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Abstract

In this thesis we study some types of stochastic partial differential equations
(SPDEs) in the framework of white noise analysis and thier particular
applications in optimal control. The thesis is divided in two parts: theore-
tical results and applications. In the first part we developed the theore-
tical framework for studying different classes of SPDEs with singular data.
Particularly, we developed generalized Malliavin calculus on spaces of gene-
ralized stochastic functions based on the chaos expansions. We solved
different classes of stochastic evolution equations using the chaos expansion
method and generalized some of these results to the related optimal control
problem.

The second part of the thesis is devoted to applications. We study infinite
dimensional stochastic linear quadratic optimal control problems related to
evolution equations discussed in the previous chapter. We proved an optimal
feedback synthesis along with well-posedness of the Riccati equation in a
general setting. We provided a novel numerical framework for solving this
type of control problems using the method of chaos expansions. We also
presented an approximation framework for computing the solution of the
stochastic linear quadratic control problem on Hilbert spaces. For the
finite horizon case, we proved convergence results of the finite-dimensional
problem to the infinite-dimensional one. In addition, we developed a
stochastic treatment of unbounded control action problems arising in a
general class of dynamical systems which exhibit singular estimates, but
are not necessarily analytic. Moreover, in the same setting we present a
regularization scheme for operator differential algebraic equations with noise
disturbances. Finally, we combined a polynomial chaos expansion method
with splitting methods for solving particular classes of SPDEs.
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Preface

This thesis is devoted to stochastic partial differential equations, their
theoretical treatment and their applications in the framework of white noise
analysis. A major contribution of this thesis is the development of genera-
lized Malliavin calculus in the framework of white noise analysis, based on
chaos expansion representation of stochastic processes and its application
for solving several classes of stochastic differential equations with singular
data. Especially, stochastic equations with singular coefficients and singu-
lar initial conditions involving the main operators of Malliavin calculus are
considered. The polynomial chaos expansion method is also combined with
the operator semigroup theory in order to prove existence and uniqueness of
solutions of nonlinear stochastic evolution equations with Wick-polynomial
nonlinearities, random force and random initial condition. These equations
include the stochastic Fujita equation, the stochastic Fisher-KPP equa-
tion, the stochastic FitzZHugh-Nagumo equation and the stochastic Chaffee-
Infante equation. These equations arise in ecology, medicine, engineering
and physics. Additionaly, we proved existence and uniqueness of solutions
of a large class of parabolic stochastic partial differential equations with
multiplicative noise. Special cases include the heat equation with random
potential, the Langevin equation, the Schrodinger equation, the transport
equation driven by white noise. Moreover, a novel approach for numerical
treatment of stochastic evolution equations which combines the polynomial
chaos approach with splitting methods is also included in the thesis. Signifi-
cant contributions are made in applications of the polynomial chaos expan-
sion approach to stochastic control problems. Particularly, in the stochastic
linear quadratic optimal control problem as well as in the regularization of
stochastic operator differential algebraic equations.

Most of the results of this thesis are summarized in:

Book T. Levajkovi¢, H. Mena, Equations involving Malliavin calculus opera-
tors: Applications and numerical approrimation. SpringerBriefs in
Mathematics. Cham, Springer International Publishing Switzerland,
2017. ISBN: 978-3-319-65677-9.

The thesis is divided into two chapters. Chapter [1| deals with the theo-
retical framework of white noise analysis based on chaos expansion represen-
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tation and solutions of particular equations. The individual sections corres-
pond to the author’s contributions concerning the chaos expansion method
in Malliavin calculus (Section 1.1 and Section 1.2), the study of fundamen-
tal equations with higher order Malliavin operators (Section 1.3), a theo-
retical framework for solving stochastic evolution equations with multiplica-
tive noise (Section 1.4), the solution of Malliavin-type differential equations
(Section 1.5 and Section 1.6) and a theoretical framework for the study of
stochastic evolution equations with Wick-polynomial nonlinearities (Section
1.7). Chapter [1|is based on the following publications:

1.1 T. Levajkovi¢, D. Selesi, Malliavin calculus for generalized and test
processes. Filomat 31(13), 4231-4256, 2017.

1.2 T. Levajkovié¢, S. Pilipovi¢, D. Selesi, Chaos expansion methods in
Malliavin calculus: A survey of recent results. Novi Sad J. Math.
45(1), 45-103, 2015.

1.3 T. Levajkovi¢, S. Pilipovié, D. Selesi, Fundamental equations with
higher order Malliavin operators. Stochastic 88(1), 106-127, 2016.

1.4 T. Levajkovi¢, S. Pilipovi¢, D. Selesi, M. Zigi¢, Stochastic evolution
equations with multiplicative noise. Electron. J. Prob. 20(19), 1-23,
2015.

1.5 T. Levajkovié¢, H. Mena, Fquations involving Malliavin derivative: A
chaos expansion approach, in S. Pilipovié, J. Toft (Eds.) Pseudo-
Differential Operators and Generalized Functions, Operator Theory:
Advances and Applications, Vol. 245, 197-214, Springer International
Publishing, 2015.

1.6 T. Levajkovié¢, D. Selesi, Nonhomogeneous first order linear Malliavin
type differential equation, in S. Molahajloo, S. Pilipovié, J. Toft, M. W.
Wong (Eds.), Pseudo-Differential Operators: Generalized Functions
and Asymptotic, 3563-369, Springer, 2013.

1.7 T. Levajkovi¢, S. Pilipovi¢, D. Selesi, M. Zigi¢, Stochastic evolution
equations with Wick-polynomial nonlinearities. Electron. J. Probab.
23(116), 1-25, 2018.

Chapter [2| addresses applications of the theoretical results, extensions
and generalizations to different classes of stochastic differential equations.
Particularly, applications in optimal control problems are shown. Namely,
a novel theoretical framework for solving generalized linear quadratic op-
timal control problems (Section 2.1 and Section 2.2), a feedback synthesis
of the stochastic linear quadratic optimal control problem with singular
estimates on the finite time interval (Section 2.3), a convergence analysis



Preface 3

in Hilbert spaces (Section 2.4), a numerical treatment of a stochastic li-
near quadratic regulator problem for the infinite horizon case (Section 2.5),
a splitting/polynomial chaos expansion approach for stochastic evolution
equations (Section 2.6) and a regularization approach for operator differen-
tial algebraic equations with noise (Section 2.7). Chapter [2|is based on the
following publications:

21

2.2

2.3

2.4

2.5

2.6

2.7

T. Levajkovié¢, H. Mena, A. Tuffaha, The stochastic linear quadratic
control problem: A chaos expansion approach. Evol. Equ. Control
Theory 5(1), 105-134, 2016.

T. Levajkovi¢, H. Mena, L.-M. Pfurtscheller, Solving stochastic LQR
problems by polynomial chaos. TEEE Control Systems Letters 2(4),
641-646, 2018.

T. Levajkovié, H. Mena, A. Tuffaha, The stochastic LQR optimal con-
trol with fractional Brownian motion, in M. Oberguggenberger, J.
Toft, J. Vindas, P. Wahlberg (Eds.) Advanced in Partial Differen-
tial Equations, Generalized Functions and Fourier Analysis, Dedicated
to Stevan Pilipovi¢ on the Occasion of his 65th Birthday, 115-151,
Birkhauser, 2017.

C. Hafizoglu, I. Lasiecka, T. Levajkovi¢, H. Mena, A. Tuffaha, The
stochastic linear quadratic problem with singular estimates. STAM J.
Control Optim. 55(2), 595626, 2017.

T. Levajkovié¢, H. Mena, A. Tuffaha, A numerical approximation frame-
work for the stochastic linear quadratic requlator problem on Hilbert
spaces. Appl. Math. Optim. 75(3), 499-523, 2017.

A. Kofler, T. Levajkovi¢, H. Mena, A. Ostermann, A splitting/poly-
nomial chaos expansion approach for stochastic evolution equations,
Submitted to: Stoch. PDE: Anal. Comp., 2019, arXiv.1903.10786.

R. Altmann, T. Levajkovi¢, H. Mena, Operator differential algebraic
equations with noise arising in fluid dynamics. Monatsh. Math.
182(4), 741-780, 2017.

All of the above publications were written after the completion of the
author’s Ph.D. degree in April 2012. An effort was made to use a consistent
notation in the introductory paragraphs which link to the individual papers.
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In addition, the following publications were completed in the same period
of time:

Publications:

1. D. Babié¢, B. Begovi¢, T. Levajkovi¢, Analysis of the impact of
passenger’ preferences on the airline network structure: A proba-
bilistic approach. Submitted to: Transportation Research Part
B, 2018.

2. T. Levajkovi¢, D. Babi¢, M. Kali¢, Airline revenue management
for complex networks. Proceedings of the XLIV International
Symposium on Operational Research, 758-764, 2017.

3. T. Levajkovié¢, H. Mena, M. Zarfl, Lévy processes, subordinators
and crime modelling. Novi Sad J. Math. 46 (2), 65-86, 2016.

4. T. Levajkovi¢, H. Mena, On deterministic and stochastic
linear quadratic control problems, in V. Mityushev, M. Ruzhansky
(Eds.), Current Trends in Analysis and Its Applications, Trends
in Mathematics, Research Perspectives, pp. 315-322, Springer
International Publishing Switzerland, 2015.

5. T. Levajkovi¢, D. Selesi, Chaos expansion methods of stochas-
tic processes for Malliavin-type equations. Electronic Notes in
Discrete Mathematics 43, Elsevier, 289-298, 2013.

Textbooks for bachelor studies:

7. T. Levajkovi¢, K. Kukié¢, M. Borisavljavi¢, A. Jelovié, N. Cirié,
D. Ili¢é, A. Perovié, Mathematics 1: Book of exercises with solu-
tions (in Serbian). Faculty of Traffic and Transport Engineering,
University of Belgrade, 2015, ISBN: 978-86-7395-333-5.

8. M. Borisavljavi¢, N. Ciri¢, S. Miloradovi¢, T. Levajkovi¢, D. Ili¢,
K. Kukié¢, Mathematics book of exercises with solutions: Prepara-
tory book for higher education entrance examination (in Serbian).
Faculty of Traffic and Transport Engineering, University of
Belgrade, Seventh edition, 2015, ISBN: 978-86-7395-302-1.
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Chapter 1

Theoretical Results

In this chapter we present the theoretical contributions of this thesis.
Namely, the development of generalized Malliavin calculus in the framework
of white noise analysis based on chaos expansion representation of stochas-
tic processes and its application for solving several classes of stochastic
differential equations with singular coefficients and singular initial condi-
tions. Generalized operators of Malliavin calculus, the Malliavin derivative
operator I, the Skorokhod integral 4 and the OrnsteinUhlenbeck operator
R are introduced in terms of chaos expansions. The main properties of the
operators, which are known in the literature for stochastic processes with
finite second moments, are proven using the chaos expansion approach and
extended for generalized stochastic processes. Moreover, fractional versions
of these operators are also discussed and the connection with the
corresponding operators of Mallaivin calculus through an isometry mapping
is proven. Also, several classes of equations involving Malliavin calculus
operators are solved with this technique.

The Malliavin derivative D, the Skorokhod integral 4 and the Ornstein-
Uhlenbeck operator R play a crucial role in the stochastic calculus of varia-
tions. They are part of the infinite-dimensional differential calculus on white
noise spaces and is also called the Malliavin calculus [16], 24, [83], 87, 03, [OF].
In stochastic analysis, the Malliavin derivative characterizes densities of
distributions, the Skorokhod integral is an extension of the It6 integral to
non-adapted processes, and the Ornstein-Uhlenbeck operator plays the role
of the stochastic Laplacian. Additionally, the Malliavin derivative appears
as the adjoint operator of the Skorokhod integral, while their composition,
the Ornstein-Uhlenbeck operator, is a linear, unbounded and self-adjoint
operator. These operators are interpreted in quantum theory respectively
as the annihilation, the creation and the number operators.

Since the pioneer work of Itd [47] that characterized stochastic inte-
grals in terms of Hermite polynomials, another important keystone was
the development of white noise analysis proposed by Hida [42] who set up

11
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an appropriate functional analytical framework using nuclear operators to
characterize Gaussian processes. Second quantization operator techniques
are used to obtain weighted spaces of generalized stochastic processes such
as the Hida and Kondratiev spaces. For infinite-dimensional analysis with
a probabilistical approach we refer the reader to [24], 43}, [80].

Originally, the Malliavin derivative was introduced by Paul Malliavin in
order to provide a probabilistic proof of Hérmander’s sum of squares theorem
for hypoelliptic operators and to study the existence and regularity of a
density for the solution of stochastic differential equations [82]. Nowadays,
besides applications concerning the existence and smoothness of a density for
the probability law of random variables, it has found significant applications
in stochastic control and mathematical finance, particularly in option pricing
and computing the Greeks (the Greeks measure the stability of the option
price under variations of the parameters) via the Clark-Ocone formula [23|
83, 96]. Recently, in [89] a novel connection between the Malliavin calculus
and the Stein method was discovered, which can be used to estimate the
distance of a random variable from Gaussian variables. In Section 1.2 [74]
this relationship was reviewed using the chaos expansion method.

In the classical setting [24] [79, 87], the domain of these operators is a
strict subset of the set of processes with finite second moments leading to
Sobolev type normed spaces. We recall these classical results and denote the
corresponding domains with a ”zero” in order to retain a symmetry between
test and generalized processes. A more general characterization of the do-
main of these operators in Kondratiev generalized function spaces has been
derived in [69} [72] [73]. Surjectivity of the operators for generalized processes
for p = 1 has been developed in [74] [75], while a setting for the domains of
these operators for p € [0, 1] and for test processes was developed in [62] [71].
We summarize these recent results, construct the domain of the operators
and prove that they are linear and bounded within the corresponding spaces.
We adopt the notation from [71l [74] [75] and denote the domains of all the
operators in the Kondratiev space of distributions by a ”minus” sign to re-
flect the fact that they correspond to generalized processes and the domains
for test processes denote by a ”plus” sign.

The Malliavin derivative of generalized stochastic processes has first been
considered in [I5] using the S-transform of stochastic exponentials and chaos
expansions with n-fold Ito integrals with some vague notion of the It6 inte-
gral of a generalized function. Our approach is different, it relies on chaos
expansions via Hermite polynomials (in the Gaussian case) and provides
more precise results. A fine gradation of generalized and test functions is
followed where each level has a Hilbert structure and consequently each level
of singularity has its own domain, range, set of multipliers, etc. We devel-
oped the calculus including the integration by parts formula, product rules,
the chain rule, using the interplay of generalized processes with their test
processes and different types of dual pairings. We apply the chaos expan-
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sion method to illustrate several known results in Malliavin calculus and
thus provide a comprehensive insight into its capabilities. For example, we
proved some well-known classical results, such as the commutator relation-
ship between D and § and the relation between It6 integration and Riemann
integration. These results are included in the first part of this chapter and
associated to Section 1.1 [71], Section 1.2 [74] and Section 1.3 [75].

In second part of this chapter we apply the chaos expansion method
for solving stochastic partial differential equations (SPDEs) with singular
data. The focus is on the study of different classes of equations that in-
volve the operators of Malliavin calculus, the study of stochastic evolution
equations with multiplicative noise and stochastic evolution equations with
Wick-polynomial nonlinearities and random force and random initial condi-
tion. These equations include the heat equation with random potential, the
Langevin equation, the Schrodinger equation, the transport equation driven
by white noise, the stochastic Fujita equation, the stochastic Fisher-KPP
equation and the stochastic FitzHugh-Nagumo equation.

The main difficulty that may arise when solving equations with singular
data (both linear and nonlinear) is the problem of multiplication of gener-
alized functions. In this thesis we overcome this difficulty by interpreting
the product as the Wick product (stochastic convolution) within the white
noise analysis. Also, the Wick product is known for representing the highest
order stochastic approximation of the ordinary product [86]. Alternative
approaches have been developed in the theory of regularity structures by
Martin Hairer [40] and in rough path theory and paracontrolled distribu-
tions by Massimiliano Gubinelli, Peter Imkeller and Nicolas Perkowski [38].
Another possibility is to consider the equations in Colombeau algebras of
generalized functions and after regularization interpret the product as a
classical product [21), 90].

The method of chaos expansions has been applied successfully to several
classes of SPDEs [50, [72] [73], 80, 5] to obtain an explicit form of the solu-
tion. The basic idea is to construct the solution of the considered SPDE as a
Fourier series in terms of a Hilbert space basis of orthogonal stochastic poly-
nomials, resulting in an infinite triangular system system of deterministic
equations for the coefficients, which can be solved by induction. Summing
up all coefficients of the expansion, i.e., the solutions of the deterministic
system, and proving its convergence in an appropriate space of stochastic
processes, one obtains the solution of the initial equation.

Besides the fact that the chaos expansion method is easy to apply (since
it uses orthogonal bases and series expansions), the advantage of the method
is that it provides an explicit form of the solution. We avoid using the Her-
mite transform [43] or the S-transform [42], since these methods depend
on the feasibility to apply their inverse transforms. The chaos expansion
method requires only to find an appropriate weight factor to make the re-
sulting series convergent. It is also known for being an efficient method in
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numerical approximations, the so-called stochastic Galerkin method. More-
over, for non-Gaussian processes, convergence can be easily improved by
changing the Hermite basis to another family of the Askey-scheme of hyper-
geometric orthogonal polynomials (Charlier, Laguerre, Meixner, etc.) [102].
The results of the second part of this chapter are related to Section 1.3 [75],
Section 1.4 [76], Section 1.5 [62], Section 1.6 [70] and Section 1.7 [77].

Preliminaries

We consider the Gaussian white noise probability space (S'(R), B, 1), where
S’(R) denotes the space of tempered distributions, B the Borel sigma-algebra
generated by the weak topology on S’(R) and u the Gaussian white noise
measure corresponding to the characteristic function

. _1
[ eetdu) = HMm, g esm)
S'(R)

given by the Bochner-Minlos theorem [43].

The Hilbert space of random variables with finite second moments is de-
noted by L?(u1). The set of multi-indices T is (N})),, i.e. the set of sequences
of non-negative integers which have only finitely many nonzero components.
Particularly, we denote by 0 = (0,0,0,...) the zero multi-index with all
entries equal to zero and the kth unit vector ) = (0,---,0,1,0,---),
k € N, i.e., the sequence of zeros with the number 1 as the kth compo-
nent. The length of a multi-index is |a| = Y7, a; for a = (a1, 0,...) € Z
and o! = [[;2; a;!. We will use the convention that o — 3 is defined if
ap—fBp >0foralln eN,ie., if a—f > 0. Let (2N)* = [[22,(2k)*. Note
that ) .7(2N)™P* < oo for p > 1, see [43].

The Wiener-1t6 theorem (sometimes also referred as the Cameron-Martin
theorem) states that one can define an orthogonal basis { H, }aer of L?(1),
where H, are constructed by means of Hermite orthogonal polynomials h,,
and Hermite functions &,,

Ho(w) = [] haw((w, &), a€Z, weq,
n=1

Then, every F € L?(€, 1) has a unique chaos expansion representation

F(w) = Z faHa(w), we€ S,(R)
a€el
such that

Z|fa\2a!<oo, fa€R, a€el.
acl
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We denote by H; the subspace of L?(u), spanned by the polynomials
H. (), k € N. The subspace H; contains Gaussian stochastic processes,
e.g. Brownian motion is given by Bi(w) = > po f(f &k(s)ds Hy, (w).
Similarly, we denote by H,, the mth order chaos space, i.e. the closure
in L2(Q, 1) of the linear subspace spanned by the orthogonal polynomials
H, () with |a] = m, m € Ny. Then, the Wiener-It6 chaos expansion states
that L2(Q, ) = @oe_o Hm, where Hy is the set of constants in L?(£2, p).

Changing the topology on L?(11) to a weaker one, Hida [42] defined spaces
of generalized random variables containing the white noise as a weak deriva-
tive of the Brownian motion. Using the same technique as in [43] one can
define Banach spaces (5),, of test functions and their topological duals
(S)—p,—p of stochastic distributions for all p € [0,1] and p > 0.

Definition 1 Let p € [0,1], the stochastic test function spaces are defined by

(S)pp ={F = Y faHa € L(0) : | Fs),, = D (a) | fa2(2NP* < oo},

acl a€l

for all p > 0. Their topological duals, the stochastic distribution spaces, are
given by formal sums

(S)-pp=AF = faHa: |FlZ , =3 (a)'*|fa’(2N) 7 < oo},

a€l acl

for all p > 0. The Kondratiev space of test random variables is (S), =
ﬂpZO(S)Mg, endowed with the projective topology. Its dual, the space of
Kondratiev generalized random variables is (S)—p = U,0(5)—p,—p; endowed
with the inductive topology.

The action of F' = 3 7boHa € (S)—p onto f =3 crcaHa € (5),
is given by (F, f) = > c7(ba;ca)al, where (ba,cq) stands for the inner
product in R. The following Gel’fand triple is obtained

(S)p C LQ(M) C (S)—p-

The spaces (5),,p and (S)_,, —p are separable Hilbert spaces. Moreover, (5),
and (S)_, are nuclear spaces. For p = 0 we obtain the space of Hida stochas-
tic distributions (S)_g and for p = 1 the Kondratiev space of generalized
random variables (S)_1. It holds that

(S)l — (S)() — L2(,u) — (S)_o — (S)_l,

where — denotes dense inclusions.

The time derivative of the Brownian motion exists in a generalized sense
and for each fixed t it belongs to the Kondratiev space (S)_1,—p for p > %
We refer it as the white noise and its formal expansion is given by W (t,w) =

2 ket Sk (1) Hey (w).
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The definition of stochastic processes can be extended to processes with
the chaos expansion form U = Zaez uoH,, where the coefficients u, are
elements of some Banach space of functions X. We say that U is an X -valued
generalized stochastic process, i.e. U € X ® (S5)—,, if there exists p > 0 such
that

10wy, = S (@) a3 (2N) 7 < oc.
acl

For example, let X = C¥([0,T]), k € N. We have proved in [76] that
the differentiation of a stochastic process can be carried out componentwise
in the chaos expansion, i.e. due to the fact that (S)_, is a nuclear space
it holds that C*([0,T7,(S)—,) = C*[0,T]&(S)_, where @ denotes the com-
pletion of the tensor product which is the same for the e—completion and
m—completion. In the following, we will use the notation ® instead of ®.
Hence C*([0,T]) ® (S)—p,—p and C*([0,T7) ® (S),, denote subspaces of the
corresponding completions. We keep the same notation when C*([0,T) is
replaced by another Banach space. This means that a stochastic process
U(t,w) is k times continuously differentiable if and only if all of its coeffi-
cients u(t), a € T are in C*([0,T]).

The same holds for Banach space valued stochastic processes, i.e. ele-
ments of C*([0,7], X) ® (S)_,, where X is an arbitrary Banach space. It
holds that

Ck([()?T]?X@(S)—P) = Ck([ovT]7X>®<S)—P = U Ck([ovTLX)@(S)—Pa—P'
p>0

In addition, if X is a Banach algebra, then the Wick product of the stochastic

processes I' =) 7 faHy and G = ZﬁelgﬁHﬁ € X ®(S)—p,—p is given by

FOG=Y Y fagsHy=>_ Y [39apHa,

YEL a+pf= a€l f<a

and FOG € X ® (S)_, _(ptk) for all k > 1, see [43]. The nth Wick power
is defined by FO" = FO=DOF FOO = 1. Note that H,_x) = Hg(’,:) for
n € Ng, £ € N. Through the thesis we will mostly assume that X is a
Banach algebra.

We also consider processes which are elements of X ® S'(R) ® (5)—).
They are represented in chaos expansion of the form

F=Y > fap®@G4@Ha=) goa®Hoa=) hx®&,
o€ keN o€l keN
where go = > pen fak @& € XS (R), hiy =3 ez far ®Ho € X ®(5)-,
and f,r € X. Thus, for some p,l € Ny,
IF s s ymois) . = 2 2 (@) Pl farlk (2)7'(2N) P < oo.
a€Z keN

The generalized expectation is given by EF' =, v f0,0,..)x @& = 9(0,0,..)-
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Operators of generalized Malliavin calculus

Some of the most important operators of stochastic calculus are the opera-
tors of the Malliavin calculus. We recall their definitions in the generalized
S’(R) setting as they appear in Section 1.1 [71], Section 1.2 [74] and Section
1.3 [75]. These definitions are used through this chapter.

The Malliavin derivative

We define the Malliavin derivative operator D on spaces of generalized
stochastic processes, test stochastic processes and classical stochastic pro-
cesses. We also describe the domains in terms of chaos expansion represen-
tations.

Definition 2 ([71]) Let p € [0,1] and let w € X ® (S)—, be a generalized
stochastic process given in the chaos expansion form u = 3 7 tuq @ Hy,
uq € X, a € Z. Then, u belongs to Dom_, _,(D) if there exists p € Ng such
that
Z la PP P || ug || % (2N) TP < oo, (1.1)
acl
and its Malliavin derivative is defined by

Du= > > awtia®&® Hy oo (1.2)

|| >0 keEN
where by convention o —e®) does not exist if oy, = 0, i.e., for a multi-index
Q= (O, ooy A1, Uy At 15 ooy O, 0,0, ..0) € T if o > 1 we have H,_ ) =
H(al:-~~7ak—1:ak*l’akqtlw-yam’ozow-)

Thus, the domain of the Malliavin derivative in X ® (S)_, is given by

Dom_,(D) = | J Dom_, ,(D) (1.3)
pENg
= J{weXxa(©)p: ) lal"al' 7 flugl5 (2N) ¥ < oo}
peNg ael

All processes that belong to Dom_,(ID) are called Malliavin differentiable.
The operator D is also called the stochastic gradient.

The range of the Malliavin derivative operator is characterized in the
following theorem. Particularly, for p = 1 this characterization was proven
in [73] and for p = 0 it was considered in [74].

Theorem 3 ([62, [71]) The Malliavin derivative of a process u € X®(S)—,
1$ a linear and continuous mapping

D: Dom_, (D) = X ®S_(R) ® (S)—p,—p,

forl>p+1 and p € Ny.
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Definition 4 Let p € [0,1] and let v € X ® (S), be given in the form
V=13 her Va ®Hy, vo € X, a € . We say that u belongs to Dom,, (D) if

> laf' Pl fug 5 (2N)* < oo, for all p € No.
acl

Thus, the domain of the Malliavin derivative operator in X ® (.5),, is the
projective limit of the spaces Dom,, (D), i.e.,

Dom,(D) = (] Dom,,(D) (1.4)
p€Np
= (N {weX®S)m: Y lof' " al™* [lug|X (2N)P* < oo},
peNp acl

Theorem 5 ([71]) The Malliavin derivative of a test stochastic process v €
X ® (5), is a linear and continuous mapping

D:  Dom,,(D) = X ®S(R)®(S)y,p, for p>1+1.

Definition 6 The domain of D of a stochastic process u € X ® L?(u) is
given by

Domy(D) = {u € X @ L*(u) : Z laf a! |lua |k < oo} (1.5)
a€l

Theorem 7 ([71]) The Malliavin derivative of a process u € Domg(D) is
a linear and continuous mapping

D: Domp(D) — X @ L*(R) ® L?(p).

For p € [0,1] and p € N we obtained Dom,, ,(D) € Domg (D) C Dom_, _,(D),
and therefore Dom, (D) C Domy(D) C Dom_,(D).

The Skorokhod integral

The Skorokhod integral, as an extension of the It6 integral for non-adapted
processes, can be regarded as the adjoint operator of the Malliavin derivative
in L?(u)-sense. In [73] the definition of the Skorokhod integral from Hilbert
space valued processes to the class of S’-valued generalized processes was
extended. Further development in this direction was proposed in [62, [T,
73, [74]. In the following we summarize these results.

Definition 8 Let p € [0,1]. Let F =) 7 fa @ Hy € X ® S'(R) ® (5)—,
such that fo € X ® S'(R) is given by fo = > pen fak @ &ks far € X. Then,
F belongs to Dom_,, _; _,(5) if it holds

Dol 7l | fallkas @) (2N) P < oo (1.6)
ael
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Thus, the chaos expansion of its Skorokhod integral is given by

O(F) = Z Zfa,k Q@ H, m = Z Zfa_g(k)7k ® H,. (1.7)

a€Z keN a>0 keN

The domain of the Skorokhod integral operator for generalized stochastic
processes in X = X ® S'(R) ® (S)—, is denoted by Dom_,(d) and is given
as the inductive limit of the spaces Dom_, _; (), l,p € Ny, i.e.,

Dom_,(8) = | Dom_, 1 (6 = |J {FeX:(|Flbom_, , , <o}
p>l+1 p>l+1

where HF”%)om,p,,l,,p is given by (1.6)). Each stochastic process F' € Dom_,(6)
is called integrable in the Skorokhod sense.

Theorem 9 ([64]) Let p € [0,1]. The Skorokhod integral 0 is a linear and
continuous mapping

6: Dom_,_; _p(6) > X®(S)—p—p, p>1+1

Particularly, the domain Dom_; () was characterized in [73} [75].

In the following, we characterize the domains Dom,(6) and Domg(d) of
the Skorokhod integral operator for test processes from X ® S(R) ® (5),
and processes from X ® L?(R) ® L?(u), as modifications of those presented
in [71, 174].

Definition 10 ([64]) Letpc [0,1]. Let ' =) 7 fa®Ho € X ® S(R) ®
(9), and let fo € X ® S(R) be given by the expansion fo = o fak @ &k,
fax € X. We say that the process F belongs to Dom,,;,(9) if

D Lol | fall kg m (2N)P < oo. (1.8)
o€l

Then, the chaos expansion form of the Skorokhod integral of F is given by
the expression ((1.7)).

The domain of the Skorokhod integral for test stochastic processes in X ®
S(R) ® (S), is denoted by Dom,(d) and is given as the projective limit of
the spaces Dom;,(9), I,p € Ny, i.e.,

Dom,(6) = m Domy, 1 ,(0)
I>p+1

= m {F EX® Sl(R) ® (S)P»P : ||F||2Domp’l,p(5) < OO},
I>p+1

where || F H2Dom,,,l,p (5) Is defined by (L.8). All test processes F that belong to
Dom,(6) are called Skorokhod integrable.
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Theorem 11 ([64]) The Skorokhod integral 6 of a S;(R)-valued stochastic
test process is a linear and continuous mapping

d:Domy;p(6) = X ®@(S)p,p, I>p+1, peN.

Definition 12 ([64]) Let F € X ® L?*(R) ® L?(u) be represented in the
form F =73 7> pen far @& ®@Hy, for € X. The process I is Skorokhod
integrable if it belongs to the space Domg(9), i.e., if it holds

Domo(8) = {F € X ® L*(R) ® L2(1) : > lafa!|[ fullie o < o} (1.9)
acl

Theorem 13 ([64]) The Skorokhod integral 6 is a linear and continuous
mapping
§: Domgy(d) — X @ L*(n).

The Ornstein-Uhlenbeck operator

The third main operator of the Malliavin calculus is the Ornstein-Uhlenbeck
operator. We describe the domain and the range of the Ornstain-Uhlenbeck
operator for different classes of stochastic processes [62] [T1], [74], [75].

Definition 14 The operator R = § o D defined as the composition of the
Malliavin derivative and the Skorokhod integral is denoted by and is called
the Ornstein-Uhlenbeck operator.

Since the estimate |a| < (2N)® holds for all o € Z, the image of the Malliavin
derivative is included in the domain of the Skorokhod integral and thus we
can define their composition. For example, for v € Dom_, _; _,(6) and
q+ 1 — p < p we obtain

11 Dom_, &) = >l Pl vallkes @) (2N) P
a€l

L—p1y |2 - 3
<A valkes @ @N T = ol kas @@s) .y
o€l

ie, X ® S (R)® (S)—p—q € Dom_,_;_,(D) for ¢ +1—p < p. From
Theorem [l and Theorem [J] we obtain additional conditions I > ¢ 4+ 1 and
p > 1+1 and thus for p > ¢+ 2 the operator R is well defined in X ® (5)_,.

Theorem 15 ([71]) For a Malliavin differentiable stochastic process u that
is represented in the form u = 3" .7 uq ® Hy, the Ornstein-Uhlenbeck op-
erator is given by
R(u) =) |afug @ Ha. (1.10)
acl
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For a special choice of u = u,®H,,, a € Z we obtain that the Fourier-Hermite
polynomials are eigenfunctions of R and the corresponding eigenvalues are
lal, « € 7, i.e.,
R(ua ® Hy) = | uq @ Hy. (1.11)
Moreover, Gaussian processes with zero expectation are the only fixed points
of the Ornstein-Uhlenbeck operator [74].
The domain of the Ornstein-Uhlenbeck operator in X ® (5)_, is given as

the inductive limit Dom_,(R) = Uy, Dom-—p,—p(R) of the spaces

Doy p(R) = {u € X @ (S)_pp: Y aall[lua|3 (2N) 7 < oo},
a€el
(1.12)

Theorem 16 ([71]) The operator R is a linear and continuous mapping
R:Dom_, _p(R) = X ® (S)-p—p, P € No.
Moreover, Dom_,(R) C Dom_,(D), while for p =1 they coincide.

The domain of the Ornstein-Uhlenbeck operator in the space X @ (.5), is

defined as the projective limit Dom,(R) = (o, Dom,,»(R) of the spaces

Domypy(R) ={v € X @ (S)pp: Y '™ |a?[va]3(2N)"* < oo}, (1.13)
acl
Theorem 17 ([71, [75]) The operator R is a linear and continuous map-
ping
R: Dom,,(R)—= X & (S)p,p, p € Np.
Moreover, it holds Dom,(D) 2 Dom,(R).

The definition of the domain of the Ornstein-Uhlenbeck operator in the
space X ® L?(u) corresponds to the classical definition. Denote by

Domg(R) = {u € X @ L*(n) : Y _ a!lof?[lual} < oo}. (1.14)
a€l

Theorem 18 ([71, [75]) The operator R is a linear and continuous map-
ping

R: Domg(R) — X ® L*(u).
Moreover, it holds Domy(D) 2 Domg(R).

The characterization of the domain, the range of the operator R and its
properties on X ® (S); and X ® L?(u) were discussed in [69, [74]. Moreover,
for this particular cases the surjectivity of the mappings was proven in [71]
74, [75].



22 Theoretical Resutls

Main results of Section 1.1 and Section 1.2

The main results of Section 1.1 and Section 1.2 are twofold. The first group
is related to the proofs of several properties and relations between the op-
erators of generalized Malliavin calculus based on chaos expansions. The
second group of results includes some applications of the Malliavin calculus.

Properties of the operators D, 6 and R

Based on the definitions of the operators of generalized Malliavin calculus
we proved the integration by parts formula, i.e., the duality relation between
D and é, product rules for D and R, the Leibniz formula and the chain rule.

In the classical L? setting it is known that the Skorokhod integral is
the adjoint of the Malliavin derivative [87]. We extend this result in the
following theorem and prove their duality by pairing a generalized process
with a test process (the classical result is revisited in part 3°).

Theorem 19 ([71, [74]) (Duality) Assume that either of the following hold:
1° F € Dom_,(D) and v € Dom,(d)
2° F € Dom,(D) and u € Dom_,(9)
3° F € Domy(D) and u € Domyg(9) .
Then, the following duality relationship between the operators D and § holds
E(F-6(u)) = E((DF, u)) , (1.15)

where (1.15)) denotes the equality of the generalized expectations of two ob-
jects in X ® (S)—, and (-,-) denotes the dual paring of S'(R) and S(R).

Theorem [19]is a special case of a more general identity, i.e. under suitable
assumptions that make all the products well defined, the following holds

Fé(u) = 6(Fu) + (D(F), u). (1.16)

By taking the expectation in and using the fact that E(§(Fu)) = 0,
we obtain the duality relation .

The higher order duality formula, which connects the kth order iterated
Skorokhod integral and the Malliavin derivative operator of kth order, k € N
is proven in [74]. A weaker type of duality than , which holds in Hida
spaces was proven in [71]. Here we formulate the weak duality and omit its
proof. A similar result is obtained in [74] for Kondratiev spaces when p = 1.
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Theorem 20 ([71}, [74]) (Weak duality) Let p = 0. F' € Dom_g (D) and
u € Dom_g_4(D), for p,qg € N. For any ¢ € S_,(R), n < g — 1, it holds
that

< (DF, o) _p,u>_, = < F,§(pu) >_,,

for r > max{q,p + 1}.

The following theorem states that the Malliavin derivative indicates the
rate of change in time between the ordinary product and the Wick product.

Theorem 21 ([75]) Let h € X ® (S)—, and let w; denote white noise.
Then,

The relation gave us the motivation to study the fundamental equa-
tions involving kth order operators of Malliavin calculus.

The Malliavin derivative D is not the inverse operator of the Skorokhod in-
tegral § and also they do not commute. However, the relation holds.

Theorem 22 ([71}, (74]) If v € Dom_,(6) then Du € Dom_,(5) and it
holds
D(ou) = u + 6(Du). (1.18)

The commutation relation holds for processes u € Dom,(d) and also
for u € Domg(9).

The following theorem states the product rule for the Ornstein-Uhlenbeck
operator. Its special case for F,G € Domg(R) states that F - G is also in
Domgy(R) and holds. The proof can be found for example in [48].

Theorem 23 ([74]) (Product rule for R)
1° Let F € Domy(R) and G € Dom_,(R). Then F -G € Dom_,(R)

and
R(F-G)=F -R(G)+G-R(F) — 2 (DF,DG), (1.19)
holds, where (-,-) is the dual paring between S'(R) and S(R).
2° Let F,G € Dom_,(R). Then FOG € Dom_,(R) and
R(FOG) = FOR(G) + R(F)OG. (1.20)

3° Let F' € Dom,(R) and G € Dom_,(R) or vice versa (including also
the possibility F,G € Domy(R)). Then,

E(F-R(G)) =E ((DF,DG)) . (1.21)
The property holds also for F,G € Domy(R).
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In the classical literature, e.g. [83, 87], it is proven that the Malliavin
derivative satisfies the product rule (with respect to ordinary multiplication),
ie., if F,G € Domy(D), then F - G € Domy(D) and holds. The
following theorem recapitulates this result and extends it for generalized
and test processes, and also for the Wick multiplication [I5], [74].

Theorem 24 ([71, [74]) (Product rule for D)

1° Let F' € Dom_,(D) and G € Dom,(D). Then F -G € Dom_,(D) and
it holds
D(F-G)=F-DG + DF - G. (1.22)

2° Let F,G € Dom_,(D). Then FOG € Dom_,(D) and

D(FOG) = FODG + DF)G.

Theorem 25 ([71, [74]) Assume that either of the following hold:
1° F € Dom_,(D), G € Dom,(D) and u € Dom,(6),
2° F,G € Dom,(D) and u € Dom_,(6),
3° F,G € Domy(D) and u € Domg(9).
Then, the second integration by parts formula holds
E(F(DG,u)) + E(G(DF,u)) = E(F Gd(u)). (1.23)

A generalization of Theorem [24] for higher order derivatives, i.e., the
Leibnitz formula is given [71],[74]. The chain rule for the Malliavin derivative
for processes with finite second moments has been known in the literature
as a direct consequence of the definition of Malliavin derivatives as Fréchet
derivatives [I5]. An alternative proof suited for chaos expansions setting
was presented in [71l [74].

Theorem 26 ([71, [74]) (The chain rule) Let ¢ be a twice continuously
differentiable function with bounded derivatives.

1° If F € Dom,(D) (or F € Domg(D)) then ¢p(F) € Dom,(D) (respec-
tively ¢(F) € Domgy(D)) and the chain rule holds

D(¢(F)) =¢/(F) - D(F). (1.24)
2° If F € Dom_,(D) and ¢ is analytic then ¢°(F) € Dom_,(D) and
D (¢°(F)) = ¢/°(F) OD(F). (1.25)

Additionally, several illustrative examples are provided in [74].
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Applications of the Malliavin calculus

One of the first and most important applications of the Malliavin calculus
concerns the existence and smoothness of a density for the probability law of
random variables. More recent applications in finance have been developed
for option pricing and computing Greeks (Greeks measure the stability of
the option price under variations of the parameters) via the Clark-Ocone
formula [16, 83, B8]. A few years ago it was also discovered that Malliavin
calculus is in a close relationship with the Stein method and can be used for
estimating the distance of a random variable from Gaussian variables [89].
In this section we assume that X = R. The following results appeared in
[74].

Measurability and densities

Let A € B be a Borel set in S’(R). Denote by k4 its indicator function,
i.e. the random variable k4(w) = 1 for w € A and k4(w) = 0 for w € A°.
Then, ka4 = Y 7 @aHa, Where aq = E(ka - Hy), a € I. Especially,
ag = E(FJA) = P(A)

Proposition 27 ([87]) The indicator function k4 € Domy(D) if and only
if P(A) =0 or P(A) = 1.

If P(A) € (0,1), then k4 ¢ Domg(D). For example, f(w) = rp,w)>0} &
Domy(D) since P{B; > 0} € (0,1). On the other hand, k4 € Dom_(D)
regardless of the value of P(A).

For a closed subspace A of S’(R), we denote by o[A] the sub-o-algebra of
B generated by A. A random variable f is measurable with respect to o[A]
if and only if D(f) = 0 a.e. on A°. In particular, it was proven ([I7, 53|, [87]),
that if a stochastic process f; is adapted to the Brownian filtration A; =
o[Bs : s < t], then supp D(f;) = [0,1], i.e. Dfy = > cr D pen W falt) @
&k(s) @ H,_ k) =0 for s > t.

Theorem 28 (Clark-Ocone formula) Let F' € Domy(ID) be adapted to the
Brownian filtration. Then,

F(s) = E(F) + /0 " B(DF(s)|A) dB,.

In [74] we also showed that absolutely continuous distributions can be
characterized via the Malliavin derivative. Moreover, there exists an explicit
formula for the density of the distribution. We point out that [|DF]|?, ®) =

(DF,DF) 2 is an element in L?(p). If F is of the form F =Y, .7 faHa,

2
then |[DF|Z 5y = Ypen (Laez farew (0% + 1) Ha)" .
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Theorem 29 ([53]) Let F' € Domo(D) be such that |DF||2w) # 0 a.e.
and % € Domg(3). Then for every ¢ € C3(R),

S DF
E(¢'(F))=E <¢(F) -0 (Wﬂ%>> : (1.26)

Moreover, F' is an absolutely continuous random variable and its density ¢

is given by
DF
o(t)=E |k 0| = . (1.27)
{F>t} ”DF||2L2(R)

Gaussian approximations

In [74] we proved some results which combine the Malliavin calculus with
the Stein method [89]. The properties were proven by using the method of
chaos expansions. It is well-known that a random variable N has N (0, 1)
distribution if and only if E (N -F(N)— F'(N)) = 0, for every smooth
function F. Thus, according to the Stein lemma, one can measure the
distance to N ~ N(0, 1), for an arbitrary random variable Z by measuring
the expectation of Z - F(Z) — F'(Z). By using Malliavin calculus we showed
that
E(Z-F(Z))=E(F'(Z)(DZ, DR Z))

holds for every F € C?(R). Thus, in order to measure the distance to
N ~ N(0,1), one needs to estimate

E|l — (DZ,DR' Z)|, (1.28)
where E|1 — (DZ,DR~! Z)| = 0 if and only if Z ~ N(0,1).

Theorem 30 ([74]) Let f € Dom (D) or f € Domo(D) such that E(f) =
0 and let F € C%*(R). Then,

E(f-F(f)) = E(F'(f)-(Df, DR [)).

Thus, if f € Dom4 (D) or f € Domg(D) such that E(f) = 0, then
f ~N(0,1) if and only if (Df,DR™'f) = 1.

Theorem 31 ([74]) A random variable f has N(0,1) distribution if and
only if f € L*(n) NH1 and Hf”%2(#) =1, i.e. if it is of the form f =

S50y fiH and 3252 | £ =1 holds.

The previous theorem was also extended for generalized random variables,
e.g. the white noise process at a fixed time point. These processes have an
infinite variance and can be regarded as elements of the Kondratiev spaces.
Recall that (-,-)_, denotes the scalar product in the Schwartz space S_,(R).
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Theorem 32 ([74]) Let f € Dom_,(D) and E(f) = 0. The following
statements are equivalent:

o f has a generalized Gaussian distribution,
o feM,
o Df,DRf)p = £l , , < oo

Theorem and Theorem [32| provide a complete characterization of Gaus-
sian processes (classical and generalized processes). All Gaussian processes
belong to H1 and H; contains nothing else apart from Gaussian processes.

Theorem 33 ([89)]) Let Z € Domy (D) or Z € Domo(D) be such that
E(Z) =0 and Var(Z) = 1. Then the expectation (1.28)) satisfies

E(1-(DZ,DR'Z)|) < /Var (DZ,DR-!Z)).

In order to measure how close is Z to being normally distributed, one has to
estimate how close is Var ((DZ, DR Z >) to zero. This quantity is larger
than the Kolmogorov distance, but nevertheless still a good approximation.

Equations involving Mallivin calculus operators

This section is devoted to the study of several classes of stochastic equa-
tions involving generalized operators of the Malliavin calculus. In particular,
equations that were discussed in Section 1.2 [74], Section 1.3 [75], Section
1.4 [76], Section 1.5 [62], Section 1.6 [70] and Section 1.7 [77]. We also
consider equations involving the Malliavin derivative operator and the Wick
product with a Gaussian process. Additionally, we study stochastic evolu-
tion equations with multiplicative noise and stochastic evolution equations
with Wick-power nonlinearities. Applying the chaos expansion method in
white noise spaces, we solve these equations and obtain explicit forms of the
solutions in appropriate spaces of stochastic processes.

Fundamental equations

It is of great importance to solve explicitly stochastic differential equations
involving operators of Malliavin calculus, since explicit expansions of solu-
tions can be used in numerical simulations [28, [84], [101]. Particularly, we
consider the following fundamental equations with the kth order operators
of the Malliavin calculus

ROy =g D®y=n  §Fy=r (1.29)

as well as
Pn(R) u = g, (1.30)



28 Theoretical Resutls

where P,, is a polynomial of order m. We also consider Wick-type equations
involving Malliavin derivative and a nonhomogeneous linear equation with
D, i.e., respectively

Du = GO(Au) + h, and Du = c®u + h, (1.31)

satisfying the initial condition Eu = ug. Here, G is a Gaussian process, A a
coordinatewise operator, ¢ € S’(R) and h is a Schwartz space valued gener-
alized stochastic process. The three equations in have been solved in
Section 1.3 [75]. Particularly, for £ = 1 they provide a full characterization
of the range of all three operators, and were considered in [74, [75]. The
study of the Wick-type equation in was motivated by [75]. There it
was shown that Malliavin derivative indicates the rate of change in time be-
tween ordinary product and the Wick product . Moreover, the Wick
product and the Malliavin derivative play an important role in the analysis
of nonlinear problems. For instance, in [I00] the authors proved that in
random fields, random polynomial nonlinearity can be expanded in a Tay-
lor series involving Wick products and Malliavin derivatives, the so-called
Wick-Malliavin series expansion.

Equations with the Ornstein-Uhlenbeck operator

We consider stochastic equations involving polynomials of the Ornstein-
Uhlenbeck operator and generalize results from [71], [74), [75].

Theorem 34 ([64]) Let p € [0,1] and let P (t) = Yt opit*, t € R be a
polynomial of degree m with real coefficients.

a) If Py(k) # 0, for k € Ny, then the equation P,,(R)u = g has a unique
solution represented in the form

u=> P wH,. (1.32)
€T

B (laf)

b) If Pn(k) =0 for k € M, where M is a finite subset of Ny and go, =0
for |a| =i € M then the equation P, (R)u = g with the conditions
uq = ¢; for |a| =i € M has a unique solution given by

u=Y % wH,+ Y ¢©H. (1.33)
Pr(]al) “~
|| M |a|=ieM

Moreover, the following hold:
1° If ge X ®(S)—p,—p, » € N then v € Dom_, _,(R™).

2° If g€ X ® (S)pp, p € N then u € Dom,,(R™).
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3° If g € X ® L%(p) then u € Domgo(R™).
Remark 35 For P, (t) =t™, t € R the equation Py, (R)u = g reduces to
R™u = g, Eu =19 € X. (1.34)

This case was considered in [75]. Assuming that g has zero generalized
expectation, from Theorem it follows that the equation (1.34)) has a unique
solution of the form

We also note that each stochastic process g can be represented as g =
Eg + R(u), for some u € Dom(R), where Dom(R) denotes the domain of
R in one of the spaces X ® (S),, X @ (S)_, or X ® L?(p).

First order equation with the Malliavin derivative operator

A first order equation involving the Malliavin derivative operator is studied
in Section 1.2 [74]. It also appears as a special case in Section 1.3 [75]. The
following result characterizes the family of stochastic processes that can be
written as the Malliavin derivative of some stochastic process. The results
from [71l, [74, [75] are generalized here.

Theorem 36 ([64, [74]) Let p € [0,1]. Let a process h be given in the
chaos expansion representation form h =Y 7> pcnPar ® & @ Hy such
that the coefficients hq 1 satisfy the condition

1 1

ar Pyt g, = 5 hg_ci) s (1.35)

for all a +e®) = g4+ eU). Then, for each Uy € X the equation
Du = h, Eu = ug (1.36)
has a unique solution u represented in the form
u=Tp+ Y. é‘ > hy e © Ha (1.37)
a€Z,|al>0 keN
Moreover, the following holds:
1I° Ifhe X®S_p(R)® (S)—p—q, ¢ >p+1 then u € Dom_, _4(D).
2° If he X ® Sp(R) ® (S)p,q, » > q+ 1, then u € Dom,, 4(D).

3° If h € Domy(0) then u € Domgy(D).
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In [73] for p = 1 we provided another way for solving equation ([1.36]).
Applying the chaos expansion method directly, we transformed equation
(1.36]) into a system of infinitely many equations of the form

1
Ugyy (k) = il hok, forall aeZ, keN, (1.38)

from which we calculated u,, by induction on the length of a.

Denote by r = r(a) = min{k € N : «a; # 0}, for a nonzero multi-
index o« € Z, i.e., let r be the position of the first nonzero component
of a. Then, the first nonzero component of « is the rth component «;.,
ie, a=(0,..,0,00,...,a1p,0,...). Denote by a ) the multi-index with all
components equal to the corresponding components of «, except the rth,
which is o, — 1. With the given notation we call o, the representative of
o and write @ = a_u + ). For a € Z, |a| > 0 the set

Ka={B€l:a = B+ Y, for those j € Nsuch that a; >0}

is a nonempty set, because it contains at least the representative of «, i.e.,
o € K, Note that, if @ = ne(™, n € N then Card(K,) = 1 and in all
other cases Card(KC,) > 1. Further, for |a| > 0, ICy, is a finite set because «
has finitely many nonzero components and Card(K, ) is equal to the number
of nonzero components of a. In [73] the coefficients u, of the solution of
(1.38) are obtained as functions of the representative o ) of a nonzero

multi-index « € 7 in the form
1

Ug = —hg,

o ¢

o for fa #0, a=a.m +e0,
Theorem 37 ([73]) Let h=> 7> 1enhar @& @ Hy € X @S H(R) ®
(S)—p,—p, for some p € Ny with hyj, € X such that

1 1

a ha gy = o hs.j s (1.39)
for the representative oy of o € I, |a| > 0 and all B € K,, such that
a=pB+eW, forj >r, reN. Then, (1.36) has a unique solution in
X ® (S)—p,—p given in the chaos expansion form

_ 1
u = g+ > o ha iy @ Ha. (1.40)
azas(r)+E(T)€I

Corollary 38 It holds that D(u) = 0 if and only if u = Eu.

In other words, the kernel of the operator D is Hy.

If the input function A is a constant random variable, i.e. an element
of Hg, then the solution u of is a Gaussian process. Additionally,
for every Skorokhod integrable process h there exists a unique u € Dom(D)
such that Eu = 0 and h = D(u) holds.
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Nonhomogeneous equation with the Malliavin derivative
operator

In Section 1.6 [70] we solved the nonhomogeneous linear Malliavin differen-
tial equation

Du=c®u+ h, Eu=7up (1.41)

where ¢ € S’(R), h is a Schwartz space valued generalized stochastic process
and ug € X. Especially, for h = 0 the equation reduces to the
corresponding homogeneous equation Du = ¢ ® u satisfying Eu = uy, i.e.,
the generalized eigenvalue problem for the Malliavin derivative operator that
was solved in [73]. Moreover, it was proved that in a special case, the
obtained solution coincide with the stochastic exponential. Additionally,

setting ¢ = 0, the initial equation (1.41) transforms to (1.36)).

Let o,y be the representative of a nonzero multi-index «, ie., a =
o + e Jasm| = |a] — 1 and let Card(K,) > 1. Then, we denote by
71 the first nonzero component of o) and by a ¢ its representative, i.e.,
o =™ +a_py) and |a o] = |af — 2. If C’ard(lCaE(Tl)) > 1, we denote
by 7o the first nonzero component of a_,) and with a,) its representative,
Le., a_u) = elr2) 4 Qv_(ry) and so on. With such a procedure we decompose
a € T recursively by new representatives of the previous representatives and
we obtain a sequence of K-sets. Thus, for a = (a1, a9, ...,am,,0,0,...) € Z,
la] = s+ 1 there exists an increasing family of integers 1 < r < r; <79 <
... <rg <m, s € N such that a ., = 0 and every « is decomposed by the
recurrent sum

a=¢cm 4 a i =™+ elr) 4 Q(ry) = -+ - (1.42)
=M 4 elm) 4 4 elrs) 4 Qe(rs) - '

Theorem 39 ([70]) Let p € [0,1]. Let ¢ = Y 12, ckée € S'(R) and let
h e X®SR)®(S)-, with coefficients hqj, € X such that the following
conditions (C)

1 1
7h0¢g(7‘),7‘ - @h’ﬁ,k7 B S ,COH ’Of‘ = 1

Qo

1 _ 1 _
arar, crhas(ﬁ)’rl - /Bkﬁkl ckhﬂl,klu /6 € ,COH 61 € K:Ozs(r)) |O[| =2

hold for all possible decompositions of a of the form (1.42)). If ¢, > 2k for
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all k € N, then (L.41)) has a unique solution in X ® (Sc)—, given by

u :uh0m+unhom: § :ugom@)Ha + § : ughom®Ha
o€l || >0

~ c® 1 1
= UO ® Z a Ha + Z (aha€(r) o + OérOéT‘l Crhas(rl)’rl

a€cl |a| >0
1

1
—— ¢ ha o e+ —CrCryCr_ ho ) ® H,
Qo Qg Oty Pelr2) 72 ol ! s=1 # ’

(1.43)

where u"™ is the solution of the corresponding homogeneous equation Du =

¢ ®u. The nonhomogeneous part u™°™ of the solution u is given by the
the second sum in (1.43|), which runs through nonzero o represented in the

recursive form (|1.42]).

The proof for p = 1 was given in [70]. Note that the first subcondition in

(C) corresponds to (|1.35)) and equals (|1.39)).

Wick-type equations involving the Malliavin derivative

We consider a nonhomogeneous first order equation involving the Malliavin
derivative operator

Du = GOu + h, Eu = 1wy, up € X. (1.44)

This type of problems was considered in Section 1.5 [62]. It is assumed that
his a S’(R)-valued generalized stochastic process and G € S_;(R)®(S)—p,—q
is a Gaussian process represented in the form

G=> gr& ® Ha. (1.45)
keN

Moreover, for some [, g > 0 the condition

> g (2k) 1 < oo (1.46)
keN

holds. First we solve the homogeneous version of ((1.44)).

Theorem 40 ([62]) Let p € [0,1] and let G € S_;(R) ® (S)—p,—¢, ¢,1 >0
be a Gaussian process of the form (1.45) whose coefficients g, k € N satisfy
the condition (1.46)). If g > 2k for all k € N then the initial value problem

Du=GOu, Eu=n1uy, uge€ X, (1.47)
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has a unique solution in Dom(Dg)_, —, represented in the form

=up ® Z H g.F)Hy =19 ® Z Cap ‘25’” Hsg, (1.48)

a= 2,6’eI I 2B€T

where Cy, represents the number of all possible decomposition chains con-
necting multi-indices o and &, such that & is the first successor of a having
only one nonzero component that is obtained by the subtractions o — 2e®1) —
. —2e®s) =&, forpy,..,ps €N, s> 0.

Theorem 41 ([62]) Let p € [0,1] and let G € S_;(R) ® (S)—p,—¢, ¢,1 >0
be a Gaussian process of the form whose coefficients gi, k € N satisfy
(1.46). If g > 2k for all k € N and if the coefficients of h € X ® S_; ®
(S)=p,—ps L, > 0 satisfy (C) for all possible decompositions of o of the form
, then the nonhomogeneous equation

Du=GOu + h, Eu= 1y, (1.49)

for each uy € X has a unique solution in Dom(Dg)_, _, represented in the
form u = ulo™ 4 umhom where uM™ is the solution of the corresponding

homogeneous equation (L.47) and is of the form (L.48) and u™°™ is the

nonhomogeneous part.

The study of more general types of equations is also included in Section
1.6 [62).
Integral equation

We consider an integral type equation involving the Skorokhod integral
operator. In the following theorem we generalize results from [74] [75] for pro-
cesses in X ® S(R)® (S5), and generalized processes from X ® S"(R) ® (5)—p,
p € [0,1].

Theorem 42 Let p € [0,1]. Let f be a stochastic process with zero expec-
tation and chaos expansion representation of the form f = Z|a|>1 fa ® Hyg,
fa € X. Then the integral equation

6(u) = f, (1.50)

Jote®
UZZZ(aHl)m ® & ® H,. (1.51)

Moreover, the following hold:
1° If f € Dom_, _,(D), p € N then u € Dom_, _; _,(0) forl >p+1.
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2° If f € Dom,, (D), p € N then u € Dom,,;,(5) forl <p—1.
3° If f € Domy(D), then u € Domyg(6).

As a consequence, we conclude that each stochastic process f can be
represented as f = Ef+0(u) for some Schwartz valued process u. In classical
setting, this result is known as the It6 representation theorem.

Higher order integral equations were solved in Section 1.3 [75].

Stochastic evolution equations

We consider stochastic evolution equations with multiplicative noise and
stochastic evolution equations with Wick-polynomial nonlinearities. These
results are related to Section 1.4 [76] and Section 1.7 [77], respectively.

Operators

We consider two classes of operators defined on sets of stochastic processes,
coordinatewise operators and convolution type operators. These classes in-
clude the generalized operators of Malliavin calculus. We follow the clas-
sification given in [68] [76]. Let X be a Banach algebra and let p € [0, 1].

Definition 43 We say that an operator A defined on X ® (S)—, is:

1° a coordinatewise operator if there exists a family of operators { Aq }ae,
Ay X = X, a €7, such that

Au=>Y" Aqus ® Hy, (1.52)
acl

forallu=73" o7 ta ® Hy € X ®(S)_,.

2° qa simple coordinatewise operator if A, = A for all o € T, i.e., if it
holds that

Au=>" Aua) ® Ho = Aluo) + Y Alug) ® Ho.
o€l || >0

Definition 3] can be modified for the operators acting on the spaces
X ® L?*(p) and X @ (S),.

Lemma 44 ([76], [64]) Let A be a coordinatewise operator for which all
Aa, a € I, are polynomially bounded, i.e., ||AallLx)y < R(2N)"™ for some
r,R> 0. Then, A is a bounded operator:

1° A X®(S)—p—p > X®(S)—p—q for g>p+2r, and
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2° A X®(9)pp = X®R(S)pq for qg+2r <p.

The condition stating that the deterministic operators A,, a € T are
polynomially bounded can be formulated as }_ .7 ||Aa]\%(x)(2N)_’"a < 00
for some r > 0.

Definition 45 The Wick convolution type operator B is defined by

B<>(y) = Z Z Bﬁ(ya—ﬁ) H, = Z Z Ba(yﬁ)H’y’ (1'53)

a€el BLa YET a+pB=y
fO’/“ y= Zael Yot .

If the operators By, a € Z are polynomially bounded and linear on
X, then B¢ is well-defined operator on X ® (S)—, and, similarly, also on
X ®(5),.

Lemma 46 ([76]) If the operators B,, o € I, for some p > 0 satisfy
the condition ZQGIHBQH%(X)(QN)_W < oo then BO is well-defined as a

mapping BO : X ® (8)—p—p = X @ (§)—p,—q, forq=p+r+1.

The operator of differentiation and the Fourier transform are simple co-
ordinatewise operators, while, for example A (u) = u%? cannot be written in
this form. The Ornstein-Uhlenbeck operator, defined by , is a coordi-
natewise operator, but it is not a simple coordinatewise operator. In [76] we
proved that the Skorokhod integral, defined by , can be represented in
the form of a convolution type operator. There exists an operator M such
that 6(Mu) = BOu.

Stochastic evolution equations with multiplicative noise

We consider a stochastic Cauchy problem of the form

d
%U(t,x,w) =AU(t,z,w) + BOU(t,z,w) + F(t, z,w)

U0, z,w) = Uo(ac,w),

(1.54)

where t € (0,T], w € Q, and U(t,-,w) belongs to X. The operator A
is densely defined, generating a Cyp—semigroup and B is a linear bounded
operator which combined with the Wick product ¢ introduces convolution-
type perturbations into the equation. All stochastic processes are considered
in the setting of Wiener-It6 chaos expansions.

This study was inspired by [81], where the authors provide a compre-
hensive analysis of equations of the form

%u(t,az,w) = Au(t,z,w) + §(Mu(t, z,w))

= Au(t,z,w) + /Mu(t,x,w)(}W(az,w) dx,
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where 0 denotes the Skorokhod integral and W denotes the spatial white
noise process. In [76] we proved that for every operator M there exists a
corresponding operator B such that BOu = 6(Mu). On the other hand, the
class of operators B is much larger.

We have studied elliptic SPDEs in [72, [02], particularly the stochastic
Dirichlet problem of the form LOu + f = 0. Equations also include
as a special case equations of the form %u = Lu + f and %u = LOu +
f, where L is a strictly elliptic second order partial differential operator.
These equations describe the heat conduction in random media, where the
properties of the material are modeled by a positively definite stochastic
matrix. Other special cases of include the heat equation with random
potential %u = Au+BOu, the Schrodinger equation (ih)%u = Au+BOu+
f, the transport equation %u = %u + W(}%u driven by white noise, the
generalized Langevin equation %u = Ju+C(Y'), where Y is a Lévy process,
J the infinitesimal generator of a Cy—semigroup and C a bounded operator,
which was studied in [4], as well as the equation %u = Lu + W Qu, where L
is a strictly elliptic partial differential operator as studied in [19] and [44].
Equations of the form %u = Au + BW were also studied in [85], where
A is not necessarily generating a Cp—semigroup, but an r-integrated or a
convolution semigroup.

We prove existence and uniqueness of solution of by combining
the chaos expansion method with the operator semigroup theory.

Definition 47 ([76]) It is said that U is a solution of the equation
if U € C([0,T),X)®(S)_1NCYH(0,T],X) ® (S)_1 and U satisfies .

Theorem 48 ([76]) Let the following assumptions hold:

(A1) Let A be a coordinatewise operator of the form , acting on pro-
cesses U € Dom(A) C D ® (S)_1, where

Dom(A) ={U € D&(S)_1: Ipr >0, > [|Aa(ua)[5 (2N) PV < oo},
acl

The operators Ay, o € I, defined on the same domain D dense in X,
are infinitesimal generators of Co—semigroups (1)a, t > 0, a € Z,
uniformly bounded by

I(TY)allLixy < Me™, t >0,  for some M,w > 0. (1.55)

(A2) Let BO be of the form , where By, o € T, are bounded linear
operators on X so that there exists p > 0 such that

K = ||Ba(2N) 7% < 0. (1.56)
a€l
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(A3) Let the initial value U° € X @ (S)_1 be such that U° € Dom(A), i.e.,

Zu Hy(w) € X ® (S)-1,—p, satisfies

act (1.57)
D gl (2N) 7P < oo
acl
and
AU (w ZAau Hy(w) € X ® (S)-1,—p, satisfies
oct (1.58)
D AUl (2N) 77 < oo
a€l
(A4) Let
=Y fa(t)Ha(w) € C([0,T], X) @ (S)-1,
a€l
where t — fo(t) € CY([0,T],X), a € T so that
Z\|fa||2cl([o,T],X)(2N)_p
acl
(1.59)

=3 (sup Ll -+ s 172001 (27 <o

ez tE0.T] tel0,T

Then, the stochastic Cauchy problem has a unique solution U in
Cl([OvT]vX) ® (S)—L—P'

Stationary equations

We consider stationary equations of the form
Ay+TOy+ f =0, (1.60)

where A : X ® (S)—, = X ® (S)—p, p € [0,1] and TO : X ® (S)—, —
X ® (5)-, are the operators of the forms and , respectively.
We assume that {A,}acz and {Ta}acz are bounded operators such that
A, = A, +Cy, a € Z. We also assume that Ty and A, o € Z are compact
operators and C, are self adjoint for all « € Zsuch that C,(H,) = roHa,
«a € T. The chaos expansion method is combined with classical results of
elliptic PDEs and the Fredholm alternative [34] in order to prove existence
and uniqueness of the solution of .

Theorem 49 ([76]) Let p € [0,1]. Let A: X ® (S)-, = X ® (5)—, and
TO : X ®(5)—p, = X ® (5)-, be the operators, for which the following is
satisfied:
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(al) A is of the form A = B+C, where By = ) 7 Baya ® Ha and By, :
X — X are compact operators for alla € Z, Cy =Y crTala ® Ha,
re € R, a« € Z, and T is of the form (1.53), where Ty : X — X is
a compact operator. Assume that there exists K > 0 such that for all
a€c€l
1
—7ro — [|Bal|l = ||To|| 20 and sup < K.
a = liBal) =l N T S
(a2) T is of the form (1.53), where Ty : X — X, B > 0 are bounded
operators and there exists p > 0 such that
—p8
EV2)Y | Ts) (2N) 2 < 1.
£>0
(a3) For every a €

Ker (By + (1 4+ 74)Id 4+ Tp) = {0}.

Then, for every f € X @ (S)—p,—p there exists a unique solution y € X ®

(5)—p

—p of the equation ((1.60]).

Remark 50 Some special cases of the equation (|1.60)):

1.

If A, =0 forall « € Z and T, o € Z are second order strictly elliptic
partial differential operators in divergent form

T = DD ad(x)D; +bi(x)) + > c()D;i +da(x)  (1.61)
i=1 =1

=1

with essentially bounded coefficients, then equation (1.60)) reduces to
the elliptic equation
TOU = F,

which was solved in [92].

. Let ga =0 for all « € Z and let T,,, a € Z, be second order strictly

elliptic partial differential operators in divergent form . Let
C = ¢P(R), for some ¢ € R, where R is the Ornstein-Uhlenbeck
operator, P a polynomial of degree m with real coefficients and P(R)
the differential operator P(R) = prR™ +pm_1R™ ' +...4+p1R+pold.
Then, the corresponding eigenvalues are r, = cP(|a|), a € Z. Hence,
equation transforms to the elliptic equation with a perturbation
term driven by the polynomial of the Ornstein-Uhlenbeck operator

TOU + ¢cP(R)U = F,

that was solved in [72].
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Stochastic evolution equations with Wick-polynomial
nonlinearities

We study stochastic nonlinear evolution equations of the form

u(t,w) = Au(t,w) + iaku%(t,w) + f(t,w), te€(0,T] (1.62)
k=0
u(0,w) = u(w), weQ,

where u(t,w) is an X —valued generalized stochastic process, A corresponds
to a densely defined infinitesimal generator of a Cyp—semigroup and ag, 1 <
k < n are constants and a, # 0. The nonlinear part is the Wick-power
product uOm = 90" 10u = ud . .. Qu, n € N. The Wick product is involved
due to the fact that we allow random terms to be present both in the initial
condition ug and the driving force f. This leads to singular solutions that
do not allow to use ordinary multiplication, but require a renormalization
of the multiplication, which is done by introducing the Wick product into
the equation.

Some special examples of are the stochastic versions of Fujita-type
equations u; = Au 4+ u®" + f, the stochastic FitzHugh-Nagumo equations
up = Au+ u®? — u®3 + £, the stochastic Fisher-KPP equations u; = Au +
u —u®? + f and the stochastic Chaffee-Infante equations u; = Au + u% —
u + f. These equations arise in ecology, medicine, engineering and physics.
For example, the FitzHugh-Nagumo equation is used to study electrical
activity of neurons in neurophysiology by modeling the conduction of electric
impulses down a nerve axon. The Fisher-KPP equation provides a model
for the spread of an epidemic in a population or for the distribution of
an advantageous gene within a population. Other applications in medicine
involve the modeling of cellular reactions to the introduction of toxins, and
the process of epidermal wound healing. In plasma physics it has been used
to study neutron flux in nuclear reactors, while in ecology it models flame
propagation of fire outbreaks. Thus, the study of their stochastic versions
that arise, e.g. when some of the input factors are disturbed by an external
noise, is very important.

We combined the chaos expansion method with operator semigroup the-
ory in order to prove the existence and the uniqueness of a solution for
(1.62). To solve the propagator system, we exploit the intrinsic relationship
between the Wick product and the Catalan numbers that was discovered in
[49]. We build upon these ideas in order to solve a general class of stochastic

nonlinear equations (|1.62]).
We first solved the equation (1.62)) for ag =+ =a,—1 =0 and a, = 1.

Definition 51 An X —wvalued generalized stochastic process

u(t) = ua(t)Hy € X @ (S)_1, t€[0,T] (1.63)
acl
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s a coordinatewise classical solution of
u(t,w) = Au(t,w) + u®™(t,w) + f(t,w), te(0,T] (1.64)
u(0,w) =1’ (w), weq,
if ug s a classical solution of
Co(t) = Aouolt) + (1) + folt), wo(0)=u§  (165)
and for every a € T \ {0}, the coefficient uy is a classical solution of

Zta(t) = Ban(D)ua(t) + gon(t), t€(O.7],  ua(0) =ul,  (166)

where Bon(t) = Ag+nug () Id and gon(t) = ran(t)+ falt), t € [0,T] for
all « > 0, and the functions ron, n > 1 contain only coordinate functions
ug, f < a. The coordinatewise solution u(t) € X ® (S)_1, t € [0,T]
is an almost classical solution of if w € C([0,T],X) ® (S)-1, an
almost classical solution is a classical solution if u € C([0,7],X) ® (S)-1 N

CH((0,T], X) @ (8)-1.
We assume that the following conditions hold:

(B1) The operators A,, a € Z, are infinitesimal generators of Cy—semigroups
{T(s)}s>0 with a common domain D, = D, o € Z, dense in X. We
assume that there exist constants m > 1 and w € R such that

ITo(s)|| < me®, s >0 forall aeZ.

The action of A is given by (1.52) for u € D C D ® (S)_; of the form
[C63), where

D= {u €ED®(S)-1: Ipo 20, O || Aa(ua)|F(2N) P < oo}.
a€l

(B2) The initial value v’ = Y ;s ulH, € D, ie. ud € D for every a € T
and there exists p > 0 such that

D a3 (2N) P < oo,
a€el

3 Aa(ud) 1% (2N) 7 < co.

acl
(B3) The inhomogeneous part f(t,w) = > o7 fa(t)Ho(w), t € [0,T], w €
Q belongs to C1([0, T], X)®(S)_1; hence t = f,(t) € C1([0,T], X), a €
7 and there exists p > 0 such that

Y fallE oy, 2N)

o€l

—Z( sup [ fa(#)[x + sup |rfa<>||x)2<2N>—m<oo.

Sz Ve[0T te[0,7)
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(B4-n) The Cauchy problem
d
dt

has a classical solution ug € C1([0, 7], X).

Particularly, if Ag = A is the Laplace operator and fo = 0, then ([1.65)
belongs to the class of Fujita equations

UO(t) = A()U()(t) + Ug(t) + f()(t), t e (0, T], UO(O) = ug,

up = Au+uP,  u(0) = uo, (1.67)

studied by Fujita, Chen and Watanabe [32] [33]. The authors proved that
for a nonnegative initial condition u® € C(R™) N L>®(RY), equation
has a unique classical solution on some [0,7}). Moreover, if p > 1+ % then
there exist a positive bounded solution. For a@ = 0 equation can also
be solved by the Fixed point theorem [104].

Theorem 52 ([77]) Let the assumptions (B1)—(B4—n) be fulfilled. Then,
there exists a unique almost classical solution v € C([0,T],X) ® (S)_1 of
the stochastic nonlinear evolution equation (|1.64)).

The linear nonautonomous case

Our analysis gives a simple observation for the linear nonautonomous
equation

u(t,w) = A(t) u(t,w) + f(t,w), te(0,T] (1.68)
u(0,w) =1 (w), weqQ.

We assume the following;:

(bl) The operator A(t) : D/ C X ® (S)-1 = X ® (S)_1, t € [0,T] is a
coordinatewise operator depending on ¢ that corresponds to a family
of deterministic operators A,(t) : D(Ay) C X — X, o € Z. For every
a € T the operator family {Aq (%) }+cjo,) is a stable family of infinitesi-
mal generators of Cy—semigroups on X with stability constants m > 1
and w € R not depending on «, therefore the corresponding evolution
systems S, (t, s) satisfy

190 (t,s)|| < me®) <me®”, 0<s<t<T, acl.

The domain D(A,(t)) = D is independent of t € [0,7] and a €
Z. For every x € D the function A, (t)z, t € [0,T] is continuously
differentiable in X for each o € 7.

The action of A(t), t € [0,T] is given by

A(t)(u) = Aa(t)(ta) Ha,

ael
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for u e D' C D ® (S)_1 of the form (1.63]), where

D = {u € D®(S)-1:3po > O,Z sup || Aa(t)(ua)||% (2N) 70 < oo}.
acz tEl0,T]

(b2) The initial value v’ = %" s udHy € IV, ie. u) € D for every a €

and there exists p > 0 such that

D lud 3 (2N) P < oo,
ael

> sup [ Aa(t)ug|l (2N) 7 < oo,
acT te0,T]

For the inhomogeneous part f(t,w), w € Q, t € [0,T] we assume (B3).

Theorem 53 ([77]) Let the assumptions (bl), (b2) and (B3) be fulfilled.
Then, there exists a unique almost classical solution u € C([0,T], X)®(S)-1
of the linear nonautonomous equation (1.68]).

Extensions to nonlinear equations

The results of Theorem [52] are extended to a more general case of stochastic
evolution equation of the form (1.62)). In order to apply Theorem @ we
replace (B4 — n) with the following assumption:

(C4-n) The Cauchy problem

%UO(t) = Aouo(t) + ag ug(t) + fO(t), t e (O,T], UO(O) = ug,
= (1.69)

has a classical solution ug € C*([0, 7], X).

For the sake of simplicity in [77] we presented only a procedure for solving
(1.62)) for n = 3. The general case can be done in the same way. From the
form of the process (|1.63) and its Wick-powers, we obtain the expansion of
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the Wick-polynomial nonlinearity

pg(u) =ag+aiu+agu®? + azu®®

= (aop + arug + az ug + azuy) Ho

+ Z ((3a3u3 + 2a2up + a1) uq + (3asug + az) Z Ua—BUB
a>0 0<B<a

+ as Z Z ua_5u5_7u7> H,

0<B<a 0<y<p

= p3(uo) + Y (pé(uo)ua -py(ue) > Ua—pug

a>0 0<B<a
1
+ o P (we) Y D uapus- v“v)H
0<B<a 0<y<B

where pf, pi and p4’ denote respectively the first, the second and the third
derivative of the polynomial p3. Thus, by applying the chaos expansion
method to the nonlinear stochastic problem we obtained the system
of infinitely many deterministic Cauchy problems that have the forms

and (L.66):

Theorem 54 ([T7]) Let the assumptions (B1) — (B3) and (C4 — 3) be ful-
filled. Then, there exists a unique almost classical solution uw € C([0,T], X)®
(S)—1 of the stochastic nonlinear equations ((1.62)).

Fractional operators of the Malliavin calculus

In [64] 68, [69] we defined fractional operators of generalized Malliavin calcu-
lus. They are connected with the corresponding classical operators through
an isometry mapping denoted by M, see [64]. The equations with fractional
operators can be considered in an analogue way as the ones presented in
this thesis.

We denote by D the Malliavin derivative and D7) the fractional Malli-
avin derivative on X ® (S)_, (respectively on X ®(S), and X ® L?(u)). We
say that a process F' =3 .7 fa ® Hy, fo € X is differentiable in Malliavin
sense if its coeflicients satisfy (respectively and ) Then, the
chaos expansion form of its Malliavin derivative is given by , while the
chaos expansion form of its fractional Malliavin derivative is given by

a€Z keN
where e,(gH) = MO-H¢ ke N. Denote by D the Malliavin derivative and
by DU the fractional Malliavin derivative on X ® (S )(}/[)) (respectively on
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X®(S)( ) and X ®L2(pg)). If the coefficients of F = Y act Ja @Hy, fa €
X, o € T satisfy (|L.3] . (respectively (1.4)) and (|1.5))), then chaos expansion
forms of these operators are

DF = Y Y avfo ® ¢ © H, .0 (1.71)
o€l keN
DEp — Zzak fo ® M(lfH)el(cH) ® ];Nfa_s(k),
o€l keN

Note that both Dom(D) = Dom(]D)(H)) and Dom(]f))) = Dom(DH)) are
determined by the condition (1.3]) (respectively by (1.4) and ( . The

connection between DU and ID) on a classical space and also between D
and D on a fractional space is given through the mapping M = M) @ Id,
see [64]. In particular, let D) : X ® (S)_, - X ® S'(R) ® (S)—, and
F =3, crfo®Hy € Dom(DH)). Then,

D F =M~? <ZZ ok fa ® & ® H, E(M) =M loDF  (L72)

a€Z keN

Similarly, DD : X @ (S)(_}? - X5 R)® (S)(_b;) and for F' € Dom(DH))
it holds DUVF =M1 oD F.
Theorem 55 ([69]) For F' € Dom(D) it holds

DIF =M 'oDF=MoDoM 'F. (1.73)

We denote by §) the fractional Skorokhod integral on X ®S'(R)®(S)_,
(respectively on X ® S'(R) ® (9)—, and X ® L?*(R) @ L?*(u)) and by § the
Skorokhod integral on the corresponding fractional space X ® S'(R)® (S )(_I?
(respectively on X ® S'(R)® (S)E,H) and X ® L>(R)® L?(pg)). In particular,
u € Dom(9) if its coefficients satisfy (respectively and (1.9)) and
the fractional Skorokhod integral is defined by

Z Z (O ® H ate®)s (1.74)
o€l keN

where ué{k = (ua,e,(CH)), ac€TandkeN Letu=)  7us®@Hy€X®

S (R)® (S)(,H) (respectively on X ® 5" (R)® (S)(H) and X®L2(R)® L*(ny)),
such that the coefficients u, = ZkeN Ua ke ® & with ue, € X satisfy (1.6 .
(respectively (|1.8)) and (1.9 . . Then, the Skorokhod integral § is of the form

Z Z Ug ke (4 aJrE(k) (1.75)

a€el keN

Theorem 56 ([68]) For @i € Domy(3) it holds M(6()) = §(M(q)).
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The fractional Ornstein-Uhlenbeck operator RU?) on the classical space
is defined as the composition RU) = §(H) o DIH) and can be represented in
the form

Ry =RI (> uy @ Hy) =Y |a|ua @ Hy = Ru.
acl a€el

Similarly, the Ornstein-Uhlenbeck operator 7{2 5 oD and the fractional
Ornstein-Uhlenbeck operators R = §(H) o D) in fractional spaces are
also equal

RIG=RID(S iy @ Ho) = |altia @ Ho = Ri.
a€l acl
The corresponding domains remain the same and, depending on a set of

processes, are determined by (1.12]), (1.13)) or (1.14). More details can be
found in [64].
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Abstract. We extend the Malliavin calculus from the classical finite variance setting to generalized pro-
cesses with infinite variance and their test processes. The domain and the range of the basic Malliavin
operators is characterized in terms of test processes and generalized processes. Various properties are
proved such as the duality of the integral and the derivative in strong and in weak sense, the product rule
with respect to ordinary and Wick multiplication and the chain rule in classical and in Wick sense.

1. Introduction

Stochastic processes with infinite variance (e.g. the white noise process) appear in many cases as
solutions to stochastic differential equations. The Hida spaces and the Kondratiev spaces (see e.g. [3, 4])
have been introduced as the stochastic analogues of the Schwartz spaces of tempered distributions in
order to provide a strict theoretical meaning for these kind of processes. The spaces of the test processes
contain highly regular processes which are needed as windows through which one can detect the action of
generalized processes.

The Malliavin derivative, the Skorokhod integral and the Ornstein-Uhlenbeck operator are fundamental
for the stochastic calculus of variations. Each of them has a meaning also in quantum theory: they represent
the annihilation, the creation and the number operator respectively. In stochastic analysis, the Malliavin
derivative charachterizes densities of distributions, the Skorokhod integral is an extension of the It6 integral
to non-adapted processes, and the Ornstein-Uhlenbeck operator plays the role of the stochastic Laplacian.

In the classical setting followed by [2, 13, 15], the domain of these operators is a strict subset of the
set of processes with finite second moments (L)?, leading to Sobolev type normed spaces. A more general
characterization of the domain of these operators in Kondratiev generalized function spaces has been
derived in [5, 6, 9, 10]. The range of the operators for generalized processes for p = 1 has been studied
in [8]. As a conclusion to this series of papers, in the current paper we provide a setting for the domains
of these operators for p € [0,1] and a similar setting for test processes: first we construct a subset of the
Kondratiev space which will be the domain of the operators, then we prove that the operators are linear,
bounded, non-injective within the corresponding spaces and develop a representation of their range. In
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the second part of the paper we fully develop the calculus including the integration by parts, Leibnitz rule
and chain rule etc. using the interplay of generalized processes with their test processes and different types
of dual pairings.

The Malliavin derivative of generalized stochastic processes has first been considered in [1] using the
S-transform of stochastic exponentials and chaos expansions with n-fold Itd integrals with some vague
notion of the It6 integral of a generalized function. Our approach is different, it relies on chaos expansions
via Hermite polynomials and it provides more precise results: a fine gradation of generalized and test
functions is followed where each level has a Hilbert structure and consequently each level of singularity
has its own domain, range, set of multipliers etc.

The organisation of the paper is the following: After a short preview of the basic setting and notions of
chaos expansions (Subsection 2.1), spaces of generalized stochastic processes and test stochastic processes
(Subsection 2.2-2.3), we turn to the question of their multiplication in Subsection 2.4. In Section 3 we provide
the characterisation of the domains of the basic operators of Malliavin calculus and prove their linearity
and boundedness. In Section 4 we provide explicit solutions to the equations Ru = g, Du = h, ou = f.
In Section 5 we prove some rules of the Malliavin calculus for generalized and test processes, such as the
duality between the derivative ID and the integral operator 6 (integration by parts formula), the product
rule for ID and R both for ordinary multiplication and Wick multiplication, and eventually we prove the
chain rule. Some accompanying examples, applications and supplementary material to our results are
provided in [11].

2. Preliminaries

Consider the Gaussian white noise probability space (S'(R), B, 1), where S'(R) denotes the space of
tempered distributions, 8 the Borel c—algebra generated by the weak topology on 5’(R) and p the Gaussian

. _1 2
white noise measure corresponding to the characteristic function f e’<“”4’>dy(a)) =e 2”¢”L2(JR)’ ¢ € S(R),

S'(R)
given by the Bochner-Minlos theorem

Denote byh (x) = (=)= gn( ) n € Ny, Ny = NU{0}, the family of Hermite polynomials and &, (x) =

V=T

complete orthonormal system in L?(R). We follow the characterization of the Schwartz spaces in terms of
the Hermite basis: The space of rapidly decreasing functions as a projective limit space S(R) = (¢, S1(R)
and the space of tempered distributions as an inductive limit space S'(R) = e, S-1(IR) where

——7 hn 1( \/Ex), n € N, the family of Hermite functions. The family of Hermite functions forms a

0

SI(R) = {f = Zakgk IAIR = Zak2k)<oo} leZ,7Z=-NUN,.

k=1

Note that S;(IR) is a Hilbert space endowed with the scalar product -, -); given by

0, k+#i
<£kr £i>l = { ||£k||2 (Zk)l k=i ’ leZ.

2.1. The Wiener chaos spaces

Let 7 = (N}¥). denote the set of sequences of nonnegative integers which have only finitely many
nonzero components @ = (a1, a,...,a,,0,0...), a; € No, 1 = 1,2,...,m, m € IN. The kth unit vector
e® =(0,---,0,1,0,---), k € N is the sequence of zeros with the only entry 1 as its kth component. The
multi-index 0 = (0,0,0,0,...) hasall zero entries. The length of a multi-index « € 7 is defined as|a| = Y17 ak.

Operations with multi-indices are carried out componentwise e.g. a +f = (a1 + fr,az2 + f2,...),
a! = [I;2; ax! and (g) = ﬁ,(;;lﬁ), Note that a > 0 (equivalently |a| > 0) if there is at least one compo-
nent o, > 0. We adopt the convention that a — 8 exists only if « — f > 0 and otherwise it is not defined.

Let (2IN)* = [];2,(2k)*. Note that ) ,c7(2IN)7* < oo for p > 1 (see e.g. [4]).
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Lemma 2.1. The following estimates hold:
1° (f) < 2lal < (2IN)9, ael,
2° (0 +p)! < OB 2N,  0,peT.
Proof. 1° Since () < 2", for alln € Ny and 0 < k < #, it follows that
(‘;) =11 (2‘) <[] 2 =2"<]] @) =Ny,
ieN V' deN ieN
foralle € Fand 0 < B < a.

