)):
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This expression yields the last part of the sum in
equation (5). Integral (4) was adjusted for numerical
calculation by using the substitution T = //\/?, where
[ is the sample thickness. The layer growth of the
phase next to the core is then given by equation (5):
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The lowest concentration in the central phase, ¢, ,
is equal to the concentration of metalloids in the
starting material, which is zero in pure metal.

If a diffusion couple is sufficiently thick or if the
diffusion time is short enough, the diffusion flow
vanishes before the centre of the sample. In such a
case integral (4), and therefore the last expression in
equation (5), goes to zero. Hence, the system of
transcendental equations (3) and (5) can be written in
the form of the frequently cited parabolic equation of
layer growth in infinite diffusion couples [3-5]:

X =K/t (6)

where K, are the rate constants.

The last term in equation (5) characterizes the
difference between finite and infinite diffusion
couples. It can be considered as a correction factor
for diffusion samples with finite geometry.
Analogously to the parabolic layer growth that holds
for infinite diffusion couples, we can also abbreviate
the equations of layer growth in finite samples:

X = Ki(t, /1 (7

where K is now a function of both the diffusion time
and the sample thickness. The positions of phase
boundaries in a one-dimensional diffusion couple are
given by the solution of the system of transcendental
equations (7).

4. ESTIMATION OF DIFFUSION COEFFICIENTS

For calculation of diffusion coefficients, the
classical Boltzmann—Matano method is well estab-
lished. This method works with derivatives of a
measured concentration profile and can yield not
only values of diffusion coefficients but also their
dependence on concentration. However, the
Boltzmann-Matano method is generally applied to
single phase diffusion and not to reaction diffusion.
Furthermore, a good quality of concentration data
is needed. In phases having a narrow concentration
range, the concentration profile has no significant
shape, is difficult to measure and the concentration
dependence of the diffusion coefficient can be
neglected. Thus the use of the Boltzmann-Matano
method is limited to phases having large homogeneity
regions, which are identical with mono-carbides
and mono-nitrides. For other phases, such as for
sub-carbide and nitride phases, methods for calculat-
ing diffusion coefficients based on the evaluation of
phase boundary movement in reaction diffusion
couples are preferred.

[t has been well explained [3, 4] that it is impossible
to calculate the diffusion coefficients from the phase
boundary movement only. That has rigorously been
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demonstrated by Kidson [5] for solid/solid diffusion
couples. In an infinite diffusion couple containing #
phases, we have (7 — 1) equations (one equation for
every phase boundary) for n unknown diffusion
coefficients. As the rate constants do not depend on
the diffusion time, the sole investigation of the
time-dependent layer growth does not give an
additional constraint. On the other hand, if a sample
has a finite geometry, for every diffusion time or for
every sample thickness we obtain, according to
equations (5) and (7), different values of the factor K.
Different diffusion times or different sample thick-
nesses thus supply additional equations for estimat-
ing diffusion coefficients. If the experimental data
consist of more than two series of measurements
(more than two different sample thicknesses or more
than two different diffusion times), the least-squares
analysis of diffusion coefficients can be applied.
The estimation of diffusion coefficients is based on
the following procedure. Diffusion coefficients in all
outer phases can be calculated if the diffusion
coefficient in the core is known [3]. However, an
appropriate value of the diffusion coefficient in the
core has to be found. This diffusion coefficient is the
main determining factor for acceleration of layer
growth against the parabolic law. The higher the ratio
between the diffusion coefficient in the core and the
diffusion coefficient in the adjacent phase, the larger
the layer growth enhancement. Assuming that
diffusion coefficients do not depend on composition,
the computation should yield constant values of
diffusivities within every respective phase, despite the
sample thickness (or the diffusion time). If the
calculation is started with a low diffusion coefficient
in the core, the obtained phase boundary movement
is not satisfactorily fast. On the other hand, a high
value of the diffusion coefficient in the core yields
extremely high acceleration of the layer growth.
An investigation of diffusion coefficients in
gas/solid diffusion couples that uses simulation of the
layer growth enhancement can be performed using
two experimental procedures: (a) samples with
different thickness are annealed for the same diffusion
time and (b) samples of the same size are annealed for
different diffusion times. In both cases, the measured
phase boundary positions are compared with those
obtained from the calculation. In the present study
the first possibility was used by taking wedge-shaped
specimens [2]. In this way, temperature, diffusion time
and heating rate could be kept constant. This method
of sample preparation allows a series of diffusion
couples to be made with continuously increasing
thicknesses. The wedge-shaped samples fulfil the
assumption of one-dimensional geometry if the angle
of the wedge is small (a typical wedge angle was
10-20"). This was confirmed by an experiment where
a wedge together with several plane-sheet samples of
different thicknesses were annealed. The differences in
the phase boundary positions were comparable with
the errors in the measurement; even the phases
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Fig. 2. (a) Phase band structure ol wedge-shaped diffusion couple Hf-N prepared by annealing pure