2° From (g) = fﬁ'—ﬂ)' and (i) it follows that a! < B! (a — B)! (2IN)*. By substituting 6 = @ — f, we obtain

(6 +p) < 61 pl 2N)?F, for all 0, € I. 0

Let (L)?> = L*(S'(R), B, 1) be the Hilbert space of random variables with finite second moments. Then

Ho@) = [ [ @, &), a e, (1)
k=1

forms the Fourier-Hermite orthogonal basis of (L)? such that ”HLVH(ZL)Z = a!. In particular, Hy = 1 and for the

kth unit vector H,w(w) = {(w, &), k € IN. The prominent Wiener-Ito chaos expansion theorem states that each
element F € (L)* has a unique representation of the form

Flw) = Z caHa(w), @€S(R), ca€R, ael,

ael

such that ||F||(2L)2 = Z Aal < oo

ael

2.2. Kondratiev spaces and Hida spaces

The stochastic analogue of Schwartz spaces as generalized function spaces are the Kondratiev spaces of
generalized random variables. Let p € [0, 1].

Definition 2.2. The space of the Kondratiev test random variables (S), consists of elements f = Y., caHy € (L)?,
¢y €R, a € I, such that

A2, = Y (@) **@Ny* < oo, forall p € No.
ael

The space of the Kondratiev generalized random variables (S)-, consists of formal expansions of the form
F = ZU(EI baHLY/ ba € R, a € I, Such thﬂt

IIFIIEF,,_,] = Z b2 (a)'"P(2IN)P* < oo,  for some p € Ny.
ael

This provides a sequence of spaces (S),, = {f € @L2:Nf llpp < oo}, p € [0,1], such that
(S)l,p c (S)p,p < (S)O,p c (L)Z c (S)O,fp < (S)fp,fp c (S)—l,—p/

(S)pp € (Spg € (L)* € (8)-p-g € (S)-p,-ps
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for all p > g > 0, the inclusions denote continuous embeddings and (S)oo = (L)*. Thus, (S), = ﬂ (8)p,p, can
p€Ny
be equipped with the projective topology, while (S)_, = U (8)-p,-p asits dual with the inductive topology.
peNy
Note that (S), is nuclear and the following Gel’fand triple

(8)p C (LY C(S)-p

is obtained. Especially, the case p = 0 corresponds to the Hida spaces.

We will denote by <« -,- >, the dual pairing between (S)-, and (S),. Its action is given by
< A, B »,=< Y er0aHy, Yper baHa >p= Y4 @lagb,. In case of random variables with finite variance
it reduces to the scalar product < A, B > 2= E(AB). Especially, the Hida case will be of importance, thus
note that for any fixed p € Z, (S)o,, p € Z, is a Hilbert space (we identify the case p = 0 with (L)?) endowed
with the scalar product

0, a#p

ANy, a=p, ’ for peZ,

< Hy, Hpg >0 = {

extended by linearity and continuity to

< A,B>,= Z alaaba 2Ny, peZ.

ael

In the framework of white noise analysis, the problem of pointwise multiplication of generalized
functions is overcome by introducing the Wick product. It is well defined in the Kondratiev spaces of test
and generalized stochastic functions (S), and (S)-,; see for example [3, 4].

Definition 2.3. LetF, G € (S)-, be given by their chaos expansions F(w) = Yyer faHao(w)and G(w) = Yper gpHp(w),
for unique f., gs € R. The Wick product of F and G is the element denoted by FOG and defined by

roc)= 3 o o= 5 £ s

ael pel yvel \a+p=y

The same definition is provided for the Wick product of test random variables belonging to (S),.

For the Fourier-Hermite polynomials (1), for all &, § € I it holds H,0Hg = a+5

The nth Wick power is defined by F*" = FO""DoF, F®0 = 1. Note that H,.» = H % for n € Ny, k € N.

Note that the Kondratiev spaces (S), and (S)-, are closed under the Wick mu1t1p11cat10n [4], while the
space (L)? is not closed under it. The most important property of the Wick multiplication is its relation to the
It6-Skorokhod integration [3, 4], since it reproduces the fundamental theorem of calculus. It also represents
a renormalization of the ordinary product and the highest order stochastic approximation of the ordinary
product [14].

In the sequel we will need the notion of Wick-versions of analytic functions.

Definition 2.4. If ¢ : R — R is a real analytic function at the origin represented by the power series
= Z a, x",
n=0
then its Wick version ¢° : (S)-, = (S), for p € [0,1], is given by

o)

@°(F) = Zan F, Fe(5),.

n=0
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2.3. Generalized stochastic processes

Let X be a Banach space endowed with the norm || - ||z and let X’ denote its dual space. In this section
we describe X—valued random variables. Most notably, if X is a space of functions on R, e.g. X = C¥([a, b)),
—00 <a < b < o or X = L*(R), we obtain the notion of a stochastic process. We will also define processes
where X is not a normed space, but a nuclear space topologized by a family of seminorms, e.g. X = S(R)
(see e.g. [16]).

Definition 2.5. Let f have the formal expansion

f:Zfa@)Ha, where foe X, a€ 1. )

ael

Let p € [0,1]. Define the following spaces:

X® Oy = f: Ifle,, = ), P Ifalk@NY* < oo},
ael
X@®-py = I+ M, = ), o' P IAIRENT < e,

ael

where X denotes an arbitrary Banach space (allowing both possibilities X = X, X = X’). Especially, for p = 0 and
p =0, X®(S)opo will be denoted by

X@ULP =f: Iflgur = ) @llfullk < oo}

ael

We will denote by E(F) = fo the generalized expectation of the process F.

Definition 2.6. Generalized stochastic processes and test stochastic processes in Kondratiev sense are elements
of the spaces

X8(8) =) X@©) pp X&©)=[]XWO)y pel0]
peNy peNo

respectively.

Remark 2.7. The symbol ® denotes the projective tensor product of two spaces, i.e. X’ ® (S)-, is the completion of
the tensor product with respect to the m-topology.

The Kondratiev space (S), is nuclear and thus (X ® (S),)’ = X’ ® (S)-,. Note that X’ ® (S)-, is isomorphic to
the space of linear bounded mappings X — (S),, and it is also isomporphic to the space of linear bounded mappings
(8), = X.

In [19] and [20] a general setting of S’-valued generalized stochastic process is provided: S’(IR)-valued
generalized stochastic processes are elements of X ® S'(R) ® (S)-, and they are given by chaos expansions
of the form

F=Y Y 0@ @Hy =) ba®Hy =) k@& 3)

ael kelN ael keN

where by = Yien Aak ® & € X® S (R), ¢k = Yper dak ® Ho € X® (S)-p and a,x € X. Thus,

X® S*l(IR) ® (S)—p,—p = {f = Z Z Aok ® Ek ® Ha : ”f”i@sz(]R)@(s)—p,—p = Z Z a!l_p”ﬂa,kui (2k)_l(2N)_pa < OO}

ael kelN ael kelN
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and

X8R @©) = | | XeS (R e®) .
p,leNg

The generalized expectation of an S’-valued stochastic process f is given by E(f) = Y a0,k ® & = bo.
keN

In an analogue way, we define S-valued test processes as elements of X ® S(RR) ® (S),, which are given
by chaos expansions of the form (3), where b, = Y jen A ® & € X®S(R), ¢k = X per Aak ® Ho € X®(S), and
aqx € X. Thus,

X® S(R)® (S), = {f =YY aar @G @ Hat Iflfgsmposy,, = 2, 0, 7 il (2K @NY™ < oo}

ael keN ael keN
and
X8SR) @), = [ | X&S(R)®(S),,-
p,lEINO
The Hida spaces are obtained for p = 0. Especially, for p = I = 0, one obtains the space of processes with

finite second moments and square integrable trajectories X ® L(R) ® (L)?. It is isomporphic to X ® L2 (R X Q)
and if X is a separable Hilbert space, then it is also isomorphic to L?(R X €; X).

2.4. Multiplication of stochastic processes

We generalize the definition of the Wick product of random variables to the set of generalized stochastic
processes in the way as it is done in [7, 17] and [18]. For this purpose we will assume that X is closed under
multiplication, i.e. thatx-y € X, forall x,y € X.

Definition 2.8. Let F,G € X ® (S)+p, p € [0,1], be generalized (resp. test) stochastic processes given in chaos
expansions of the form (2). Then the Wick product FOG is defined by

FoG = Z[ Y fagﬁJ®Hy. @)

yel \a+p=y

Theorem 2.9. Let p € [0,1] and let the stochastic processes F and G be given in their chaos expansion forms

F=Y fA®Hy,and G =}, g, ® H,.
ael ael

1°IfF € X®(5)—p—p, and G € X ® (5)—p—p, for some p1,p2 € Ny, then FOG is a well defined element in
X®(S)—p~q forqzp1+p2+4

2° IfF € X®(S)y,p, and G € X ® (S),p, for p1,p2 € No, then FOG is a well defined element in X ® (S),, 4, for
q < minfpy, p2} — 4.

Proof. 1° By the Cauchy-Schwartz inequality, the following holds
”F0G|l§(®(5),pﬁq = Z I Z Fagpllx NI PRIN)Y < Z I Z Fagpll ()P (2IN) P24y

yel —a+f=y yel a+p=y
1-p _P +1 , _r +1 , _

=Y 1Y fagpla+ B @N)72N)TE R 2IN) Y

yel a+p=y

Ly _n _mt _

<YLY fugs(@B@NYF) > @N) @) AR 2IN)

yel a+p=y
<Y1 Y fagpat NN AR NP

yel a+p=y

, 1p 1o _hea _ kb
<Y NP Y fagpat TR @NYE @N) TR

yel a+p=y
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<) N [Z lIfalli (@)~ (2IN) ”][ Y lgpl(By P @N)- Pzﬁ]

yel a+p=y a+p=y

<) Ny (Z I ﬁylli(al)l")(ZN)‘““] [Z ||gﬂ||§(/s!>l-f)<zm>-mﬁ]

yel ael pel
— 2
=M- ||F||X®(5) - ”G”X® (S)-p, - < 00,

pitl

since M = )., [(ZIN) 2 < c0. We also applied Lemma 2.1 part 1°, 1nequaht1es (2]N) ey < (2IN)" "z ® and

(2]N)‘7V < (2IN)- 6 since y=a,y>p,aswell as (Z]N)‘f‘* < (2IN)- % because p €[0,1].
2° Letnow F € X®(S)y, and G € X ® (S),,, for all p1,p2 € Np. Then the chaos expansion form of FOG
is given by (4) and

1+p +2
IFOGIR g, = Y, 7™ Y, fugdlk@N) = Y @N)2I Yyt fugs@N) F71

yel a+p=y yel a+p=y
< Z(Q]N)—ZVH Z ag“%/gf%(z]N)?(aw)fagﬁ(zN)?(Mﬁ)“%(

yel a+p=y
< M{ Y al“ﬂnfau%((ZN)’““][ Y, ﬁ!“f’||gﬁ||§(2N)”2”’]

a+p=y a+p=y

<

M(Z a!“f’||fa||§<(2N><q+4”“][Z ﬁ!l+f’||gﬁ||§<(zm)<ﬂ+4>ﬁ]

ael pel

2 2
M- ”F”X®(S)p,p1 : ||G||X®(S)p,pz < 0,

if g < p1 —4and q < p, — 4. We used the Cauchy-Schwartz inequality along with the estimate (a + f)!
a! B! (2N)**#, from Lemma 2.1.

O IA

Remark 2.10. A test stochastic process u € X ® (S)pp, p = 0 can be considered as a generalized stochastic process
from X ® (S)_p,—4, g = 0 since ||u||§(®(s)7w < ||”||§(®(S),,,p' Therefore, if F € X ® (S),,p, and G € X ® (S)_,—p, for some
p1,p2 € Ny, then FOG is a well defined element in X ® (S)-p,—q, for g = p2 + 4. This follows from Theorem 2.9 part
1° by letting p1 =

Applying the well-known formula for the Fourier-Hermite polynomials (see [4])
a
HD( . Hﬁ = Z ’)/'( )(‘8) Ha+’f§_2y (5)
y<min{a,B} VAV

one can define the ordinary product F - G of two stochastic processes F and G. Thus, by applying formally
(5) we obtain

o
F-G = Y Y fgp®Ho Hp=).) fags® Y. y!( )(ﬁ)HM_z;,
ael el ael el 0<y<min{a,p} VY
a
SS9 W LI VR o) (4L
ael pel 0<y<min{a,f} VIV
. . a'ﬁl
After a change of variables 6 = a —y, 6 = § — y, we obtain H, - Hg = st‘ y'é’@' Hs.o.

y+O=B,y+o=a
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B alp! B alp!
HoHp= ), ST Tk )3 i =gy whed

0<T<0+p 0<T<0+p
y+T=0+p,y+0=ar a+T=p+20

After another change of variables T = § + 0 we finally obtain the chaos expansion of H, - Hg in (L) :

131 131
Ho-Hi=Y Y 16,‘2‘f_)HT_Ha+ﬁ+Z y |6|"‘f_ H..

el yel o<t el y>0,0<1
y+1-0=,y+6=a y+1-0=B,y+o=a

Similarly, we can rearrange the sums for F - G to obtain

F'GZFOG‘FZZZfagﬁ Z '6'(:;‘Bi H; = Z fag ﬁaaﬁT T (6)

el ael pel WZO;STo tel ael pel
Y+1=0=p,y+0=a
where
alp!
Gope= )| e 7)
i 15! — o)
= y1ol(t = o)!
y+1-0=,y+0=a

Note the following facts: for each a, 8,7 € I fixed there exists a unique pair of multi-indices y,6 € T
suchthatd <7andy+1-06 =,y + 6 = a. Moreover, both a +  and |a — | are odd (resp. even) if and only
if 7 is odd (resp. even). Also, @ + f > 7 > |a — B|. Thus,

alp!
(a+§—1)!(¢1—§+1)!(ﬁ—¢21+1)! :

Aapr =

For example, if T = (2,0,0,0,...), then the coefficient next to H in (6) is fi0,0,0,.)9(2,00,.) + f1,00..)9(1,0,0,.) +
£2,00,.900,00,.) + 3f1,00,.993,00,.) + 4£200..)92,00,.) + 3f3,00,.)91,00,.) + 18f300,.09600,..) + -

Lemma 2.11. Let o, B, 7 € I and a, . be defined as in (7). Then
Ao < (2N)*P.

Qa)! . (2a)!
2 = N

alp! alp!
(a+l3 (4= 5”)1(5 sy = (a+B—1)(a =B+ DB - a+1)!(2N)-@+pT

Proof. From the estimate a! = which follows from Lemma 2.1 part 1°, we obtain

aa,ﬁ,’[ =

Without loss of generality we may assume that a < f. The case 8 < a can be considered similarly

First case, if & < g < 7. Then, p < T implies that m <1, while a < 7 implies that m < 1. Thus
(ZN)aJrﬁ T
2V < 2N,
aalyT—(a_'_‘B )'—(N)
Second case, if & < 7 < 5. Then, @ < 7 implies again (B*% <1, while 7 < g now implies that -7—; ﬂg o <L

Thus,

(2N)a+ﬁ T

a+p
Ao < @—frol = < (2N)*P.
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Third case,if t <@ <. Thenf—a +7 < fand a — f + v < 7. Thus, we obtain

a;! Bil
Bope = l_ﬂ[q (@i +Bi =) (@i = Bi + 7)) (Bi — i + 1)1 (20)(HFi=)
_ H (ai—ﬁi+’fi)!'(Ck,'—‘Bi+Ti+1)...(0(1'—1)'a1' (‘Bi—ai+1i)!-(‘Bi—ai+’fi+1)...(ﬁi—1)-ﬁi

N (i = Bi + Ti)! (B = i + )1 (@ + i — )1 (2d) (i)

<1- (ZN)a+ﬁ—T < (ZN)UH-,S

Theorem 2.12. The following holds:

1° IfF € X®(S)p,, and G € X ® (S)p,r,, for some 11,12 € Ny, then the ordinary product F - G is a well defined
element in X ® (S),,4 for < min{ry, rp} — 8.

2° IfF € X®(S)pr, and G € X ® (S)—p,-r,, for r1 — 12 > 8, then their ordinary product F - G is well defined and
belongs to X ® (S)_p, g forra <q<r; —8.

Proof. 1° Let ¢ = p — 8, where p < min{py,p,} — 8. By Lemma 2.11, Lemma 2.1 and the Cauchy-Schwartz
inequality we have

I Gliags),, = ) TP Y| fafptapl k2N

1€l a,pel
< YT fagp@NY IR @IN) S
tel L;/Zi
=Y N Y fugs T @N)E N,
el féﬁiis
<Y N Y fugsat F T @N)F @) 2N) TR
el g
21 i b g e i —a
<Y ENYE Y alF £N)T @N) R g 2N)E @N) IR
1€l a,pel
=Y N ) aPIAIRENYT 2IN) Y B lggl (2N (2N) )
1€l a,pel a,pel
<Y @Y @Y AR ENY)( ) @N) Y B liggllk 2N)F)
el pel ael ael pel
SMGG Y. alllfulk@NY"™ Y arliggl 2Ny
ael pel

— 2 2
- MC1C2”F”X®(S)W||G||X®(S)M, < o,

where M = ¥, (2N) ™" < 00, C1 = ¥ 7(2N) % < 0o and C; = ¥ 7(2IN) ™ < co.

2° Letg € (S)p,and F € X®(S),,,- Thenby Theorem 2.12 part 1°, F-¢ € (S),,s for s < min{ry, q} -8 = 1 -8.
Also, G € (S)-p,, implies that G € (S)-p,—c for ¢ = r2. Thus for any ¢ such that 7, < ¢ <s <, — 8 we have
F-p€e(S)ycand G € (5)—p, . Now,

IF-GI?, ;= sup | <F-G,¢>,|=sup | <G, F-¢>,|
llplly<1 llplly<1

< sup ”G”—p,—c -|IF - (P”p,c < sup ”G”—p,—c : ”F”p,rl : ”(P”p,q-
llplly<1 llplly<1
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This implies

IF -Gl <M - IIGll-p,r, - Flly,r,,

for some M > 0. O

Remark 2.13. Note, for F,G € X ® (L)* the ordinary product F - G will not necessarily belong to X ® (L) (for a
counterexample see [11]), but due to the Holder inequality it will belong to X ® (L)*.

3. Operators of the Malliavin Calculus

In the classical literature [2, 12, 13, 15] the Malliavin derivative and the Skorokhod integral are defined
on a subspace of (L)* so that the resulting process after application of these operators necessarily remains
in (L)>. We will recall of these classical results and denote the corresponding domains with a “zero” in
order to retain a nice symmetry between test and generalized processes. In [6, 7, 9, 10] we allowed values
in the Kondratiev space (S)-1 and thus obtained larger domains for all operators. These domains will be
denoted by a “minus” sign to reflect the fact that they correspond to generalized processes. In this paper
we introduce also domains for test processes. These domains will be denoted by a "plus” sign.

Definition 3.1. Let a generalized stochastic process u € X ® (S)-, be of the form u = ¥ ,c7 o ® Hy. If there exists
p € INo such that

Yl a7 fag R 2N) P < oo, ®)

ael

then the Malliavin derivative of u is defined by

Du = Z Z Qg ® & ®Hy_ o0 = Z Z (ax+ D ugyen ® &k @ Hy, ©)
ael keN ael kelN
where by convention a — ¢® does not exist if ax = 0, i.e. Hy_,0 = 0 % =0 , for
H(al/azr---rak—l/ak_Lak-v-l/---/am/O/Onn)/ o =1

a = (1,02, ..., Ok—1, Ak, Qks1, -, Ay, 0,0,...) € 1.
For two processes u = Y e e ® Hy, v = Y47 Vo ® Hy and constants a, b the linearity property holds,
i.e. D(au + bv) = alD(u) + bID(v). The set of generalized stochastic processes u € X ® (S)_, which satisfy (8)

constitutes the domain of the Malliavin derivative, denoted by Dom" (D). Thus the domain of the Malliavin
derivative is given by

Dom! (D) = |_J Dom? (D) = (] {u EX®(S)p: ) Il all™ flug 3 (2N) 7" < oo}.

peNg peNg ael
A process u € Dom” (D) is called a Malliavin differentiable process.
Theorem 3.2. The Malliavin derivative of a process u € X ® (S)-, is a linear and continuous mapping
D: Domfp(]D) = X®S5(R)® (5)-p,p,

forl>p+1andp e Np.
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Proof. Letu = ¥, u, ® H, € Dom” (D). Then,
ael

IDUBs osy = D, (D (@ + D2 lltgewlly (207 al' =P @2N)#

ael keN

1-p
= 2 (X B gl 2y (E') (2k)) (2N) ¥

B> keN k

=2 (20 B @07 ) gl () 2Ny P

B2 keN
<Y (Y8 (@) sl gy )P
pel k=1 =1

= ¢ ) IBIPEY Flluglfy, @NYF = el < o0,
pel

4241

where ¢ = ¥, n(2k) ") < oo for [ —p > 1 and where we used (a — ¢®)! = %, ax > 0 and the estimate

1+
Yhen @, " < (Cgen )P = la**.

O

For all @ € T we have |a| < a!. Thus, the smallest domain of the spaces Dom” (ID) is obtained for p = 0
and the largest is obtained for p = 1. In particular we have Dom® (D) c Doml! (D). Moreover if p < g then

Dom" ,(ID) € Dom" q(]D).
For square integrable stochastic process u € X ® (L)? the domain is given by

Domy(D) = {u eX®(L)>: Z || ! ||ua||§( < oo}_
ael
Theorem 3.3. The Malliavin derivative of a process u € Domy(ID) is a linear and continuous mapping

D : Domy(D) —» X®L*(R) ® (L)>.

Proof. Letu € Domy(D) ,i.e. ), |a|a!||ua||§< < o0. Then,

ael
2 2 k 2 2 2
DU g2 gyory = D, 2, @@= el = ) Y axatlmall =) latal ludlfy < oo,
ael keN acl keN ael

In general, for p € [0,1] the domain of D in X ® (5),, is

Domf, = ﬂ Domy(ID) = ﬂ {u €X®(S),: Z 1P (@)1 g |2 2N)P < oo}'

peNg peNy ael

Theorem 3.4. Let p € [0,1]. The Malliavin derivative of a test stochastic process v € X ® (S), is a linear and

continuous mapping
D: DomZ(]D) — X®5(R) ®(S),p,

forl <p—1andp e Np.
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Proof. Letv =Y v, ®H, € Dom!, »(D). Then, from (9) and
ael
D0 s ryocsy,, = 3, 1Y (@ + 1) Vet Skl gy @1 (2INY
acl kelN
=Y () @+ D lloayanly 2K6)) ™ @Ny™
acl kelN
‘B 1+p
=Y (), B llogli% 2 ( 5 ) (26)7) 2NY*
B=1 keN
= Z Z ‘3 (2k)~ (r— l)) |Z7ﬁ||2 ﬁl“’P (2]N)
Bzl keN
1-p 1-p(gnl+r 2 12
<Y BIP(BY Il (NP < oo,
pel

the assertion follows, where we used

Yarer<(Yp) (Ye0T)  <iprr-d,

keN keIN kelN

and ¢ = ¥y 2K) < Yy (2K < 00, forp > 1+1. Wealso used B (B—®)! = B!, p € Tand 2N)=" = (2k),
ke IN. O

Note that Domlﬂ7 (ID) € Domy(ID) € Dom"” (D) forallp € N. Therefore, Dom!(ID) € Domy(ID) € Dom" (D).
Moreover, using the estimate |a| < (2IN)* it follows that

X®(8)-p~p-2) S Domfp(]D) CX®(S)-p-p» p>3, and
X® (S)pp+1 € Domy(ID) € X ®(S),,p, p>0.

Remark 3.5. For u € Dom" (D) and u € Domy(D) it is usual to write

Dju = Z Z gy ® Ek(t) ® Hypw,

ael kelN

in order to emphasise that the Malliavin derivative takes a random variable into a process, i.e. that Du is a function
of t. Moreover, the formula

DiF(w) = lim ( (@+1 - Kpe) —F@)), @€S'(R),
justifies the name stochastic derivative for the Malliavin operator. Since generalized functions do not have point
values, this notation would be somewhat misleading for u € Dom" (D). Therefore, for notational uniformity, we omit
the index t in ID; that usually appears in the literature and write ID.

The Skorokhod integral, as an extension of the It6 integral for non-adapted processes, can be regarded
as the adjoint operator of the Malliavin derivative in (L)*-sense. In [6] we have extended the definition of
the Skorokhod integral from Hilbert space valued processes to the class of S’-valued generalized processes.

Definition 3.6. Let F =}, fa ® Hy € X®5'(R) ® (S)—, be a generalized S'(R)-valued stochastic process and let
fa € X® S'(R) be given by the expansion fy = Y .en fak ® &k fax € X. If there exist p > 0,1 > 0 such that

}: }: (at (o + 1))179 I fusll (2K6) 7 2N)P* < oo,

ael keN
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then the Skorokhod integral of F is given by

8(F) =) Y fak ®Hower = ) ) fumetnc® o (10)

ael kelN a>0 kelN

A linear combination of two Skorokhod integrable processes F, G is again Skorokhod integrable process
aF +bG, a,b € R such that 6(aF + bG) = ad(F) + bd(G).
In general, the domain Dom" (6) of the Skorokhod integral is

Do’ ( U Dom, (6 U {FeX@S(IR)@ (S)p: ZZ (ot ak+1) il (2K) 7 (2N)~ W<oo}.

(Lp)eN2 (Lp)eN2 ael kelN
p>l+1 p>l+1

Theorem 3.7. Let p € [0, 1]. The Skorokhod integral 0 of a S_;(IR)-valued stochastic process is a linear and continuous
mapping

0: Dom (6)—>X®(S) opr P>1+1

Proof. This statement follows from

.
Y @Y frngl @NYTE = Y Yt il 2N)

2
I6(F)Ixes)..,.,

la|>1 keIN la|>1  kelN
= YUY B+ e fe @0t N
pel  keN
1- -1
= Y 1Y B+ fr @R IR @N)
pel keN
< Y (Y E+eOPUfE @07 Y @0 0) 2Ny
pel keN keN
< )LD+ Pl R NP = IR, ) < oo,
el keN
wherec = Y (2k)"#) < oo forp > 1+ 1. O

keN

Note that for p = 1 it holds that Dom!(5) = X ® S'(IR) ® (S)-1

Now we characterize the domains Do’ (6) and Domy(5) of the Skorokhod integral for test processes
from X ® S(RR) ® (S), and square integrable processes from X ® L*(R) ® (L)*. The form of the derivative is in
all cases given by the expression (10).

For square integrable stochastic processes T € X ® L*(IR) ® (L)? of the form T = Y .7 Yxen tak ® &k ® Hy,
tax € X, we define

2
Dorg(6) = {T eX@LAR)@ L) : ) () (a+ Diatkfitarllx) < oo}.
acel keN
Theorem 3.8. The Skorokhod integral 6 of an L*(R)-valued stochastic process is a linear and continuous mapping

5:  Domy(d) — X® (L)%
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Proof. LetT =Y, Y, tox ® & ® Hy € Domy(6). Then,
acl keIN
1T g = Y I tacen sl = Y 1Y at? ool

l)>1  keN laj>1 keN

=YY B+ Ot il < Y (Y B+ et lals)
pel keN pel keN

1 1 2 5

=Y (X BB+ D ltallx) = ITIR,, 5 < o0

pel keN

In general, for any p € [0, 1], the domain Do, (8) of the Skorokhod integral in X ® S(R) ® (5), is

Dom!,(8) = () Dom, (6) = f {F € X®S(R)®(S),, ZZ (ak + )PPl £ 122K QNY < oo}

(Ip)eN2 (Lp)eN2 ael kelN

I>p+1 I>p+1

Theorem 3.9. The Skorokhod integral 6 of an S;(IR)-valued stochastic test process is a linear and continuous mapping

. P
5:Domly ((8) > X@(S)pp,  I>p+1.

Proof. Let U = Y. 5ty ® Hy eDom (6) Ug = Vopoq ok @ &k € X® SI(R), gx € X, for I > p + 1. Then we
obtain

1+ p
IOy, = DI (B + N w2051 (2N

pel keN
< Y (X BB+ )P lhugally 2 Y @) @NE < e U, < oo,
pel keN keN e
where ¢ = Y . (2k) P < oo for I > p + 1. O

Using the estimates aj + 1 < 2|a|, which holds for all @ € T except for & = 0, and |a| < 2IN)*, a € T we
obtain

XY UL @NP < YN (ap+ DAt el (2K 2N
ael keN ael keN
< Y foxlB@0 +4 )Y laPat™ Pl £l (2K 2Ny
keN a>0 keN
< ol +4 ), Y, APl fulR (2K QNP+
a>0 keN
<

HFIes 005,

Thus,
X®Si(R)® (S)pps2 C Domfl,p)(é) CX®S(R)®(S)yy, for I>p+1 and
X®S_(R)®(5)—p,—p-1) € Dom(pflﬁp)(é) CX®S(R)®(S)-p-p, for p>I1+1.

The third main operator of the Malliavin calculus is the Ornstein-Uhlenbeck operator.

Definition 3.10. The composition of the Malliavin derivative and the Skorokhod integral is denoted by R = 6 o D
and called the Ornstein-Uhlenbeck operator.
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Therefore, foru e X® (5)-p given in the chaos expansion formu = Y, u, ® H,, the Ornstein-Uhlenbeck
ael
operator is given by

R(u) = Z |y ® H,. 11)

ael

The Orstein-Uhlenbeck operator is linear, i.e. by (11) R(au + bv) = aR(u) + bR(v), a,b € R holds.
Let

Dom! (R) = |_J Dom? ,(R) = | ] {u €X®(S)p: Y Il llual; (@) P @N) 7 < oo}.
pelNg peNo ael
Theorem 3.11. The operator R is a linear and continuous mapping
R: Dom”,(R) = X®(S)-p—p, pe€No.
Moreover, Dom” (R) € Dom" (D).
Proof. Letv =Y ,c; vy ® H, € Dom’ p(R), for some p € INy. Then, from (11) it follows that
RN ey, , = Dl lloally (@) 2N) 7 < oo,
ael

For v € Dom" (D) we obtain

Y el P ol (@) NP < ) Jaf floally (@) 2N) P,

ael ael
and the last assertion follows. Note that for p =1, Domlp(R) = Doml,p(]D). 0

For square integrable processes we define

Domy(R) = {w eX®(): Z al laP llwaly < oo}.

ael
Theorem 3.12. The operator R is a linear and continuous operator
R:  Domy(R) — X® (L)
Moreover, Domy(R) € Domy(ID).
Proof. Letw = }, w, ® Hy € Domy(R). Then R(w) = }, |olw, ® Hy and

ael ael

2 2 2 2
IR@)E e = Y, 0P ol = 0l e, < -
ael

Now from |a| < |af? for a € T it follows that Don(R) € Domy(ID). O

For test processes, we define

Domf (R) = ﬂ Domg(R) = m {U €EX®(S)pp: Z @) a2 ”U[x”§( N < oo}_

peNy peNy ael
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Theorem 3.13. The operator R is a linear and continuous mapping
R: Domy(R) = X®(S),,, peN.

Moreover, Domz (R) € D()m;7 (D).

Proof. Letv =), v,®H, € Domf, (R). Then,

ael

2 211 2 2
1RO, = 3, Ioall ol *? al? @NY* = [l < oo

ael

From

Y el Pl 2NY* < Y lal al™ ol (2N)

ael ael

follows that Donty (R) € Do, (D). O

Note also that

X®(S)pp+2 © DomS(R) CX®(S)ypp PEeN, and

X ® (S)-p-p-2 € Do’ (R) € X® (S)-p,--

In [8] we have proven that the mappings 0 : Dom” (5) —» X ® (S)-p, R: Dom”(R) —» X ® (8)-—p, forp=1,
are surjective on the subspace of centered random variables (random variables with zero expectation). In
the next section we prove the same type of surjectivity of the mappings for p € [0,1) as well, i.e. that the
mappings 6 : Dom’,(6) = X ®(S),, R : Dom!,(R) = X ®(S),, 6 : Domo(5) = X & (L)?, R : Domy(R) — X ® (L)>
have the corresponding range of centered generalized random variables. The mappings ID : Dom" (D) —
X®S'(R)® (S)-p, D : Dom,(ID) —» X ® S(R) ® (S)p, D : Domy(D) — X ® L*(R) ® (L) are surjective on
the subspace of generalized stochastic processes satisfying a certain symmetry condition which will be
discussed in detail.

4. Range of the Malliavin Operators

Theorem 4.1. (The Ornstein-Uhlenbeck operator) Let g have zero generalized expectation. The equation
Ru =g, Eu=1iy€X,
has a unique solution u represented in the form
— 7 Ja
u =1ip + aﬂzm‘w al ® H,.
Moreover, the following holds:

1° If g € X®(S)-p,—p, p € N, then u € Dom’ ,(R).
2° Ifge X®(S)pp, p €N, thenu € Domz(R).
3° Ifg € X® (L)%, then u € Domy(R).
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Proof. Let us seek for a solution in form of u = Y, 1, ® H,. From Ru = g it follows that
ael
Z |(X|ua ®Ha = Z Ja ®Ha/
ael ael
ie., u, =& foralla € T, |a| > 0. From the initial condition we obtain 1(0,0,0,0,.) = Eu = 1iy.

ol

1° Let g € X ® (S)-p,—p- Then u € Dom’ (R) since

. . gl
IR, o = nolfy + Yl (@)= N3 2NY T = folly + ) o (at)! Tap N
B [a>0 (>0
= luoll} + Y (@) llgalfl @N)* =l + llglfggs) < oo
|a|>0

2° Assume that g € X®(S),,. Thenu € Domz (R) since

o = Moll + )l (@)™ ol R @NP = flolfy + ) (o) g (2N

lal>0 lal>0

2 2
= Iluolly +1191xg(s),, < -

2
Il

3° If g is square integrable, then u € Dom(R) since

2 2 2 2 2 2 2
1By = Wtoll + Y Tl at il = loll + ) @t llgally = lglgqyye < o0
>0 >0

O

Corollary 4.2. Let p € [0,1]. Each process g € X ® (S)<p, resp. g € X ® (L)* can be represented as g = Eg + R(u),
for some u € Dom',(R), resp. u € Domg(R).

In [10] we provided one way for solving equation IDu = h: Using the chaos expansion method we
transformed equation (15) into a system of infinitely many equations of the form

1

m hor, forall ae€l, ke, (12)

Uptel =
from which we calculated u,, by induction on the length of a.
Denote by r = r(a) = min{k € IN : ax # 0}, for a nonzero multi-index a € 7, i.e. let r be the position
of the first nonzero component of a. Then the first nonzero component of « is the rth component «,, i.e.
a=(0,..0,a,..,ay0,..). Denote by a.» the multi-index with all components equal to the corresponding
components of @, except the rth, which is @, — 1. With the given notation we call a.« the representative of
and write a = a,» + . For a € T, |a| > 0 the set

Ky=1pel:a=p+e", forthose j €N, such that a; > 0}

is a nonempty set, because it contains at least the representative of a, i.e. a.»n € K,. Note that, if @ = ne®,
n € N then Card(K,) = 1 and in all other cases Card(K,) > 1. Further, for |a| > 0, K, is a finite set because a
has finitely many nonzero components and Card(K,) is equal to the number of nonzero components of a. For
example, the first nonzero componentof o = (0,3,1,0,5,0,0, ...) is the second one. It follows thatr =2, a, =3
and the representative of wvis .y = a—e® =(0,2,1,0,5,0,0,...). The multi-index a has three nonzero compo-
nents, thus the set K, consists of three elements: K, = {(0,2,1,0,5,0,...),(0,3,0,0,5,0,...),(0,3,1,0,4,0, ...)}.

In [10] we obtained the coefficients u, of the solution of (12) as functions of the representative a.» of a
nonzero multi-index « € 1 in the form

1
Uy = a_hagn,rr for a| £0, a = a,n + e?,
r
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Theorem 4.3. ([10]) Leth =}, ¥ hoy ® & ®Hy € X®S_5(R) ® (5)-1,-p, p € No, with hyx € X such that
ael keN
1 1
a hay,r = a_j hg, . (13)

for the representative a.» of a € I, a| > 0 and all B € K, such that o = p + €V, for j > r, r € N. Then, equation
(15) has a unique solution in X ®(S)-1,-2p. The chaos expansion of the generalized stochastic process, which represents
the unique solution of equation (15) is given by

_ 1
W=+ Y. —hay ®He (14)

ar
=a, () +eel

Here we provide another way of solving equation IDu = h using the Skorokod integral operator.

Theorem 4.4. (The Malliavin derivative) Let h have the chaos expansionh = Y, Y, hy i ® & ® H, and assume that
ael keN
condition (13) holds. Then the equation

Du = ]’l, Eu = ﬁo, ’1’70 S X, (15)
has a unigue solution u represented in the form
u=u0+a€§;>o||]§l\]haék®H (16)
Moreover, the following holds:
1° Ifhe X®S y(R)®(S)-pq, q>p+1,thenu € Dom‘(_)q(ID).
2° Ifh € X®Sp(R)® (S)yq, p > q + 1, then u € Domy (D).
3° If h € Domg(0), then u € Domy(ID).

Proof. 1° The proof is similar as for case 2°, so we present the proof of 2°.
2°Leth € X®S,(R)®(S),4. Thenh € Dom (6). Now, applying the Skorokhod integral on both sides

of (15) one obtains

q-2)

Ru = 6(h).
From the initial condition it follows that the solution u is given in the form u = u+ Y u,®H,andits
coefficients are obtained from the system e

g =Y oy lal>0, (17)

keN

where by convention a—&® does not exist if ay = 0. Condition (13) ensures that § is injectivei.e. 5(Du) = 5(h)
implies IDu = h.
It remains to prove that the solution u € Doms (ID). Clearly,

Y o @l N = Yot S Y i N

e = 01y =
ael ael |al>0 keN
(8 + £
= YUY s ﬁ—w(k) BN < 1Y g g @0f @07 B N
pel  keN B+ e®|= pel  keN
< Y (D gl pre @ Y @Ky ) @Y <)Y gl B 2Kk (N)F
pel keN keN pel kelN

< 00,

2
¢ ||h||X®s,7(R)®(5)p,q
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Cret

since ¢ = Y ;N(2k)777 < oo, for p > q + 1. In the fourth step of the estimation we used that B+ c®)

Thus,
2 ~ 112 2
By < 2 (101 + € Wil i), ) <

3° In this case we have that u given in (16) satisfies

2 2
gy = ), el =} HZ%MM_ZMZMMMWMM<N

ael aeI,|a|>0 keN ael keN

Corollary 4.5. IfID(u) = 0, then u = Eu, i.e. u is constant almost surely.

Remark 4.6. The form of the solution (16) can be transformed to the form (14) obtained in [10]. First we express all
hg . in condition (13) in terms of hy ), L.e.
a;
&
hﬁk = ha 17
where B € K, correspond to the nonzero components of a in the following way: p=a—e®, k€ N, andr € N
is the first nonzero component of a. Note that the set K, has as many elements as the multi-index o has nonzero

components. Therefore, from the form of the coefficients (17) obtained in Theorem 4.4 we have
1 1 a 1 Zlf\l “ 1
/ €
- h = — _ h = — —] h‘ =—h .
lal X s lal )y a Ol O a0

K jEN, a;#0

Theorem 4.7. (The Skorokhod integral) Let f be a process with zero expectation and chaos expansion representation
of the form f = ), fy ® Hy, fo € X. Then the integral equation

ael Jaj>1
o(u) = f, (18)
has a unique solution u in the class of processes satisfying condition (13) given by
fa+£(")
=) Y (1) = o] © & @ Ha. (19)
ael keN

Moreover, the following holds:
1°IffeX® S)pp,thenueDom (6)forl>p+1
22 If feX®(S)p PeN, thenueDom 6) forl<p—-1
3° If f € X® (L)?, then u € Domg(0).
Proof. 1° Since the proof of 1° and 2° are analogous, we will conduct only the proof of one of them.

2° We seek for the solution in Rangeﬁ(]D). It is clear that u € Rangeﬁ(]D) is equivalent to u = D(u), for
some u. Thus, equation (18) is equivalent to the system of equations

u= D@, R@ = f
The solution to R(u) = f is given by

ﬁ=~0+ Z %@Ha,

ael,|al>1
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where fl,,,.) = g can be chosen arbitrarily. Now, the solution of the initial equation (18) is obtained after
applying the operator ID, i.e.

u=D@w = Z Zakf_®£k®Ha,g(k):ZZ(ak faﬂ ® & ® Hy,.

a€l,|al>1 kelN | | ael keN I

faﬂ

la+e®

fw

One can directly check that this u satisfies (13): Indeed with u, = (ax + 1) %5 j we have L 2 ta-c0 k = T for

all k e N.
It remains to prove the convergence of the solution (19) in in the space Domz p)(é). First we prove that

ue Domg (D) and then u € Dom(pl,p) () for appropriate I € IN. We obtain

, fall%
||u|| onl(D) = Z la' =P ()P fluall RNV = [ldol 5 + Z la' P ()P =—= e (2N)*
ael a€el |a|>0
< |litoll% + Z (@) || fallf QNP = |[dioI%, + ||f||§<®(5)p,p <o
ael jal>0
and thus u € Dom’, (D). Now,
2 | 1+P 3+p ”fa+£(’<)”§( N+p 42 ”faIl%( I pla—e®)
006 0= 2 D (@' (i + D7 EETE @R @NYT = ) ) (@ af S @b @N)
ael keN a+é ael |a|>0 keN
< ), @I Ny [Z o 2 @0 -P] < ¢ flles),, <o
ael |a|>0 kelN

since ¢ = Y n(2k) 7 < oo for p > 1 + 1. In the second step we used that (@ — ¢®)! a; = a!, and in the fourth
step we used ay < |al.
3° In this case we have

- N fal
0y = 3 It ol = Mol + ), ot =23 <laolf+ ) e lfelfe = Ml + 11fgqe < o0

ael ael |a|>0 ael |al>0

and thus u € Domy(ID). Also,

1) = Z“’“Z @+ D (a+ 1), f“”“ ik =2 1Y Bi (- eyt |ﬁ|”x PMDIETE |5|”X

ael keIN |pI=1  keN BI=1  keN
2

-y £ W R (YA = Y, B ISR = IflE gy < oo

IBI>1 keN 1BI>1

O

Corollary 4.8. Each process f € X ® (S)sp, resp. f € X ® (L)? can be represented as f = Ef + 6(u) for some
u€X®S(R)®(S)sp, resp. u € X® LA(R) ® (L)*.

The latter result reduces to the celebrated It6 representation theorem (see e.g. [4]) in case when f is a
square integrable adapted process.
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5. Properties of the Malliavin Operators

In the classical (L)* setting it is known that the Skorokhod integral is the adjoint of the Malliavin
derivative. We extend this result in the next theorem and prove their duality by pairing a generalized
process with a test process. The classical result is revisited in part 3° of the theorem.

Theorem 5.1. (Duality) Assume that either of the following holds:
1° F € Dom” (D) and u € Dom" (5)
2° F € Dom!(ID) and u € Dom” (5)
3° F € Domy(ID) and u € Domy(6)
Then the following duality relationship between the operators ID and 6 holds:
E(F-06(u)) = E(IDF, uy), (20)

where (20) denotes the equality of the generalized expectations of two objects in X ® (S)_, and (-, -) denotes the dual
pairing of S’'(R) and S(R).

Proof. First we show that the duality relationship (20) between ID and 6 holds formally. Let u € Dom(6) be
given in its chaos expansion formu = }, Y, ug;®&;® Hg. Theno(u) = Y. ), upj®Hg, . Let F € Dom(ID)

eI jeN BeI jeN
be givenasF = }, f,® Hy. Then D(F) = ), Y. (% + 1) fuyc0 ® & ® Hy. Therefore we obtain
ael ael keN

F-5(u) = Z Z Z fatts,j ® Hy - Hy., 0

ael Bel jeN

“YYY fue Y g (i) (ﬁ +yg<;‘>)Ha+ﬁ+g<,)_zy.

ael ﬁEI jEN ygmin[a/ﬁ+g(}‘)}

The generalized expectation of F - 6(u) is the zeroth coefficient in the previous sum, which is obtained
when & +  + ¢0) = 2y and y < min{a, g + €7}, i.e. only for the choice = a — ¢ and y = a, j € N. Thus,

E(F-o6(u)) = Z Z faua_s(,),j cal = Z Z fareoUa,j - (@ + e(j))!.

ael |al>0 jeN ael jeN

On the other hand,

DE),uy =Y Y Y Y @+ 1) fusew g &, EDHa - Hy

ael pel keN jeN

329 MORET A RRER | A

ael el jeN y<min{a,p}

and its generalized expectation is obtained for a = = y. Thus

EWDE),w) =Y Y (@ +1) furenttaj @l = Y V" fupeottaj - @+ D)= E(F-5(u).

ael jeN acl jeN

1° Let p € [0, 1] be fixed. Let F € Domfp(]D) and u € Dom?m)(é), forsomep € Nandallr,s € N, 7 >s+ 1.
Then DF € X® S_(R) ® (S)-p,—p for [ > p + 1. Since 7 is arbitrary, we may assume that » = / and denote by
(-,+) the dual pairing between 5_(R) and S;(IR). Moreover, {IDF, u) is well defined in X ® (S)_,-,. On the
other hand, 6(u) € X ® (5),,s and thus by Theorem 2.12, F - 6(u) is also defined as an element in X ® (S)—,,«,
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fork € [p,s — 8], s > p + 8. Since s was arbitrary, one can take any k > p. This means that both objects, F - 5(u)
and (IDF, u) exist in X ®(S)_,,—, for k > p. Taking generalized expectations of (IDF, u) and F - 5(u) we showed
that the zeroth coefficients of the formal expansions are equal. Therefore the duality formula is valid for
this case.

2° Let F € Domly(ID) and u € Domﬂrﬁs)(é), for some 7,5 € N, s > r+ 1, and all p € N. Then IDF €
X®S5(R)®(S)pp, I < p—1,butsince p is arbitrary, so is . Now, (IDF, u) is a well defined object in X ® (5)_,s.
On the other hand, 6(u) € X ® (S)-,,—s and thus by Theorem 2.12, F - 6(u) is also well defined and belongs to
X ®(S)-p,k fork € [s,p — 8], p > s + 8. Thus, both processes F - 5(u) and (IDF, u) belong to X ® (S)_,, for
k>s.

3° For F € Domy(D) and u € Domy(6) the dual pairing (IDF, u) represents the inner product in L?(R) and
the product Fo(u) is an element in X ® (L) (see Remark 2.13). The classical duality formula is clearly valid
for this case. |

The next theorem states a higher order duality formula, which connects the kth order iterated Skorokhod
integral and the Malliavin derivative operator of kth order, k € IN. For the definition of higher order iterated
operators we refer to [8].

Theorem 5.2. Let f € Dom!, (ID®) and u € Dom’ (6®), or let f € Dom” (IDW) and u € Dom’, (5®), k € N. Then
the duality formula
E(f-69(w) = E(®Y (f), u))
holds, where {-,-) denotes the duality pairing of S'(R)® and S(R)®*.
Proof. The assertion follows by induction and applying Theorem 5.1 successively k times. O

Remark 5.3. The previous theorems are special cases of a more general identity. It can be proven, under suitable
assumptions that make all the products well defined, that the following formulae hold:

Fo(u) = 8(Fu) + (D(F), 1), (21)

, i
=0

Taking the expectation in (21) and using the fact that 6(Fu) = 0, the duality formula (20) follows.

k
FoOau) =) (k) s I(DOF,u), keN.

Example 5.4. Let ¢ € LA(R). In [6] we have shown that the stochastic exponentials exp®{5(ip)} are eigenvalues of
the Malliavin derivative, i.e. D(exp®{6()}) = ¥ - exp®{6(y)}. We will prove that they are also eigenvalues of the
Ornstein-Uhlenbeck operator. Indeed, using (21) we obtain

Rexp®6@)) = 6 - exp®{d(y)}) = (1) exp®{5(¥)} — (Dexp®{o)}), )
o) exp®{o(¥)} — (¥ - exp®{o()}, )
(O) = 11 ) exp 1))

In the next theorem we prove a weaker type of duality instead of (20) which holds if F € Dom® (D) and
u € Dom® () are both generalized processes. Recall that <, -, - >, denotes the scalar product in (S),.

Lemma 5.5. Let u € Dom? (D) and ¢ € S_y(R), n < q—1. Thenu- ¢ € Dom?_n ©).

Proof. Letu =Y ey uaHy and ¢ = Y pon @k Ek- Then, - ¢ = Y per Yopen Ha Pk Ek Hy and
e e )= YUY at e+ Dllunall @F R @N) =) et fuglf () (e + 1K) ) @N)

ael kelN ael keIN

< (Iwolfy +2 ) atlallbual 3 @NY™) - ) 3@k = (llaolfy + 200l 0 1) Il < 0.
lal>0 keN

We used the estimate ay + 1 < 2|a], for |a| > 0, k € IN. O
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Theorem 5.6. (Weak duality) Let p = 0 and consider the Hida spaces. Let F € Dom‘lp(]D) and u € Dom‘lq(ID) for
p,q € N. Forany ¢ € S_,(R), n < q — 1, it holds that

< (DE, @), u >0, = < F,0(pu) >,
for r > max{q,p +1}.

Proof. Let F = Y. 1 faHa € Dom? (D), u = Y1 ttaHy € Dom? (D) and ¢ = Yo @il € S—n(R). Then, for
k>p+1,IDF € X®5_(R) ®(5)o,—p € X®S5_+(R) ® (S)o,— if r > p + 1. Also, by Lemma 5.5 it follows that
Qu € Dom?_n,_q)(é) and since g > n + 1, this implies that 6(¢pu) € X ® (5)9,—4 € X ® (S)o,—, for r > g. Therefore
we let r > max{p + 1, q}. Thus,

(IDE, p)_, (Z Z(ak + 1) fore0Ha ® &, Z Qi) —r

keN ael kelN

Y oY @+ DfareoHa (207,

keN ael

and consequently

< (DF, (p>_r,u >0,y < Z Z (pk(ak + 1)fa+€(k) (Zk)_rHa, Z u.H, >0,y

ael keN ael
= Y @ty ) P+ 1) foren (27N
ael keN
On the other hand, pu = Y, Y, ua@rés ® Hy and 6(pu) = Y, Y, ty_w@rH,y. Thus,
ael keN a>0 keN
< FEo(pu)>o_, = < Z foHa, Z Z Uy @rHy >0 -
ael a>0 kelN
= Z alfy Z Uy 0 P(2N)T*
a>0 kelN
= Z Z(ﬁ + O fy g (2N) 6 +e®)
BeT keN
= Y Y BUBe+ D fprenttppi20)7 (2N) T,
el keN
which completes the proof. O

The following theorem states the product rule for the Ornstein-Uhlenbeck operator. Its special case for
F,G € Domy(R) and F - G € Domy(R) states that (22) holds (see e.g. [2]). We extend the classical (L)? case
to multiplying a generalized process with a test process. The product rule also holds if we multiply two
generalized processes, but in this case the ordinary product has to be replaced by the Wick product.
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Theorem 5.7. (Product rule for R)
1° Let F € Dom"(R) and G € Dom” (R), or vice versa. Then F - G € Dom" (R) and

R(F-G)=F-R(G)+ G- R(F)-2-(DFEDG), (22)

holds, where (-, -) is the dual pairing between S'(IR) and S(IR).
2° Let E,G € Dom” (R). Then F - G € Dom" (R) and

R(E6G) = FOR(G) + R(F)OG. (23)
Proof. 1° Let F = ¥, fo ® H, € Domf,(R) and G = Y, g ® Hg € Dom"(R). Then, R(F) = ¥, |o f» ® H, and
pel

ael ael
R(G) = ¥ IBlgs ® Hp.
pel

The left hand side of (22) can be written in the form

R(F - G) =R[Z Y feos Y y!(;() (i )Ha+ﬁ—2y

acl Bel y<min{a,f}
o
Y Y sa 5 ) ars- 2t
ael pel y<min{a,g} AY
o
Y Y s Y ()6 o -2 o,
ael pel y<min{a,g} AY

On the other hand, the first two terms on the right hand side of (22) are
a
®0-6=Y Y figgo Y, ( )(5) ol a2 (24)
ael pel y<min{a,p} VY
and

FRG =), ) fogs® ), 7! (;‘) (i) 1Bl Hasg2y- (25)

ael el y<min{a,p}

Since F € Dom" (R) € Dom’,(ID) and G € Dom”(R) € Dom” (D) we have D(F) = ¥ e7 Yien Ok fa ® &k ®
H, v and D(G) = Yger Ljen Bj g5 ® & ® Hg_cv. Thus, the third term on the right hand side of (22) is

(DE,DGY=( Y Y afi®&®Huw, Y, Y Bigs®E @Hs )

a€el |a|>0 keIN BeI IBI>0 jeN

= Z Z Z Z [29% ﬁ] fa gﬁ <ék/ é]) ® Ha_é.(k) 'Hﬁ—s(f)

[al>0 |B[>0 keN jeN

= Z Z Z akﬁkfagp’ ® Z y!(a —yg(k))(ﬁ _yg(k))Ha+ﬁ_28(k)_2)’,

|a|>0|B>0 keIN y<min{a—e® f—e®)}

where we used the fact that (&, ;) = 0 for k # jand (&, &) = 1 fork = j. Now weput 6 =y + e® and use
the identities

a—e® a—e® !
(7)o loio) o ) xen
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and 0y - (6 — ¢®)! = 0!. Thus we obtain

®EODG =Y Y Y frr Y 0= (g)(0)

ael Bel keN O<min{a,p}
o
= Z Z Z fa9p Z 9k9!(9) (g) Hatp-20
ael Bel keN O<min{a,p}
(04
T Tke T (Loofs)E)ss
ael el O<min{a,p} \keN
o
=YY fgs ), o) 9’(3) (g)HMﬁ_ze.
ael Bel O<min{a,p}

Combining all previously obtained results we now have

RE-G) =), Y fugp ), V! (;‘) (ﬁ) (Il + 161 = 21y)) Haspay

ael Bel y<min{a,}
24 a
= Z Z fagp Z 7/!( )(ﬁ) lal Havp2y + Z Z fa9p Z y!( )(ﬁ) Bl Harp—2y
acl el y<min{a,B} VY ael pel y<min{a,p} VY
(04
_ZZ Z fagﬁ |7/|7/'( )(‘B)H[x+,3—2y
acl pel y<min{a,p} VIV

=R(F) -G +F-R(G) - 2 - (D(F), D(G))

and thus (22) holds.

Assume that F € Dom” (R) and G € Dontj(R). Then R(F) € X ® (), and R(G) € X ® (S),4. From
Theorem 2.12 it follows that F - R(G) and G - R(F) are both well defined and belong to X ® (S)-,-s, for
s € [p,q — 8], g —p > 8. Similarly, (ID(F), D(G)) belongs to X & (S)-,,p, since D(F) € X® S_1,(R) ® (5)-p,—p,
where [; > p+1and ID(G) € X ® 5,(R) ® (5),,4, where I < g — 1 and the dual pairing is obtained for any
I € [l1,1]. Thus, the right hand side of (22) is in X ® (5)_,,—, s 2 p. Hence, F- G € Dom" (R).

2° From
GOR(F) =) Y lalfugs H, and FoRG)=Y Y filflgs Hy,
yel a+p=y yel a+p=y
it follows that
GOR(F) + FOR(G) = Y Iyl Y., fugp Hy = R(FOG).
yel  a+f=y

IfFe DomﬁP(R) and G € Dom’_)q(R), then R(F) € X ® (S)-p,—p and R(G) € X ® (5)-p,—4. From Theorem 2.9
it follows that R(F)0G € X ® (S)—p,~(p+g+4) and R(G)OF € X ® (S)—p,—(p+g+4)- Thus, the right hand side of (23) is
in X® (S)-p-p+qra), i-€. FOG € Dom” (R) forr = p + g + 4. O

Corollary 5.8. Let F € Dom’,(R) and G € Dom" (R), or vice versa (including also the possibility F,G € Dompy(R)).
Then the following property holds:

E(F-R(G)) = E ((DE,DG)).
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Proof. From the chaos expansion form of R(F - G) it follows that ER(F - G) = 0. Moreover, taking the
expectations on both sides of (24) and (25) we obtain

E(R(F)-G) = E(F-R(G)).
Now, from Theorem 5.7 it follows that
0 = 2E(F - R(G)) — 2E((IDE, DG)),
and the assertion follows. |

In the classical literature ([2, 15]) it is proven that the Malliavin derivative satisfies the product rule with
respect to ordinary multiplication, i.e. if F,G € Domy(ID) such that F - G € Domy(ID) then (26) holds. The
following theorem recapitulates this result and extends it for multiplication of a generalized process with
a test processes, and extends it also for Wick multiplication.

Theorem 5.9. (Product rule for ID)
1° Let F € Dom" (D) and G € Domf, (D) or vice versa. Then F - G € Dom" (D) and the product rule

D(F-G)=F-DG + DF-G (26)

holds.
2° Let F,G € Dom” (D). Then FOG € Dom” (D) and

ID(F$G) = FOIDG + IDFOG.

Proof. 1°
D(F-G)=D()| fuHy - Y 9sHp)
ael pel
a
ST e X ol
el pel y<min{a,f} gAY
= Z Z Z fags Z V! (“)(ﬁ ) (@ + B = 2k) EkHarp-2y-et0
acl Bel keN y<min{a,f} VI

On the other side we have

F-DG) =Y fuHa+ Y Y Brgséi Hy-co

ael pel keN

=Y Y ) Y, N (;)(ﬁ _;(k))ﬁkékHM_zy_gk)

ael pel keN y<min{a,f—e®}
and
a—e®\(B
G-ID(F) = Z Z Z fagp Z V! ( )( ) k EkHarpay—eto-
acl Bel keN y<minfa—¢® g} v v
Summing up the chaos expansions for F - ID(G) and G - ID(F) and applying the identities

a—e® (a—e®) a!
[2973 = O - =
( 4 ) Yia—e® -yt yla-y)!

(ax =) = (i) (k= i)
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(o}
7)o

foralla,f € I,k € Nandy € 7 such that y < min{a, 8} and the expression (ax — yi) + (Bx — k) = ax + Br — 2y«
we obtain (26).

Assume that F € Dom" ,(D), G € Doms(]D). Then ID(F) € X® S_(R) ® (S)-p,—p, [ > p+ 1, and ID(G) €
X®Sk(R)®(S)p,q, k < q-1. From Theorem 2.12 it follows that all products on the right hand side of (26) are
well defined, moreover F-ID(G) € X®Sk(R)®(S)-p,-, ID(F)-G € X®S_(R)®(S)—p,-r, forr € [p,q—8],9 > p+8.
Thus the right hand sifde of (26) can be embedded into X ® S_j(IR) ® (S)_,—, ¥ 2 p. Thus, F-G € Dom" (ID).

2° By definition of the Malliavin derivative and the Wick product it can be easily verified that

Zi Z akf“gﬁH}’""Zi Z BrfagpHy

and

ID(E)oG + FOD(G) =
yel k=1 a+p-eb=y vel k=1 a+p—eb=y
= LY Y nigyh,n = DIFOG).
yel k=1 a+p=y

IfFe Domﬁp(]D) and G € Doqu(]D), then D(F) € X®S_j(R) ® (S)—p,—p, [ > p+1,and D(G) € X® S5 _(R) ®
(5)-p,-q, k > g+ 1. From Theorem 2.9 it follows that ID(F)¢G and FOID(G) both belong to X ® 5_,,(R) ®
(S)-p,~(p+q+4), m = max{l, k}. Thus, FOG € Dom” (D) forr =p + ¢ + 4. O

A generalization of Theorem 5.9 for higher order derivatives, i.e. the Leibnitz formula is given in the
next theorem.

Theorem 5.10. Let F, G € Dom” (ID®), k € IN, then FOG € Dom” (ID®) and the Leibnitz rule holds:
k
DY (FoG) = ) | ( )ID(’ (F)oD)(G),
i=0
where DO(F) = Fand DO(G) = G
Moreover, if G € Dom!, (ID®) , then F - G € Dom” (D®) and
AN .
DY (F-G) = Z (Z) DY(F) - D*(G). 27)
pry

Proof. The Leibnitz rule (27) follows by induction and applying Theorem 5.9. Clearly, (27) holds also if
E G € Domy(D®) and F - G € Domo(ID®). O

Theorem 5.11. Assume that either of the following hold:
1° F € Dom" (D), G € Dom", (D) and u € Dom, (5),
2° F,G € Dom" (D) and u € Dom" (5),
3° F,G € Domy(ID) and u € Domg(0).

Then the second integration by parts formula holds:

E(F(DG, u)) + E(G{DF, u)) = E(F G 5(u)).
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Proof. The assertion follows directly from the duality formula (20) and the product rule (26). Assume the
first case holds when F € Dom” (D), G € Dom" (D) and u € Dom".(5). Then F - G € Dom” (D), too, and we
have
E(FG6(u)) = EKD(F - G), u)) = ECF - D(G) + G - ID(F), u))
= E(F(D(G), u)) + E(G (ID(F), u}).

The second and third case can be proven in an analogous way. O

The next theorem states the chain rule for the Malliavin derivative. The classical (L)?-case has been
known throughout the literature as a direct consequence of the definition of Malliavin derivatives as
Fréchet derivatives. Here we provide an alternative proof suited to the setting of chaos expansions.

Theorem 5.12. (Chain rule) Let ¢ be a twice continuously differentiable function with bounded derivatives.
1° IfF € Dom!,(ID), resp. F € Domy(D), then (F) € Dom’,(ID), resp. ¢(F) € Domo(ID), and the chain rule holds:

D (¢(F)) = ¢'(F) - D(F). (28)
2° IfF € Dom” (D) and ¢ is analytic, then ¢°(F) € Dom" (D) and
D (¢°(F)) = ¢"*(F)oD(F). (29)

Proof. 1° First we prove that (28) holds true when ¢ is a polynomial of degree 1, n € IN. Then we use the
Stone-Weierstrass theorem and approximate a continuously differentiable function ¢ by a polynomial p,, of
degree n, and since we assumed that ¢ is regular enough, p, will also approximate ¢’.
By Theorem 5.9 we obtain by induction on k € IN that
D(F**!) = D(F - F)
=D(F)-F*+ F-D(F*) = D(F) - F* + F - kF*"! - ID(F)
= (k + 1)F* - D(F).

Since D is a linear operator, we have for any polynomial p,(x) = Y,;_, axx* with real coefficients a;, k € IN:

n n

D(p,(F)) = ) aD(F) = Y a kF*D - D(F) = p(F) - D(F). (30)
k=0 k=1

Let ¢ € C}(R) and F € Dom;(lD), p € IN. Then, by the Stone-Weierstrass theorem, there exists a
polynomial p,, such that

n

() = B (Pllxes),, = I6(F) = Y. axFllxes),, = 0

k=0
and
n
e (F) = B’ (Blxes, = 19"(F) = ), akF*lixeis),, — 0
k=1
as 1n — 0.

From (30) and the fact that ID is a bounded operator, Theorem 3.2, we obtain (for / < p — 1)

ID(¢p(F)) = ¢'(F) - D(F)lIxes,®ye(s),, = IMD(@(F)) = D(pu(F)) + D(pu(F)) = ¢’ (F) - D(F)lIxas®)e(s),,
< [ID(¢(F)) — D(pn(l:))”X@S; ®&(s),, + D@ (F) ) = ¢'(F) - D(F)lIxes,R)e(s),,
= [[ID(¢(F) = pu(F))llxes,®e(s),, + 172 (F) - D(F) = ¢’ (F) - D(F)llxes,®)e(s),,

< || - ||(<P(F) = Pu(F)lIxe(s),, + 172" (F) = ¢’ (F)Il - ID(P)lxe(s),, = O,
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as n — co. From this follows (28) as well as the estimate

ID(p(F))llxesiRyes),, < Q" (Fllxe(s),, - IMDF)lxes ®es(s),, <

and thus ¢(F) € Domg (D).

2° The proof of (29) for the Wick version can be conducted in a similar manner. According to Theorem

5.9 we have

D(F%) = k FO*=DoID(F).

If ¢ is an analytic function given by ¢(x) = Y2, axxt, then ¢’ (x) = Y12 ackx*~!, and consequently

$(F) =) acF*,  ¢°(F) =) akFo¢,
k=0 k=1
Thus,
D($*(F)) = Y adD(F*) = ) agkF**DoID(F) = ¢ (F)oID(F).
k=0 k=0
and the identity (29) follows. O
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Abstract. We present a review of the most important historical as well
as recent results of Malliavin calculus in the framework of the Wiener-It6
chaos expansion.
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1. Introduction

The Malliavin derivative D, the Skorokhod integral § and the Ornstein-
Uhlenbeck operator R are three operators that play a crucial role in the stochas-
tic calculus of variations, an infinite-dimensional differential calculus on white
noise spaces (2, 7, 35, 41, 42, 47]. These operators correspond respectively to
the annihilation, the creation and the number operator in quantum operator
theory.

e The Malliavin derivative, as a modification of Gateaux derivatives, rep-
resents a stochastic gradient in direction of the white noise process [3,
35, 42]. Originally, it was invented by Paul Malliavin in order to provide
a probabilistic proof of Hormander’s sum of squares theorem for hypo-
elliptic operators and to study the existence and regularity of density
of the solution of stochastic differential equations [28], but nowadays it
has found significant applications in stochastic control and mathematical
finance [8, 29, 46].

e The Skorokhod integral, as the adjoint operator of the Malliavin deriva-
tive, is a standard tool in classical (L)? theory of non-adapted stochastic
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2Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad
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differential equations. It represents an extension of the It integral from
the space of adapted processes to the space of non-anticipative processes
(6, 12, 15]. Sometimes it is referred to as the stochastic divergence ope-
rator.

e The Ornstein-Uhlenbeck operator, as the composition of the stochastic
gradient and divergence, is a stochastic analogue of the Laplacian.

It is of great importance to manage solving different classes of equations
which involve the operators of Malliavin calculus. In particular, we consider
the following basic equations involving the operators of Malliavin calculus:

(1.1) Ru =y, Du = h, du = f.

In the classical setting, the domain of these operators is a strict subset of the
set of processes with finite second moments [7, 26, 35] leading to Sobolev type
normed spaces. A more general characterization of the domain of these opera-
tors in Kondratiev generalized function spaces has been derived in [18, 22, 23],
while in [24] we considered their domains within Kondratiev test function
spaces. The three equations in (1.1), that have been considered in [20] and
[24] provide a full characterization of the range of all three operators. More-
over, the solutions to equations (1.1) are obtained in an explicit form, which is
highly useful for computer modelling that involves polynomial chaos expansion
simulation methods used in numerical stochastic analysis [9, 30, 48].

After a short review of the results on uniqueness of the solutions to equations
(1.1) (Theorem 3.1, Theorem 4.1, Theorem 5.1) obtained in [20] and [24], we
proceed to prove some properties such as the duality relationship between the
Malliavin derivative and the Skorokhod integral (Theorem 6.1) and the chain
rule (Theorem 6.11), as well as many others such as the product rule (Theorem
6.6, Theorem 6.8), partial integration etc.

A special emphasis is put on the characterization of Gaussian processes
and Gaussian solutions of equations (1.1). As an important consequence and
application of our results we obtain a connection between the Wick product
and the ordinary product (Theorem 4.6 and Theorem 5.10). We also provide
several illustrative examples to facilitate comprehension of our results. These
examples can be considered as supplementary material to [20] and [24].

A recent discovery made in [32]-[34] made a nice connection between the
Malliavin calculus and Stein’s method, which is used to measure the distance
to Gaussian distributions. In Theorem 7.10 we review this relationship using
the chaos expansion method.

The method of chaos expansions is used to illustrate several known results
in Malliavin calculus and thus provide a comprehensive insight into its capabili-
ties. For example, we prove using the chaos expansion method some well-known
results such as the commutator relationship between D and § (Theorem 5.8),
the relation between It6 integration and Riemann integration (Remark 5.9) as
well as the It6 representation theorem (Corollary 5.3).
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We strongly emphasize the methodology of the chaos expansion technique
for solving singular SDEs. This method has been applied successfully to several
classes of SPDEs (e.g. [19, 21, 25, 26, 27, 39, 45]) to obtain an explicit form
of the solution. Therefore, we have chosen to write an expository survey with
detailed step-by-step proofs and comprehensive examples that illustrate the full
advantage of this technique. Some advantages of the chaos expansion technique
are the following:

e It provides an explicit form of the solution. The solution is obtained in
the form of a series expansion.

e It is easy to apply, since it uses orthogonal bases and series expansions,
applying the method of undetermined coefficients. Note that we avoid
using the Hermite transform [13] or the S-transform [12], since these
methods depend on the ability to apply their inverse transforms. Our
method requires only finding an appropriate weight factor to make the
resulting series convergent.

e It can be adapted to create numerical approximations and model sim-
ulations (e.g. by stochastic Galerkin methods). Polynomial chaos ex-
pansion approximations are known to be more efficient than Monte Car-
lo methods. Moreover, for non-Gaussian processes, convergence can be
easily improved by changing the Hermite basis to another family of or-
thogonal polynomials (Charlier, Laguerre, Meixner, etc.).

2. Preliminaries

Consider the Gaussian white noise probability space (S’(R), B, 1), where
S’(R) denotes the space of tempered distributions, B the Borel o—algebra
generated by the weak topology on S’(R) and p the Gaussian white noise
measure corresponding to the characteristic function

(2.1) / D du(w) = e e, ge SR),
S’(R)

given by the Bochner-Minlos theorem.

Denote by h,(z) = (—1)”6% dcgln (e‘ﬁ), n € Ny, Ng = NU {0}, the family

of Hermite polynomials and &, (z) = Wﬁefhn_l(ﬁx), n € N, the

family of Hermite functions. The family of Hermite functions forms a complete
orthonormal system in L?(R). For a complete preview of properties of h,, and
&, a comprehensive reference is [10]. We follow the characterization of the
Schwartz spaces in terms of the Hermite basis: The space of rapidly decreasing
functions as a projective limit space S(R) = [,cy, Si(R) and the space of
tempered distributions as an inductive limit space S"(R) = (J; ¢y, S—1(R) where

oo

SR)={f = ar&: |fIf =) ap(2k)! < oo}, 1€Z,Z=-NUN,.
k=1

k=1
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Note that S,(R) is a Hilbert space endowed with the scalar product (-,-),
given by
0, k#I
) = ’ , € 7.
O A

Moreover, the functions & = & x(2k)~%, k € N, constitute an orthonormal basis
for S,(R). Indeed,

(& €1y = { €2 = llgeli?, s =

2.1. The Wiener chaos spaces

, pELZL.

Let Z = (N}). denote the set of sequences of nonnegative integers which
have only finitely many nonzero components o = (g, g, ..., a4y, 0,0...), a; €
No, i = 1,2,...,m, m € N. The kth unit vector €* = (0,---,0,1,0,---), k€N
is the sequence of zeros with the only entry 1 as its kth component. The multi-
index 0 = (0,0,0,0,...) has all zero entries. The length of a multi-index o € 7
is defined as |a] = Y po | ag.

Operations with multi-indices are carried out componentwise eg a+f=
(a1 + B1,00 + Ba,...), al = aglaslag!-- -, (g) B'( - Note that a > 0
(equivalently || > 0) if there is at least one component «j > 0. We adopt the
convention that o — 8 exists only if &« — 8 > 0 and otherwise it is not defined.

Let (2N)* = J],Z,(2k)**. Note that 3" .7(2N)7P* < oo for p > 1 (see e.g.
13)).

Let (L)* = L?(S'(R), B, 1) be the Hilbert space of random variables with
finite second moments. We define by

ﬁ ((w, &), a€Z,

the Fourier-Hermite orthogonal basis of (L)? such that || Ha||%L)2 = al. In

particular, for the kth unit vector H_x) (w) = (w, &), k € N.
The prominent Wiener-Ité6 chaos expansion theorem states that each ele-
ment F' € (L)? has a unique representation of the form

:Z Co Ho(w)

a€el

w e S'(R), cq € R, a € Z, such that ||F||%L)2 =Y ez C2al < oo,

Definition 2.1. The spaces

M ={Fe(L)’: F= > caHas}, keN,,

a€l,|a|=k

that are obtained by closing the linear span of the kth order Hermite polyno-
mials in (L)? are called the Wiener chaos spaces of order k.
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For example, Hg is the set of constant random variables, H; is the set
of Gaussian random variables, Hs is the space of quadratic Gaussian random
variables and so on. We will show that H; contains only Gaussian random
variables and that the most important processes, Brownian motion and white
noise, belong to H;.

Each Hy, k € Ny is a closed subspace of (L)?. Moreover, the Wiener-It6
chaos expansion theorem can be stated in the form:

(L)? = é He.
k=0

S Y caHa(w),

k=0 o€T
|la|=k

Hence, every F' € (L)? can be represented in the form F(w)

w e S'(R), where Y co Ho(w) € Hi, k=0,1,2,.. ..

|| =k
Theorem 2.2. All random variables which belong to H1 are Gaussian random
variables.

Proof. Random variables that belong to the space H; are linear combinations
of elements (w, &), k € N, w € S'(R). From the definition of the Gaussian mea-
sure (2.1) it follows that E,((w,&)) = 0 and Var((w,&)) = E,((w,&)?) =
€572 ® = 1. Thus, from the form of the characteristic function we con-

clude that (w,&) : N(0,1), k € N. Thus, every finite linear combination of

Gaussian random variables Y ax (w, &) is a Gaussian random variable and

k=1
o0 n
the limit of Gaussian random variables » ap (w,&x) = lim > ag (w, &) is
k=1 oo p=1
also Gaussian. O

After Example 2.13 it will be also clear that 7 is the closed Gaussian space
generated by the random variables B;(w), t > 0, where B; is Brownian motion
(see also [41]).

Remark 2.3. We note the following important facts:

1) Although the space (L)? is constructed with respect to Gaussian mea-
sure, it contains all (square integrable) random variables, not just those
with Gaussian distribution but also all absolutely continuous, singularly
continuous, discrete and mixed type distributions.

2) All Gaussian random variables belong to Ho @ #H; and thus their chaos
expansion is given in terms of multi-indices of length at most one (those
with zero expectation are strictly in H;). Quadratic Gaussian random
variables belong to Hg & H1 & Ho and by linearity so does the Chi-square
distribution, too. In general, the nth power of a Gaussian random variable

n
belongs to @ Hi, for n € N, and thus its chaos expansion is given in

k=0
terms of multi-indices of lengths from zero to n.



80 Section 1.2
50 Tijana Levajkovié, Stevan Pilipovi¢ and Dora Selesi

3) Discrete random variables (with finite variance) belong to € Hy, i.e.
k=0
their chaos expansions forms consist of multi-indices of all lengths.

4) All finite sums i.e. partial sums of a chaos expansion correspond to ab-
solutely continuous distributions or almost surely constant distributions.
There is no possibility to obtain discrete random variables by using finite
sums in the Wiener-1t6 expansion. This is a consequence of Theorem 7.8.

In the next section we introduce suitable spaces, called Kondratiev spaces,
that will contain random variables with infinite variances.

2.2. Kondratiev spaces

The stochastic analogue of Schwartz spaces as generalized function spaces
are the Kondratiev spaces of generalized random variables.

Definition 2.4. The space of the Kondratiev test random variables (S); con-

sists of elements f = > .7 caHa € (L)?, ¢o € R, a € Z, such that

||f||%p = Z 2 (a!)?(2N)PY < 0o,  for all p € Ng.
ac’l

The space of the Kondratiev generalized random variables (S)_; consists of
formal expansions of the form F' =3 _;boHq, bo € R, a € 7, such that

HFH2—1,—p = Z b2 (2N)"P* < 00,  for some p € Np.
acl

Definition 2.5. The space of the Hida test random variables (S)d consists of

elements f =3 .7 caHa € (L), co € R, a € T, such that

A5, =D chal(2N)P™ < oo,  for all p € No.
acel

The space of the Hida generalized random variables (5), consists of formal
expansions of the form F = ZaEI boHy, by € R, a € Z, such that

IF|I5—, = > b2al(2N) "™ < oo,  for some p € N.
a€l

This provides a sequence of spaces (S),, = {f € (L)? : ||f
p€{-1,0,1}, p € Z, such that

124 < OO},

(8)1,p € (S)op S (L)? € (S)o,—p S (S)—1,—p,
(8)1.p € (S)1,¢ € (L)? € (8)=1,-q S (S)-1,—p,

for all p > ¢ > 0 and the inclusions denote continuous embeddings and (.5)p,0 =
(L)2. Thus, (S); = MNpen, (9)1,p and (S = MNpen, (S)o,p can be equipped with

the projective topology and (S)-1 = U, cn, (9)-1,-ps (9o = Upen, (5)o,—p as
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their duals with the inductive topology. Note that ()1, (S)g are nuclear and
the following Gel’fand triples

() CLPC(S)-1, (95 S(L)?C(9)

are obtained.
From the estimate a! < (2N)? it follows that

(2N) 7P < l(2N) 7P < (2N)~(P~De

thus
(S)-1,—(p—1) € (8)o,—p € (S)-1,—p, forall peN,

and similarly
(S)l,p—l—l Q (S)O,p Q (S>1,p7 fOI' all p c No.

We will denote by < -, > the dual pairing between (5)o,—, and (S)g p. Its
action is given by < A, B >=< Y 7 0aHa, Y yc7bato >= ) o7 alagba.
In case of random variables with finite variance it reduces to the scalar product
< A, B >)2= E(AB). For any fixed p € Z, (S)o,p, p € Z, is a Hilbert space
(we identify the case p = 0 with (L)?) endowed with the scalar product

0, a#p,
< Hy, Hp >>p={ al@NPe, a=p, 0 T PEL

extended by linearity and continuity to

< A, B>,= Z alagb,(2N)P* p e Z.
ac’l

In the framework of white noise analysis, the problem of pointwise multipli-
cation of generalized functions is overcome by introducing the Wick product.
It is well defined in the Kondratiev spaces of test and generalized stochastic
functions (5); and (S)_1; see for example [12, 13].

Definition 2.6. Let F,G € (S)_; be given by their chaos expansions F(w) =
>wer JaHo(w) and G(w) = 357 gsHp(w), for unique fq,gs € R. The Wick
product of F and G is the element denoted by FOG and defined by

FOG(w) = Z Z fags | Hy(w)

V€L \a+B=y

= Z Z fa gp HaJrﬂ(w)'

a€l el

The same definition is provided for the Wick product of test random variables
belonging to (5);.

Note that the Kondratiev spaces (5); and (S)_1 are closed under the Wick
multiplication [13], while the space (L)? is not closed under it.
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Example 2.7. The random variable defined by the chaos expansion F' =
>, ﬁf[m(n) belongs to (L)? since ||F||%L)2 =Y, % < oo, but FOF is
not in (L)?. Clearly,

2
o n 1
FOF|?,. = !
IFOF ) 1(; k(n — k) k:!(n—k:)!) "

The most important property of the Wick multiplication is its relation to
the It6-Skorokhod integration [12, 13], since it reproduces the fundamental
theorem of calculus. This fact will be revisited in Remark 5.9.

In the sequel we will need the notion of Wick-versions of analytic functions.
For this purpose note that the nth Wick power is defined by FO"* = FO—DoF,
F9Y = 1. Note that H,., = HS" for n € No, k € N.

Definition 2.8. If ¢ : R — R is a real analytic function at the origin repre-
sented by the power series

o(x) = Zan x", x €R,
n=0
then its Wick version ¢© : (S)_; — (S)_; is given by
@O(F):Zan Fon, F€<S)_1
n=0

2.3. Generalized stochastic processes

Let X be a Banach space endowed with the norm || - || ¢ and let X’ denote
its dual space. In this section we describe X —valued random variables. Most
notably, if X is a space of functions on R, e.g. X = C*([a,D])), —00 < a <b <
0o or X = L?(R), we obtain the notion of a stochastic process. We will also
define processes where X is not a normed space, but a nuclear space topologized
by a family of seminorms, e.g. X = S(R) (see e.g. [38]).

Definition 2.9. Let f have the formal expansion f = ) .7 fo ® Ha, where
fa € X, a € Z. Define the following spaces:

X® Sy = {f: 1flxes), = ZG:I@!QHfaH%(W)W < oo},
X1 = {1 1fxe) ., = gznfauﬁdmrm < oo},
X2 Sy = {F: 1 lxesn, = ;alllfaH%((?N)p“ < oo},
X@(S)o-p = {1 Ik, = D ollfalk(@N) P < oo},

a€l
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where X denotes an arbitrary Banach space (allowing both possibilities X = X,
X =X').
Especially, for p =0, X ® (5)0,0 will be denoted by

X® L2 =1{f: Ik, = > dlfalik < ool
acl

We will denote by E(F) = f,0,0,.) the generalized expectation of the
process F'.

Definition 2.10. Generalized stochastic processes and test stochastic pro-
cesses in Kondratiev sense are elements of the spaces

X@S)a=JX@() 1 X2(Sh={)X2 (i

peEN pEN

respectively.
Generalized stochastic processes and test stochastic processes in Hida sense
are elements of the spaces

Xe©)y =X ) p XS =[)X(S)p
peN peN

respectively.

Remark 2.11. In this case the symbol ® denotes the projective tensor product
of two spaces ie. X' ® (S)_1 is the completion of the tensor product with
respect to the m-topology.

The Kondratiev space (S); is nuclear and thus (X ® (S);)’ = X' ® (S)_1.
Note that X’ ® (S)_; is isomorphic to the space of linear bounded mappings
X - (S)—1, and it is also isomporphic to the space of linear bounded mappings
(S)11 — X'. The same holds for the Hida spaces, too.

In [43] and [44] a general setting of S’-valued generalized stochastic process
is provided (we restrict our attention to the Kondratiev setting): S’(R)-valued
generalized stochastic processes are elements of X ® S'(R) ® (S)_1 and they
are given by chaos expansions of the form

(22) f:ZZaa,k®£k®Ha:Zba@Ha:ch®§k7

a€cZ keN acl keN

where by = D ey Gak @& € X @S (R), ¢ = > ez tar @ Hy € X ® (5) 1
and aq,; € X. Thus,

XRS5 1(R)® (5)-1,-p

=f 1 1kes@em) o= D llarlik (2k) 7(2N) 77 <oo
a€Z keN



84 Section 1.2

54 Tijana Levajkovié, Stevan Pilipovi¢ and Dora Selesi

and
X®SR)®(S)-1= ) X®I4(R) @ (5)-1,-p.
p,leN

The generalized expectation of an S’-valued stochastic process f is given

by E(f) = > a0,0,..).k @& = b(0,0,...)-
keN
In an analogous way, we define S-valued test processes as elements of

X ®S(R)®(S)1, which are given by chaos expansions of the form (2.2), where
ba = D henGak @& € X @ S(R), cx = D c70ar @ Hy € X ® (5)1 and
aq,; € X. Thus,

X@S(R)@()1p=1f: Ifxes,mewn,= > @ laarlik(2k)(2N)P* <oo
€T keN

and
X@SR) @ ()= ) X®S(R)® (5)1,p.
p,leN

One can define the Hida spaces in a similar way. Especially, for p =1 = 0, one
obtains the space of processes with finite second moments and square integrable
trajectories X ® L*(R) ® (L)2. It is isomorphic to X ® L*(R x Q) and if X is
a separable Hilbert space, then it is also isomorphic to L?(R x §2; X).

Remark 2.12. In the sequel we will use the notation Hy, k € Ny, to denote not
just (L)2-random variables, but also generalized stochastic processes and test
processes which have a chaos expansion of the form (2.2) only with multi-indices
of length |o| = k.

Example 2.13. Brownian motion as an element of S’(R)® (L)?, is defined by
Bi(w) = (w,m[o’t]% w e S (R),

where kg 4 is the characteristic function of the interval [0,], ¢ > 0. It is a Gaus-
sian process with zero expectation and covariance function E,,(B;(w) Bs(w)) =
min{¢, s}. The chaos expansion of Brownian motion is given by

By(w) =) /fk(s)ds H.i (w).
k=1 \j

t
For all k € N, its coefficients [ &;(s)ds are in C*°(R).
0

Singular white noise is defined by the chaos expansion
Wi(w) = &(t)How (w),
k=1
and it is an element of the space Si(R) ® (S)_1,—p for k,p > 1. 4B, = W,

holds with weak derivatives in the (S)_; sense. Both Brownian motion and
singular white noise belong to the Wiener chaos space of order one.
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2.4. Multiplication of stochastic processes

We generalize the definition of the Wick product of random variables to
the set of generalized stochastic processes in the way as it is done in [19, 39]
and [40]. From now on we assume that X is closed under multiplication, i.e.
x-ye X foral x,y € X.

Definition 2.14. Let F,G € X ® (S)41 be generalized (resp. test) stochastic

processes given by chaos expansions f =" 7 fa ® Ha, 9 =) 1c7 9o @ Ha,
where f.,9. € X, a € Z. Then the Wick product F QG is defined by

(2.3) FOG =Y | D fags | ®H,.

vel \at+B=y

Theorem 2.15. Let the stochastic processes F' and G be given in their chaos

expansion forms F = > fo @ Hy and G = > go @ H,.
acel acl

1. If FEe X®(S)-1,—p, and G € X ® (S)—_1,—p, for some p1,p2 € Ny, then
FOG is a well defined element in X ® (S)_1,_q, for ¢ > p1 + p2 + 2.

2. If Fe X®(S8)1,p, and G € X ® (S)1,p, for p1,p2 € Ny, then FOG is a
well defined element in X ® (5)1,q, for ¢ < min{p;,p2} — 2.