hafnium at 1650 C for 71 h. (b) Positions of phase boundaries calculated with obtained diffusion
coefficients.

disappeared at the same sample thickness in both
cases.

To evaluate diffusion coeflicients from the phase
boundary positions in wedge-shaped samples. a
FORTRAN computer code based on the procedure
presented above was created.

5. RESULTS

As a first approach Hf-N and Nb-C were studied.
because these systems show different behaviour
regarding the layer thickness enhancement. The
increase in layer thickness in the Hf-N system is
striking, whereas in the Nb-C system only an
insignificant acceleration of the layer growth with
decreasing sample thickness was observed. The
microstructure of a HI-N wedge is shown in Fig. 2(a).
The phase boundary structure that is given in
Fig. 2(b) was calculated with the diffusion co-
efficients and limit concentrations listed in Table 1.
The minimum and maximum concentrations were
measured by electron probe microanalysis. recalcu-
lated to mole/em’ in order to take into account the
changes in molar volume [9. 10] and normalized to 1.
Normalization of the surface concentrations to 1 is

optional and was used to visualize the different extent
of concentration ranges in different materials. The
normalization is connected solely to a multiplication
constant that occurs in all terms containing
concentrations. As the concentrations arise in
fractions. the multiplication constant disappears in
equations (3). (5), (6) and (7).

The large enhancement in layer growth in Hf-N is
caused by the high diffusivity of nitrogen in pure
hafnium. Consequently. the concentration of diffus-
ing atoms in the core rises very quickly and the Hf-N
system cannot be treated as a semi-infinite diffusion
couple even if the sample thickness is large. When
estimating the layer growth, restricted geometry must

Table 1. Diffusion data for HE-N system at 1650 C

¢ 0 D (em's)
| 0.676 (2.24 + 0.16) = 10"
0.619 0.390 (1.38 + 0.24) =< 10°*
N: 0.562 0.505 (481 +£021) = 10
2-HI(N) 0.410 ] (B3-Ty= 10
¢ and ¢ : Highest and lowest nitrogen concentrations for the

respective phase (in mol N/em® and normalized to the highest
concentration) [2].

D: Nitrogen diffusion coefficients calculated from the positions of
phase boundaries.
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Fig. 3. Phase band structure of wedge-shaped diffusion couple Nb—C annealed at 2100°C for 6 h.

always be taken into account. Nevertheless, such
systems are appropriate for calculation of diffusion
coeflicients from the phase boundary movements.

On the other hand, the Nb-C system shows only
a small increase in the layer thickness with decreasing
sample size. Changes in the layer thickness are visible
only at the tip of the wedge (Fig. 3). The diffusion
coefficients evaluated for Nb-C with the presented
method are listed in Table 2.

The small observed variations in layer thickness are
caused by the narrow homogeneity range of 2-Nb(C)
and by a very low maximum concentration in that
phase. In such a phase, the concentration reaches its
maximum value very quickly. The diffusion flow in
the core is very low so that the diffusion flow within
the a-phase cannot substantially influence the ratio
between the diffusion flows at the phase boundaries.
Therefore, variations in the sample thickness affect
the layer growth only insignificantly. On the other
hand. a large inaccuracy in the diffusion coeflicient of
the z-phase causes only small departures in the phase
boundary positions.