Proof. 1. By the Cauchy-Schwartz inequality, the following holds

IFOG X ss) .,

= DI D fagsllx @N)

YEL a+pB=v

< MUY fagsllk (2N @rtetan
vET at+pB=vy

<UD I allZ@N) P (lgs 5 (2N) P27 |(2N)
YELH+B=y at+B=y

< [N~ (Z HfaH?x(?N)‘pl“) > llgsli3 (28) 7727
yEL acl BeT

= M-||Flxes) ., 1Glxas) ., < oo

since M = 2761(2N)_27 < 0o by the nuclearity of (S)_;.
2. Let now F € X ® (5)1,p, and G € X ® (5)1,p, for all p1,ps € Ng. Then the
chaos expansion form of FOG is given by (2.3) and
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IFOGXs(s). ,
= D21 Y fagsllk (NP (2N)P (2N) 7

YET a+pB=y
= SEN ST A fageeN) TR

YEL a+pB=y

_ o at2 .,

< DN alpleN) TP fug5(2N) PR %

vel at+B=y

q+2 @ q+2
§M<Z al?|| fall% (2N)2= “)) > B1%)lgslk (2N)2HT TP
a€l BeL

< (Z o ful e (21) ) D B2llgs % (2N

acl BeET

= M-||Fllxgs),,, " 1G1xe),,, <

if g <p;—2andqg<py—2. We used beside the Cauchy-Schwartz inequality
the estimate (a + 3)! < o! B! (2N)**5 for all a, B € . O

Applying the well-known formula for the Fourier-Hermite polynomials (see
[13])

a\ (B
(2.4) Hotii= Y (%) (D) Harss,
y<min{c,B}

one can define the ordinary product F'- G of two stochastic processes F' and G.
Thus, by applying formally (2.4) we obtain

F-G = Y fa®Hy Y g5 ®Hps

a€l BeL
= ZZfaQﬁ@Ha'Hﬁ
a€cZ BeT
= > D fagg® DY, A (&) (ﬁ> Hotp-24
a€Z BeT 0<y<min{«,B} TINY
= FOG+ Z Z Jags ® Z ol (a> (B) Hotp—2y
€T BeT 0<y<min{a,B} 1T/\Y
15!
— P0G+ . S
222 k0 2 gy

Y+T—=6=8,7+d=

For example, for Brownian motion we have

By, - By, = B;, 0By, + min{t1,t,}, B?=B’% +1t.
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Note also that, E(FOG) = fogo = EFF - EG, without the assumption of
independence of F' and G as opposed to E(F - G) # EF - EG.

Particularly, it is clear that the following identities hold for the Fourier-
Hermite polynomials:

H

S

N Hyen +1 k=1 _ Hg(%)‘i‘l , k=1
" = H.wyier  k#I H.»wOH.oy , k#I

In Section 4 we will use the Malliavin derivative operator to express the
difference between the ordinary product and the Wick product of a generalized
stochastic process from X ® (5)_; and singular white noise W; (Theorem 4.6).
Here we state some general cases when the ordinary product is well defined.

Theorem 2.16. The following holds:

1. If F,G € X ® (5)1 then the product F - G is a well defined element in
X ®(S)1. Moreover, for every m € Ny there exist r,s € Ny and C(m) > 0
such that

1F - Gl xas)i.. < Cm)IF|lxes).. |Gl xes),..
holds.

2.If F € X®(5)1 and G € X ® (S)_1 then their product F - G is well
defined and belongs to X @ (S)_1.

The proof is similar to the one for multiplication of Schwartz test functions
and multiplication of tempered distributions with test functions.

Note, for F,G € X ® (L)? the ordinary product F' - G does not have to
belong to X ® (L)2.

2.5. Operators of the Malliavin calculus

In [2, 7, 25, 26, 35, 42] the Malliavin derivative and the Skorokhod integral
are defined on a subspace of (L)? so that the resulting process after application
of these operators necessarily remains in (L)2. We will recall of these classical
results and denote the corresponding domains with a ”zero” in order to retain
a nice symmetry between test and generalized processes. In [18, 19, 22, 23]
we allowed values in (S)_; and thus obtained larger domains for all operators.
These domains will be denoted by a ”"minus” sign to reflect the fact that they
correspond to generalized processes. In [24] we introduced also domains for
test processes. These domains will be denoted by a ”plus” sign.

Definition 2.17. Let a generalized stochastic process u € X ® (S)_1 be of the

form u = > u, ® H,. If there exists p € N such that
a€el

(2.5) > laf® fluall5 (2N) 7P < oo,
a€el
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then the Malliavin derivative of u is defined by

(2.6) Du=>» > opta ® & @ Hy o,

where by convention a — e(®) does not exist if oy, = 0, i.e.

0, ap = 0
a—elk) =
H(Oél,oéz ----- Qhk—1,0k—1,0k11,00,0m,0,0,...)y Xk >1

for a = (a1, a9, .oy —1, Oy A1y ooy 0y, 0,0, .00) € Z.

The set of generalized stochastic processes u € X ®(.5)_1 which satisfy (2.5)
constitutes the domain of the Malliavin derivative, denoted by Dom_ (D). Thus
the domain of the Malliavin derivative is given by

Dom_(D) = U Dom_,(D)

peN
= U {u €eX®(S)-1: Z loo]? [|we |5 (2N) 7P < oo} :
peN ac’l

A process u € Dom_(D) C X ® (S)—_1 is called a Malliavin differentiable
process. Note that (2.6) can also be expressed in the form

(2.7) Du = Z Z (Ozk + 1) Ugper) @ & ® Hy,.
acZ keN

For stochastic test processes from X ® (5);, the Malliavin derivative is
always defined, i.e.

Domy(D) = {u € X @ (8)1: Y _ a?[luaX (2N)P* < 00} = X ® (9)1,5.

o€l

In order to retain symmetry in notation, we denote

Dom (D) = (] Dom,(D) = [|(X ® (S)1,,) = X @ (9)1.
peN peN

In the classical literature it is usual to define the Malliavin derivative only
for the (L)? case:

Definition 2.18. Let a square integrable stochastic process u € X ® (L)? be

of the form u = ) uy, ® Hy. If the condition
ac’l

(2.8) D lafa! fluglk < oo
acl
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holds, then u is a Malliavin differentiable process and the Malliavin derivative
of u is defined by (2.6). All processes u satisfying the condition (2.8) belong to
the domain of D) denoted by Domg(ID), i.e. the domain is given by

Domy(D) = {u € X®(L)?: Z o] ! ||ua||% < oo} :
acl
Theorem 2.19. ([18, 24])

a) The Malliavin derivative of a generalized process u € X ® (S)-1 is a
linear and continuous mapping

D: Dom_p,(D) = X ®S_(R)® (S)-1,—p,
forl>p+1 andp e N.

b) The Malliavin derivative of a test stochastic process v € X ® (S)1 is a
linear and continuous mapping

D: DomyD) — X ®S(R)® (5)1,,,
forl<p—1andpeN.

c) The Malliavin derivative of a square integrable process u € Domy(D) is
a linear and continuous mapping

D: Domo(D) - X ® L*(R) ® (L)

Proof. a) Let u be as in Definition 2.17. Then,

N —p(a—e®
IDulXes @es) ., = 21D ata®&lxgs., (2N)PE7=)
o€l k=1
= > (Z az||uau%<<zk>—l) (2Kk)P(2N) 7@
a€Z \keN
< 3l a3 2N) P S (2k)
acl keN
< O lafualk (2N) P < oo,
oaEL

where Y, (2k)"""P = C < oo for I > p+ 1. We also used the generalized
Minkowski inequality to obtain that

i@k < (S al)r > 2k

keN keN keN

keN keN keN
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b) Let v = > vy, ® Hy € X ® (5)1, for all p > 0, i.e. let the condition

acl
> lvallk @' ? (2N)P* < oo hold. Then, from (2.6) and
a€cel
e
H]D)U”g(@Sl(]R)@(S)Lp = Z I Z Ak Vo @ 5k||§(®sl(R) (o — 5(k))!2 (QN)p( =)
a€Z  keN
=3 of (= ™)1 oak (26)' (2N
a€T keN
=3 al? [l (k)P NP
a€T keN
<C ! ? Jva |3 2N)P* = C ||v||3 < 00
— all X X®(S)17p ’
a€el

the assertion follows, where C' = Y (2k)!"P < oo for p > [+ 1. We also used
keN

ap (@ —eP) =al, k€N, a € and (2N)* = (2k), k € N.
c¢) Let u € Domo(D) , i.e. Y |aja!||luall% < oo. Then,

(k)

a€el
k
HDu”X®L2(R)®(L)2 = Z Z 3 ) Hwa”?x
acZ keN
=33 aval fual = Y lalal fualk < ox.
acZ keN ael

Note that Dom,, (D) C Domy(D) C Dom_,(D) for all p € N. Therefore
Dom (D) € Domg(D) C Dom_ (D).

Moreover, using the estimate |a| < (2N)® it follows that

Y uallX@N) P <Y ol luallk (2N) 7P < Y flual5 (2N) 707D, e,

a€cl acl acl

X @ (5)-1,-(p-2) € Dom_,(D) € X @ (S)-1,—p, p>3.
Remark 2.20. For u € Dom, (D) and u € Domg(D) it is usual to write
Dew=> "> arta ® &(t) @ Hy_ow,
acZ keN

in order to emphasise that the Malliavin derivative takes a random variable
into a process i.e. that Du is a function of ¢. Moreover, the formula

.1 /
D F(w) = }]LJE)I%)% (Flw+h- K o)) — F(w)), weS'(R),
justifies the name stochastic derivative for the Malliavin operator. Since gene-
ralized functions do not have point values, this notation would be somewhat
misleading for u € Dom_ (D). Therefore, for notational uniformity, we omit
the index t in D; that usually appears in the literature and write D.
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The Skorokhod integral, as an extension of the Ito integral for non-adapted
processes, can be regarded as the adjoint operator of the Malliavin derivative
in (L)2-sense. In [18] we have extended the definition of the Skorokhod inte-
gral from Hilbert space valued processes to the class of S’-valued generalized
processes.

Definition 2.21. Let F = ) fo® H, € X® S5 (R)®(5)_1, be a generalized
acl
S’(R)-valued stochastic process and let f, € X ® S'(R) be given by the expan-

sion f, = Z%N fak @&k, far € X. Then the process F' is integrable in the
Skorokhod sense and the chaos expansion of its stochastic integral is given by

(29) 5(F) = Z Z fa,k ® HO(+€(k) .

Q€T keN
In [20] we proved that the domain Dom_ () of the Skorokhod integral is
Dom_(§) =X @ S'(R) ® (S)_1
= U Domp)= | Kesai®) @)1

(I,p)eN? (Lp)eN?

In [24] we characterized the domains Dom (§) and Domg(d) of the Sko-
rokhod integral for test processes from X ® S(R) ® (5); and square integrable
processes from X ® L?(R) ® (L)2. The form of the derivative is in all cases
given by the expression (2.9).

The domain Dom (§) of the Skorokhod integral is

Dom4 (§) = ﬂ Dom; ) (9),
(l,p)eN?

Dom(l’p)(é):{FeX@)Sl (R)@(S)Lp:z:z:(oz;€ + 1)2a!2||fa7k||§((2k:)l(2N)po‘<oo} )

acZkeN
For square integrable stochastic processes T' € X ® L?(R)® (L)? of the form

T=> > tar & @ Hy, tar € X, the classical definition is:
acZ keN

Domg(6) = {T EXQL*R)®(L)* : D ) (an + Dl ftarlk < oo} :
a€Z keN
Theorem 2.22. ([18, 24])

a) The Skorokhod integral § of an S_;(R)-valued generalized stochastic pro-
cess 18 a linear and continuous mapping

51 X @S IR)® (S) 1 > X @ () 1q a2p q>1+1, LEN.
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b) The Skorokhod integral 6 of a S;(R)-valued stochastic test process is a
linear and continuous mapping

d: Dom(l,p)((s) - X® (S)l,qa q< min{l,p},
for all l,p € N.

¢) The Skorokhod integral § of an L*(R)-valued stochastic process is a linear
and continuous mapping

§: Domg(d) — X ® (L)
Proof. a) Let F be as in Definition 2.21. Clearly,
—g(ate®
) Sos) oy, = 21D farli@N)aer=)

a€Z keN
- Z I Zfa,k(2k)_%”§((2N)—qa
a€Z keN
2
S X (Z 'f“v’f‘@’f)‘é(?’ﬂ‘(q;”) (o1 o
o€ \keN
< Z (Z |fa’k|2(2k)_lZ(2k)_(q_l)) (2N) e
o€ \keN kel
< Z ||fa”2_l(2N)_pa . Z(2k)—(q_l)
acl een

< M HFH?X@S_Z(R)@(S),L,Z, < 00,
for ¢ > p, where we used the Cauchy-Schwarz inequality and the fact that
M =3 n(2k) 707D < oo, for ¢ > 1+ 1.

b) Let U = Zaezua ® Hy € X ® S1(R) ® (9)1,p) Ua = ZZL Uk ® &k €
X ® S1(R), wn,r € X, for p,l > 1. Then we obtain

ate®
@)Xy, = Do D luaklk (a+ ™) || 2nyatetaD
acl keN

= 3% Jualk ! (ap + 1)2 (2K)7 (2N)™
aceZ keN
S ||U||2DO’ITL(Z7P)((S) < 00,

for g <p, q <.
c)Let T= > > tar ®& ® Hy € Domg(d). Then,

a€Z keN
16X ey = D D 2 kllk (a+ ™)
a€eZ keN
- Z Z okl % (ar + 1) al < oo,
a€eZ keN

where we used (a 4+ &™) = (ag, + 1) !, for a € Z, k € N. d
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Using the estimate o +1 < 2|, which holds for all & € Z except for a« = 0,
we obtain

SN o [ farlk2R) NP < DTS (ak + 120 fu kX (2K) (2N)P

acl keN €T keN
< Z ||f0,k |§((2kj)l +4 Z Z |04|2a!2||fa,k||§((2k’)l(2N)pa
keN a>0 keN
< follxas,m +4 DY ol farlk (2k) (2N) P
a>0 keN

S 4||FH§(®SZ(R)®(S)1@+2.
Thus,

X® SZ(R) & (5)1,p+2 - Dom(lyp)(é) CX® SZ(R) & (S)l,p, pE N.

The third main operator of the Malliavin calculus is the Ornstein-Uhlenbeck
operator. We describe the domain of the Ornstain-Uhlenbeck operator for
different classes of generalized stochastic processes.

Definition 2.23. The composition of the Malliavin derivative and the Sko-
rokhod integral is denoted by R = § o D and called the Ornstein-Uhlenbeck
operator.

Therefore, for a generalized process u € X ® (S)_1 given in the chaos
expansion form u = > u, ® H,, the Ornstein-Uhlenbeck operator is given by

acl
(2.10) R(u) =) |ofuq ® Hq.
o€l
Let
Dom_(R) = U Dom_,(R)
peEN
= {u EX®(S)-1: )l lualk (2N) P < oo} .
peN aEl

For test processes, we define

Domy(R) = ﬂ Dom,(R)

peN
= ﬂ {v eX®(9): Z a2 o v |3 (2N)PY < oo} :
peEN a€El

For square integrable processes the classical definition is:

Domy(R) = {w €eX®(L): Z o o lwal%k < oo} :

o€l
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Theorem 2.24. ([22, 24])

a) The operator R is a linear and continuous mapping
R:Dom_p(R) = X ® (S)-1,—p, p € N.
In this case the domains of D and R coincide, i.e. Dom_(R) = Dom_(D).

b) The operator R is a linear and continuous mapping
R: Domp(R) = X ® (S)1,ps p e N.

In this case the domains of the operators D and R do not coincide, 1i.e.

Dom (D) D Domy(R).
c) The operator R is a linear and continuous operator
R: Domy(R) - X ® (L)

In this case the domains of the operators D and R also do not coincide and
Domy(D) 2 Domg(R).

Proof. a) Let u= ) uq® H, € X ® (5)_1, —p, for some p € N. Clearly,
acl

IRulkemsy ., = luallx lof® @N) P = |[ullfpn r) < 00
a€l

b) Let a stochastic process v = ) v, ® H, € X ®(5)1,p, forall p e N, i.e.
ac’l

3 lvallk @ (2N)P* < oo, for all p € N. Then,
acl

IR g sy, , = D llvallk af® o (2N = vl 50, (r) < 00,
acel

and the statement follows.

¢) Let w= > wy® H, € Domy(R). Then R(w) = > |ajw, ® H, and
acl a€l

IR X gy = Yl lwalk < oo,
a€el

by the assumption w € Domg(R). d

Note also that

> ol lualF NP <> ol laflual X (2N)PY <Y al[lug||% (2N) P,
ael a€el acl

ie, X ®(S)1pt2 € Domy(R) C X ® (S)1p, peN.
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Remark 2.25. Note that D : Hy — Hi_1 reduces the Wiener chaos space order
and therefore Malliavin differentiation corresponds to the annihilation operator,
while 6 : Hjp — Hpr41 increases the chaos order and thus Skorokhod integration
corresponds to the creation operator. Clearly, R : Hr — Hj and the Ornstein-
Uhlenbeck operator corresponds to the number operator in quantum theory.

In the following sections we prove that the mappings D : Dom (D) —
XRS5 (R)®(S)x1,d: Domy(d) > X ®(S)x1, R: Domi(R) = X ®(S)+1,

given in this section are surjective.

3. The Ornstein-Uhlenbeck operator

Theorem 3.1. ([20, 24]) Let g have zero generalized expectation. The equation
Ru =g, Eu=1u e X,
has a unique solution u represented in the form

u = ug + 2: Qg ® H,.

a€Z,|a|>0 |a|
Moreover, the following holds:
1. Ifge X ®(S)-1,—p, p €N, then uw € Dom_,(R).
2. If g€ X ®(S)1p, p €N, then u € Dom,(R).
3. If g€ X ® (L)?, then u € Domgy(R).

Proof. Let us seek for a solution in form of u = » u, ® H,. From Ru = g it
acl
follows that

j{:|ah%¥@gﬁﬂy::j{:gacafiw
acl acl
e, uqy = I%I for all @« € Z, || > 0. From the initial condition we obtain

U(0,0,0,0,...) = Eu = to.
1. Assume that g € X ® (S)_1,—p. Then, u € Dom_,(R) since

[l BDom =y = D lalllual%@N)* = Y [lgall% (2N)"
|a|>0 || >0

= H9H§(®(S)_1,_p < 0.
2. In this case u € Dom,(R) since
il Dom, =y = D lad? fJua % (2N)P
|a|>0

= > al|lgallk NP = | flXaqs),, < oo
|a|>0
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3. If g is square integrable, then u € Domg(R) since

[ullDomeiry = Y ol uallx = Y alllhalik = 171X gm) < oo
|a|>0 |a|>0

g

Remark 3.2. Note that Ru = u if and only if v € H; i.e. Gaussian processes
with zero expectation are the only fixed points for the Ornstein-Uhlenbeck
operator. For example, R(B;) = B; and R(W}) = W;.

Also, it is clear that H,, is the eigenspace corresponding to the eigenvalue
m (m € N) of the Ornstein-Uhlenbeck operator.

Remark 3.3. If Eu = 0, one can define the pseudo-inverse R~! as in [32, 35],
given by

R lu=R"1 Z Uy @ Hy | = Z ta ® H,.
a€Z,|a|>0 a€Z,|a|>0 ’Oé’
Thus,
(3.1) RR Y(u) =u and R 'R(u) = u.

In the general case, for Eu # 0, we have
RR Y(u—Eu) =u and R 'R(u) =u.
Corollary 3.4. Fach process g € X ® (S)+1, resp. g € X ® (L)?, can be

represented as
9= Eg+R(u),
for some u € Dom4(R), resp. u € Domy(R).
Proof. The assertion follows for u = R™1(g — Eg). OJ
Remark 3.5. We note that if a stochastic process f belongs to the Wiener chaos

space -, H; for some m € N, then the solution u of the equation Ru = f
belongs also to the Wiener chaos space @, Hi.

4. The Malliavin derivative

Theorem 4.1. ([20, 24]) Let a process h have the chaos expansion represen-

tation h = > > hokr @& ® Hy. Then the equation
a€Z keN

Du = h,
(41) { Eu = uy, ug € X,

has a unique solution u represented in the form
~ 1
(42) U= uUg + Z m Z hafg(k)7k; & Ha-
a€Z,|a|>0 keN

Moreover, the following holds:
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1. If he X®S_,(R)® (S)=1,—¢, P,q € N, then u € Dom_,(D).
2. Ifhe X ® L*(R) ® (L)?, then u € Domy(D).
3. Ifhe X ®Sp(R)® (S)1,4, p,q €N, then u € Domy(D).

Proof. 1. Applying the Skorokhod integral on both sides of (4.1) one obtains

Ru = §(h),
for a given h € X ® §'(R) ® (5)—1 = Dom_(6). From the initial condition it
follows that the solution w is given in the form u =ug+ >, u, ® H, and

a€Z,|al>0
its coefficients are obtained from the system

(43) |Oé| U = Z ha—s(’ﬂ,ka |O./| > O?
keN

where by convention o — e®) does not exist if ag, = 0. Hence, the solution u
is given in the form (4.2). Now, we prove that the solution u belongs to the
space Dom_4(D). Clearly,

ulbom ) = D laf* fualk (2N) 9
a€l

= > 1D haccm sk N

a€Z,la|>0 keN

= ST haullk (@) (28) e

o€l  keN
2
_P _(g—p) e
< % <Z 1hakllx (2k)7= (2k) 7= ) (2N)~¢
a€T \keN
= Z Z ”hozkH?X (2k)7P (2N) 79« Z(gk)—(q—p)
et kel keN

= C||h||§<®s,p(n§)®(5),l,,q < o0,
since C = Y (2k)~(97P) < oo, for ¢ > p + 1.

kEN
2. In this case we have that

al
[l Domem) = ol ol fuallkx = T Y B ll%
(D) ||

a€l a€Z,|a|>0 keN
(o + eF))!
= D I haklk T——amT
a€Z keN |Oé—|—€( )|
< D Mol
a€l keN

= > alfalkerw = 1lxsrmew: <
acl
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(o + ) <al
o+ )| —

3. Clearly, 6 can again be applied onto h, since h € X @ S,(R) ® (5)1,4 C
Domy ¢—2y(6). It remains to prove that the solution u given in the form (4.2)
belongs to Domy (D). Clearly,

We have made use of the fact

”uH%omq(D) = Z ol [Jua % (2N)%*
acel
a!Q 2 (o
= Z a2 | Zha—sw),kﬂx (2N)4
@€, a|>0 keN
(o + B2 (k)
= 1Y harlx ——5 (2N)%* (2N)*
2 1 2l o
< Z | Zha,kzﬂ?x al® (2N)9* (2k)1
a€Z keN
= SIS hak(2k)F kot (2N)1e
acZ k=1
= Z | Z hak(2k) 2 (2k) 2" |5 al?(2N) 9
acZl k=1
< ZZHha,k||,2x(2k)pZ(2k)q_p al?(2N)9*
ael k=1 =1

= C-Ihlkes,®es)., <

since C' = Y (2k)77P < oo, for p > g + 1. In the fourth step of the estimation
keN

(a + )

L 0
ot e = ¢

we used again that

Corollary 4.2. If D(u) =0, then u = Eu i.e. u is constant almost surely.
In other words, the kernel of the operator D is H,.

Corollary 4.3. For everyh € X®S'(R)®(S)41, resp. h € X ® L*(R) ® (L)?,
there exists a unique u € Domy (D), resp. u € Domgo(D), such that Eu = 0
and h = D(u) holds.

Proof. The assertion follows for u = R™1(5(h)). O

Example 4.4. Let t > 0. Consider now the following examples which illustrate
the results of Theorem 4.1.

1, te]|0,to
07 t ¢ [07 tO]
interval [0,%o]. It is an element of L?*(R) and thus its expansion repre-

sentation is kg ¢ (t) = > < JO &k (t)dt) &k (t). Consider the initial value
k=1

1. Denote by kg, = { the characteristic function of the
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problem
(4.4) Du = Kjo4,)(t), Eu = uo.

Recall that Hyop,.) = 1 and then we may regard h in (4.1) as
h = ko1, (t) € L*(R)®Hg. Therefore, u € L?(R)®(Ho®H1). From (4.3)
we obtain the form of the coefficients of the solution
U, = hog = foto &k(t)dt. Then the solution of the equation (4.4) is
of the form

[e’e} to
u(to,w) = o+ » / &, () dt Hon (w) = Tp + By, (w),
k=1 70

i.e. it is Brownian motion with drift parameter .
2. Consider the equation
(4.5) Du = dy, (t), FEu = uo,

where dy, (t) denotes the Dirac delta function concentrated at tg, repre-
sented in the chaos expansion form

dio(t) = &(to) & (t) = D &lto) &k (t) Ho(w).
k=1 k=1

The solution to (4.5) belongs to the space S’(R) ® (Ho @ H1) because
di, (t) € S'(R) ® Hp. The chaos expansion form of the solution is given
by

u=1o+ Y &lto) How (W) = T + Wiy (w),
k=1

i.e. it represents singular white noise.
3. Consider now an equation with singular white noise
Du = Wi(w), FEu=0.

W; belongs to the Wiener chaos space of order one and (since we assumed
Eu = 0) the solution u will belong to the Wiener chaos space of order
two. From W; = Zzozl &k H, oy it follows that hq = 1 only for a = g(k)
and hap = 0 for all a # ™. Thus, hy_.mj = how p = 1 only for
a = 2¢®) and is equal to zero for all other o € Z. Thus, with |a| = 2 we
obtain u, from (4.3), and the form of the solution is

u(w) = % ZHQE(M((,U).
k=1
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4. Consider the equation
Du = By, (w)ko,10] (1), Eu=0.

The chaos expansion of the right hand side is

(/ (/ k(s ds>§J()dt)§]() H.i (w)
( Sk(s )(/ &i(s ds)fg t)H ) (w).

This implies hgm,j = % ( fo ) <f0 (s dS) Again, ha—s(l),l is

nonzero only for a of the forrn o = e 4+ ¢(F) and in this case we have
with |a| = 2 that

Uy g = Sheow ) = &k (s to&(S)dS :
3 ([ s ([ o)

Thus, the solution belongs to the space L?(R) ® Hy and is of the form

Bto( Ko, to]

u Mg i Mg

1 oo 0o to to
w=35> 2 (| &®d 61()ds ) He oo ().
2 0 0
k=1 I1=1
Note that the solution can be represented in terms of the Wick product
1
u= §Bt0 (w)<>2.

5. Consider now the equation
D(u) = Btlfi[o,tz](t), FEu=0.

Similarly as in the previous case it can be shown by symmetry of ¢; and
to that it is equivalent to the equation

D(u) = B, kjo,4,1(t), FEu=0,
and that both equations have the solution

1 1 .
U = §Bt10Bt2 = §(BtlBt2 - mln{tl,tg}).
6. Similarly as in the previous cases, u = %WmthZ solves the equation
Du = th (w)dtQ (t) = Wtz (w)5t1 (t)7

while u = 1 W, (w)%? is the solution to the equation

Du = Wto (Cd)dto (t)
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Remark 4.5. 1f a stochastic process h belongs to the Wiener chaos space
@.", Hi for some m € N, then the unique solution u of the equation (4.1)

belongs to the Wiener chaos space @zrj)l ‘H;. In particular, if the input func-
tion h is a constant random variable i.e. an element of Hg, then the solution u
to (4.1) is a Gaussian process.

Theorem 4.6. ([20]) Let h € X ® (S)_1 and Wy, B, denote white noise and
Brownian motion, respectively. Then,

h- W, — hOW, = D(h),

i.e. 2(h-B; —hOB;) =D(h) in the weak S'(R)-sense.

Proof. Let h be of the form h = > 7 hoHa and Wy = > (8 Ho.
Then,

hOWy =) Z haén(t) ZZ’% e &n(t)

and
acZ n=1

Now, applying the well-known formula (2.4) for Hermite polynomials one

obtains

H, .oy H.y =Ho+ (a—e™), H, 5.0m,

«

where we used (_()) = ax, k € N. Hence,

he W, = ZZha cm&n(t)(Ha + (an — 1) Hg_gem),

a€Z n=1

which implies

h-Wy—hOW, = Zzha e &n(t)(an = D Hq gt

a€Zl n=1

= Z Z ha+g(n)£n an + 1)

a€l n=1

= D(h),

using (2.7). Thus the assertion follows. O

Remark 4.7. Note that if h € X ® (S)_1,_p, then D(h) € X ® S(R) ®
(S)-1,—(p+2), I > p+ 1. Thus, apart from the Wick product hOW; being well-
defined, the ordinary product is also well-defined in the generalized sense as an
element of X ® S'(R) ® (S5)_1, and it is given by h - Wy = hOW; + D(h).
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Example 4.8. Let X = S'(R) and h = W;,. Then
(4.6) Wiy - Wi = Wi, OWe + D(Wy,) = Wiy OW3 + dy, (2)

holds in S"(R)®S’(R)®(S)_1. Note that (4.6) is well defined for all (¢,t0) € R?,
except for t = ty, where the Dirac delta distribution d;,(t) = d(t — tg) €
S'(R) ® S’(R) has its singularity. It is possible to give meaning to dy,(to) =
S0 &n(to)? as the point value of a distribution in the sense of Colombeau
generalized numbers. Thus, in Colombeau sense, it will be possible to define
W2 = W% 4+ dy(t). For the Colombeau theory, we refer the reader to [5, 11].

The previous theorem states that the Malliavin derivative indicates the
speed of change between the ordinary product and the Wick product.

A generalization of Theorem 4.6 can be obtained by replacing white noise
with an arbitrary process of first chaos order, i.e. considering f € H; and
comparing the difference between h - f and A f. This will be done in Theorem
5.10 in the next section.

Remark 4.9. Note that if a stochastic process h belongs to the Wiener chaos
space @, H; for some m € N, then the unique solution u of the equation
D(u) = h belongs to the Wiener chaos space @mﬂ

Remark 4.10. It is easy to check that if ¢p € S_;(R) is given by ¢ = > "2 &,
then §(¢) € (S)_1,—; and it is given by 6(¢0) = > .o, ¥:H.). Moreover, one

can define the Wick version of the stochastic exponential:

Z L H,, where * = H;z}%

k=0 aEI

oo

exp 5(y) =

In [18] we have proven that the stochastic exponentials are eigenvectors of
the Malliavin derivative corresponding to the eigenvalue 1, i.e. the process
u = tip ® exp® §(¥) € X ® S (R) ® (S)_1_; is the unique solution to the
equation

{]D)u:zp@)u, wES’(R)‘

Eu:ﬂo, ug € X

5. The Skorokhod integral

Theorem 5.1. (20, 24]) Let f be a process with zero expectation and chaos

expansion representation of the form f= > fo @ Hy, fo € X. Then the
a€l,|a|>1
integral equation

(5.1) 6(u) = f,

has a unique solution u given by

(5.2) u=3 > (ap+1 Sagew & @ H,.

k
a€Z keN a+te ( )|

Moreover, the following holds:
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1. Iffe X®(S)-1,—p, pEN, thenu € X®S_(R)®(S)_1,—p, forl > p+1.
2. If fe X ®(S)1,p, p €N, then u € Dom (), for I <p—1.
8. If f € X®(L)?, then u € Domyg(9).

Proof. 1. We seek for the solution in Range_ (D). It is clear that u € Range_ (D)
is equivalent to u = D(u), for some u. This approach is general enough, since ac-
cording to Theorem 4.1, for all u € X®5'(R)®(S)_1 there exists u € Dom_ (D)
such that u = D(w) holds. Thus, equation (5.1) is equivalent to the system of

equations
{ e 25®

The solution to R(u) = f is given by
L fa
U= ug + Z m ® H,,
aeZ Joz1 @

where 0,0,0,...) = Uo can be chosen arbitrarily. Now, the solution of the initial
equation (5.1) is obtained after applying the operator D, i.e.

u=D(@ = > Zak% ®& ® Hy o

a€Z, |a|>1 keEN

_ Jarew
— ZZ(ak‘l—l)m@&g@Ha.

It remains to prove the convergence of the solution (5.2) in X ® S’(R) ®
(S)—1. Under the assumption f € X ® (S)_1,_p, for some p > 0, we prove first
that uw € Dom_,(D). Clearly,

@l = D laf [@alk (2N)77
a€el
1 fall3 po
= Y o o |2X (2N)™7
a€Z, |al>0
= ) falX @N) P < oo,
a€Z, |al>0

Hence, the convergence of the solution u in the space X ® S_; ® (S)_1,—p, for
[l > p+ 1 follows from

Ozk—i—l

”UH?X'@S_L@(S)—L—;; = Z Z |a+ (k)|2 Hfa—l—s(k)H?X kaHQ_l (QN)—I?
a€cZ keN
= Z Z Hfa”?)( (2]{7)_l (2N)_P(C¥—5<’“))
OZEI,|04‘>() keN
< MY falk 2N < oo,

o€l



104 Section 1.2
74 Tijana Levajkovié, Stevan Pilipovi¢ and Dora Selesi

since M = 3" (2k)P~! is finite for [ > p + 1.
kEN
2. The form of the solution (5.2) is obtained in a similar way as in the previ-

ous case. We prove the convergence of the solution v in the space Dom; p(6).
First we prove that u € Dom,(ID) and then u € Dom () for appropriate
[ € N. We obtain

1@l Do, @) = D o lluallk (2N)P*

a€l

B 2 I fulk

_ Z al Tl (2N)P

a€Z,|a|>0

< Y alfalk @ = [ flkes),, <o
a€Z,|a|>0

and thus u € Dom4 (D). Now,

2 _ 2 4 ||fa+s<’f>||X
lullDom,,,5) = Z Za! (o +1 T)P (2k) (2N)P®

a€Z keN ’

= > D

a€Z,|a|>0 keEN
< DY al|fallk 2N Z aj 5 (2k)' (2k) 7P
a€Z,|a|>0 keN | |

< Cllflxss),., < oo

(2k:) (2N)Ple—<™)

since C = > (2k)!"P < oo for p > [ + 1. In the second step we used that
keN

(o —e®) a? = al ay, and in the fourth step we used oy, < |al.
3. In this case we have

. ol
ooy = 3 ool fualk = 3 lafat 120

ael a€Z,|a|>0 | |

< Y adlfalkx = Iflkew: <o
a€Z,|a|>0

and thus u € Dom(D). Also,

. s Marew [k _ A
lelBomo(e) = 22 D adax+ 1) e = 3 3 ala

a€Z keN a€Z,|a|>0 keEN

- Z al (Z ‘ ‘2) HfOéHX = ”fH?X(X)(L)? < 00,

a€Z,|a|>0 keN

Yoap o (X ar)?
keN keN

= ] = 1. holds. |

since for |a| > 0 the estimate
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Remark 5.2. 1f a stochastic process f belongs to the Wiener chaos space
@.", H; for some m € N, then the solution u of the equation (5.1) belongs to

the Wiener chaos space @?:01 ‘H;. Especially, if f is a quadratic Gaussian ran-
dom process, i.e. an element of Hs, then the solution u to (5.1) is a Gaussian
process.

Corollary 5.3. Fach process f € X @ (S)+1, resp. [ € X @ (L)?, can be
represented as

f=Ef+du)
for some u € X @ S'(R) ® (S)+1, resp. u € X ® L?*(R) ® (L)2.

Proof. The assertion follows for u = D(R™(f — Ef)). O

Note that the latter result reduces to the celebrated It6 representation the-
orem (see e.g. [13, 41]) in the case when f is a square integrable adapted
process.

Remark 5.4. In [47] a more general formula appears for the f € (L)? case, which
is equivalent to the classical Wiener-Ité chaos expansion. For f € (L)? there
exist ug, k € N, such that each uj is a square integrable function symmetric in
all arguments,

oo
f=Ef+Y 6% (uy),
k=1
and uy are given by
1
TR
Moreover, if f is given by the chaos expansion f = > _; faHa, then
up = Z|a|:k fa£99 where £8 = PP % -+ and & denotes the sym-
metric tensor product.

E(DW® .

U

Remark 5.5. Since Gaussian processes play an important role in white noise
analysis, we elaborate the explicit form of solutions in special cases for m = 2
and for m = 3.

1. First, assuming that the process f has zero expectation and a chaos
expansion in the Wiener chaos space of maximal order two, i.e.

f= Y fa®HocHi®Hy fo€X,

a€Z,1<|al<2

the solution u of the equation (5.1) belongs to the Wiener chaos space of
order one u € Ho @ Hy, i.e. it is a Gaussian process. Clearly, from (5.2)
we obtain the coeflicients uq , for lengths |o| <1 and k € N. Therefore,
for a = (0,0, ....) the coefficients are

(5.3) U(0,0,..),k = Jetk),s
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and for o = eU9), j € N the coefficients are

f25(j)7 k= J
(5.4) Ua(j),k =
5 feigem, k#j

Note that the coefficients of the solution are symmetric, i.e.
Ue(i) g = Ugh) j = % cye, B # j, k,j € N. Thus the solution of
(5.1) is given by

(o e) o0 [oe)
1
u=ug+ Z foeth ®&; @ Ho) + 5 Z Z Jerqem @& @ Ho
k=1 j=1 k=1
kot

with the generalized expectation

Upg = Z fs(k) ®€k

k=1

2. If f € Hy ® Ho ® Hs, then the solution u belongs to the Wiener chaos
space of maximal order two Hg ® Hi @ Ho, i.e. can be expressed in
terms of multi-indices of length zero, one and two. The coefficients of
the constant part of the solution (the generalized expectation), obtained
for |a| = 0, are given by (5.3) and of the Gaussian part of the solution,
obtained for |a| = 1, are represented in the form (5.4). For |a| = 2 two
cases may occur, o = 26, i € Nor a = ¢® + 0§ £ j. Then, the
coefficients are represented by

f3e k=1
Uoe (i) | = 2 y 7_ k : ke N7 and
3 foctrqper, kFi
2 .
Zf2ct) et k=1
Ue)petd g = 5Seth12:00, k=j : ke N.

3ferteirem, kFiLk#]
3. In general, for any a € Z, |a| = n the coefficients are given in the form

Ul 1)e®) f = Jpewr, A0d U )y o)y 4 olin1) gy =

, 1 . . .
é fg(il)_;,_E(iz)_i_m_i_a(in—l)_i_s(k) 7k ¢ {7/17 12, .0ty Zn—l}
é f25(i1)+5(i3)+”_+5<in71)+6(k) k=i ¢ {127 ...,Zn_l}
= n fgg(il)_1_5(1-4)4_“_4_6(%71)4_6(1@) k=i =iy ¢ {137 ---Jn—l}

n—1 e e . .
\ " f(n—l)a(i1)+sk ,]{J =11 =12 = ... = 1lp—-2 75 In—1

for k,i1,49,...,%,_1,n € N.

Example 5.6. We provide some examples as illustrations for the integral
equation (5.1).
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1. The solution of the equation
du = By, (w)

belongs to the Wiener chaos space of order zero and it is obtained in the
form

u gk dtfk()_’%[ 0]()
kEN/ o

i.e. it is the characteristic function of the interval [0, to].
2. Consider the equation with singular white noise

(5.5) ou = Wi, (w),

where Wy, (w) = > &k(to) Hovy. It is clear that Wy, belongs to the
k=1

Wiener chaos spaceiof order one. Hence the solution of (5.5) belongs to
the Wiener chaos space of order zero. From (5.2) we obtain the chaos
expansion form of the solution

u(t) = Zu(o,o,...),kfk(t)HO(w)

keN

= > Glto) &(t) = duy (1),

keN

which is the Dirac delta function concentrated at ¢.

3. Let ou = > Hy.()(w). The solution belongs to the Wiener chaos space
j=1
of order one. From (5.2) we obtain the form of the coefficients
[0 Ak [0, Gk
ETA faewry G=k T L =k

Thus the solution is obtained in the form

Z u. j &i(t) Hey = Z §i(t) Hoy = Wi(w)

JEN jEN
and represents singular white noise.

4. Consider the equation

1
ou = 5 Bgf(w),

with right hand side 3 Bg) *(w) = 1 (BZ (w) — to) in the Wiener chaos
space of order two. The solution will belong to the chaos space of order
one, i.e. it will be a Gaussian process. Since

_Iyy (/ t° o) ( | to 6(3)ds ) Havo 0

k=11=1
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by symmetry of the coefficients it follows that

1 to to
l k) — k 1)y — — d d .
Jew ety = fotm e 5 (/0 Ei(t) t) (/o & (s) S)
By partial integration we obtain
to t to to
/ < / §k(s)ds) &u(t)dt = ( fk(s)ds) ( fl(s)ds)
0 0 0 0

to t
—/ (/ §z(s)d3) & (t)dt
0 0
i.e. by symmetry of k and I:

[ ([om)onn- [ ([ o)
([ o) ([ o).

Now, for each j € N, by (5.4) we obtain
1 1 to to
Uo() ) = §(f€<j)+€<k> + fempew) = 3 (/ §k(t)dt> ( fj(S)db’)
0 0

-/ § (/ t & (5)ds ) &)

Thus,

u(t,w) = ii (/o (/ &(s ds) & (t )dt> ® &k (t) © Heo (W)
= i (/0 (s > K[0,t0] (1) ® H.() (w)

7j=1
= Bi(w)K[o,](t)-

Note that the Skorokhod integral coincides with the It6 integral for which
it is well-known that fgo By dBy = & (B (w) — to).

. Similarly to the previous case, the equation

has the solution
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Remark 5.7. Note that the operators D and ¢ are not inverse operators. From
the previous examples we have seen, e.g. that for Z7 = Zzozl Hy vy we have
D(3Z) = Wy, while §(W;) = Z. Also, D(3B2?) = By, k(o.1,], While 6(By, kjo.1,])
= By,0(k[o.t,]) = B, = B%Q +to. The ”disturbing” factor 1 is a consequence
of the fact that Z and B? 2 belong to the Wiener chaos space Ha.

It is also clear that R(32) = §(D(32) = §(Wi) = Z and R(3By?) =
S(D(3BP?)) = 6(BiyKjoto)) = BE = BY? + to, which are both in compliance
with R(H,) = |a|H, and Theorem 3.1.

The operators D and ¢ do not commute, which can easily be seen from

D(6(W3)) = D(Z) = 2W; and 3(D(W;)) = 8(dy) = W.

Theorem 5.8. Let u € X ® S'(R) ® (S)_1. If u € Dom_(D), then d(u) €
Dom_ (D) and the following relation holds:

(5.6) D(5u) = u + 5(Du).

Proof. Let u be of the form v = > > uqr ® & ® H,. Then 6(u) =
a€cl k=1

o0
> > Uak ® Hy i 0o, and consequently
a€l k=1

D(5(u)) = Z Z Uq, k; Z(Oz + S(R))i ®&ERHy ) _c)

acl k=1 =1

=3 tap |+ 1) @GO Ho+ Y i @& ® Hyy oo

Q€T k=1 ik
oo oo oo
=) D Uk @G Ha+ D Y Y ittak @& ® Hyp ooy e
Q€T k=1 Q€T k=1 i=1
— u+ 5(D(u)).

The latter equality follows from D(u) = ZZai <Z Uy, ko ®§k> ® & ®
k=1

a€cl i=1
H, . € X®S5R)®S(R)® (S)_; which implies

SDW) =D ) ittak ®E @ Hy oty et

acl i=1 k=1

Since u € Dom_ (D), from Theorem 2.19 it follows that Du € Dom_(J).
Theorem 2.22 ensures that the result remains in X ® S’(R) ® (S)_1, thus the
right hand side of (5.6) is well defined and belongs to X ® S'(R) ® (S)—1. This
means that the left hand side is also an element in X ® S’(R) ® (S)_1, thus
d(u) must be in the domain of D. O
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Remark 5.9. Note that if u € X ® L?(R) ® (S)_1, then

d(u) :/uOWt dt,
R

where the right hand side is interpreted as the X-valued Bochner integral in the
Riemann sense. This is in accordance with the known fact that It6-Skorokhod
integration with the rules of It6 integration (It6’s calculus) generates the same
results as integration interpreted in the classical Riemann sense following the
rules of ordinary calculus, if the integrand is interpreted as the Wick product
with white noise. For example,

/ BtdBt == 5(!@[07150](15)315) = / BtOWtdt == / BtOBédt
[O,to] [O,to} [O,t()]
Lo 1 o
:éBtO :E(Bto—to).
The general case follows easily from the definition of the Skorokhod integral.

Hu=3 c7ua®@Ha=3 ez peq Uak @& @ Hy isin X ® L?*(R) ® (S)_4
then uq k= [ ta(t)ék(t)dt for all @ € Z, k € N. Thus,

5(“) — Z Z Ua, K & Ha—l—e(k) = Z Z /]R ua(t)gk (t)dt ® Ha—l—a(k)

€T k=1 €T k=1
— / (Z Zua(t)fk(t) ® Ha+6(k)> dt
R \aez k=1
= / (Z Uq(t) ® Ha) O (Z §e(t) @ H€<k>> dt
R \aez k=1
R

The following theorem extends the result of Theorem 4.6 and reflects a nice
connection between the Wick product and the ordinary product if one of the
multiplicands is a Gaussian process.

Theorem 5.10. (]20])

(a) Let f € X ® (S)_1 be a Gaussian process, i.e. an element of Ho @ H1
of the form f =37 fulH.w . Then, for any h € X ® (S)_1 of the form
h = ZQGI haHO”

(5.7) hef=hOf =3 > hasew frlay +1)Ha

a€eZ keN

holds, where the right hand side is an element in X ® (S)1 if only finitely
many of its coefficients are nonzero, otherwise it is understood as a formal
(not necessarily convergent) expansion. Some special cases under which
it is a convergent expansion in X ® (S)_1 are provided below:
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(b) In particular, if g € X @ S(R), where g denotes the unique solution to

d(g) = f, then
h-5(g) — hOd(g) = (D(h), g)

holds in X ® (S)_1

(¢) In particular, if h € X ® (S)1 and g € X ® S'(R), where g denotes the
unique solution to §(g) = f, then

h-6(g) — hOd(g) = (g, D(h))
holds in X ® (S)_1

(d) In case g € X @ S(R) and D(h) € X @ L*(R) ® (S)_1, as well as in the
case g € X @ L*(R) and D(h) € X ® L*(R) @ (S)1, formula (5.7) reduces
to

h-6(g) — hod(g) = / g(t) - D(h)(2) dt.

Proof. (a) Assume E(f) = fo = 0. Then, according to Theorem 5.1 there exists
a unique g such that §(g) = f and moreover this g is given by g = > ro; fiék
as an element of X ® S'(R). Thus,

hOf =hOd(g) =D Zh7 <o fn

YEZ n=1
and

= Z Z ha_g(n)ana—e(”)Hs(")

acZ n=1
= Z Z ha—5<”)fn(Hoz + (an - 1)Ha—2s<”))'
a€Z n=1

This implies

h-6(g) —h0d(g) = > Y haeon falan — 1) Hy g

a€Zl n=1

= 37 e falan + 1) Ha.

a€Zl n=1

Now, for arbitrary f let f = f — E(f) and § such that f = E(f) + 8(j).
Since for constants the Wick product and the ordinary product coincide, we
have

h-f=hOf = h-E(f)+h-6(g) — hOE(f) — h0(g) = h-6(g) — hO(9)

= D> 3 hapeon fulan + 1)H,

a€Z n=1
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Convergence of the series on the right hand side of (5.7) can be proven
only in the special cases (b), (¢) and (d). For example, if (b) holds, then

g = kafk and fr = (&, 9), k € N, which reduces to fi = [; g(t)&(t)dt in
k=1
case of g € L?(R) and since D(h) = Z Z Py et (o +1)&, Hy, we may write
acZl n=1

the right hand side of (5.7) as

DD hape(@n + D€, ) Ha = (DD hapeon(an + 1)énHa, g)

aceZ n=1 a€Z n=1

= (D(n),g).

Assume that h € X ® (S)_1,_, for some p > 0 and that g € X ® S;(R) for
all 1 > 0. Then h-6(g) —h0d(9) =X nez Donet PafnanH, ) is well defined
in X ®(S5)_1,-4 for ¢ > p+ 2. This follows from the fact that |a| < (2N)* and
thus

= (g™
DD hallxllfallilan*(2N) 72t ==

acn=1
= D a5 fall5 lan * (2N) =9 (20)4
acIn=1
< D el @N) 70D £ 1% (20)°
a€el n=1
< O al X @N) TP fallk (2n) <00
aEl n=1

for ¢ —2 > p and ¢ <. Since [ is arbitrary this holds for all ¢ > p + 2.
The proofs of (c) and (d) are similar. O

Remark 5.11. Especially, if fi1, fo are both Gaussian processes such that
fi=10(gi), 9i € X ® L*(R), i = 1,2, then
S(an) - Bl02) — 8(01)08(02) = | or(O)ga(t)a.

This is in compliance with the (L)2-result from [13].

Example 5.12. For example if g = d; (the Dirac delta distribution) we have
f=0(dy) = Wy, (d¢,D(h)) = D(h)(t) and thus retrieve the result of Theorem
4.6.

From (5.7) it follows that

B} — By = /Rﬂ[o,t](S)D(Bt)(S)dS = /RH[O,t](S)/i[O,t}(S)dS =t.
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Remark 5.13. One might define a new type of ”scalarized” Wick product con-
taining in itself an integral operator, i.e. the scalar product in L?(R) or the
dual pairing (-, -) of a distribution in §’(R) and a test function in S(R). Thus,
ifa=73 craala € L*(R)®(S)-1,b= g7 bsHs € L*(R) @ (S)_1, then
adb € (5)_1 is defined by

aQb:Z Z (aq,bg)H.

7€ atp=y

Similarly, if a € S'(R)®(S5)-1, b € S(R)®(S)_1, the result will be a4b € (S)_;.
Now, the right hand side of (5.7) can be rewritten as D(h)4D(f). Clearly,

D(h)#D(f) = Z Z P qet (ar +1)EHo @ Z fkka(o,o,o,...)

a€cZ keN keN

- Z(Z Pggetm (0 + 1)k, Z fi&) H,

veZ keN leN

= Z Z hopetm (ar + 1) frHo,

vye€Z keN

since (£k,&;) = 1 only for k =1 and (&, &) = 0 for k # [.
Thus, Theorem 5.10 b) - d) state that

h-f=hOf +D(h)#D(f).

In [14, 31] a more general formula appears in the f,g € X ® (L)? case,
where the Wick product scalarizes through the n-fold integral:

(68 h-f=hof+ 3 DO OO = I (B (H)4B(7),

neN neENy

under suitable conditions that ensure the convergence of the latter sum.

In a very similar manner to (5.8) it is possible to express the Wick product
through the ordinary product. This has been proved in [14] and used also in
[37]. For f,g € X ® (L)? it holds that

5.9) ros= Y S ), po (),

neNy

where (-, -) denotes the scalar product in L?(R)®™.

Both identities: (5.8) and (5.9) can be generalized to the case when
f € Domy(D) and h € Dom_ (D) or vice versa. In this case we interpret
(-,-) as the dual pairing between S’(R)®™ and S(R)®™.

6. Properties of the Malliavin operators

The following theorem states the duality between the Malliavin derivative
and the Skorokhod integral in form of (6.1), which is also called the integration
by parts formula.
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Theorem 6.1. (Duality) Assume that either of the following holds:

(a) F € Dom_(D) and u € Dom(§)

(b) F € Domy(D) and uw € Dom_(9)

(¢) F € Domy(D) and u € Domg(J) .
Then the following duality relationship between the operators D and § holds:
(6.1) E(F-6(u)) = E((DF, u)) ,

where (6.1) denotes the equality of the generalized expectations of two objects
in X ® (S)_1 and (-,-) denotes the dual paring of S’'(R) and S(R).

Proof. First we note that Theorem 2.16 implies that in all three cases (a), (b)
and (c), the product on the left hand side of (6.1) is well defined and F' - §(u)
is an element in X ® (S)_1. Also, the application of the dual pairing in S’(R)
will make (D, u) also an element in X ® (S)_;. Now we prove that both objects
have the same expectation.

Let u € Dom(d) be given in its chaos expansion form v = ) > ug,; ®

BET jeEN
§; ® Hg. Then 6(u) = > > up; ® Hgy . Let ' € Dom(D) be given as
BET jeN
F=73% fao®H, Then D(F) = > > (ap+1) foretm ® & ® Hy. Therefore
a€Z €T keEN

we obtain

=22 2 Jaus; © Ha- Hp oo

a€T BET jEN
a\ (B +el)
=30 3D DIATIE D SENE( (0 | (A AT

The generalized expectation of F' - d(u) is the zeroth coefficient in the pre-
vious sum, which is obtained when o+ 8+ V) = 2y and v < min{a, 4},
i.e. only for the choice 8 = a —eU) and v = «, j € N. Thus,

E(F-6(u)) = Z Z fallg_ci j - al = Z Z Satel Ua,j (a4,

a€Z,|a|>0j€N a€T jeEN

On the other hand,

ZZZZ ak +1) forem ug,j (&k, &) Ha - Hpa

a€Z BET keN jeN

=) > D (aj+ 1) faremugy Y, A (i) <§) Hotp-24

a€l Bel jeN y<min{a,3}
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and its generalized expectation is obtained for a = 3 = . Thus

E(D(F),u) = 33 (a5 + 1) fuyentia -

a€eZ jeEN

- ZZ fa+5(j)ua,j . (a+g(3))|

a€eZ jeEN
_ E(F-5(u)).

U

The next theorem states a higher order duality formula, which connects the
kth order iterated Skorokhod integral and the Malliavin derivative operator of
kth order, k € N.

Theorem 6.2. Let f € Dom . (D*)) and v € Dom_ (§)), or alternatively let
f € Dom_(D"®) and u € Dom, (6)), k € N. Then the duality formula

B (f- 89 (w) =B (D (), w)

holds, where {-,-) denotes the duality pairing of S'(R)®* and S(R)®*.

Remark 6.3. The previous theorems are special cases of a more general identity.
It can be proven that, under suitable assumptions which make all the products
well defined, the following formulae hold:

(6.2) F§(u) = 5(Fu) + (D(F), u),

k
(6.3) Fs®(u)=>Y" (k) sEI(DWF W), keN.

- (3
1=0

The special case of (6.3) when u € Domg(6) i.e. when u is square integrable
has been proven in [33]. Taking the expectation in (6.2) and using the fact that
d(Fu) = 0, the duality formula (6.1) follows.

Example 6.4. Let v € L?(R). In Remark 4.10 we have shown that the
stochastic exponentials exp®{5()} are eigenvalues of the Malliavin derivative
i.e. D(exp®{d(x)}) = ¥ - exp®{§(¥))}. We will prove that they are also eigen-
values of the Ornstein-Uhlenbeck operator. Indeed, using (6.2) we obtain

R(exp®{3(¥)}) = (v - exp®{3(¥)})=0(v) exp®{3(¥))} — (D(exp®{d(¥)}), ¥)
= 0() exp®{8(¥)} = (¥ - exp®{6(4)}, )
= (0(4) = [[ll72x)) exp®{5(4)}.
In the next theorem we prove a weaker type of duality instead of (6.1)

which holds if F € Dom_ (D) and v € Dom_(d) are both generalized processes.
Recall that <, -,- >, denotes the scalar product in (5)¢ .
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Theorem 6.5. (Weak duality, [24]) Let F € Dom_,(D) andu € X ®(S)_1,—4
for p,q € N. For any ¢ € S_,(R), n € N, it holds that

< (DF, ) p,u>_, =< F,d(pu) >_,,
forr >14max{q,p+1,n+ 1}.

Proof. Let F =3 7 faHoa € X®(S)_1,—p, u =) ez UaHHo € X®(S)_1,_4
and ¢ = >, ke € S_n(R). Let r > 1+ max{q,p +1,n + 1}. Then, for
kEk>p+1,DF € X® S_k(R) ® (S)—L—P CX® S—(r—l)(R) & (S)—l,—(r—l) -
X ®S_+(R)® (5)o,—r. Also, pu € X ® S_,(R) ® (5)_1,—4 implies that for
w > max{q,n+ 1}, (pu) € X @ (5)-1,-0w € X @ () —1,—(r—1) € X @ (5)0,—r-
Clearly, ¢ € S_,,(R) € S_,.(R). Thus,

DF, @) r = O (k+1)fageor Ho @ ks Y orbk) —r

keNael keN
= Z Pk Z(ak + 1)fa+a(k)Ha (2]{)—7“7
keN a€el

and consequently

< <DF7 90>—7"a U >y
= <<Z Z on(ak + 1>f0¢+5(k’) (Qk)irﬂou Z uaHa >y

o€l keN a€T
= ) alug Y pr(ar + 1) fuyom(2k)TT(2N) T
acl keN

On the other hand,

pu = Z Z UaPrér @ Hq

a€Z keN
and
d(pu) = Z Z Uy (k) P H -
a>0 keN
Thus,
< F7 5(@“) >>—7" = < Z fOéHOu Z Z 'u’a—s(k)@kHOé >>—T
acel a>0 keN
= Z Oé!fa Z Upy— (k) Pk (2N)_Ta
a>0 keN
= 3D B+ M) fap e ugpn (2N) T
BET keN
= YD BB+ ) fapemuper(2k) T (2N) TP,
BET kEN

which completes the proof.
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The following theorem states the product rule for the Ornstein-Uhlenbeck
operator. Its special case for F,G € Domg(R) states that F - G is also in
Domg(R) and (6.4) holds; the proof can be found e.g. in [16].

Theorem 6.6. (Product rule for R)

a) Let F € Dom(R) and G € Dom_(R), or vice versa. Then F -G €
Dom_(R) and

(6.4) R(F-G)=F -R(G)+ G R(F)— 2 (DF,DG),
holds, where (-,-) is the dual paring between S'(R) and S(R).
b) Let F,G € Dom_(R). Then F -G € Dom_(R) and

(6.5) R(FOG) = FOR(G) + R(F)OG.

Proof. a) First let us note that according to Theorem 2.16, F' - R(G) and
G-R(F') are both well defined and belong to X ®(.S)_1. Similarly, (D(F'), D(G))
belongs to X ® (5)_1, thus the right hand side of (6.4) is in X ® (S)_1, which
means that F'- G € Dom_(R) according to Theorem 3.1.

Now let F'= > fo®Hy € Domy(R)and G = ) gsg® Hg € Dom_(R).
ac’l BET

Then, R(F) = 32 |al fo ® Ha and R(G) = X |8]gs @ Hs.
ac’l BET
The left hand side of (6.4) can be written in the form

RIF-G)=R(D.D fags >, (i) (5) Hutp oy

o€ BET vy<min{a,5}
a\ (B
- S ts X A (0)(0) lat 8-l Harss,
a€l BET y<min{a,S} 7 K
() (P
=3 fags Y, A (laf + 18] = 2]7]) Hatp-24-
a€l BET y<min{a,S} 7 7

On the other hand, the first two terms on the right hand side of (6.4) are

00 RO G=X 3 fogpe S %) () ol ftarsr,

a€l BeET y<min{«,8}
and
a\ (B
6.7) F-RG) =D > fags® 7!< >( )Iﬁ!Haw_m.
oy y<min{a,8) N/ N

Since F' € Dom(R) C Dom4 (D) and G € Dom_(R) = Dom_ (D) we have
D(F) =3 ez 2pen @ fa @@ Ho_coy and D(G) =3 5.7 > i B g8 RE; @
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Hg_ .. Thus, the third term on the right hand side of (6.4) is

(D(F),D(G) = (D Y arfa®G®Ho e, D > Bigs®& @ Hy i)

|a| >0 keN |B]>0j€N

Z Z ZZ ok B fagp (k&) ® Hoocon - Hp i

|a|>0|B|>0keN jeN

— g(k) — g(k)
=¥ Y S assne 3 w@ 8)@ g LT

|a|>0|B|>0 kEN vy<min{a—e(*) ,B—e(k)} " "

where we used the fact that (§,§;) = 0 for k # j and (&,§;) = 1 for k = j.
Now we put 6 = v 4 ) and use the identities

BT e
a 3 (0% 9 (0%
() mee (02) = () e

and 0y - (6 — )1 = 9!. Thus we obtain

CEETCTES 35 3D SIS S ICEEL (4] (A

a€Z el keN 0<min{«a,3}

XSSt X 60(5) () Hovoa
a€Z el keN 0<min{«a,3}

=> > fags Y, (Z 9k> 0! <z> (g) Hoyp-20
a€l BeET 0<min{«a,8} \keN

= ZZfagﬁ Z ’9\9!(3) (g) Heotp—20.
a€T Bel 0<min{«a,B}

Combining all previously obtained results we now have

=S S s X () (D) el 180 20D Hasiay

a€T BeT y<min{«,8}
a\ (B
=S S heo X (0) (7)ol s
a€l BeET y<min{«,8} 7 7
a\ (B
+22m%§:v(ﬂ)Wva
a€l BET y<min{a,3} g 7
a\ (B
223 fass 12t (2) (7) v,
a€l BeET ’y<m1n{01 B} 7 7

=R(F)-G+F -R(G) -2 (D(F),D(G))

and thus (6.4) holds.
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b) If F,G € Dom_(R), then R(F),R(G) € X ®(S)_1. From Theorem 2.15
it follows that R(F)0G, R(G)OF € X ® (S)_1. Thus, the right hand side of
(6.5) is in X ® (S)_1 i.e. FOG € Dom_(R).

From

GOR(F)=>_ Y |olfags Hy,

YET a+pB=~

FOR(G) =Y > falBlgs H,,

YEL a+p=y

it follows that

GOR(F) + FOR(G) =Y 1| Y fags Hy = R(FOG).

YE€EL  atpB=v

O

Corollary 6.7. Let F € Dom4(R) and G € Dom_(R), or vice versa (inclu-
ding the possibility F,G € Domy(R)). Then the following property holds:

E(F-R(G)) = E ((DF,DG)).

Proof. From the chaos expansion form of R(F-G) it follows that ER(F-G) = 0.
Moreover, taking the expectations on both sides of (6.6) and (6.7) we obtain

Now, from Theorem 6.6 it follows that
0=2E(F-R(G)) —2E((DF,DG)),
and the assertion follows. O

In the classical literature (29, 35]) it is proven that the Malliavin derivative
satisfies the product rule (with respect to ordinary multiplication) i.e. if F,G €
Domy(D), then F - G € Domy(D) and (6.8) holds. The following theorem
recapitulates this result and extends it for generalized and test processes, and
extends it also for Wick multiplication [1].

Theorem 6.8. (Product rule for D)

a) Let F € Dom_(D) and G € Dom4 (D) or vice versa. Then F -G €
Dom_ (D) and

(6.8) D(F-G)=F-DG + DF - G.

b) Let F\G € Dom_(D). Then FOG € Dom_ (D) and

D(FOG) = FODG + DFOG.
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Proof. a)
D(F-G)=D()  foHa - > gsHp) =
a€l BeT
(@) (P
D> D fags D> Hatp-2y | =
a€l BeT y<min{a,8} v v
() (P
DD fags D>, A (ar + B — 27k) EkHaq poy—c0
a€Z BeZ keN y<min{«a,3} v v

On the other side we have

F-D(G)=Y faHo Y Y BrgsérHs o =

o€l BeT keN
o\ (B — ek
)P I DIV DI (0 | (i I RCV Awi—

and

_ (k)
¢ =YYl T o (“ : )(f) ok 6 H oy,

a€el ,BGI keN fygmin{a—g(k),ﬁ} fy

Summing up chaos expansions for F'-D(G) and G - D(F') and applying the
identities

o — ) (o — ()] a!
ak( 7y ) T A a—e®m =) Al a— ) (o =)

()
A7) G

for all o, 8 € Z, k € N and v € Z such that v < min{«, 8} and the expression
(g —v&) + (Bk — k) = g + Br — 27y, we obtain (6.8).

From Theorem 2.16 it follows that all products on the right hand side
of (6.8) are well defined, thus the right hand side of (6.8) is an element of
X ®S5(R)® (S)-1. Thus, F'- G € Dom_(D).

b) By definition of the Malliavin derivative and the Wick product it can be
easily verified that

D(F)OG+FODG) = 3.3 > anfagsHy + D> Y BufagsH,

V€T k=la4B—e(F) = V€T k=la4B—e(F) =

= > > wlagsHy e = D(FOG).

YEZ k=1 a+B=y

and
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If F,G € Dom_(D), then D(F),D(G) € X ®S"(R)® (S)—1. From Theorem
2.15 follows that D(F)OG and FOD(G) both belong to X ® S'(R) ®@ (S)—1.
Thus, FOG € Dom_ (D).

U

A generalization of Theorem 6.8 for higher order derivatives, i.e. the Leib-
nitz formula is given in the next theorem.

Theorem 6.9. Let F,G € Dom_(D®), k € N, then FOG € Dom_(D®) and
the Leibnitz rule holds:

k

D® (FOG) = 3 ( )D(o F)oD*—0(G),

1=0

where DO (F) = F and D©)(G) = G.
Moreover, if G € Dom, (D®) | then F - G € Dom_(D®) and

(6.9) DW(FG) = (k> DO (F)DF=)(@).

- 7
1=0

Proof. The Leibnitz rule (6.9) follows by induction and applying Theorem 6.8.
Clearly, (6.9) holds also if F,G € Domg(D®)). O

Theorem 6.10. Assume that either of the following hold:
e '€ Dom_(D), G € Domy(D) and u € Dom4(9),
o "G € Dom, (D) and u € Dom_(6),
e F,G € Domy(D) and u € Dom(9).
Then the second integration by parts formula holds:
(6.10) E(F(DG,u)) + E(G(DF,u)) = E(F G d(u)).

Proof. The assertion (6.10) follows directly from the duality formula (6.1) and
the product rule (6.8). Assume the first case holds when F' € Dom_(D),
G € Dom (D) and u € Dom(§). Then F -G € Dom_ (D), too, and we have

E(FGé(u)) = E((D(F-G),u)) =E(F-D(G)+ G -D(F),u))
= E(F(D(G),u)) + E(G (D(F),u)).
The second and third case can be proven in an analogous way. U

The next theorem states the chain rule for the Malliavin derivative. The
classical (L)?-case has been known throughout the literature and its Wick-
version was introduced in [1].

Theorem 6.11. (Chain rule) Let ¢ be a twice continuously differentiable func-
tion with bounded derivatives.
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1. If F € Dom4 (D) (resp. F € Domy(D)), then ¢(F) € Dom, (D) (resp.
¢(F) € Domy(D)) and the chain rule holds:

(6.11) D (¢(F)) = ¢'(F) - D(F).
2. If F € Dom_(D) and ¢ is analytic, then ¢°(F) € Dom_(D) and

(6.12) D (¢%(F)) = ¢/°(F)OD(F).

Proof. First we prove that (6.11) holds true when ¢ is a polynomial of degree
n, n € N. Then we use the Stone-Weierstrass theorem and approximate a
continuously differentiable function ¢ by a polynomial p, of degree n, and

since we assumed that ¢ is regular enough, p/, will also approximate ¢’.
n n

(i) Denote by g,(z) = 2™, n € N and let p(x) = Y. arqr(z) = 3. arz® be a
k=0 k=0
polynomial of degree n with real coefficients ag, a1, ... , a,, and a,, # 0. By

induction on n, we prove the chain rule for g,, i.e. we prove
(6.13) D (pn(F)) = p,(F) - D(F), neN.
For n =1, ¢1(x) = x and (6.13) holds since
D(qi(F)) =D(F) = 1-D(F) = ¢, (F) - D(F).
Assume (6.13) holds for & € N. Then, for g, 1 = 2! by Theorem 6.8 we have

D(g41(F)) = D(F*) = D(F - F*)
=D(F)-FF+ F-D(F*) =D(F) - F¥ + F - kF*1 . D(F)
= (k+ 1)F" -D(F) = gj4,(F) - D(F).

Thus, (6.13) holds for every n € N.
Since D is a linear operator, (6.13) holds for any polynomial p,, i.e.

D(pa(F)) =Y axD(gr(F)) = Y angi(F) - D(F) = p,,(F) - D(F).
k=0 k=0

(ii) Let ¢ € C%*(R) and F € Dom,(D), p € N. Then, by the Stone-Weierstrass
theorem, there exists a polynomial p,, such that

16(F) = Pu(F)lIxecs), = [6(F) = arF*|xgs),, =0
k=0

and

16/ (F) = pa’ (F)l xe(s)1, = 16/ (F) = Y axkF* | xg(s),, =0
k=1
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" TiN_e> g:ﬁote by A, = X ® Si(R) ® (5)1,p. From (6.13) and the fact that D
is a bounded operator (Theorem 2.19) we obtain (for [ < p — 1)

ID(G(F)) = ¢'(F) - D(F) | xesi®)@s)., = IDG(F)) = ¢'(F) - D(F)||x,

= [ID(¢(F)) — D(pn(F)) + D(pn(F)) — ¢'(F) - D(F)|| 1,

< D(S(F)) = D(pa(F)) 2, + [ID(pn(F)) — ¢'(F)D(F)| 2,

= [D($(F) = pu(F))l| i, + [IPn' (F)D(F) — ¢'(F)D(F)|,

< DI - 1(@(F) = Pu(F)lxe)s, + 150" (F) = ¢'(E)] - IDE) | xe(s):,, = O,

as n — 0o. From this follows (6.11) as well as the estimate

IDGEDxes @es), <16 (F)llxes), - IPE)|xes @), <0

and thus ¢(F') € Dom, (D).
(#31) The proof of (6.12) for the Wick version can be conducted in a similar
manner. According to Theorem 6.8 we have

D(FO%) = k FOF=DOD(F).

If ¢ is an analytic function given by o¢(z) = Ziozoakﬂ?k, then
P'(x) =30, apkx® ', and thus

=Y apFO% ¢O(F) =) apkFOY,
k=0

k=1
Thus,

= axD(F*) =" apkFOEVOD(F) = ¢/ (F)OD(F).
k=0 k=0
O

Example 6.12. For example, D(B7) = 2By, - D(By,) = 2By, - Kjo,t](t),
D(BP?) = 2By, - ko1, (t) and D(W2?) = 2W,, OD(Wy,) = 2Wy, - dy, (1), since
the Wick product reduces to the ordinary product if one of the multiplicands
is deterministic. This is in compliance with Example 4.4 and Example 5.6.
Also, D(exp®(Wy,)) = exp®(Wy, ) - dy, (t), or more generally D(exp® §(h)) =
exp® d(h) - h for any h € S’(R), which verifies once again that the stochastic
exponentials are eigenvectors of the Malliavin derivative (see Remark 4.10).

Example 6.13. Geometric Brownian motion is defined by
Gy, = Go - eln=37 o+ By
for some constants p, o > 0. Then,
DGy, = Go- e(H=z9%)t0 -D(eBr) = Gy - =297t . 5. (7Bt -D(By,)

12
— GO . e(y,—§0' )to .o - eO’BtO . F':[O,to]( ) = O - GtO O tO] (t)
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7. Applications of the Malliavin calculus

One of the first and most important applications of the Malliavin calculus
concerns the existence and smoothness of a density for the probability law of
random variables. Other, more recent applications in finance ([2, 29, 36]) have
been developed for option pricing and computing greeks (greeks measure the
stability of the option price under variations of the parameters) via the Clark-
Ocone formula. A few years ago it was also discovered that Malliavin calculus
is in a close relationship with Stein’s method and can be used for estimating
the distance of a random variable from Gaussian variables.

In this section we provide an overwiev of some applications and capabilities
of the Malliavin calculus.

For simplicity we will assume that X = R.

7.1. Measurability and densities

Let A € B be a Borel set in S'(R). Denote by k4 its indicator function i.e.
the random variable k4(w) = 1 for w € A and kKa(w) = 0 for w € A°. Then
KA = D nez Gata, Where aq = E(ka - Hy), o € Z. Especially, ag = E(k4) =
P(A).

Proposition 7.1. ([35]) ka € Domy(D) if and only if P(A) =0 or P(A) = 1.

Proof. Since E(ka) = P(A), the chaos expansion of the indicator function is
ka=P(A)+> o00aHa, 0o = E(Hyka)

Assume first that P(A) € {0,1}. Then k4 = const a.e. (it is either 0 or 1
a.e.), thus a, = 0 for all @ > 0. Clearly, (2.8) is satisfied and k4 € Domg(D).

It remains to prove the other direction, that > __, |a|a!|aq|? cannot be
finite unless a, = 0 for all o > 0.

Assume ka4 € Domg(D). Let ¢ € C§°(R) be such that ¢(t) = t* for
t € [-1,1]. According to Theorem 6.11 we have

D(p(ka)) = ¢'(ka)D(ka).

Since ¢p(ka) = K% = Ka, it follows that

a>0

D(ka) =2 k4 -D(ka).

Thus both for w € A and for w € A° we obtain D(k4) = 0. Now, from Corollary
4.2 it follows that k4 (w) = const for almost all w € €. For the chaos expansion
of K4 this means that k4 = E(ka) = P(A) a.e. and a, = 0 for all & > 0 and
const = P(A). This implies that P(A) is either zero or one. O

Remark 7.2. If P(A) € (0,1), then kg ¢ Domg(D). For example, f(w) =
K{B,(w)>0} & Domg(D) since P{B; > 0} € (0,1).

On the other hand, k4 € Dom_(D) regardless of the value of P(A). This
follows from a, = E(ka Hy) < E(H,) < 1, thus

kAl Dom @) < D la?@N)7P* <3 (@2N)" P2 <00, p>3.
a>0 a>0
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Remark 7.3. Let A be a closed subspace of S’(R). Denote by o[A] the sub-o-
algebra of B generated by A. A random variable f is measurable with respect
to o[A] if and only if D(f) =0 a.e. on A°.

In particular, it can be proven ([3, 17, 35]) that if a stochastic process f; is
adapted to the Brownian filtration A; = o[B; : s < t], then supp D(f;) = [0, t]

ie. Df, = ZaeI ZkEN Oékfa(t) ® fk(s) ® H,_.x =0for s>t
Remark 7.4. Let h € L*(R) and let

M (s) = exp? d(hkjg,s)) = exp (/ h(t)dB; — %/ h2(t)dt) , §>0,
0 0

be the stochastic exponential of hrg 4. According to Remark 4.10 it is an
eigenvector of the Malliavin derivative, thus D(M (s)) = h(t)ko,4(t) M (s), i.e.

D(M(s)) =h(t)M(s), for te|0,s].

It is known ([2, 35]) that M(s) is a martingale with respect to the Brownian
filtration, thus for 0 <t < s we have

E(DM (s)[A¢) = E(h(t)M(s)|As) = h(t)E(M(s)|Ar) = h(t)M(2).
On the other hand, from Corollary 5.3 it follows that M(s) = E(M) + §(u) for

u=D(R™(M — EM)). Since 6(h(t)r,qM(s)) = 6(D(M(s))) = R(M(s)), it
follows that u = h(t)k[o,s M (s), i.e.

M(s) = E(M)+ / " h(t)M(1)dB,
0
— E(M)+ / E(DM(s)|A,) dB,.
0

Since the stochastic exponentials are dense in (L)? it follows that the latter
formula can be extended to all M € Domg(D). This result is known as the
Clark-Ocone formula.

Theorem 7.5. (Clark-Ocone formula) Let F € Domy(D) be adapted to the
Brownian filtration. Then,

F(s) = BE(F) + /0 " B(DF(s)|A,) dB,.

Example 7.6.

T

T T
B2 =T+ / E(DB%|A)dB; = T+ / E(2Brkp,1)|Ai)dB;, = T+2 / B:dBy,
0 0 0

by the martingale property of Brownian motion.
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Remark 7.7. For the stochastic exponential M it also holds that
D(E(M(s)|4)) = D(M(t) = h(x)rioq M(t)
= h@)“[o,t]E(M(SNAt) = ’@[o,t]E(h(@ff[o,s]M(S)|At)
= H[O,t]E(DM(s)Mt),

for 0 <t < s. This result extends to all adapted processes: if F' € Dom(D) is
adapted, then E(F|A;) € Domy(D) and

D(E(F(s)|A¢t)) = k0, E(DF(5)|Ay).
In the sequel we are going to show that absolutely continuous distribu-
tions can be characterized via the Malliavin derivative and there exists an

explicit formula for the density of the distribution. For this purpose we note
that ||]D)F||%2(R) = (DF,DF)2) is an element in (L) If F is of the form

2
F =3 ez faHa, then |DF|[72 ) = 3en (Xaer farem (o +1)Ha)™ .

Theorem 7.8. ([17]) Let F' € Domg(ID) be such that |DF||r2@) # 0 a.e. and
IIHI)?% € Domg(8). Then for every ¢ € C3(R),

, B . DF

L2(R)

Moreover, F' is an absolutely continuous random variable and its density ¢ is
given by

DF
(7.2) p(t)=FE (“{F>t} -0 (m)) .

Proof. Using the chain rule (Theorem 6.11) and the duality relationship
(Theorem 6.1) we obtain

() = B(Cpps woR) = ({0 (FDF)

_ (<@,?LTM’D(¢(F>”) =E (5 (JTFQ o )

holds for any u € Domg(6). Especially, for u = DF we obtain (7.1).

Putting ¢(z) = [*__ K(ap)(s)ds, ¢'(x) = K(ap(z) into (7.1) (in fact, we
approximate s (q) With a sequence of smooth functions) we obtain by Fubini’s
theorem that

F DF
Pla<F<b} = FE / Kap(8)ds -0 | —5—

b
DF
= K s ~(5 Tp e — dS,
/a ( =) <HDF|@2(R>)>
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which proves (7.2).
U

Example 7.9. Let F € (L)? be a standardized Gaussian random variable i.e.

an element of H; with chaos expansion F' = Y72 fiH. ), > ;= |fil* = 1.

Then DF = 3777, f;§; € Ho and HID)F||2L2(R) = 1. Also, 6(DF) = R(F) = F

since Gaussian variables are fixed points of the Ornstein-Uhlenbeck operator.

Thus, by (7.2) the density is given by ¢(t) = E(k{p>s ). Indeed, it is easy
z2 1 t

to verify that LOOZL‘\/%G_Td;p = e 7.

7.2. Gaussian approximations

In this section we present some results obtained by combining the Malliavin
calculus with Stein’s method as recently investigated in [34]. It is well-known
that a random variable N has N (0, 1) distribution if and only if

E(N-F(N)—-F'(N)) =0,

for every smooth function F. Thus, according to Stein’s lemma [4], one can
measure the distance to N ~ N(0,1), for an arbitrary random variable Z by
measuring the expectation of Z - F(Z) — F'(Z). We will show using Malliavin
calculus that

E(Z F(Z))=E(F'(Z)(DZ,DR™ " Z))

holds for every F € C?(R). Thus, in order to measure the distance to
N ~ N(0,1), one needs to estimate

(7.3) E|1 - (DZ, DR~ Z)|,
where E|1 — (DZ, DR~ Z)| = 0 if and only if Z ~ N(0,1).

Theorem 7.10. Let f € Dom (D) or f € Domo(D) such that E(f) =0 and
let F € C*(R). Then

E(f-F(f) = E(F'(f)-(Df,DR'f)).

Proof. Since Ef = 0 from (3.1) it follows that RR~!f = f. Therefore, by the
duality formula (6.1) and Theorem 6.11 we have

E(f-F(f)) = E(RR™\(f)- F(f)) = E SDR™'(f) - F())
— E((DF(f),DR™ ) = E (F'(f) - (D(f), DR (f))) -
O

An immediate consequence of Theorem 7.10 and Stein’s lemma is the fol-
lowing corollary.

Corollary 7.11. Let f € Dom (D) or f € Domy(D) such that E(f) = 0.
Then f ~ N(0,1) if and only if (Df,DR-Lf) = 1.
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Theorem 7.12. A random variable f has N(0,1) distribution if and only if
fe(L)?NH, and HfH%L)2 =1, i.e. if it is of the form f = Z;i1 fiH. and
> |fil? =1 holds.

Proof. Let f € (L)>NH; and HfH%L)2 = 1. According to Theorem 2.2, f must

be Gaussian. Since E(f) = fo = 0 and Var(f) = E(f?) = Hf||(L)2 =1, it
follows that the underlying distribution is the standardized Gaussian one.

Vice versa, assume that f has N(0,1) distribution. From Corollary 7.11 it
follows that (Df,DR~1f) = 1. Assume that f has chaos expansion represen-

tation f =) 7 foH,
From Theorem 5.1 follows that the equation 6(u) = f, for Ef = 0 has a

unique solution u = DR~ f and it is of the form (5.2).
Thus,

1=(Df,DR™ f)
= (> D (1) fapew & © Hay Y D (B + |§TE((J;)| & @ H)

€T keN BET jeN
foretm a\ (B
S S ot D 222 ) S () (Dt
a€Z BET kEN y<min{e,B8} TINY

The latter expression can be equal to one if and only if its expectation is equal
to one, and all higher order coefficients in the chaos expansion are equal to
Z€ro.

Thus, E((Df,DR~! f)) = 1 implies (for a = 8 = «) that

Zz|a+g(k)| a+a(k) ol = ZZ |a|+1 (o +eMN)1f2 ate(k)

a€Z keN a€Z keN
S D BT
aGIk:GN
-y (zak)f S
aEI keN acl
= |flre =1

On the other hand, all higher order coefficients have to be equal to zero,
which leaves only the possibility that

fayet =0, forall |a| >0,
i.e. fo =0 for all |a| > 2. Thus, f € H;. O

Corollary 7.13. A random variable f has N'(m,o?) distribution if and only if
fe(L)*NHodH1 and ||fH%L)2 = 02, i.e. if it is of the form f = Z;‘io fiH. o)
and Z;X;1 |f;1? = o2 holds.
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We extend the previous theorem also for generalized random variables (e.g.
the white noise process at a fixed time point). These processes have an infinite
variance (infinite (L)? norm) and they can be regarded as elements of the Kon-
dratiev spaces. Recall that (-,-)_, denotes the scalar product in the Schwartz
space S_,(R).

Theorem 7.14. Let f € Dom_,(D) and E(f) = 0. The following statements
are equivalent:

e f has a generalized Gaussian distribution,
o f € Hq,
o (Df,DR™'f)_p = Iflfs) , , < oo

Proof. Similarly as in the proof of Theorem 7.12 we assume that f is of the
form f =3 .7 faHs. From

const = (Df, DR~ f)_,
_ ZZ o —|—1 aJrE(k)H ZZ ﬁ] +1 |Bfﬁ_{——|—s((3j))| B <§k>§j>*l’

€T keN BET jeN

fprem _ a\(p

=202 > e+ Do T3 g (e + D@32 20 Mooy
a€Z BET keN y<min{a,3} TINT
follows that
Ozk + 1
const = Jopetn ! 1(2k)~
a! s _
ael k=1

and f, =0 for all |a| > 2i.e. f € H;. Thus,
const = Z |€(j)| 52(3') Zékj(zlﬁip = Z ff(j)(2j)7p
k=1 j=1

Cpe®
= fo(j)(QN) P = \fllTsy
i=1

where 0; =0, k # j and 6i; = 1, k = j is the Kronecker symbol.
O

Example 7.15. White noise is a generalized Gaussian process. For each fixed
time point ¢y we have HWto“%s),l = Py 1€;(t0)]?(2)) P < oo, for p > 1 by

boundedness of the Hermite functions: sup,cp £, ()] < Cn~12,neN.
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Remark 7.16. Theorem 7.12 and Theorem 7.14 together with Theorem 2.2
provide a complete characterization of Gaussian processes (classical and gener-
alized processes): All Gaussian processes belong to H; and #H; contains nothing
else apart from Gaussian processes.

Theorem 7.17. ([32]) Let Z € Dom(D) or Z € Domy(D) be such that
E(Z)=0 and Var(Z) = 1. Then the expectation (7.3) satisfies

E (|1 = (DZ,DR*Z)|) < /Var ((DZ, DR~ Z)).

Proof. The assertion follows directly from E(Y)? < E(Y?), ie. E(Y) <

Var(Y) and from Var(l —U) = Var(U). O

Thus, in order to measure how close is Z to being normally distributed,
one has to estimate how close is Var ((DZ, DR~ Z)) to zero. This quantity is
larger than the Kolmogorov distance, but nevertheless still a good approxima-
tion.
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CORRIGENDUM AND ADDENDUM TO "CHAOS
EXPANSION METHODS IN MALLIAVIN CALCULUS:
A SURVEY OF RECENT RESULTS”

Tijana Levajkovié¢!, Stevan Pilipovié? and Dora Selesi?

The estimate o! < (2N)* on page 51 in [1], as well as the inclusions
(S)-1,—p—1) € (S)o,—p and (S)op € (S)1,p, p € N, are not correct. The
correct inclusions are: (S)1, C (S)o,p and (S)o,—p € (S)—1,—p, p € No.

Consequently, the statement and proof of Theorem 6.5 will hold only for the
Hida spaces but not for the Kondratiev spaces. For this purpose we note that
we may define Domg,_,(D) = {u € X @ (S)o,—p : >_per ltalk|ofal(2N) P> <
oo}, and by the proof of Theorem 2.19 [1], D : Domy, _,(D) - X ® S_;(R) ®
(8)0,—p, I > p+ 1. Similarly, we define Domgy _;—4(0) = {u € X ® S_;(R) ®
(5)0,—q : Yoner 2omet Nuaklli ot (ar +1)(2k)H(2N)79% < oo} and by the proof
of Theorem 2.22 [1], 6 : Domg,—;,—¢(6) = X ® (S)o,—q, ¢ > 1+ 1,1 €N.

The statement and proof of Theorem 6.5 on page 86 now have to be modified
as follows.

Theorem 6.5. (Weak duality) Let F € Domg _,(D) and v € Domg _4(D) for
p,q € N. For any ¢ € S_,(R), n < q—1, it holds that

< ADF, @) pyu>_p = < F,6(pu) >,
for r > max{q,p+ 1}.

Proof. Let F' =3 7 faHa € Domo, (D), u = c;uaHs € Domg,_q(D)
and ¢ = Y, n¢rék € S_n(R). Then, for kK > p+ 1, DF € X ® S_x(R) ®
(8)o,—p € X ®S_,(R) ® (S)o,—r if 7 > p+ 1. Also, one can easily check
that pu € Domg,_,,—q(d) and since ¢ > n + 1, this implies that 0(pu) €
X®(5)o,—q € X®(S5)o,—r, for r > q. Therefore we let » > max{p+1,¢}. The
rest of the proof is conducted as in [1]. O
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We consider three fundamental equations of the Malliavin calculus: the equation
involving the Malliavin derivative, the Skorokhod integral and the Ornstein—Uhlenbeck
operator of order k, k € N. These equations provide a complete characterization of the
domain and range of the aforementioned operators. Applying the chaos expansion
method in white noise spaces we solve these equations and obtain an explicit form of the
solutions in the space of Kondratiev generalized stochastic processes.

Keywords: generalized stochastic processes; white noise; chaos expansion; Malliavin
derivative; Skorokhod integral; Ornstein—Uhlenbeck operator

AMS Subject Classification: 60H40; 60H07; 60H10

1. Introduction

Three operators: the Malliavin derivative [), the Skorokhod integral § and the Ornstein—
Uhlenbeck (OU) operator R, play a crucial role in the stochastic calculus of variations.
Especially, the Skorokhod integral is of great importance in the study of non-adapted
stochastic differential equations (SDEs). Some excellent references on Malliavin calculus
and stochastic integration have been written by Nualart [19], Sanz-Solé [24], Dalang [2]
and their coworkers. Since the pioneer work of Itd [8] in characterizing stochastic
integrals in terms of Hermite polynomials, another important keystone was the
development of white noise analysis made by Hida [6] who set up an appropriate
functional analytical framework using nuclear operators to characterize Gaussian
processes. His approach is closely connected to modern quantum theory, where the
Malliavin derivative is known as the annihilation operator, the Skorokhod integral as the
creation operator and the OU operator as the number operator. Second quantization
operator techniques refer to weakening the topology of (L)* spaces in order to obtain
weighted spaces of generalized stochastic processes such as the Hida spaces, Kondratiev
spaces, etc. Along the line of infinite dimensional analysis, with a more probabilistical
approach are the works of Da Prato [3], @ksendal [7], Rozovsky [14] and of their
coworkers.

It is of great importance to manage solving different classes of equations which
involve the operators of Malliavin calculus, but so far all proofs have been on the line of
pure existence/uniqueness and it has been slightly neglected in the literature to explicitly
solve equations of this kind. In particular, we consider the following basic equations

*Corresponding author. Email: dora@dmi.uns.ac.rs

© 2015 Taylor & Francis
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involving kth order iterated operators (k € N):

RY u=g, (M
D%y = h, 2)
Wy =7. 3)

All three operators (Malliavin derivative, Skorokhod integral and OU operator) are
considered in a generalized Kondratiev space setting rather than in the usual (L)* setting.
As a generalization of Hilbert space-valued stochastic processes, we define S'(R)-valued
stochastic processes, which allows further generalizations of the operators.

We provide a new characterization of the domain of all three operators, a more general
one than in the usual (L)? setting, a characterization we have adopted also in [9,11-13].
We show an appropriate embedding of these domains into the Kondratiev-type spaces,
which makes them convenient to study higher order iterated operators of the Malliavin
calculus. On the other hand, Equations (1)—(3) we considered in this paper will provide
(for k = 1) a full characterization of the range of all three operators. Moreover, we obtain
explicit forms of the solutions of the general kth order Equations (1)—(3), which is highly
useful for computer modelling that involves polynomial chaos expansion (PCE)
simulation methods used in numerical stochastic analysis. Some excellent applications of
the PCE method are made in the papers of Karniadakis [28], Matthies [17], Ernst [4] and
many others with a growing tendency to apply PCE methods in industry.

The main purpose of this paper is to prove the existence and uniqueness of Equations
(1)—(3). We present the methodology of chaos expansions on Equation (1), which is the
most representative to get familiar with its idea. We also correct the estimate obtained in
[9] for the domain of the Skorokhod integral in Theorem 2.8. The first main result of the
paper is the proof of the existence and uniqueness of a solution of Equation (2), which will
be provided in Theorems 4.1 and 4.5. The second main result of the paper is to present an
explicit form of the solution of the integral Equation (3), which will be done in Theorems
5.1 and 5.3. As a consequence, representation forms via kth order integrals and kth order
OU operators follow for singular stochastic processes (Corollaries 3.2 and 5.4).

In [11] we proved that the Malliavin derivative indicates the rate of change in time
between the ordinary product and the Wick product, i.e. i+ W, — hOW, = D(h) holds.
In this paper we go one step further and prove a similar result for stochastic processes other
than white noise W, (see Theorem 5.2). Hence, as a consequence one can define the
ordinary product in a generalized sense. This result is closely related to that in [18], where
the authors study nonlinear SDEs by replacing polynomial nonlinearities with Wick type
nonlinearities and estimate the error by a Taylor series involving Wick products and
Malliavin derivatives. We also compare the ordinary derivative with the Malliavin
derivative in Theorem 4.4.

The chaos expansion method we are using to solve Equations (1)—(3) can also be used
to solve equations involving generalized Malliavin operators defined in [16], but this will
be the topic of a future paper.

2. Basic notions

Let (€, F, P) be the Gaussian white noise probability space (S'(R), B, u), where S'(R)
denotes the space of tempered distributions, B the Borel sigma-algebra generated by the
weak topology on S'(R) and w the Gaussian white noise measure corresponding to
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the characteristic function
. _ 2
J e’<“"¢)du(w) = e (1/2)||(1>||L2(|R{)7 ¢ € SR, %)
S'(R)

given by the Bochner—Minlos theorem.

Denote by /,(x) = (—1)"e*/2d" /dx" (e~ ®*/2) ' n € Ny, Ny = N {0}, the family of
Hermite polynomials and &,(x) = 1/Ja/in — Dl @"/2h,_1(v/2x), n € N, the family of
Hermite functions. The family of Hermite functions forms a complete orthonormal system
in L?(R). We follow the characterization of the Schwartz spaces in terms of the Hermite
basis: the space of rapidly decreasing functions as a projective limit space S(R) =
Nien,Si(R) and the space of tempered distributions as an inductive limit space S'(R) =
Usen, S-1(R) where

SIR) = {f = ad Il = a0’ < oo}, 1€2,7=-N[JNo. (5
k=1 k=1

2.1 The Wiener—1Ito chaos expansion
Let 7 = (N{}J)C denote the set of sequences of non-negative integers which have only
finitely many non-zero components @ = (a, gz, ..., 0,,0,0...), 0, ENp, i = 1,2, ...,m,
m € N. The kth unit vector ¢ ® = (0, ...,0,1,0, ...),k € N is the sequence of zeros with
the number 1 as the kth component. The length of a multi-index o € Z is defined as
lal =377, ax. Let @N)* = [[2, (2k)*. Note that Y o7 2N) 7% < oo for p > 1 (see,
e.g. [7]).

Let (L)> = L*(S'(R), B, 1) be the Hilbert space of random variables with finite second
moments. We define by

Ho(®) = [[ (@, &), a €T,
k=1

the Fourier—Hermite orthogonal basis of (L)* such that ||Ha||(2L)z = a!. In particular, for
the kth unit vector H,w(w) = {(w, &), k € N,

The prominent Wiener—Ité chaos expansion theorem states that each element
F € (L)* has a unique representation of the form

F(0) = aqHo(w),

€T

w € S(R), a, € R, a € Z, such that ”F”(2L)2 =Y erddal <oo

2.2 Spaces of generalized random variables

The stochastic analogue of Schwartz spaces as generalized function spaces is the
Kondratiev spaces of generalized random variables.
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DEerINITION 2.1. The space of the Kondratiev test random variables (S); consists of
elements f = > cracHo € (L), ay € R, @ € T, such that

71T, =~ a2(@)?@Ny* < oo, for all p € Ny.

a€ET

The space of the Kondratiev generalized random variables (S)_; consists of formal
expansions of the form F = )" _;aoHqa, ao € R, @ € Z, such that

||F||2,1‘,p = Zai 2N)P* < oo, for some p E Nj.
aET

This provides a sequence of spaces (S),, = V=2 eraaHa: fll,, < oo},
pE€{-1,1}, p € Z. Thus, (S = Npen, ($)1, can be equipped with the projective
topology and (S)_; = UpENo (8)—1,—p as its dual with the inductive topology. It holds that
(8); is a nuclear space and the following Gel’fand triple is obtained

() C L C(S)-;.

2.3 Generalized processes

Let X be a Banach space of functions on R endowed with |||y and X’ its dual.
Alternatively, X can be taken as a nuclear space X = N2, X; endowed with a family of
seminorms {|| - [l;;k € No} and X' = [J_, X« its topological dual. The most common
examples used in this paper for X will be the Schwartz spaces S(R), §'(R) and C®(R).

DEerINITION 2.2. Generalized stochastic processes are elements of the tensor product space
X®(S),l or X/®(S),1 .

The Kondratiev space (S); is nuclear and thus (X®(S),) = X'®(S)_,. Note that
X'®(S)_, is isomorphic to the space of linear bounded mappings X — (S)_;.

THEOREM 2.3. ([20]) Let X = N}, X be a nuclear space endowed with a family of
seminorms {|| - |[;k € Ny} and let X' = U,f’:o X _ be its topological dual. Generalized
stochastic processes as elements of X'&®(S)_; have a chaos expansion of the form

F=Y fu®Ha [fu€Xy, €T, 6)

aEL

where k € N does not depend on o € Z, and there exists p € N such that

IR, = D a2 @N) 7 < oo, )

a€ET

The same holds for processes which are elements of X&(S)_;, where X is a Banach
space. In this case the norm ”F||§(®(S),l,,, is defined via (7) where ||-||_; should be
replaced by || - |Ix. ‘

With the same notation as in (6) we will denote by EF = f(90,,..) the generalized
expectation of the process F.

In [25,26] a general setting of §'-valued generalized stochastic process is provided:
S'(R)-valued generalized stochastic processes are elements of X®(S)_;, where
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X = X®S'(R), and are given by chaos expansions of the form (recall (5))

f = Z Zaa,k®§k®H(x = Zba®Ha = Z Ck®§k7

aET keN aET kEN

where by = 3 o dai®& € XQS'(R), cx = Y 7 4ax®Hy € XQ(S)—; and aq € X.
Thus, for some p,l € N,

- Z Z ”aa,k”)z( (2]()71(2[\1)*[70( < o0

a€T keN

2
llxes. . ®ew

.
The generalized expectation of an S'-valued stochastic process f is given by

Ef = Z a(().(),m),k®§k = b(o,o,“.)-

keEN

We generalize the definition of the Wick product of random variables to the set of
generalized stochastic processes in the way as it is done in [10,21,22,27].

DEFINITION 2.4. Let F,G € X®(S)_; be generalized stochastic processes with chaos
expansions of the form (6). Assume X to be a space closed under the multiplication f',gg,
for f, gg € X. Then the Wick product FOG is defined by

FOG =" ( > fag3> ®H,.

YEL \ a+B=y

2.4 Operators of the Malliavin calculus

We provide now the definitions of the Malliavin derivative, the Skorokhod integral and the
OU operator, which are extensions of the classical definitions of these operators to the
space of generalized stochastic processes. In [1,3,14,15,19,24] the Malliavin derivative
and the Skorokhod integral are defined on a subspace of (L)’ so that the resulting process
after application of these operators always remains in (L)?. In [9,10,12] we allowed values
in (S)_; and thus obtained a larger domain for all operators.

DEFINITION 2.5. Let a generalized stochastic process u € X&(S)_; be of the form
u=>y 7 usQH,.If there exists p € N such that ) -, |a|2||ua||§(2N)_p"‘ < o0, then
the Malliavin derivative of u is defined by

Du = Z Z akua®§k®Hafs(">7 (®)

a€T keN
where by convention a — e® does not exist if o = 0, i.e.
0, o = 0

H — (k) —
e H a0, . 1,00~ a1, o s00,00,.)s - Ok =1

fOI'O(z(CK],Olz7 ey Op— 1y Oy Olfey 1 ...7am,(),0, ) e
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In the white noise setting the operator D is also called the stochastic gradient of a
generalized stochastic process u. The domain of the Malliavin derivative is given by

Dom(D) = | J Dom,(D) = (] {u EXR(S)_1: Y _ lallually2N) 7" < oo}.

PENy PEN aET
A process u € Dom(DD) C X®(S)_, is called a Malliavin differentiable process.

THEOREM 2.6. ([9]) The Malliavin derivative is a linear and continuous mapping

D : Dom,(D) — XQS_(R)S(S) -y —,, I>p+1, pENy.

The Skorokhod integral, as an extension of the It0 integral for non-adapted processes,
can be regarded as the adjoint operator of the Malliavin derivative in (L)*-sense. In [9] we
have extended the definition of the Skorokhod integral from Hilbert space-valued
processes to the class of §'-valued generalized processes.

DEFINITION 2.7. Let F =3 7 fa®ve®H, € XQS_,(R)&(S)- . p,r €Ny, be a
generalized S—,(R)-valued stochastic process and let v, € S—,(R) be given by the
expansion vo = Y, Vak&ks Vax € R. Then the process F is integrable in the Skorokhod
sense and the chaos expansion of its stochastic integral is given by

F) =) Vaif d®OHupeo. ©)

a€Z keN

The following theorem estimates the domain and range of the Skorokhod integral in a
more precise manner than provided in [9] where a minor error occurred.

THeOREM 2.8. The Skorokhod integral & is a linear and continuous mapping

8: XS ,(RR(S)_y_, —XRWS) -1y, q=r, g>p+1.

Proof. Clearly,

2

”‘S(F)”)Z@(S),l_,q _ Z (2N)*q(a+s<k>)

> Vaifa

a€Z ||keN X
2
=3 D varfu2)T WP | @N)T
a€T ||keN X
2
= > Ilfally <Z |va,k|(2/«)‘@/2)(2/«)‘“"‘”/2)) (2N)
aE€ET keN
=" lifally <Z Vi7" <2k>‘<‘1‘f’>) (2N~
a€ET keN keEN
= > lfallZlivall® ,@N) - >~ k)P
aET keN

2
= MllFllyes ,mnes.,, <



142 Section 1.3

112 T. Levajkovic et al.
for ¢ = r, where we used the Cauchy—Schwarz inequality and the fact that

M=> @k @P<c, g>p+l.
keN

It follows that the domain of the Skorokhod integral is

Dom(8) = XS R)Q(S) 1 = ] Dompn® = |J KBS, RSS) ).
(p.nEN] (pEN]
DEFINITION 2.9. The composition of the Malliavin derivative and the Skorokhod integral

is denoted by R = &°D and called the OU operator.
Thus, for u = Y 7 u.®H, € XQ(S)_, the OU operator is given by

R(u) = Z || uo®@H .

a€EL

Let

Dom(R) = | | Dom,(R) = | {u E XR(S)_; Y _ lallluallz2N) 7 < oo}.

PENy PEN, a€ET

THEOREM 2.10. ([12]) The operator R is a linear and continuous mapping

R : Domy(R) — X&(S)_, p € Np.

—p»

Note that in this setting the domains of [ and R coincide, i.e. Dom(R) = Dom(D).

In the following sections we will prove that the mappings R : Dom(R) — X&(S)_,,
D : Dom(D) — X®S' (R)X(S)_; and & : Dom(8) — X®(S)_,, given in Theorems 2.6, 2.8
and 2.10, are surjective, i.e. the range of the operators are, respectively,

Range(R) = X®(S)_1,
Range(D) = XQS' (R)X(S)_,
Range(8) = XQ(S)_;.

3. Equation with the OU operator

We define iteratively R® = RoR*™D_ k € N, where R? = Id is the identity operator.
Using the fact that RW(H,) = lal'H,, a« € T it follows that

Dom(RW) = | J Dom,(R®) = | J {u EXR(S)-1: Y _ lal*lluallz@N) 7 < oo}.

PEN, PEN, a€EL

Note that actually for each k € N, Dom(R®) = X®(S)_,. Since |a] = 2N)?, it
follows that

D el luallZN) 7 = > " luallZ2N) P 720% <3 ™ flug [ 2N) 79 < oo,

a€ET a€ET a€ET
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p — 2k = g. This means that if u € X®(S)_, _, for some ¢ = 0, then u € Domp(”R(k)) for
p = q+ 2k

THEOREM 3.1. Let g € X®(S) | —,, p € Ny, have zero generalized expectation. Then for
each k € N the equation

R¥u=g, Eu=iy€EX
has a unique solution u € Domp(R(k)) represented in the form

8a

u =iy + ®H,,.

la*
aEZ,|al>0

Proof. If we seek for a solution in the form of u = 3", us®H,, then from R*u = g it
follows that

D lalua®Ho = ga®Ha,

aET a€ET

1e. Uy = ga/lalk for all @ € Z, |a| > 0. Clearly, g must have zero expectation for the
equation to make sense, and therefore u(o,,,..) can be chosen arbitrarily. On the other
hand, if we have an initial condition E(u) = iig, then u0y0,..) = Eu = fiy. Also, u €
Dom,,(R(k)) since

D L™ lluall3@N) 7 =Y~ ligallz2N) 7 < co.

lal>0 |a|>0 0

COROLLARY 3.2. For every k € N, each process g € X®(S)_, can be represented in
the form

&= E(g) + Rw),

for a certain u € X&®(S)_, given in terms of g.

Proof. Assume k = 1. If E(g) = 0, this is the statement of Theorem 3.1 Otherwise, for
E(g) # 0, let g = g — E(g), E(g) = 0, and apply the previous case to obtain i such that
R(@#) = g. Now, since i1 = R1(3) = R (g — E(g)) and g — E(g) = R(R"'(g — E(9)),
it follows that g = E(g) + R(u) for u = R~ (g — R(g)).

Similarly, for arbitrary k€N, g=E(g)+ ROw) for u= R(_k)(g — E(g)),
where R"® denotes the inverse operator of R® and is well defined according to
Theorem 3.1 O

4. Equation with the Malliavin derivative

We consider the initial value problem involving the Malliavin derivative operator

(10)

Du=h, heXQSRS)_,
Eu= fto, fto eX
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and prove existence and uniqueness of its solution. We will solve the equation by applying
the integral operator on both sides of the equation and by using Theorem 3.1

THEOREM 4.1. Let a process i € X®S_,(R)YQ(S) | 4, p € No, ¢ > p + 1, have a chaos
expansion representation 1 = 7> e\ N0k ®EQH . Then Equation (10) has a unique
solution in Dom,(ID) represented in the form

1
u=iog+ mZha,w,’@H&. (11)

aE€ETL |a|>0 keN

Proof. From the assumption h € X®S_,(R)&X(S)_, ,, for some p =0, ¢>p+1, it
follows that 4 is integrable in the Skorokhod sense and its integral &(#) is of the form (9).
Note that the assumption ¢ > p + 1 does not reduce generality of the theorem, since every
process from X®S_,(R)®(S)_; _4 for k = p + 1 can be embedded into the larger space
X®S_,(RA(S)_, _z, where k > p + 1.

We are looking for a solution of (10) in Dom,(D) in its explicit form

u= Z U QH .

a€ET
First we apply the operator & on both sides of Equation (10) and thus obtain the equation
8(Du) = 8(h). Putting 6D = R we transform the initial Equation (10) into its equivalent
form

Ru = 8(h),

for a given h € XQS'(R)X(S)_,. Thus, the solution u is calculated from
zz:laluaébfia ::éi(:g::}i:hakébéiéblia)
aET a€T keN
Z |a|u,RH, = Z Z haAk®Ha+£(k)

aE€ET a€ET keN
E |a|ua®Ha = E E ha_€<k)_k®Ha.
aET,|a|>0 a€Z keN

Due to the uniqueness of the chaos expansion of a process represented in the
orthogonal basis {H,},e7, it follows that

|alug = Zhu*E(h,k’ || > 0.
keN

Thus, for || > 0 the coefficients of the solution are represented by

1

~ lal

> ha-cwg, forlal > 0. (12)
keN

Uy
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From the initial condition Eu = iig it follows that
u,0,..) = do-

Now, we prove that the solution u belongs to the space Dom,(DD). Clearly,

2 2 2 —
“u”Domq(ID) = Z Ial ”uallx(ZN) a

a€ET

D

a€T

2
(ZN)*q(a+e ®)
X

2
=> (leha,kllx(zk)@/”(zk)<<”>/2>) (2N)

a€Z \keN

= 3 Ihasl2@0) 72N S @1y

a€Z keN kEN

Z ha,k

kEN

2
= Clihllkes ,@es , , < ®
since C =Y, (2k)" 7P < oo, for g > p + 1. O

The following theorem serves as a motivation to consider SDEs with the Malliavin
derivative.

THEOREM 4.2. ([11]) Let h € X&®(S)_, and W,, B, denote white noise and Brownian
motion, respectively. Then,

hW, — hOW, = D(h),

i.e. (d/dr)(h- B, — hOB;) = D(h) in weak S'(R)-sense.

Remark 1. Note that if h € X&(S)_; _,, then D(h) € X&S_(R)YX(S)_| —(y42), I > p+ L.
Thus, apart from the Wick product 2>W, being well defined, the ordinary product is also
well defined in the generalized sense as an element of X®S'(R)Q(S)_; and it is given by
h-W; =hOW, + D(h).

Example 4.3. Let X = S'(R) and h = W,,, where W, is singular white noise. Then
Wi W, =W, OW, 4+ D(W,) = W, OW, 4 d,, (1) (13)

holds in S'(R)®S'(R)Y®(S)_, (see Section 6). Note that (13) is well defined for all (¢, ty) €
R? except for ¢ = #, where the Dirac delta distribution d;, () = d(r — 1) € S(RXST'(R)
has its singularity. It is possible to give a meaning to d,,(fp) = 220:1 &.(t0)? as the point
value of a distribution in the sense of Colombeau generalized numbers, but this
exceeds the scope of this article and will be the topic of an upcoming paper. Thus, in
Colombeau sense, it will be possible to define W? = W2 + d,(t). For Colombeau theory
we refer to [5].

The previous theorem stating that the Malliavin derivative indicates the speed of
change in time between the ordinary product and the Wick product motivates us to
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consider equations of the type D(u) = (d/dr)f, i.e. to compare the Malliavin derivative
with the ordinary derivative.

THEOREM 4.4. Let f € X®S 1 (R)®(S)_| —,, p > k+ 1, and @iy € X. Assume f is of the
formf =73, ienfajQ§OH o, where fo; € X, a € Z, j € N. The equation

d
D(”) = af7 Eu = ﬁ07

has a unique solution u € Dom, (D)), given by

_ 1 > j+1 J
u=igy+ Z m (fas“),Z + FZZ (fasVLﬂ»I T _fa*s@‘/'*l \/;) ) ®Ha-

aETL |a|>0

Proof. By differentiating f component wise in weak S'(R) sense we obtain

d > d
O=> (Zfa,a g,-(r)) Hg

a€EZ \ j=1
=y (Zn(ﬂgﬂm - \/’Zng(r)))Ha,
a€Z \ j=1

by the well-known identity formula for derivatives of Hermite functions [7]. This is further

equal to
S j+1 J
Z fa,2§1(t)+z Sfajr — Saj-1 3 &(1) |He.
J=2

a€ET

Note that if f, = Z;ilfa,jgj € X®S_(R), @ € T then (d/dt)f o € X®S_(+1)(R) since

d 2

afa

= fanlly + Z (I[fa#l 126+ 1) + [faj1 ||)2((]~))(2j)—<k+1>
=

X®S— e+ ([R)

= O M ajlz@) ™ = Clifallzss @ < o
=1

Thus, applying Theorem 4.1 to the equation
D6 =5 (Furtr 0+ 3" (Faery /L~ £ -71\ﬁ &) ).
aET 7 Jj=2 ! 2 ’ 2 ' 7

where the right hand side is an element of X®S_ 1) (R)®(S) -, p > k + 1, we obtain a
unique solution of the form

o 1 > j+1 i
u=io+ Z m (fa—e(”,Z + FZZ <fa—80)‘j+l T _fa—ew,]'—l\/;>>Ha

a€Z,|al>0
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that satisfies

2 2 2 _
”M”Dom,](D) = Zlal ”ua” (ZN) pe

a€ET
= laolly + €D > " fallz @) “@N) 7
la|>0j=1
= ”ﬁO”?( + C”f”)Z(@S,k([R{)(@(S),,‘,,, < .
O

Now we turn to the case of equations involving higher orders of the Malliavin
derivative. Define D°=1d,D%® = DD* Y k=1,2,3,... and recall that
D : Domy(D) — XQS—(R)®(S)—; —,, for I > p + 1. For higher order derivatives to be
well defined, it is necessary that each result of the application of the operator D remains in
its domain. For this purpose we note that if u € X®(S)_, _, for some ¢ = 0, then there
always exists p > ¢ such that u € Dom,(D). This follows from the fact that |a| = (2N)%,
and thus

> el lualleN) 7 = 3 Hually@N) ™72 = Hlually@2N) ™4 < oo,

€T €L a€ET

forp=q+2.
Thus, e.g. for D®:

DomyD)BX®S_, &(S)_, _, C S, @Dom, (D)5, @5, @XR(S)_, _pan)

where [{ > p+1land L, > p+ 3.
Similarly, for any k € N,

D® : X®(S)—1 —(p—2) C Domy(D) — X®S_;, @S, ®- - @S, &(S)— 1~ p120
where [} >p+ 142G —1),j=1,2, ...,k

THEOREM 4.5. Let h € X®S_,, (R)®S_,,(R)---®S_, (R)X(S)_; _, be of the form

h = Z Z Z - Z haiyis, .. ;s ®6, &, &- - Q& OH .
Q€T =1 i=1  i=I
The equation
D%y = h, (14)

together with the initial conditions

Eu=1iiy € X, EDu)=ii; € XQSR), ..., EO* ) =i € XQFR)Z* D,
(15)
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where @i; € X®S_,, .., (R)&---&S_, (R),j=1,2, ...,k — 1, is of the form

) 0 J )
E § T E :aj~i(k—f+1),i(k—j+2)~, ~ik®§i(k—j+l)®§i(k7/+2)®. : '®‘§im

i =l ineppn=1 =1

has a unique solution u € Dom,(D),q > 1+ max{py, ..., p}, of the form

u =iy + E u1,k®H ) + E E i j, ],k®H 1) g i)

lkl 1=

00

1 (o] 00
+ § E E n3,ik—z,ik—1,ik®H5"k*2’+£“k*l’+a”k’
o=l ip =1 =1

(o]

=113

(16)

+

00
-+ E I’Zkflﬂiz,‘“vik®HS(12)+£“3)+<..+g(ik)

1 =l

x| =
e

0

l 00 00
+ —kg E E ha*e“l)fg('zb-~-7s”k),i],i2,--~,ik®Ha~

lal=k e h=lih=1 =1

Proof. The proof follows by induction on k and Theorem 4.1.
Applying Theorem 4.1 to the equation

DO* P (w) = h
where h= 37 37\ Y0 D00 B s.... @&, ®6,®- - -®E QH, we obtain the
aET

solution in form of

D(kil)(u) = Up—1 + Z i i i/’la S0 01, ®§lz®§h® Q& QH,.
=1

|a|21 11—1 =1

Applying Theorem 4.1 once again and using that

-1 = Z Z Z Uk—1,i,, ..,11\®§17®§m® ®§zk
=1

lz 1!3 1
we obtain
00 (o] o0
D Pw) = iy—y + Z Z o Z lig—1,0y, ... 1 D&,Q- - - Q& QH i)
=1is=1 =1
(o] (o]
Y FZE Zha sy i 1 D@ O, OH,.
|la|=2 i1=1 =1 =1

Following the same procedure with

[

i — 2—22 Z”k 25, . aik®§i3®§i4®"'®§ik
=1

=1 iy=1
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we obtain

i QS
NS

DV (w) = i3 + Y iy i @F,® B ®H
=1

i3=1iy=

©

=1 i3=

+>
la|=3

= lal

+ lg—1,y,.. 1, QE,Q- - Q& OH iy 45

N =

0t

ix=

Sy

n=11i

‘ -

o0
Z hﬂ(*é‘("])*e“z)*E('-@),l—]A,l.z,u. ,ik®§i4®‘ . '(85,'A ®H .

1 ir=1

w

After another k — 3 steps we obtain (16).
Convergence of the series given in (16) follows from
el ) = €O (ol + N sy + M1 sy

2
+||h||X®S7,,(R)®k®(sm) < o,

where C(k) is a constant depending only on k, p = max{p;, ...,pi} and ¢ >p+1
according to the assumption. (]

5. Equation with the Skorokhod integral

We consider now the integral equation
8(u) = f, (17)

where & denotes the Skorokhod integral. We look for the solution in Range(D). It is clear
that u € Range(D) is equivalent to u = D(i), for some @ This approach is general
enough, since according to Theorem 4.1, for all u € X®S' (R)X(S)_, there exists it €
X®(S)_, such that u = (1) holds, i.e. Range(D) = XQS'(R)Q(S)_;.

THEOREM 5.1. Let f € X®(S)_| —,, p € Ny, with zero expectation, have the chaos
expansion representation of the form

f= Y. fa®Ha. foa€EX.

aEZ |al=1

Then the integral Equation (17) has a unique solution u in X®Sfl(|R)®(S),L,p, for
[ > p+1, given by

u=> > (a+1) f“““()k)l R&®H . (18)

a€T keN

Proof. Equation (17) is equivalent to the system of equations

u = D(ir) . u = D(i)
{ sOG) =f, {R(zo =/
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First we solve the equation
R) = f. 19)

We are looking for the solution in the form & = ) ., #®H,, where i, € X are the
unknown coefficients. Therefore, from

R@ = lalia®Ho= > fu®Hq

aET a€Z |al=1
it follows the form of the coefficients

__Ja

fla,="—, a€Z, l|ao=1.
el

Hence, the solution of Equation (19) is represented in the form

fa

lal

it =ity + —QH,, (20)

aET |al=1

where i 0,,.) = flp can be chosen arbitrarily. Now, the solution (18) of the initial
Equation (17) is obtained after applying the operator D to the solution (20), i.e. from

u=DG@= Y Zak [ OE®H e

a€Z,|al=1 kEN

S B NCTRIRET LN

a€T keN

Therefore if we are looking for the solution in the form

= Z Z Uk DEDH o,

a€Z keN

then the coefficients of the solution are

_ fa+e‘k)
uaﬁk—m(akﬁ‘l), aEI,kEN, 21

It remains to prove the convergence of the solution (18) in X®S'(R)®(S)_,. Under the
assumption f € X®(S)_, for some p =0, it follows from Theorem 3 that
it € Dom,(D).

TP
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Hence, the convergence of the solution « in the space X&®S_;&(S)_;.
follows from

2 2 2 _
”u”X®571®(5)71,—p = Z Z ”ua,kllxllfk”_[(zN) be

a€Z keN

poforl>p+1,

(g +1) —pa
= E Z lea+e(k)||§(||§kllz—](2N) P
a€T keN

=3 Wagen FIENZ,N) 7

a€ET keN

= Z Z|lfal|)2((2k)7l(2N)71’(017£(’<))

a€E€Z |a|>0 kEN

= > > Ifallz@o) " @N) P 2ky

a€T keN

= MY IIfallZ2N) 7% < oo,

aET
since M = 3", o (2k) " is finite for I > p + 1. O

Remark 1. 1t is well known that D and 6 do not commute and the following holds.
If u € X®S'(R)R(S)—,, then D(du) = u + 8(Du).

THEOREM 5.2.

(a) Letf € X&(S)_, be of the form f = Zf=0kagm. Then, for any 7 € X&(S)_, of
the form h =" 7 hoHa,

hef =hOf =3 harowfi(os + 1DHa, (22)
a€T k=1
where the right-hand side is understood as a formal (not necessarily convergent)

expansion in X&(S)_;.
(b) Especially, if g € X®S(R), where g denotes the unique solution to 8(g) = f, then

h-8(g) — hO8(g) = (D(h), g)
holds in X®(S)_;.

(c) Especially, if # € X®(S), and g € X®S'(R), where g denotes the unique solution
to 8(g) = f, then

h-8(g) — hO8(g) = (g, D(h))
holds in X®(S)_;.

(d) In case g € X®S(R) and D(h) € XQL>(R)®(S)_,, as well as in the case g €
X®L*(R) and D(h) € XQL*(R)Q(S),, formula (22) reduces to

h-8(g) — hOd(g) = JR g(@) - D(h)(r) dr.
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Proof. (a) Assume E(f) = fo = 0. Then, according to Theorem 5.1 there exists a unique g
such that 8(g) = f and moreover this g is given by g = Z;‘;l fré& as an element of
X®S'(R). Thus,

hOf = hO8(9) = > > " hy puf H

yE€ZL n=1

and

h6(g) Zzha a(")fn a— s(”)Hs"’)

a€Z n=

- Z Z h s(")fn ot (Ol,, - I)Ha—Zs(")) .

a€ZL n=

This implies

h-8(g) — hOd(g) = ZZha enfn(an = DHy 350

a€Z n=1

= Z Z ha+8‘”)fn(an + 1)Ha.

a€Z n=1

Now, for arbitrary f let Ff=f—E({) and g such that f = E(f) + 8(&). Since for
constants the Wick product and the ordinary product coincide, we have

hef — hOf = h-E(f) + h- 83) — hOE(F) — hod@) = h- 8(3) — hOd(®)

- Z i haysofn(an + 1)H,g.

€l n=1

Convergence of the series on the right-hand side of (22) will be proven only in the
special cases (b), (c) and (d).

(b) Since g = >~ \fré and fi = (&, g), k € N, which reduces to i = [, g()é&(n)dt
in case of g € L?(R) and since D(h) = 3" 7> oo | hayem (@ + DEH,, we may write the
right-hand side of (22) as

€l n=1 a€Z n=1

= (D(h), ).

Z Zha+s‘”’(an + l)<§mg>Ha = <Z Zha+s(")(an + 1)§nng>

Assume that i € X®(S)_; _, for some p > 0,i.e. > 7 llha IIX(ZN) P% < 00 and that
g € X®S)(R) for all I > 0 (equivalently f = 8(g) € XQ(S), ), i.e. > oo IlntIX(Zn)l < 0,
Then h-6(g) — hO8(g) = D e7 Zn_l hof watnH o g is well defined in X&(S)_, _, for
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q = p + 2. This follows from the fact that |a| = (2N)* and thus

Zleh Il 2N (=) = Zleh (R IVl Lo 2N) =921

a€Z n=1 a€Z n=1

=" llhallg2N) = 2’“2 £l 2n)1

a€ET

=" lIhallz2N) P“Z lIFullz2n)! < oo

a€ET

forg—2=pand g = I Since [/ is arbltrary this holds for all ¢ = p + 2.

(c) Since h € XQ(S),, Y. .er allhg ||X(2N)”°‘ < oo for all p>0. Assume g €
X&®S_;(R) for some [ > 0, i.e. Zn 1 |lfn||x(2n) ' < c0. Similarly as in (b) we can show
that the right-hand side of (22) is equal to (g,D(h)) and h-8&(g) — hO8(g) =
> aet Dot haf nonH o cw is well defined in X®(S)_; _, for g = [ Indeed, for all
n€N, ¢g>0 and «a €7 such that «, #0, we have (2n)? = (2N)?* and
(2N)7%* < (2n)79. Since o — €™ is not defined if «, = 0, we now obtain

ZZIlh Il e 2N (=) = ZZ”h IV al% Lo 2N~ (2m)¢

€L n= €L n=
=Y Z a1 I (2N)*(2m) (2N
€L n=
=" alllh, ||X(2N)<2+q>“2 Il 2m) e,
a€ET

which is finite for g = .
(d) The proof is similar to those in (b) and (c). O

Now we turn to the case of equations involving higher orders of the Skorokhod
integral. Define 8° = Id, 8% = 558%™ k € N and recall that § : X®S_(R)®(S)_, _,—

X&)y pp=rp>1+1.
Thus, for any k € N,

8N X®S_;, ®S_,®---®S_,(S)_; —, — XR(S)_
forp=r,p> max{ly,bL, ..., I;} + 1.

THEOREM 5.3. Let f € X®(S)_; —,, p € Ny, with zero expectation and zero terms in the
chaos subspaces spanned by H,, |a| = 1,2, ...,k — 1, have the chaos expansion form
F =2 aztf e®Ha, fo € X, @ € T. Then the integral equation

5%y = (23)
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has a unique solution u in X®S_; ®S_;,&---QS_;, &(S) | ,, where max{ly,lr, ..., [} >
p+ 1, and it is given by

u = Z Z Z . Z (a,—l =+ 1) (Oé,'2 =+ 1) . '(O[,‘k =+ l)fa+s(i])+8(i2)+,,_+8(ik) (24)

(la+e@llat s®) + @] Ja+ s + 80 4.+ 60)) ' ®g, ® - @& ®H,.

Proof. The proof follows by induction on k and Theorem 5.1.
The equation 8(8% k) = f, E(f) = 0, has according to Theorem 5.1 the solution

8(k—1)u _ Z Z (ail + 1) |fa+s("|> ®§i|®H0¢

(i1)
«el i=1 a+e®]

and by assumption fg = 0 for | 8] = 0, 1, thus E(§* ") = 0. Applying Theorem 5.1 once
again we obtain the solution to the equation

864 = 33 (@, + D= @g @,

aET i=1 la+ @]

in form of

)

4= SO (s + 1) g 1) @, 06, 8H,.

o+ e®llact o 5 5]

Since fg = 0 for |l =0, 1,2, we have E(8% %) = 0 and we may apply Theorem 5.1
again to obtain an explicit form for §*~ k. Altogether after k steps one obtains the solution
u in form (24).

Convergence of the series follows from

2~y N—L . N—1 -
lullxes @ o5 s, , = Z Z W oo oo llx i)™ -(2i)*(2N) P

«€T iy, ik
= Z Z |lfﬂ‘||§((2il)_lI - '(Zik)_l‘(ZN)_P(Q—S“I)—..._S(ik))
€l iy, i
= SN ST @iy P ST i P < o,
aE€ET i eN =
forl; —p>1,i=1,2,....k .

COROLLARY 5.4. For every k € N, each process f € X&(S)_; can be represented as
k -
fF=EP+Y_8%u,
=1

for some u; € XQS (R)R- - - QF RYQ(S)—_y,j = 1,2, ...,k
———— ——

J
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Proof. Assume first that k = 1. If E(f ) = 0, then by Theorem 5.1 follows that there exists «
such that f = 8(u). Otherwise, let f = f — E(f), E() = 0, and apply the prev1ous case to
obtain @& such that f= 8(@), where i = D), v = R, ie. &= DR '(H). Thus,
f=E(f)=8DMR " - E()), ie.

f=Ef)+ 6u) foru= DR '(f— EF)). (25)

Now, for k=2, it holds that f = E(f) + 6(ii;) = E(f) + &(E(ity) + 8(up)) = E(f)+
8(u1) + 8P (), ity = (DR~ — E(f)), up = (DR~ )(Ml E(ity)), wy = E(ity).

For arbitrary k € N we define recursively i1; = (DR ~)(f — E(f)), il = (DR x
(@tj—1 — E(@tj—1)) for j=2,3,...,k—1, let wy=E®@®), j=1,2,....,k—1 and
w = (DR Y(iig—; — E(fie—1)). With this choice of the integrands u; we obtain

f=E{f)+ 6(ur) + 8Puz) + - - - + 8P (y). .

Remark 2. Note that the statement of Corollary 5.4 reduces to the celebrated Ito
representation theorem (see, e.g. [7,23]) in case when f is a square integrable adapted
process.

6. Examples

(1) The following table provides some illustrative examples to Theorems 3.1, 4.1 and
5.1. In all examples, ko, denotes the characteristic function of the interval [0, 7],
d, denotes the Dirac delta function concentrated at the point ¢, W, =
Zk 1 &(DH ;. denotes singular white noise, B, = Zk 1 (fo §k(€)dv) <@ denotes
Brownian motion and Z = Y",~, Hy,w» is a Kondratiev generalized random
variable. Complete explanations and calculations can be found in [11].

Equations Solutions
R(u) = B,U, Eu = iy u = ip + By,
R(u) = Eu = iy u=1iip+ W,
R(u) = BO% Eu=0 u=l /2)8&
R(u) = W JEu=0 w=(1/2W>
Ru) = Z, Eu—O u=(1/2)2
D(u) = ko4, Eu = iig u =iy + By,
D) = dy,, Eu=iip u=iig + W,
Du)=W,, Eu=20 u= (/22
D(u) = By, Kjo.491, Eu =0 u=(1 /2)13<>2
D) = Wy, dy,. Eu = 0 w=(1/2W>
o(u) = B,0 U= K[0,1]
o(u) = u=d,
8w = (1 /2)13<>2 = /2)( - t0> 1t = By
&(u) = (1 [2OW2 u=wd,
o(u) = u=Ww,

(2) Examples of equations with second-order iterated operators, which are
illustrations of Theorems 3.1, 4.5 and 5.3, are given in the following table.
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Equations Solutions
RPu=2z u=(1/4Z
[D(z)u = K[O,tn]®K[0,tn]s Eu = 0, E(Du) =0 u= (1/2)322
8Pu=12z u=d,
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Abstract

We study parabolic stochastic partial differential equations (SPDEs), driven by two
types of operators: one linear closed operator generating a Co—semigroup and
one linear bounded operator with Wick-type multiplication, all of them set in the
infinite dimensional space framework of white noise analysis. We prove existence
and uniqueness of solutions for this class of SPDEs. In particular, we also treat the
stationary case when the time-derivative is equal to zero.
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1 Introduction and definitions
We consider a stochastic Cauchy problem of the form
d
aU(t, z,w) = AU(t,z,w) + BOU(t, z,w) + F(t,z,w)
U(0,z,w) = U%(z,w),

(1.1)

where t € (0,7], w € 2, and U(t, -,w) belongs to some Banach space X. The operator
A is densely defined, generating a Cy—semigroup and B is a linear bounded operator
which combined with the Wick product ¢ introduces convolution-type perturbations into
the equation. All stochastic processes are considered in the setting of Wiener-1t6 chaos
expansions. A comprehensive explanation of the action of the operators A and B in this
framework will be provided in Section 2.

Our investigations in this paper are inspired by [12] where the authors provide a
comprehensive analysis of equations of the form

%u(t,xyw) = Au(t, z,w) + 6(Mu(t, z,w)) = Au(t, z,w) +/Mu(t,x,w)<)W(x,w) dz,

*University of Belgrade, Serbia.
E-mail: t.levajkovic@sf.bg.ac.rs
TUniversity of Novi Sad, Serbia.
E-mail: stevan.pilipovic@dmi.uns.ac.rs,dora.selesi@dmi.uns.ac.rs,milica.zigic@dmi.uns.ac.
rs
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where ¢ denotes the Skorokhod integral and W denotes the spatial white noise process.
In Proposition 2.8 we prove that for every operator M there exists a corresponding
operator B such that BOu = §(Mu). On the other hand, the class of operators B is
much larger. This holds also for the class of operators A we consider (a comprehensive
analysis of all operators is given in Section 2.1). Thus, we extend the results of [12] and
[13] to a more general class of stochastic differential equations which are driven by two
linear multiplicative operators: A acting with ordinary multiplication, while B¢ is acting
with the convolution-type Wick product.

We have studied elliptic SPDEs, in particular the stochastic Dirichlet problem of the
form LOu + f = 0 in our previous papers [11], [18], [19]. As a conclusion to this series
of papers we study parabolic SPDEs of the form (2.1). Such equations also include as
a special case equations of the form %u = Lu + f and %u = LOu + f, where L is a
strictly elliptic second order partial differential operator. These equations describe the
heat conduction in random media (inhomogeneous and anisotropic materials), where the
properties of the material are modeled by a positively definite stochastic matrix.

Other special cases of (2.1) include the heat equation with random potential %u =
Au+BJou, the Schrodinger equation (ih)%u = Au+BOQu+f, the transport equation %u =
%u + WO%U driven by white noise as in [20], the generalized Langevin equation %u =
Ju+ C(Y’), where Y is a Lévy process, J the infinitesimal generator of a C—semigroup
and C a bounded operator, which was studied in [1], as well as the equation %u =
Lu + Wu, where L is a strictly elliptic partial differential operator as studied in [3] and
[8].

Equations of the form %u = Au + BW were also studied in [14] and [15], where
A is not necessarily generating a Cy—semigroup, but an r-integrated or a convolution
semigroup.

In order to solve (2.1) we apply the method of Wiener-Ité6 chaos expansions, also
known as the propagator method. With this method we reduce the SPDE to an infinite
triangular system of PDEs, which can be solved by induction. Summing up all coefficients
of the expansion and proving convergence in an appropriate weight space, one obtains
the solution of the initial SPDE.

We also consider the case of stationary equations AU + BOU + F = 0. In particular,
elliptic SPDEs have been studied in [11], [13], [18] and [19]. With the method of chaos
expansions one can also treat hyperbolic SPDEs [9] and SPDEs with singularities [21].
One of its advantages is that it provides explicit solutions in terms of a series expansion,
which can be easily implemented also to numerical approximations and computational
simulations.

1.1 (Cy—semigroups

We recall some well-known facts which will be used in the sequel (see [16]). Let X be a
Banach space. If B is a bounded linear operator on X and A is the infinitesimal generator
of a Cy—semigroup {7 };>¢ satisfying ||T3||x) < Me™', t >0, for some M, w > 0, then
A + B is the infinitesimal generator of a Cy—semigroup {S;}:+>0, on X satisfying

IS¢l nx) < Mew MBIt ¢ > 0.
Let u(0) = u® € D = Dom(A) and f € C([0,), X). Recall that u : [0,7] — X is a
(classical) solution on [0,7T] to
d
—u
dt
if u is continuous on [0, T'], continuously differentiable on (0,7, u(t) € D, t € (0,T] and
the equation is satisfied on (0, 7. If f € L*((0,T), X), then u(t) = Ttu0+f0t Ti—sf(s)ds,t €

(t) = Au(t) + f(t), t € (0,T], u(0) =", (1.2)

EJP 20 (2015), paper 19. ejp.ejpecp.org
Page 2/23
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[0, T] belongs to C([0,7], X), and it is called a mild solution. Clearly, a mild solution that
is continuously differentiable on (0, 7] is a classical solution.

Let f € L'((0,7), X)NC((0,T],X) and v(t) = [; T,—sf(s)ds, t € [0,T]. The initial value
problem has a solution u for every u° € D if one of the following conditions is satisfied
(see [16]):

(i) v is continuously differentiable on (0,7).
(if) v(t) € D for 0 < ¢ < T and Av(t) is continuous on (0, T7.

If the initial value problem has a solution on [0, T] for some u° € D, then v(t) satisfies
both (i) and (ii). Note that if f € C'([0,7], X) then conditions (i) and (ii) are fulfilled.
Moreover, if f € C1([0,7],X) and u° € D(A), then for the solution u of (1.2) we have
that u € C([0,7], X) and 2u(0) = Au® + f(0).

1.2 Generalized stochastic processes

Denote by (92, F, P) the Gaussian white noise probability space (S’(R), B, 1), where
S’(R) denotes the space of tempered distributions, 55 the Borel sigma-algebra generated
by the weak topology on S’(R) and p the Gaussian white noise measure corresponding
to the characteristic function

(w 1
/ e ( @)du(w) = exp |:2||¢||%2(]R):| 3 (,b S S(]R),
S'(R)

given by the Bochner-Minlos theorem.

We recall the notions related to L2(€2, i) (see [7]) where 2 = S’(R) and p is Gaussian
white noise measure. Define the set of multi-indices Z to be (INY)., i.e. the set of
sequences of non-negative integers which have only finitely many nonzero components.
Especially, we denote by 0 = (0,0,0,...) the multi-index with all entries equal to zero.
The length of a multi-index is || = >-7° a; for a = (o, a,...) € Z, and it is always finite.
Similarly, o! = H?; «;!, and all other operations are also carried out componentwise. We
will use the convention that o — 3 is defined if a,, — 3,, > 0 foralln € IN, i.e., ifa— 5 > O,
and leave a — $ undefined if o, < 3,, for some n € IN.

The Wiener-Ito6 theorem (sometimes also referred to as the Cameron-Martin theorem)
states that one can define an orthogonal basis {H,}aez Of L?(Q, ), where H, are
constructed by means of Hermite orthogonal polynomials h,, and Hermite functions &,,

H,(w) = H ha, ({0, &), a=(aj,as,...;0n...) €L, weQ=S5(R).
n=1

Then, every F' € L?({, ;1) can be represented via the so called chaos expansion

F(w)=> faHalw), weSMR), Y |fal’al<oo, fo€R, acl

acl acl

Denote by ¢, = (0,0,...,1,0,0,...), k € IN the multi-index with the entry 1 at the kth
place. Denote by H; the subspace of L?(), u), spanned by the polynomials H., (-), k € IN.
The subspace H; contains Gaussian stochastic processes, e.g. Brownian motion is given
by the chaos expansion B(t,w) = > 7=, fot &k(s)ds He, (w).

Denote by H,, the mth order chaos space, i.e. the closure of the linear subspace
spanned by the orthogonal polynomials H,(-) with |a| = m, m € INy. Then the Wiener-Itd
chaos expansion states that L?(Q, 1) = @,._, H.m, where H, is the set of constants in
L2(Q, ).

It is well-known that the time-derivative of Brownian motion (white noise process)
does not exist in the classical sense. However, changing the topology on L?(Q, 1) to

EJP 20 (2015), paper 19. ejp.ejpecp.org
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a weaker one, T. Hida [6] defined spaces of generalized random variables containing
the white noise as a weak derivative of the Brownian motion. We refer to [6], [7] for
white noise analysis (as an infinite dimensional analogue of the Schwartz theory of
deterministic generalized functions).

Let 2IN)* = [I°2,(2n)%", o = (a1,qz,...,Qy,...) € Z. We will often use the fact

n=1
that the series ) __,(2IN)~P“ converges for p > 1. Define the Banach spaces

a€l
(S)p ={F =Y faHa € L*(Qp) : |IF|fs),, = > (a)?|fal?@N)P* < o0}, p € No.
acl o€l

Their topological dual spaces are given by

()1 p={F =) faHa: [IF|fs) , , =D |fal’@N)"* <00}, peNo.

o€l acl

The Kondratiev space of generalized random variables is (S)-1 = e, (5)-1,—p en-
dowed with the inductive topology. It is the strong dual of (S)1 = (1,cy, (S)1,p, called the
Kondratiev space of test random variables which is endowed with the projective topology.
Thus,

(S)1 S L*(p) C(S)a

forms a Gelfand triplet.

The time-derivative of the Brownian motion exists in the generalized sense and
belongs to the Kondratiev space (S)_i,—, for p > % We refer to it as to white noise and
its formal expansion is given by W (t,w) = 377, &(¢)H., ().

We extended in [17] the definition of stochastic processes also to processes of the
chaos expansion form U(t,w) = > .7 ua(t)Ha(w), where the coefficients u, are ele-
ments of some Banach space X. We say that U is an X-valued generalized stochastic
process, i.e. U(t,w) € X ® (5)_1 if there exists p > 0 such that \|U||§(®(S)71ﬂ) =
Paer lallZ (2N) 7 < oo,

The Wick product of stochastic processes F' =) 7 faHo,G =) 5.7 9pHp € X ®

(S)_liS
FOG = Z Z fagﬁH'y = Z Z fﬁg(x—BHaa
YEL a+p=y a€Z B<a
and the nth Wick power is defined by FO" = FO("=DOF, FOO = 1. Note that H,,., = H"
for n € Ny, k € IN.

For example, let X = C*[0,7], k € N. In [18] we proved that differentiation of a
stochastic process can be carried out componentwise in the chaos expansion, i.e. due
to the fact that (S)_; is a nuclear space it holds that C*([0, 7], (S)_1) = C*[0,T] ® (S)_;.
This means that a stochastic process U(t,w) is k times continuously differentiable if and
only if all of its coefficients u,(t), a € Z are in C*[0,T].

The same holds for Banach space valued stochastic processes i.e. elements of
C*([0,T],X) ® (S)_1, where X is an arbitrary Banach space. By the nuclearity of (S)_1,
these processes can be regarded as elements of the tensor product space

CHI0T1, X  (S)—1) = CH([0,T1, X) & (S)—1 = |J C¥(0.T1, X) & (S)1 .

p=0

2 Stochastic operators

Definition 2.1. Let X be a Banach space and O : X ® (S)_; — X ® (S)_1 an oper-
ator acting on the space of stochastic processes. We will call O to be a coordinate-
wise operator if there exists a family of operators o, : X — X, a € Z, such that

O(Zaez faHa) = EaEI 00 (fa)Hy for all F = zaez JaHo € X ®(S)_1.
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Clearly, not all operators are coordinatewise, for example O(F) = F? can not be
written in this form.

Definition 2.2. The subclass of simple coordinatewise operators consists of operators
for which o, = op = 0, , 3 € T, that is, they can be written in form of O(}_ .7 foHa) =
> acz 0(fa)Hy for some operatoro: X — X.

For example, the operator of differentiation [18] and the Fourier transform [21] are
simple coordinatewise operators. The Ornstein-Uhlenbeck operator is a coordinatewise
operator but it is not a simple coordinatewise operator.

Note that even if all o,, a € Z, are bounded linear operators, the coordinatewise
operator O itself does not need to be bounded. If o,, a € Z, are uniformly bounded by
some C > 0, then O is also a bounded operator. This follows from

IO(F)kews) ., < D lloallFxllfalli (21¥) 7
a€cl

< C?Y lfallX @N) 7P = C?|IF[%as), ., < 0
a€l
for F e X ® (S)-1,—p.
This condition is sufficient, but not necessary, and can be loosened by the embedding
(8) 1.5 S (510 ¢ =P
Lemma 2.3. Let O be a coordinatewise operator for which all o, o € Z, are polynomially

bounded i.e. [|o.||(x) < R(2IN)"® for some r, R > 0. Then, there exists ¢ > p such that
O0:X®(S)-1,—p > X ®(S)_1,—¢ is bounded.

Proof. Let ¢ > p+ 2r. Then,

IO(E) % sy, -, < B2 DN fall3(2N) 7% = R* Y || full5 (2IN) ~ (4727

o€l a€cZ
<R falk@N) P = R?(|F| ke, , < o
acl
Thus, O||L(X)®(S)71 <R. O

Note that the condition [0,/ (x) < R(2IN)"* for some r, R > 0 is actually equivalent
to stating that there exists » > 0 such that ) Hoa||i(X)(2]l\I)"’“ < oo0.

Throughout the paper we will consider the equation

9U(t,0) = AU(L©) + BOU(Lw) + F(t,w), 1€ (0.T,weq,

U(0,w) = U%w),

(2.1)

where both operators A and B are assumed to be coordinatewise operators, i.e. com-
posed out of a family of operators {A, }acz, {Ba}tacz, respectively. The operators A,,
« € 7, are assumed to be infinitesimal generators of Cy—semigroups with a common
domain D dense in X and the action of A is given by A(U) = > _ .7 Aa(un)H,, for
U= nertaHs € Dom(A) C D® (S)_1, where

a€l

Dom(A) ={U =) uaHa € D®(S)-1: Ipr >0, Y [|Aa(ua)||5 (2IN) PV < oo},
a€l acel

EJP 20 (2015), paper 19. ejp.ejpecp.org
Page 5/23



Section 1.4 163

Stochastic evolution equations

The operators B,,, a € Z, are assumed to be bounded and linear on X, and the action of
the operator B : X ® (S)_1 — X ® (S)_1 is defined by

BO(U) =YY Bs(tap)Ha=>»_ > Balug)H,.

a€cZ f<a YEZL a+p=y

In the next two lemmas we provide two sufficient conditions that ensure the operator
B¢ to be well-defined. Both conditions are actually equivalent to the fact that B,, a € Z,
are polynomially bounded, but they provide finer estimates on the stochastic order
(Kondratiev weight) of the domain and codomain of B.

Lemma 2.4. If the operators B, o € T, satisfy ) . ||Ba||%(X)(2]N)_"X < oo, then BO
is well-defined as a mapping BO : X @ (S)-1,—p = X ® (8)_1,—(prr4m), m > 1.

Proof. ForU € X ® (S)-1,—p and ¢ = p + r + m we have

212 Balug)IZ (M) < Z{ > HBa”L(X)”U[ij}2(2]N)*(P+T+m)7

v€T a+B=vy ~eT a+B=v

=D N Y Ballix 2N) Y lluslli 2N)

v€T a+p=y a+pB=~
<M (Z IIBaQL(X)(QlN)m> D lusli (2N) 777 ) < oo,
acl BEL
where M =3 _,(2IN)™™7 < oo, for m > 1. O

Lemma 2.5. If the operators B,, a € T, satisfy ) ., ||B(X\|L(X)(2]N)—5a < oo, for some
r > 0, then B is well-defined as a mapping BO : X ® (S)—1,—r = X ® (5)—1,—¢-

Proof. ForU € X ® (S)_1,—r, we have by the generalized Minkowski inequality that

S Y Batwa)lk@ " < Y[ X IBallco luslix] (M)

YL a+B=y YL a+pB=v

IN

T _r 2
< 31D IBallngo (2MN) 5 fug| x (215) 75
yEL o+B=v
2
< (Z ||Ba||L<X><21N>5a> > lluslk (2N) 77 < oc.
a€l BET

O

2.1 Special cases and relationship to other works

Some of the most important operators of stochastic calculus are the operators of the
Malliavin calculus. We recall their definitions in the generalized S’(R) setting [10].

e The Malliavin derivative, D, as a stochastic gradient in the direction of white noise,
is a linear and continuous mapping D : X ® (S)_1 - X ® S'(R) ® (S)_;1 given by

Du = Z Z opUq @ & @ Hyep, foru= Zua®Ha.
a€Z kelN aET

In terms of quantum theory it corresponds to the annihilation operator reducing
the order of the chaos space (DD : H,, = Hpm_1).
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e The Skorokhod integral, ¢, as an extension of the It integral to non-anticipating
processes, is a linear and continuous mapping ¢ : X ® S'(R) ® (S)—1 —» X ® (5)_1
given by

5(F) = Z Zfa®va,k®Ha+ska for F' = Zfa ® <Z Ua,kfk) ® He.

a€T kelN a€l keN

It is the adjoint operator of the Malliavin derivative and in terms of quantum theory
it corresponds to the creation operator increasing the order of the chaos space
(5 : Hm — Hm+1).

e The Ornstein-Uhlenbeck operator, R, as the composition of the previous ones d o D,
is the stochastic analogue of the Laplacian. It is a linear and continuous mapping
R:X®(S)-1 —» X ®(5)_1 given by

R(u) = lajua® Ho, foru=> us® Ho.
acl acel

In terms of quantum theory it corresponds to the number operator. It is a selfadjoint
operator R : ‘H,, — H,, with eigenvectors equal to the basis elements H,, o € Z,
i.e. R(H,) = |a|H,, o € I. Thus, Gaussian processes with zero expectation are the
only fixed points for the Ornstein-Uhlenbeck operator.

Clearly, the Ornstein-Uhlenbeck operator is a coordinatewise operator, while the Malli-
avin derivative and the Skorokhod integral are not coordinatewise operators.

The Ornstein-Uhlenbeck operator is the infinitesimal generator of the semigroup
T, =R, t >0, givenby Ty (u) = > o7 e~lelty, @ H,, for u = Ynerla ®Ho € X ®(S)_1.

It is also closely connected to the Ornstein-Uhlenbeck process. The Ornstein-
Uhlenbeck process is the solution of the SDE du(t,w) = —u(t,w)dt + dB(t,w), u(0,w) =
up(z,w), and it is given by u(t,w) = e tug(w) + fg et=*dB(s,w). It is a Markov pro-
cess with transition semigroup {7:}:>0 [2]. The solution of the generalized heat equa-
tion %u + R(u) = 0, u(0) = ug, is given by u = Ty(ug), i.e. u(t,x) = (Trug)(x) and
(Tip)(x) = E(p(u(t, z)) for any ¢ € Cp(R) and u is the Ornstein-Uhlenbeck process.

Now we turn to our equation
d
%U(t,w) = AU(t,w) + BOU(t,w) + F(t,w), (2.2)
where A and B are coordinatewise operators as described in Section 2, composed out of
a family of operators { A, }aez, {Batacz, respectively, where A, are infinitesimal gener-

ators on X and B, are bounded linear operators on X, both families being polynomially
bounded, and their actions given by

AU = Aa(ta)Ha, for U= uaHa, (2.3)
acel o€l
BOU =Y > Bs(ta—p)Ha,  for U= usH,. (2.4)
acl <o a€l

Some important special cases include the following:

I) Special cases for A:
1) A is a simple coordinatewise operator, i.e. A, = A,a € Z, where A is the

infinitesimal generator of a Cy—semigroup on X. Such operators are, for
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example the Laplacian A on X = W2’2(]R”) or any strictly elliptic linear
partial differential operator of even order P(z,D) = 3, <5, a.(z)D". For
example, second order elliptic operators can be written in divergence form

L=V (QV - +b) + V-, where @ is a positively definite function matrix.
Ay, =A+ R,,a € Z, where A is as in 1), while R,,«a € Z, are bounded linear

operators on X so that R is a coordinatewise operator

w) =Y Rata(t)Ha(w).

acl

Especially, if we take A = 0 and R,, to be multiplication operators R, (z) =
ro - x, * € X, then the resulting operator R is a self-adjoint operator with
eigenvalues r, corresponding to the eigenvectors H, and thus represents a
natural generalization of the Ornstein-Uhlenbeck operator. For r, = |a|, o € Z,
we retrieve the Ornstein-Uhlenbeck operator k.

Finally, we note that every bounded linear coordinatewise operator R can be
written in the form Ru = §(Mu) where M is a generalization of the Malliavin
derivative. This will be done in Proposition 2.6.

II) Special cases for B:

1)

2)

3)

4)

5)

B is an operator acting as a multiplication operator with a deterministic
function, i.e. B, = b for o = (0,0,0,0,...) and B, = 0 for all other « € Z. Its
action is thus
BOU(t,w) = Y bt (t)Ho(w).
a€l
For example, we may take X = L?(R") and b = b(x), x € R™, for an essentially
bounded function b.

B is multiplication with spatial white noise on X = L?(R"). Let By, := B., = &,

k€N, and B, =0 for a # ¢y, i.e. By(v(z)) = &k () - v(x), k € IN. Then,
BOU(t,w) = W(z,w)OU (t,w).

Clearly,

BOU

ZZBkua ek 'y*zzua akka

~ET kEN ~ET keN

S ua&H, =WOU.

YEL atep="y

Multiplication with spatial white noise is important for applications since it

describes stationary perturbations.
B is of the form B,, = By, k € N, and B, = 0 for « # ¢, where B, : X — X,

k € IN, are bounded linear operators.

Note that in this case there is a one-to-one correspondence between opera-
tors of the form B¢ and operators of the form §(Mu) where M is a simple

coordinatewise operator. This will be done in Proposition 2.8.
B is a simple coordinatewise operator, i.e. B, = B,a € Z, where B is a

bounded linear operator on X. Alternatively, we may also regard operators as
B : X — X' in order to make them bounded; such operators are for example
the divergence V- as a mapping from X = W12(R") to X’ = W~ L2(R").

BO =V -0(QOV - +b0) + ¢QV- as a strictly elliptic second order operator with
random coefficients. This operator is obtained for B, = V- (Q.V - +bs) +ca V-,
« € 7, and was studied in [18] and [19].
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Proposition 2.6. Let R : X ® (S)_1 — X ® (S)_1 be a bounded linear coordinatewise
operator defined by Ru(t,w) = 3" .7 Raua(t)Hqo(w).

1. There exists an operator M : X ® (S)_1 — X ® S'(R) ® (S)_1 of the form

Mu = ZMku®§k, ue X ®(S)-1,
k=1

for some coordinatewise operators My, : X ® (S)_1 — X ® (S)_1, k € N, such that

Ru = §(Mu)
holds.
2. Especially, if R is a selfadjoint operator, then M is a generalization of the Malliavin
derivative.

Proof. a) In [10] we proved that the Skorokhod integral is invertible, i.e. there exists a
unique solution to equations of the form §(v) = f. Considering the equation 6(Mu) =
> aez Rata H, and applying the result from [10], we obtain Mu in the form

Roye, (Uate,
M= S (oes e og o,
o€l keN k

By defining

Mju= > (op + 1)M ® H,, keN,
i |Oé + Ek‘
we obtain the assertion.

b) Let R be a self-adjoint operator with eigenvalues r, and eigenvectors H,, o € Z,
i.e., an operator of the form Ru = ZQGI TalaHy. Assume that r, = ZkG]N Tk« fOr some
ko € R, k € N, a € 7, is an arbitrary decomposition of the value r,.

Define

Mpu = Z Tk,ala & Hafgk.
ael

Then Mu = Zke]N Miu® fk = Zke]N ZaeI Tkala @ Ha—sk, (9 fk and

S(Mu) =" " reatia ® Ho = Y Tatia ® H,.

keN aeT acl
O

Remark 2.7. The converse is not true. Even if each My, k € IN, is a simple coordinate-
wise operator (and so is M), R := § o M does not need to be a coordinatewise operator.
This would require that the system R, (ua) = >, Mk(Ua—c,), @ € Z, is solvable for
R, () given the functions my(), k € IN, which is not true in general.

Proposition 2.8. Let M : X ® (S)_1 =& X ® S'(R) ® (S)—_1 be of the form

Mu=>» Mu®&, ueX(S) 1, (2.5)
k=1

for some simple coordinatewise operators My : X ® (S)_1 - X ® (S)_1, k € N. Then,
there exists a coordinatewise operator B such that B, = 0 for a # ¢, k € IN, and

0(Mu) = BOu

holds.

Conversely, for any coordinatewise operator B such that B, = 0 for a # ¢, k €
IN, there exists an operator M of the form Mu = Z,;“;l Miu ® &, for some simple
coordinatewise operators My, k € IN, such that §(Mu) = BOu holds.
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Proof. Let M be an operator as stated above and since M} are simple coordinatewise
operators, we can write them as

Mk(u) = Z mk(ua)Hom u = Z uaHa;

o€l ol

for some operators my : X — X, k € IN. Thus,

Mu = Z Z mk(ua)Ha & fk

k=1a€Z
which further implies
5(MU) = Z Z mk(ua)H{x+sk = Z Z mk(ua—ak)Ha- (26)
k=1 €T k=1a€Z

On the other hand, if B is such that B, = 0 for a # ¢, k¥ € IN, and we denote by
By, := B,,, k € N, the operators acting on X, then

BOu=> Y Bi(ua—c,)Ha- (2.7)

a€cl k=1

From (2.6) and (2.7) it follows that 6(Mu) = BOu if and only if m;, = By, for all £ € IN.
Thus, there is a one-to-one correspondence between the operators B and § o M. O
Remark 2.9. In [12] and [13] Rozovskii and Lototsky considered the equation % =
Au + 6(Mu) + f, where M is of the form (2.5). They implicitly assumed that all their
operators A and My, k£ € IN, belong to our class of simple coordinatewise operators.
This corresponds to our special cases I-1) and II-3).

Some special cases of stochastic differential equations covered by (2.2) include the
following:

e The heat equation with random potential

d

%u = Au + BOu.
In particular, if the random potential is modeled by stationary perturbations, we
may take spatial white noise as a model and obtain %u = Au + Wou. This
corresponds to the special choice of operators I-1) and II-2).

e The heat equation in random (inhomogeneous and anisotropic) media, where the
physical properties of the medium are modeled by a stochastic matrix ). This
corresponds to the case I-1) with A = 0 and II-5) leading to an equation of the form

d

au:V»()(Q(}V~u+b<>u)+c<)v'u+f.

e Taking A =0 and By, := B, =&, V-, k € IN, (see special cases II-2) and II-4)) we
obtain the transport equation driven by white noise

%u:AquW()VwL.

e The Langevin equation
d
U= —Au+ W(t),
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A > 0, corresponding to the case I-1) with A = -\, f = W and B = 0. Its solution
is the Ornstein-Uhlenbeck process describing the spatial position of a Brownian
particle in a fluid with viscosity .
In [1] the authors considered the generalized Langevin equation leading to gener-
alized Ornstein-Uhlenbeck operators driven by Lévy processes
d
—u=J C
at = (dt )
where Y is a Lévy process, J the infinitesimal generator of a Cy—semigroup and C
a bounded operator. All processes are Hilbert space valued. This corresponds to
our case with X being this Hilbert space, A = J, B=0and f = C(Y’).
e The equation 4 = Au+ §(Mu) + f, that was extensively studied in [12] and [13].
This corresponds to our special cases I-1) and II-3).
e The equation

%u = Lu + Wu,

where L is a strictly elliptic partial differential operator as studied in [3] and [8].
This corresponds to the special case I-1) and II-2).

3 Stochastic evolution equations

Now we turn to the general case of stochastic Cauchy problems of the form %U (t,w) =
AU(t,w)+BOU(t,w)+ F(t,w), t € (0,T), w € Q, with initial value U (0,w) = U%(w), w € Q,
and all processes are X-valued for a Banach space X.

Definition 3.1. It is said that U is a solution to (2.1) if U € C([0,T],X) ® (S)-1 N
C((0,T],X)® (S)_1 and U satisfies (2.1).

Theorem 3.2. Let A be a coordinatewise operator of the form (2.3), where the operators
A,, a € T, defined on the same domain D dense in X, are infinitesimal generators of
Co—semigroups (1t)a, t > 0, a € Z, uniformly bounded by

(TVallnx) < Me*t, t >0, for some M,w > 0. (3.1)

Let BO be of the form (2.4), where B,, o € I, are bounded linear operators on X so that
there exists p > 0 such that

K =) |Ba(2N) 7% < o0. (3.2)
acl

Let the initial value U® € X ® (S)_1 be such that U° € Dom(A) i.e.

Zu Hy(w) € X ®(S)_1,—p, satisfies Z 1u]|% (2IN) P < oo; (3.3)

a€l a€l
and
AU (W) =Y AquQHo(w) € X ® (S)-1,—p, satisfies »_ || Aqul |5 (2IN) P < cc.
a€l a€cl
(3.4)
Moreover, let
=Y fa(t)Ha(w) € CH([0,T],X) @ (S)-1, tr falt) € CY([0,T],X), a €T,
aET
2
so that 3 |l falZsor.0 N = 3 (sup [Ifa(®llx + sup [f4@]x) (2N < o,
acl a€T t€[0,7] t€[0,T]
(3.5)
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Then, the stochastic Cauchy problem (2.1) has a unique solution U in C*([0,7], X) ®
(S)—l,—p-

Proof. We seek for the solution in form of U(t,w) = 3 .7 tua(t)Ha(w). Then, the Cauchy
problem (2.1) is equivalent to the infinite system:

d

= ta(t) = Aaua(t) + > Bpta—p(t) + falt), te€(0,T],

B<a (3.6)
us(0) =ud € D, acT.

Let 0 be the multi-index 0 = (0,0, ...). We rewrite (3.6) as

d
L () = (Aa + Bo)ua(t) + Batta_s(t) + fa(t), te (0,7,
dt ° 0<§§a et (3.7)

uq(0)=ud € D, acl.
Next, A, + Bo are infinitesimal generators of Cy—semigroups (S;), in X such that
[(S))all < MelwHMIBolDt 4 >0 o eT. (3.8)

According to Subsection 1.1, if f,, a € Z, fulfills condition (i) or (ii), the inhomoge-
neous initial value problem (3.7) has a solution u,(t) € C([0,T], X)NCY((0,T], X), « € Z,
given by

t
Uo(t) = (St)OU?) +/ (St_s)ofo(s)ds, t e [O,T]
0
t (3.9)
Ua(t) = (St)atl + / (st_s)a( 3" Biua_s(s) + fa(s))ds, t e [0, 7).
0

0< 8L

Since f, € C*(]0,T], X) it follows by induction on « that

> Bpua—p(s) + fals) € C1([0,T],X), forall acZ.

0<B<La

Thus, u, € C*([0,T], X) and % us(0) = (Aa + Bo)ub, + Yo p<o Boud,_5 + fal0), a € L.
Note that for each fixed o € Z, u,(t) exists for all ¢ € [0,7] and it is the unique
(classical) solution on the whole interval [0, T']. It remains to prove that ) _; ua(t) Ho(w)
converges in C*([0,7],X) ® (S)_1,—p.
First, we show that U(t,w) = > .7 tua(t)Ha(w) € C*([0,Tp], X) ® S_1,—,, for appropri-
ate Ty € (0,7], i.e. we show that

2 —pa d 2 —pa
> el o), 0@N) 7 = 37 ( sup Jua@llx + sup || Zua(®)llx) (2N) 7 < oo.
el wer |tel0,To] t€[0,To]
(3.10)

Later on we will prove that the same holds if we take in (3.10) supremums over the
intervals [Ty, 2T0], [2T0, 3T0], ... etc. Since [0, T] can be covered by finitely many intervals
of the form [kTy, (k + 1)Ty], k € Ny, we conclude that

—pa d 2 —pa
> lallZs o0 @) 7 = 37 sup [ua®llx + sup || Zua(®)llx) (2M) 7 < .
= o= \telo.T) tejo,r) At

(3.11)
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In order to do this, we introduce a notation for subsets of multi-indices
Tnm={a€Z: |a] <nAlndex(a) <m}, n,m e N,

where, for a = (a1, a9, ..., @n,0,0,...) € Z, we have |a] = a1 +az+- - -+ a4y, and Index(«)
is last coordinate where a has a nonzero entry. For later reference, we introduce the
function

M2 o
O = s Y’ (3.12)

and fix Tp € (0,7] such that C(Tp) < =7
First, we show that

> lua(E o, @M 7" =D sup [ua(®)lli (2N) 7 < oo,

aET acz t€l0.To

by proving that partial sums Y .7 sup,c(o 1) [ua(t)|5 (2IN)7*, n,m € IN, are bounded
from above.
Using (3.9) we obtain

1

5 IR EN < S Sl )
a€Ly,m a€lny,m
t 2
+ [[16m0all Y IBsuap)llxds] )
Q€Tnm V0 0<B<a

T Z [/Ot ”(St—S)aH||fa(3)||Xd5}2(2]N)_pa.

a€ln m

The first term on the right-hand side, for all ¢ € [0, Tp], having in mind (3.3) and (3.8),
satisfies

D ISall?llug ]z 2N) 7P < Y (Se)all*lua 3 (2N) 77

a€ly m acl

< MBI T 402 (2N) 7 = Qy < oo,
a€l
(3.13)

Similarly, for all ¢ € [0, Ty, using (3.5) and (3.8), the third term satisfies

S [ [ 0alisatoieas] @ < 5[ [ i-allfato)was] am)oe

a€Ly, m a€l
t 2
< [/ Me(w—t-MHBoll)(t_s)ds} > sup || fa(s)l|5 (2IN) P
0 ez S€0.1]
< M (T 1) S gy | (03 (2N) 7 = G < .
~ (w+ M| Bol|)? SerteloT)

(3.14)

Note that in (3.14) we took the supremum over the whole interval [0, T].
For the second term, using (3.2), (3.8), (3.12) and the generalized Minkowski inequal-
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ity, we obtain

t

S [ 1mal X 1Ballus(lxds] 20w

€Ly m V0 Bty=a

s () ST S s Bl o)1) (o)

S .
(w + M||Bol|) aCTpm  Birya €0

<om)( Y2 IBsIEM ) (X sup ()3 (2)#7)

BELn,m YELn,m t€[0,To]
<C(T)K? > sup fua(t)|5 (2IN) 7P (3.15)
€T m t€[0,To]

Finally, for all n,m € IN, we obtain

. Yo osw [lua[FCN) TS QU GHCOT)K® Y sup Jlua(®)lX (2N) 7P

€T m t€[0,To] a€Tn.m t€[0,To]

Since § — C(Tp)K? > £ — C(Ty)K? > 0, we have

_ Q1+ G
sup ||ua(t 2Ny P < X = (3.16)
T Ietlkem <

Let (my,)nen be an arbitrary sequence of positive integers tending to infinity. Then,

9 —pa __ 1: 2 —po Q1+7G
> sup ua(DI5(2M)7 = Hm 3 sup (0% (2N) 7 ST oK

n—oo
Ser tel0.To] a€Tnm,, tELO,

since it is a series of positive numbers and thus does not depend on the order of
summation.

Now we show that

d d
e (1 im0 (27 = 3 s g (1) (215) 7 < v,
QZG:I dt (10,701, X) azezte[m] =

In order to acomplish that, we differentiate (3.9) with respect to ¢, and obtain
¢ d
—uo(t) = (St)o(Ao + Bo)ug +/ (St—s)o%fo(s)ds + (St)of(0), t€[0,T],
0
La® = (S0t B+ [(Sa X Bobwa st + 1 puts)) s
a t)a « 0)Upy 0 t—s)a ,Bds a—f ds a (317)
0<B<a
+ (st)a( 3" Bsua—s(0) + fa(O)), tel0,7), ael.
0<B<La

In the sequel we estimate partial sums of 7 Sup,c(o 7] |4 g (8)]|% (2IN) P2, So,
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£ IR M) TS ST (S0l (Aa + Bo)ul i (2)

€Ly m €Ly, m

# X [[maal S 1B s(olxas] (2w

a€Ln, m 0< <

D S N CNFOARAREIRE

a€ln,m

£ Y ||<st>au2[ > IBsuacsOlx] @N)

a€Ln,m 0<B<a
+ > 1SDall?ll fa(0) 1% (21N)
OKEI'n m

According to (3.3) and (3.4), we obtain ) .7 (Aq 4+ Bo)udHu(w) € X @ (S)-1,—p. So the
first term on the right-hand side can be evaluated by

D 1Sl (Aa + Bo)ul |5 (2N) 7% < > " [(St)all*[|(Aa + Bo)ug [ (2IN)
a€ln,m acl
< M2e2(w+M||Bol)To Z l(Aq + Bo)ul ||% (2IN) 7P := Q) < oo. (3.18)

a€cl

The third term, for all ¢ € [0, Tp], satisfies

S [ Sl raoas] @) < 3 [ [ i-all e £l (2

a€Ly m 0 a€cl

M?
<= (e(erMIIBOH)TO _ ) E sup (D)% (2IN =G < 0.
(w+ M||Bol[)? Steo,r H Ol

(3.19)

The fourth term, using (3.2), (3.3), (3.8) and the generalized Minkowski inequality, can
be estimated by

> 1Dl X 1BsuasO)lx] @M< Sl X 1BsuSlx] (@)

a€n,m 0<fB<a a€l B+y=a

2
§M262<w+MHBoH>tz[ 3 ||B;;H||u3||x} (2IN) P
a€l pty=a

< M2 Moo (57 By (2m) 8 ) (3 3 (2N) 77 = B < oo,

BEL yeT
(3.20)
For the fifth term, using (3.5) and (3.8), we have
D ISl £a0)5 (2IN) 7P <Y " 1(Se)all [l £ (0) |5 (2IN) 77
Q€L m a€cl
< M2e2(w+MlBol)To Z sup || fu (0% (2IN) 7P := N’ < cc. (3.21)
aEItG[O’T

Finally, for the second term, using (3.2), (3.8), (3.12) and the generalized Minkowski
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inequality, we obtain

S [ [ USeal X IBall s 9)sds] 27

a€ly,m Bt+y=a

A42 w oll)t 2 —pa
Sm(e( Ml —1) > [ > sup [ Bgllll—- U’Y(S)”X} (2IN)

a€ly,m BHy= aquﬂ

<o Y IBslenE) (Y sup I (5) B (20)#7)

BELn.m YELp,m €

d
CAK® 37 sup | gualt)lx M) 7" (3.:22)

a€ly m t€[0,To

Finally, for all n,m € IN, we obtain

1 d
= Y sup [lua ()% (2N) P <Q) + G+ Hi + N
5 aeZ, ,, t€[0,To] dt

FOME? Y swp (03 (2N)

aeﬂumtemju
Since + — C(Tp)K? > 0, we have

Q’1+G’+H{+N’

— O(Ty)K? (3.23)

S s [ Sua (0l 2N

a€ln,m t€[0,To]

Again, taking (m.)nen to be an arbitrary sequence of positive integers tending to infinity,
we have

d . d A+ G HH +N
sup ||2-ua (1) % (2N) 7% = lim sup || ua (8)]3 (2) 77 <
(;Ite[g To] dt X naoan;mM t€[0,To] dt X — C(Ty)K?
Therefore, we obtain
U(t,w) € CH[0,T0], X) @ (S)—1,—p, i.e.
d 2 _
> (s ()l + sup | Gua(dllx) (2N)7
Ser “teloT] t€(0,To] (3.24)
d —pa
23" (s o)l + s | Gua(®l) @) 7 < o
Sez “tel0,To] t€[0,To)

Next, we consider in (3.24) supremums over the interval [Ty, 27p]. On [Ty, 27, one
can rewrite the initial value problem (3.6) in the following equivalent form:

d
77 valt) = Aava(t) + > Bgva_p(t) + fo(To +1), t€(0,Tp]
B<a (3.25)

0a(0) = 08 :=uo(Ty), a €.

«

The semigroup corresponding to the generator A, + By in (3.25) is again the semigroup
(St)a, t > 0. Using (3.6) and (3.24), we have that U(t,w) € Dom(A), for all ¢ € [0, T}], and
AU(t,w) € X @ (S)_1,—p, t € [0,Tp]. According to this we have that V°(w) = U(Ty,w) =
> aez VOHq(w) € Dom(A) and AV®(w) € X ® (S)—1,—p. Thus,

t
va(t):(St)av2+/ (S¢- sa( > Bsva_sl(s +fa(To+s)>ds7 t e [0,Tp),

0< <
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and clearly v, (t) = uo(To +t), t € [0,Tp], o € T.

When approximating partial sums of Y . sup,c(o 7, [1va (t) |5 (2IN) 7%, comparing to
the previous calculations for u,(¢), only the constant @; will be different, and here, we
denote it by )2, so we again obtain

. _ Q2+ G
> sup [la(IF@N) TP =D sup fua(8)|3(2N) P < — A~ —.
= telom] Lo telmo 2] 5~ C(To)K

Similarly, for the derivative 2V (¢,w) we obtain

pa o QoG+ Hy+ N
- C(Ty)K2 7’

> IOl eN)

a€l t€[0,To]

where, comparing to the estimates of (%U (t,w), only the constants @} and H| have
changed and we denoted them here by Q) and Hj.

For arbitrary T > 0, one can cover the interval [0, T] by intervals of the form [kTy, (k +
1)Tp], k € Ny, in finitely many steps (say in / steps). So we have

Q+G
su Ug (T 2IN 77
3 Iue@IREN) " <

where Q = maxlgkg{Qk}. Thus,

Ult,w) = > ua(t)Ho(w) € C([0,T],X) & (S)—1,—p.
o€l

Also,

_ Q/+G/+H/+N/
> sup || a(t)||§((2]N) P < = >
eZtG[O T) e C(To)K

where Q/ = rnax1<k<l{Qk} H = max1<k<l{Hk} Since dtua( ) S C([O T] X), a €, we
have J
LU(tw) = Y Sual)Halw) € C0.T], X) @ (S) 1,
acl

Therefore, U(t,w) € C1([0,T], X)® (S)_1,—p and thus, U is a solution of (2.1) in the sense
of Definition 3.1.

The solution U is unique due to the uniqueness of the coordinatewise (classical)
solutions u,, in (3.9) and due to uniqueness in the Wiener-It6 chaos expansion.

O

Note that according to the previous theorem the solution U remains in the same
stochastic order space (S)_1,—, where the input data U 0. AUY and F belong to.

Example 3.3. We provide three examples of equation (2.1) where A is a uniformly
bounded (not a simple) coordinatewise operator. Consider the Banach space X =
LP(R), 1 < p < oo, and the stochastic Cauchy problem

%U(t,x,w) =AU(t,z,w) + WOU(t,z,w) + F(t,r,w), (3.26)

U(0,z,w) = U(z,w),

where the operator A : Dom(A) — X ® (S)_; is a coordinatewise operator composed
out of a family of closed operators {A, }nez of the form A, = a,D, « € Z, where the
functions a, € L>(R), o € Z, are uniformly bounded, i.e. sup ¢y |aa(z)| < M, a € Z, for
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some M > 0, and D is one of the following differential operators: %, aa—; or 88—:2 + a%
and W =Y LEN &, H., represents spatial white noise. Then, (3.26) is equivalent to the

infinite system

uq (t, r) = Agua(t, ) + Z §(T)ua—c, (t,2) + falt, ©)

kEN
U (0,2) = ug(x), ael.

4
dt

The Cy—semigroup that corresponds to the closed operator D, denoted by T}, t > 0,
is, respectively,

Ty(z) = < v). g I’R), for D=,

ox
82
T t d LP(R for D=—
tg 4 Y, ge ( )7 or 81;27
T / x — )e d € LP(R) for D—a—Q-i-2
1g(x y Yy, g , 72+ o2

In all cases, we have, using Young’s inequality, that ||7¢|| < 1, ¢ > 0. The Cy—semigroups
corresponding to the operators A,, a € Z, are of the form (S;), = a,T}. (SHall <
M, o € . The operators B,, o € Z, are given by B,, =&, k € N and B, =0, a # €.