Generally, the correctness of diffusion coefficients
calculated from layer growth depends on the
magnitude of the respective diffusion flows. The
higher the diffusion flow, the more precise the
estimated diffusion coefficient. This is the reason for
the poor accuracy of the diffusion coefficient in
#-Nb(C). However, the diffusion coefficients in the

Table 2. Diffusion data for Nb-C system at 2100 C

Phase et ¢ D (emi/s) D (em'/s)
d-NbCy -, | 0.750 (1324 022) < 107 L.20 x 10-7
f-Nb:C 0.632 0.578 (2.87+0.10)x 10-7 250 x 107
2-Nb(C) 0.036 0 <2x 10

Carbon diffusion coefficients listed in the fourth column were
calculated using the presented method. Diffusion coefficients
listed in the last column were also calculated from the positions
of the phase boundaries, but assuming a zero diffusion flow in
the central phase. In such a case the diffusion coefficient in the
pure metal cannot be obtained. The highest and lowest carbon
concentrations for the respective phases, ¢* and ¢~ (in mol C/em*
and normalized to the highest concentration), were measured
with EPMA/WDS [11].

next phases can be calculated with satisfactory
accuracy, because the diffusion flow is much higher
there. As a limit case, we can assume that no diffusion
flow penetrates into the core. Then we can estimate
the lowest value of the diffusion coefficients in all
phases (excepting the core) that are necessary for the
desired layer growth. The minimum diffusion
coeflicients that are listed in the last column of
Table 2 agree with the diffusion coefficients calculated
with a non-zero diffusion flow in «-Nb(C).

Finally. diffusion coefficients obtained in the Zr-O
system are compared with values given by Pawel [7]
(Fig. 4). Within the expected accuracy, our results
agree with the diffusion coeflicients presented in [7].
A slight difference was found only in the diffusion
coeflicients of the oxygen deficient ff-Zr(O) phase that
arises in the centre of samples.

We would like to emphasize that taking the finite
diffusion geometry into account the diffusion
coefficients can be obtained in all phases (according
to the phase diagram at a given temperature). This is
not possible in infinite samples [3, 4], where other
methods have to be used.

w f &

Diffusion coefficient (cm?/s)

56 6.0 64 68 72 76 80
10°4T (K)

Fig. 4. Comparison of diffusion coefficients obtained for

Zr-0. Large symbols show our data: the Arrhenius

dependencies are plotted by solid lines. Data given in Ref.

[7] are marked by small symbols and interconnected with

dashed lines. Triangles correspond to fi-Zr(O). circles to
a-Zr(0) and boxes to ¢-ZrOs.
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6. DISCUSSION

The main advantage of the presented method is
that it can provide values of diffusion coefficients in
all phases currently in the sample. However, diffusion
coefficients do not have an identical precision in all
phases. Their precision is highest in phases that are
richest in diffusing atoms, and decreases with
decreasing concentration of non-metals. Moreover,
the precision as well as the accuracy of diffusion
coefficients determined from the phase boundary
movement generally increases if a large acceleration
of layer growth is observed. As mentioned above, the
accuracy of diffusion coefficients depends also on the
value of the diffusion flow. Of course, the accuracy of
diffusion coefficients is influenced by the accuracy in
measuring both the layer thicknesses and the
concentrations at the phase boundaries. From this
point of view, diffusion coefficients are calculated
with better precision in phases having a broader
homogeneity range than in line-compounds—phases
with a very narrow but non-zero homogeneity range.

Although the presented model of the diffusion
process in finite one-dimensional reaction diffusion
couples can characterize the evolution of the
inter-phase boundary structure rather reliably, it has
two principal limitations, which hold for the
calculation of diffusion coefficients as well. In systems
where the layer thickness enhancement with decreas-
ing sample thickness is absent, the presented method
cannot be applied ab initio. One of the diffusion
coefficients has to be known. An exception is systems
with a low concentration and a very narrow
homogeneity range in the metalloid-poor phase
discussed above. Second, by using this method, only
diffusion coefficients independent of concentration
can be obtained. If the diffusion coefficients depend
strongly on composition, the method will fail. In such
a case, it is helpful to calculate the concentration-de-
pendent diffusion coefficients from the measured
concentration profile and thereafter to obtain the
diffusion coeflicients in other phases from the phase
boundary movements.