(3.26) has a unique solution U(t,r,w) = ) o7 Ua(t, v)Ha(w), where

U (t, r) = (St)aug(x) +/0 (St—S)a(Z gk'@)ua—sk (5,2) + fa(s,x))ds, a € T.

k

Example 3.4. Consider the Cauchy problem

%U(t,w) = AU(t,w) + BOU(t,w) + F(t,w)
U(0,w) = U°w),

where A is a simple coordinatewise operator A, = A, a € Z, generating a Cy—semigroup,
B, # 0 only for a = ¢;, k € N, are such that ), .\ || Bz, (2k)~% < oo, and U and F are
deterministic functions, i.e. u =0 and f, =0 forall a € 7\ {0}.

The solution of this system, according to Theorem 3.2, is

t
ug(t) = Ttug + / Ti—sfo(s)ds,

ualt) = /Tts(Zngua (9))ds, aeT\o,

kelN

the same form as it was obtained in [12].

We provide two generalisations of Theorem 3.2: one possibility is to allow the
operators B, to depend on the time variable ¢ (except for Bg which must be free of t). This
embraces for example SPDEs driven by space-time noises which have zero expectation
(and are thus free of t). The other possibility is to allow Bg to be unbounded but satisfying
certain properties so that A, + Bg are infinitesimal generators of Cy—semigroups. For
example, if A, = 66—; and By = %, then although By is unbounded, A, + By is the
generator of a contraction semigroup. Following [4] we will enlist some sufficient
conditions which ensure that A, + By is the generators of a Cy—semigroup.
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Remark 3.5. In Theorem 3.2 one can consider operators B, (t), « € Z \ {0}, depending
on t, so that B, € C'([0,T], L(X)), a € T\ {0}, Bo(t) = Bo € L(X), forall t € [0,7], and

K:= Z ”Ba”Cl([O,T],L(X))(Q]N)_p%

«€Z,
a>0

d _pa

= ( sup || Ba(t)|lpx) + sup ||d—Ba(t)HL(X)) (2IN) 7% < oo (3.27)
aez, “t€[0,T] tejo,] At
a>0

Replacing (3.2) by (3.27) and retaining all other assumptions of Theorem 3.2, one can

again obtain a unique solution U in C*([0, 7], X) ® (S)_1,—, of the corresponding Cauchy

problem (2.1).

The solution is U(t,w) = Y .7 ta(t)Ho(w), ua(t) € C*([0,T],X), a € Z, where (see
(3.9))

t

uo(t) = (St)oul + / (Si_a)ofo(s)ds, t€[0,T],

. (3.28)
ta(t) = (Sp)aul + / (St-sJa( D2 Balshua-a(s) + fals))ds, t€ [0,7].
0< 8L

Its derivative is LU (t,w) = >, c7 %u,(t)Hq(w), where (see (3.17))

Su0(t) = (So(Ao -+ Bo)u§ + [ (Si-o-fo(s)ds + (S)0f(0). ¢ € [0.7)
d
aua(t) = (St)a(Aa + BO)ug

+ [Sa( X (Bato) uasls) + 5 Bashuasls)) + G ful))ds

0<p<La

+(S)a( D Ba(Ouas(0)+fa(0)), te(0.7), ael,
0< <
(3.29)

The proof can be performed in the same manner as in Theorem 3.2, now taking 7y € (0, 7]
to be small enough so that C(7p) < #, since now we have six summands in (3.29)
instead of the previous five in (3.17).

Remark 3.6. In Theorem 3.2 one can consider the operator By to be unbounded, densely
defined on D (the same domain which is common for all A,) so that either of the following
holds:

(i) Ao, a € Z, are generating contraction semigroups (i.e. M = 1, w = 0), and By
is dissipative, A,—bounded with ¢’ < 1 (i.e. there exist a,,b, > 0 such that
|Box|| < aallAaz| + ballz]|, € D, and a? = inf{a, > 0: Jb, > 0,Va € D, | Box| <
ag)|Aaz|| + bal|z||}), for all a € Z,

(ii) By is closable, dissipative and A,—compact (i.e. B: (D,| - ||a,) — X is compact
where || - || 4, denotes the graph norm), forall a € Z,

(iii) A, are generating analytic semigroups (i.e. w < 0), a € Z, and By is closable and
A,—compact .

Then, A, + By is the infinitesimal generator of a Cy—semigroup (denote it (S;),) for all
a € Z. If the semigroups (73), corresponding to A, are uniformly bounded in «, then
so will be (S¢)o. Retaining all other assumptions of Theorem 3.2, now we follow the
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same proof pattern with the semigroup (S:)a, [|(St)a| < Me®t, for some M > 1, @ € R,
independent of a.
Finally we note that in case (i) and (ii) A, + Bp will be generating contraction

semigroups, while in case (iii) they will be generating analytic semigroups.

4 Stationary equations

In this section we consider stationary equations of the form
AU+ BOU + F =0, 4.1)

where A: X®(S)-1 > X ®(S)_1and BO : X ® (S)_1 — X ® (S)_; are coordinatewise
operators as in (2.3) and (2.4). We assume that {A,}nez and {B,}acz are bounded
operators and that A, are of the form

Aa :g(x+c(xv «@ EI,

where By and ﬁa, a € T are compact operators and C, are self adjoint operators
for all o € Z. Denote by r, the eigenvalue corresponding to the orthogonal family of
eigenvectors H,, i.e. Co(H,) = roH,, @ € . Using classical results of elliptic PDEs and
the Fredholm alternative (see [5]) we prove existence and uniqueness of the solution to
(4.1).

Theorem 4.1. Let X be a Banach space. Let A : X ® (S)-1 =& X ® (S)_1 and B{ :
X®(S)-1 = X®(S)_1 be coordinatewise operators, for which the following assumptions
hold:

1. A is of the form A = A + C, where A(U) = Y Ay (ua)H, and A, : X — X are
acl
compact operators foralla € Z, C(U) = Y. rquaHas, ro € R, @ € Z, and B is of
o€l
the form (2.4), where By : X — X is a compact operator. Assume there exists

K > 0 such that:

—||Au|l = || Boll = 74 = 0, forall acT, (4.2)
and
1
sup ( — ) < K. (4.3)
a€Z \ 1o — [|Aall = || Boll

2. B is of the form (2.4), where Bg : X — X, 8 € T\ {0}, are bounded operators and
there exists p > 0 such that

—pB

1
K ) |Bgll(2IN)=" < —. (4.4)
B8>0
3. Foreverya €T
Ker (Aa + (1+ra)1d+Bo) = {o}. (4.5)

Then, for every F' € X @ (S)_1,—, there exists a unique solution U € X ® (S)_1,_p to
equation (4.1).

Proof. Equation (4.1) is equivalent to U — (A(U) + CU + U + BOU) = F and

Z ’U/y_g'yu"/_(l_*—rv)u"/_ Z Ba(uﬁ) H’y:ZfWH’Y.

~YET a+pB=y YETL
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Due to uniqueness of the Wiener-Itd6 chaos expansion this is equivalent to

Uy — (ZW + (14 r)Id + Bo) wy=f+ Y Bs(uy_p), veT. (4.6)

0<B<y

By (4.5) it follows that for each v € Z the homogeneous equation
Uy — (Z7 +(1 +r7)Id+Bg) Uy =0

has only trivial solution u, = 0. Since the operator gﬁy + (1 +r,)Id+ By is compact, the
classical Fredholm alternative implies that for each v € 7 there exists a unique u, that
solves (4.6) and it is of the form

uy = (Id—((ry +1)Id + gv +Bo)) | £y + Z Bg(uy—p) |, v€L,
B>0
so that
1
luyllx < = | lx D IBslllus—sllx | v €T

=7y = [ A5][ = || Boll 50

We will prove that ) u, ® H, converges in X ® (S)_;. Indeed,
YEL

2

Dol ke < K2y LAIx+ YD IBallluslx | (2N) 7

veL vyeT y=oa+p,a>0
< DOIAIFEN) P > > [[Balllluglx)*(2N) >
yeT YEL v=a+B,a>0
< 2D IAIEEN) T+ (O 1Bl (2N) )7 > [lugk (2IN) P
~vET a>0 BET
Therefore,
(1=2K>(D_ 1Ball(2N)%)%) - Y Jluy |5 (2IN) 777 < 2K |1 £ ][3% (2IN) 7
a>0 ~YEL YET

By assumption (4.4) we have that M = 1 — 2K2( Y. ||B,||(2N)~"2")? > 0. This implies
a>0

> lluy 5 (20N) <2 Z 1511 (2N) 777 < .

yeT yeL

Example 4.2. We provide some special cases of equation (4.1).

1. If A, = 0 forall « € 7 and B,, a € T are second order strictly elliptic partial
differential operators in divergent form

ZD Za”(mD + 0 (x +Zcﬁ (2)D; + do () (4.7)

=1
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with essentially bounded coefficients, then equation (4.1) reduces to the elliptic
equation
BOU = F,

which was solved in [18] and [19].

2. Let Ea =0forall « € 7 and let B,, a € Z, be second order strictly elliptic partial
differential operators in divergent form (4.7). Let C = ¢ P(R), for some ¢ € R,
where R is the Ornstein-Uhlenbeck operator, P a polynomial of degree m with real
coefficients and P(R) the differential operator P(R) = p,, R™ + ppm_1R™ 1+ ... +
p1R + pold. Then, the corresponding eigenvalues are r, = cP(|a|), « € Z. Hence,
equation (4.1) transforms to the elliptic equation with a perturbation term driven
by the polynomial of the Ornstein-Uhlenbeck operator

BOU + cP(R)U = F,

that was solved in [11].
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Equations Involving Malliavin Derivative:
A Chaos Expansion Approach
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Abstract. We study equations involving the Malliavin derivative operator and
the Wick product with a Gaussian process. In particular, we solve an equation
with first-order Malliavin derivative operator by the chaos expansion method
in white noise spaces. We prove necessary and sufficient conditions for ex-
istence and uniqueness of the solution and represent it in explicit way. We
characterize the domains of the Malliavin operators in spaces of Kondratiev
distributions in general form. In addition, as an illustration we apply sto-
chastic Galerkin method for solving numerically a stationary version of the
equation we considered.

Mathematics Subject Classification (2010). 60H07, 60H10, 60H40, 60H35,
60G20.

Keywords. Generalized stochastic process, chaos expansion, Malliavin deriva-
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1. Introduction

The Malliavin derivative I, the divergence operator § and the Ornstein—Uhlenbeck
R operator are main operators of infinite-dimensional stochastic calculus of vari-
ations, also known as the Malliavin calculus. These operators play a key role in
the study of non-adapted stochastic differential equations. In white noise setting,
the Skorokhod integral is an extension of the stochastic It6 integral of anticipating
processes to the class of non-anticipating processes and the Malliavin derivative
appears as its adjoint operator; the composition of these two operators, called the
Ornstein—Uhlenbeck operator, is a linear, unbounded and self-adjoint operator. In
quantum theory these operators correspond respectively to the annihilation, the
creation and the number operator.

On white noise spaces, a generalized stochastic process has the Wiener—Ito
chaos expansion form, i.e., it can be represented in terms of orthogonal polynomial
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basis of a Hilbert space of processes with finite second moments. In [12, 15] oper-
ators of Malliavin calculus are considered only on spaces of random variables. In
this paper we characterize the domains of these operators for generalized stochas-
tic processes which are represented in their chaos expansion form having values in
a certain weight space of stochastic distributions. Part of the contribution of this
paper is this characterization, the theorems in Section 3 improve the results from
[5]-[8]. On the other hand, in Section 4, we study classes of stochastic differential
equations which involve the Malliavin operator D and the Wick product ¢ with a
Gaussian process G

Du = GO(Au) + h, Eu =1y,

where A is a coordinatewise operator on space of generalized stochastic processes
and F is the generalized expectation. For solving the equation, we apply the chaos
expansion method, also known as the propagator method. With this method the
problem is reduced to an infinite triangular system of deterministic equations.
Summing up all coefficients of the expansion and proving convergence in an ap-
propriate weight space, one obtains the solution of the initial equation. As a case
of study, in Theorem 4.1 we prove the existence and uniqueness of the solution, in
the Kondratiev type space of generalized processes, for homogeneous problem

Du = GOu, Eu = 1y, (1)

for a Gaussian process G of a special form. The study of equation (1) is motivated
by [9] where it was shown that Malliavin derivative indicates the rate of change in
time between ordinary product and the Wick product, i.e., for a stochastic process
h in a weight space of distributions and W; being white noise, the following

h-W, — hOW, = D(h)

holds. Therefore, the ordinary product is well defined in the generalized sense. In
this paper, we deal with Gaussian processes in a more general form than white
noise. This paper contributes to the study of equations with generalized operators
of Malliavin calculus, we refer to previous results [5]-[10]. Wick product and the
Malliavin derivative play an important role in nonlinear problems. For instance,
in [18] the authors proved that in random fields, random polynomial nonlinearity
can be expanded in a Taylor series involving Wick products and Malliavin deriva-
tives, the so-called Wick—Malliavin series expansion. Since the Malliavin derivative
represents a stochastic gradient in the direction of white noise, one can consider
similar equations that include a stochastic gradient in the direction of more general
stochastic process, like the ones defined in [11].

The chaos expansion method is a very useful technique for solving many
types of stochastic differential equations. In [6, 17] the Dirichlet problem of el-
liptic stochastic equations was studied and in [10] parabolic equations with the
Wick-type convolution operators. Another type of equations have been investi-
gated in [4, 14, 11, 12, 16]. Moreover, numerical methods for stochastic differential
equations and uncertainty quantification based on the polynomial chaos approach
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become very popular in recent years. They are highly efficient in practical com-
putations providing fast convergence and high accuracy. For instance, in order to
apply the stochastic Galerkin method the derivation of explicit equations for the
polynomial chaos coefficients is required. This is, as in the general chaos expan-
sion, highly nontrivial and sometimes impossible. On the other hand, having an
analytical representation of the solution all statistical information can be retrieved
directly, e.g, mean, covariance function, variance and even sensitivity coefficients,
see [13, 20] and references therein for a detailed explanation. The major challenge
in stochastic simulations is the high dimensionality, which is even higher solving
stochastic control problems, e.g., the stochastic linear quadratic regulator prob-
lem, as the computational cost increase in the same order as for the simulation but
compared to the deterministic control problem [1]. As an illustration, in Section
5, we solve numerically the stationary form of nonhomogeneous equation (1) with
the Laplace operator by the stochastic Galerkin method.

2. Spaces and processes

Let (2, F, P) be the Gaussian white noise probability space (S’(R), B, i), where
S’(R) denotes the space of tempered distributions, B the sigma-algebra generated
by the weak topology on 2. The existence of the Gaussian white noise measure p
is guaranteed by the Bochner—Minlos theorem

/ D du(w) = e 21w, g e SR),
S'(R)

where (w,¢) denotes the dual paring between a tempered distribution w and a
rapidly decreasing function ¢. Let {, k € N} be the family of Hermite functions
and {hk, k € Ny} the family of Hermite polynomials. Recall, the space of rapidly
decreasing functions S(R) = (;cy, Si(R), where Sj(R) = {p = > .2, ax & :
She a2 (2k)! < oo}, | € Ny, and the space of tempered distributions S'(R) =
UZENU S_l(R), where S_l(R) = {f = Z?:l br &k - zzozl b%(2k‘)_l < OO}, l € Np.
We have a Gel’fand triplet S(R) C L?(R) C S'(R).

The white noise analysis was constructed as an infinite-dimensional analogue
of the Schwartz theory of deterministic generalized functions, for more details we
refer to [2, 3]. Denote by Z the set of sequences of nonnegative integers which have
only finitely many nonzero components o = (a1, aa,...,&mn,0,0...), where m =
max{i € N : a; # 0}. The kth unit vector is denoted by e*) = (0,...,0,1,0,...),
k € N. The length of a multi-index a € Z is defined as |a| = Y ,-, ai. Let a =
(ak)ken, ar > 1, a® = [[i=, an*, ! = [[i—; ax! and (2Na)* = [[.—, (2k ar)**.
Note that _ .,(2N)™P* <ooif p>0and ) ;a7 P <occifp>1.

Let (L)? = L%(S'(R),B,u) be a space of random variables and H,(w) =
[To2, ha, ((w, k), @ € T be the Fourier-Hermite orthogonal basis of (L)?, where
HHO[H%L)2 = al. Particularly, H.o) (w) = (w,&), k € N. From the Wiener-Ito6

chaos expansion theorem it follows that every F € (L)? can be represented in the
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form F(W) — ZO(EI aaHa(w)’ Qo = EM(FHOC) c R, w € £ such that ||F||%L)2 ==

Y ez aiol < oo,
Denote by H1 the first-order chaos space, i.e., the closure of the linear sub-

space of (L)? spanned by the polynomials H., (), k € N. We proved in [9] that the
subspace H1 contains Gaussian stochastic processes, e.g., Brownian motion and
singular white noise. The kth-order Wiener chaos spaces Hj, are obtained by closing
in (L)? the linear span of the kth-order Hermite polynomials and (L) = @,-, He.

2.1. Kondratiev type spaces

Let p € [0,1] and let sequence a = (ak)ren, ar > 1. The space of Kondratiev
stochastic test functions modified by a, denoted by

(Sa), = m (Sa)p.p, P € No,
JAS

is the projective limit of spaces

(Sa),p = {f = Z boH, € (L)?: Z(a!)Hp b2 (2Na)P* < oo}.

a€l acl
The space of Kondratiev stochastic generalized functions modified by a,
(Sa)—p = U (Sa)—p,—p, p € No,
pENp

is the inductive limit of the spaces

(Sa)—p,—p = {F = anHa : Z(a!)l_p c2(2Na) 7P < oo}
acl a€l

The action of F' € (Sa)_, onto a test function f € (Sa), is given by ((F, f)) =
Y act @ caba. The generalized expectation of F is defined as £, (F) = (F,1)) =
¢o, the zero coefficient in formal chaos expansion of F. For all p € [0, 1] we have
a Gel'fand triplet (Sa), C (L)*> C (Sa)_,. For ay = 1, k € N these spaces
reduces to the Kondratiev spaces (5)_,. Furthermore, the largest space of the
Kondratiev distributions is (S)_; and the smallest is (S)_g, also called the Hida
space of stochastic generalized functions. In [5] we constructed the Kondratiev
space (Sa)_1.

2.2. Generalized stochastic processes

Let X be a Banach space of functions on R endowed with || - ||x and p € [0, 1].
Following [16], we define stochastic processes (of the Kondratiev type) as elements
of tensor product space X ® (Sa)_,, as processes having the chaos expansion form

u:Zua®Ha, (2)
a€cl

where u, € X, such that HuH%(@(Sa)_p = >wer luallk ()77 (2Na) 7 < oo,
for some p > 0. We denote by Fu = ug,,..) the generalized expectation of the
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process u. Clearly, stochastic processes of Kondratiev type can be seen as linear
and continuous mappings from X into the space of stochastic distributions (Sa)_,.

Example 2.1. Singular white noise is defined by the chaos expansion W;(w) =
> rey &e(t)Hewo (w), and it is an element of the space C°°(R) @ (S)—o,—p for p >
and for all ¢.

Now we adapt a general setting of S’-valued generalized stochastic process
provided in [16]. S’(R)-valued generalized stochastic processes are elements of Y ®
(Sa)—,, where Y = X ® S’(R), and are given by chaos expansions of the form
f =2 0er 2kendok ®E& @ Ha = >, c7ba @ Ha = Dy Ck ® &k, where by =
ZkEN da,k: Ré& € X ® S/(R), Cx = ZaEI Aoy @Hy € X ® (Sa)_p and da,k € X.
Thus, for some p,l € Ny it holds

1k es_ @esa ., = D > ldarlik ()77 (2k) 7 (2Na) 77 < co.
a€Z keN

2.3. Wick product

We generalize the definition of the Wick product of random variables to the set
of generalized stochastic processes in the same way as in [6, 7, 17]. Let F,G €
X ® (S)—1 be generalized stochastic processes given in chaos expansions of the
form (2). Assume X to be a space closed under the product fogg, for fo,gs € X.
Then, the Wick product F'OG is defined by

FOG = Z( > fagﬁ> ® H,.

YEL “a+pB=v

3. Characterization of domains of operators of Malliavin calculus

In [5, 7] we provided the definitions of the main operators of the Malliavin calculus:
the Malliavin derivative D, the Skorokhod integral § and the Ornstein—Uhlenbeck
R which are extensions of the classical definitions of these operators in (L)? setting
to generalized Kondratiev space of stochastic processes [15].

3.1. Malliavin derivative D

Let u € X ® (5)—, be of the form (2). We say that v € Dom(D)_, if there exists
p € Ny such that
D 1l (a)! | fall3 (2N) TP < oo (3)
a€cl
is satisfied. Then, the Malliavin derivative, i.e., its stochastic gradient, is defined by

Du=> Y arfa® & ®Hy o,
acZ keN

where o — e(®) = (o, ..., a1, 00 — 1, Qps1, ..., m, 0,...) is defined for oy, > 1.
All processes u that belong to the domain Dom(ID)_, are called differentiable in
Malliavin sense.
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Now, we characterize the domains of the Malliavin derivative of generalized
stochastic processes which are elements of spaces X ® (5)_,.

Theorem 3.1. The Malliavin derivative of a process u € X ® (S)—, is a linear and
continuous mapping D : Dom(D)_, ,NX ®(S)—p—p > XS (R)®(5)—p,—p
forl>p+1 and p e Np.

Proof. We use the property (a—e®)! = 2‘; , for k € N in the proof of this theorem.
Assume that a generalized process u is of the form (2) such that it satisfies (3) for
some p > 0. Then we have

2

ot pe®) _
IDullkes_®)es)_p_p = Z Z g fa @ &k (2N)7PtPe (o — W) 1e
acZ!'keN X®S_1(R)
=3 (e — )7 (2P k)
acZ k=1
- ZZak( ) [l (2) 7 (2~ ()
o€l k=1
1+p
<C), (Z %) ()P fall % (2N) 7
acl
—CZ|04|1+’) )P fall X (2N) 7P < oo,
o€l
where C' = > (2k)~(P) < oo for I > p+ 1. O

k=1

When p = 1 the result of the previous theorem reduces to the corresponding
one in [5].

For all o € T we have |a| = >, .yar < a! = [[peyr, ax € N. Thus,
the smallest domain of the spaces Dom(ID)_, is obtained for p = 0 and the largest
is obtained for p = 1. In particular we have inclusions Dom(D)_¢ C Dom(D)_;.
Moreover if p < ¢ then Dom(D)_, _,, € Dom(D)_, _,. Note for u € Dom(D)_,
it follows that v € Dom(Da)_,, for a given sequence a = (aj)ren, ar > 1, for all
k € N. Indeed, there exists p > 1 such that

> a7 (@) fualk (2Na)™* < C- 3 o' ()77 [luall (2N) 7 < oo,
acl acl
where C' =} 7 a7P* < oo.

3.2. Skorokhod integral &

In [8] we extended the definition of the Skorokhod integral from Hilbert space-
valued generalized random variables to to the class of generalized processes. As an
adjoint operator of the Malliavin derivative the Skorokhod integral is defined as
follows.
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Let pc[0,1). Let F =3 7 fa®Ua®Ha € X®S_,(R)®(S)—p,—p, p € Nog
be a generalized S_,(R)-valued stochastic process and let v, € S_,(R) be given
by the expansion v, = ZkeN Vak €k, Va,k € R. Then, the process F' is integrable in
the Skorokhod sense and the chaos expansion of its stochastic integral is given by

SF) =33 ok fu @ Hootn.

a€Z keN
Theorem 3.2. Let p € [0,1]. The Skorokhod integral § of a S—_,(R)-valued stochastic
process is a linear and continuous mapping 6 : X ® S_¢(R) ® (S)—p,—p = X ®
(S)—p,~(g+1-p)> Jor a—p > 1.

Proof. This statement follows from (a+e®)! = (a + 1) a!, the Cauchy-Schwarz

inequality and inequalities (o + 1) < o +e®| < (2N)2+<"™ when o € Z, k € N.
Clearly, we have

BNk es)  ainn =2

2
(2N>_(l+1_0)(0‘+5(k)) (a + e®)1i=r

j{:1knkjb

acZkeN X
2
<3 ot falle (v (207 ) )
o€l keN
) 2
= S a1l (X v (207 F 2h)200) ) o)
o€l keN
<OY al Il (e 20 )2y
aEL keN
<O a7 fallk llvall?, (2N) 7P < o0,
o€l
because F' € X ® S_4(R) ® (S)—p,—p and C = ZkeN(Qk)_(l_q) is a finite constant
for Il > q+ 1. O

3.3. Ornstein—Uhlenbeck operator R

The image of the Malliavin derivative is included in the domain of the Skorokhod
integral and thus we can define their composition, the Ornstein—Uhlenbeck oper-
ator denoted by R = § oD. We define the domain Dom(R)_, to be the set of all
processes U = Y 7 Ua ® Hy € X ® (5)_, such that the condition

D lafP (@) =P ua % (2N) 77 < oo
acl
is satisfied for some p > 0. If u € X ® (5)-, N Dom(R)_, then
Ru = Z la|uq @ Hy.
acl

Recall, Gaussian processes with zero expectation are the only fixed points of the
Ornstein—Uhlenbeck operator [9].
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Note that for p € [0,1] the inclusion Dom(R)-, € Dom(D)_, holds. For
p = 1 spaces Dom(R)_, and Dom(D)_, coincide [7]. The domain Dom(Ra)_,,
where a = (ak)ken, ax > 1, is > o7 [a]? ()7 ||lua % (2Na) 7P < oo. For p > 1
from

> lal (@) P lualk (2Na) % < €Y |af* (@) ||ual[% (2N) 7P
o€ aEl
< oo, for C = Za_pa

a€el

it follows that if u € Dom(R)_, then v € Dom(Ra)_,.

4. Wick-type equations involving Malliavin derivative

We consider a nonhomogeneous first-order equation involving the Malliavin deriv-
ative operator and the Wick product with a Gaussian process G

Du = GOAu + h, Eu =1y, wugé€ X, (4)

where h is a S’-valued generalized stochastic process and A is a coordinatewise
operator. We assume that a Gaussian process G belongs to S_;(R) ® (S)_,,—p, for
some [,p > 0, i.e., it can be represented in the chaos expansion form

G = Z gr @ H.oy = Z Z Ikn &n @ Howy,  grn € R, (5)

keN keN neN

such that >, .y 3, cn 92n (2n) 71 (2k) 7P < 0o. We also assume A : X ® (S)—, —
X ® (5)-, to be a coordinatewise operator, i.e., a linear operator defined by
A(f) = Y perAalfa) ® Hy, for f =3 7 fa ® Hy € X ® (S)_,, where A, :
X — X, a € T are polynomially bounded for all i, i.e., there exists r > 0 such that
>uer IAal?(2N) ™" < co. If we assume A, = A, for all & € T then an operator
A is called a simple coordinatewise operator, according to the classification from
[10]. Especially, for a simple coordinatewise operator A such that A, = 0 the
equation (4) reduce to the initial value problem solved in [8].

As a case of study, in this paper we prove existence and uniqueness of a
solution for a special form of (4), providing its solution explicitly. Particularly, we
assume A, = Id, a € T being the identity operator and a Gaussian process G €

S_1(R) ® (S)—p,—p obtained from G by choosing g, = { ‘%k’ Z ; Z , k,neN.
Clearly, we consider G to be of the form
G = Z 9k &k © Howy, (6)

keN
such that its coefficients g, € R, k € N satisfy the convergence condition

Z gi(2n)"% < 0o, for some ¢ > 0. (7)
keN
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Therefore, we are interested to solve
Du = GOu, FEu=uy, uge X, (8)

i.e., to find a Malliavin differentiable process whose derivative coincides with its
Wick product with a certain Gaussian process.

Theorem 4.1. Let p € [0,1]. Let G € S_(R) ® (S)—p,—p, P, > 0 be a Gaussian
process of the form (6) satisfying (7). If gi > 21k, for all k € N then there ezists a
unique solution u in X ® (Sg)—, " Dom(D)_, _, of the initial value problem (8)
given by

C, S gP
U = Z ! Hgk ug ® Hy =g ® 2025 28! Hg,
a:(251,252,...,25m,0,...)GI ,BEI
B1,B2;---,8m ENo

(9)
where C,, represents the number of all possible decomposition chains connecting
multi-indices o and oy, such that oy is the first successor of a having only one
nonzero component that is obtained by substractions o — 2P — ... —2e(Ps) =
forpi,...,ps €N, s >0.

Proof. We are looking for a solution of (8) in the chaos expansion representation
form

U= ta ® Ho, ug€X (10)

acl

which is Malliavin differentiable and which admits the Wick multiplication with a
Gaussian process of the form (6). This means that we are seeking for unknown coef-
ficients uq € X such that the condition }° .7 [a[*** (a!)' = [lua % (2Ng)P* < oo
is satisfied for some p > 0. Wick product of a process v and a Gaussian process
G, represented in their chaos expansion forms (10) and (6) respectively, is a well-
defined element GQu given by

GOu=>Y gkék @ Han0D ta @ Ho =Y > g ® tua & Hypom.
keN a€l a€T keN

Clearly, assuming (7) and v € X ® (S)_,,—p then GOu € X @ S_;(R) ® (S)—,,—p
[,p > 0, because

IGOulles @as) ., = 2 D (@' gk (2k)7" Jualk (@) 7+

a€Z keN
<D (@) fuallf @N)TP N g7 (2k)
acl keN

= HUH?)(@(S)_,J,_,J : ’\G’|§,Z(R)®(S)_p,_p < 00,
where ¢ = [ + p. Previous estimates are also valid for processes in the Kondratiev
space modified with a sequence a = (ag)gen. Both, the Wick product GOu and
the action of the Malliavin derivative on u, belong to the domain of the Skorokhod
integral and therefore we can apply the operator § on both sides of (8). Thus, we
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obtain §(Du) = 0(GOu). Substituting the composition § o D with the Ornstein—
Uhlenbeck operator R, the initial equation (8) transforms to equivalent one written
in terms of the Skorokhod integral 6 and the Ornstein—Uhlenbeck operator R

Ru = §(GOu). (11)

We replace all the processes in (11) with their chaos expansion expressions, apply
operators R and § and obtain unknown coefficients of a process wu.

R(Z Ug @ Ha) =9 (Zngua ® & ® Ha+€(k:)>

acl a€Z keN
g lojug ® Hy = g g Ik Ua @ Hyqocmm.
€T €T kEN

We select terms which correspond to multi-indices of length zero and one and
obtain

Z Uer) @ H_x) + Z laug @ Hy = Z Z Gk Ug—oer) @ Hy. (12)

keN a€l,|al>2 a€Z,|a|>2 keN

Due to the uniqueness of chaos expansion representations in the orthogonal
Fourier-Hermite basis, we equalize corresponding coefficients on both sides of (12)
and obtain the triangular system of deterministic equations

Uy = 0, kEeN (13)
’a’ua = Z Gk Ug—2e(k) |Oé‘ > 2, (14)
keN

where by convention o —2¢*) does not exist if oy, = 0 or ay, = 1, thus Uy _9er) =0
for a; < 1. We solve the system of equations (13) and (14) by induction with
respect to the length of multi-indices o and thus obtain coefficients u,, || > 1 of
a solution of (8) in explicit form. First, from (14) it follows that u,, are represented
in terms of ug such that |3| = |a| — 2, where ug are obtained in the previous step
of the induction procedure.

From the initial condition Fu = uq it follows that u,0,0,...) = 4o and from
(13) we obtain coefficients u, = 0 for all || = 1. For |a] = 2 there are two
possibilities: @ = 2¢®) | k € Nand o = e® + 0| k #£ 4, k,j € N. From (14) it
follows that

" — égkﬂo, a = 2k
“7 00, a=e¢W®) 40 f£j"

Note o = 2¢(%)| k € N has only one nonzero component, so & = «, thus only one
term appears in the sum (14) and C, = 1.

We point out here that u, = 0 for |a] = 3, because these coefficients are
represented through the coefficients of the length one, which are zero. Moreover,
for all @ € Z of odd length, i.e., for all & € Z such that || = 2n+ 1, n € N the
coefficients u, = 0.
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Our goal is to obtain a general form of the coefficients u, for « € Z of
even length, i.e., for |a| = 2n, n € N. Now, for || = 4 there are five different
types of ae. Without loss of generality we consider « € {(4,0,0,...),(3,1,0,0,...),
(2,1,1,0,...),(1,1,1,1,0,0,...),(2,2,0,0,...)}.

From (14) it follows U(4,0,0,...) = }191 1(2,0,0,0,...)- Using the forms of u, ob-
tained in the previous steps we get u(4,0,0,...) = le %g%ﬁo. We also obtain

U(3,1,0,...) — U(2,1,1,0,...) — ¥(1,1,1,1,0,0,...) = 0

and

1 11 _
(2,2,0,0...) = 1U(0,2,0,...) 21(2,0,0,...)) = 192 - Up - 2.
u 41w + gou )= 4 59192 U0 -2

It follows that only nonzero coefficients are obtained for multi-indices of forms
a=4¢® kL eNand o =2e® 40 k£ 4 k j€N. Thus, for |a| =4

41” gi o, a =4k, '
Ua = 2- 41!! gkgjﬂoa a:25(k)+25(])7k7éj7
0, otherwise.

Note o = 2¢) 4+ 2¢0) | for k # j has two nonzero components, thus there are
two terms in the sum (14) and C, = 2. For example, a = (2,2,0,0,...) can
be decomposed in one of two following ways o = 2e(1) + (0,2,0,0,...) or a =
2¢() 1+ (2,0,0,0,...), therefore C2,2,00,.) = 2.

For |a| = 6 we consider only multi-indices which have all their components
even. For the rest u, = 0. For example, from (14) and from the forms of the

coefficients obtained in the previous steps it follows g 0,0,...) = églu(470’0,m) =

111 3~ _1 o 111 .2 ~ ‘m
6 42 91 Uo- Next, U(4,2,0,0,...) = ¢ (91“(2,2,0,0,... )yt 92U(4,0,0,... )) =34 4291 92 Yo- Fi-

nally, wi22.2,0,...) = 91%(0,2,2,0,...) t92U(2,0,2,0,...) t 93U(2,2,0,0,...) = 6'(1; i ; g1 92 g3 Uo.
The later coefficient, C, = 6, meaning that there are six chain decompositions of
a = (2,2,2,0,0,...) of the form o = 2e®) 4 2e®2) ... 4 2:(s) 4 ) with
a1 having only one nonzero component. This case is illustrated in Figure 1(b).
For a« = (4,2,0,0,...) we have C,, = 3, where all decomposing possibilities are
described in Figure 1(a). Thus,

61!! gl?c) uo, o = 65(k)7

3- 61”9,% g Uo, a=4e®) 4 2:0) | £ 4,

6 gy 9k 95 gi o, o =2 250D 4260 k£ 5 i j,
0, otherwise.

U =

We proceed by the same procedure for all even multi-index lengths to obtain
U, In the form

Ca | 51 52 Bm 55 02(25172/827"'72/877%0’0)€I7

Uy = ajit 91 92 Ym" U0, { la| =2n, n € N, (15)
0, la] =2n—1,n €N,

where = (B1,82,...,8m,0,0,...) € Z, B1,...,Bm € Ny and C, represents

the number of decompositions of « in the way a = 2e®V) 4 ... 4 2(Ps) 4 @y,
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0,2,0,...
/ ( )
(2,2,0,.
/ \ (2,0,0,...)
(4,2,0,..
(4,0,0,...)
(a) a=(4,2,0,...)
0,0,2,...
/ ( )
(0,2,2,0,.
/ \ (0,2,0,...)
2,0,0,...
/ (2.0.0....)
(2,2,2,0,. (2,0,2,0,.
\ \ (0,0,2,...)
0,2,0,...
/ ( )
(2,2,0,0,.
\ (2,0,0,...)
(b) a=(2,2720,...)
FIGURE 1. « values
for all possible pi,..., ps, i.e., all the branches paths that connect o and a; =

(0,0,...,0;,0,0,...), for some a; # 0.
Note, for a = 28 = (261,2082,...,208m,0,...) € T the coefficient 1 < C, <
m!, i.e., C, is maximal when all nonzero components of «a are equal two.
Summing up all the coefficients in (15) we obtain the form of solution (9). It

remains to prove the convergence of the solution u in the space X ® (Sg)—_, —p N
Dom(D)_,, ie.,

> lal"t (@) flua |3 (2Ng) P < oo
o€

We use inequalities |a| < o! < (2N)® for o € Z and that Z c7(2Ng) 7P < o0
if p > 0 for a sequence g that satisfies the assumption g > 2k’ k € N. Thus, there
exists s > 1 large enough so m! (‘a“!) < (2N)** for a € T and m = max{i € N :
a; # 0}. For p > max{2, s} we have

2
HU||X®(Sg)_p,_meom(D)_p

28

— ~ g o

- 2 o (o) 0 Tol3 CF (%) o (2Ng) 7
a=(261,.-,28m,0,0,... )T -

~ (a)?m! e e

o1 % > (oln? 9 (2N)~Pe g =P

a=(281,...,28m,0,0,... )ET

IN
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< Jlaol% D (2N)** (2N) P g% g7P°

acl
< ol gD SNy < o0 .
acl acel

Example 4.1. For g, = 1, k € N in (6), a Gaussian process G represents a singular
white noise W and equation (8) transforms to the equation

Du = Wdu, Eu = uyp. (16)

Since the coefficients of W satisfy assumptions of Theorem 4.1, then the equation
(16) has a unique solution in X ® (S)_, represented in the form

~ Cap
U= Uy ® Z ’25“' Hzg,
ﬁ:(61762’..4’57n707..4)GI
where Cyp is the number of all possible chain decompositions of 28 € 7 described
in Theorem 4.1.

Remark 4.1. a) The same procedure, described in the proof of Theorem 4.1 can be
applied for solving equations with Gaussian processes in general form (5). Hence,
in order to obtain the coefficients u,, @ € Z of a solution (10) of a homogeneous
equation Du = GQu, Fu = ug, ug € X one has to solve the system of deterministic
equations

u.m =0, for ke N and |a|u, = E E Gk Upy—e(k) _e(n), || > 2,
keN neN

that corresponds to the system (13) and (14).
b) Considering a nonhomogeneous problem Du = GQu + h, Eu = ug, ug € X,
for h € X ® S'(R) ® (S)—, the unknown coefficients u,, o € 7 of a solution u €

X®(Sg)—, are determined from the system of deterministic equations u,x) = fo r,
for k € N and

lajug = Z Z Gk Upy_o(k) _o(n) + Z Pty jos la] > 2.

kEN neN kEN

The solution u belongs to the Kondratiev space of distributions modified by a
sequence g and it can be represented as a sum of the solution that corresponds to
homogeneous part of equation uy, and a nonhomogeneous part wu,, which depends
on f. The proof is rather technical and we omit it in this paper.

c¢) Consider equation

Du = B(GOu) + h, FEu=1ug, up€ X, (17)
where B is a coordinatewise operator, ie., B : X ® S'(R) ® (S)—, = X ®
S'(R) ® (S)—, is a linear operator defined by B(f) = > .7 Ba(foa)Ha, for f =
Yoaer faHa € X ® S (R)® (S)-,, where B, : X ® S'(R) = X ® S'(R), a € T are
linear and of the form By, =}, . fa,k Ba,k(§r), @ € Z, such that Ba ;@ S (R) —
S’(R), k € N. We also assume Y, o7 > pen |Bakll?(2k) ™ (2N)P* < oo, for some
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p,1 > 0. Especially, if operator B is a simple coordinatewise operator of the form
Bar=B=-A+2?>+1,a €Z, k €N then, in order to solve (17) we can apply
the same procedure explained in Theorem 4.1. Recall, the domain of B contains
S’(R) and the Hermite functions are eigenvectors of B with B, = 2k &k, k € N.
We set h = 0. Clearly,

B(GOu) =B (Z ng §k ® U ® Ha+5(k>>

a€Z keN

= 9k Ba k() @ ua @ Hyy oo
+

acZ keN

= Z ng Bfk ® Uy & Ha+g(’€)

a€Z keN

— Z ng 28k @ uq @ Hyy o).

acZ keN

Therefore, after applying operator § we obtain

Z laug ® Hy = ZZ 2k grua @ Hyyoomm.

acl €T keN
The coefficients of the solution are obtained by induction from the system of
equations

u.m =0, forall k € N, and |aju, = Z 2k g gy _octry, | > 2.
keN

Under assumptions of Theorem 4.1 it can be proven that there exists a unique
solution of equation in the space X ® (Sg)—,,—p N Dom(ID)_,, for p > max{3, s}
given in the form

~ Cap - k
u=tio ® > oo (I e0a) s,
i

2ﬁ:(2ﬁ15'”55m70707"’)6 k=1

5. A numerical example

In this section we consider a stationary equation
GOAu=h, FEu=ug, uge€lX, (18)

obtained from (4), for Du = 0. Particularly, by applying the stochastic Galerkin
method we solve numerically (18) for a simple coordinatewise operator A with
A, = A, a € Z, the Laplace operator in two spatial dimensions and G being a
Gaussian random variable. Thus, (18) reduce to

Gw) O Z Au(z,y) Hy(w) = h(w), (x,y) € D, we . (19)

aEeT
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Note that in the stochastic Galerkin method a finite-dimensional approximation of
Fourier-Hermite orthogonal polynomials { H, } ez is used [4, 20]. The main steps
are sketched in Algorithm 5.1.

Algorithm 5.1 Main steps of the stochastic Galerkin method

1: Choose finite set of polynomials H, and truncate the random series to a finite
random sum.

2: Solve numerically the deterministic triangular system of equations by a suitable
method.

3: Compute the approximate statistics of the solutions from obtained coefficients.

4: Generate H, and compute the approximate solutions.

Let D = {(z,y) : =1 < x < 1,—-1 < y < 1} be the spatial domain and let
G=go+ zkeN gx H_y be a Gaussian random variable with mean EG = go = 10
and variance VarG = Y, 9% — 9§ = 3.3%. We denote by Z,,,, the set of a =
(1, ,0,0,0,...) € T with m = max{i € N : a; # 0} such that |a| < p. As
a first step, we represent w in its truncated polynomial chaos expansion form ,

i.e., we approximate solution with the chaos expansion in &%_,H with m random

_ (m+p)!

variables u(z,y,w) = o7 i U (z,y) Ho(w); the previous sum has P mlp!

terms. Hence, (19) transforms to

go - Z A’lja(l‘,y)Ha(W)—F Z ngAaOl(m7y)Ha+e(k)(w>

Q€T p Q€T p k=1

=) haHa(w).

a€Lm p

The unknown coefficients ., o € 7, ,, are obtained by the projection onto
each element of the Fourier-Hermite basis {H,}, v € I, ,, i.e., by taking the
expectations for all v € Z,, ,,

EH(H’Y'(QO Z Aﬁa(l’,y)Ha—F Z ngAﬂa(xay)HaJre(k)))

€L p Q€L p k=1

:E,L(Hv- > tha).
a€lm,p
From the formula Ho(w) - Hp(w) = 3_. <infa.5) 'y!(;“) (5)Ha+,3,27(w) for Hermite
polynomials [3] and the orthogonality of the polynomial basis, it follows that the
initial equation reduces to a system of P deterministic equations for coefficients
Uq. Particularly, we take m = 15, p = 3 and then obtain P = 816 deterministic
equations in the system. We assume h, = 1 for |a| < 3 and h, = 0 for |a] > 3.
We use central differencing to discretize in the spatial dimensions and 170 grid
cells in each spacial direction. Then, we solve numerically the resulting system.
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Expected value of the solution Variance of the solution

X 10"

FIGURE 2. Expected value (left) and variance (right) of the solution

Once the coefficients of the expansion u are obtained, we are able to compute all
the moments of the random field. Particularly the expectation Fu = ug and the
variance of the solution Varu = Zaezm,,, a! u? are plotted in Figure 2, on z-axes
over the domain D. We can observe that the variance of the solution is relatively
high. In general, this behaviour is related to singularities.

We would like to underline that Wiener chaos expansion converges quite fast,
i.e., even small values of p may lead to very accurate approximation. The error

generated by the truncation of the Wiener chaos expansion, in X ® (L)? is

£ = |lule,y,w) (. ,0) ey
= EM (U(IE, Y, W) - 17(:1:’ Y, (U))
= Y duala )k
a€I\Lp, p

for (xz,y) € D. Note that if instead of a Gaussian random variable, a stochastic
generalized function is considered, i.e., when the coefficients are singular, the error
£2 — 0 converge in the space of Kondratiev distributions.
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Nonhomogeneous First-order Linear
Malliavin Type Differential Equation

Tijana Levajkovi¢ and Dora Selesi

Abstract. In this paper we solve a nonhomogeneous first-order linear equa-
tion involving the Malliavin derivative operator with stochastic coefficients
by use of the chaos expansion method. We prove existence and uniqueness of
a solution in a certain weighted space of generalized stochastic distributions
and represent the obtained solution in the Wiener-Ité chaos expansion form.

Mathematics Subject Classification (2010). Primary: 60H15, 60H40, 60H10,
60HO07, 60G20.

Keywords. Generalized stochastic process, chaos expansion, Malliavin deriva-
tive, stochastic differential equation, nonhomogeneous linear equation.

1. Introduction

This paper is devoted to study of generalized stochastic processes which have series
expansion representation form given in terms of an orthogonal polynomial basis,
defined on an infinite-dimensional space. In particular, we focus on a Hilbert space
of square integrable processes defined on a Gaussian white noise probability space
where the orthogonal basis is constructed using the Hermite polynomials and the
Hermite functions. We provide definition of stochastic generalized random variable
spaces over a space of square integrable random variables by adding certain weights
in the convergence condition of the series expansion. Introduced by Hida (see [1])
and further developed by many authors (see [2], [3], [7], [10], [12] and references
therein), white noise analysis was applied to solving different classes of stochastic
differential equations ([5], [8], [14]).

This paper deals with the Malliavin derivative, one of three main operators
of the Malliavin stochastic calculus, an infinite-dimensional differential calculus of
variations in the white noise setting. Recall, the Skorokhod integral represents an
extension of the Itd integral from a set of adapted processes to a set of nonanticipat-
ing processes. Its adjoint operator is known as the Malliavin derivative. Operators
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of Malliavin calculus are widely used in solving stochastic differential equations.
In particular, Malliavin differential operator found place in stochastic differential
equations connected to optimal control problems and problems in financial math-
ematics. We give a more general definition of the Malliavin derivative than in [10],
[11]. We allow values in the Kondratiev space of stochastic distributions (8)ps
p € [0,1] and thus obtain a larger domain for the derivative operator. For basic
results related to the Malliavin derivative we refer to [2], [7], [10], [12] and for its
applications we refer to [3], [4], [9], [11], [13].

Furthermore, as a description of the chaos expansion method, we solve a
nonhomogeneous linear stochastic differential equations involving the Malliavin
derivative. We provide a general method of solving, using the Wiener-Itd chaos
decomposition form, also known as the propagator method. This method gives
good framework and opportunity for solving many classes of stochastic equations
(see [7], [8], [9]). The problem is based on finding an appropriate, large enough
space of generalized functions where a solution of a considered equation exists.

The paper is organized in the following manner: In Section 2 we provide
the basic notation used throughout the paper, followed by the survey on chaos
expansions of generalized stochastic processes and S'-valued generalized stochastic
processes. The Malliavin derivative is defined on a set of generalized stochastic
processes and the characterization of its domain is stated. In Section 3 we apply
the chaos expansion method in order to solve a nonhomogeneous first-order linear
Malliavin type differential equation with singular coefficients, represented in the
form

Du=c®u+h, FEu=up,

force S'(R), h€ X @ S'(R) ® (S)-1, o € X and E is the expectation.

2. Notions and notations

Let the basic probability space (€2, F, P) be the Gaussian white noise probability
space (S'(R), B, ), where S’(R) denotes the space of tempered distributions, B
the sigma-algebra generated by the weak topology on @ and u denotes the white
noise measure given by the Bochner-Minlos theorem. The Bochner-Minlos theo-
rem states the existence of a Gaussian probability measure given by the integral
transform of the characteristic function

c@) = [ ) = i, g e SR,
S/(R)

where (w, ¢) denotes the usual dual paring between a tempered distribution w and
a rapidly decreasing function ¢.

Let {£, k € N} be the family of Hermite functions and {hy, k € No} the
family of Hermite polynomials. It is well known that the space of rapidly decreas-
ing functions S(R) = ey, Si(R), where Si(R) = {¢ = Yroiakée & llollf =
S50 a2(2k)! < oo}, I € No, and the space of tempered distributions S'(R) =
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Uien, S—1(R), where S_y(R) = {f = 352 b & = |IfI%, = 232, b (2k) !
OO} I € Np.

Let (L)2 = LZ(S’(R)aBaH): and HQ(LU) = Hzil hak(<w,€k>), a € 1 be
the Fourier-Hermite orthogonal basis of (L)?, where 7 denotes the set of se-
quences of nonnegative integers which have only finitely many nonzero compo-
nents o = (ap,q,...,0m,0,0...). In particular, for the kth unit vector ¢*) =
(0,...,0,1,0,...), the sequence of zeros with the number 1 as the kth compo-
nent, H o (w) = (w,&), k € N. The length of a multi-index « E Z is deﬁned

as |la| = 3 1o, k. Let @ = (ar)ren, ax > 1, a® = o T, & =TI, ak,

and (2Na)* = T[;Z,(2kax)™. Note that >, -(2N)™* < co if p > 0 and
Y oacz0 P* < oo if p>1. Let p€0,1].

The space of Kondratiev stochastic test functions modified by the sequence a,
denoted by (Sa), = en, (Sa)p,p, p € No, is the projective limit of spaces

Sy = {1 = X batla € 220+ 111, , = (a7 B (2Nap™ < o).
a€l acl

The space of Kondratiev stochastic generalized functions modified by the sequence

a, denoted by (Sa)-, = UpeNo (Sa)_p,_p, p € Ny, is the inductive limit of the

spaces

($0)-pop = {F = 3 calla s 1Fs, = Tl RN < ool

aEl aEL

The action of a generalized function F' € (Sa)_, onto a test function f € (Sa),
is given by < F, f >»>= 3" .7 olcaby. The generalized expectation of F is defined
as E,(F) =< F,1 >»= cy. It is considered to be the zero coefficient in the chaos
expansion of a generalized function F in orthogonal basis { H,}qe7. In particular,
if '€ L?(p) it coincides with usual expectation.

For ay =1, k € N these spaces reduce to the spaces of Kondratiev stochastic
test functions (5), and the Kondratiev stochastic generalized functions (S)_,
respectively. For all p € [0, 1] we have a Gel’'fand triplet

(Sa), € L*(w) € (Sa)-,

In particular, the largest space of the Kondratiev stochastic distributions modified
by the sequence a is obtained for p = 1 and is denoted by (Sa)_;. In [4] we
introduced the Gaussian type of these spaces and solve equations related to them.

2.1. Generalized stochastic processes

Let I C R and X be a Banach space of functions on I endowed with || - || x and
X' its dual. The most common examples used in applications are Schwartz spaces
S(R) and S’(R), the Sobolev spaces X = W, *(R) and X' = W~ L2(R).

Definition 2.1. Generalized stochastic processes are elements of tensor product
space X ® (5)_,
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Theorem 2.1 ([14]). Let X be a Banach space endowed with || - ||x. Generalized
stochastic processes as elements of X @ (8)_, have a chaos expansion of the form

=3 fa®Hs fu€Xaecl (1)

o€l

and there exists p € Ng such that

lullkes)_p_, = 2 Ifalk ()77 2N) ¢ < 0.

a€L

Remark 2.1. Generalized stochastic processes as elements of X @ (Sa)_1 have a
chaos expansion of the form (1) and there exists p € No such that

lulZ oesa)_r_p = 2 I fallk 2Na) 7" < oo.
acel

Recall that (S)_; is nuclear and thus (X & (S)1)’ = X’ ® (5)-1. In a similar
manner one can consider processes as elements of X’ ®(5)_1. Note that X'®(S)-1
is isomorphic to the space of linear bounded mappings X — (5)_1.

Definition 2.2. Singular generalized stochastic processes are linear and continuous
mappings from X into the space of generalized stochastic functions (S)_1, i.e.,
elements of £L(X, (S)-1).

Theorem 2.2 ([14]). Let X = ;o Xk be a nuclear space endowed with a family of
seminorms {||-|[x; k € No} and let X' = Jpo o X_k be its topological dual. Singular
generalized stochastic processes as elements of X' @ (S)_, have a chaos expansion
of the form

u:Zfo:®Ha: faEX—k;,OdEI,

acl

where k € Ny does not depend on o € I, and there exists p € Ng such that

lalZrgesy_,._, = D Ifal®e (@)= (2N) 7% < co.

el

With the same notation as in (1) we will denote by Eu = f,0,0,.) the
generalized expectation of the process u.

Example 2.1. Brownian motion is an element of C*(R) ® (L)? and it is defined
by the chaos expansion Bi(w) = > po fo &k(s)ds H ) (w). Singular white noise
W, (+) is defined by the chaos expansion Wy (w) = Ek 1 &e(t)H oo (w), and it is an
element of the space C®(R) ® (S)_1,— for p > {5 and for all ¢. Tt is integrable
and the relation % B, = W, holds in the (S)—1 sense (see [2]).
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2.2. Schwartz space-valued generalized random processes

In [15] and [16] a general setting of S’-valued generalized random process is pro-
vided. 5'(R)-valued generalized random processes are elements of X ®(S)_ p, Where
X = X ® S’(R), and are given by chaos expansions of the form

F=Y) 04@40Ha=Y ba®Hoa= ¢ ®&,

ael keN a€l keN

where by = > NGk Q& € X RS (R), cr = Y acz ok ®@Hy € X ®(S)_, and
Ao,k € X. Thus, for some p, [ € Ny,

11 es_ @as)_p_ = 2 2 laakl% (@) 7(2k)"H(2N)P* < o
a€l keN

2.3. The Malliavin derivative within chaos expansion

We provide now the definition of the Malliavin derivative which is an extension of
the classical definition of this operator from the space of random processes to the
space of generalized stochastic processes ([8], [10], [12]).

Definition 2.3. Let a generalized stochastic process u € X @ (5)_, be of the
form (1). If there exists p € Ny such that

> 1o (@) ]| fallk (2N) 7 < o ()

acl

then the Malliavin derivative of u is defined by

Du = ZZ k fo @ & ®Ha—e(’°)‘

acZ keN

Operator D is also called the stochastic gradient of a generalized stochastic
process u. The set of processes u such that (2) is satisfied is the domain of the
Malliavin derivative and is denoted by Dom(D)_,. A process u € Dom(D)_, is
called Malliavin differentiable process.

Theorem 2.3. The Malliavin derivative of a process u € X @ (S)_, is a linear and
continuous mapping

D: Dom(D)—p—p S X®(S)—p—p = XQS(R)® (8)—p,—ps
forl>p+1 and p € Np.

Proof. We use the property (a—e®)! = C%i, for k € N in the proof of this theorem.
Assume that a generalized process u is of the form (1) such that it satisfies (2) for
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some p > 0. Then we have

IDul|% g5 . R)S(S)— g

2
=D > onfa® b (2N) o422 (o — W)1e
acT'keN X®(S)-1(R)
o0
_ S ) i
<SS k(o — e®N| fa 3 (2N) TP (2K)
ael k=1
= a7 ;
=3 et (2] sl e ¢
acT k=1 k
0 1+p
<C), (Z a:«) ()| full % (2N) P
acel k=1
=Y [P (al) || fallf (2N) P < o0,
acl
where C' = 2211(219)'(‘!_3’) <ooforl>p+1. O

When p = 1 the result of the previous theorem reduces to the corresponding
one in [4].

3. Nonhomogeneous first-order linear equation

We consider now a nonhomogeneous linear Malliavin differential type equation
{ Du=c®u + h,

E’U,Zﬁg,

(3)

where ¢ € §'(R), h is a S’-valued generalized stochastic process and up € X.

Note that in a special case for h = 0 the equation (3) reduces to the corre-
sponding homogeneous equation Du = ¢ @ u satisfying condition Eu = ug. To be
precise, in this case we obtain the generalized eigenvalue problem for the Malliavin
derivative operator, which was solved in [4]. Moreover, it was proved that in a spe-
cial case, obtained solution coincide with the stochastic exponential. Additionally,
putting ¢ = 0, the initial equation (3) transformns into the first-order differential
equation with the Malliavin derivative operator Du = h, Bu = up, which was
recently solved in [6].

The method we will use to solve this equation is a very general and useful
tool of Wiener-Itd chaos expansions, also known as the propagator method. With
this method we reduce the stochastic differential equation to an infinite system of
deterministic equations, which can be solved by induction on length of multi-index.
Summing up all coefficients of the expansion and proving convergence in an appro-
priate weight space, one obtains the solution of the initial stochastic differential
equation. This method is applied in several papers: [4], [5], [6], [7], (8], [9], [14], [15].
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Denote by r = r(a) = min{k € N : ay # 0}, for nonzero multi-index
a € I. Then the first nonzero component of « is the rth component cy,, i.e.,
a = (0,0,...,0,ap,...,0,,0,0,...). Denote by .~ the multi-index with all
components equal to the corresponding components of a, except the rth, which is
a; — 1. We call a ) the representative of o and write

O = Qlg(r) +E(T), @ € I, |Ct| >0

Note that o, is of the length |a| — 1.

For example, the first nonzero component of o = (0,0, 2, 1,0,5,0,0,...) is
its third component. It follows that r = 3, o, = 2 and the representative of « is
oo =a—e®=(0,0,1,1,0,5,0,0,...).

The set Ko ={f€Z:a=p+¢ forsomej € N},a €T, |a| >0isa
nonempty set, because a,.» € K,. Moreover, if « =ne("), neN then Card(K,)=1.
In all other cases Card(KC,) > 1. For example if o = (0,1, 3,0,0,5,0, .. .), then the
set K, has three elements

K:oz == {a5(2) = (030335010:5:07-")3 (07172701075101"')7 (05173:070:4307”')}‘

For o € 7 such that Card(K,) > 1, we denote by r; the smallest £ € N
such that a ¢y = M) + Qg(r), 1€, @y is the representative of oy and is of
length |a| — 2. Then ’Cas(r) ={f €Z:am = p1+e*) for somek; € N}.
Further on if, Card(/‘Cas(r)) > 1 then we denote by rp the smallest & € N such
that .y = (™) + () and so on. Note that ICQE(”) ={f el 0 =PH+
e®2) for some ks € N}. With such a procedure we decompose o € T recursively
by new representatives of previous representatives and we obtain sequence of K-

sets. Thus, for o = (au,,...,0,,0,0,...) € T, |a] = s+ 1 there exists an
increasing family of integers 1 < r <7 <ry < -+. <y < m, s € N such that
@) = (0,0,...) and every multi-index « is decomposed by recurrent sum of
representatives

o= E(T) + a.n

=l ) 4 Qpry)

_ E(r) o 5(?‘1) depnz o E(T's) + 0rs), Qe = (0, 0’ .. ) (4)

For example, if @ = (0,0,2,0,0,1,0,...), then r = 3, a, = 2, a.(ny = (0,0,1,0,0,
19 0:‘”): Ty = 3; Oy = }-’ A (ry) = (01 O: 0,0,0,1,0,. . ')’ 3. = 6: Apy = 1: Qg(rg) =
(0,0,0,...), and thus a = (") 4+ g(r1) 4 g(r2) Qryy. Clearly, s = o] — 1 = 2.

Theorem 3.1. Letc =32 cx & € S'(R) and let h € X @ §'(R) @ (S)-1 having

the representation h = 3 37 hax @&, @ Hy, such that the coefficients ho i, € X
a€l keN
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satisfy
( for |a| =1
aL,hae(r) ks ﬁhﬁ,ka B € Ka,
forlal=2 " 1 1 1
T Q_Thae(r-),r + 0ty Crhas(,‘l) o mhﬂ,k + Bebrn Ckhﬂl,k] i (5)

.B e ]CQ‘, ﬁl E ]Ccze(,\);

for all possible decompositions of a.

If e, > 55, for all k € N then equation (3) has a unique solution in X @ (Sc)-1.
The chaos expansion of the generalized stochastic process, which represents the
unique solution of (3) is given in the form

u= uhom % unhom
- § :ugom ® Ha 4 § ur(,lyhom ® Ha (6)
= acT,a|>0
~ c* 1 1
= up @ E —H, + E _h'a T ——Crhiy 1
al o T o L
acl ac e
|| >0
1
CrCry ha (rg) T2 s —|C1‘C7'1 s crs_lho,rs ® Ha,
Ol Gy : al

i.e., as a superposition of a homogeneous part, denoted by uhom - and its nonho-

mogeneous part denoted by uPhom | The second sum on right-hand side of (6) runs
through o € T represented in the recursive form (4).

Proof. We are looking for the solution v in the form u = ZQEI Uy @ H,, where
the coefficients u, € X, a € T are to be found. From Fu = uy it follows u(,...) =

o and thus, v = wp + 3T U ® He. We use the chaos expansion method
a€el,|a|>0

and transform the initial equation (3) to an equivalent system of deterministic
equations. Thus,

]D(ﬁo+ > ua®Ha)

acl
|| >0
. (z f) o (z s H) ey (2 mm) o H,
keN acel acl \keN
5 (z gt m) o Hy
acl keN

|| >0
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=> (cha ®§k) @Ha+ Y (Zha,k ®§k) ® H,

a€Z \keN a€Z \keN
Z (Z(ak + Dt ety ®€k) ® Hq
a€T \keN

= Z (Z(Ckua + ha,k) ®£k) & HQ-
ael \keN

Due to the uniqueness of the chaos expansion of a generalized process in

361

the

orthogonal basis {, ® Hu, @ € T and k € N, we transform (3) into a family of

deterministic equations

(Oc}c + l) Ugtekr)y = CrlUg + ha,)c, forala e Z, k € N.

(7)

The solution u,, o € T is obtained by induction with respect to the length of

multi-indices . Recall, from Eu = %y we obtained Y(0,0,...) = Uo.
Starting with |a| = 0, i.e.,, @ = (0,0,...), the equations in (7) reduce to

Ugk) = CkU(0,0,...) + P00, )k kEN

(8)

and we obtain the coefficients u, for o of length one. In particular we have the

system

([ %(1,0,0,0,...) = C1llp + ho 1
%(0,1,0,0,...) = C2lo + ho 2
U(0,0,1,0,...) = C3lio + ho3

%(0,0,0,1,0,...) = C4lig + ho.a

\

)

Note, uq for |a| = 1 are obtained as a superposition of a homogeneous part,
represented in terms of i, and a nonhomogeneous part, expressed in terms of

h“;(r)ﬂ" = h(,0,...),» T €N.

Next, for o = 1 multi-indices are of the form o = e®), k € N and several

cases occur. For k =1, a =) = (1,0,0,...) the system (7) transforms into

_ 1
U(2,0,0,0,...) = 3C1U(1,0,0,...) + §h(1,o,o,..,),1
%(1,1,0,0,...) = C2U(1,0,0,...) + P(1,0,0,...),2
U(1,0,1,0,...) = €3%(1,0,0,...) + P(1,00,...),3

U(1,0,0,1,0,...) = C4%(1,0,0,...) + P(1,00,...),4
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Now we replace expressions u ), k € N with equalities (8), obtained in the previ-
ous step, and receive

%(2,000,..) = 510 + 3¢1ho1 + 2h(1.00,.)1

U(1,1,0,0,...) = C12Uo + c2ho,1 + h(1,0,0...),2

U(1,0,1,0,..) = €1¢3U0 + c3ho1 + 100,03 (10)
U(0,0,0,1,0,...) = C1€ato + caho1 + h(100,.),4

Continuing, for k£ =2, o = £® =(0,1,0,0,...) the equations in (7) transform to

( U(1,1,00,...) = €14(0,1,0,0,...) T P(0,1,0,0,...),1
7 1 1
14(0,2,0,0,...) = 3C2%(0,1,0,0,..) T 31(0,1,00,...),2
U(0,1,1,0,...) = €3U(0,1,0,0,...) T h,100,..).3
{ 11

%(0,1,0,1,0,...) = €4%(0,1,0,0,...) T h0,1,00,...),4

and then after substitution (9) for (11) we obtain

( u(1,1,0,0,...) = €1€2U0 + c1ho2 + ho100,.)1

U(0,2,00,..) = 5C3t0 + 3c2ho2 + th0.1,00,..).2

{ Wo,1,10,.) = cacslio + csho2 + Ro,100,..)3 (12)
U(0,1,0,1,0,...) = C2Callo + caho2 + Mo,1,00,..).4

For k=3, a =¢® =(0,0,1,0,0,...) the system (7) reduces to
U(1,0,1,0,0,...) = C1¢3Uo + c1hoz + B(0,0,1,00,...).1
U(0,1,1,00,...) = c2¢3Uo + c2ho,3 + (0,0,1,00,..),2

(0,0,2,0,...} = %Cgﬁo 2 %CBhO,B o %h(o,o,m,o,...),a ’ (13)

U(0,0,1,1,0,...) = CaCalio + caho3z + h(,0,1,00,..).4

Continuing with the same procedure we obtain the unknown coefficients u,, of
length two. Further on, we will express all multi-indices, which have two different
representations of the form a = e®) (k1) for k # ki, k, k1 € N in terms of their
representatives.

For example, multi-index

(1,1,0,0,...) =M +(0,1,0,...) = ® +(1,0,0,...)
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has two different representations of the form o« = (%) +a v and thus the coefficient
U(1,1,0,0,...) appears in systems (10) and (12). Thus, the additional condition

czho,1 + h00,..),2 = ctho + heo 0, )1

has to hold in order to have a solvable system.

Moreover, we express & = (1,1,0,0,...) in terms of a sequence of succes-
sive representatives, ie., r = 1, a.(y = (0,1,0,0,...), 7, = 2 and s R —
(0,0,0,...). Thus, the element %(1,1,0,0,...) is given in the form U(1,1,0,0,...) =
cicaup + o 1,0,...),1 + c1ho 2 obtained in (12). Also, the element %(1,0,1,0,0,...) aP-
pears in equalities (10) and (13) and we obtained additional condition

csho,1 + ha00,..)3 = c1hos + heo10..)1

which need to be satisfied in order to have a unique u,. Multi-index o = (1,0, 1,
0,0,...) can be decomposed in terms of a sequence of successive representatives as
follows o = e(")+a5(r) ,wherer =1, a.» = (0,0,1,0,...) and ooy = 6(”)4—@5(”;,
for ry =3 and a) = (0,0,0,...). We use the form (13) to represent %(1,0,1,0,0,...)
in terms of its representatives decomposition. Moreover, the element U(0,1,1,0,0,...)
appears in equalities (12) and (13), and it follows that also the condition

czho2 + ho,1,00,..)3 = czhoz + ko0, )2

has to be satisfied, and so on.
In this step we obtained forms of the coefficients u, of length two, with
validity of the additional condition

ha iy .r +crho0,..9,m = haj + ¢ b, ) ks (14)

where o = (") 4 () 4 (0,0,...), 1 <r <7, rr € Nand all 8 € T such
that « = B +¢eW) for j > r, and 8 = (0,0,...) + &, for some k € N. Note
that condition (14) corresponds to condition (5) for |a| = 2. The coefficients u,, of
length two are represented as a superposition of a homogeneous part, expressed in
terms of ug and a nonhomogeneous part expressed as a linear combination of he k
for o of length one and product of ¢, k € N and hai for a of length zero, i.e., in
terms of representatives al—rhaemm + Lephor, for a =M+ am, agm = ™),
1 LP R e

For |o| = 2 from system of equations (7) and results (10), (12), (13),...,
calculated in the previous step, we obtain u,, for a of length three. Different
combinations for multi-indices of length two occur. If we choose a = (1,1,0,0, . .. )
then the system (7) transforms into the system

I 1
%(2,1,0,0,...) = 5€1%(1,1,0,0,...) T 3M(1,1,0,0,...),1

— X 1
U(1,2,00,..) = 5€2%(1,1,00,...) T 3P(11.00,.)2
U(1,1,1,0,...) = €3%(1,1,0,0,...) T P(1,1,00,..),3

U(1,1,0,1,0,...) = €4¥(1,1,0,0,...) T P(1,1,0,0,...),4
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We substitute equalities for u, of length two, obtained in the previous step in
terms of their representatives decomposition, and transform the system to a more
elegant one. In particular, we use expression in (12) for the element w1 10.0,..)
and obtain the system of equations

_1g s 19 1 1
U(2,1,0,0,...) — 3C1C2U0 5 ifqho,z + gclh(o,l,o,o,...),l + §h(1,1,0,0,...),1
, 1. .2~ o1 1 1
U(1,2,00,..) = 3C1CU0 + 3¢1czho2 + 3¢2R0,10,..)0 5N(1,1,0,0,..),2
! waaiip,.) = cicacalio + cicshoz + cshio1,00,..00 T 100,03 . (15)

U(1,1,0,1,0,...) = C1C2Callo + c1¢aho2 + cah(0,100,...),10 h,1,00,..).4

For a = (1,0,1,...) the system (7) transforms to the system

1.2 = 1.2 1 1
( W2,0,1,0,0,...) = 3¢ %0 + 3¢thos + 3¢1h(0,0,1,00,.)0 + 3h(1,0,10,.01

U(1,1,1,0,0,...) = C1€2€aTlo + c1coho s + c2h0,0,1,0,..)0 T A1,0,1,0,0...).2

T e L 1 1
U(1,0,2,0,...) = 3€1C3U0 + 5c1c3ho3 + §Csh(o 0,1,0,0,..),1 + 51(1,0,1,0,0,...),3

U(1,0,1,1,0,...) = C1€3Cato + c1¢sho3 + caho0,1,0,0,..).10 T F(1,0,1,00,..),4

(16)
and for o = (1,0,0,1,...) we obtain the system

1.2, .~ 1.2 T - 1
U(2,0,0,1,00,...) = 3Cicallo + 5¢thoa + ze1h00,100,..).0 + P01,

I

U(1,1.0,1,0,0,...) = C1€2CaTlo + c1cahos + c2h(0,0,0,1,0,..),1 + P(1,0,0,1,00,..),2
! o0,y = cicscalio + crcshog +€3R0,0,0,1,00,..)1 T ho0100,.).8

1 2 far? 1 1 1
U(1,002,0,..) = 3C1C5T0 + 5¢1¢ah0,4 + 5¢4R(0,0,0,1,00,...),1 T 5P(1,0,0,1,0,0,...),4
2 2 2 2

We continue with multi-indices a = (0,1,1,0,0,...) and @ = (0,1,0,1,0,...)
and transforn the system (7) respectively to the systems

U(1,1,1,0,0,...) = €1€2C3U0 + cic2hos + €1h©0,0,1,00,..),2 T P.1,1,0,..),1
N (N . 1.2 1 1
U(0,2,1,0,0,...) = 3¢3aT0 + 3¢3ho.3 + 3€2R(0,0,10...0.2 + 3h0,1,100,.),2
1.2~ 1 1
U(0,1,2,0,..) = 3C2c3tio + 3c2c3ho3 + 3¢3R(0,0,1,0,0,...),1 + Po,1,1,00..08  (17)

U(0,1,1,1,0,..) = C2€sCalip + c2¢aho 3 + cah(0,0,1,00,...).2 + 10,1,1,00,...) 4
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and

~ 1
%(1,1,0,1,00,...) = €1€2€4U0 + c1¢2h0,4 + 5¢1h0,0,0,1,00,.. )2t ho,1,01.0,.. )1

12, ~ , 12 1 1
%(0,2,0,1,0,0,...) = 5C2C4Uo + 5¢3h0,a + 5¢2h(0,00,1,0,.. )2 + 5h 0,1,0,1,0,0,...),2
2 2 2
U(0,1,1,1,0,...) = C2C3C4Uo + 6263]10,4 =+ Cgh(o,o,o,l,o,o,,. )2 + h(O,l,O,l,0,0,... ),3

1, 2~ | 1 1 1
%(0,1,0,2,0,...) = 5C2C4Uo + 3C2¢4h0,4 + 5¢4h(0,0,0,1,0,0,..),2 + 5h 0,1,0,1,0,0,...),4
2 3 2 2

%

For multi-indices o = (2,0,0,0,...) and a = (0,2,0,0,...) the system (7) trans-
forms respectively into

{ N N 1.2 1 1
U(3,0,00,..) = §€1uo + gcrho1 + ge1h,000,.)1 + 572,000,.).1

U [ T 1 1
%(2,1,0,0,...) = 3€1¢2U0 + 3¢102h0,1 + 5¢2h(1000,.)1 + M2000,..),2

12, ~ , 1 1 1
U(2,0,1,0,...) = 5C1€3%U0 + 3¢1¢3ho,1 + 5¢3h(1000,..),1 + 572,0,00,...),3
.2 = 1 1 1
%(2,0,0,1,0,...) = 3C1€aUo + 3¢2¢ah0,1 + 5¢4R(0,0,0,1,00,..).1 + 57(2,0,0,0,..).4
(18)
and
1.2~ 1 1
%(1,2,0,0,0,...) = 3€1CU0 + 3¢102h0,2 + 5¢1R(0,1,000,...),2 + R(0,2,0,0,...)1
1.3~ , 1.2 1 1
U(0,3,0,0,0,...) = gC2Uo + 5Caho2 + 5c2h(0,1,0,...),2 + 3h0,2.00,..),2
— 1.2 . .= 1 1 1
%(0,2,1,0,0,...) = 3€2€3U0 + 3¢2¢3h0.2 + 5¢3h0,100,..).2 + 570,2,0,0,...),3 -
1. 2 e~ 1 1 1
U(0,2,0,1,0,...) = 3C2C4lo + 32¢sh0,2 + 5¢ah(0,1,00,...),2 + 3P0,2.00,..).4

Combining with the previous results, we obtain u,, for |a| = 3. Further on, we
will express all multi-indices, which have several different representations of the
form a = ek 4 glk1) 4 E(k2)7 for k, k1, k2 € N in terms of theirs representatives.
Two different representations of w2 1,0,0,..) appear in the systems (15) and (18),
so the additional condition

1 1 1 1 1
§C%h0,2+ §Clh(0,l,0,“. )1+ 5’1(1,1,0,0,... L= 56102‘&0,1 + §Czh(1,0,0,... yitheoo,..,2

follows. We express the element U(2,1,0,0,...) in form of the representatives. Clearly,
recursive decomposition of multi-index (2, 1,0,0,...) is given by

(2,1,0,0,...) =& 4+ (1,1,0,0,...) =™ + £ 1 (0,1,0,0,...)
=&l 4 &(m) L 02 4 (0,0,...),
for r = 1, r = 1 and g = 2. Thus, U(2,1,O,O,...) = %C%Cz’ﬂo + %h(l,l,O,O,..A),l +
5¢1h0,1,0,0,.. )1 + 2c2ho 2.
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Since the coefficient u1,1,1,0,0,..) appears in three equations (15), (16) and
(17), we receive another conditions

ciezho2 + ¢sh(o,1,00,...9,1 + P(1,1,00,..),3
= c1c2ho 3 + c2h0,0,1,0,...),1 T 1(1,0,1,00,...),2

= c1e2ho,3 + c1h0,0,1,0,0,...0,2 T Ro,1,1,0,..),1

and express o = (1,1,1,0,0,...) by its representatives, r = 1,1, = Dory =2
The representation of w1 1.1,0,0,..) is given by (15), i.e., u@1,1,1,00,..) = c1cac3tp +
ho,1,1,0,.01+F c1ho,0,1,0,..),2 + c1c2ho 3. Note that previous conditions correspond
to conditions (5).

We proceed by the same procedure for all multi-index lengths to obtain ue
in the formn

aq (a5}

c % 1 1
1 2

Uy = l'_—r'”+ —ha (T),,.+—c,.ha g,-),'r1+"'
oy! ol Oy ¢ Qp Oty e

1

iy .. Qi

s

GGy, «oniChyy hO,rs)

and thus the form of the solution (6).

In general, we decompose multi-index a recurrently by the representatives.
To be precise, in the firs step we have a = e(") 4 a_(ry. Then, in the next step
we find the representative of o ), i.e., o) = elr2) 4 Q,ry and so on...

The coefficients u, are obtained in the form

¢ 1 1 1
U = H | o + _hla (r) 7 £ —ﬁ_CT'hO‘ (r1):™ + R _TCTCT‘l ... Crsil hO,T‘S
11 ! ap c O Gty < ol
€N ~ ~ 7
—— —

nonhomogeneous part
homogeneous part

for the decomposition @ = ™ + 3 ) 414D 000: 0 ) I Er e e K 1y,
1<5<s

ey o ey =a— gl = 3 er) 1< j<s, where |o| =s+ 1.
1<i<j—1

It remains to prove the convergence of the solution (6) in the space X®(S5¢)-1,
i.e., to prove that, for some p > 0

lul%ese_. = D lual’k (2Ne) ™ < oo
acl

Let h € X ® S_p(R) ® (8)-1,—p. Then, there exists p > 0 such that

1 es_,@es)-1p = 2 > [lhaklk (25)7F (2N) P < oo
acT keN
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Note that for 1y € X we have ||uo||x = ldol x@(s)_, _, for all ¢ > 0. Then,
the convergence follows from

lulXeise)o—p = D luallk (2Ne) =

acel
<2 fup™ 5 (2Ne) P +2 3 fluttom| % (2Ne) ~re
a€l acT
|a|>0
=244 2B < .

From assumption ¢, > g, for all k € N, it follows that 3 acz(@2Ne)™P* < oo if
p > 0. Then, for p > 3, we have

A= |lubem|% (2Ne) P

acl

= > llwol%

a€l

< |1@oll% 262“(21*1)“"“6"’“
a€cl

< olk 3 ™D 3 (@N) " < co.

a€el acl

)F

For p > 3 the convergence of the second part B follows from
B= 3" [uptom |k (2Nc) P

acl
|a|>0
2
1 1 1
= E —ha . T — (rpyor T F —CrCry ---Crs-lhO,rs
o s Oy Ll !
a€l,|a|>0, ! X

a:as(r) +E(r)

x (2Ne¢)~Pleety +7)

lof
Z a2 (“ a (r),T”X tc “h&E(rl),T‘lllgf +"'+63'072"1 ---012-3,1||h0,r5||§')
a:aE(T)+a(r) r

IA

X (2rc) 7P (2Nc¢) 7P
> PN (lha gy ol + I ryyir e+ + o %)

a€Z.|a|>0

IA

X (2r)7P 7P (2N) P

(= 1) 5 5 B a7 @) <

acl acT reN

IN

where we have used the facts that [a] < (2N)* and (2N)P=" (2N)~P> < 1 for all
a € Z, r € N. With this statement we complete the proof. O
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Abstract

We study nonlinear parabolic stochastic partial differential equations with Wick-
power and Wick-polynomial type nonlinearities set in the framework of white noise
analysis. These equations include the stochastic Fujita equation, the stochastic
Fisher-KPP equation and the stochastic FitzHugh-Nagumo equation among many
others. By implementing the theory of Cy—semigroups and evolution systems into
the chaos expansion theory in infinite dimensional spaces, we prove existence and
uniqueness of solutions for this class of SPDEs. In particular, we also treat the linear
nonautonomous case and provide several applications featured as stochastic reaction-
diffusion equations that arise in biology, medicine and physics.
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1 Introduction

We study stochastic nonlinear evolution equations of the form

ur(t,w) = Au(t,w) + > apu®(t,w) + f(t,w), te(0,T] (1.1)
k=0
u(0,w) = u’(w), weQqQ,

where u(t,w) is an X —valued generalized stochastic process; X is a certain Banach alge-
bra and A corresponds to a densely defined infinitesimal generator of a Cy—semigroup.
The nonlinear part is given in terms of Wick-powers 4" = 9" 10y = ... du, n € IV,
where ¢ denotes the Wick product. The Wick product is involved due to the fact that we
allow random terms to be present both in the initial condition uy and the driving force

*Unit of Engineering Mathematics, University of Innsbruck, Austria. E-mail: tijana.levajkovic@uibk.ac.
at

TFaculty of Sciences, University of Novi Sad, Serbia. E-mail: stevan.pilipovic,dora.selesi,milica.
zigic@dmi.uns.ac.rs
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f. This leads to singular solutions that do not allow to use ordinary multiplication, but
require a renormalization of the multiplication, which is done by introducing the Wick
product into the equation. The Wick product is known to represent the highest order
stochastic approximation of the ordinary product [16].

In our previous paper [14] we treated the case of linear stochastic parabolic equations
with Wick-multiplicative noise which includes the case n = 1. The present paper is an
extension of [14] to nonlinear equations, where the nonlinearity is generated by a
Wick-polynomial function leading to stochastic versions of Fujita-type equations u; =
Au+u®" + f, FitzZHugh-Nagumo equations u; = Au+u®? —u®3 + f, Fisher-KPP equations
u; = Au+ u — u®? + f and Chaffee-Infante equations u; = Au + u® — u + f. These
equations have found ample applications in ecology, medicine, engineering and physics.
For example, the FitzHugh-Nagumo equation is used to study electrical activity of
neurons in neurophysiology by modeling the conduction of electric impulses down a
nerve axon. The Fisher-Kolmogorov-Petrovsky-Piskunov equation provides a model for
the spread of an epidemic in a population or for the distribution of an advantageous
gene within a population. Other applications in medicine involve the modeling of cellular
reactions to the introduction of toxins, and the process of epidermal wound healing.
In plasma physics it has been used to study neutron flux in nuclear reactors, while in
ecology it models flame propagation of fire outbreaks. Thus, the study of their stochastic
versions, when some of the input factors is disturbed by an external noise factor and
hence it becomes randomized, is of immense importance. For instance, a stochastic
version of the FitzHugh-Nagumo equation has been studied in [1] and [3], while the
stochastic Fisher-KPP equation has been studied in [10] and [19].

We implement the Wiener-It6 chaos expansion method combined with the operator
semigroup theory in order to prove the existence and the uniqueness of a solution for
(1.1). Using the chaos expansion method any SPDE can be transformed into a lower
triangular infinite system of PDEs (also known as the propagator system) that can be
solved recursively. Solving this system, one obtains the coefficients of the solution to
(1.1). In order to solve the propagator system, we exploit the intrinsic relationship
between the Wick product and the Catalan numbers that was discovered in [11] where
the authors considered the stochastic Burgers equation. We build upon these ideas in
order to solve a general class of stochastic nonlinear equations (1.1).

The plan of exposition is as follows: In the introductory section we recall upon basic
notions of Cy—semigroups, evolution systems and white noise theory including chaos
expansions of generalized stochastic processes. In Section 2, which represents the main
part of the paper, we prove existence and uniqueness of the solution to (1.1) for the case
when ag = a1 = --- = a,-1 = 0 and a,, = 1. This normalization is made for technical
simplicity to illustrate the method of solving and to put out in details all building blocks
of the formulae involved. In Section 3 we treat the general case of (1.1) and provide
some concrete examples.

1.1 Evolution systems

We fix the notation and recall some known facts about evolution systems (see [20,
Chapter 5]). Let X be a Banach space. Let { A(t)};c[;,7) be a family of linear operators
in X such that A(t) : D(A(t)) C X — X, t € [s,T] and let f be an X —valued function
f:[s,T] — X. Consider the initial value problem

%u(t) =A(t)u(t)+ f(t), 0<s<t<T, (1.2)

u(s) = x.

EJP 0 (2016), paper 0. ejp.ejpecp.org
Page 2/25
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Ifue C(s,T],X)NCY(s,T], X), u(t) € D(A(t)) for all t € (s,T] and u satisfies (1.2),
then u is a classical solution of (1.2).

A two parameter family of bounded linear operators S(¢,s), 0 < s <t < T on X is
called an evolution system if the following two conditions are satisfied:

1. S(s,s) =1Iand S(t,r)S(r,s) =S(t,s), 0<s<r<t<T
2. (t,8) — S(t,s) is strongly continuous forall 0 < s <t < T.

Clearly, if S(¢,s) is an evolution system associated with the homogeneous evolution
problem (1.2), i.e. if f = 0, then a classical solution of (1.2) is given by u(t) = S(¢t, s)x, t €
[s,T].

A family {A(t)}e[s,r) of infinitesimal generators of Cp—semigroups on X is called
stable if there exist constants m > 1 and w € R (stability constants) such that (w, co) C
p(A(t)), t € [s,T] and

H f[lm AW < G A w

for every finite sequence 0 < s <t; <to < - <t <T, k=1,2,....

Let {A(t) }1c[s, 1) be a stable family of infinitesimal generators with stability constants
m and w. Let B(¢), t € [s,T], be a family of bounded linear operators on X. If || B(t)|| <
M, t € [s,T], then {A(t) + B(t) };[s,1) is a stable family of infinitesimal generators with
stability constants m and w + Mm.

Let {A(t)}+e[s,r) be a stable family of infinitesimal generators of C—semigroups on
X such that the domain D(A(t)) = D is independent of ¢ and for every x € D, A(t)x is
continuously differentiable in X. If f € C'([s,T], X) then for every = € D the evolution
problem (1.2) has a unique classical solution u given by

u(t) = S(t,s)er/t S, r)f(rydr, 0<s<t<T.

From the proof of [20, Theorem 5.3, p. 147] one can obtain

%u(t) = A(t)S(t,s)x + A(t)/s S, r)f(rydr+ f(t), s<t<T.