Finally, note that we assumed a non-restricted
diffusion flow at the sample surface. Considering the
time dependence of the diffusion flux (equations
(A16), (A18)), we can see that at the beginning of the
diffusion process (1 — 0) the diffusion flow should be
infinite. However, the diffusion flow at the sample
surface is restricted by the speed of penetration of the
diffusing atoms through the diffusion interface, by the
reaction of the diffusing atoms with the sample
surface, by the decomposition of the gas molecules,
etc., and therefore our assumption is not strictly
correct. The restriction of the diffusion flow at the
sample surface results in retardation of the layer
growth during a certain diffusion time that is similar
to the nucleation time [12]. After this diffusion time
the desired diffusion flow given by equation (A18)
falls below the threshold and the diffusion process
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continues without restrictions. In addition, as the
restriction of diffusion flow varies with both diffusion
time and sample thickness, the acceleration of layer
growth is enhanced again. If the differences in
restriction of the diffusion flow along a wedge
representing a set of samples with continuously
decreasing thickness are large, the presented method
can yield a slightly overestimated (higher) diffusion
coefficient in the core.

7. CONCLUSIONS

A contribution to the phenomenology of phase
band evolution in reaction diffusion couples has been
made. The presented mathematical model of diffu-
sion that has been supported by experiments in
Hf-N, Nb-C and Zr-O systems yields the following
differences between idealized (infinite) and the real
(finite) samples.

In infinite one-dimensional diffusion couples, layer
growth follows the well-known parabolic law. The
distances of phase boundaries from the sample
surface are directly proportional to the square root of
the diffusion time. The proportionality constants
depend on the maximum and minimum concen-
trations given by the phase diagram as well as on
diffusion coeflicients in all phases. As the proportion-
ality constants of the parabolic layer growth do not
depend on the diffusion time, a series of samples
annealed for different diffusion times cannot be used
for the calculation of diffusion coefficients.

In finite diffusion couples, the layer growth can be
described by a modified parabolic law, where the rate
‘constants’ for phase boundary movements increase
with diffusion time as well as with decreasing sample
thickness. As a consequence, the layer growth in finite
samples is accelerated in comparison with the layer
growth in infinite samples. This acceleration causes a
successive broadening of phase bands with decreasing
sample thickness and/or with increasing diffusion
time. The diffusion flow passing the surface of a finite
sample sinks faster during the diffusion time than in
infinite diffusion couples. During the diffusion
process in finite samples, the phases with lowest
concentrations disappear successively. Finally, only
the phase having the highest concentration of
non-metals remains in a finite diffusion couple. After
the sample is homogenized, the macroscopic diffusion
flow vanishes.

The acceleration of layer growth in finite one-
dimensional diffusion couples can be used for the
calculation of diffusion coefficients in all phases that
exist in the system at a given temperature according
to the phase diagram. This is not possible if the
restricted diffusion geometry is not taken into
account.
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APPENDIX

Calculation of the diffusion profile in multiphase
diffusion couples
The diffusion process in systems with parallel

geometry is described by the two one-dimensional
Fick’s laws:

= -p&

pp (A1)

and

dc 0 Jc
== <D E) (A2)
where J is the diffusion flow, D is the diffusion
coefficient, ¢ is the concentration, x is the diffusion
path and ¢ is the diffusion time. Fick’s second law
f[equation (A2)] has been derived from Fick’s first
law [equation (A1)] by using the one-dimensional
continuity equation:

== -7 (A3)

Using the Boltzmann variable, y = x/(Z\/E), Fick’s
second law is usually transformed to the form of the
total differential equation:

de d de
—2—‘5—@(”@)

that can be solved analytically. Although equation
(A4) is usually solved for concentrations (this means

(A4)
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that the solution has the form of a concentration
profile), we will look for a solution in the form
of a diffusion flow. Fick’s second law, which was
transformed to the Boltzmann variable:

y,_dJ
B T dy (AS)
has the solution
"y
J(») = J(_vo)exp< - j 53 dy > (A6)

If the diffusion coefficient is independent of the
composition, equation (A6) takes the form of a
Gaussian function:

ﬂw=Jmmm<—f5ﬁ> (A7)

where J(y,) is the diffusion flow at the non-metal-rich
phase boundary. The position of the phase boundary
is denoted by y,. Analogously we can find a solution
for the diffusion flow coming from the opposite
sample surface:

l ; = )
J<2—\/; — ) = ./(}0)

ol ()] o} o

where / is the sample thickness and ¢ is the diffusion
time. The ratio 1/2\ﬂ has the meaning of sample
thickness in terms of the Boltzmann variable. The
diffusion flow is a vector; thus the partial diffusion
flows coming from the opposite directions are
subtracted:

Vo

J(v) = J(y(,)exp< _ 1_) >

x [1 — exp<41y 4&; lz>:|- (A9)

The macroscopic diffusion flow vanishes at the centre
of the sample, i.e. at the plane y = /[/4./1 (Fig. 1).
According to Fick’s first law (equation (Al)), no
concentration gradient exists in the centre of a
symmetrical sample and the concentration profile is
usually very flat in the core. If the sample is very thick
(I — o0), the diffusion time is very short (r — 0) or the
diffusivity is low (D — 0), then the diffusion flow
coming from the opposite side can be neglected,
because the exponential function in the square
brackets in equation (A9) is nearly equal to zero
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and such a sample behaves like an infinite one
(Fig. 1(a)).

To obtain the concentration profile, the equation
of diffusion flow is further to be solved for
concentrations. With the assistance of Fick’s first law
transformed, we can rewrite equation (A6) as follows:

de de "2y,
<l)g“>y = <Da>luexp<‘J“]5 d_\ > (A]O)

The integration of equation (A10) yields the
following dependence of concentration on the
Boltzmann variable y within one phase:

de "1
0-(o%) 12
v 2\.//
X exp( - J 3 dy”)dy + ¢ (All)

where (D dc/dy), is the first integration constant,
which is proportional to the diffusion flow at the
metalloid-rich phase boundary (at yy), and ¢, is the
second integration constant that is equal to the
concentration at the plane y,. If the diffusion
coefficient is independent of the composition,
equation (All) can be simplified:

o(y) = <g—f,> J exp< - %)d)" e (A12)
- 0 Jrg

The integral in equation (A12) has the form of the
well-known error function. Taking into account the
limited thickness of sample that implicates pen-
etration of diffusing atoms into the core from both
sample surfaces, we obtain from equation (A9):

- (8] [ 5
S0 dve
X |:1 - exp<4/}» 4{107 ﬁ)}d}" + ¢ (Al3)

where D is the concentration-independent diffusion
coefficient again. Inspecting equation (A13) we can
see that the value of the integrand in a finite sample
is less than in an infinite sample. Therefore the
concentration profile becomes more flat in the central
phase of a finite sample. Moreover, the value of the
integrand in equation (A13) that corresponds to the
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diffusion flow goes to zero if the diffusion time is
very long or if the sample is narrow (Fig. 1(c)).
Consequently, after a certain diffusion time, the
concentration in the sample does not change any
more and is equal to the maximum concentration cq,
i.e. the sample is homogenised.

In the outer phases that do not reach to the centre
of sample, the integration constants, (d¢/dy), and
¢y, follow from the boundary conditions. The latter
(¢*) is equal to the maximum concentration of the
non-metal at the given conditions. As the concen-
tration at the non-metal-poor phase boundary is
known and equal to the minimum concentration (¢~ ),
the concentration gradient at the non-metal-rich
phase boundary can be obtained from equation (A12)
directly:

where v, and 1, are the position of the non-metal-rich
and the non-metal-poor phase boundary, respect-
ively. The boundary conditions can only be applied
if the respective phase appears in its entire
concentration range given by the phase diagram. The
concentration gradient at the border of the core has
to be calculated from the starting condition. The
concentration at the beginning of the diffusion
process and/or very far away from the sample surface
(at y — oo) is equal to the starting concentration of
non-metal in the metal. According to equation (A12),
the integration constant (dc/dy), is given by

dey) ¢ —ct
dy “_ R,

In outer phases, the equation of diffusion flow takes
the form

(A16)

The concentration profile in phases outside the core

is given by
el
J exp< %)d)”

d_l‘ ’

bl*
N——

c(y)y=c"—(c" — (A17)

o
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The diffusion flow within the core is characterized by =~ The concentration profile in the central phase follows
the equation the equation

2 N
. exp<—}5>l:l —exp(%)} c(r)=c"—(c"=c7)
D(cT—c¢7)

J(.\‘)= = . Y 2 41y’ t— P
2./t z 2 exp| —: 1 —exp| — dy’
N O T ) L e
b ‘,/3 ,
exp<f' >d)'
(A18) J D

-

(A19)
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