Since ¢ — A(t) is continuous in B(D, X) and (¢, s) — S(t, s) is strongly continuous for all
0 < s <t <T, we have additionally that the solution « to (1.2) exhibits the regularity
property u € C'([s,T], X) and %u(t)|,—s = A(s)z + f(s). Recall that the evolution system
S(t, s) satisfies:

L [|S(t, )| <mev=9), 0 <s <t <T;

2. %S(t,s)a& = A(s)z, x € D, 0 < s < T which implies that %S(t, sz =

A(t)S(t, s)aézssince t — A(t) is continuous in B(D, X);
3. Z5(t,s)x=—5(ts)A(s)z, r€D, 0< s <t < T
4. S(t,s)D C D;
5. S(t,s)x is continuous in D forall 0 < s <t < T and x € D.
Remark 1.1. Considering infinitezimal generators depending on ¢, we follow the stan-

dard approach of Yosida (cf. [24], [12]). We refer to [18] for a method based on an

EJP 0 (2016), paper 0. ejp.ejpecp.org
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equivalent operator extension problem (see also references in [18]). The chaos expan-
sion approach, which is the essence of our paper, requires the existence results for the
propagator system i.e. for the coordinate-wise deterministic Cauchy problems. For this
purpose we demonstrate the applications of the hyperbolic Cauchy problem given in
[20].

1.2 Generalized stochastic processes

Denote by (92, F, i) the Gaussian white noise probability space (S’(R), B, 1), where
1 = S’(R) denotes the space of tempered distributions, 5 the Borel sigma-algebra
generated by the weak topology on S’(R) and p the Gaussian white noise measure
corresponding to the characteristic function

) 1
/ 67'<W7¢>du(w) = exp |:_2||¢||%2(]R):| 3 ¢ € S(R)’
S’'(R)

given by the Bochner-Minlos theorem.

We recall the notions related to L?(€2, 1) (see [9]). The set of multi-indices Z is (IN)).,
i.e. the set of sequences of non-negative integers which have only finitely many nonzero
components. Especially, we denote by 0 = (0,0,0,...) the zero multi-index with all
entries equal to zero, the length of a multi-index is |a| = Y .o, a; for a = (a1, as,...) €T
and o! = Hfil a;!. We will use the convention that o — 3 is defined if «,, — 3,, > 0 for all
n €N, ie., ifa—p>0.

The Wiener-Itd theorem (sometimes also referred to as the Cameron-Martin theorem)
states that one can define an orthogonal basis {H,}acr of L?(Q, 1), where H, are
constructed by means of Hermite orthogonal polynomials &,, and Hermite functions &,

oo

Ho(w) = [] han (. 6n)), @ =(a1,09,...,00...) €T, we.

n=1

Then, every F' € L?({, ;1) can be represented via the so called chaos expansion

Fw)=) faHa(w), weS'(R), Y |fal’e!<o0, fo€R, a€cl

acl a€l

Denote by ¢, = (0,0,...,1,0,0,...), k € IN the multi-index with the entry 1 at the kth
place. Denote by H; the subspace of L?(), 1), spanned by the polynomials H,, (-), k € IN.
The subspace #H; contains Gaussian stochastic processes, e.g. Brownian motion is given
by the chaos expansion B(t,w) = > po, fot &r(s)ds He, (w).

Denote by H,, the mth order chaos space, i.e. the closure in L?({, 11) of the linear
subspace spanned by the orthogonal polynomials H,(:) with |a| = m, m € INy. Then
the Wiener-It6 chaos expansion states that L*(Q, u) = @,._, H, where H, is the set of
constants in L2(£, ).

Changing the topology on L?(f, 1) to a weaker one, T. Hida [8] defined spaces of
generalized random variables containing the white noise as a weak derivative of the
Brownian motion. We refer to [8], [9] for white noise analysis.

Let 2N)* = [[>2,(2n)*", o = (a1,02,...,0Qn,...) € Z. We will often use the fact
that the series ) ., (2IN)"P converges for p > 1. Using the same technique as in [9,
Chapter 2] one can define Banach spaces (5),,, of test functions and their topological
duals (S)_, _, of stochastic distributions for all p > 0 and p > 0.

Definition 1.1. The stochastic test function spaces are defined by

(S)p,p = {F = Z fO‘HO‘ € LZ(QHU/) : ||F‘|%S)p,1) = Z(a!)1+p|fa‘2(zm)pa < 00}7
o€l acel

EJP 0 (2016), paper 0. ejp.ejpecp.org
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forallp>0, p>0.
Their topological duals, the stochastic distribution spaces, are given by formal sums:

(S)py ={F =3 fuHat [FI%s = S (@) 7| fal2(2N) 7 < oo},
o€l acl
forallp>0, p>0.
The space of test random variables is (S), = (),5¢(5)pp, p = 0 endowed with the
projective topology.
Its dual, the space of generalized random variables is (S)-, = U,>(5)—p,—p, p = 0
endowed with the inductive topology.

The action of ' = ) ;boHy € (5)-, onto f = 3 rcala € (5), is given by
(F, f) = > acz(ba,ca)a!, where (bq,co) stands for the inner product in R. Thus, they
form a Gelfand triplet

(8)p © L (1) € (S)=ps £ 20.

Clearly, the spaces (S5),,, and (S)_, —, are separable Hilbert spaces. Moreover, (5),
and (S)_, are nuclear spaces.

For p = 0 we obtain the space of Hida stochastic distributions (S)_¢ and for p = 1 the
Kondratiev space of generalized random variables (S)_;. It holds that

(S)1 = (S)o = L*(Q, 1) = (S) -0 = (5)-1,

where — denotes dense inclusions. Usually the values of p are restricted to p € [0,1] in
order to establish the S—transform (see [8], [9]) when solving SPDEs, but in our case
values p > 1 may be considered as well.

The time-derivative of the Brownian motion B(t,w) = 332, [o &(s)ds H.,(w) exists
in a generalized sense and belongs to the Kondratiev space (S)_;,_, for p > % We refer
it as the white noise and its formal expansion is given by W (t,w) = > =, & (t)H:, (w).

We extended in [21] the definition of stochastic processes to processes with the chaos
expansion form U(t,w) = ) .7 ta(t)Ha(w), where the coefficients u,, are elements of
some Banach space of functions X. We say that U is an X-valued generalized stochastic
process, i.e. U(t,w) € X ® (5)_, if there exists p > 0 such that HU”%’@(SLp,w =
Yoz (@) Pl |3 (2IN) 7% < cc.

For example, let X = C*[0, 7], k € IN. We have proved in [22] that the differentiation
of a stochastic process can be carried out componentwise in the chaos expansion, i.e. due
to the fact that (S)_, is a nuclear space it holds that C*([0, T, (S)_,) = C*[0, T]®(S)_,
where ® denotes the completion of the tensor product which is the same for the
e—completion and 7—completion. In the sequel, we will use the notation ® instead
of ®. Hence C*[0,T]® (S)_,,—p and C*[0,T] ® (S), , denote subspaces of the correspond-
ing completions. We keep the same notation when C* [0,T] is replaced by another Banach
space. This means that a stochastic process U (t,w) is k times continuously differentiable
if and only if all of its coefficients u,(t), a € T are in C*[0, T].

The same holds for Banach space valued stochastic processes i.e. elements of
C*([0,T], X) ® (S)—,, where X is an arbitrary Banach space. It holds that

C*([0,T], X @ (5)-,) = C*([0,T], X) @ (5)—, = | C*([0, T}, X) @ (S)—p,p-
p=>0

In addition, if X is a Banach algebra, then the Wick product of the stochastic
processes I' =3 7 foHoand G =3 5.7 gsHp € X ® (S)-p,—p is given by

FOG = Z Z fag[iH’y = Z Z fﬁgafﬁHa;

YEZL a+B=y a€l B<a

EJP 0 (2016), paper 0. ejp.ejpecp.org
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and FOG € X ® (S)_%_(I,Jrk) for all £ > 1 (see [9]). The nth Wick power is defined by
Fon = pon=DoF, FO0 = 1. Note that H,., = HS" for n € Ny, k € N. Throughout the
paper we will assume that X is a Banach algebra.

2 Stochastic nonlinear evolution equation of Fujita-type

First we consider the equation (1.1), withap = a1 =---=a,_1 =0anda, =1, i.e.
the equation:

us(t,w) = Au(t,w) +u®(t,w) + f(t,w), te(0,T] (2.1)
u(0,w) = u'(w), we.

Let A:DC X ®(S)-1 = X ®(S5)_1 be a coordinatewise operator that corresponds
to a family of deterministic operators A, : D, C X - X, a €T

Au(t,w) = A (Z Ua(t) Ha(w)) =) Aqua(t) Ho(w), ueD,

acl ael
(see [14, Section 2]). We are looking for a solution of (2.1) as an X-valued stochastic
process u(t) € X ® (S)_1, t € [0,T] represented in the form
u(t,w) = ua(t) Ha(w), t€[0,T], we. (2.2)
a€l

The chaos expansion representation of the Wick-square is given by

uO(tw) =3 (Z - (t) ua_qf(t)) Ha(w) (2.3)
acl ~<La
= u3(t) How) + > <2u0(t) w®)+ Y uy(t) um(t)) Ha(w),
|o¢‘>0 0<v<a

where t € [0,T], w € Q. Let u,?m(t), v € Z, m € N denote the coefficients of the chaos

expansion of the mth Wick power, i.e. u®™(t,w) = > 7 u$™(t)H,(w), for m € N. Then,

for arbitrary n € N, it can be shown that the nth Wick-power is given by

() = " (4 w)Outw) = D (32 w9 tar (1) Halw)

acl ~<a
— i (8) Ho(w) + MZ>O <<Y> uB () ua(t) + (g) ™ 0;@ s (8) o (8
< O<§:<a0<§:< oy (£) Uy =y (D)t () - -+

)i
() YT ey, (1) u,hW(t)...u%Z%l(t)u%l(t)> He(w)

0<y1 < 0<V2<71 0<Yn-1<Vn—2

= up(t) Ho(w) + <nugl(t) o (t) +ra,n(t)> Ho(w),

|a|>0

where t € [0,7], w € Q. The functions r,,(t), t € [0,T], « € Z, n > 1 contain only
the coordinate functions ug, 8 < . Moreover, we recall that the Wick power uo" of a
stochastic process u € X ® (S)_1,—p is an element of X ® (S)_1,_4, forg >p+n—1, see
[9].
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We rewrite all processes that figure in (2.1) in their corresponding Wiener-It6 chaos
expansion form and obtain

> %ua(t) Ho(w) =" Aatia(t) Ha(w) + Y (Z udm A (t) uw(t)) H, (w)

acl acl acZl ~<a
+ Z fa(t) Ho(w)
acl
D a(0) Ho(w) = Y ud Ho(w).
a€l acl

Due to the orthogonality of the base H, this reduces to the system of infinitely many
deterministic Cauchy problems:

1° fora=0 p
auo(t) = AQU(](t) + Ug(t) + fo(t), Uo(O) = U(O), and (24)
2° fora >0
%ua(t) = (Ao +nug ' () Id) ua(t) + ran(t) + fat), ua(0) =ul. (2.5)

with t € (0,7] and w € Q.

Let
Ban(t) = Ao +nug ' (t)Id  and  gan(t) = Tan(t) + fult), t€[0,T]

for all @ > 0. Then, the system (2.5) can be written in the form

d
ﬁua(t) = Ban®) ua(t) + gan(t), t€(0,T];  un(0)=1ul. (2.6)
Note that the inhomogeneous part g, ., in (2.6) does not contain any of the functions
ug, B < a for |a| = 1, while for |a| > 1 it involves also ug, S < «. Hence, we distinguish
these two cases.

(@) Let|a| =1,i.e. « =¢g, k € N. Then g., , = f-,, k € IN and thus (2.6) transforms to

Gty (1) = By ey (0 + o, 1), 1€ 0T ey (0) =12 @)

(b) Let |a| > 1. Then

d
aua(t) = Ban(t)ua(t) + gan(t), t€(0,T]; uq(0) = ug.

Each solution « to (2.1) can be represented in the form (2.2) and hence its coefficients
ug and u, for a > 0 must satisfy (2.4) and (2.6) respectively. Vice versa, if the coefficients
ug and u,, for o > 0 solve (2.4) and (2.6) respectively, and if the series in (2.2) represented
by these coefficients exists in X ® (S5)_1, then it defines a solution to (2.1).

Definition 2.1. An X —valued generalized stochastic process u(t) = Y .7 ua(t)Ha €
X ® (S)_1, t € [0,T] is a coordinatewise classical solution to (2.1) if ug is a classical
solution to (2.4) and for every o € T \ {0}, the coefficient u,, is a classical solution to
(2.6). The coordinatewise solution u(t) € X ® (S)_1, t € [0,T] is an almost classical
solution to (2.1) ifu € C([0,T],X) ® (S)_-1. An almost classical solution is a classical
solution ifu € C([0,T],X) ® (S)-1 NCH((0,T], X) ® (S)_1.
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We assume that the following hold:

(A1) The operators A,, o« € Z, are infinitesimal generators of C—semigroups {7, (s)}s>o0
with a common domain D, = D, a € Z, dense in X. We assume that there exist
constants m > 1 and w € R such that

|Ta(s)|| <me®®, s>0 forall acZ.

The action of A is given by

= Z Aa(ua>Haa

acl

forue DD C D ® (S)_; of the form (2.2), where

D = {u = ua Ho € D@ (S)-1: 3po 20, S [|Aa(ua) |3 (2N) 70 < oo}.

acl a€cl

(A2) The initial value u°® = 5
p > 0 such that

wez UoHy €D, ie. ul, € D for every a € T and there exists

D [ul][5 (2N) P < o0,
a€l
D [ A (ud)[% (2IN) 77 < 0.
a€T

(A3) The inhomogeneous part f(t,w) = > o7 fo(t)Ha(w), t € [0,T], w € Q belongs to
C([0,T],X) ® (S)_1; hence t — f,(t) € C1([0,T],X), a € T and there exists p > 0
such that

2
3 Ml om0 (2N = 32 sup Ifal@)l+ sup 17a(6)]x) (2N) 7 < o
€10,

a€l acz tEl0.T]

(A4-n) The Cauchy problem

%U@(lf) = Aouo(t) + Ug(t) + f()(t)7 te (0, T], UO(O) = ug,

has a classical solution ug € C'([0, 7], X).

Remark 2.1. Particularly, if Ag = A is the Laplace operator and fo = 0, then (2.4)
belongs to the class of Fujita equations

us = Au+uP,  u(0) = ug, (2.8)

studied by Fujita, Chen and Watanabe [6, 7]. The authors proved that for a nonnegative
initial condition u° € C(RY) N L>°(RY), equation (2.8) has a unique classical solution
on some [0,71). Moreover, if p > 1+ % then there exist a positive bounded solution.
The Fujita equation (2.8) apart from an interest per se also acts as a scaling limit of
more general superlinear equations whose nonlinearities exhibit a polynomial growth
rate. Originally, it has been developed to describe molecular concentration of a solution
subjected to centrifugation and sedimentation.

Remark 2.2. In general, equations of the form (2.4), i.e. the deterministic equation for
« = 0 can be solved by the Fixed Point Theorem [25]. Thus, in order to check if condition
(A4-n) holds, one has to apply fixed point methods or other established methods for
deterministic PDEs. The solution to (2.4) will usually blow-up in finite time. Especially
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the description of blow-up in the Sobolev supercritical regime poses a challenge that has
been tackled in several papers (e.g. [7], [15] for the Fujita equation). We stress that our
equation (2.1) and hence also (2.4) is given on a finite time interval, which is assumed to
provide a solution on the entire interval (we restrict our considerations form the very
start to the interval where no blow-up appears).

Now we focus on solving (2.6) for a > 0.

Lemma 2.3. Let the assumptions (Al)-(A4-n) be fulfilled. Then for every o > 0 the
evolution system (2.6) has a unique classical solution u,, € C1([0,7], X).

Proof. First, for every o > 0, we consider the family of operators B, ,(t) = As +
nug " (t)Id, t € [0,T]. According to assumption (A1), the constant family { A, (t)}1e(0,77 =
{Aa}tejo,r) is a stable family of infinitesimal generators of a Cy—semigroup {74(s)}s>0
on X satisfying || Ta(s)|| < me™® with stability constants m > 1 and w € R. Let

M, = sup |lup(t)]x. (2.9)
te[0,T]

The perturbation nug *(t)Id: X — X, t € [0,T] is a family of uniformly bounded linear
operators such that

lnug ™ (Hzlx = [Inug ™" @)l xllzllx < S[lépT]nlluO( % Hlzllx < nd e x,
telo,

forallz € X, t € [0,7), i.e. |[nuf~(t)Id|| <nM>~', t € [0,T)]. Thus, for every a > 0, the
family {A, +nug ()] d}icqo,1) is a stable family of infinitesimal generators with stability
constants m and w + nM?~'m. By assumption (A4-n) the function ue € C'([0,7], X)
so we obtain continuous differentiability of (A, + nuf '(t)Id)z, t € [0,T] for every
z € D and for every o > 0. Additionally, the domain of the operators nug_l(t)l d is the
entire space X which implies that all of the operators B, ,(t), t € [0, 7] have a common
domain D(B, ,(t)) = D(A.) = D not depending on t. Notice here that assumption (A1)
additionally provides the same domain D of the family { B, (t)}+c[o,r) for all o > 0.

Finally, one can associate the unique evolution system S, ,, (t, s), for0 < s <t <T for
all a > 0 to the system (2.6) such that

|San(t,s)] < me“n t=5) < e (T=9)  0<s<t<T, a>0, (2.10)

where w,, = w +nM""!m see [20, Thm 4.8., p. 145]. Without loss of generality we may
assume that w > 0 and thus will be w,, > 0.

Now one can solve the infinite system of the Cauchy problems (2.6) by induction
on the length of the multiindex a. Let |a| = 1. Since f., € C1([0,T], X), we obtain the
unique classical solution u., € C'([0,7], X) to (2.7) given by

Ue, (1) = Sep n(t,0)ul +/ Sern(t,s) fer (s)ds, t€][0,T]. (2.11)
Now let for every 8 € Z such that 0 < 5 < «a the unique classical solution of (2.6) satisfy

ug € C1([0,7],X). Then for fixed |a| > 1 the inhomogeneous part g,, € C*([0,7],X)
and the solution to (2.6) is of the form

t
Uq (t) = Sa,n (t7 0) U;g + /() S(x,n(tv S) ga,n(s) dS, te [07 TL (212)

where u, € C*([0,T], X). For more details see [20, Thm 5.3., p. 147]. O

Now we proceed with four technical lemmas that will be used in the sequel.
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Lemma 2.4. Let a € 7. Then

Proof. This is a direct consequence of [11, Proposition 2.3]. More precisely, in [11]
authors proved that |a|! < q®«! if a sequence q = (qx)ren Satisfies

[
1
1<Q1SQQ§ and E ;<1
— 4k

(o)
1 2
Since ) P T < 1, the sequence (2IN)? = ((2k)?)xcn satisfies a required property.
k=1

24
O

Lemma 2.5. For every ¢ > 0 there exists ¢ > 1 such that the following holds
Z col(2IN) =9 < oo
a€l

Proof. Let ¢ > 0 and choose s > 0 such that ¢ < 2°. Then, for ¢ > s + 1,

> delam) T < ﬁ(zs)ai ﬁ(m)*qai <> ﬁ(%)(sfq)m = 2N)9% <00, O

acl acZi=1 acZi=1 a€cl

In the next lemma, for the sake of completeness, we give some useful properties of
the well known Catalan numbers, see for example [23].

Lemma 2.6. A sequence {c, },cn defined by the recurrence relation

n—1

co=1, =) Crnik, n2>1 (2.13)
k=0

is called the sequence of Catalan numbers. The closed formula for c,, is a multiple of the
binomial coefficient, i.e. the solution of the Catalan recurrence (2.13) is

1 2n or 2n 2n
c, = c, = - .
" n4+1\n " n n+1

The Catalan numbers satisfy the growth estimate

¢, < 4™ n>0. (2.14)

Lemma 2.7.[11, p.21] Let {R, : « € Z} be a set of real numbers such that Ry =
0, R.,, k € N are given and

Ry= Y RyRa, l|af>1.

0<y<a
Then -
_ 1 2]a] =2 |o! -
Ra_|a(|a|—1>a!HRfkk’ |a] > 1.
k=1

Proof. Let « € Z, |a| > 1 be given. Then a = (o, ...,a4,0,0,...) has only finally many
non-zero components, so one can associate to it a d—dimensional vector (a1, ...,aq) €
]Ng. Adopting the proof for the classical Catalan numbers, the authors in [11] consid-
ered the function G(2) = Y ;cws Mp2®, z € INj, where My = 3 5 M,Mps_, and

EJP 0 (2016), paper 0. ejp.ejpecp.org
Page 10/25



226 Section 1.7

Stochastic evolution equations with nonlinearities

2P =20 ... 204 The function G satisfies G2(z) — G(2) + Y¢_, M., z1, = 0, which implies
that G(z) = >.°° l(2"_2) (ZZ:1 M., zk) . Finally, applying the multinomial formula

n=1n\n-1

n
(Ei:l M., zk) =3 gend, |l=n m [T, (M., 2)"" one obtains

oo _ | d d
GCEDIEIEES VD SRR G F 1R 1
=1 =1

BENG n=1BeNg, |B|=n
d
-3 1<25| _2>|5! T M2+ ) .
C\UBIN Bl =1/ Bt 2L
BEN k=1

2.1 Proof of the main theorem
The statement of the main theorem is as follows.

Theorem 2.8. Let the assumptions (A1) — (44 — n) be fulfilled. Then there exists a
unique almost classical solution v € C([0,T], X) ® (S)_1 to (2.1).

Proof. The proof of Theorem 2.8 will be given by induction with respect to n € IN in
Theorems 2.9 and 2.10. We will prove in the first one that the statement of the main
theorem holds for n = 2. Since it is technically pretty challenging to write down the
proof of the inductive step for arbitrary n € IN, in Theorem 2.10 the proof is given for
n = 3 by reducing the problem to the case n = 2. In the same way one can reduce the
problem for arbitrary n € IN to the case n — 1. O

First consider (2.1) for n = 2, i.e.

we(t,w) = Au(t,w) + u?(t,w) + f(t,w), tel0,T] (2.15)
u(0,w) = u’(w),

The chaos expansion representation of the Wick-square is given by (2.3). Applying the
Wiener-It6 chaos expansion to the nonlinear stochastic equation (2.15) one obtain

3 %ua(t) Ho(w) =3 Aqua(t) Ho(w) + > (Z Uy (1) uw(t)) Ho(w)

acl acl acZl ~y<Lla
+ Z fa(t> Ha(‘*’)
ol
D 1a(0) Ho(w) =Y ul Ho(w).
acl acl

which reduces to the system of infinitely many deterministic Cauchy problems:

1° fora=0

d
%UO(t) = A(]U()(t) + U%(t) + fo(t), UO(O) = ug, and (216)
2° fora >0
d 0
ﬁua(t) = (Aa—l—2u0(t) Id) Ua (t)+ Z Uy () Ua—ry )+ fa(t), ©a(0) =ugy. (2.17)
0<y<a
with ¢t € (0,T] and w € Q.
EJP 0 (2016), paper 0. ejp.ejpecp.org
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Recall that

Baa(t) = Aa+2uo(t)Id  and  gao(t)= Y uy(t) uay(t) + falt), t€[0,T]

for all a > 0, so the system (2.17) can be written in the form

d

Zrte(t) = Baa()ua(t) + gaa(t), t€ (0,7 ua(0)= u. (2.18)
Theorem 2.9. Let the assumptions (A1) — (A4 — 2) be fulfilled. Then there exists a
unique almost classical solution v € C([0,T], X) ® (S)_; to (2.15).

Proof. According to Lemma 2.3 for every o > 0 the evolution equation (2.18) has an
unique classical solution u, € C*([0,T], X). Thus, the generalized stochastic process
u(t,w) = > erta(t)Ha(w), t € [0,T], w € Q has coefficients that are all classical
solutions to the corresponding deterministic equation (2.18), hence in order to show that
u is an almost classical solution to (2.15) one has to prove that u € C([0,T],X) ® (S)_1.

Let u’ € X ® (S)_; be an initial condition satisfying assumption (A2) which states
that there exist 5 > 0 and K > 0 such that 3 _; [[ud % (2N)7® = K. Then there also
exist p > 0 and K € (0,1) such that }__ .7 [Ju[|% (2IN)~?* = K?, or equivalently

(Fp>0) 3K € (0,1)) VaeI) [ul]x < K(2N)P. (2.19)

The inhomogeneous part f € C*([0,T], X) ® (S)_; satisfies assumption (A3) which states
that there exists > 0 such that 3, .7 sup,eo. 7y | fa(t) 5% (2IN) 7P* < cc. Then there exist
p>0and K € (0,1) such that

sup ||fa(®)]lx < K(2IN)P*, «a€eZ. (2.20)
te[0,T]

The coefficients u,, a € Z, a > 0 of the solution u are given by (2.11) and (2.12) for
n = 2. Denote by

Lo = sup [ua(t)|x, a€Z.
te[0,T]

First, for « = 0 using (2.9) one obtain

Lo = sup |uo(t)]lx = Ma, (2.21)
te(0,T]

since the solution to (2.16) satisfies assumption (A4-2). Let |a| =1. Then a = ¢, k € N
and using (2.11) we have that

t
ey (D)l x < 182, 2(8, 0)[[[[ w2, [ x +/0 [Ser2(t, )| fo (s)llxds, ¢ €[0,T7].
From (2.10) we obtain that
t t watl 1
/ ISa.2(t, s)||ds < / mev2(t=9)ds = mE—— =~ < ﬂ(3“’2T, te[0,T], a>0 (2.22)
0 0 w2

w2

and now (2.10), (2.19) and (2.20) imply that

t
Lo = sup [ue®llx < sup {ISecalt 0, lx + sup £l [ [Saalt,o)lds}
te[0,T] s€[0,t] 0

te[0,T]
(2.23)
< me2T K (2IN)P*r + ——eweT K (2IN)Pes = mae™ T K (2N)PS, ¢t e [0,T], ke N,
w2
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where my = m + w%

For |a| > 1 we consider two possibilities for L,. First, if L, < v/K(2IN)?* for all
|a| > 1 then the statement of the theorem follows directly since for ¢ > 2p+ 1 and, having
in mind (2.21) and (2.23), we obtain

> up o (B)][% (2IN) 79 = > " L2(2N) ™% = L§ + Y _ L2, (2IN) 79 + >~ L2(2N)™¢

acz tEl0; = keN o] >1
< M3 + (moe?TK)? Y (2N) P9k 4 K Y (2IN) 3P0 < o0,
kEN la[>1
ie.ue C(0,T7],X)® (S)-1,—4-
In what follows, we will assume that L, > /K (2IN)P® for some a € Z, |a| > 1. Denote

by Z. the set of all multi-indices a € Z, |a| > 1, for which L, > v/K(2IN)?*. Then from
(2.12) we obtain

Ua(t) = Saa(t, 0)ul + /0 sa,g(t,s)[ 3 ua,w(s)uv(s)—i—fa(s)}ds, t €0, 7).

0<y<a
From this we have

Lo = sup [lua(t)lx
t€[0,T]

< supﬂ{nsaz(t 0) S 1 + / 1S D vas(s)uy(s)]|ds
0<vy

<o

+/0 |Sa,2(t,s)||fa(s)||xds}

t
< sup {m6mt||ug||x+ sup Y HUafv(S)||xHuv(8)||X'/0 [[Sa2(t, 5)llds

te[0,T) s€[0,] 0252 o

s€[0,t]

4+ sup [I(s Hx/ 152t s ||ds}

Using (2.22) we obtain

Lo = sup [lua(t)]x
te[0,T]

< me”= T |lul | x + e > sup |lua- 7()|Ix sup IIUW(t)le
w2 0<A/<at€[0T] telo,T

m
+—e"2T sup | f(s)]x
w2 s€[0,t]

< mae™ KNP + —e"2 T N Lo Lo,
0<v<a

where again mo = m + w% Since mg > w%, one easily obtains

Lo, < moe®=T (K(2]N)p"‘ + 3 La_va). (2.24)
0<v<a

Let Lo, o > 0, a € Z,, be given by

L,
Lo :=2moe

woT
(Tomm

+1), a>0, ael,.
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Thus, from (2.23) we have that for all k € IN

~ L
Lo, = 2mpet T (= 4 1) < 2myeT

2.25
VRN (2.25)

maoew2T K (2IN)Pex 1)
VK (2IN)per
= QerU’QT(mge“’QT\/I?—i— 1).

We proceed with the estimation of the term ZO<7<Q I~M,ﬂa_V for given |o| > 1, a € Z,.

S Lilen= Y (2m2ew2T)2(ﬂ—((LjW“)(\/m§&§M“>

0<y<a 0<y<a
L,L,_
> (9 woT 2( yLa—y 1)
2 (2mae™”) K(@Nya
0<y<a
_ (2mgeveT)? waT\2
- KN D LyLoy + (2mae 7).

0<y<a

Using inequality (2.24) we obtain

~ o~ (ngesz)Q L. - 4Tn2€w2T
LoLo—y> ( —K2]N""‘> omgewaT)2 = AM2C ;-
Z T = K(2IN)pe \mgew2T (2P ) + (2mac™T) K(2IN)pe
0<y<a
Now since L, > v K (2IN)P* for « € Z, and since K < 1 we obtain
Z ii 4mge T _ 2mge2T N 2mgev2T
o2, T T VRN VEENpe " VE(2N)pe
L -
> 2m esz(ia + 1) =L,.
= \VUK @n)re

Hence, for all o € 7.,

a| > 1, we have obtained
Z L Loy > L.
0<v<a
Let Ry, a > 0, be defined as follows:
R., =L., keN,
Ry= Y RyRay, l|af>1.

0<y<a

It is a direct consequence of the definition of the numbers R, « > 0, and it can be shown
by induction with respect to the length of the multi-index « > 0 that (see [11, Section 5])

Lo <Ry, a>0. (2.26)

Lemma 2.7 shows that the numbers R, o > 0 satisfy

1 (2]a| -2 '
R, = = (Pl loft R, a>0.
laf\la[ =1/ ol 255

Further on, by (2.25),

H R?; = Hi’?: < H(2m2€w2T(m2€w2T\/E+ 1))@1
=1 i=1

i=1

EJP 0 (2016), paper 0. ejp.ejpecp.org
Page 14/25



230 Section 1.7

Stochastic evolution equations with nonlinearities

Let ¢ = 2mye™2” (moe2Ty/K +1). Then

af! la|
Ra S C‘a‘_ljc , Q> 07 (227)

where ¢, = n%rl(%:’), n > 0 denotes the nth Catalan number (more information on

Catalan numbers is provided in Lemma 2.6). Using Lemma 2.4, (2.26), (2.27) and (2.14)
we obtain that for « € Z,, || > 1 the estimation

Lo < R, < 4lol=1(om)2eclel

holds. Finally, from the definition of fla, «a > 0 we obtain
4lel=1(2IN)2cle] VK
Lo < <— - 1) KNP < — Y2 (40)lel (2 p+2e.
< (S VRN < 40l 2N)
Notice that the upper estlmate also holds for |o| > 1, « € 7\ Z,.. Indeed, if L, <
VK (2IN)P* then also L, < S K (4c)lel(2IN)P+2e, 5o we obtain
VK

Lo < W(zxc)‘a‘(zm)(“?)“, foralla € Z, |of > 1.

Now we can prove that u(t,w) = > .7 ua(t)Ho(w) € C([0,T],X) ® (S)_1. Denote by
H= LZ,T Then

8mae
> sup @XM = sup oIk + 3 sup lua(®l (M)
aEIte[O’T] tel0,T a>0 telo,
= M5+ > L2 (2N)"%* + Y L2(2IN)~*
keN o >1
< M3 + (mae™?TK)? Y (2N)r- 0% 4 72 3 ((4@‘“‘(211\1)(“2 ) (2IN)~¢
keEN la]>1
= M2 + (mge™2TK)? Z(2IN)(217*‘1)5k + H? Z (16¢2)lo1 (2IN) (ZrHa—ae,
kelN Ja|>1

Taking that s > 0 is such that 2° > 16¢?, according to Lemma 2.5, we obtain

D sup [ua(®)|3(2IN) 79 < M3 + (moe>"K)? Y~ (2N) PPk
aGItE[O’T] keIN

+H? Y (2N) @m0 < og
la]>1

for g > 2p + s+ 5. O

In the sequel we prove the existence of the almost classical solution of the Cauchy
problem

up(t,w) = Au(t,w) +u®3(t,w) + f(t,w), tel0,T] (2.28)
u(0,w) = u’(w),
Note that

u®(t,w) = u®(tw) Oult,w) =Y > > uap(t) ug_y(t) uy(t) Ha(w)

a€cZ B<ay<p

= ug(t) Ho(w)
+ Y (3u0ua +3u0 > uaspus®) + > Y uas(thus V(t)uw(t))H( ),
|a|>0 0<B<a 0<B<a0<y<3
(2.29)
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fort € [0,7], w € Q. Applying the Wiener-Itd chaos expansion method to the nonlinear
stochastic equation (2.28) reduces to the system of infinitely many deterministic Cauchy
problems:

1° fora=0 p
—ug(t) = Aguo(t) +ud(t) + fo(t), uo(0) = ud, and

dt
2° fora >0
%Ua(t) = (Aa + 3ug(t)Id)ua(t) + 3ug Z U (D) (1) +
0<B<a
+ Y e s s (uy () + falt), (2.30)
0<B<a0<y<f
ua(o) = Ug.

with ¢t € (0,7] and w € Q.
Let
Bas(t) = Aq +3uj(t)Id  and
a3 (t) =3uo Y ua-p®us()+ D Y ta-pt)us(t)uy(t) + falt), t€[0,T]

0<B<a 0<B<a0<y<f
(2.31)
for all o > 0, then, the system (2.30) can be written in the form
d
aua(t) = Ba3(t) ua(t) + ga3(t), t€(0,T7; U (0) = ug. (2.32)

Theorem 2.10. Let the assumptions (A1) — (A4 — 3) be fulfilled. Then, there exists a
unique almost classical solution v € C([0,T], X) ® (5)_1 to (2.28).

Proof. According to Lemma 2.3 for every o > 0 the evolution equation (2.32) has
an unique classical solution u, € C*([0,7],X) given in the form (2.12). Thus, the
generalized stochastic process u(t,w), represented in the chaos expansion form (2.2), has
coefficients that are all classical solutions to the corresponding deterministic equation
(2.32). Hence, in order to show that « is an almost classical solution to (2.28), one has to
prove that u € C([0,7],X) ® (S)_1.

We assume that the initial condition u’ € X ® (9)_; satisfies assumption (A2),
i.e. the estimate (2.19) holds true. The inhomogeneous part f € C1([0,7],X) ® (S)_1
satisfies assumption (A3), i.e. the estimate (2.20) is true for some p > 0. Moreover, the
coefficients u,, a € Z, a > 0 of the solution u are given by (2.11) and (2.12) for n = 3.
Now, for all a € 7 we are going to estimate

Lo = sup [ua(t)|x.
t€(0,T]

It is clear that for « = 0, by (A4 — 3) we have Lo = sup,¢[o 77 [[uo(?)|| = Ms.
For, |a| =1, i.e. for a« = ¢, k € IN by (2.11) we have that

t
lue, (Ollx < [1Se03(t 01, llx +/0 15zy.3(E )l fer (s) [ xds, ¢ €[0,T].

From (2.10) we obtain that

¢ ¢
/ [1Sa,3(t, s)||ds < / mes(t=%)ds < ﬂew3T, te[0,7], a>0. (2.33)
0 0

w3
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By (2.19), (2.20), (2.10) and (2.33) we obtain

t
Lo = s ue®llx < sup {ISecalt 0, lx + sup o)l [ Sualt,o)lds}
te[0,T] te[0,T] s€[0,t] 0

< mev T K (2N)Per + - ewsT [ (2IN)Pek
ws

which leads to the estimate
L., <mzesTK(2N)P: k€ NN, (2.34)

where ms = m + w%

For |a| = 2 we have two different forms of the multiindex. First, for a = 2¢;, k € IN
from (2.31) we obtain the form of the inhomogeneous part ga., 3(t) = 3uo(t) u2, (t) +
f2,(t), where

sup |gae, 3(s)llx < 3MsLZ + sup | fae, (s)llx
s€[0,t] s€[0,t]
< 3Mzmie*vsT K2(2IN)2Per 4 K (2IN)2Pex
< (BMsm3e”*T K? + K) (2IN) =",
Then, together with (2.12) we obtain

Loe, = sup |Juze, (t)]|x
te[0,T]

t
< sup {[1Sayalt Ol x + 500 lg2era(@)lx | ISacialt.s)ds)
T s€[0,t] 0
< mew:’TK(Q]N)zpsk + ﬂeng (3M3m§€2w3TK2 + K) (Q]N)Qpak'
w3
Thus,
Ly, < ayeTK 2N)%, ke, (2.35)
where a; = m + ZL(3Mzm3e”*T K +1).
In the second case, for o = ¢ +¢5, k # j, k,j € N from (2.31) we obtain the

form g., 1, 3(t) = 6uo(t) ue, (t) ue, (t) + f-, 4+, (t) of the inhomogeneous part of (2.12). By
applying (2.34) and (2.20) it can be estimated as

sSup ||g€k+5j,3(s)||x SGMJLEkLEJ =+ sup ||f5k+5j(s)||X
s€[0,t] s€(0,t]

S 6M3m§€2w?’TK2 (2]N)p5k (2]N)p€f + K(2m)p5k+p5j
< (6M3m§€2w3TK2 + K) (2]N)p(€k+8j).

Then, (2.12) combined with the previous estimate lead to

Lek+sj = S[lépT] ||u5k+5j (t)HX
te

s

t
< sup {1Sucses alt O, o lx + 5P 1, a(5)lx [ [1Sepsesalt9)lds )
T s€0,t] 0
< me™s T K (2N)PEten) 4 2 wsT (60 fam2e2wsT K2 4 K) (2N)P(Extes),
w3

Then, we obtained

Leyse; < ape™ K QN)PEF) |k j e N, k £ 4, (2.36)
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where a; = m + =2 (6M3m362w5TK + 1). Finaly, from (2.35) and (2.36) we obtain the
estimate for all |a| =2
Lo < ag e T K (2IN)P2,

For |a| > 2 we deal with general form of the inhomogeneous part of (2.32)
gas(t) =3uo Y uap(Bugt)+ D> Y ua—p(t)us () uy(t) + falt), te€[0,T].
0<B<« 0<B<a 0<y< B

The solution to (2.32) is of the form

’U,a = a 3(t 0)
/ Sa.s(t,s) 3u0 Z Uo—p(t)ug(t)+ Z Z Ua—pg(E)ug—~ (t)u,(t) + fa(t))dS
0<p<a 0<B<a 0<y< B
We underline that in the previous inductive steps, we obtained the estimates of L, ¢ =

supseo, 1) [ta—o(t)|| for all 0 < 6 < «. Then,

Lo = sup |lua(®)| < me“STK(2]N)w
te[0,T]

+%(3M3 S Lasst+ Y. Y La,ﬂLﬁ,WLw—i—K(Q]N)pa)

0<B<a 0<B<a 0<y<pB
< mge (KN +3Ms " Lapls+ 3. Lap 3. LoyLy),
0<B<a 0<f<a 0<y<p

(2.37)

where ms =m + R
In order to estimate L for |a| > 2 we consider two possibilities: (@) Lo < >, La-pLg,

0<B<a
|| >2and (b) Lo, > >, La-pLg, |af > 2.
0<fB<a
(a) Define R, for |a| > 1 in the following inductive way
R., =L,
Z Ra—,@ Rﬁv |a| > 27
0<B<
then, using Lemma 2.7, we obtain the estimate
120l =2\ o', 77 sa.
L, <R, =— —_— R%).
o < fla MQal)w(EfJ
Moreover, by (2.34) we get
o0 o0 o0 a o0
[T 52 =TT £er < TT (mae=s™ K @) )™ = (mgesT i) T (20
i=1 i=1 i=1 i=1

— (mgesTK)* 2Ny = delamyre,

where c¢; = mze*T K. We also used [[;-, (22’)”(“ = (2IN)?® and (2IN)s: = 2i. We
recall the form of the Catalan numbers cjo| = 1 (2|‘a|| 12) |a| > 2. Then, by Lemma
2.4 we obtain

1 2|al -2 ' e _ a
“§H<w1y%%WMW9WWMW%QMW
« | — ol

< (Q]N)psa(g]N)(Zer)a,
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where we used that 4121~ ¢l < (2IN)Ps for some positive ps. Thus, we conclude
L, < (2]1\1)(233-&-1)—&-2)&‘
Finally, for g > 2ps + 2p + 5 the statement of the theorem follows from

Z sup e (£)][% (2IN) 79 = > " L2 (2N)~
€0, T

aEI a€l
= L3+ L2 (2N)7% + Y L2(2N)7¢
kelN || >1
< M3 + (maeTK)? Y (2IN) P9
keN
+ ) (2N) @t oo (2.38)

Ja|>1

ie. uwe C(0,7T],X)® (S)-1,—4. Note that in (2.38) the term ZkG]N(ZlN)(%*q)Ek is
finite since ¢ > 2p + 1 when ¢ > 2ps + 2p + 5.

(b)

a| > 2 such that
La> Y LapLgs (2.39)
0<p<a

Consider the most complicated case. Then, we would have that the inequality
(2.39) is fulfilled for all « € Z. Then, (2.37) reduces to

Lo < mge™” [ KQIN)"™ + (3Ms+1) Y La—pLg |,
<<

where we used inequality Lg > >  Lg_, L, for § < a. Further, we have
0<y<B

K

L., < (3Ms + 1) mge®sT (7
- ( 3+ )Tn3e 3A434—1

NP+ Y La_ﬁLB), o] > 2.

0<fB<
At this point, we can repeat the proof of Theorem 2.9. Particularly, using the

notation m4 = (3M3 + 1) m3 and K’ = 3M 7 the following inequality

Lo < mewsT (K’(2]N)”“ + 3 La_BLﬁ)
0<B<a

corresponds to the inequality (2.24), since K’ < 1, and the proof continues in the
same manner as the one from Theorem 2.9, i.e. the proof of solvability of the
equation (2.15) with the Wick-square nonlinearity.

O

Remark 2.11. Note here that if the almost classical solution u to (2.1) satisfiesu € D =
DomA then u is a classical solution to (2.1).

2.2 The linear nonautonomous case

Our analysis provides a downright observation for the linear nonautonomous equation

u(t,w) = A(t)u(t,w) + f(t,w), te (0,T] (2.40)
u(0,w) = v’ (w), weq.

We assume the following:

EJP 0 (2016), paper 0. ejp.ejpecp.org
Page 19/25



Section 1.7 235

Stochastic evolution equations with nonlinearities

(B1) The operator A(t) : D' C X ® (S)-1 = X ® (5)—_1, t € [0,T] is a coordinatewise
operator depending on t that corresponds to a family of deterministic operators
Aa(t) : D(Ay) € X — X, a € Z. For every a € T the operator family { A4 (t)}icjo,1]
is a stable family of infinitesimal generators of Cy—semigroups on X with stability
constants m > 1 and w € R not depending on «, therefore the corresponding
evolution systems S, (¢, s) satisfy

[Sa(t,s)|| <me?t =) <mev?, 0<s<t<T, acl.

The domain D(A,(t)) = D is independent of ¢t € [0,7] and « € Z. For every x € D
the function A, (t)z, t € [0,T] is continuously differentiable in X for each o € 7.

The action of A(¢), t € [0,T] is given by

A(t)(u) = Z Aa(t)(ua)Hou

a€cl

forue D' C D ® (S)_; of the form (2.2), where

D — {u = Z uaHy € D®(S)—1: Ipo > 0, Z tes%p | An () (ua) || % (2IN) ~Po < oo}
a€l a€el )

(B2) The initial value u® = 3" . udH, € IV, i.e. ud € D for every a € T and there exists
p > 0 such that
3 [l (2) P < oo,
ael

> sup [[Aa(t)ul|5 (2N) P < 0.

aeIte[o,T]

For the inhomogeneous part f(t,w), w € Q, t € [0,T] we assume (A3).

Theorem 2.12. Let the assumptions (B1), (B2) and (A43) be fulfilled. Then there exists
a unique almost classical solution v € C([0,7],X) ® (S)_; to (2.40).

Proof. Applying the Wiener-It6 chaos expansion method to (2.40) we obtain the system
of infinitely many deterministic Cauchy problems

%ua(t) = Aa(Oua(t) + falt), t€(0,T) (2.41)

ua(0) =ul, acl.

By virtue of (B1), (B2) and (A3) the Cauchy problem (2.41) fulfills all the assumptions of
[20, Theorem 5.3, p. 147] so there exists a unique classical solution u, € C1([0,7], X)
given by

Uq (t) = Sa(t,0)u’, +/0 Su(t,s)fa(s)ds, t€][0,T]

foralla € 7.

It remains to show that u = ) .7 uaHs € C([0,T], X) ® (S)_1, i.e. that there exists
q > 0 such that 3 7 sup;e(o 77 llua () [15 (2IN) 79 < occ.

Without loss of generality, we may assume that the constants K,p > 0 are such that
foralla e 7

luglx < K(2IN)"

sup | fa(t)[[x < K(2IN)P*.
t€[0,T]
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Now, for all a € Z, we obtain

t
sup ||ua(t)[lx < sup {IISa(t,O)Iluglir/o IISa(tys)Ilfa(S)lde}

te[0,T] te[0,T]
t
< sup {IISa(t,0)||u2|x+ sup IISa(t,s)llea(s)llx/ ds}
t€[0,7T] s€]0,t] 0
< sup {me"" K(2IN)P* + me"" K (2IN)"*t}

te[0.7]
< (1 4+ T)me*T K (2IN)P>,

Finally, for ¢ > 2p + 1 we obtain

> sup fua(t)]3(2IN) 71 < ((1+ Tyme T K)? D (@)D < oo,
aez t€l0.T] €T

3 Extensions and applications

Our results can be extended to a far more general case of stochastic evolution
equation of the form

ue(t,w) = Au(t,w) + p8(u(t,w)) + f(t,w), te (0,T]

0 (3.1)
u(0,w) = u’(w), w € Q,
with a Wick-polynomial type of nonlinearity
n
pg(u) = Z apu®* = ag + a1 u+ azu®? + azu®? + .. an u®m, (3.2)

k=0

where a,, # 0 and ag, 0 < k < n are either constants or deterministic functions. Equation
(3.1) generalizes equation (2.1) and it can be solved by the very same method presented
in the paper, provided that one stipulates that the corresponding deterministic version
of (3.1) has a solution and modifies assumption (44 — n) correspondingly. Hence, we
replace (A4 — n) with the following assumption:

(A4-pol-n) The Cauchy problem

%Uo(t) = A()U(](t) —l—pn(uo(t)) + fo(t), t e (O, T], UO(O) = ug,

has a classical solution ug € C'([0,T], X), where

n
(1) :Z agu® =ag+aru+asu® +asud + ... a,u”, (3.3)
k=0

is a classical polynomial of degree n corresponding to the Wick-polynomial (3.2).

We extend Theorem 2.8, and for the sake of technical simplicity, present only a
procedure for solving (3.1) for n = 3, but note that the general case may be done mutatis
mutandis.

First we note that from the form of the process (2.2) and from the form of its Wick-
powers (2.3), as well as from (2.29) we obtain the expansion of the Wick-polynomial
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nonlinearity

P (u) = ag + a1 u+ ag u®? + azu®®

=agHo + a1 <u0H0 + Z uaHa) + as (u%Ho + Z <2u0ua + Z u[gua_[g) H(y> +

|a|>0 || >0 0<B<a

+ ag <ugH0 + Z (?m%u(1 + 3ug Z Uq—pUg + Z Z ua_[;u[g_yun,(t)) Ha>

|| >0 0<B< 0<B<a 0<y<B
(3.4)

When summing up the corresponding coefficients, the expression (3.4) transforms to

pg(u) = (ag + a1uo + a9 u% + as u%) Hy

+ Z ((3a3u% + 2asup + a1) us + (3agug + az) Z Ua—pUB

a>0 0<B<a

+ as Z Z ua—,Buﬂ—'yu'y) Ha

0<B<a 0<y<B

= p3(uo) + Z (pé(uo)ua - Py (ug) Z Uq—pUB

a>0 0<fB<a

- py (uo) Z Z Ug—BUZ— v“v) H,,
0<B<a0<y< B
where pj, p4 and p4’ denote the first, the second and the third derivative of the polynomial

(3.3), respectively.
Thus, by applying the Wiener-1t6 chaos expansion method to the nonlinear stochastic

problem (3.1) we obtain the system of infinitely many deterministic Cauchy problems:

1° fora=0
Lo(t) = Aouolt) + ps(uo(t)) + folt), uo(0) =, 3.5)
and
2° fora >0
d

D (8) = (Ao -+ Do) 1) 1) + 5 3 (u01) 3 o s(Bhus 1)+
0<B<a

o) S S e s(Bus () + falt), (3.6)

6 0<B<a 0<y<pB
e (0) = ul.
with ¢ € (0,7] and w € Q.
We denote by
Be ps(t) = Aa + ps(uo(t))Id  and
pY(uo) Y tua—p(t)up(t)

0<B<a

5
é Py (uo) Z Z Ua—p(E)ug—(t)uy(t) + falt),

0<B<a0<y<B

Yo,pa (t) =
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for t € (0,7] and all « > 0. Hence, the problems (3.6) for « > 0 can be written in the
form

d
%ua(t) = Bml’s (t) Ua(t) + 9047;03 (t)’ te (07 T}

uq(0) = ug.

(3.7)

Theorem 3.1. Let the assumptions (A1) — (A3) and (44 — pol — 3) be fulfilled. Then,
there exists a unique almost classical solution v € C([0, 7], X) ® (S)_1 to (3.1).

Proof. Under the assumptions (A1) — (A2) and the assumption (44 — pol — 3) that (3.5)
has a classical solution in C*([0, 7], X), it can be proven (similarly as it was done in
Lemma 2.3) that for every o > 0 the evolution system (3.7) has a unique classical solution
uq € C1([0,T], X). Then, in order to show that u is an almost classical solution to (3.1),
one has to prove that v € C([0,T], X) ® (5)_1. Indeed, this can be done in an analogue
way as in the proof of Theorem 2.10, with Lo = sup,c(o 7 [|uo(?)|| and

Mz = max{ sup |[|ps(uo(t))|l, sup |[p5(uo(t))ll, sup [Ip5(uo(t))ll, sup [Ip5'(uo(t))l}-
t€[0,7] t€[0,7] te[0,7] T

[
telo

3.1 Examples

We present two classes of stochasic reaction-diffusion equations that belong to the
class of problems (3.1).

3.1.1 Stochastic generalized FitzHugh-Nagumo equation
The nonlinear stochastic evolution equation

w(t,w) = Au(t,w) + u®?(t,w) — u®3(t,w) + f(t,w), te(0,T]

3.8
u(0,w) = v’ (w), weq, (3.8)

which belongs to the class of generalized FitzZHugh-Nagumo equations is an equation of
type (3.1). Particularly, for A = A, the corresponding reaction-diffusion deterministic
equation

uy = Au(t) + Fu(t), u(0)=u’, (3.9)

with a nonlinearity of the form F(u) = —u(a — u)(b — u) is the celebrated FitzHugh-
Nagumo equation, which arises in various models of neurophysiology. The equation (3.9)
has been introduced by FitzHugh and Nagumo [5, 17] in order to model the conduction
of electrical impulses in a nerve axon. A stochastic version of the FitzHugh-Nagumo
equation (3.9) was studied in [1], while a control problem for the FitzHugh-Nagumo
equation perturbed by coloured Gaussian noise was solved in [3]. Clearly, the equation
(3.8) is generalizing (3.9) if we choose a = 0 and b = 1 in the form of F(u). For the choice
of a = b = 0 the equation (3.8) reduces to the Fuyjita type equation (2.1).

Here, by appying Theorem 3.1, we obtain a unique almost classical solution of the
equation (3.8).

3.1.2 Stochastic generalized Fisher-KPP equation

The deterministic nonlinear equation of the form (3.9) with F'(u) = au(l — u) is called
the Fisher equation (also known as the Kolmogorov-Petrovsky-Piskunov equation). Such
equations occur in phase transition problems arising in biology, ecology, plasma physics
[4, 13] etc. Particularly, such an equation provides a deterministic model for the density
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of a population living in an environment with a limited carrying capacity. It also describes
the wave progression of an epidemic outbreak or the spread of an advantageous gene
within a population. Other applications in medicine involve the modeling of cellular
reactions to the introduction of toxins, voltage propagation through a nerve axon, and
the process of epidermal wound healing [2]. In other research areas it has been also
used to study flame propagation of fire outbreaks, and neutron flux in nuclear reactors.

Stochastic models that include random effects due to some external (enviromental)
noise were studied in the framework of white noise analysis [10], where the authors
proved the existence of the traveling wave solution. In the same setting, the stochastic
KPP equation, i.e. heat equations with semilinear potential and perturbation by a
multiplicative noise were considered in [19]. Under suitable assumptions, by applying
the It6 calculus, existence of a unique strong traveling wave solution was proven, and an
implicit Feyman-Kac-like formula for the solution was presented. Here we consider a
generalized Wick-version of the stochastic Fisher-KPP equation

uy(t,w) = Au(t,w) +u(t,w) — u?(t,w) + f(t,w), te(0,T]
u(0,w) =u'(w), wen,

which can be solved by applying Theorem 3.1.

3.2 Conclusion

In this paper we have presented a methodology for solving stochastic evolution
equations involving nonlinearities of Wick-polynomial type. However, the applications
and extensions of the theory do not stop here. In place of the nonlinearity »%2, one might
consider uQu, and with appropriate modifications solve the stochastic Burgers-type
equation u; = ug, + uQu, + f or the stochastic KdV equation u; = ugze + ulug + f,
coalesced into the form u; = Au + u{u, + f. One can also replace the nonlinearity u°"
by u{|u|"~!, where the modulus of a complex-valued stochastic process is understood as
|u| = >z [ua|Hq, and find explicit solutions to the stochastic nonlinear Schrédinger
equation (ih)u; = Au + uQ|u|" 1 + f.
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Chapter 2

Applications

In this chapter we present applications of the chaos expansion method to the
study of optimal control problems. In particular, we consider the stochas-
tic linear quadratic optimal control (SLQR) problem in infinite dimensions.
This problem arises naturally in mathematical finance, e.g. in high frequ-
ency trading models in option pricing. Solving stochastic optimal control
problems is strongly related to the problem of solving backward stochastic
differential equations, e.g. if an SLQR problem with random coefficients is
considered. The SLQR problem addresses a minimization of a quadratic
cost functional subject to a stochastic linear differential state equation. In
the finite time horizon case the optimal control is given in a feedback form
in terms of the solution of an operator differential Riccati equation, while in
the infinite horizon case the optimal control is characterized by the solution
of an operator algebraic Riccati equation. In first part of this chapter we
present a novel numerical framework for solving SLQR problems using the
chaos expansion approach [66, [65]. By applying the method of chaos expan-
sions to the state equation, we obtained a system of deterministic partial
differential equations in terms of the coefficients of the state and the control
variables. We set up a control problem for each equation, which resulted
in a set of deterministic linear quadratic regulator problems. We proved
the optimality of the solution expressed in terms of the expansion of these
coeflicients and compared it to the direct approach. Moreover, we apply this
approach to SLQR problems with random coefficients, i.e. the state, con-
trol and observation operators are random. We also considered a fractional
version of the SLQR problem. By using the fractional isometries defined
in Chapter 1, the fractional SLQR problems are transferred to the classical
SLQR problems. These results are related to Section 2.1 [66], Section 2.2
[65] and Section 2.3 [68].

The SLQR problem in infinite dimensions was solved by Ichikawa [46]
using a dynamic programming approach. Da Prato [25] and Flandoli [30]
later considered the SLQR problem for systems driven by analytic semi-

241
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groups with Dirichlet or Neumann boundary controls and with disturbance
in the state only. The infinite dimensional SLQR problem with random
coefficients has been investigated in [36l 37] along with the associated back-
ward stochastic Riccati equation. We proposed a theoretical framework for
the SLQR problem for singular estimates control systems in the presence of
noise in the control and in the case of finite time penalization in the per-
formance index [39]. Considering the general setting described in [39] [63],
we developed an approximation scheme for solving the control problem and
the associated Riccati equation [67]. These results are related to Section 2.4
[39] and Section 2.5 [67].

In addition, we combined the chaos expansion method with splitting
methods for solving particular classes of stochastic evolution equations,
Section 2.6 [52]. Finally, we present a regularization scheme based on chaos
expansions for operator differential algebraic equations with noise distur-
bances, Section 2.7 [3].

The SLQR problem: a chaos expansion approach

We consider the infinite dimensional stochastic linear quadratic optimal con-
trol problem on finite time horizon. The SLQR problem consists of the linear
state equation

dy(t) = (Ay(t) + Bu(t))dt + Cy(t) dB, y(0) =4°, te[0,T], (2.1)

with respect to H-valued Brownian motion By in the classical Gaussian white
noise space, and the quadratic cost functional

T
I(u) = E [ [ ORul i) s 1G] e

The operators A and C are operators on H and B acts from the control
space U to the state space H and 3" is a random variable. Spaces H and
U are Hilbert spaces. The operators B and C are considered to be linear
and bounded, while A could be unbounded. The objective is to minimize
the quadratic functional over all admissible controls v and subject
to the condition that y satisfies the state equation . The operators
R and G are bounded observation operators taking values in a Hilbert
space H, E denotes the expectation with respect to the Gaussian measure
w and yr = y(T'). For the class of admissible controls we consider square
integrable U-valued adapted controls. The stochastic integration is taken
with respect to H-valued Brownian motion and the integral is considered as
a Bochner-Pettis type integral [26], [99]. For C = 0 the equation arises
in the deterministic regulator problem and has been well understood in the
literature [56}, 57, [78]. A control process u* is called optimal if it minimizes
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the cost functional over all admissible control processes, i.e.,

min J(u) = J (u*).

u

The corresponding optimal trajectory is denoted by y*. Thus, the pair
(y*,u*) is the optimal solution of the considered optimal control problem
and is called the optimal pair.

Due to the fundamental theorem of stochastic calculus, for admissible
square integrable processes, we consider an equivalent form of the state
equation (2.1, its Wick version

g(t) = Ay(t) + Bu(t) + Cy(t) OWs,  y(0)=4¢°, te[0,T]. (2.3)

We solved the optimal control problem — by combining the chaos
expansion method with the deterministic optimal control theory. The fol-
lowing theorem gives the conditions for the existence of the optimal control
in the feedback form using the associated Riccati equation. For more details
on existence of mild solutions of we refer the reader to [26] and for the
optimal control and Riccati feedback synthesis we refer to [46].

Theorem 57 ([26, [46]) Let the following assumptions hold:

(al) The linear operator A is an infinitesimal generator of a Cy-semigroup
(eA);>0 on the space H.

(a2) The linear control operator B is bounded U — H.

(a3) The operators R, G, C are bounded linear operators.

Then, the optimal control u* of the linear quadratic problem (2.1)-(2.2)
satisfies the feedback characterization in terms of the optimal state y*

u'(t) = —=B*P(t) y"(t),
where P(t) is a positive self-adjoint operator solving the Riccati equation

P(t)+ P(t)A + A*P(t) + C*P(t)C + R*R — P(t)BB*P(t) = 0,

P = GG, 2V

Here we also invoke the solution of the inhomogeneous deterministic
control problem of minimizing the performance index

T
J(u) = /0 ([R5, + [lullZ) dt + |Ga(T)|17, (2.5)
subject to the inhomogeneous differential equation

2/ (t) = Ax(t) + Bu(t) + f(t), x(0) = 2z°. (2.6)
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Besides the assumptions (al) and (a2), it is enough to assume that
f € L*((0,T),H), to obtain the optimal solution for the state and control
(z*,u*). The feedback form of the optimal control for the inhomogeneous

problem — is given by
u*(t) = —B*Py(t)x*(t) — B*k(t), (2.7)
where Py(t) solves the Riccati equation
((Py+PjA+ A*Pj+ R*R— PyBB*Py)v, w) =0, Py(T)v=G*"Gv (2.8)

for all v,w in D(A), while k(t) is a solution of the auxiliary differential
equation
K'(t) + (A" — Py(t) BB*)k(t) + Pa(t)f(t) = 0

with the boundary conditions Py(7') = G*G and k(T') = 0. For the homo-
geneous problem we refer to [56]. We also refer to [13], 22], [I03] for better
insight into optimal control theory.

Definition 58 Let g(t) be a Fr-predictable Bochner integrable H-valued
function.

(1) An H-valued adapted process y(t) is a strong solution of the state equa-
tion (2.1) over [0,T] if

(1) y(t) takes values in D(A) N D(C) for almost all t and w,
(i) Py lly(s) o+ [Ay(s)lsds < o0) =1,

)
) P

(i1i) P fo Cy(s)]|3,ds < 00) =1, and
)

(iv) for arbitraryt € [0,T] and P-almost surely it satisfies the integral
equation

y(t) =40 + /O Ay(s)ds + /0 g(s)ds + /0 Cy(s) dB,

(2) An H-valued adapted process y(t) is a mild solution of the state equa-
tion (2.1)) over [0,T] if
(i) the process y(t) takes values in D(C),
(id) P(fy lly(s)nds < o00) =1,
) P
)

(414 fo [Cy(s)]|3,ds < o00) =1 and

(iv) for arbitrary t € [0,T] and P-almost surely it satisfies the integral
equation

t t
y(t) = et yO + / eA(t_S)g(s) ds + / eAlt=s) Cy(s) dBs
0 0



Applications 245

Note that, under the assumptions of Theorem and given a control
process u € L2([0, T),U) @ L?(u), i.e., g(t) = Bu(t), and deterministic initial
data, there exits a unique mild solution y € L2([0,T],H) ® L?(u) of the
controlled state equation (2.1]), see [26].

The approach developed in [66] combines the method of chaos expansions
with the deterministic optimal control theory. We recall that the method
of chaos expansions is based on the Wiener-It6 chaos expansion theorem
which states that a random variable, respectively a stochastic process, can
be expressed as series in terms of an orthogonal basis of stochastic polyno-
mials depending on the probability measure. Particularly, if the underlying
probability space is a Gaussian space, then the orthogonal basis of stochastic
polynomials is built in terms of the Hermite polynomials and an orthonormal
basis of H. The case H = L2(R) is very important in applications, where the
orthonormal basis {ej }ren can be chosen as the Hermite functions {& }ren-

The square integrable processes y € £2([0,7] x Q,H) and u € L£2(]0, T] x
Q,U) can be represented in their chaos expansion forms

y(t.w) =D yalt) Halw), u(t.w) =) ua(t) Halw),  (29)

acl ael

for t > 0, w € Q and where the coefficients y,€ £2([0,7],H) and u, €
L£2([0,T],U) for all a € Z. In this way, the deterministic part of a stochastic
process is split from its random part. The zero coefficients yo(t) = Ey(t,w)
and ug(t) = Fu(t,w) in (2.9)) are the corresponding expectations of y and
u. All the operators A,B,C,R and G appearing in the problem —
(2.2) are assumed to be coordinatewise operators, i.e., the action of A on
y € L2([0,T] x Q,H) is given by Ay(t,w) = > c7 Aaya(t) Ha(w),

Theorem 59 ([68]) Let the following assumptions hold:

(A1) The operator A : L*([0,T], D) ® L?*(n) — L?([0,T],D) ® L?(p) is a co-
ordinatewise linear operator that corresponds to the family of determin-
istic operators Ay : L*([0,T],D) — L*([0,T],H), o € T, where A are
infinitesimal generators of strongly continuous semigroups (eAat)aeI,
t > 0, defined on a common domain D that is dense in H, such that
for some m,0 >0 and allc € T

||(€A“t)a”L(H) < me”, t>0.

(A2) The operator C : L*([0,T),H) @ L*(n) — L*([0,T],H) ® L*(pn) is a
coordinatewise operator corresponding to a family of uniformly bounded
deterministic operators Cy, : L*([0,T),H) — L?([0,T],H), a € T.

(A3) The control operator B is a coordinatewise operator B : L*([0, T|,U) ®
L2(p) — L2([0,T),H) ® L?(p) that is defined by a family of uniformly
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bounded deterministic operators B, : L*([0,T],U) — L?([0,T],H),
acl.

(A4) Operators R and G are bounded coordinatewise operators correspond-
ing to the families of deterministic operators {Ru}acz and {Glaer
respectively.

(45) Elly°l17, < oo

Then, the optimal control problem (2.2 . ) has a unique optimal control
u* given in the chaos expansion form

> BiPia(t)yi(t)Ho— Y Bhk o (2.10)

a€cl |ae|>0
where Py o(t) for every o € T solves the Riccati equation

Pio(t) + Pio(t) A + ALPyo(t) + RaRY — Pio(t)BaBiPyo(t) =0

2.11
Pd,oz(T) = G;;Ga ( )

and kq(t) for each a € T solve the auziliary differential equation

K (0)+ (A5~ Paa(®)BaBE) Fa(t) + Paa®) (3 Cortramcen () -ei(t)) =0,
< (2.12)

with ko(T) =0 and y* = > c7Ya Ha is the optimal state.

Theorem [59|is an extension of the one from [66], where the case with sim-
ple coordinatewise operators was considered. The following theorem gives
the characterization of the optimal control

w) =Y ui(t) Hao(w) =D uf(t) Ho = uy+ »_ ul(t) Ha, (2.13)

ael a€l || >0
in terms of the solution of the stochastic Riccati equation.

Theorem 60 ([68]) Let (Al)-(A5) from Theorem |59 hold and let P be a
coordinatewise operator that corresponds to the family of operators { Py }aez-
Then, the solution of the optimal control problem (2.1))-(2.2) obtained by the

chaos expansion approach
u*=-B*"Pyy*(t) — B*K, (2.14)

where P4(t) is a coordinatewise operator corresponding to the deterministic
family of operators { Py o}acz and K is a stochastic process with coefficients
ko(t), i.e., a process of the form K =" .1 ka(t) Ha, with ko = 0, is equal
to the one obtained by the Riccati approach

w(t) = —B*P(t) y* (1), (2.15)
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with a positive self-adjoint operator P(t) solving the stochastic Riccati equa-
tion

P(t)+P(t)A+ A*P(t) + C*P(t)C + R*R — P(¢t)BB*P(¢) = 0,
P(T)=G*G
(2.16)
if and only if

CoPa(t) Caya(t) = Pa(t)(Y_ Coccw¥s_.(t) -i(1), lal >0,k €N
1€N
(2.17)
hold for all t € [0,T].

The condition that characterizes the optimality represent the
action of the stochastic Riccati operator in each level of the noise. Note
that the stochastic Riccati equation and the deterministic one
differ only in the term C}P,(t) Cq, i.e., the operator CAP,(t)Cq, a € T
captures the stochasticity of the equation. Polynomial chaos projects the
stochastic part in different levels of singularity, the way that Riccati operator

acts in each level is given by (2.29).

Following the proposed approach the numerical treatment of the SLQR
problem relies on solving efficiently Riccati equations arising in the associa-
ted deterministic problems. In recent years, numerical methods for solving
differential Riccati equations have been proposed [7, 12]. Moreover, the
results from [66] were applied also to optimal control problems governing
by state equations involving so-called delta noise. Additionally they were
extended to SLQR problems with random operators, previously considered
by [36}, 37].

Although theoretically we have to solve infinitely many control problems,
numerically, when approximating the solution by the pth order chaos, we
have to solve (TnTﬁ)! problems in order to achieve the L2-convergence. The
value of p is in general equal to the number of uncorrelated random variables
in the system and m is typically chosen by some heuristic method [50, [102].

Details and a complete study of the SLQR problem with chaos expansion
approach are given in Section 2.1 [66].

The SLQR problem: the infinite horizon case

The infinite dimensional SLQR problem consists of the state equation
dy(t) = (Ay(t) + Bu(t)) dt + Cy(t) dB;, t >0,
y(0) =3° (2.18)

defined on the state space H, where A and C are operators on H, B acts
from the control space U to the state space H# and 3 is a random variable.
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Spaces H and U are Hilbert spaces and { B }+>¢ is a H-valued Wiener process
on a given probability space (€2, F, 1) in sense of [26]. The operators B and
C are considered to be linear and bounded, while A could be unbounded.
The objective is to minimize the functional

J(u)=E [ |7 (R4 i) a (2.19)

over all possible controls u and subject to the condition that y satisfies the
state equation . The operator R is bounded and takes values in the
Hilbert space H. A control process u* is called optimal if it minimizes the
cost (2.19]) over all admissible control processes u € A, i.e., for which it holds
. *
min J(u) = J(u").
The corresponding trajectory is denoted by y*. The pair of stochastic pro-
cesses (y*,u*) is called the optimal pair.

The following theorem provides the conditions for the existence of the
optimal control in the feedback form by the associated algebraic Riccati
equation (ARE). To this approach we are going to refer as standard ap-
proach.

Theorem 61 ([27]) Let the following assumptions hold:

(al) The linear operator A is the infinitesimal generator of a Cy semigroup
(e)>0 on the space H.

a2) The linear operator B is bounded U — H.

The operators R, C' are bounded linear operators.

ad) The system (A, B,C) is stabilizable.

ad

(
(a3
(
( The system (A, R,C) is detectable.

)
)
)
)

Then, the optimal control u* of the linear quadratic problem (2.18))-(2.19)
satisfies the feedback characterization in terms of the optimal state y*

u*(t) = —B* P y*(t), (2.20)

where P is the unique minimal positive self-adjoint operator solving the Ric-
cati equation

PA+ A*P + C*PC + R*R — PBB*P = (. (2.21)
We applied the method of chaos expansions for solving (2.18))-(2.19)). The

square integrable processes y € L£2(]0,00) x Q,H) and u € L2([0,00) x Q,U)
can be represented in their chaos expansion forms (2.9) for t > 0, w € Q
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and where the coefficients y,€ £2([0,00),H) and u, € £L2([0,00),U) for all
«a € T. All the operators A, B, C and R appearing in the problem —
are assumed to be simple coordinatewise operators, i.e., the action
of A ony € L2([0,00) x Q,H) is given by Ay(t,w) = >, c7 Aya(t) Ha(w),
Hence, by applying the representation forms to the equation (2.18]) we
transform it to a system of deterministic equations. Namely, in a similar way
to [45] and [64], the solution of can be written in the chaos expansion
for and its coefficients y,, o € Z can be computed from

Ya(t) = Aya(t) + Bua(t) + > Cyo . €ilt), (2:22)
€N
with 4(0) = y2, where the sum is defined for all i such that the difference
of & — e is nonnegative. Applying the chaos expansion method to the
cost functional , analogously to [66], one gets a characterization of the
optimal control in terms of the expansion coefficients. This is summarized
in the following theorem.

Theorem 62 ([65]) Let (al)-(ab) from Theorem|[61] hold. Let (A, B, R) be
stabilizable and E||y°||3, < co. Then, the following hold:

(a) Solving the problem ([2.18])-(2.19)) is equivalent to solving the determin-
istic optimal control problems in each a-level. Particularly, for a = 0:

min J(uo) =min [ (1Rn) i+ o 0lF) dr (223

subject to
yo(t) = Ayo(t) + Buo(t),  y0(0) = yo, (2.24)
and for o > 0:

min J(uo) = min [ (IRualOlFy + lua0lF) dt (229

U

subject to ([2.22]).

(b) The optimal control problem ([2.18])-(2.19)) has a unique optimal control
u* given in the chaos expansion form

w*(t) == B*Pyyi(t) Ho — > B'ka(t) Ha
acl || >0

— —B*P, y*(t) — B*K, (2.26)

where the operator Py is the unique minimal positive self-adjoint so-
lution of the ARE

P,A + A*P, + RR* — P,BB*P, =0 (2.27)
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and K is a stochastic process with the coefficients ko (t) that for all
a € 7L solve the auziliary equations

KL () + Afka(t) + Pa( D Cyp o (t) €ilt)) =0, (2.28)
€N

with the operator Ay = A*—PyBB* and the condition Tlim ko(T) =0,
— 00
and y*(t) = Y ez Y (t) Hy is the optimal state.

The SLQR problems on finite and infinite horizons are strongly related.
In the deterministic setting the infinite horizon problem is studied as a limit
of the finite horizon time problem, a similar study holds for the stochas-
tic case and also for the chaos expansion approach. This will be presented
somewhere else. The following theorem characterizes the action of the Ric-
cati operator. The recurrence can be interpreted as memory property
in the noise.

Theorem 63 ([65]) Let the assumptions from Theorem hold. Then,
the optimal control (2.26|) of (2.18)-(2.19) obtained via the chaos expansion
method is equal to the solution obtained via the Riccati approach if
and only if for all « > 0 and t > 0 it holds

C*PCy(t) =P (D Cy (1) ei(t)). (2.29)
ieN

The proposed approach for solving SLQR problems in terms of chaos
expansions is not restricted only to problems — with Gaussian
noise, but it can be also applied for more general and non-Gaussian type of
noises, e.g. for problems involving colored noise [64]. One needs to replace
the base of Hermite polynomials with another class of orthogonal polynomi-
als from the Askey scheme of hypergeometric orthogonal polynomials that
corresponds to the specific noise arising in the considered stochastic state
equation [102]. More details can be found in Section 2.2 [65].

The SLQR problem with fractional Brownian
motion

We consider a fractional version of the stochastic optimal control problem
(2.1)-(2.2]). The state equation is linear stochastic differential equation

djj (t) = (A §(t) + Ba)dt + C ) dB™  §(0) =7, te0,7],
(2.30)
with respect to a H-valued fractional Brownian motion in the fractional
Gaussian white noise space. The objective is to minimize the quadratic cost
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functional
H T ' 2 2 —~ 2
3@ =By | [ (IRTB+ 1702) e+ 1GTl] . @30

over all possible controls u and subject to the condition that ¥y satisfies
. A control process u* is called optimal if muin JH) (u) = JH) (u*).
The corresponding trajectory is denoted by * and is called optimal. Thus,
the pair (y*,u") is the optimal solution of the problem —. The
operators A and C are defined on # and B acts from the control space
U to the state space H and 7" is a random variable. The operators B
and C are considered to be linear and bounded, R and G are bounded
observation operators taking values in H. Instead of the state equation

(2.30)), we consider its Wick version
§(t) = Ag(t) + Bu() + Cyn) 0w, 0) =", te0,T]. (2.32)
In Section 2l Theorem [E9 we stated conditions under which the stochastic
control problem (2.1)-(2.2) has an optimal control given in the feedback
form (2.10). In order to apply this result to the corresponding fractional

control problem (12.30)-(2.31)), we apply the isometry mapping M [64] to
(2.31)-(2.32) and transform it to (2.1)-(2.2). The solution of the fractional

problem is thus obtained from the solution of the corresponding classical
problem through the inverse fractional map.

Theorem 64 ([68]) Let the fractional operators A, B, C, R and G defined
on fractional space be coorinatewise operators that correspond to the fami-
lies {Aa}aEZ; {Ba}aEZ; {Ca}aeI; {Ra}aGI and {Ga}aef respectively. Let
the pair (u*,y*) be the optimal solution of the fractional stochastic optimal
control problem —. Then, the pair (Mu*, M y*) is the optimal
solution (u*,y*) of the associated optimal control problem —, where
A, B, C, R and G defined on classical space, are coorinatewise operators
that correspond respectively to the same families of deterministic operators
{Aa}aeI; {Ba}a€Z7 {COé}OtGI; {RQ}OAEI and {GOC}OzGI' Moreover, if (U*ay*)
18 the optimal solution of the stochastic optimal control problem —,
then the pair (M~ u*, M~1y*) is the optimal solution (u*,y*) of the corre-
sponding fractional optimal control problem -.

Therefore, the fractional optimal control - has an optimal
control represented in the feedback form. The optimal solution is obtained
from Theorem |59 and Theorem 64| via the inverse fractional mapping M~1.
These results are included in Section 2.3 [68].

The SLQR problem with singular estimates

In this part of the thesis, we consider the stochastic linear quadratic prob-
lem in infinite dimensions with state and control dependent noise for the
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so-called singular estimate control systems. These systems involve dynam-
ics driven by strongly continuous semigroups and unbounded control actions
with the control to state kernel satisfying a singular estimate. Such situa-
tion is typical in boundary or point control problems where the action of the
control operator is either only densely defined on a control space or its range
is outside the state space. In order to quantify the unboundedness of control
action-singular estimates play an crucial role. Such estimate describes the
amount of blow up of the transfer function. The latter is necessary for a
rigorous analysis of control problems and the associated feedback synthe-
sis. We assume that the multiplicative noise operators for the state and
the control are bounded. Our study includes the SLQR problem in which
disturbance in the control is considered and a final time penalization term
is included in the quadratic cost functional, the so-called Bolza problem.
For deterministic systems, the infinite dimensional linear quadratic regu-
lator problem has been studied extensively in the literature [6l [8 [13] [56].
The purpose of the theoretical framework is to address optimal control of
systems of partial differential equations. For most systems, the controlling
mechanism can only be applied from the interface of the system or at finitely
many points or curves [L0] which necessitates developing a framework for
studying boundary/point control. Such control actions can be captured
mathematically using maps which are not bounded with respect to the state
space, but take values in a larger dual space. The most natural class of prob-
lems where such description has been used are dynamics driven by analytic
semigroups. The analyticity property quantifies naturally the blow up of the
transfer function when acted upon by an unbounded operator (compatible
with fractional powers of the generator). The linear quadratic problem for
systems driven by analytic semigroups with these type of control actions
were studied by [I} [14], 27, BT, 56]. The situation is much more complicated
in the non-analytic case, where there is no natural characterization of sin-
gularity other than technical-PDE estimates. However, for some classes of
control systems which combine hyperbolic and parabolic dynamics, it has
been observed that the control-to-state kernel satisfies a singular estimate
which generalizes the case of analytic semigroup dynamics [2], 5, 55, 58], 59].
Examples of systems which manifest this type of singular estimate arise
frequently in thermo-elastic plate models [111 [I8, [60], acoustic-structure in-
teraction equation [5 9] 60], and fluid-structure interaction models [61]. As
described above, a deterministic theory of feedback control has been devel-
oped for these classes of problems (singular estimate) [54]. However, in the
stochastic case the only results available in the literature covering unbounded
control actions are the ones dealing with analytic semigroups [25], 36, [30].
The results of this section are related to [39]. There we proved an optimal
feedback synthesis along with well-posedness of the Riccati equation. We
derived a differential Riccati equation associated with the optimal stochastic
linear quadratic control problem, by first showing the existence of a solu-
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tion to an expanded system in the integral form of the Riccati equation via
a specially crafted fixed point argument. We then proceeded to derive the
differential Riccati equation which requires making sense of the weak deriva-
tive of the evolution generated by deterministic dynamics with respect to
initial time. Here, the obstacle, as in the deterministic case, lies in the fact
that the terms of the Riccati equation may not be well defined due to the
unboundedness of the control operator. Another difficulty is the finite state
penalization which gives rise to possible singularities at the final time and
require choosing appropriate spaces to make sense of the quadratic term in
the differential Riccati equation [59]. Finally, we then used a dynamic pro-
gramming argument to show that the minimum of the quadratic functional
is realized when the control is expressed in feedback form via the solution to
the differential Riccati equation. Here, we proceed with the dynamic pro-
gramming argument on a regularized version of the problem since the It6
formula only applies to C? functions, while the state and control trajecto-
ries are not differentiable in the classical sense. For this reason, a forward
approach via a maximum principle or a variational method to solve for the
optimal control before proceeding to derive the differential Riccati equation
is not applicable in this setting.

We consider (€2, F, P) to be a complete probability space. Let B; be a
one dimensional real valued stochastic Brownian motion on (2, F, P) and
F: the sigma algebra generated by {B; : 7 < t}. We assume that all func-
tion spaces are adapted to the filtration F;. We denote by L2 ([s, T],H) all
stochastic processes X (t,w) : [s,T] x @ — H such that fST 1 X ()3, dt <
a.e. in Q, and X (t,-) is Fi-measurable for all ¢ € [s,T]. We also denote by
M2 ([s,T), H), the space of all strongly measurable square integrable stochas-
tic processes X : [s,T] x Q@ — H such that fsTE (I X (®)[13,) dt < oo, and
by L*(Q; HY([s,T],U)) all strongly measurable square integrable stochas-
tic processes u : [s,T] x Q@ — U for which it holdes fSTE (Jlu@)|1?) dt +

T
[T E (Ju i) dt < .
We formulate now the optimal control problem in abstract setting. Let

the state equation be a stochastic partial differential equation of the form
dy(t) = (Ay + Bu) dt + (Cy + Du) dB; (2.33)
y(s) = o

be defined on a Hilbert state space H, where A and C are operators on H

while B and D are operators acting from the control space U to the state

space ‘H. We take C' and D to be bounded operators but A and B could be
unbounded. The objective is to minimize the quadratic cost functional

T
S =8 ([ Rl + a4 1GunIz) 230
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over all admissible controls u € M2([s,T],U), where R and G are bounded
linear observation operators taking values in Hilbert spaces W and Z re-
spectively. The optimal control and state are denoted by (u*,y*).

The assumptions we consider are the following;:

Assumptions 1

(1) The linear operator A is an infinitesimal generator of a Cy-semigroup
et on the space H.

(2) The linear control operator B acts from U — [D(A*)]" or equivalently
A™1B is bounded from U — H.

(3) The noise operator D : U — H is a bounded linear operator.

(4) There exists a number v € (0,1/2) such that the control to state map
kernel e B satisfies the singular estimates

c
le™* Bull3 < 7 lulles (2.35)
for everyu el and 0 <t < 1.

(5) The operators R : H - W, G : H — Z and C : H — H are all
bounded linear operators.

We first state the result pertaining to existence, regularity and unique-
ness of solution to the optimal control problem.

Theorem 65 ([39]) The optimal control problem of minimizing (2.34)) sub-
ject to the differential equation (2.33) with initial condition yo € H has a

unique solution u* € L*(Q,C([s,T],U)) and a corresponding optimal state
y* € L*(Q,C([s, T, H)).

We next state the result on the feedback form of the optimal control and
the associated differential Riccati equation satisfied by the gain operator.

Theorem 66 ([39]) Let Assumptions 1 hold. Then, the optimal control u*
has the feedback characterization in terms of the optimal state

u*(t,s,10) = —(I + D*PD)" (B*P(t) + D*P(t)C)y*(t),

where P(t) € C([0,T],L(H)) is a positive self-adjoint operator solving the
Riccati equation for every x,y € D(A)
(Pz,y) + (PAz,y) + (A*Pz,y) + (C*PCx,y) + (R*Ra, y)
—((B*P + D*PC)*(I + D*PD)"Y(B*P + D*PC)z,y) =0,  (2.36)
P(T)x = G*Gx,

such that I + D*P(t)D > 0.
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Specific examples motivating the theory presented above include coupled
PDE systems with boundary or point control where hyperbolic and parabolic
dynamics are intertwined. These, in particular include thermoelasticity,
fluid structure interactions and models arising in structural acoustics [Bl [54].
The analysis and results above easily extends to the case 1/2 < < 1 when
G = 0. However, for nonzero G, this case 1/2 < v < 1 is more challenging
since operator

T
GLr =G / AT B dr
0

is no longer bounded C(L?(), L?([s,T],U)) — Z. In fact, the existence
of an optimal control in this case requires closability of GLr [58]. Such
condition is trivially satisfied when G is bounded and invertible H — Z. In
this case, the fixed point argument is no longer applicable.

Moreover, the derivation of the differential Riccati equation from
the integral Riccati equation involves double singularities at initial and final
times in the function ®(¢,s)B, which appears when making sense of the
derivative of the evolution with respect to initial time [59]. Note that in
the case of deterministic singular estimate control systems, uniqueness of
solution to the differential Riccati equation for nonzero G and v > 1/2 in a
suitable class of operators [59] is not known, even in the analytic case [58],
unless further smoothing properties of GG are satisfied.

The results can also be extended to the case when D is unbounded ope-
rator satisfying a similar singular estimate condition to that satisfied by B,
assumption [I} This condition allows the inclusion of systems with noise in
the boundary control into the theoretical framework that we developed. In
the case when there is no final state penalization, i.e., G = 0, the value of
in could be pushed up to 1. However, the majority of “non analytic”
examples exhibit singularity of the type assumed in . For this reason,
we focused on this class only. More details are given in Section 2.4 [39).

The SLQR problem: a numerical approximation
framework

In [67] we presented an approximation framework for computing the solu-
tion of the stochastic linear quadratic control problem on Hilbert spaces,
where we focused on the finite horizon case and the related differential Ric-
cati equations (DREs). Our approximation framework is concerned with
singular estimate control systems [55] which model certain coupled systems
of parabolic/hyperbolic mixed partial differential equations with boundary
or point control. We proved that the solutions of the approximate finite-
dimensional DREs converge to the solution of the infinite-dimensional DREs.
In addition, we proved that the optimal state and control of the approxi-
mate finite-dimensional problem converge to the optimal state and control
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of the corresponding infinite-dimensional problem. These results are related
to Section 2.5 [67].

The deterministic linear quadratic control problem for infinite-dimensio-
nal systems has been extensively studied in the literature [13] 14} 56, 57]. In
particular, approximation schemes for Riccati equations in infinite-dimen-
sional spaces have been proposed in recent years. Chronologically, the first
reference is due to Gibson [35], who developed an approximation framework
in order to reduce the inherently infinite-dimensional problems to finite-
dimensional ones using Riccati integral equations. The result proposed by
Gibson requires the approximating problems to be defined on the entire
original state space which leads to some technical difficulties. Assuming that
the dynamics are driven by an analytic semigroup, Banks and Kunisch [§]
avoided these difficulties. In the same setting, convergence results for DREs
can be found in [7], while results on convergence rates can be found in [51].
A complete Riccati theory and convergence analysis for infinite dimensional
systems driven by analytic semigroups and a special class of unbounded
control operators was developed by Lasiecka and Triggiani in [56]. However,
up to our knowledge, convergence results for the stochastic linear quadratic
control problem have not been studied in the literature. One of the reasons
could be the fact that the computational cost of solving the SLQR problem
is much higher compared to the cost in the deterministic case. In this work,
we extended the ideas presented in [7}, 8, 63] to the SLQR problem. We also
avoided technical difficulties related with the fact that Gibson’s presentation
requires that each of the approximating problems is defined on the whole
space.

We consider the infinite dimensional stochastic linear quadratic regula-
tor optimal control problem on Hilbert spaces — for unbounded
control operator B, particularly singular estimate control systems, under the
Assumptions[I} An optimal feedback synthesis along with well-posedness of
the Riccati equation are established in Theorem [65] and Theorem

We present a general convergence framework developed in [67]. The
results given here generalize the deterministic results proposed in [8) 35, [56]
to the stochastic case. In particular, the last reference [56] addresses the
case of analytic semigroups et and unbounded operators B : U — [D(A*)]
satisfying A™"B : Y — H, which was generalized by the singular estimate
framework [58].

Let (VV)yen, be a sequence of finite-dimensional linear subspaces of
H ND(B*) and let

v . H — VY, N €N,

be the canonical orthogonal projections. Assume that for every N € N the
operator AN € L(VY) is an infinitesimal generator of a Cp-semigroup eANt
on VY and thus (eAN ") Nen is a sequence of strongly continuous semigroups
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on VY. Given operators BY ¢ LU, VN), GV, QV, CN ¢ L(VV), we
consider the family of finite dimensional stochastic LQR problems on V¥

dy™(t) = (ANyN(t)+ BNu(t)) dt + (CNyN(t) + DNu(t)) dB,
N _ N
" (0) = yp
(2.37)
and the cost functional

T
JN(u) =E [/0 (IQNMy™M3, + llullfy) dt + IGNy™(DF |- (2:38)
The optimal control is given in feedback form by
wy (t) = =(I+ DN"PN(6) DY)~ (BN PN (8) + DYTPN (1)) yN (1)

where PN (t) € L(VV) is the unique self-adjoint solution of the differential
Riccati equation:

PN 4 PNAN 4 gN*pN o oN*pNON 4 NN
_(BN*PN+DN*PNCN)*(I+DN*PNDN)—I(BN*PN+DN*PNCN) =0,
PN(T) =GN"aN

(2.39)

such that 7+ DN*PNDN > 0 and yN(t) is the optimal state [103].

We impose the following assumptions on the approximation operators:
Assumptions 2

(1) For all ¢ € H, the semigroups eANtHNgo converges in H to ety uni-

formly on [0,T] and in particular there exists Ny € N such that for
N > Ny, we have

JAY — eMally < < llellu, Ve € He

(2) For all ¢ € H, the semigroups eAN*tHNgo converge in H to et

uniformly on [0,T] and in particular for N > Ny
AN — ey < el Vo € R
(3) For all x € VN we have for N > Ny

BN TN 2y < eN7||zll3g, Vo € H.

(4) The projections TIN satisfy the convergence estimate for N > Ny

C
1B* (I — 1) ]y < ~ lzlo@se), Vo & D(B7).
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()

(6)

(7)

For all x € D(B*), BN*IIV2 converges to B*x in U and for N > Ny

C
I(B* = BN IIY) 2y < v lelo@e, vz € D(B).

The approzimations BN* satisfy the uniform singular estimate
X c
| BV AT N ey < il Ve €, (2.40)

for N > Ny and some + € (0, %)

For all v € U, DNv — Dv in H and for all ¢ € H, we have
DN*TINg — D*¢ in U such that for N > Ny

&
I(DY — Dyl < N Wl Vo €U,

and
c
[(DYTY = D) ol < < el Vo € H.

For all ¢ € H, we have CVN IV — Cyp and CN*TINp — C*p in H
such that for N > Ny

C
ICNTIY — Ol < el Yo eH,

and
* * c
NI — )l < % gl Vo € A

For all ¢ € H, we have QNN ¢ — Qp and QN TNy — Q*p in H
such that for N > Ny

C
@YY = @) plln < 1 gl Vo € H,

and
c
1@ TN — Q*) |3 < v el Ve e H.

For all ¢ € H, we have GNTINp — Gy and GN*TINp — G*¢ in H
such that for N > Ny

C
IGVIY ~ Gl < lielh Voo € H,

and
N c
I(GMIIN — GM)eplly < el Vo e
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The assumption (1) implies that [TV — ¢ for all ¢ € H, which indi-
cates the sense in which the subspaces V!V approximate .

We next state the main convergence results showing convergence of the
solution of the approximate differential Riccati equation (2.39)) to the solu-
tion of the original Riccati equation (2.36)).

Theorem 67 ([67]) Under Assumptions|]] and Assumptions|d, for ¢ € H,
PNV g — P(t)p uniformly on [0,T] in H as N — oo, and in particular

N N c
1P ¢ = P(t) pllin < 7= el
for N > Ny and for all t € [0,T]. Moreover, it holds
BN pN N o — B*P < ° .
BN PY O ¢~ BP() el < 5z el

The second result establishes convergence of the optimal pair ul¥

and yY of the N problem (2.37) and (2.38) to the optimal pair u, and y. of
[233) and (39).

Theorem 68 ([67]) Under Assumptions [1] and Assumptions[d and given
the condition E(|lyo||3,) < oo, we have

yN — y. uniformlyas N — ooon [0,T] in L*(Q,H),

and in particular

C
E(ly (t 90 ) — ye(t.90)13) < 7 Ellyoll3,), vt € 0,71,

N2(1—y
while

uY — u, uniformlyas N — ocoon [0,T — ¢] in L*(Q,U), >0,

and in particular

C
E(llud (t,90") — us(t, yo)llz0)

<
= N20=0)(T —t)

The approximation framework we have proposed holds with no modifica-
tion for the case in which only disturbance in the state is considered, i.e. for
D = 0. Our results can be also extended to the non-autonomous case, i.e.
the case in which stochastic partial differential equations of the form
have time-varying coefficients. Approximation results for the deterministic
non-autonomous case can be found in [7, B5]. The Riccati equation
arising in the stochastic linear quadratic control problem is deterministic.
Thus, the convergence analysis was developed in the same framework as for
Riccati equations arising in the deterministic case.

The proposed approximation scheme could be extended to optimal con-
trol problems governed by more general state equations, e.g. when stochastic
perturbations are of Wick type within white noise framework. More details
are given in Section 2.5 [67].

5 E(lwoll3,), vt €0,T].
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A splitting/polynomial chaos expansion approach
for stochastic evolution equations

Splitting methods are numerical methods for solving differential equations,
both ordinary and partial differential equations (PDEs), involving operators
that are decomposable into a sum of (differential) operators. Exponential
splitting methods are applied in cases when the explicit solution of a split-
ted equation can be computed. Such computations often rely on applying
fast Fourier techniques, see for instant [97]. Resolvent splitting is used in
cases when the splitted equation cannot be solved explicitly [41, O1]; here
we consider this type of methods. Typical examples include time-dependent
Schrodinger equation with smooth potential, cubic nonlinear Schrodinger
equation (dispersive optical fibers) and nonlinear reaction-diffusion (advec-
tion) equations. The splitting methods have been applied to stochastic prob-
lems, e.g. for incompressible Stokes equation [20]. In this work we present
novel approach for solving stochastic parabolic evolution problems that com-
bines deterministic splitting methods and the chaos expansion method. We
consider stochastic evolution equations of the form

du(t) = ((A+ B)u(t) + f(t)) dt + (Cu(t) + g(t)) dB(t)

4(0) — ol (2.41)

where A, B and C' are differential operators acting on Hilbert space valued
stochastic processes, {B;}¢>0 is a cylindrical Brownian motion on a given
probability space (2, F,P) and f and g are deterministic functions. In [79]
equation involving Gaussian noise terms was solved in an appropriate
weighted Wiener chaos space. The deterministic problem that corresponds
to , i.e., the case where C' = 0 and g = 0, for particular Au = 9, (ad,u),
Bu = 0y(b0yu) and f was studied in [29]. We consider equation
involving a non-Gaussian noise term. Namely, we consider inhomogeneous
parabolic evolution equations involving the operators that can be split in
A 4+ B and uniformly distributed random inputs. These equations, can be
also written in the form

u(t,z,w) = (A+ B)u(t,z,w) + G(t,z,w)

2.42
u(0, z,w) = uo(ﬂs,w), ( )

where G represents the noise term and wu is the solution, see e.g. [43], [76, [77,
79]. The existence of a random parameter w is due to uncertainties coming
from initial conditions and/or a random force term. Therefore, the solution
is considered to be a stochastic process.

Stochastic processes with finite second moments on white noise spaces
can be represented in series expansion form in terms of a family of or-
thogonal stochastic polynomials. The classes of orthogonal polynomials are
chosen depending on the underlying probability measure [42, 43]. Namely,
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the Askey scheme of hypergeometric orthogonal polynomials and the Sheffer
system [94] [95] can be used to define several discrete and continuous dis-
tribution types [102]. We considered problems with non-Gaussian random
inputs where the noise term is uniformly distributed. It is known that in
order to obtain a square integrable solution of with deterministic ini-
tial condition, it is enough to assume that the operator A — %CC* is elliptic
and that the stochastic part (the noise term) is sufficiently regular [26]. In
this work, the assumptions on the input data for problem will be set
such that the existence of a square integrable solution is always established.
We do not consider solutions which are generalized stochastic processes as
in [76, [79], since our focus is on numerical treatment.

If does have a sufficiently regular solution, this solution can be
projected on an orthonormal basis in some Hilbert space, resulting in a sys-
tem of equations for the corresponding Fourier coefficients. Thus, we use
the method of chaos expansions to define the solution of as a formal
Fourier series with the coefficients computed by solving the corresponding
system of deterministic PDEs [79]. With this method, the deterministic part
of a solution is separated from its random part, i.e., it corresponds to the de-
terministic method of the separation of variables in PDEs. By construction,
the solution is strong in the probabilistic sense. It is uniquely determined by
the coefficients, initial condition and the noise term. The coeflicients in the
Fourier series are uniquely determined by the equation and are com-
puted by solving the corresponding lower-triangular system of deterministic
parabolic equations.

Practical application of the Wiener polynomial chaos involves two trun-
cations, truncation with respect to the number of the random variables and
truncation with respect to the order of the orthogonal Askey polynomials
used (in the particular case considered, the Legendre polynomials). More
details are given in Section 2.6 [52].

Stochastic operator differential algebraic equations

In this section we consider stochastic operator differential algebraic equa-
tions (ODAES), i.e. a stochastic differential equation subject to an algebraic
constraint

7y + Ky + B'u= f, By= g, (2.43)

where the stochastic operator K is a coordinatewise operator such that the
corresponding deterministic operators {K,}acz are densely defined on a
given Hilbert space X. In the special case when B = D and B* = § the

system ([2.43|) transforms to

7+ Ky+du=f, Dy=g (2.44)
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with the initial condition Ey = 3° and given stochastic processes f and g.
In the following theorem we consider a more general equation than .
Namely,

y=Ay+TOy + ou + f, Dy=y, (2.45)

which was studied in [64], [68].

Theorem 69 ([64, 68]) Let p € [0,1]. Let A: X ® (S)—, = X ® (9)—,
be a coordinatewise operator corresponding to a uniformly bounded family
of deterministic operators A, : X — X, a € Z and T be a coordinatewise
operator that corresponds to a polynomially bounded family of operators Ty, :
X > X, acZ Letg=>  cr > penJakéiHa € X @ S'(R) ® (S)_, such
that its coefficients gar satisfy the condition and f € X ® (5)—p.
Let 4° € X, y' € X be given and the actions Agy® and Toy® defined such
that Ef = Agy® + Toy°. Then, the system with the initial conditions
Ey = y° and Ey = y', has unique solution pair y € X ® (S)_, and u €
X @ S'(R) @ (S)-, given respectively by

1
v = P+ ) Tl S Goetry ® Ha and  (2.46)
|| >0 keN
v
o= 3 S (1) U @ g @ H, (2.47)
| + e(®)]
acl keN

wherev =9 — Ay —T Oy — f.

A similar result to the one given in Theorem [69] was proved in [3] for semi
explicit ODAESs with noise arising in fluid dynamics. Details and a complete
study of the regularization of of these equations are given in Section 2.7 [3].
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ABSTRACT. We consider the stochastic linear quadratic optimal control prob-
lem for state equations of the Ito-Skorokhod type, where the dynamics are
driven by strongly continuous semigroup. We provide a numerical framework
for solving the control problem using a polynomial chaos expansion approach
in white noise setting. After applying polynomial chaos expansion to the state
equation, we obtain a system of infinitely many deterministic partial differen-
tial equations in terms of the coefficients of the state and the control variables.
We set up a control problem for each equation, which results in a set of deter-
ministic linear quadratic regulator problems. Solving these control problems,
we find optimal coefficients for the state and the control. We prove the opti-
mality of the solution expressed in terms of the expansion of these coefficients
compared to a direct approach. Moreover, we apply our result to a fully sto-
chastic problem, in which the state, control and observation operators can be
random, and we also consider an extension to state equations with memory
noise.

1. Introduction. Stochastic optimization of infinite dimensional systems arise in
many applications, and has become a very active research field in recent years. For
finite dimensional systems, extensive results in the field can be found for instance
in [15, 63]. In particular, the linear quadratic regulator problem (LQR) has been
well studied in deterministic setting. The stochastic analogue in finite dimensions
was first solved by Wonham and Kushner in the 1960’s [32, 60, 61]. In the infinite
dimensional setting, the stochastic linear quadratic regulator (SLQR) problem was
first treated by Ichikawa for systems driven by strongly continuous semigroups and
bounded control and noise operators [27], where a full Riccati synthesis of the
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problem analogous to that obtained in finite dimesnions was developed. In later
works, Flandoli and Da Prato considered the problem in the analytic semigroups
framework for Neumann or Dirichlet type control operators, which represent pa-
rabolic PDE with boundary controls [12, 14]. For systems with singular estimates
which model a certain class of coupled parabolic/ hyperbolic PDEs, the stochastic
linear quadratic problem has been studied by Hafizoglu [22]. In [23], the results
were extended to the case including the disturbance in the control and nonzero G
(Bolza problem). An approximation scheme for solving the control problem and
the associated Riccati equation was also introduced in [39]. Other results have been
proposed for systems with stochastic coefficients in [20, 21].

In this work, we consider a polynomial chaos approach for solving the infinite
dimensional SLQR problem. The aim is to provide a numerical framework that
can be used to obtain efficient numerical solutions to the stochastic linear quadratic
problem (or a generalized version of it) which consists of the state equation

dy(t) = (Ay(t) + Bu(t))dt + Cy(t) dW(t),  y(0)=y", te[0,T], (1)

defined on Hilbert state space H, where A and C are operators on ‘H and B acts
from the control space U to the state space H and y° is a random variable. Spaces
H and U are Hilbert spaces. Process W(t) is an H-valued Brownian motion. The
operators B and C are considered to be linear and bounded, while A could be
unbounded. The objective is to minimize the functional

T
J(u) =E /0 (IRyll3, + [lulZ) dt + [Gyrll3 |, (2)

over all possible controls v and subject to the condition that y satisfies the state
equation (1). Operators R and G are bounded observation operators taking values
in H, E denotes the expectation and yr = y(T). A control process u* is called
optimal if it minimizes the cost (2) over all control processes, i.e. for which it holds

muin J(u) = J(u").

The corresponding trajectory is denoted by y*. Thus, the pair (y*, u*) is the optimal
solution of the problem (1)-(2) and is called the optimal pair.

First of all, note that state equation (1) can be written in an equivalent abstract
form as

§(t) = Ay(t) + Bu(t) + Cy() OW (1),  y(0)=y°, tel0,T],

where ¢ denotes the Wick product and W (t) an H-valued white noise process. In
order to preserve mean dynamics in (1), we represent the random perturbation as
a stochastic convolution and obtain the Wick-version of the state equation. Us-
ing the Wick product instead of the usual pointwise multiplication we are able to
establish a new approach for solving optimal control problems based on the ap-
plication of the chaos expansion method. Since each square integrable stochastic
process v on Gaussian white noise probability space has a unique chaos expansion
representation in a Fourier-Hermite orthogonal polynomial basis, v = Y .7 va Ha
with deterministic coefficients v,, we are able to split the deterministic effects from
the randomness and to reduce the original stochastic problem to a family of deter-
ministic ones. The Wick product of two processes v and h is a process given in the
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chaos expansion form

vOh = (Zva Ha><>(z hg Hg) = Z(Z Vo hy—a) Hy.

a€cl BeT YEL a<ly

Moreover, the relation
E(vOh) = E (v) - E (h),

holds regardless of whether v and h are independent or not. The expectation of the
Wick version of the state equation satisfies the corresponding deterministic optimal
control problem. Recall, if at least one of the processes v, h is deterministic, then
their Wick product and ordinary product coincide, i.e. vOh = v - h. Historically,
the Wick product first arose in quantum physics, as a renormalization operation,
and later played an important role in many problems involving stochastic partial
differential equations, in the theory of stochastic integration [19, 25]. By introducing
the Wick product ¢ in the considered stochastic problem, one uses an It6-Skorokhod
interpretation of the SPDE. The study of Wick versions of stochastic equations, both
linear and nonlinear, together with the study of probabilistic properties of obtained
solutions and the comparison with the properties of solutions of corresponding initial
equations, can be found in [8, 25, 45, 48, 58].

In this work we combine known results of control theory for the SLQR problem
with white noise analysis methods. Particularly, in order to characterize the optimal
solution in terms of the polynomial chaos, we apply the chaos expansion method
to (1)-(2). Since the control operator B is bounded, we apply the results from
[27]. Then, we state the sufficient and necessary condition for the existence of the
optimal solution of the considered SLQR problem in terms of the coefficients of the
chaos and the solution of the Riccati equation. Theorem 3.1 and Theorem 3.2 are
the main contribution of the paper.

Our approach can be generalized to different types of state equations. Always
assuming that we are working with linear equations we can consider that operators
in the equation are random, see Section 4.2. Another generalization is to consider
a different type of noise. In particular, we will discuss in detail how the proposed
approach can be extended if we are dealing with noise with memory, which is a
special type of noise that is represented in terms of a stochastic integral [11], i.e.
we consider the state equation of the form

y(t) = Ay(t) + Bu(t) +6(Cy(t)),  t€[0,T], 3)

with y(0) = 3°, where 6 represents the It6-Skorokhod integral. Moreover, we analyze
a problem with an even more general type of noise with memory, which is given by

y(t) = Ay(t) + Bu(t) + 6:(Cy(t)),  t<€0,T], (4)

with y(0) = y°, where §;(Cy) is the integral process. Optimal control problems
involving equations of type (3) and (4) have applications in economics and finance
and have been recently studied in [11] using the stochastic maximum principle. Note
that, since the argument of the stochastic integral is given as an action of C on y,
the evolution equation (3) and (4), each respectively contains a memory property.
The disturbance in (3) is a zero mean random variable for all ¢ € [0, T, while in (4)
the perturbation is given via a zero mean stochastic process. We point out that up
to our knowledge there is no numerical algorithm for solving these problems. The
method proposed in this paper is pioneer in this aspect too.

Polynomial chaos which was first introduced by Wiener in 1938 [59], has recently
been used in engineering applications to quantify evolving uncertainty in systems,
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see e.g. [18]. Using polynomial chaos, a stochastic system can be represented as
a deterministic system with higher dimensionality, but the computational cost is
reduced since extensive sampling is no longer required to capture the uncertainty.
Only recently, there have been few works on the application of polynomial chaos in
stochastic control of engineering systems (finite dimensional) [26, 49, 55]. Some very
recent works in particular have been concerned with a polynomial chaos approach
to linear control systems modeled by the stochastic LQR, see [16, 17, 57]

White noise analysis was introduced by Hida and furter developed by many au-
thors [25, 45]. In order to build spaces of stochastic test and generalized functions,
one has to use series decompositions via orthogonal functions as a basis, with certain
weight sequences. Depending on the stochastic measure, this basis can be repre-
sented as a family of orthogonal polynomials. The classical Hida approach suggests
to start with a nuclear space £ and its dual £, such that

£ CL*R) Cé&,

and then take the basic probability space to be 2 = £’ endowed with the Borel sigma
algebra of the weak topology and an appropriate probability measure P [24, 25].
In this work we deal with a Gaussian white noise space. Thus, the underlying
measure is the Gaussian measure. The corresponding orthogonal polynomial basis
is constructed using the Hermite polynomials and any orthogonal basis of L?(R).
In this case £ and &’ are the Schwartz spaces of rapidly decreasing test functions
S(R) and tempered distributions S’(R) respectively.

The spaces of generalized random variables are stochastic analogues of determin-
istic generalized functions. They have no point value for w € 2, only an average
value with respect to a test random variable. Following the idea of the construction
of S'(R) as an inductive limit space over L?(R) with appropriate weights, one can
define stochastic generalized random variable spaces over L?(Q) by adding certain
weights in the convergence condition of the series expansion. Several spaces of this
type, weighted by a sequence ¢ = (¢a)acz, denoted by (Q)—,, for p € [0,1] were
described in [41]. Thus a Gel’ fand triplet

(Q), € L*(P) € (Q)y,

is obtained, where the inclusions are continuous. The most common weights and
spaces appearing in applications are ¢, = (2N)® which correspond to the Kondratiev
spaces of stochastic test functions (.5), and stochastic generalized functions (S)_,,
and exponential weights ¢, = e®*™” linked with the exponential growth spaces
of stochastic test functions exp(S), and stochastic generalized functions exp(S)_,.
Note that, following ideas from financial mathematics, fractional white noise spaces
could be constructed by replacing Brownian motion with fractional Brownian mo-
tion [25, 41], or more general with Lévy processes .

The problem of pointwise multiplication of generalized stochastic functions in
white noise analysis is overcome by introducing the Wick product. The most im-
portant property of the Wick multiplication is its relation to the Ito-Skorokhod
integration [25]. In Section 3 we express the diffusion component of (1) in terms of
the Wick product as well as in terms of the It6-Skorokhod integral.

In white noise setting, the Skorokhod integral ¢ represents an extension of the
It6 integral from a set of adapted processes to a set of non-adaptive processes.
They coincide on the set of adapted processes. It is an adjoint operator of the
Malliavin derivative ID. Their composition is known as the Ornstein-Uhlenbeck
operator R and is a self-adjoint operator on L?({)) that has the elements of the
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orthogonal basis as its eigenvalues. These operators are the main operators of an
infinite dimensional stochastic calculus of variations called the Malliavin calculus
[50]. Classes of elliptic and evolution stochastic differential equations (SDEs) that
involve operators of the Malliavin calculus within white noise framework were re-
cently studed in [46, 40, 44, 38, 48, 58]. In [42, 43] it was proved that the Malliavin
derivative indicates the rate of change in time between the ordinary product and the
Wick product. In this paper, we consider stochastic optimal control problems with
stochastic perturbations given in an integral form. Moreover, we interpret multi-
plication as a Wick-type multiplication. By use of the Wiener-It6 chaos expansion
representations of integrals we are able to achieve new results.

The chaos expansion methodology is a very useful technique for solving many
types of SDEs [40, 44, 45]. The main statistical properties of the solution, its mean,
variance, higher moments, can be calculated from the formulas involving only the
coefficients of the chaos expansion representation [46, 58]. Moreover, numerical
methods for SDEs and uncertainty quantification based on the polynomial chaos
approach have become very popular in recent years. They are highly efficient in
practical computations providing fast convergence and high accuracy. For instance,
in order to apply the stochastic Galerkin method, the derivation of explicit equations
for the polynomial chaos coefficients is required. This is, as in the general chaos
expansion, highly nontrivial and sometimes impossible. On the other hand, an
analytical representation of the solution allows for all statistical information to be
retrieved directly, e.g. mean, covariance function and even sensitivity coefficients,
see [47, 62] and references therein for a detailed explanation.

In order to illustrate our approach, we consider the stochastic linear quadratic
problem (1)-(2). In [23, 39], the disturbance in the control and the state is given
by a convolution operator. In [44], the authors solve evolution equations involving
stochastic convolution operators by combining the chaos expansion approach and
the deterministic theory of semigroups in white noise framework. In this paper we
will follow the ideas provided in [44] and apply the polynomial chaos expansion
to the state equation, and obtain a system of infinitely many deterministic partial
differential equations in terms of the coefficients of the state and the control. For
each equation we set up a control problem which then gives rise to a system of
infinitely many deterministic LQR problems. Solving each control problem, we find
optimal coefficients for the state y and the control u. Summing up all obtained
optimal coefficients in the chaos expansion representations of the state and the
control we obtain the pair § and 4. We investigate the optimality of the solutions g
and @ and then formulate a necessary and sufficient condition for the existence of the
optimal solution of the initial SQLR problem in terms of coefficients, Theorem 3.1
and Theorem 3.2.

In the first part of the paper, we deal with simple coordinatewise operators
(deterministic operators) while in the second part of the paper we extend our ideas
to the fully stochastic problem, i.e. we allow the operators in the state equation and
the cost function to be random. Our approach “chaos expansion+optimization” can
be applied to open loop control systems and in general to optimization problems in
the same setting.

The paper is organized as follows: In Section 2, we briefly introduce basic con-
cepts, results and notations on the infinite dimensional deterministic and stochastic
LQR problems, solutions, white noise analysis and chaos expansions. Then, in Sec-
tion 3 we apply polynomial chaos methodology to the state equation and set up
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linear quadratic control problems in terms of the coefficients and discuss the op-
timality of the solutions expressed in terms of the expansion of these coefficients.
We prove the existence of the optimal control in the feedback form and give the
optimality condition. Applications are included in Section 4, an example of a sto-
chastic optimal control involving state equation with memory. We also discuss our
approach for a general LQR with random coefficients and provide some applica-
tion of an infinite dimensional control system from strucuture-acoustics. Finally, in
Section 5 we discuss the numerical implementation of the proposed approach.

2. Basic concepts and notations. Let U/ and H be separable Hilbert spaces
of controls and states respectively with norms || - |jzy and || - ||z, generated by
the corresponding scalar products. Let (Q,F,P) be a complete probability space,
(wi)i>0 be a real valued one-dimensional Brownian motion defined on (Q, F,P).
Let (Fi)t>0 be the complete right continuous o-algebra generated by (w¢)i¢>o0. We
assume that all function spaces are adapted to the filtration (F;)i>o, l.e. we
consider only F;-predictable processes. Let L2(Q,P) = L?(Q, F,P) be a Hilbert
space of square integrable real valued random variables endowed with the norm
IFN720p = Ep(F?) = E(F?), for F € L*(Q,P), induced by the scalar product
(F,G)r2p) = Ep (FG), for F,G € L?(Q,P), and Ep denotes the expectation with
respect to the measure P. From here onwards, we will omit the measure and write
in short L?(Q2,P) = L?*(P) and E for the expectation.

We denote by L2(2,U) a Hilbert space of U-valued square integrable random
variables and by L2([0,T] x Q,U) we denote a Hilbert space of square integrable
Fr-predictable U-valued stochastic processes u endowed with the norm

T
el 021 02 = /0 E ([[u(®)|12) d.

Since U is a separable Hilbert space, the spaces L2([0, T]xQ,U) and L2([0, T, L?(1,
U)) are isomorphic [43]. Moreover, an H-valued Brownian motion is denoted by
(Wi)e>o-

We denote by L2([0,T] x 2, H) all H-valued stochastic processes X (t,w) : [0, 7] x
Q — H such that fOT X ()]3,dt < oo ae. in Q and X(¢,-) is Fr-measurable
Vt € [0,T]. We also denote by M?([0,7] x Q,H), the space of all strongly mea-
surable H-valued square integrable stochastic processes X : [0,7] x Q@ — H such
that fOTIE(HX(t)H%{)dt < oo. Let C([0,T],L*(Q,H)) be a Hilbert space of Fr-

predictable continuous H-valued stochastic processes y endowed with the norm

19112 o1, 220.00 = sup_ E([ly(®)[I3,)-
te[0,T]

2.1. The SLQR problem: Existence of solution. The infinite dimensional
SLQR optimal control problem on Hilbert spaces is given by the state equation
(1), subject to the quadratic cost functional (2). The dynamics of the problem, the
operator A, is deterministic and represents an infinitesimal generator of a strongly
continuous semigroup (eAt)tzo on the state space H. Operators A and C are
operators on H, while operator B is the operator acting from the control space U
to the state space H. We take operator C to be linear and bounded. We assume
operators R and G to be linear and bounded operators on the space W and Z
respectively. We denote by D(S) the domain of a certain operator S, and by S* the
adjoint operator of S.



Section 2.1 269

STOCHASTIC LINEAR QUADRATIC CONTROL PROBLEM IN HILBERT SPACES 111

The aim of the stochastic linear quadratic problem is to minimize the cost func-
tional J(u) over a set of square integrable controls u € L2([0,T] x Q,U), which are
adapted to the filtration (F3)¢>o.

The following theorem gives the conditions for the existence of the optimal control
in the feedback form using the associated Riccati equation. For more details on
existence of mild solutions to the SDE (1) we refer to [13] and for the optimal
control and Riccati feedback synthesis we refer the reader to [27].

Theorem 2.1. ([13, 27]) Let the following assumptions hold:

(a1) The linear operator A is the infinitesimal generator of a Co-semigroup (e®t);>o
on the space H.

(a2) The linear control operator B is bounded U — H.

(a3) The operators R, G, C are bounded linear operators.

Then the optimal control u* of the linear quadratic problem (1)-(2) satisfies the
feedback characterization in terms of the optimal state y*

u'(t) = =B"P(t) y* (1),
where P(t) is a positive self-adjoint operator solving the Riccati equation

P(t) + P(t)A + A*P(t) + C*P(t)C + R*R — P(t)BB*P(t) = 0, (5)
P(T) = G*G.

2.1.1. Inhomogeneous deterministic LQR problem. Here we invoke the solution to
the inhomogeneous deterministic control problem of minimizing the performance
index

T
J(u) = /0 (R[5, + llullZ) dt + |G (T)3,. (6)
subject to the inhomogeneous differential equation
2(t) = Au(t) + Bu(t) + f(t),  w(0) =1, (7)

under the same assumptions on A and B. For the homogeneous problem, case
f = 0, we refer to [34], and we refer to [36] where the inhomogeneous optimal
control problem for singular estimate type systems was considered. It is enough
to assume that f € L?((0,T),H), to obtain the solution for the optimal state and
control (z*,u*). The feedback form of the optimal control for the inhomogeneous
problem (6)-(7) is given by

u*(t) = —B*Py(t)z* (t) — B k(t),
where Py(t) solves the Riccati equation

((Py+ PyA+ A*Py+ R*R — PyBB*Py)v, w) = 0, ®
Py(T)v = G*Gov
for all v,w in D(A), while k(t) is a solution to the auxiliary differential equation
K'(t) + (A* — Py(t)BB*)k(t) + Py(t) f(t) =0

with the boundary conditions Py(T) = G*G and k(T) = 0.
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2.1.2. Strong and mild solutions. Let g(t) be a Fp-predictable Bochner integrable
‘H-valued function. An H-valued adapted process y(t) is a strong solution of the
state equation (1) over [0, 7] if:

(1) y(t) takes values in D(A) N D(C) for almost all ¢ and w;

2 P(fy ()l + [[Ay(s)lls ds < 00) =1 and P(fy |[Cy(s)|3, ds < o0) = 1;

(3) for arbitrary ¢ € [0,T] and P-almost surely, it satisfies the integral equation

y(t) =y + /Ot Ay(s)ds + /Ot g(s)ds + /Ot Cy(s)dWs.

An H-valued adapted process y(t) is a mild solution of the state equation
dy(t) = (Ay(t) +g(t)) dt + Cy(t) AW (t),  y(0) =1y’
over [0, 77 if:
(1) y(¢) takes values in D(C);

T T
(2) P(Jy lly(s)llzeds < o0)=1and P(fy [Cy(s)l3 ds <o) =1;
(3) for arbitrary ¢ € [0,T] and P-almost surely, it satisfies the integral equation

¢ ¢
y(t) = eAty? + / At=9g(s)ds + / eAl=3) Cy(s) dW,.
0 0

Mild solutions are the limits of strong solutions. In the case of a deterministic state
equation, i.e. for C = 0, a mild solution y € L?([0,T];H) can be written in the
form

t
y(t) = eAty® + / A=) g(s) ds, t€[0,7].
0

Note that, under the assumptions of the Theorem 2.1, and given a control u €
L2([0,T); L?(2,U)), i.e. g(t) = Bu(t), and the deterministic initial data y° € H,
there exits a unique mild solution y € L?([0,7T]; L*(Q2,H)) to the controlled state
equation (1), cf. [13].

2.2. White noise analysis and chaos expansions. In this section we recall
briefly some basic facts from white noise analysis that are needed in our analysis.
Denote by h,(z) = (—1)”e§(ﬁﬂ—nﬂ(6_§), n € Ny, Ny = NU {0}, the family of
Hermite polynomials and

fnlz) = —

V1)

the family of Hermite functions. The family of Hermite functions forms a complete
orthonormal system in L?(R) with respect to the Lebesgue measure. These func-
tions are the eigenfunctions for the harmonic oscillator in quantum mechanics. The
Hermite functions satisfy the recurrent formula

hn1(z) = xhy(z) — nhp_1 (), neN, zeR,

and hl (z) = nhy_1(z), for n € N and ho(x) = 1, while for the Hermite functions
the identity formula for derivatives

&)=\ [3610) - " e, weR

holds. Moreover,

12
e~ hy_1(V2z), n €N,

en”2 |zl < 2vn
ce " x| > 2v/n

[En(2)] < {
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for constants ¢ and ~ independent of n. Clearly, &,, n € N belong to the Schwartz
space of rapidly decreasing functions S(R), i.e. they decay faster than polynomial of
any power. The Schwartz spaces can be characterized in terms of the Hermite basis
in the following manner: The space of rapidly decreasing functions as a projective
limit space S(R) = e, Si(R), where $;(R) = {f = >,2, ax & € L*(R) : || f[7 =
e a3 (2k)! < oo}, I € Ny and the space of tempered distributions as an inductive
limit space S'(R) = UleNo S_i(R), where S_;(R) = {f = S aré : |fI? =
Y ore, a2(2k)~t < oo}, I € Ny. Also, we have a Gel’ fand triple

S(R) € L*R) C S'(R)

with continuous inclusions.

2.2.1. White noise space. Following the ideas of Hida from [24], we construct white
noise probability space. Particularly, we take £ = S(R) the space of rapidly decreas-
ing functions and its dual space &' = S’(R) the space of tempered distributions. By
B we denote the Borel sigma algebra generated by the weak topology on S’'(R) and
1 the Gaussian white noise measure corresponding to the characteristic function

/ N dp(w) = e_%”‘f’”i%m, ¢ € S(R),
5'(R)

given by the Bochner-Minlos theorem, where (w, ¢) denotes the dual pairing between
a tempered distribution w € S’(R) and a test function ¢ € S(R). Thus, the basic
probability space (€2, F,P) is a Gaussian white noise probability space (S'(R), B, u).
Denote by Z = (N§). the set of sequences of non-negative integers which have
only finitely many nonzero components o = (ay,®2,...,0m,,0,0...), a; € N,
i=1,2,..,m, m € N. For k € N, the kth unit vector is ¢*) = (0,---,0,1,0,---)
and the zero vector is 0 = (0,0, ...,0,..). The length of a multi-index « € T is
defined as |a| = Y ;o . We say a > S if ap > B, k € N. In that case
a—08 = (aqg — p1,a2 — Ba,...). For a < (8 the difference oo — 8 is not defined.
Particularly, we have a — e®) = (aq, ..., 1, ax — 1, ps1, ooy 0, 0, ...), k € N.
We define by

Ha(w) = H hak(<w7€k>)> ael, (9)
k=1

the Fourier-Hermite polynomials. They form an orthogonal basis of the separable
Hilbert space L%(Q) and HHaH2L2(Q) = a! holds. In particular, Ho(w) = 1 and for
the kth unit vector H, o (w) = (w, &), k € N, see [25].

From the Wiener-Ité chaos expansion theorem it follows that each random va-
riable F' € L?(€2) has a unique representation of the form

Flw) =Y aaHa(w),

a€l
w € Q, a, €R, a €Z, such that it holds ||F||%2(Q) =Y da2a! <oo.
ael

The space spanned by {H,, : |a| = k} is called the Wiener chaos of order k and
is denoted by Hy, k € Ng. Thus, Hy is the set of constant random variables, i.e.
for a = 0 we obtain the expectation of a certain random variable. The space H1
consists of linear combinations of elements (w, -) (for example Brownian motion and
singular white noise are elements of the Wiener chaos of the first order chaos) and
the space @?zo H,; is the set of random variables of the form p({(w,-)), where p is
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a polynomial of degree n < k with real coefficients. This implies that each Hy is a
finite-dimensional subspace of L?(£2). Moreover,

L2(Q) = @ He,
k=0

where the sum is an orthogonal sum [25].

Remark 1. In this paper, the considered white noise space (2, F,P) is the Gauss-
ian white noise space, where the measure P = p is the Gaussian measure. The
Fourier-Hermite polynomials (9) form an orthogonal basis of the Hilbert space
L2(,P) = L?(Q,n). The further analysis will also hold for other types of white
noise spaces or fractional white noise spaces, for which the corresponding Hilbert
space L?(2,P) has an orthogonal polynomial basis. For example, for Poisson mea-
sure P = v, the Charlier polynomials form an orthogonal polynomial basis of the
space L?(Q,v). Note here that there exists a unitary mapping between L?(1) and
L?(v) [41]. In general, one can work with the Askey-scheme of hypergeometric or-
thogonal polynomials and the Sheffer system [56]. Therefore the presented analysis
can be provided in the same manner in all these cases.

Let ‘H be a real separable Hilbert space with the scalar product < -,- >4, and let
{ex}ken be one orthonormal basis in 7. The space of H-valued square integrable
random variables can be represented as L?(Q,H) = @, Hir(H), i.e. each F €
L?(2,H) has a chaos expansion representation of the form

F=Y foHo=) (Zfoz,kek) Ha,,

acl a€Z keN

for fo =Y farer €H, a €Z, for € R, such that it holds

kEN
||F||%2(Q,H) = Z | fall3, ot = Z Z f2pal < oo

acl o€ keN

One of the typical complications that arise in solving SDEs is the blowup of L?
norms of processes, i.e. their infinite variance. Therefore, the weighted spaces in
which the considered equation has a solution have to be introduced. For example,
such spaces are the Kondratiev spaces (S)_,, p € [0,1] of generalized random
variables, which represent the stochastic analogue of Schwartz spaces as generalized
function spaces. The largest space of Kondratiev stochastic distributions is (S)_1,
obtained for p = 1.

Now we introduce the Wick product ¢ of random variables. For F' = 3" _; foHa
and G =3 5.7 gsHp the element FOG is called the Wick product of /" and G' and
is given in the form

FOG = Z Z fa9s Hotp = Z Z fa 9y—a Hy. (10)

a€T BET YEL a<ly

It is well known that the Kondratiev spaces (S); and (S)_; are closed under the
Wick multiplication. The Wick product is a commutative, associative operation,
distributive with respect to addition. In particular, for the orthogonal polynomial
basis of L%(Q) we have H,0Hp = H,.p, for a, 8 € Z. Whenever F, G and FOG
are integrable it holds E(FQG) = E(F) - E(G), without independence requirement
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[25, 43]. The ordinary product F - G of random variables F,G € L?(Q) is defined
by using the multiplication formula

me e = Y (0)(0) Harsnrto)

o<y<min{a,8} N

=FOG + Z ~! (a) (5) Hotp-2y(w), a,pel.

0<y<minf{a,8) N/

2.2.2. Stochastic processes. Since a square integrable stochastic process is defined
as a measurable mapping [0, 7] — L?(Q), then by a generalized stochastic process
we consider a measurable mapping from [0, 7] into a Kondratiev space (S)_1. The
chaos expansion representation of generalized stochastic process F' follows from the
Wiener-1t6 chaos expansion theorem. A process F' can be represented in the form

Fi(w) =Y falt)Ho(w),  t€0,T] (11)
acl

where f,, a € T are measurable real functions and there exists p € Ny such that
for all t € [0, T

IFNEsy =D [falt)]* (2N)™P* < oo. (12)

acl

If H is a real separable Hilbert space, then the expansion (11) holds also for H-
valued stochastic processes, for f, € H. Particularly, for F € L*([0,7],H) ® (S)-1
the condition (12) transforms to the following

2 2 —pa
1F1Z2(0,11,200(8) 1., = Z [ fallZz2 o,y (2N) 7P < oo,
ol
for some p € Np.
For example, one dimensional real valued Brownian motion can be represented

in the chaos expansion form wy(w) = > 72 ; (fot {k(s)ds) H_x)(w), t > 0. For each ¢

it is an element of L2(2). Singular real valued white noise is defined by the formal
chaos expansion iy (w) = Y 7| & (¢)Ho (w). From Hthiz(Q) = > & @®))? >
>+ = o0 and ||u'JtH%S)71ﬁp = > poy [€e(8)]? (2k) 7P < oo, for p > 1 it follows
that singular white noise is an element of the space (S)_1, for all ¢ > 0, see [25]. It
is integrable and the relation %wt = 1y holds in the distributional sense. Clearly,
both Brownian motion and singular white noise are Gaussian processes.

Let {ex}ren be an orthonormal basis of H. Then H-valued white noise process

is given in the form
o0

Wi(w) =Y ex(t) Hoon (). (13)
k=1
In general, a chaos expansion representation of an ‘H-valued Gaussian process, that
belongs to the Wiener chaos space of order one is given in the form

Gi(w) = gr(t) Hooo (w) = Y <Z i 6i(t)> H_o (w), (14)

keN keEN \ieN
with real coefficients gg;. If the condition

> lgwllz < oo (15)

keN



274 Section 2.1

116 TIJANA LEVAJKOVIC7 HERMANN MENA AND AMJAD TUFFAHA

is fulfilled, then process G given in the form (14), belongs to the space L%([0,T] x
Q,H). If the sum (15) is infinite then the representation (14) is formal, and if
additionally

37 lgel3 @N) 7= =3 gl (28) 7P < o0,

keN keN
holds for some p € Ny, the process G, for each ¢, belongs to the Kondratiev space
of stochastic distributions, see [41, 45, 54].

Throughout the paper, we work with Hilbert space valued stochastic processes.

Thus, an H-valued stochastic process v, standard or generalized, has chaos expan-
sion representation of the form

v(t,w) = Z Vo (t) Ho(w)

acl

=vo(t) + > vew () How () + D valt) Halw),  t€[0,T],

keN |a|>1

(16)

where the coefficients v, satisfy a certain convergence condition of the form
> ez lvallf;ra < oo for an appropriate family of weights {ro}acz. Note that
the deterministic part of v in (16) is the coeflicient vo(t), which is the (generalized)
expectation of a process v.

The Wick product of two stochastic processes is defined in an analogous way as
it was defined for random variables and generalized random variables (10), for more
details see [40].

2.2.3. Operators. Following [44], we now introduce two classes of operators that
we are dealing with, namely coordinatewise and simple coordinatewise operators.
An operator O is called a coordinatewise operator if it is composed of a family of

operators {Og, }aez, such that for a process v = Y v,H, it holds
acl

Ov = Z Oa (Vo) He,-
o€l
Moreover, operator O is a simple coordinatewise operator if O, = O for all o € Z,
i.e. if it holds that

Ov =Y O(va) Ho = O(vo) + »_ O(va) Ha.

a€l |a|>0

2.2.4. Stochastic integration and Wick multiplication. For a square integrable pro-
cess v that is adapted in the filtration (F;);>0 generated by an #H-valued Brownian
motion (W;)¢>0, the corresponding stochastic integral fOT vy dW; is considered to
be the It6 integral I(v). When v is not adapted to the filtration, then the stochastic
integral is interpreted as the It6-Skorokhod integral. From the fundamental theo-
rem of stochastic calculus it follows that the It6-Skorokhod integral of a H- valued
stochastic process v = v¢(w) can be represented as a Riemann integral of the Wick
product of vy with a singular white noise

T T
5@):/0 v dWy(w) :/0 v O (w) d, (17)

where the derivative W, = % W, is taken in sense of distributions [25].
Thus, for an H-valued adapted processes v the It integral and the Skorokhod
integral coincide, i.e. I(v) = §(v). Note that the It6 integral is an H-valued random
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variable, i.e. I : M? — L?(2). From the Wiener-Itd chaos expansion theorem it
follows that there exists a unique family a,, @ € Z such that the It6 integral can
be represented in the chaos expansion form

I(v) = o Ha. (18)
aEeT

On the other hand, applying the property (10) to (17) we obtain a chaos expansion
representation of the Skorokhod integral. Clearly, for v = 3 v4(t)H, we have

v Wt(w) = Z Ua(t) Ha(w) O Z €k(t) HE(k) (w)
acl keN
(19)
= Z Z Ua ek(t a_,_g(k) (w)
a€T keN
Thus,
o(v) = Vo (£)dWy(w) = va(t)OWt(w)dt Vo (t)er (t) H yp et (w)
/0 / / (;1 % k +e(k)
= (/ v () et )dt) e (@) =D vak Hyyotwr (),
a€T keN a€T keN

(20)

where v4(t) = Y cnVa,k €x(t) is the chaos expansion representation of v, in the
orthonormal basis with coefficients vy =< vq,ex >1€ R and w € Q2. Combining
(20) and (18) we obtain the coefficients a,, for all @« € Z and « > 0 in the form

o= Z Ve k) f - (21)
keN
As mentioned in Section 2.2.1, we use the following convention: v,_ ) is not defined
if the kth component of «, i.e. oy equals zero. For example, for o = (1, 3,0, 2,0, ...)
the coefficient a(1,3,0,2,0,...) is expressed as the sum of three coefficients of the process
v, L.e. from (21) we have

4(1,3,0,2,0,...) = (0,3,0,2,0,...),1 T ¥(1,2,0,2,0,...),2 T ¥(1,3,0,1,0,...) 4

Hence we obtained the chaos expansion representation form of the It6-Skorokhod
integral. Therefore, we are able to represent the stochastic perturbation appearing
in equation (1) explicitly. Note also that §(v) belongs to the Wiener chaos space of
higher order than v, see also [25, 42].

Therefore, we say that a square integrable H-valued stochastic process v given
in the form v = > 7 va(t) Ho(w), with the coefficients vy (t) = > oy Va,k ex(t),
Vo € H, Vo, € R for all o € 7T is integrable in It6-Skorokhod sense if the condition

Z Z 02 ol al < oo (22)
a€cZ keN
holds. Then the It6-Skorokhod integral of v is of the form (20) and we write
v € Dom(0).

Theorem 2.2. The Skorokhod integral 6 of an H-valued square integrable stochastic
process is a linear and continuous mapping

§: Dom(s) — L*(9Q).
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Proof. Let v satisfies the condition (22). Then we have

H5(U)Hi2(g) = Z Z Vak Hoye H2L2(Q) = Z Zvik (o + E(k))!

a€Z keN a€Z keN
= E E 2 (ap+1)al <2 E E v2 kol al < oo,
a€Z keN a€l keN

where we used (o + £®)! = (a + 1) a! and the estimate oy, + 1 < 2|a| for all for
acT, kel O

Detailed analysis of domain and range of operators of the Malliavin calculus in
spaces of stochastic distributions can be found in [43].

3. Chaos expansions approach. In this section we study the optimal control
problem

minJ(u) =E

u

T
/0 (IRylIZ, + l[ullZ) dt + [GyrllZ| .

subject to the state equation
dy(t) = [Ay(t) + Bu(t) dt + Cy(t)dW:,  y(0)=3°, te[0,T]

and provide the main results of the paper.
We assume that all the operators are simple coordinatewise operators and:

(A1) Operator A : L%([0,T] x Q,D(A4)) — L*([0,T] x Q,H) is a simple coor-
dinatewise linear operator that corresponds to the deterministic operator
A : D(A) — H, where A is an infinitesimal generator of a Cp—semigroup
(e)¢>0, defined on a domain D(A) that is dense in H, such that for some
M, 6 > 0 we have

”eAtHL(H) < Me%, t>0.

(A2) The operator C : L%([0,T] x Q,H) — L*([0,T] x Q,H) is a simple coordinate-
wise operator corresponding to a bounded deterministic operator C': H — H.

(A3) The control operator B is a simple coordinatewise operator B : L%([0,T] x
Q,U) — L*([0,T] x Q,H) that is defined by a bounded deterministic operator
B:U—H.

(A4) Operators R and G are bounded simple coordinatewise operators correspond-
ing to the deterministic operators R and G respectively.

Thus, the actions of the operators are given by Ay(t,w) = > 7 Aya(t) Ha(w),
Bu(t) = > c7 Bua(t) Ho(w) and Cy(t,w) = > o7 Cya(t) Ho(w), where

y(t,w) = ya(t)Ha(w), u(t,w) =Y ua(t)Ha(w) (23)
acel acl
such that for all a € Z the coefficients y, € L*([0,T],H) and u, € L2([0,T],U).
Since the operator C' is a bounded linear operator on H while B is bounded from
U to H, then C is a bounded operator on L?([0,7] x Q,H), and B is bounded from
L2([0,T] x Q,U) into L2([0,T] x Q, H).
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Theorem 3.1. Let the assumptions (A1)-(A4) hold and let E|y°||?, < co. Then,
the optimal control problem (1)-(2) has a unique optimal control u* given in the
chaos expansion form

— > B*Pu(t)yi(t) Ho — Y B ka(t) Hq
a€l [a]>0
where Py(t) solves the Riccati equation (8), i.e

Py(t) + Pa(t)A + A*Py(t) + RR* — Py(t)BB*Py(t) =

PyT)=G*G
and k(t) is a solution to the auxiliary differential equation
KL (8) + (A" = Pa®)BB) ka(t) + Pa(t) (3 Coacn () -e(t)) =0, (24)
i€EN

with the terminal condition ko (T) =0 and y* =" 7 yh Hq is the optimal state.

Proof. We divide the proof in several steps. First, we analyze the state equation
and apply the chaos expansion method to its equivalent Wick version.

Due to the fundamental theorem of stochastic calculus, an integral of It6 type of
an integrable H-valued stochastic process is equal to the Riemann integral of the
Wick product of a process and H-valued singular white noise (13), i.e

/Cy t) dW (t /Cy ) O W (t) dt,

where W (t) is a H-valued Brownian motion [25]. Therefore, the state equation can
be written in standard differential form, on a class of admissible square integrable
processes, as

§(t) = Ay(t) + Bu(t) + Cy(t)OW (1),  y(0)=y°, te0,T). (25)

By applying the chaos expansion method to (25), we obtain a system of deter-
ministic equations. Setting up a control problem for each equation we seek for the
optimal control u and the corresponding optimal state y in the form (23). Thus,
the goal is to obtain the unknown coefficients u, and y, for all a € 7.

We apply the chaos expansion method to transform the initial condition y(0) =
1y°, for a given H-valued random variable y°. Hence we obtain

Z Ya(0) Hy = Z yg H,

ael acl
Since the chaos expansion in orthogonal polynomial basis {Ha }aez is unique, we
obtain a family of initial conditions for the coefficients of the state

Ya(0) =32, forall a€Z, where 42 € H, a € T.

Note that, in case that the initial condition is deterministic y° € #, then its chaos
expansion representation have only one non-zero element, i.e. yJ in the zeroth level.

Next, we apply the chaos expansion method to the state equation (25). The
process y is considered to be differentiable if and only of its coordinates are differ-
entiable deterministic functions and

d

o€l
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we refer to [44]. From the assumption (A2) and the property (19) for each y € D(C)
it follows
OOWr = > (Cya) ex(t) Hypcon (w),
a€Z keN
where {e;};en denote the orthonormal basis of functions in . Then, by (A1) and
(A3), the equation (25) can be written as

D ya(t) Hao(w) = Y (Aya(t) + Bua(t) Ha(@)+) > (Cya) ex(t) Hope ().
aEL acl a€Z keN

Due to the uniqueness of the chaos expansion representations in orthogonal poly-
nomial basis (9), the previous equation reduces to the system of infinitely many
deterministic initial value problems:

1° for a = 0:
Yo(t) = Ayo(t) + Buo(t),  yo(0) = yg, (26)
2° for || > O:
Yo (t) = Aya(t) + Bua(t) + > Cypcor () -eilt),  ya(0) =193 (27)
€N

The system of equations (26), (27) is deterministic, and the unknowns correspond to
the coefficients of the control and the state variables. It describes how the stochastic
state equation propagates chaos through different levels. Note that for o = 0, the
equation (26) corresponds to the deterministic version of the problem and the state
yo is the expected value of y. The terms y,_. (t) are obtained recursively with
respect to the length of a. The sum in (27) goes through all possible decompositions
of a, i.e., for all j for which a — £ is defined. Therefore, the sum has as many
terms as multi-index o has non-zero components.

Existence and uniqueness of solutions for the systems (26), (27) follows from the
assumptions (A1), (A2) and (A3) made on the operators A, B and C.

Now we set up optimal control problems for each a-level. Considering the deter-
ministic version of the cost function, the problems are defined as:

1° for o = 0: the control problem

min J(Uo)Z/0 Ry 117 + lluo®)lz) dt + [Gya(D)l7,  (28)

subject to
Yo(t) = Ayo(t) + Buo(t),  w0(0) = yg, and
2° for || > 0: the control problem
T
J(ua) = /0 (IRya )3, + lua(®)lZ) dt + Gya(T)Il3 (29)
subject to
Yo (t) = Aya(t) + Bua(t) + Y Cyp o (t) ~ei(t),  yal(0) =35,
ieN

which can be solved by induction on the length of multi-index o € Z.

In the next step of the proof we solve the family of deterministic control problems,
i.e. we discuss the solution of the deterministic system of control problems (28)
and (29).
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1° For a = O the state equation (26) is homogeneous, thus the optimal control
for (26), (28) is given in the feedback form

ug(t) = —B" F4(t) yo (1), (30)

where P,(t) solves the Riccati equation (8).
2° For each |a| > 0 the state equation (27) is inhomogeneous and the optimal
control for (29) is given by

ug (t) = =B" Pa(t) yo (t) — B ka(t), (31)

where P;(t) solves the Riccati equation (8), while k(t) is a solution to the
auxiliary differential equation (24) with the terminal condition k,(T') = 0, as
discussed in Section 2.1.1.

Summing up all the coefficients we obtain the optimal solution (u*,y*) represen-
ted in terms of chaos expansions. Thus, the optimal state is given in the form

v =Y vhO Ho =y + Y yi(t) Ha

a€el |a|>0

and the corresponding optimal control

w =Y ui(t)Ho =uy+ > ul(t) Ha

a€el |a| >0

= —B* Py(t) y§, — }: B* Py(t) yi(t) Hy — }: B*ko (1) (32)
|a|>0 |a|>0
=-B*P, y*(t) — B*K,

where P4(t) is a simple coordinatewise operator corresponding to the deterministic
operator Py and K is a stochastic process with coefficients £ (t), i.e. of the form

K =35 ka(t) Hy, with kg = 0.
a€cl
In the next step we prove the optimality of the obtained solution. Under the

assumptions of Theorem 2.1, the optimal control problem (1)-(2) is given in feedback
form by

u'(t) = =B"P(t) y* (1), (33)

with a positive self-adjoint operator P(t) solving the stochastic Riccati equation
(5). Since the state equations (1) and (25) are equivalent, we are going to interpret
the optimal solution (33), involving the Riccati operator P(¢) in terms of chaos
expansions. Thus, J(u*) = muin J(u), holds for u* of the form (33).

On the other hand, the stochastic cost function J is related with the deterministic
cost function J by,

T
J(u) =E /0 IRy, + [ul2) dt + |Gyrll%

T T
E(/O ||Ry||%vohf>+la</0 lulZ dt) dt + E (|Gyr||2)

Y lRyallieqomw) + Y o luallZaqoman + D o Gy (D)3,

o€l acl acl
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=3 ot (IRyal32go,im) + leal3eorran + 1Gya (D))
a€cl
= Z al J(ug)-
a€cl

We used the fact that { H, }aez is an orthogonal basis of the Hilbert space of square
integrable random variables, i.e. E(HoHg) = a!d4 5, where d, g is the Kronecker
delta symbol and also the fact that the norms

T
1l Z2 o, 1< 000 = E(/O lu()l dt) = al llualFeqo,r

acl

and

T
”Ry”%Q([O,T]xQ,W) = E(/O HRy(t)Hi%Q,W) dt) = Z al HRyOAH%L%[O,T],W)

acl

can be represented in terms of the coefficients of processes y and u. Thus

J(u*) = muin J(u) = mgn Z al J(ug) = Z a! H&Ln J(ug) = Z al J(uy).

acl ol ol

and therefore
wi(tw) =Y ud(t) Halw), (34)
acl
i.e. the optimal control obtained via direct Riccati approach u* coincides with the
optimal control obtained via chaos expansion approach ) .7 u(t)Ha(w). More-
over, the optimal states are the same and thus the well-posedness of the solution of
the optimal state equation obtained via chaos expansion approach follows.

As a final step in the proof, we provide the convergence of the chaos expansions
in the optimal state. After applying the chaos expansions to the original state
equation we obtained the system of deterministic problems (26) and (27). For each
state equation in this system we formulated an optimal control problem for which
the solution has the feedback form (30) and (31). The set of optimal controls for
the resulting system were then used to determine the set of optimal states via the
system of equations

Yo(t) = (A— BB* Py(t)) yo(t)

Yo(t) = (A= BB Pult) ya(t) = BB kat) + Y Cyoco M ei(t), la] 21, (39)
€N
with the initial conditions y,(0) =y, for all « € Z.

We assumed in (A1) that the operator A is an infinitesimal generator of a strongly
continuous semigroup {S;};>0 = (e*!);>0 such that [[e?*||r3) < Me® holds for
some positive constants M and 6. Since the operators B, B* and P; are determin-
istic and bounded, the operator BB* P, is also bounded and thus A + BB*P; is an
infinitesimal generator of a strongly evolution (7});>0 such that

1T r) < Mt HMIBE" Palliaot for all ¢t > 0.

For more details we refer to [51].
Consider now a small interval [0, Tp], for fixed Ty € (0,T]. Denote by

) M2 2(0+M||BB* Pallp (7))t
Mo (1) = MePt+MIBB*Pall Lt and Ms(t) = )
10 () = G MBB Pall o )?
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for t € (0,Tp], so that cToMa(Tp)||C||> < 1. In (A3) we assumed that C is a
bounded operator and also that for fixed control u it holds C'y € Dom(§). Thus,
the condition (22) holds for Cy.

Therefore, the mild solution of (35) is given in the form

yo(t) = Tyyg

t
Ya(t) = T y° —|—/ Ti—s (Z Cyg_.(8)ei(s) — BB*ka(s)> ds, o] > 1, t > 0.
0 i€N

Since y° € L*(;H), from the initial condition y(0) = y° it follows E ||y°[]3, =
l¥°|I3, < co. Operators C, B and B* are bounded operators, and therefore the
inhomogeneity part of (35) belongs to the space L?(H), where functions k., o € T
are given in (24). Thus it holds

9122000 = D @ llyallF = lvoll3 + D alllyali,

o€l la|>1
<OM(Ty) - 5812 + AME(T) - 3 a2,
la|>1
t
13 o / 1T o2 1S (Camein)i — BB ka(s)|%ds
|| >1 0 ieN

<AMY(To) - 1y°1172 my

+ cToMa(To) ||C? (Z ol |lyall3, + 1 BI(1B*)|* ||]C%2([0,TU]><Q,’H)> :

a€ET
where we used the estimate

2
Y>> (Crac))” <ICIP Y- alllyal® = ICI2 IylZ2o,10 00,20

la|>1 €N €T

It holds K € L?([0,Tp] x Q;H) and also Cy € Dom(5). Therefore, we group all
the summands with the term ||y||2 = ||y||%2([07T()]X97H) on the left hand side of the
inequality and obtain

191220, mo1x .20+ (1= cToM2(To) [CI1?) < 4MF(To) 19°lZ2 .5
+ cToMa(To) |CIPIBIP I B* (1 1KI 2 (0,70 x 2.2

From the smallness assumption, the boundedness of y on (0, Tp] follows. The interval
(0,T] can be covered by the intervals of the form [kTp, (k + 1)Tp] in finitely many
steps. Thus, y € L?([0,T] x Q,H). 0

The importance of the convergence result can be seen in its applications for the
error analysis that arises in the actual truncation when implementing the algorithm
numerically.

3.1. Characterization of optimality. The optimality of our approach (34) can
be characterized in terms of the solution of the stochastic Riccati equation (5). The
following theorem summarizes our result.

Theorem 3.2. Let conditions (A1)-(A4) hold. Assume that y° is either determin-
istic or a square integrable H-valued random variable, i.e. it holds E||y°||3, < oo
and assume P is a simple coordinatewise operator that corresponds to operator P.
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Then, the solution of the optimal control of the problem (1)-(2) obtained via chaos
expansion (32) is equal to the one obtained via Riccati approach (33) if and only if

C*P(t) Cys(t) = PO Cyl oo () ~e(t)), o] >0, k€N (36)
€N
hold for all t € [0,T].
Proof. Let us assume first that (32) is equal to (33), then
-B*P, y*(t)=-B*P y*(t) — B*K
we obtain
(P(t) —Pa) y*(t) = K.

The difference between P(t) and Pg4(t) is expressed through the stochastic pro-
cess K, which comes from the influence of inhomogeneities. Assuming that P
is a simple coordinatewise operator that corresponds to operator P, we will be
able to see the action of stochastic operator P on the deterministic level, i.e.

level of coefficients. Thus, for y given in the chaos expansion form (23) and
P(t)y* =3 .cr P(t)yi(t) Hy it holds

D (P = Pa®) ya(t) Ho = > P(t) ka(t) Ha. (37)
a€l a€Z,|a|>0

Since ko(t) = 0 it follows P(t) = Py(t), for t € [0,T] and for |a| > 0

(P(t) = Pa(t)) ya (t) = ka(t),

such that (24) with the condition k,(T") = 0 holds. We differentiate (37) and
substitute (24), together with (5), (8) and (27). Thus, after all calculations we
obtain for |a| =0

(P(t) = Pa(t)) yo(t) = 0
and for |a| >0
CP() Cyat) = PO(Y Cyieo® -elt)),  keN.
ieN
Note that assuming (36) and P is a simple coordinatewise operator that corresponds

to operator P, we can go backwards in the analysis and prove that the optimal
controls (33) and (32) are the same. O

The condition (36) for [a| =1, i.e. @ =), j € N reduces to the condition
C*P(t) Cyy (t) = P)(Cyo(t) - ¢;(1)),

while for |a| = 2 it reduces to one of the following situations: for o = 2:0) j e N
it becomes

C*P(t) Cys.i)(t) = P)(Cyiin(t) - €;(t)),
and for a = eU) 4 e j k€N, j # k it becomes
C*P(t) Cys.)(t) = PO)(Cyli(t) &) + Cylan (t) - €;(t))

and so on. The recurrence involved in (36), represents a memory property in the
noise. This concept has been recently studied in [11]. In the next section we study
a control problem with a state equation involving noise with memory.
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Remark 2. The assumptions (A1)-(A4) from Theorem 3.2 hold for many appli-
cations and they are standard in optimal control [34, 35]. On the other hand, due
to the fact that the Riccati equation (5) is deterministic, its solution is naturally
related to P, where P is a simple coordinatewise operator (Section 2.2.3). The
latter is not necessary true for stochastic Riccati equations (49) (Section 4.2), there
P might not necessary be a simple coordinstewise operator.

Remark 3. Condition (36) which characterizes optimality represents the action of
the stochastic Riccati operator in each level of the noise. Note that the stochastic
Riccati equation (5) and the deterministic one (8) differ only in the term C*P(¢t) C,
i.e. the operator C*P(t) C captures the stochasticity of the equation.

3.2. SLQR problem with disturbance in the state and the control. In
general, allowing disturbance in both the state and the control, the state equation
can be written as

dy(t) = [Ay(t) + Bu(t)]dt + [Cy(t) + Du(t)]dW;,  y(0) = y". (38)
where D is a simple coordinatewise operator related to a bounded operator D.
Similar to (25), equation (38) can be written as
§(t) = Ay(t) +Bu(t) + (Cy(t) + Du(t)) OW(t),  y(0) =14’
Therefore, by applying the chaos expansion method, one obtains the following de-
terministic system of equations:
a) for || =0:  yo(t) = Ayo(t) + Buo(t), yo(0) =y,
b) for |a| > 0:
Y(t) = Aya(t) + Bua(t) + Y Cyo_cor €ilt) + D Dug_ €ilt), ya(0) = yi-
i€EN ieN
Then, the optimal states have the form:
1° for [af = 0: yp(t) = (A — BB* P)yo(t), 30(0) = yg,

2° for || > 0:
Yo(t) = (A= BB*P)ya(t) + Y _ (C — DB*P)y,_.weilt)
€N
— > DB*kei(t) = BB (1), ya(0) =5

€N
Note that, our approach is optimal in this case as well. On the other hand, a direct
Riccati approach will lead to an optimal state given by

dy(t) = (A — B(I + D*P(t)D)"Y(B*P(t) + D*P(t)C’)) y(t) dt
+ (c — D(I + D*P(t)D)" (B*P(t) + D*P(t)C)) y(t) dW,,
y(0) = 9

where P(t) is the solution of
(P+PA+ A*P + C*PC + R*R
— (B*P + D*PC)*(I + D*PD)"Y(B*P + D*PC)v,w) =0 (39)
P(T)v = G*Gw,

for all v, w in D(A).
From the computational point of view, our approach has a lot of potential as it
avoids solving (39), and will be explored in future work. Finally, we point out that
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a convergence framework for the stochastic linear problem in the general framework
of singular estimates has been developed recently in [39].

4. Applications. In this section we extend the results of Section 3 to optimal
control problems with state equations involving memory noise. We also consider
the state equations with random coefficients following the framework of [20, 21] and
give an example of a control system from structure acoustics.

4.1. State equation with memory noise. We apply the introduced method to
optimal control problems involving noise with memory. Particularly, we study the
SLQR problem with the state equation of the form

§(t) = Ay(t) + Bu(t) +6(Cy(t)),  y(0)=y°, te0,T], (40)
subject to the cost functional J(u) given by (2). Here ¢ denotes the Itd-Skorokhod
integral. In the same setting, we can also consider the state equation in more general
form

y'(t) = Ay(t) + Bu(t) + 5,(Cy(t)),  y(0)=y°, tel0,T], (41)
where §:(f) = fot f(s)dWs, t € [0,T] is the integral It6-Skorokhod process. For
t =T, § = op. Note that solving the problem for §, the problem for §; is straight
forward since 6;(f) = 0(f X[0,¢1), t € [0,T], where o is the characteristic function
on the interval [0,¢], i.e. for ¢t € [0,T]

6t(Cy)=/0 Cy(s) dWs :/0 Cy(s)x(0,4(s) dWs = 6(Cy(s)x0,(5))-

As discussed before, the fact that y appears in the stochastic integral implies
that the noise contains a memory property [11]. The disturbance § is a zero mean
random variable for all ¢ € [0, T], while J; is a zero mean stochastic process.

There exists an operator C such that there is a one to one correspondence between
C(} and § o C, ie.

COy = 4(Cy).

Therefore, (40) can be written as
§(t) = Ay(t) + Bu(t) + COy, y(0) =1", (42)

i.e. there is a correspondence between the Wick form perturbation and the Sko-
rokhod integral representation [44].

In the following, we apply the chaos expansion approach for solving the SLQR
problem related to (40) and compare the solution to the actual solution obtained by
a direct Riccati approach applied to equation (42). Since there is no explicit form
of C, the suggested polynomial chaos approach for solving the problem is quite
promising.

Similarly as in the previous section, we apply the chaos expansion method to (40)
and thus transform the equation to a corresponding infinite family of deterministic
equations. We look for the optimal coefficients u,, and y,, @ € Z. Then, we obtain
the system of deterministic optimal control problems

1° for o = 0: the control problem

min J(Uo)=/0 IRy 17 + lluo®)llz) dt + [Gyo(T)I3

subject to
Yo(t) = Ayo(t) + Buo(t),  30(0) = yp, (43)
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2° for |a| > 0: the control problem

T
J(ua)Z/O (Rya®lF + lua(®)ll) dt + [1Gya(T)I3,
subject to

Yo (t) = Aya(t) + Bua(t) + Y (Cya—cw (®))is  ya(0) =15, (44)
i€N
where (Cy,_.»(t)); denotes the ith component of Cy,_., i.e. a real number,
obtained in the previous inductive step. The sum is finite with as many summands
as multi-index « has non-zero components.

For || = 0 the state equation in (43) is homogeneous and the optimal control
for the state equation is given in the feedback form (30), with positive self adjoint
operator P; that satisfies the Riccati equation (8). On the other hand, for each
|| > 0 the state equation in (44) is inhomogeneous with the inhomogeneity term
> ien (CYq—cn)i- Thus, the optimal control is given by (31), where k, are the
solutions to the auxiliary differential equations

Bo(t) + (A" = Pu(t) BB"Yka(t) + Pa(t) (D (Cyaen (1)) =0, (45)
ieN
for |a| > 0, with the final condition k(7) = 0. Summing up all the coefficients,
obtained as optimal on each level «, the optimal state is then given in the form

v =Y un®) Ha=yg+ > vi(t) Ha
acl |a|>0

and the corresponding optimal control u* = 3 u’(¢t) Hy = ug+ >, ul(t) H,.

«
o€l la]>0

The optimal state in each level is given by:
1° for |o| =0, ie. a=(0,0,...) =0:

Yo(t) = (A= BB* Py(t) yo(t), 10(0) =g,
2° for |a| > 0:

Y (t) = (A= BB*Py(t)) ya(t) — BB ka(t) + Y (Cya—cr(®))is  al(0) =42,
‘€N
where k, are solutions of (24). Thus, the optimal state computed by chaos expan-
sion corresponds to

§(t) = (A — BB*Py(t)) y(t) + 5(Cy(t)) - BB*K,  y(0) =y", (46)

where BB*P, is a simple coordinatewise operator given through the deterministic
operator (BB*Py), where Py is the solution of (8) and K is a stochastic function
given by the expansion

K=" ka(t)Ho = ko (t) Hoy + Y ka(t) Ha,

a€l Ja|>1

where kg = 0 and k, are given by (45) respectively. Equation (46) represents the
optimal state when we control each level of the chaos expansion. On the other hand,
a direct Riccati approach for the SLQR problem related to (42) or (41), up to our
knowledge has not been studied in the literature.
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Finally, we point out that the convergence of the chaos expansions can be es-
tablished using a similar argument to the one described in the proof of Theorem
3.1.

4.2. Random coefficients. Let us consider a stochastic linear quadratic control
problem of the form
dy(t) = [(A + Apy(t) + Bu(t)]dt + Cy(t)dW(t), y(0) =1y’ (47)

subject to the performance index

T
J(u) =E /0 IRy l5, + lullZ) dt + GyrlZ |, (48)

where A is independent of w and is the infinitesimal generator of a Cy-semigroup,
A;, B, C, R and G are allowed to be random. The optimal control is given in
feedback form in terms of an operator P(t) solving the backward stochastic Riccati
equation

~dP = (R*R+A'P + PA-PBB*P + AP + PA;)dt

+Tr(C*PC + C*Q + QC) dt + QdW (1), (49)

with Po(T) = G* G. The two operators P and Q are unknown, and Q is sometimes
referred to as a martingale term, see [20, 21] and references therein.

If the operators involved have chaos expansion representations, the same ideas
can be applied to fully stochastic problem. Let us consider the operator A to
be a coordinatewise operator, i.e. an operator composed of a family of operators
{A,}aer, where A, are infinitesimal generators of Cp-semigroups defined on a com-
mon domain that is dense in H and

A(y) = Au(y) Ha.

For the case when A is independent on randomness, only nonzero operator in the
family {A,}aez is obtained for |a| =0, i.e. Ag = A and A, =0 for all |a| > 0.

Operators Ay, B, C, R and G are also coordinatewise operators composed by
the families of deterministic operators {A% }oez, {Ba}aer; {Caltact, {Ra}acr and
{Ga}aez respectively, and

Ay(F) =" AL(fa)Ha, BU) =Y Ba(tua)Ha, C(F) =" Colfa)Ha,

acl o€l acl
R(F) = ZRa(fa)Hav G(F) = ZGa(fa)Hav
acl o€l
for a H-valued process F =3 7 faHq, fo € H and U-valued process
U= nertala, ua €U.
Applying the polynomial chaos method to (47), we obtain:

a) for || =0,ie. a=(0,0,..)=0:
Yoo, () = (Ao + A§)y(0.0,.) () + Bouoo,.)(t), 0(0) =1, (50)
b) for |a| > 0:

y;(t) = (Aa + Ag)ya(t) + Baua(t) + Z (Cayafe(i))i: ya(o) = yg' (51)
ieN



Section 2.1 287

STOCHASTIC LINEAR QUADRATIC CONTROL PROBLEM IN HILBERT SPACES 129

Setting up control problems at each level for (50) and (51), as explained in Section
4.1, in analogy to (46) the optimal state is given by

dy(t) = (A + Ay — BB*P)y(t)) dt + Cy(t) OW(t) — BB*K, y(0) = 4°,

where P is a coordinatewise operator composed by the family {P,},c7. The ope-
rators P, correspond to the solution of the Riccati equation for the coefficients A,
A B,, Co, Ry and Gy, i.e. it holds

P, + Py(Aq + A%) + (Aq + AF)*Py + R R, — (PyBoB:P,) =0 (52)
Poc(T) = GZGa

for each @ € Z. Note that (52) is a deterministic Riccati equation for each . Also
K is a H-valued stochastic process given by

K = Z ko Ho = ko) Ho) + Z ko Ha,

a€l || >1

where ko = 0 and k,, for |a| > 1 are given by

K (t) + (A% — Pa(t)BaB) ka(t) + Pa(t) (Z Cotty_ oo ei) —0. (53
€N

Equations (53) have a final condition equal to zero. Therefore, in order to control
the system (47)-(48) we control each level through the chaos expansion. This implies
solving a deterministic control problem at each level. Although theoretically we have
to solve all these problems, numerically we can solve (me)! problems in order to
achieve convergence. The value of p is in general equal to the number of uncorrelated
random variables in the system and m is typically chosen by some heuristic method
[46, 58, 62].

4.3. A specific example from SPDE control. The approach outlined in this
paper can be applied to a large class of systems in engineering which are mathemat-
ically modeled by partial differential equations. Control problems with stochastic
coefficients also arise naturally in mathematical finance. In particular, the linear
quadratic optimal control problem with stochastic coefficients and the correspond-
ing backward stochastic Riccati equations (BSREs) have been extensively studied
in the finite-horizon and finite-dimensional case [9, 10, 28, 29, 30, 31, 52, 53]. Note
that our approach is also valid for finite-dimensional systems since the polynomial
chaos method can be applied to systems governed by random matrices.

As an example, we include a control system from structure acoustics which has
been well studied in the deterministic setting [2, 3, 4, 37]. The system consists of
an acoustic chamber with piezoelectric control mechanism applied to the flexible
wall of the chamber. Mathematically, the system is modelled by an open region
Q) C R? with boundary 92 = I'q|JT'; representing a rigid wall and a flexible wall
respectively. The acoustics in the chamber are modelled by a wave equation in the
variable z which denotes acoustic pressure

dzy = AAzdt + (V2 + 2z + w4 wy) dW; on Q x [0,T],

where c¢ is the speed of sound and W; is a one dimensional Wiener process on a
complete probability space. On the other hand, the dynamics of the elastic wall I'y,
are modelled by a damped second order equation in the displacement variable w

dw; + A2w dt + pAw, dt = prz, dt + Zajujééj dt + (Vw + we + 2 + z¢) dWy
J
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in 'y x [0,T], where p, p1 > 0. The piezoelectric control mechanism is mathemat-
ically represented by the derivatives of Dirac delta functions supported at curves
&; with the controls u € R/ while a;j(z) are smooth functions on I'1. The acoustic
pressure satisfies the boundary conditions

0 :
aqudlz:Oln Ty x [0,7)

0
Py = W inI'y x [0,T7,
while the clamped boundary conditions are imposed on the boundary of I'y denoted
by 8F1
0

w= ngom ory x [0,T).

We consider the system subject to the initial conditions 29 € H*(Q), 21 € L*(Q)
and wg € H%(T'1) N H(T'1) and wy € L3(Q).

The multiplicative noise in the system is captured by a bounded operator C on
the finite energy space. The control objective is to minimize the functional

J(z,zl,w,wl,u) =

T
E /0 (Aw|2L2(F1) + lwillZeryy + V21720 + 260172 () + Z Uj(t)|2> dt}
J

over all possible controls u = (uy,uz, ....,us) € L2([0,T];R7). It is well known that
the deterministic system is driven by a Cy semigroup (e?) with a generator A on
the finite energy space H [2]. Although, the control operator B here is not bounded
and takes values in a larger dual space B : R’ — [D(A*)]', it exhibits the so called
singular estimate condition which is satisfied by the control-to-state map
clu
e Bully < i

for all u € R7 [2]. There has been many works in the literature addressing Riccati
feedback synthesis of such control systems known as singular estimate control sys-
tems in the deterministic case [36] and references therein, and more recently in the
stochastic case [22, 23]. The possible extension and application of the polynomial
chaos approach to this class of control systems which typically involve boundary or
point control of systems of coupled hyperbolic-parabolic partial differential equa-
tions with noise, would be numerically very promising.

5. Numerical approximation. Numerical methods for stochastic differential
equations and uncertainty quantification based on the polynomial chaos approach
have become popular in recent years. They are known as stochastic Galerkin meth-
ods and they are highly efficient in practical computations providing fast conver-
gence and high accuracy [62]. In the following, we summarize the numerical frame-
work proposed in this paper for solving the SLQR problem using polynomial chaos
expansion.

First of all, we use a finite dimensional approximation of the Fourier-Hermite
orthogonal polynomials {H, }ocz [62]. This is standard in the so-called stochastic
Galerkin methods. Then, we set up deterministic control problems for each level
(28) and (29). We solve the control problem via Riccati approach and compute
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the optimal state for each level. We then compute the approximate optimal state
and optimal control for the original problem. The main steps are sketched in the
following Algorithm:

Main steps of the stochastic Galerkin method for SLQR problems

1:  Choose finite set of polynomials H, and truncate the random series to a finite
random sum.

2:  Set up deterministic control problems for each level of the chaos expansion

(26) and (27).

Compute the optimal control via Riccati approach for each level.

Compute the optimal state for each level.

Compute the approximate statistics of the solutions from obtained coefficients.

Generate H, and compute the approximate optimal state and optimal control.

We denote by I, ,, the set of a = (a1, ..., 4, 0,0, ...) € T with m = max{i € N:
a; # 0} such that |a| < p. As a first step, we represent y in its truncated polynomial
chaos expansion form y, i.e. we approximate the solution with the chaos expansion
in &7 _ H), with m random variables §(t,w) = >act,,., Ya(t) Ha(w); the previous
sum has P = % terms. Once the coefficients of the expansion § are obtained,
we are able to compute all the moments of the random field, e.g. the expectation
Ey = yo and the variance of the solution Var(g) = >_ o7 o 7.

We would like to underline that the polynomial chaos ekpansion converges quite
fast, i.e even small values of p may lead to very accurate approximation. The error
generated by the truncation of the chaos expansion, in L?(Q, H) is

€% = |ly(z,w) = 4@, w72 = Ely(z,w) = dlz,w)lf = > oyal@)i,
€I\ Ly, p

for x € D. Note that if instead of a Gaussian random variable, a stochastic genera-

lized function is considered, i.e. when the coefficients are singular, the error £2 — 0

converges in a certain space of weighted generalized stochastic functions.

Finally, we would like to point out that efficient solvers for differential Riccati
equations have been proposed in recent years [1, 5, 6, 7, 33]. The potential of this
approach is notable. An efficient numerical implementation is work in progress and
will be reported somewhere else.
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Solving Stochastic LQR Problems by
Polynomial Chaos

Tijana Levajkovi¢

Abstract—We consider the infinite dimensional
stochastic linear quadratic optimal control problem
for the infinite horizon case. We provide a numerical frame-
work for solving this problem using a polynomial chaos
expansion approach. By applying the method of chaos
expansions to the state equation, we obtain a system of
deterministic partial differential equations in terms of the
coefficients of the state and the control variables. We set
up a control problem for each equation, which results
in a set of infinite horizon deterministic linear quadratic
regulator problems. We prove the optimality of the solution
expressed in terms of the expansion of these coefficients
compared to the direct approach. We perform numerical
experiments which validate our approach and compare the
finite and infinite horizon case.

Index Terms—Stochastic optimal control, computational
methods.

|. INTRODUCTION

HE FINITE dimensional stochastic linear quadratic
Tregulator (SLQR) problem has been deeply studied, a
complete survey can be found in, e.g., [26]. Several early
works in the literature have addressed stochastic optimization
in infinite dimensions. A complete Riccati feedback synthe-
sis of the infinite dimensional problem with disturbance in
the state in the finite horizon case has been addressed by Da
Prato [7]. Recently, a theoretical framework for this problem
has been laid for the general case of singular estimates control
systems in the presence of noise in the control and consider-
ing a finite time penalization in the performance index [13].
Moreover, an approximation scheme for solving the control
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problem and the associated differential Riccati equation (DRE)
has been proposed in [17]. In this letter we consider a poly-
nomial chaos approach (also known as the method of chaos
expansions) for solving infinite dimensional SLQR problems
for the infinite horizon case.

The results of this letter can be obtained in a complete
analogous way for finite dimensional systems. However, we
are interested in applications arising from infinite dimensional
systems, e.g., in the optimal control of the stochastic

heat transfer. Moreover, working in the infinite dimen-
sional framework allows one to combine our approach
directly with numerical schemes for operator equations,
e.g., [5], [10], and [21]. The latter would not be possible by
using a finite dimensional setting.

The infinite dimensional SLQR problem consists of the state
equation

dy(t) = (Ay(®) + Bu()) dt + Cy(t) dW(r), t=>0,
y(0) =»° (1)

defined on the state space H, where A and C are operators
on H, B acts from the control space U/ to the state space
# and y° is a random variable. Spaces 7{ and { are Hilbert
spaces and {W(#)};>¢ is a H-valued Wiener process on a given
probability space (€2, F, u) in sense of [9]. The operators B
and C are considered to be linear and bounded, while A could
be unbounded. The objective is to minimize the functional

Jw =E [ [ (1ot + iy dz] @)
0

over all possible controls u and subject to the condition that
y satisfies the state equation (1). The operator R is bounded
and takes values in the Hilbert space H and E denotes the
expectation with respect to the probability measure . A con-
trol process u* is called optimal if it minimizes the cost (2)
over all admissible control processes u € A, i.e., for which it
holds

in J(u) = J(u*).
min (w) =JW")

The corresponding trajectory is denoted by y*. The pair of
stochastic processes (y*, u*) is called the optimal pair.
Polynomial chaos was first introduced by Wiener in
1938 and was further developed by It6 and many other
authors. It has recently been applied to solving different
types of stochastic (partial) differential equations (S(P)DEs),

2475-1456 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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see [15], [18]. The basic idea is to construct the solution of
the considered SPDE as a Fourier series in terms of a Hilbert
space basis of orthogonal stochastic polynomials, resulting in a
system of deterministic equations for the coefficients. Thus, a
stochastic system can be represented as a deterministic system
with higher dimensionality, however, the computational cost
is reduced since there is no need in extensive sampling to
capture the uncertainty. Moreover, the first moments of the
optimal solution can be computed easily. This approach has
already been applied in [14] and [16] for stochastic optimal
control problems. This letter generalizes the results for the
finite horizon case presented in [16] to the infinite horizon case
and provides numerical examples that validate the proposed
approach.

Il. SOLUTION OF THE SLQR PROBLEM

In this section we discuss the SLQR problem on a Hilbert
space H. Let {ex}xen be an orthonormal basis in H and let U/
be another Hilbert space. We denote by £2($2, H) the set of
‘H-valued random variables with finite second moments. Let
L2([0, 00) x 2, H) be the set of all #{-valued square integrable
stochastic processes, i.e., which satisfy fooo E|X(t, a))||%_ldt <
oo and let M?([0, 00) x 2, H) be the space of all strongly
measurable #-valued square integrable stochastic processes
such that fOOOEllX(t, w)ll%_ldl < 00. We denote by D(S) the
domain, and by S* the adjoint operator of a certain operator S.

Consider the homogeneous stochastic equation

dy() = Ay(Dd + Cy(H) dW (1),  y(0) =)°. 3)

We call a stochastic process of the form

At 0

t
() = ey —I—/ A9 Cy(s) dW(s)
0

the mild solution of the equation (3) if y(r) € D(C),
P Iy()I3,ds < 00) = 1 and P(f3° [Cy(s)12,ds < 00) =
1. Then, (A, C) is called stable, if the mild solution of (3)
satisfies

E[lly®3,] < Mie ™ EI°|13,, =0, 4

for some M, w > 0 and for all yo e L2(Q,H).

The system (A, B, C) is called stabilizable, if there exists
a bounded operator K € L(H,U) such that (A — BK, C) is
stable. Let D € L(#) be bounded, then we call (A, D, C)
detectable, if there exists a bounded operator K; € L(#) such
that (A — KD, C) is stable, see [4].

A. Standard Approach

Let us consider the infinite dimensional SLQR optimal con-
trol problem (1) — (2). The following theorem provides the
conditions for the existence of the optimal control in the feed-
back form by the associated algebraic Riccati equation (ARE),
for details we refer to [8].

Theorem 1 [8]: Let the following assumptions hold:

(al) The linear operator A is the infinitesimal generator of
a Cp-semigroup (eA’)tzo on the space H.

(a2) The linear operator B is bounded U/ — H.

(a3) The operators R, C are bounded linear operators.

(a4) The system (A, B, C) is stabilizable.

(a5) The system (A, R, C) is detectable.

Then, the optimal control u* of the linear quadratic
problem (1) — (2) satisfies the feedback characterization in
terms of the optimal state y*

u'(t) = —B" P y* (1), (&)

where P is the unique minimal positive self-adjoint operator
solving the Riccati equation

PA+A*P+ C*PC+ R*R— PBB*P = 0. (6)

B. Chaos Expansions Approach

In the following we present another approach for solving
the control problem (1) — (2), which has a great potential
numerically. This approach combines the method of chaos
expansions with the deterministic optimal control theory. The
method of chaos expansions is based on the Wiener-1td
chaos expansion theorem which states that a random vari-
able, respectively a stochastic process, can be expressed as
series in terms of an orthogonal basis of stochastic polyno-
mials depending on the probability measure. Particularly, if
the underlying probability space is a Gaussian space, then
the orthogonal basis of stochastic polynomials is built in
terms of the Hermite polynomials and an orthonormal basis
of H. The case H = L>(R) is very important in applica-
tions, where the orthonormal basis {e;}rcny can be chosen
as the Hermite functions ggk}keN- g—lence, for k € Ny, we
denote by hi(x) = (—1)"6% %k(e_%) the family of Hermite
polynomials and by

Ee(x) = e Tho1 (W29, keN

1
Y& D!
the family of Hermite functions. Let Z be the set of
sequences of non-negative integers which have only finitely
many nonzero components, i.e., each o« € Z is of the form
a = (a1, a2,...0,,0,0,...),0 € Ng, 1 <j<mmeN
The i-th unit vector is denoted by ¢® and the zero vector
by 0. The sum of all components of « € Z is its length
and is denoted by |«|. The Fourier-Hermite polynomials are
defined by

Hy(®) = [ [ho((@, €)), a €T
i=1

Then, the square integrable processes y € £%([0, 00) x 2, H)
and u € £2([0, 00) x 2, U) can be represented in their chaos
expansion forms

Yt @) =) yo(t) Hy(e)
ael
u(t, ) =Y utg (1) Hy (o), @)
ael
for t > 0, o € Q and where the coefficients y,€
L2([0, 00), H) and uy € L2([0, 00), U) for all @ € Z. In this
way, the deterministic part of a stochastic process is split from
its random part. The zeroth coefficients yo(r) = Ey(¢, ) and
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ug(t) = Eu(t, w) in (7) are the corresponding expectations of
y and u.

All the operators A,B,C and R appearing in the
problem (1) — (2) are assumed to be coordinatewise oper-
ators, i.e., the action of A on y € £2([0,00) x Q,H) is
given by Ay(r, w) = Y, 7 Aya (1) Hy(w), (it acts only on the
coefficients y, of the process y). Hence, by applying the rep-
resentation forms (7) to the equation (1) we transform it to a
system of deterministic equations. Namely, in a similar way
to [14] and [15], the solution of (1) can be written in the
chaos expansion form (7) and its coefficients y,, @ € Z can
be computed from

Yo () = Aya (6) + Bua (1) + Y Cy, 0 €i(0), ®)
ieN

with y,(0) = yg, where the sum is defined for all i such
that the difference of o — ¢® is nonnegative. Applying the
chaos expansion method to the cost functional (2), analogously
to [16], one gets a characterization of the optimal control in
terms of the expansion coefficients. This is summarized in the
following theorem.

Theorem 2: Let (al) — (a5) from Theorem 1 hold. Let
(A, B,R) be stabilizable and E[y°[|3, < oc. Then, the fol-
lowing hold:

(a) Solving the problem (1)—(2) is equivalent to solving
the deterministic optimal control problems in each a-level.
Particularly, for o = 0:

oo
. . 2 2
min J(up) = min /O (IR O3, + luo®I ) e (©)
subject to

Yo(t) = Ayo(1) + Bup(),  y0(0) = ¥}, (10)

and for ¢ > 0:
o0
min /(i) = min / (IRy @13, + lua O )dr (1)
Uy ua  Jo

subject to (8).
(b) The optimal control problem (1) — (2) has a unique
optimal control u#* given in the chaos expansion form

W) ==Y B*Payi () Hy — Y B*ko(t) Hy
ael
= —B*P; y*(t) — B°K,

lee|>0

12)

where the operator P; is the unique minimal positive self-
adjoint solution of the ARE

P4A+A*Ps+ RR* — P4BB*P; =0 (13)

and K is a stochastic process with the coefficients kq (f) that
for all @ € Z solve the auxiliary equations

ke, (1) + Ap ke (£) + Py (Z Cyg—e (1) ei(l)) =0, (14)
ieN
with A;‘, = A* — P;BB* and the condition Tlg%o ko (T) = 0, and
Y50 =Y 4e7 V(1) Hy is the optimal state.
Proof: The proof generalizes the proof from [16] for the
finite horizon case. Here we present the main steps. By apply-
ing the method of chaos expansions to the problem (1)—(2),

it transforms to the system of deterministic optimal con-
trol problems, i.e., the problem (9) — (10) for |¢|] = O
and (8)-(11) for all |@| > 0. Namely, for each o € Z, we
need to solve the deterministic problems minimizing the cost
Tue) = [5° (IRya |3, + llualf,) dt with respect to

Yo (6) = Ayg (1) + Bug () + fo (1), ya(0) =10,

where the inhomogeneous part is of the form f, = 0 for |¢| =
0 and fo (1) = D ey CVy_eo (Dei(t) for | > 0 and t > 0.
Since the inhomogeneity f;, € £2((0, 00)?#) and the conditions
(a4) — (a5) hold, then for each o € 7 there exists the optimal
solution in the feedback form

15)

Ug (1) = —B*Pqy, (1) — B*ka (1), 16)

where P, solves the algebraic Riccati equation (13), while
kq (1) is a solution of the auxiliary differential equation &, () +
(A*—PgBB*)ko (t)+P iy (1) = 0 satisfying limz_, o ko (T) = 0,
for |a| > 0 and kg = 0, see [4, Part V]. The optimal control
for any initial condition y° exists since the system (A, B, R) is
stabilizable. Moreover, from (a5) it follows that the feedback
operator A, = A — BB*Py is exponentially stable, and thus the
unique solution of (13) is globally attractive. Next, summing
up the coefficients (16) into the expansion (7) and applying
the linearity properties of the given operators we obtain the
form of the optimal control

wi(t) = up(t) + Y, wh(t)Hq

|la|>0
= —B*Payg() + Y _ (—=B*Pay}(t) — B ko (1) Hy
la|>0
= —B'P, <Z y;(r)Ha> —B* (Z‘ kaHa>,
ael ael

which leads to (12). Finally, a proof that the obtained optimal
control is square integrable goes in the similar manner as for
the finite horizon case, see [16]. Namely, we include the feed-
back form (16) of the optimal controls i, € Z in the state
equations (10) and (8) and obtain

o' () = Ap Vi) + 8o (1), ¥5(0) =Y, a7

where g,(t) = —BB*ky(t) + fo(?), for |a|] > 0 and gg = 0
for |@| = 0. From the assumption (al) it follows that A is
the infinitesimal generator of a strongly continuous semigroup
(et )r=0. Since each Hilbert space is a reflexive Banach space,
the family (e*™ )r=0 1s a strongly continuous semigroup whose
infinitesimal generator is A*, see [4], [22]. The operator A, can
be interpreted as a perturbation of A with a bounded opera-
tor, and A, is exponentially stable. Hence, we can associate an
evolution system U(t, s) to the initial value problems (17) such
that the family of solution maps U(t, s)yg is an evolution in
C([0, 00), H), see [4]. Also, the adjoint operator A%, is asso-
ciated to the corresponding adjoint evolution system U*(t, s),
0 < s < t, see [22]. Then, for every yg € D(Ap) the mild
solution of (17) is given in the form y;(t) = U(z, 0) yg and

t
Vi) = U1, 0)y2 + / U(t, 5) g (s)ds,
0
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for |¢] > 0 and 0 < s < ¢, and y, are continuous functions
for all ¢ € Z. Since the inhomogeneity g, € L£2([0, 00), H),
from (a3) — (a5), the estimate of the evolution system and the
Gronwall’s lemma we obtain that for each for all @ € Z, the
coefficients y} satisfiy (4), which together with the assumption
E[y°lI}; < oo lead to y* € £2([0, 00) x 2, H).

Note that, for any 7 > 0 and ¢t < 7, the solutions
ko of (14) are expressed in terms of the adjoint evolution
system

T
ka (1) = UZ(T. 1 ko (T) + / U2 (5, 1) Pafu(s)ds,
t

for « € Z, such that limy_, o ko (T) = 0, € Z. Similarly as
for the optimal state process y*, it could be shown that the
process KC is square integrable, i.e., K € L£2([0, 00) x Q,U),
which then implies u* € £2([0, 00) x Q,U). ]

The SLQR problems on finite and infinite horizons are
strongly related. In the deterministic setting the infinite
horizon problem is studied as a limit of the finite hori-
zon time, a similar study holds for the stochastic case
and also for the chaos expansion approach. This will be
presented somewhere else. The following theorem char-
acterizes the action of the Riccati operator. The recur-
rence (18) can be interpreted as memory property in the
noise.

Theorem 3: Let the assumptions from Theorem 2 hold.
Then, the optimal control (12) of (1)-(2) obtained via the
chaos expansion method is equal to the solution (5) obtained
via the Riccati approach if and only if for all « > 0 and r > 0
it holds

C*PCy:(1) =P (Z Cy: Lo e,(t)). (18)
ieN
Proof: Similarly as for the finite horizon case [16], we
assume that the solutions (12) and (5) are equal. We obtain the
difference P — P4 expressed in terms of a stochastic process
K, whose coefficients are generated by the inhomogeneties fy,
o €7 in (15), i.e.,

(P—Pa)y" () =K, 19)

where y*(r) = ) ,c7Vi(HH, is the form of the optimal
state. After differentiating (19) and substituting the equa-
tions (6), (8), (13) and (14), the optimality condition (18) is
derived for || > 0. |

The proposed approach for solving SLQR problems in
terms of chaos expansions is not restricted only to prob-
lems (1) — (2) with Gaussian noise, but it can be also
applied for more general and non-Gaussian type of noises,
e.g., for problems involving colored noise [15]. One needs
to replace the base of Hermite polynomials with another
class of orthogonal polynomials from the Askey scheme of
hypergeometric orthogonal polynomials that corresponds to
the specific noise arising in the considered stochastic state
equation [25].

I11. NUMERICAL SIMULATIONS

In this section we present an example for the SLQR
problem. We consider the infinite horizon problem as well

as the finite horizon problem and compare two approaches to
solve these problems.

A. Stochastic Heat Transfer

As a numerical example we introduce a bilinear con-
trolled heat transfer model, see [2]. On a unit square
D =10, 1] x [0, 1], the heat equation is given with differ-
ent boundary conditions. On two edges we employ Dirichlet
boundary conditions, on the third edge a fixed boundary con-
dition y = u is applied and a stochastic Robin boundary
condition n - Vy = 0.5(0.5 + w)y is used on the final edge.
We discretize the equation in space and use n = 10 grid
points in every direction. Applying central finite differen-
ces, we obtain the matrices A € R"ZX"Z, C e R7”*" and
B e R™XL Moreover, R is computed by the mean of the
vector y, i.e., R = niz(l, ...1). Thus, we obtain the SLQR
problem (1)—-(2). We solve it with two different approaches.
The first one, which we will call in the following the standard
approach, consists of computing the optimal pair using the
results of Theorem 1. Thus, we have to solve the bilinear alge-
braic Riccati equation (6). Applying Newton’s method, one
has to solve a bilinear Lyapunov equation in every step. This
can be done by a low rank alternating direction iteration (ADI)
method, for details we refer to [1]. Then, we apply an implicit
Euler-Maruyama scheme to solve the discretized SPDE (1) and
compute the optimal state and the optimal control in every
time step. The first and the second moments are approximated
by Monte-Carlo integration. In the second case, we com-
bine the polynomial chaos approach described in Section II-B,
with appropriate deterministic numerical methods. We denote
by I, the set of « = (ap,...0,,0,0,...) € Z with
m = max{i € N : o; # 0} such that |¢| < p. We represent
y and u in their chaos expansion forms (7) and truncate the
sums after P = % terms. Particularly, m is the number of
uncorrelated random variables used in the approximation and
p is the highest order of the stochastic polynomials appear-
ing in the truncated chaos expansions (7). Since the choice of
m and p influences the accuracy of the approximation, these
parameters can be chosen so that the norm of the approx-
imation remainder is smaller than a prespecified error [15].
The obtained system is in the following step solved by an
appropriate numerical method and as outcome the discretized
approximation solution of the system is obtained. The global
error of the proposed numerical scheme depends on the error
generated by the truncation of the chaos expansion and the
error influenced by the discretisation method.

We choose m = 10 and p = 4, which gives P = 1001 differ-
ent levels. For every level @ > 0 we solve the deterministic dif-
ferential equation (8) and the auxiliary equation (14) with the
implicit Euler method and the corresponding ARE (13) with a
solver from the LYAPACK toolbox [23]. Once the coefficients
Yo are obtained, the moments of the random field, e.g., the
expectation Ey = y¢ and the variance Var(y) = Zaelmp oz!yg
can be computed. We thus apply the two presented approaches
to the example described in this subsection. As initial condition
we choose y(0, x1, x) = exp(—(x; — x)?) for (x1,x) € D,
as final time 7 = % and as step size At = 0.0025. Fig. 1, left
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Fig. 1. Left: Mean of the optimal control over time for both approaches.
Right: Variance of the optimal control.

shows the mean of the optimal control for both approaches.
Using the standard approach, the equation (1) is solved for
10.000 different realizations of the Wiener process and the
mean is taken. For the chaos expansion approach, the mean
is computed as in the procedure described above. Similarly,
the variance of the solution over time is plotted in Fig. 1,
right for both schemes. We see that the mean of the solution
converges to a steady state quite fast and also the vari-
ance decays rapidly after some time steps. The difference
between the two different approaches is neglectable and both
work well.

As discussed by Miihlpfordt et al. [20] applying the chaos
expansion method leads to a truncation error. Hence, we use
as reference solution the standard approach with 20.000 simu-
lations and compute the variance of the optimal control. Then,
for a different number m of uncorrelated random variables, the
relative error of the variance is computed, see Fig. 2, left. The
error behaves as expected. For a lower number of polynomials,
the error is larger, whereas, using more polynomials yields to
a more accurate result. However, even for m = 2 the relative
error is of order le — 10. Fig. 2, right shows the computa-
tional costs of both approaches for different grid sizes, i.e.,
for different sizes of the matrices in the control problem. As
the most demanding part of the algorithms is the solution of
the ARE, the polynomial chaos approach has great potential
as the resulting matrix equation does not include the bilin-
ear term. Note, that in the standard approach the realizations
were computed in parallel, which would be doable also for the
chaos expansion approach using tensors, however we do not
take advantage of it yet. Therefore, we expect to be even more
competitive. Moreover, Fig. 2 shows also the possible adap-
tivity of the algorithm, depending on the desired accuracy, the
chaos expansion can be truncated after only a few terms.

As the variance of the optimal control has its peak around
0.05, we plot the moments of the optimal state at time
T = 0.05. Thus, in Fig. 3, left the mean computed by the
standard approach is plotted. Again, the differential equation
is solved 10.000 times and we take the mean of the realiza-
tions. Fig. 3, right shows the mean of the chaos expansion
approach. Similarly as for the mean of the optimal control in
Fig. 1, left we observe that the mean of the solution yields to
the same result using either the standard scheme or the chaos
expansion method. We repeat the same calculation and com-
pute the variance of the optimal state, see Fig. 4. We observe
only small differences in the pictures. This is either due to

Fig. 2. Left: Relative error of the optimal control for different number of
polynomials in the chaos expansion. Right: Computational costs of the
two approaches for different space discretizations.
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Fig. 3. Left: Mean of the optimal state at T = 0.05 obtained by the stan-
dard approach. Right: Mean of the optimal state at T = 0.05 computed
by the chaos expansion method.
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Fig. 4. Left: Variance of the optimal state at T = 0.05 obtained by
the standard approach. Right: Variance of the optimal state at T = 0.05
computed by the chaos expansion method.

the error in the Monte-Carlo sampling or the truncation of the
expansion.

B. Finite Time Horizon Case

Levajkovi¢ et al. [16] considered the SLQR problem in
finite time horizon. In this section, we integrate the cost func-
tional (2) from O to 7. Using the standard approach, after a
numerical discretization one has to solve instead of the matrix
ARE a matrix DRE of the form

—P(t) = ATP(1) + P()A + CTP(1)C
— P(OBB'P(t) +R'R, >0,

such that P(T) = 0. We solve this differential equation based
on the splitting schemes proposed in [6]. This method was
first introduced for solving DREs arising in deterministic
LQR problems [24]. Splitting methods in general show bet-
ter performance compared to other standard approaches like
the ones proposed in [3] and [19]. Thus, for the polynomial
chaos approach we have to solve the arising DRE by a split-
ting scheme with one splitting term less than in the standard
approach. The remaining equations are solved by the methods
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Abstract. We consider the stochastic linear quadratic optimal control prob-
lem where the state equation is given by a stochastic differential equation
of the It6—Skorokhod type with respect to fractional Brownian motion. The
dynamics are driven by strongly continuous semigroups and the cost func-
tional is quadratic. We use the fractional isometry mapping defined between
the space of square integrable stochastic processes with respect to fractional
Gaussian white noise measure and the space of integrable stochastic processes
with respect to the classical Gaussian white noise measure. By this mapping
we transform the fractional state equation to a state equation with Brownian
motion. Applying the chaos expansion approach, we can solve the optimal
control problem with respect to a state equation with the standard Brown-
ian motion. We recover the solution of the original problem by the inverse
of the fractional isometry mapping. Finally, we consider a general form of
the state equation related to the Gaussian colored noise, we study the con-
trol problem, a system with an algebraic constraint and a particular example
involving generalized operators from the Malliavin calculus.

1. Introduction

The linear quadratic Gaussian control problem for the control of finite-dimensional
linear stochastic systems with Brownian motion is well understood, see, e.g.,
[15]. The case for fractional Brownian motion [10, 11, 12] as well as the infinite-
dimensional case have been studied recently [9]. A more general problem arises
if the noise depends on the state variable, this is the so-called stochastic linear
quadratic regulator (SLQR) problem. The SLQR problem in infinite dimensions
was solved by Ichikawa in [22] using a dynamic programming approach. Da Prato
[8] and Flandoli [14] later considered the SLQR for systems driven by analytic
semigroups with Dirichlet or Neumann boundary controls, but with disturbance
in the state only. The infinite-dimensional SLQR with random coeflicients has
been investigated in [16, 17] along with the associated backward stochastic Riccati
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equation. Recently, a theoretical framework for the SLQR has been laid for sin-
gular estimates control systems in the presence of noise in the control and in the
case of finite time penalization in the performance index [18]. Considering the gen-
eral setting described in [18, 26], an approximation scheme for solving the control
problem and the associated Riccati equation has been proposed in [28]. In [27],
a novel approach for solving the SLQR based on the concept of chaos expansion
from white noise analysis is proposed. In this paper we extend the results from
[27] to the SLQR problem with fractional Brownian motion.

Fractional Brownian motion BM) is a one-parameter extension of a stan-
dard Brownian motion and the main properties of such a Gaussian process de-
pend on values of the Hurst parameter H € (0, 1). Fractional Brownian motion,
as a process with independent increments which have a long-range dependence
and self-similarity properties found many applications when modeling wide range
of problems in hydrology, telecommunications, queueing theory and mathematical
finance [5]. A specific construction of a stochastic integral with respect to a frac-
tional Brownian motion defined for all possible values H € (0, 1), was introduced
by Elliot and van der Hoek in [13]. Several different definitions of stochastic inte-
gration for fractional Brownian motion appear in literature [5, 13, 39, 42]. In this
paper we follow [13] and use the definition of the fractional white noise spaces by
use of the fractional transform mapping for all values of H € (0,1) and the ex-
tension of the action of the fractional transform operator to a class of generalized
stochastic processes. The main properties of the fractional transform operator and
the connection of a fractional Brownian motion with a classical Brownian motion
on the classical white noise space were presented in [5, 33].

We consider the infinite-dimensional SLQR problem, which consists of the
state equation

dj(t) = (A g(t) + Ba(t)dt + C g(t)dB (1), §(0)=7° t€0,T], (1)

defined on Hilbert state space H, where A and C are operators on H and B
acts from the control space U to the state space H and 7° is a random variable.
Spaces ‘H and U are Hilbert spaces. The operators B and C are considered to be
linear and bounded, while A could be unbounded. The objective is to minimize
the functional

10D (@) =E [ | (1R« 1) a + uémé] 2)

over all possible controls u and subject to the condition that 7 satisfies the state
equation (1). The operators R and G are bounded observation operators taking
values in Hilbert spaces W and Z respectively, E denotes the expectation and
yr = y(T). A control process u* is called optimal if it minimizes the cost (2) over
all control processes, i.e.,

min JH) (1) = 3H) (7).
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The corresponding optimal trajectory is denoted by y*. Thus, the pair (y*,u*) is
the optimal solution of the problem (1) and (2) and is called the optimal pair.

Following [13] and [33] we construct a fractional isometry in order to trans-
form optimal control problem (1)—(2) from a fractional space to the corresponding
optimal control problem with the state equation given with respect to Brownian
motion

dy(t) = (Ay(t) + Bu(t))dt + Cy(t)dB(t),  y(0)=y", tel0,T],

and the performance index

T
J(u) =E l/g IRyl + llulé) dt + [Gyrlz

We combine the chaos expansion method with deterministic theory of optimal
control to solve the above optimal control problem. The solution of the initial
problem is thus obtained through the inverse fractional map.

Moreover, we also consider a general state equation of the form

y = Ay + TOy + Bu, y(0) = vo, (3)

where A is an operator which generates a strongly continuous semigroup, and
T is a linear bounded operator which combined with Wick product ¢ introduces
convolution-type perturbations into the equation. Equation (3) is related to Gauss-
ian colored noise. The existence and uniqueness of its generalized solution was
proven in [34]. Examples of this type of equations are: the heat equation with
random potential, the heat equation in random (inhomogeneous and anisotropic)
media, the Langevin equation, etc. The related control problem for (3) will lead
to an optimal control defined in a space of generalized processes. A particular case
of (3) together with an algebraic constraint arises in fluid dynamics, e.g., Stokes
equations. The resulting system is known as semi-explicit operator differential al-
gebraic equation (ODAE) and it has the form

y=Ay + B*u + TOy + f, By=g.

We conclude the paper with the study of an ODAE involving generalized opera-
tors of Malliavin calculus. Particularly, we set the operator B to be the Skorohod
integral § and B* the Malliavin derivative . Equations involving generalized ope-
rators of Malliavin calculus were studied in [29, 30, 31, 34, 35].

The paper is organized as follows. In Section 2 we briefly state the theoretical
background needed, then in Section 3 we define the fractional isometry operator
M, prove its properties and study the optimal control problem with state equation
given in the form of fractional It6—Skorokhod integral in fractional space. By using
the fractional isometry we study the control problem in the standard space, prove
the existence and uniqueness of the control and characterize the optimality of
our approach. Finally, we extend our results and solve an ODAE involving the
operators of Malliavin calculus.
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2. Theoretical background

Let U and H be separable Hilbert spaces of controls and states, respectively,
with norms || - ||z and || - ||%, generated by the corresponding scalar products.
Let (92, F,P) be a complete probability space and let (b;);>0 be a real-valued
one-dimensional Brownian motion defined on (2, F,P). Let (F;)¢>0 be the com-
plete right continuous o-algebra generated by (b;);>0. We assume that all function
spaces are adapted to the filtration (F;);>0. Let L2(Q,P) = L?(Q, F,P) be the
Hilbert space of square integrable real-valued random variables endowed with the
norm HFH%z(Qy) = Ep(F?), for F € L*(Q,P), induced by the scalar product
(F,G)r2p) = Ep(FG), for F,G € L*(Q,P), and Ep denotes the expectation
with respect to the measure P. Throughout the paper, when it is clear which mea-
sure P is used, we will write E for the expectation and L?(2) for L?(2,P) omitting
P. We denote by L?(Q,U) the Hilbert space of U-valued square integrable random
variables and by L2([0,T] x ©,U) we denote the Hilbert space of square integrable
Fr-predictable U-valued stochastic processes u endowed with the norm

T
el 0.1y xc20) = / E (Ju(t)|2) dt.

Let C([0,T], L?(2,H)) be the Hilbert space of Fr-predictable continuous H-valued
stochastic processes y endowed with the norm

19118 q0.77,2200.20) = sup_ E([ly(®)[|5)-
te[0,T]

2.1. The SLQR problem: existence of solution

The infinite-dimensional linear quadratic regulator (LQR) stochastic optimal con-
trol problem on Hilbert spaces with respect to Brownian motion is given by the
state equation

dy(t) = (Ay(t) + Bu(t))dt + Cy(t) dB(t),  y(0)=y", te€[0,T], (4)

subject to the quadratic cost functional

T
J(u) = E / (IRy|2 + ul2) dt + |Gur|2 | (5)

The dynamics of the problem, the operator A, is deterministic and represents an
infinitesimal generator of a strongly continuous semigroup (eAt)tzo on the state
space H. The operators A and C are operators on H, while B is the operator
acting from the control space U to the state space H. We take the operator C
to be linear and bounded. We assume the operators R and G to be linear and
bounded operators acting on the state space H into Hilbert spaces W and Z
respectively. For simplicity, we shall assume that W = Z = H from here onwards.
We denote by D(S) the domain of a certain operator S, and by S* the adjoint
operator of S.
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The aim of the stochastic linear quadratic problem is to minimize the cost
functional J(u) over a set of square integrable controls u € L?([0,T], L?(Q,U)),
which are adapted to the filtration (F3)¢>o.

The following theorem gives conditions for the existence of the optimal control
in the feedback form using the associated Riccati equation. For more details on
existence of mild solutions to the SDE (4) we refer to [7] and for the optimal
control and Riccati feedback synthesis we refer the reader to [22].

Theorem 1 ([7, 22]). Let the following assumptions hold:

(al) The linear operator A is the infinitesimal generator of a Coy-semigroup
(eAt)i>0 on the space H.

(a2) The linear control operator B is bounded U — H.

(a3) The operators R, G, C are bounded linear operators.

Then the optimal control u* of the linear quadratic problem (4)—(5) satisfies the
feedback characterization in terms of the optimal state y*

u(t) = =B"P(t) y" (1),

where P(t) is a positive self-adjoint operator solving the Riccati equation

P(1) + P()A + A*P(1) + C'P()C+ R'R ~ P()BB'P(1) =0,
P(T) = G*G. (6)

2.1.1. Inhomogeneous deterministic LQR problem. Here we invoke the solution to
the inhomogeneous deterministic control problem of minimizing the performance
index

T
J(u) —/0 (IR 13, + llullz) dt + || Ga(T)I3, (7)
subject to the inhomogeneous differential equation
2(t) = Aa(t) + Bu(t) + f(t),  2(0) = a°. (8)

Besides the assumptions (al) and (a2) from Theorem 1 made on A and B, it
is enough to assume that f € L?((0,T),H) to obtain the optimal solution for
the state and control (z*,u*). The feedback form of the optimal control for the
inhomogeneous problem (7)—(8) is given by
u*(t) = =B*Py(t)z*(t) — B*k(t),
where P,4(t) solves the Riccati equation
(P4 PjA+ A*Py+ R*R — PyBB*Py)v, w) =0, ©
Py(T)v = G*G,
for all v, w in D(A), while k(t) is a solution to the auxiliary differential equation
K'(t) + (A" — Py(t)BB*)k(t) + Pa(t) f(t) = 0
with the boundary conditions
Py(T)=G"G and E(T) = 0.
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For the homogeneous problem we refer to [24], and for the inhomogeneous optimal
control problem for singular estimate type systems we refer to [25].

2.1.2. Strong and mild solutions. Let g(¢) be an Fp-predictable Bochner integrable
H-valued function. An H-valued adapted process y(t) is a strong solution to the
state equation (4) over [0, 77 if:
(1) y(t) takes values in D(A) N D(C) for almost all ¢ and w;
T T
(2) P(fy lly(s)llae + [ Ay(s)llaeds < o0) =1 and P([; [|Cy(s)[7 ds < o0) =1;
(3) for arbitrary ¢t € [0, 7] and P-almost surely, it satisfies the integral equation

y(t) =4° + /Ot Ay(s)ds + /Ot g(s)ds + /Ot Cy(s) dBs.

An H-valued adapted process y(t) is a mild solution to the state equation
dy(t) = (Ay(t) + (1) dt + Cy(t)dB(t),  y(0) =y’ te[0,T],
over [0, 77 if:
(1) y(t) takes values in D(C);

T T
(2) P(Jy lly(s)l2ds <oo) =1and P(fy [|Cy(s)|3ds < o0) =1
(3) for arbitrary ¢t € [0, 7] and P-almost surely, it satisfies the integral equation

t t
y(t) = ety + / A9 g(s)ds + / eAt=5) Cy(s) dBs,.
0 0

Note that, under the assumptions of Theorem 1, and given a control u from
L2([0,T); L*(Q,U)), i.e., g(t) = Bu(t), and the deterministic initial data y° € H,
there exits a unique mild solution y € L2([0,T7]; L?(2,H)) to the controlled state
equation (4), cf. [7].

2.2. Fractional Brownian motion

Fractional Brownian motion is one-parameter extension of a Brownian motion.
It depends on the Hurst index H which takes values in (0,1). The name is due
to the climatologist Hurst, who developed statistical analysis of the early water
run-offs of the river Nile. In the framework of Hilbert spaces, fractional Brownian
motion was first introduced by Kolmogorov in 1940, where it was called the Wiener
Spirals. The name fractional Brownian motion is due to Mandelbrot and Van Ness,
who gave a stochastic integral representation of this process in terms of Brownian
motion on an infinite interval [38].

Fractional Brownian motion is a process with dependent increments which
have long-range dependence and self-similarity properties. For H > % fractional
Brownian motion has a certain memory feature, which is suitable for modeling
weather derivatives, temperature at a specific place as a function of time, water
level in a river as a function of time or for describing the values of the log returns
of a stock. On the other hand, for H < % fractional Brownian motion has a certain
turbulence feature, which is applicable in mathematical finance in the modeling of
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financial turbulence, i.e., empirical volatility of a stock or in modeling the prices
of electricity in a liberated Nordic electricity market [5, 13, 38, 39, 40].

Definition 1. A one-dimensional real-valued fractional Brownian motion with the
Hurst index H € (0,1) on a probability space (2, F,P) is a Gaussian process
bH) = (5(H) (1)) cp satisfying:

(a) b(()H) =0a.s.,

(b) zero expectation, i.e., E[bEH)] =0 for all t € R, and

(c) the covariance function is of the form

1

B(o{Mo™) = 2 {1t + s — e = s}, siteR (10)
Fractional Brownian motion is a centered Gaussian process with non-inde-
pendent stationary increments and its dependence structure is modified by the
Hurst parameter H € (0,1). For H = % the covariance function can be written in

1 1 1
the form E(bg 2) 2 )) = min{s, ¢} and the process bEQ) becomes a Brownian motion
by, which has independent increments. Moreover, for H # % fractional Brownian
motion is neither a semimartingale nor a Markov process. From (10) it follows that

E(b) — b2 = |t — 521,

According to the Kolmogorov continuity criterion fractional Brownian motion b(1)

has a continuous modification [39]. The parameter H controls the regularity of tra-

jectories. The covariance function (10) is homogeneous of order 2H, thus fractional

Brownian motion b is an H self-similar process, i.e., b,(f) = k:HbEH), k> 0.
For any n € Z, n # 0 it holds

1 n+1
r(n) = B 00, — D)) = H(2H — 1) / / (u — v)2H 2 qudy
0 n
~ H2H —1)[n*"71,  as |n| — oc.

Therefore, the increments are positively correlated for H € (%, 1) and negatively
correlated for H € (O,%). More precisely, for H € (%,1) fractional Brownian
motion has the long-range dependence property Y - r(n) = co and for H €
(0, 5) the short-range property >~ |r(n)| < oo. For more details we refer to

[5, 20, 39, 41, 46].

2.3. White noise analysis and chaos expansions
In this section, we briefly recall some basic facts from white noise analysis. De-

note by hy,(xz) = (—1)”e§£(e’1§2), n € Ny, Ny = NU {0}, the family of

dx™

tijana.levajkovic@uibk.ac.at



306 Section 2.3

122 T. Levajkovi¢, H. Mena and A. Tuffaha

Hermite polynomials and &, (z) = Wﬁeféhn_l(ﬂx), n € N, the fam-

ily of Hermite functions. The family of Hermite functions forms a complete or-
thonormal system in L?(R). These functions are the eigenfunctions for the har-
monic oscillator in quantum mechanics. Clearly, the elements of {&,},en be-
long to the Schwartz space of rapidly decreasing functions S(R), i.e., they de-
cay faster than polynomials of any degree. The Schwartz spaces can be char-
acterized in terms of the Hermite basis in the following manner: The space of
rapidly decreasing functions as a projective limit space S(R) = [;cy, Si(R) where
SIR) ={f =2 e arés € L*R) : |f|I? = Dpe, ai(2k)! < oo}, | € Ny and the
space of tempered distributions as an inductive limit space S'(R) = (J;cy, S-1(R)
where S_;(R) = {f =02 ar & : || 17 = Sore, a2(2k) = < oo}, | € Np. Also, we
have a Gel'fand triple S(R) C L*(R) C S’(R) with continuous inclusions.

2.3.1. Gaussian white noise space. Throughout the paper all analysis is provided
on two white noise spaces. Here we introduce the (classical) Gaussian white noise
space (S"(R), B, 1) and later in Section 2.3.6 we will introduce the fractional Gauss-
ian white noise space (S’(R), B, ). In both cases, we follow the ideas of Hida
from [19]. The underlying space is the space of tempered distributions S’(R). By
B we denote the Borel sigma-algebra generated by the weak topology on S’(R)
and p is the Gaussian white noise measure given by the Bochner—Minlos theorem

/ N duw) = e 12w g e S(R),
S'(R)

where (w, ¢) denotes the dual pairing between a tempered distribution w € S’(R)
and a test function ¢ € S(R).

Denote by Z = (N}). the set of sequences of non-negative integers which
have only finitely many nonzero components. All multi-indices a € Z are of the
form a = (a1, a2,...,@;,,0,0,...), a; € Ng, i =1,2,...,m, m € N. Particularly,
0 = (0,0,...) is the zeroth vector and ¢*) = (0,...,0,1,0,...), k € N is the kth
unit vector. The length of a multi-index o € 7 is defined by |a| = Y7 ax. Let
(2N)* = [T, (2k)**. It was proven that Y. .-(2N)"P* < oo for p > 1, cf [21].
We say o > [ if o, > B for all k € N. In this case « — = (g — 1,02 — B2, .. .).
For a < (8 the difference a — g is not defined.

The space L?(n) = L*(Q, ) = L*(S'(R), B, i) is the Hilbert space of square
integrable random variables with respect to the Gaussian measure p, i.e., the space
of random variables with finite second moments.

Definition 2. The Fourier—Hermite polynomials on L?(u) are defined by

Ho(w) = [ ] b ((w,&)), a €T (11)
k=1

Particularly, Ho(w) = 1 and H_ i) (w) = (w,&k), k € N. The family {H, }aer
forms an orthogonal basis of L?(u) with ||Ha||2L2(M) =al, see [21].
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Theorem 2 (Wiener—Ité chaos expansion theorem). Each element F € L*(u) has
a unique representation of the form

F(w)zz aq H

acl

with real coefficients aq, o € T, w € €, such that ||FHL2(M) >aer 05 al < oo

The space spanned by {H, : |a| = k} is called the Wiener chaos of order
k and is denoted by Hy, k € Ng. Each Hj is an infinite-dimensional subspace of
L?(u) and

2 ,u) = @ He,
k=0

where the sum is an orthogonal sum [21].

Let H be a real separable Hilbert space. Then each element F' of the space of
Hilbert-valued square integrable random variables L?(Q, 1) = @, Hi(H), can
be represented in the form F(w) =" .7 foa Ha(w), for fo € H, a € T, such that

1F 720,00 = D Ifall3 al < oo
acl

One of the typical complications that arise in solving stochastic differen-
tial equations is the blowup of L?-norms of F, i.e., infinite variance. Therefore,
weighted spaces of random variables in which the considered equation has a solu-
tion have to be introduced. For example, such spaces are the Kondratiev spaces
(S)—p, p € [0,1] of generalized random variables, which represent the stochastic
analogue of the Schwartz spaces as generalized function spaces. The largest space
of Kondratiev stochastic distributions is (S)_1, obtained for p = 1.

The space of the Kondratiev test random variables (S); can be constructed
as the projective limit of the family of spaces

(S)p = {f(w) > aaHa(w) € L2(p): (|13, = a(a)?*(2N)P> < oo},

acl acel

p € Ny. The space of the Kondratiev generalized random variables (S)—1 can be
constructed as the inductive limit of the family of spaces

(S)-1_y = {F<w> = S by Haw): [f121y = 3B (2N) 7 < oo},p € No.

o€l aEeT

It holds (S)1 = (,en,(9)1,p and (S) = Upen, (5)-1,p- The action of a gene-
ralized random variable F' = Zaez w) € (S)—1 on a test random variable
[ =2 ner o Ho(w) € (S)1 is given by < f) =2 ner @ aq by Tt holds that (S);
is a nuclear space with the Gel'fand triple (S); C L?(u) C (S)_1 with continuous
inclusions [21].
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Definition 3. For Fl(w) =} 7 faHa(w) and G(w) = >_ 5.7 gsHp(w) the element
FOG is called the Wick product of F' and G and is given in the form

F<>G Z Z fag,BHa+B Z Z fag'y o H ) (12)

a€Z BeET YET a<ly

The Kondratiev spaces (S5); and (S)_ are closed under the Wick multiplica-
tion. The Wick product is a commutative, associative operation, and is distributive
with respect to addition. In particular, for the orthogonal polynomial basis of L?(u)
we have H,OHg = Ho4, for all a, f € Z. Whenever F', G and FQG are integrable
it holds that E(FOG) = E(F) - E(G), without independence requirement [21, 31].

2.3.2. Stochastic processes. A square integrable real-valued stochastic process is
defined as a measurable mapping [0, 7] — L?(u). A generalized stochastic process
is considered to be a measurable mapping from [0,7] into a Kondratiev space
(S)-1. The chaos expansion representation of generalized stochastic process F
follows from Theorem 2. A generalized process F' can be represented in the form

w) = falt) Ha(w),  t€[0,T],
a€l

where f,, a € T are measurable real functions and there exists p € Ny such that
for all ¢t € [0,T]

S Ifalt)? (2N) 7 < oo,
acl
If we assume H to be a real separable Hilbert space, then Theorem 2 can be
extended also for H-valued stochastic processes. Particularly, a square integrable
H-valued stochastic processes v is an element of L?([0,T]x Q, H) = L?([0,T],H)®
L?(, ) and can be represented in the chaos expansion form

v(t,w) = Z Vo (t) Ho (w)

a€l
(13)
— ’UO —|— Z E(k) E(k) ) —+ Z Ua(t) Ha<0.)), te [O,T],
keN |a|>1
where v, € L?([0,T],H) such that it holds
Z HvaHQH([o,T},H) al < oo. (14)
acl

A process v with the chaos expansion representation (13) that instead of (14)
satisfies the condition

> lvallZa oy my @N) 7% < oo (15)
a€T

belongs to L?([0,T],H) ® (S)_1 and is considered to be a generalized stochastic
process. The coefficient vg(t) is the deterministic part of v in (13) and represents
the (generalized) expectation of the process v.
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Denote by {e,(t)}nen the orthonormal basis of L?([0,T],H), i.e., the basis
obtained by diagonalizing the orthonormal basis {b;(t)s;}: jen, where {b;(t)}ien
is the orthonormal basis of L2([0,T]) and {s;}jen is the orthonormal basis of H.
The coefficients v, (t) € L2([0,T],H), o € T can be represented in the form

va(t):ZvaJ(t 55 = szaﬂi sj, a€l
JEN JEN ieN

with v, ; € L?([0,T]) and v,,;; € R. Then the chaos expansion (13) of a stochastic
process v € L*([0,T],H) ® L?(£, u) can be written as

v(t,w) = Z Vo (t) Ho (w Z Z ZUO‘J i 85 bi(t)Ho(w).
a€T acZ jeN ieN
After a diagonalization of N x N — N it can be rearranged to
= ZZ Ua,nen(t>Ha(W>’ Va,n ceRwe te [O,T]
acZ neN
Example 1. (a) A one-dimensional real-valued Brownian motion can be represented
in the chaos expansion form by (w) = Y72, (fot {k(s)ds) H_u)(w), t > 0. For each

t it is an element of L?(u). A singular real-valued white noise is defined by the
formal chaos expansion

Z &k (t) Heom ( (16)

Since > _pe  [&e(t)|?> > Sope, 1 = 00 and Y p, |€k(£)[*(2k) 7P < oo holds for
p > 1, it follows that the singular white noise is an element of the space (5)_1,
for all ¢ > 0, see [21]. It is integrable and the relation %bt = w; holds in the
distributional sense. Both Brownian motion and singular white noise are Gaussian
processes and belong to the Wiener chaos space of order one.

(b) An H-valued white noise process is given in the chaos expansion form

Zek E(k) ) (17)

Note that the H-valued white noise can be also defined as ), .y wy(w) s,,, where

wﬁ”) (w) are independent copies of one-dimensional white noise (16) and {s, }nen
is the orthonormal basis of H. This definition can be reduced to (17) since

D wr@)sn =30 > 6u(t) Hao

neN neN keN

= &i(t) silH o) (w) s = e;(t)H. ) (
= Z

€N

where {e;};en is the orthogonal basis of L?(R,H) obtained by diagonalizing the
basis {&k (t)sn }knen-
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(c) In general, the chaos expansion representation of an H-valued Gaussian
process that belongs to the Wiener chaos space of order one is given in the form

Gi) = X a0 o @) = X (X g i) ) o). (19

keN keN » ieN

with g € L([0,T],H) and gri = (gx, €i)£2(jo,),%) is a real constant. If the condi-
tion

Z gl 72 0.79,20) < o0 (19)
keN
is fulfilled, then G belongs to the space L2([0, T|x €, H) = L2([0,T], H)RL(£2, ).
If the sum in (19) is infinite then the representation (18) is formal, and if addi-
tionally

—pe® _
D lgkliZzqo.ma0 @GN =D Mgkl Zao,mm) (2k) 77 < o,
keN keN

holds for some p € Ny, the process Gy, for each t, belongs to the Kondratiev space
of stochastic distributions (S)_1, i.e., G € L*([0,T],H) ® (S)—1, see [33, 36, 44].
Note that a Gaussian noise represented in (18) can be interpreted as a colored

noise with the representation operator N and the correlation function C = NN*,
such that

Z N*fk (t) H5<k) (w) = Z N* ( Z fkiei(t)> Hs(k) (w)

kEN keN ieN
=D > Xifriei(t)Hoo (w),
keN ieN

with N*e;(t) = \; ei(t), i € N, [37]. Particularly, we will consider the color noise
to be a Gaussian process of the form

Li(w) = Z Ik ex(t) Hooo(w), (20)
keN
with a sequence of real coefficients {lx}ren such that for some p € N it holds
> B (2k)7P < oo (21)
keN

The Wick product of two stochastic processes is defined in an analogous way
as it was defined for random variables and generalized random variables (12), for
more details see [30].

2.3.3. Operators. Following [34], we define two classes of operators on spaces of
stochastic processes, namely coordinatewise and simple coordinatewise operators,
that we are going to deal with in the paper.
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Definition 4. An operator O is called a coordinatewise operator if there exists a

family of operators {Oq }qecz, such that for a process v = > v, H, it holds
a€el

Ov=> Ou(va) Ha. (22)

Moreover, operator Q is a simple coordinatewise operator if O, = O for all o € Z,
i.e., if it holds that

Ov = Z O(ve) Hy = O(vo) Z O(vy) H,
a€T || >0
Lemma 1. Let O : L?([0,T],H) ® L*(Q,u) — L*([0,T],H) @ L*(Q,u) be a
coordinatewise operator that corresponds to a deterministic family of operators
Oy @ L2([0,T],H) — L*([0,T),H), o € Z. If the operators O,, o € I are uni-
formly bounded by ¢ > 0 then O is a bounded operator on L?([0,T], H) ® L*(Q, u).

Proof. Let [|Oqllop < ¢ for all a € Z. Then, for v =Y .7 vaHo in L*([0,T], H) ®
L?(Q, p) it holds

||@U||%2([o T),H)RL2(Q,u1)
=Y 0aval 2oy @ < D 10z, lvallZ2 o110 !

o€l ael
2 2 2 2
<c Z ||vaHL2([O,T],H) al=c HUHLQ([O,T},H)@JLQ(Q,M)' O
o€l

2.3.4. Stochastic integration and Wick multiplication. For a square integrable pro-
cess v that is adapted in the filtration (F;):>¢ generated by an H-valued Brownian
motion (By);>o, the corresponding stochastic integral fOT vy dBy is considered to
be the It6 integral I(v). When v is not adapted to the filtration, then the stochas-
tic integral is interpreted as the It6—Skorokhod integral. From the fundamental
theorem of stochastic calculus it follows that the [t6—Skorokhod integral of an H-
valued stochastic process v = v¢(w) can be represented as a Riemann integral of
the Wick product of v, with a singular white noise

5(1}):/0 vdBi(w) :/0 v QW (w) dt, (23)

where the derivative W; = % B, is taken in sense of distributions [21].

Thus, for an H-valued adapted processes v the It6 integral and the Skorokhod
integral coincide, i.e., I(v) = d(v). Note that the It6 integral is an H-valued random
variable. From the Wiener—It6 chaos expansion theorem, Theorem 2, it follows that
there exists a unique family a,, a € Z such that the It6 integral can be represented
in the chaos expansion form

I(v) =) aq Ha. (24)

acl
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On the other hand, by (12), (17) and (23) we obtain a chaos expansion represen-

tation of the Skorokhod integral, i.e., for v = Y v, (t)H, we have
aET

vOWi(w) =D valt) Ha(w) 0 > ex(t) Ho (w)

a€T keN

=) valt) exl(t) Hypowr (w)-

a€Z keN

(25)

Thus, from (23) and (25) we obtain

6(1)) - Z Z Va,k Ha+s(k) (Cd), (26)

acZ keEN

with real coefficients vor = (Va,€r)r2(o,7],%) and w € . Combining (26) and
(24) we obtain the coefficients a,, for all @ € Z and o > 0 in the form

o = Z Vg ek o - (27)

keN

We use the following convention: v,_.x) is not defined if the kth component
of «, i.e., ay equals zero. For example, for « = (0,3,0,2,0,...) the coefficient
a(0,3,0,2,0,...) is expressed as the sum of two coefficients of the process v, i.e., from
(27) we have a(9,3,0,2,0,..) = v(0,2,0,2,0,...),2 + V(0,3,0,1,0,...),4- Lhe obtained chaos
expansion representation form of the It6—Skorokhod integral (26) will be used in
Section 3, where we will be able to represent explicitly the stochastic perturbation
in the optimal control problem (4). Note also that d(v) belongs to the Wiener
chaos space of higher order than v, see also [21, 35].

Definition 5. A square integrable H-valued stochastic process v given in the form
v = Y ez Va(t)Ho(w), with the coefficients v, € L2([0,T],H) such that
Va(t) = D pen Vak €k(t), var € R for all a € T is integrable in It6-Skorokhod
sense if the condition

S ot Sraos) =S o Sravat1) < 9

a€Z,|al>0 keN ael keN

holds. Then the chaos expansion form of the It6—Skorokhod integral of v is given
by (26) and we write v € Dom(J).

Theorem 3. The Skorokhod integral 6 of an H-valued square integrable stochastic
process s a linear and continuous mapping

§: Dom(s) — L*Q).
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Proof. Let u,v € L?([0,T], H)®L?*(Q2) be integrable in It6-Skorokhod sense. Then,
for a,b € R it holds

d(au + bv) —5<ZZ (auq i + bva i )er H ) ZZ auak+bvak)Ha+g(k)

a€Z keN a€Z keN
=a Z Z Ao pH oy o) +b Z Z Va,kH ey = ad(u) + b (v).
acZ keN aE€Z keN

Moreover, from (28) and (a + c®)! = (a; + 1) a! for a € Z, k € N we obtain

2
E E Ua_s(k)7k Ha

a€Z,|a|>0 kEN L2(Q)

2
= Z (Z ”a—s<k>,k) al < oo. O

|a|>0 * keN

16072y =

From the estimates

2
S lealeoir ot =3 ot (3 i) < 0 at (X va)

o€l acl keN aEl keN
2
< Z a! (Zv%k\/ak—kl) < 0
acl keN

we conclude that if v € Dom(8) then v € L*([0,T],H) ® L*(Q). Moreover, if the
condition

> lol llvallZzqorya ot < oo (29)
acl
is fulfilled then v € Dom(d). This follows from

Za'(Zuak ak+> <cZa'|a|Zuak<oo

a€cl keN acl keN

A detailed analysis of domain and range of operators of the Malliavin calculus in
spaces of generalized stochastic processes can be found in [31, 35].

Lemma 2. Let Q : L2([0,T], H)®L*(Q) — L2([0,T], H)RL*(Q) be a coordinatewise
operator that corresponds to a uniformly bounded family of linear operators O,
L2([0,T),H) — L2([0,T),H), a € Z. If a stochastic process v = Y aczVala €
L2([0,T],H) ® L*(Q) satisfies the condition (29) then Qv € Dom(J).

Proof. Since v € L2([0,T],H) ® L*(Q) satisfies (29) then v € Dom(d), i.e., (28)
holds. Let O corresponds to the family O, : L%([0,T],H) — L*([0,T],H), a € T
such that [|Oyllz(n) < ¢, @ € Z, where L(H) denotes the set of linear bounded
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operators on L?([0,T],H). From

D 110avalliz (om0 lal @l < 0llZ 24y 1vallT2(0,71,20) Il !

acl acl
<Y vallzzqo.y,0) ol ! < 00
acl
it follows that Qv € Dom(6). O

2.3.5. The fractional transform operator M (F). In [13] the authors developed the
fractional white noise theory for a Hurst parameter H € (0,1). They introduced
the fractional transform operator M) which connects the fractional Brownian
motion bEH) and the standard Brownian motion b; on the white noise probability
space (S'(R), B, ). We extend these results for H-valued Brownian motion Bj
and H-valued white noise W, and their corresponding fractional versions Bt(H)
(H)
and W, 7.

Definition 6 ([13]). Let H € (0,1). The fractional transform operator M)
S(R) — L*(R) N C*°(R) is defined by

MHfy) =y fy), yeR, feSR), (30)

where f (y = [ e ™Y f(x)dx denotes the Fourier transform of f.

Equivalently, the operator M) for all H € (0,1) can be defined as a constant
multiple of

d o3
el R I A FOL (31)

such that the constant is chosen so that (30) holds. The operator M) has the
structure of a convolution operator. Particularly, from (31) it follows that for

H € (0, 1) the fractional operator is of the form M#) f(z) = Cy [, Jla—t=f=) g4

24

then for H € (3,1) it is of the form MW f(z) = Cy [y %dt and for

H = 1 it reduces to the identity operator, i.e., M( ) f(x) = f(z). The normalizing
constant is Cy = (2I'(H — 1) cos(5 (H ))) and I' is the Gamma function.

From (30) we have that the inverse fmctwnal transform operator of the op-
erator M) is the operator M —H) which is defined by

M- f(y) = |y~ fly), yeR, feS(R).

Denote by L%(R) = {f: R — R : M) f(z) € L*(R)} the closure of S(R)
with respect to the norm || f[|z2 ) = |MUD f| 2Ry, for f € S(R), induced by the
inner product

(f,9)r2,® = (M M) g) o).
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The operator M) is a self-adjoint operator and for f,g € L*(R) N L% (R) we
have

M), 0y = (M) = [ ol Tty
R

= (M(H)fﬁ)m(nx) = (M(H)f,Q)Lg(Ry

Remark 1. For fixed H € (3,1), define ¢(s,t) = H(2H — 1)|s — t|*72, s,t € R.
Then,

/R(M(H)f( :c—cH//f(s (t)p(s,t)dsdt, (32)

with cp constant. The property (32) was used in [13, 20, 32] and [38] in order to
adapt the classical white noise calculus to the fractional one.

Theorem 4 ([6, 13]). Let M) : L2, (R) — L*(R) defined by (30) be the extension
of the operator M from Definition 6. Then, M) is an isometry between the two
Hilbert spaces L*(R) and L% (R). The functions

el () = MO~H¢ (z), neN, (33)

belong to S(R) and form an orthonormal basis in L3 (R).

From (33) it also follows G = pD &ny, n€ N, where we used the fact
that M ~H) is the inverse operator of the operator M (1), Following [6] and [13]
we extend M) onto S’(R) and define the fractional operator M) : S(R) —
S'(R) by

(M, £y = (w, M fy f e S(R), we S'(R).
2.3.6. Fractional Gaussian white noise space. Following [5], for H € (0,1) we
denote by
L(pg) = L2 (o MI= M) = (G : Q5 R; Go M) e L2(p)}.

the stochastic analogue of L% (R). It is the space of square integrable functions
on S’(R) with respect to fractional Gaussian white noise measure pg. Thus, the
space (S"(R), B, ug) denotes the fractional Gaussian white noise space.

Since G € L?(pug) if and only if G o MU € L?(u), it follows that G has an
expansion of the form

M(H)w) an anHh (w,&))

a€ET aET =1
=" o [ e (w0, MPei)) = 37 o [ o (M Do, e3)).
(<A =1 acel =1

Definition 7. The family of fractional Fourier—Hermite polynomials is defined by

=[] hor (W, ex)), a €L (34)
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The family {H,}aez forms an orthogonal basis of L2(up) and for all a € 7
it holds ||Ha |7, (um) = @l Therefore, Theorem 2 can be formulated for fractional
square integrable random variables.

Theorem 5. Each G € L*(ug) can be uniquely represented in the form
Gw) = anﬁa(w), ca ER, @€, we

acl

such that ||GH%2(#H) = zezzcia! is finite and |G| 2(up) = [|G 0o MU || 12(,.
The fractional Kondratiev spaces (S)gH) and (S)(ﬁ) are defined in an anal-
ogous way as it was done in Section 2.3.1 for stochastic random variables in the

Gaussian white noise case. An H-valued fractional stochastic process v as element
of L2([0,T],H) ® L*(Q, pgr) is uniquely defined by

Bw) = 3 valt) a(w), (35)
a€l
where v, € L2([0,T],H), o € T such that (14) holds. Moreover, (35) can be written
in the form

T(@) =D vam en(t) Ho(w), van €R,weQ, te0,T].

acZl neN

The fractional generalized process v from L2([0,T],H) ® (S )(_}? has a chaos ex-
pansion representation of the form (35) such that (15) holds.

The definitions of coordinatewise and simple coordinatewise operators, Sec-
tion 2.3.3, hold for processes defined on both classical white noise space and frac-
tional white noise space.

3. The Stochastic LQR problem with fractional Brownian motion

In order to study the stochastic LQR problem on fractional spaces we introduce
an isometry M between the space of square integrable fractional random variables
L?(pupr) and the space of integrable random variables L?(u). Extending this map-
ping to stochastic processes we can transform the state equation with fractional
Brownian motion to an equation with standard Brownian motion. Therefore, we
can solve the optimal control problem with respect to an equation with standard
Brownian motion and find the solution of the original problem by applying M 1.

3.1. The fractional operator M
Since M) is self-adjoint we can connect (11) and (34) for all « € T

Ha(“) = H hak(<w7§k>) = H hak(<w,M(H)ek)) = H hak(<M(H)waek>)
k=1

= k=1 k=1
= Ho(My)
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and similarly B
H,(w) = Ho(MO~H)y).
Therefore we define a new (fractional) operator M which maps the orthogonal
basis of L?(ug) into the orthogonal basis of L?(u).
Definition 8 ([33]). Let M : L?*(uy) — L?*(n) be defined by
M(Hy(w) = Ho(w), a €I, wel

The operator M and the fractional operator M (1=H) correspond to each
other. For G = Y .7 ¢caHa(w) € L?(pp), by linearity and continuity we extend

M to
M( > ca ﬁa(w)> =Y caHa(w). (36)

acl aET

Theorem 6 ([33]). The operator M is an isometry between spaces of classical
Gaussian and fractional Gaussian random variables.

Proof. The operator M is the isometry between L?(uy) and L2(u) because it
holds |M(Ha)l[12(u) = [[HallL2() = ot = | HallL2(ur) - .

The action of M can be seen as a transformation of the corresponding ele-
ments of the orthogonal basis { Ha taez into {Ha taez, see [33]. For every element
F € L2(p) there exists a unique F € L%(uy) so F = MF and also for each
F € L%(up) there exists a unique F € L2(p) so F = M~! F. Further on, such

pairs of elements F' and F', that are connected via M, will be called the associ-
ated pairs. The coefficients of the chaos expansion representations of associated
elements F' and F' coincide.

Lemma 3. Let F =Y, s fa Ho € L?(n) and F =" 7 fo Ho € L*(un). Then
F and F are associated if and only if fo = fo for all o € I.

Proof. Let F and F be associated. Then it holds

Y faHo=F=M(F (Zfa a)=ZﬁH

a€el aEeT aEL
Since the chaos expansion representation in the orthogonal basis {Hy}aez is
unique, it follows that f, = f, for all a € 7. O

The action of the operator M can be extended to a Kondratiev space of
stochastic distributions M : (S)(_}? — (S)-1 by

M<§aa ﬁa(w)> = az; o Ho(w), aq €R.

The extension is well defined since there exists p € N so Y .7 a2 (2N)7P* < oo.
In an analogous way the action of the operator M can be extended to stochastic
processes and H-valued (generalized) stochastic processes.
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Example 2. (a) A real-valued fractional Brownian motion bgH) (w), H € (0,1) as
an element of the fractional Gaussian space L?(p(1— ) = L?(po M) is given by

b (o (/ & s)ds) 0 (W),

with help of the property M(H)ék = ek - , see [33].

(b) A one-dimensional real-valued fractional singular white noise ng) as an
element of the fractional Kondratiev space (S)(_ll_ 1) s defined by the chaos ex-
pansion wt( )( )= > &kl(t) H_av (w). It is integrable and the relation %bgH) =

t(H) holds in the sense of distributions.
Moreover, combining (16) and (36) we obtain

M~ (wy ( Z & H, <k)> Z & Hoo (w) = wi™.

(¢) An H-valued fractional Whlte noise in the fractional space is given by
Wi @) =3 ewlt) Hon (), (37)
k=1
where {ej}ren is an orthonormal basis in L2([0,T],H). By (17) and (37) the
relations M(Wt(H)) W, and M~Y(W;) = W( ) follow.

From here onwards we will keep the following notation: all processes denoted
with tilde in subscript will be considered as elements of a fractional space. There-
fore, due to Lemma 3, each process v = ) 7 Vo Hy from an H-valued classical
space (particularly L2([0,T],H) ® L*(Q2, u) or L*([0,T],H) ® (S)_1) will be asso-
ciated to a process v = Y .7 Va H, from the corresponding H-valued fractional
space (particularly L2([0, 7], H)® L2(, uzr) or L2(0,T], 1)@ (S) ") via the frac-
tional mapping M, i.e., M(v) = v. Since the coefficients of processes v and v are
equal, it also follows

1911% 20,71, 7y 12 (9, 0) = Z a! [[vallZzqory2) = 100220 mer2 @) (38)
a€l
Theorem 7. The fractional mapping M satisfies the following properties:

(1) Let the operators Q : L2([0,T), 1) ® L*(Q, ug) — L2([0,T], H) @ L2(2, prr)
and O : L*([0,T],H) @ L*(Q, pn) — L*([0,T],H) ® L*(Q, ) be coordinatewise
operators that correspond to the same family of operators O, : L*([0,T],H) —
L3([0,T],H), a € Z. Then it holds

M(0%) = O(M®),
(2) M is linear and it also holds M(udy) = M(u)OM(y) and
(3) M(E,, v) =E.(Mv),
for v e L2([0,T], 1) ® L2(Q, pg) and @, 7 € L2([0,T),H) @ (S).
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Proof. Since M acts on the orthogonal basis of L?(Q, ) the following is valid:
(1) Let v € L3([0,T],H) ® L*(Q, g ). From (22) and (36) we obtain

M(@%}—M(Zoavaﬁa> > Oava a@(Zua a) O(M®D).

acl acel acel

(2) By definition, the fractional operator M is linear. It is also homogeneous
with respect to the Wick multiplication, i.e., it holds

M(uQy) = M( Z Z Uayﬁﬁaw) = Z Z uayYsHotp

o€l BET a€l BeET
= ( > unH >0M< ZyﬁH5> = M@)OM(®F).
o€l BET

(3) Forv € L2([0, T, H)®L?*(Q, jupr ) an element E,,,, ¥ is the zeroth coefficient
of fractional expansion of v, i.e., E,,, ¥ = vo. Thus, M(E,,, v) = vo. On the other

side, E,, (M) is the zeroth coefficient of the expansion of M, which is also equal
to vo. Thus, M(E,, v) = E,(MW). O

Theorem 8. For a differentiable H-valued process z from the fractional space the

following holds
ML) = Lz
at ) " a7

Proof. Differentiation of a stochastic process is a simple coordinatewise operator,
i.e., a process is considered to be differentiable if and only if its coordinates are
dlfferentlable deterministic functions [34]. The assertion follows by applying M to

%Z = D uer jt alt) Ha(w) = ner Za(l) H, (w). We obtain

M52 =M ( LA Of, ) = 3 20 Ho

ael a€l
d d -
— E( Zza(t)Ha) = E(MZ) O
aEeT

3.1.1. Fractional integral. The fractional It6-Skorokhod integral §(%) of an H-
valued process @ that belongs to Dom(6()) in the fractional space is defined in
an analogous way as the [t6—Skorokgod 1ntegral (23) in classical space, see Section

2.3.4. Clearly, we say that u = ) 7 uq H, € Dom(sH) if (28) holds. Then

the fractional It6—Skorokhod integral of a process u = )
space

act Yo Ha in fractional

T T

s (@) = / udB{™ = / a oW at
0 0

has the chaos expansion representation of the form

S (@) =3 “uan Hyy - (39)

aE€Z keN
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The coefficients u,, are the coefficients of the expansion of the corresponding
6(u), where u is the associated process to u = Y. 7 ta Ho, uq € L*([0,T],H),
aecl.

Theorem 9. For u € Dom(d) it holds
M (@) = 6(M(@)). (40)

Proof. From (26), (39) and the definition of operator M the property (40) follows,
MU (@) = 6(u) = 6(M(@)) holds for all associated pairs of processes u and
u = Mu. Since M is an isometry it holds

16 ()220, = MG @)11F2 (g, = 18U @) 2(00)

=S ot (Svasvar 1) <o 5

acel keN

Remark 2. The definition of the fractional It6—Skorokhod integral in the classical
Gaussian space is given in [5, 6, 39]. In [33] the authors provided a detailed analysis
on generalized classical and fractional operators of Malliavin calculus on white
noise spaces.

3.2. The optimal control problem

We consider the state equation
di(t) = [Ag(t) + Bu(t)]dt + Cyt)dB{™,  §0)=7° te€[0,7], (41)

with respect to an H-valued fractional Brownian motion in the fractional Gaussian
white noise space. The objective is to minimize the functional

T
JWWD—EMIA @Rﬂ%+w%)ﬁ+lG%ﬁ1 (42)

over all uw € L?([0, 7] x Q,U).

Due to the fundamental theorem of stochastic calculus, for admissible square
integrable processes, the fractional state equation (41) is equivalent to its Wick
version

y(t) = Aj(t) + Ba(t) + Cyt) ow (),  §(0)=7°, te[0,T]. (43)

By using the fractional mapping M one can transfer the optimal control
problem (41)—(42) from the fractional space to the corresponding optimal control
problem with the state equation

dy(t) = [Ay(t) + Bu(t)]dt + Cy(t)dB;,  y(0)=y3°, t€[0,T].  (44)

with respect to Brownian motion subject to

T
J(u) =E, /O (IRyl17 + lullzz) dt + 1Gyrll3| . (45)
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in the classical Gaussian white noise space. Instead of the state equation (44),
on a set of square integrable processes, one can consider its equivalent Wick-type
equation

§(t) = Ay(t) + Bu(t) + Cy(t) OWy,  y(0)=4°, te[0,T].  (46)

Once the solution of the optimal control problem (44)-(45) is obtained, then
using the fractional isometry M one can also obtain the solution to the initial
optimal control problem (41)—(42). That is the statement of the following theorem.

Theorem 10. Let the fractional operators A, ]§, (~3, R and G defined on fractional
space be coordinatewise operators that correspond to the families of deterministic
operators {Aa}taez, {Ba}tacz; {Catacz, {Ratacz and {Gy}act respectively. Let
the pair (u*,y*) be the optimal solution of the fractional stochastic optimal control
problem (41)—(42). Then, the pair (Mu*, My*) is the optimal solution (u*,y*)
of the associated optimal control problem (44)—(45), where the operators A, B, C,
R and G defined on classical space, are coordinatewise operators that correspond
respectively to the same families of deterministic operators {Aa}aez, {Batact,
{Co}aez, {Ratacz and {Gy}aez. Moreover, if (u*,y*) is the optimal solution of
the stochastic optimal control problem (44)—(45), then the pair (M~1u*, M~1y*)
is the optimal solution (u*,y*) to the corresponding fractional optimal control prob-
lem (41)—(42).

Proof. Let (u*,y*) be the optimal pair of the problem (41)—(42), i.e., its equivalent
problem (42)—(43). Then min,, J(u) = J(u*), while y* solves (41) and also (43).
Let all operators appearing in the control problem be coordinatewise operators. By
applying the chaos expansion method and the properties of the fractional operator

M stated in Theorem 7 and Theorem 8, we transform (43) in fractional space to
the corresponding state equation in classical space, i.e.,

9(t) = M(AF(t) + Ba(t) + Cy(t) O W (1))
= M(AG) + M(B@) + M(Cy) O MW,
= Ay + Bu + CyO W,

where y and u are the associated processes to y and @ respectively. Moreover,
by Theorem 7 part (3) and (38) the operator M transforms the cost functional
JH) to

MIID (@) = M(E,,,, (0)) = Eu(MD) = Epi(v) = I(u),

where ¥ and v are associated elements v = fOT (HﬁﬂH% + HﬂHz,) dt + ||Gyr|2, and
T
v=Jo (IRyl3 + lulz) dt + [Gyrll3,. O

We will solve the control problem in the classical space (we will generalize
the results from [27]) and then, by use of Theorem 10 via the inverse fractional
mapping M ™!, we obtain the optimal solution for the corresponding fractional
problem.
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Theorem 11. Let the following assumptions hold:

(A1) The operator A : L%([0,T],D) @ L?*(Q,u) — L*([0,T],D) ® L?(Q, u) is a
coordinatewise linear operator that corresponds to the family of deterministic
operators A, @ L*([0,T],D) — L*([0,T),H), a € I, where A, are infinites-
imal generators of strongly continuous semigroups (e*)ez, t > 0, defined
on a common domain D that is dense in H, such that for some m,0 > 0 and
all o € 7 we have

le**Nallpay < me’,  t>0.

(A2) The operator C : L?([0,T],H) @ L?(Q,u) — L*([0,T],H) ® L*(Q,pn) is a
coordinatewise operator corresponding to a family of uniformly bounded deter-
ministic operators Cy : L?([0,T),H) — L*([0,T],H), a € T.

(A3) The control operator B is a simple coordinatewise operator B : L?([0,T],U)®
L2(Q,p) — L3([0,T],H) @ L*(Q, p) that is defined by a family of uniformly
bounded deterministic operators B, : L*([0,T],U) — L*([0,T],H), a € T.

(A4) The operators R and G are bounded coordinatewise operators corresponding
to the families of deterministic operators {Ra}acz and {G}aez respectively.

(A5) Etuo”g-L < o0.

Then, the optimal control problem (45)—(46) has a unique optimal control u* given
in the chaos expansion form

u'=—3 BiPia()ya(t) Ha — Y Bika(t) Ha,
a€l |a|>0
where Py o(t) for every a € T solves the Riccati equation

Pio(t) + Pyo(t)Ag + A% Py o(t) + RoRY, — Pyo(t)BoBL Py o(t) =0

(47)
Pyo(T) = G4G,

and ky(t) is for each a € T a solution to the auxiliary differential equation

ko (t) + (A% — Paa(t)BaBy) ka(t) + Pao(t) <Z Co—et@Ya—ec (t) 'ei(t)) =0,
ieN

(48)

with the terminal condition ko (T) = 0 and y* = ) .7y Ha is the optimal state.

Proof. Since all the operators A, B and C are coordinatewise, by (22) the actions
are given by Ay(t,w) = > o7 Aya(t) Ho(w), Bu(t) = > o7 Bua(t) Ha(w) and
Cy(t,w) =2 nezr CYalt) Ho(w), for

y(t,w) =D vaHa(w),  ult,w) =) ua(t)Ha(w) (49)

acl a€el

such that for all & € Z the coefficients y, € L?([0,T],H) and u, € L2([0,T],U).
From (A2) and (A3) we conclude that the operators C and B are bounded and
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by Lemma 1 it holds

IBull2ommerr@m = 2, & IBatiallZzo115)
acl

< Z aluallFz oy = EllullLeo.m sz
acl
where ||B,| < c for all a € 7.
We divide the proof into several steps. First, we consider the Wick version
(46) of the state equation (44), we apply the chaos expansion method and obtain a
system of deterministic equations. By representing 3 and 4 in their chaos expan-
sion forms, the initial condition y(0) = 3, for a given H-valued random variable

y°, is reduced to a family of initial conditions for the coefficients of the state

Ya(0) = 32, forall «a€Z, where 42 € H, a € T.

With the chaos expansion method the state equation (46) transforms to the
system of infinitely many deterministic initial value problems:

1° for o = O:

Yo (t) = Aoyo(t) + Bouo(t), yo(0) = o, (50)
2° for || > 0:

y:)c (t) = Aaya(t) + Bauq (t) + Z Oa—a(” Ya—e® (t) : ei(ﬂ?
ieN o (51)
yOC(O) = ya7

where the unknowns correspond to the coefficients of the control and the state
variables. It describes how the stochastic state equation propagates chaos through
different levels. Note that for o = 0, the equation (50) corresponds to the determi-
nistic version of the problem and the state yg is the expected value of y. The terms
Yo () are obtained recursively with respect to the length of . The sum in (51)
goes through all possible decompositions of «;, i.e., for all j for which o — &) is
defined. Therefore, the sum has as many terms as multi-index « has non-zero
components. Existence and uniqueness of solutions of (50), (51) follow from the
assumptions (A1), (A2) and (A3) for the operators A,, B, and Cy, o € T.

In the second step, we set up optimal control problems for each a-level.
We seek for the optimal control v and the corresponding optimal state y in the
chaos expansion representation form (49), i.e., the goal is to obtain the unknown
coefficients u,, and y, for all a € 7.

The problems are defined in the following way:

1° for a = 0 the control problem

min J(Uo)Z/O (IRoyo ()13, + luo(®)lz) dt + [Goyo(T)II3 (52)
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subject to
vo(t) = Aoyo(t) + Bouo(t),  yo(0) =yp, and
2° for |a| > 0 the control problem

T
J(ua) = /O (IRava®)3; + lua(®)lF) dt + [Gaya(DlF,  (53)
subject to
Ya(t) = Aaya(t) + Bata(t) + Y Co_crYa—cw (1) -€it),  al(0) = y2,
€N
and can be solved by the induction on the length of multi-index o € Z. Next we

solve the family of deterministic control problems, i.e., we discuss the solution of
the deterministic system of control problems (52) and (53):

1° For o = 0 the state equation (50) is homogeneous, thus the optimal control
for (50)-(52) is given in the feedback form
ug(t) = —Bg Pa,o(t) yo(t), (54)

where Py o(t) solves the Riccati equation (9).
2° For each |a] > 0 the state equation (51) is inhomogeneous and the optimal
control for (53) is given by

Uq (t) = =B, Fa.a(t) ya(t) — Bika(t), (55)

where P (t) solves the Riccati equation (47), while k() is a solution to the
auxiliary differential equation (48) with the terminal condition k,(T") = 0, as
discussed in Section 2.1.1.

Summing up all the coefficients we obtain the optimal solution (u*,y*) re-
presented in terms of chaos expansions. Thus, the optimal state is given in the

form
v= D yit) Ha=yg+ > yi(t) H,

acl [a|>0
and the corresponding optimal control

w =Y ul(t)Ho =uy+ Y ul(t) H

acl |a|>0
= —By Pao(t)ys — Y BiPaat)yi(t)Ho — Y Bika(t) Ha
la|>0 |ae|>0 (56)
=3 BP0 o = 3 Bk ()
acl acl

= -B*P,y*(t) — B*K,

where P (1) is a coordinatewise operator corresponding to the deterministic family
of operators { Py o }acz and K is a stochastic process with coefficients kq (%), i.e.,

process of the form IC = )" 7 ko (t) Hy, with ko = 0.
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In the following step we prove the optimality of the obtained solution. As-
suming (A1)—(A4) it follows that the assumptions of Theorem 1 are fulfilled and
thus the optimal control of the problem (4)—(5) is given in the feedback form by

u'(t) = =B*P(t) y"(t), (57)

with a positive self-adjoint operator P(¢) solving the stochastic Riccati equation
(6). Since the state equations (4) and (46) are equivalent, we are going to interpret
the optimal solution (57), involving the Riccati operator P(¢) in terms of chaos
expansions. It holds J(u*) = min J(u), for u* of the form (57).

On the other hand, the stochastic cost function J is related with the deter-
ministic cost function J by

Ju)=E

T
/0 IRyl + llulz) dt + HGyTH%]

T T
=E(/ ||Ry||12/vdt>+]E</ ||u||adt) +E(||GyT||%>
0 0

= Z o HRayOéH%?([O,T],W) + Z ol ||ua||2L2([o,T],u) + Z a! [|Gaya(T)|I%

acl acl a€cl

= 3" at (I Rabal 3oz + Itall3zqoran + IGava(DII%)
acl

= Z al J(uq).
a€l

Thus,
J(u*) = min J(u) = min Z al J(uq) = Z al min J(uy) = Z al J(u})
acl a€l “ a€l

and therefore
W (tw) = D uh(t) Halw), (58)
aEl

i.e., the optimal control obtained via direct Riccati approach u* coincides with
the optimal control obtained via chaos expansion approach ) ., ul(t)Hq(w).
Moreover, the optimal states are the same and the existence and uniqueness of the
solution of the optimal state equation via chaos expansion approach follows from
the direct Riccati approach.

Finally, we prove the convergence of the chaos expansions of the optimal
state. We include the feedback forms (54) and (55) of the optimal controls u},
a € 7 in the state equations (50) and (51) and obtain the system

Yo(t) = (Ao — BoBg Pa,(t)) yo(t)

Va(t) = (Ao = BaBLPa, () (1) = BaBika(t) + 3 Cyaeo (D ei(t). 59
ieN
for |a| > 1, with the initial conditions y,(0) = 32, a € Z.
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From the assumption (A1) it follows that A,, o € Z are infinitesimal genera-
tors of strongly continuous semigroups (7})q = (e??),, t > 0 which are uniformly
bounded, i.e., [[e*f|z3) < me®, a € T holds for some positive constants m
and 6, where £(H) denotes the set of linear bounded mappings on L2([0,T], H).
Moreover, the family (T}), = (e?4t),, t > 0 is a family of strongly continuous
semigroups whose infinitesimal generators are A}, o € Z, the adjoint operators of
An, a € Z. This follows from the fact that each Hilbert space is a reflexive Banach
space, see [43].

We denote by S, (t) = Ay — BaBrPio(t), @ € T and rewrite (59) in simpler
form

Yo(t) = So(t) yo(t), yo(0)
Ya(t) = Sa(t) ya(t) + fa(t),  ¥a(0)
where fo(t) = — BaBika(t) + 2 ey ClYa—c () €i(t), a € L.

The operators S, (t), a € Z can be understood as time dependent continuous
perturbations of the operators A,. From Theorem 1 it follows that Py o (t), « € Z
are self adjoint and uniformly bounded operators, i.e., |Piq(t)| < p, a € I,
t € [0,7T]. The operators B, and thus B} are uniformly bounded, i.e., for all
a € T we have ||B,|| < band ||BL|| < b, b > 0. Therefore, Bo B} Py o(t), « € T are
uniformly bounded. Hence, we can associate a family of evolution systems U, (¢, s),
a€Z,0<s<t<T to the initial value problems (60) such that

0
yOa
Yo (60)

la| > 1

1Ua(t; $)l|Lew) < et forall 0 <s<t<T.

The family of solution maps U,(t,s)y’, o € T to the non-autonomous system
(60) is a family of evolutions which are in C([0,T], H) since Bo B} Py, o € T are
bounded for every t, and are for all @ € Z continuous in time, i.e., elements of
C([0,T], L(H)), [43]. The adjoint operators (S(t))% = A% + Py o(t) BiBa, a € T
are associated to the corresponding adjoint evolution systems UZ(t,s), a € I,
0<s<t<T,see [43].

The operators C,, a € Z are uniformly bounded and for all a € Z it holds
ICa|l < d, d> 0. For a fixed control u it also holds Cy € Dom(d), i.e., (28) holds
for Cy.

Consider a small interval [0, Ty, for fixed Ty € (0, T]. Denote by M;(t) = €%t
and Ma(t) = 55 (2" — 1) for ¢ € (0, To).

For every 32 € Dom(S(t)), the mild solution of (60) is given in the form

yo(t) = Uo(t,0) yg

t

ya(t) = Ua(t,()) yg +/ Ua(t’ S) ( Z Ca—s(i) Ya—e(®) (‘9) ei(s) - BOCB:;]{OC(S)> dS,
0 i€N

for || > 1 and 0 < s <t < T and y, are continuous functions for all a € Z.

The operators Cy, B, and B, o € T are uniformly bounded and therefore the

inhomogeneity part of (59) belongs to the space L?([0, T], H), where the functions
ko, € T are given in (48). Denote by X = L?([0, Tp], H) and X = L?([0, To], H)®
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L?(p). Thus it holds

lylz = D allyali = Ivollx + D alllvallk <2 olllUalt,0)y0l%

o€l la|>1 o€l
t
IS SR RUAT s>( S Co o (s)ei(s) — BaBZika(s))dsH%
la>1 0 ieN
<2MP(To) Y olllwalk
acl
FSMT)E Y ool galk + AM(To) b S allka(s)l%
|a|>1 |a|>1
< M(T) 521 + AMa(To) & [ylBommcs) + AMa(To) b K[ (61)

where [|K[|3 = > ,c7 |kall% o!. The coefficients kq are the solutions of (48) and
are expressed in terms of the adjoint evolution system U} (¢, s), a € Z. Clearly, the
coefficients are of the form

T
kia(t) = UXT, ko (T) + / U;(s,t)Pd@(s)( > C’a_Eu)ya_E(i)ei(s))ds, t<T
t iEN
for o € Z. Denote by X = L*([Tp, T]) and [|UA(T,¢)]| < €% = Ms(t), for § > 0,
a €T and My(t) = %(ege(T*t) —1)2. Since ko (T) = 0 we obtain

T
I, = 3 atl [ 020600 Paa(®( X Coreinaoei(s)) sl
a€l ¢ iEN
< 2T P & Y tfal ol < Ma(To) 5 oy < -
acl

Thus, | K||% < co. With this bound we return to (61) and conclude that ||y||% < oo.
The interval (0,7 can be covered by the intervals of the form [kTp, (k+ 1)To]
in finitely many steps. Thus, y € L?([0,T], H) ® L?(p). O

Theorem 11 is an extension of results from [27], where the case with simple
coordinatewise operators was considered. The importance of the convergence re-
sult can be seen in the error analysis that arises in the actual truncation when
implementing the algorithm numerically.

Remark 3. The previous results might be extended for optimal control prob-
lems with state equations of the form (3), in spaces of stochastic distributions.
By replacing the uniform boundedness conditions on the operators B, and Cl,
a € T in (A2) and (A3) with the polynomial growth conditions of the type
> aer 1Call? (2N) 75 < oo, for some s > 0 one can prove that for fixed admissible
control, the state equation has a unique solution in the space L2([0,T], H)® (S)_1.
A similar theorem to Theorem 11 for the optimal control can be proven. Moreover,
the corresponding optimal control problem with fractional noise can be solved.
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The following theorem gives the characterization of the optimal solution (58)
in terms of the solution of the stochastic Riccati equation (6).

Theorem 12. Let the conditions (A1)—(A5) from Theorem 11 hold and let P be a
coordinatewise operator that corresponds to the family of operators { Py }acz. Then,
the solution of the optimal control problem (4)—(5) obtained via chaos expansion
(56) is equal to the one obtained via Riccati approach (57) if and only if

CPa(t) Ca v (1) = Palt (zqudwadxw m®>,hﬂ>&k€N(&)

€N

hold for all t € [0,T7].

Proof. Let us assume first that (56) is equal to (57), then
-B*P y*(t) = -B*"P, y"(t) — B*K;
we obtain
(P(t) = Pq) y*(t) =K
The difference between P(t) and P4(t) is expressed through the stochastic pro-
cess IC, which comes from the influence of inhomogeneities. Assuming that P is a
coordinatewise operator that corresponds to the family of operators {P},ez, we

will be able to see the action of stochastic operator P on the deterministic level,
i.e., level of coefficients. Thus, for y given in the chaos expansion form (49) and

P(t)y* =, ez Pal(t)yi(t) Hy it holds
> (Pat) = Pua)ya() Ho = > kalt) Ha. (63)

acl a€Z,|a|>0
Since ko(t) = 0 it follows Py(t) = Py 0(t), for t € [0,T] and for |a| > 0

(Pa(t) = Pa,a(t)) ya(t) = ka(t),
such that (48) with the condition ko(7) = 0 holds. We differentiate (63) and
substitute (48), together with (6), (9) and (51). Thus, after all calculations we
obtain for |a| =0
(Po(t) — Pao(t)) yo(t) =0
and for |a| > 0

CiPa ) Catalt) = Palt)( L Carcirtirt) -ei(9)) KN
€N
Note that assuming (62) and P is a coordinatewise operator that corresponds to
operators P,, a € 7 we can go backwards in the analysis and prove that the
optimal controls (57) and (56) are the same. O

Remark 4. The condition that characterizes the optimality (62) represents the
action of the stochastic Riccati operator in each level of the noise. Note that the
stochastic Riccati equation (6) and the deterministic one (9) differ only in the
term C% P, (t) Cy, i.e., the operator C% P, (t) Co, o € T captures the stochasticity
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of the equation. Polynomial chaos projects the stochastic part in different levels
of singularity, the way that Riccati operator acts in each level is given by (62).

Remark 5. Following our approach the numerical treatment of the SLQR problem
relies on solving efficiently Riccati equations arising in the associated determin-
istic problems. In recent years, numerical methods for solving differential Riccati
equations have been proposed, e.g., [2, 3, 4, 23],

3.3. Further extensions
We consider now more general form of the state equation

y=Ay+Bu+T0y,  y(0)=1", (64)

for bounded coordinatewise operators A and B and T, where the operator T
for y =3 c7 YaHq is defined by

TO(W) =Y > Ts(ya—p) Ha- (65)
€T B<a

For more details about T we refer to [34, 44]. We point out that in [34] the authors
proved that (64), for fixed u, has a unique solution in space of stochastic gene-
ralized processes. Here, we will show that the optimal control problem (45)-(64)
for a specific choice of the operator T can be reduced to the problem (45)-(46),
and thus its optimal control can be obtained from Theorem 11. Moreover, one
can also consider the corresponding fractional optimal control problem and thus

apply Theorem 10 and Theorem 11. This extension is connected to the form of a
Gaussian colored noise (20) with the condition (21). We denote X = L?([0, 7], H).

Theorem 13. Let Ly be of the form (20) such that (21) holds. Let N be a coor-
dinatewise operator which corresponds to a family of uniformly bounded operators
{No}aez and let the operators A, B and C satisfy the assumptions (A1)—(A4) of
Theorem 11. Let the operator T be a coordinatewise operator defined by a family
of operators {To}aez, To : X = X, a € I, such that for |B| < |af

Na(ya) I |6| = 0
Tﬁ(ya_g) = lk Na,E(k) (ya,e(k)) s |ﬁ| = 1, z'.e., 5 = €(k), keN R (66)
0 1B >1

for yo € X, a € Z. Then the state equation (64) can be reduced to the state
equation (46). Thus, the optimal control problem (45)—(64) has a unique solution.

Proof. By the definition (65) and the chaos expansion method, the state equation
(64) reduces to the system:

1° for |a| =0
jo = (Ao +To) yo + Bouo, 0(0) =y, (67)
2° for |a| > 1
Jo = (Aa +T0) Yo + Batia + Y Tp(ya—p), ¥al0) = yo. (68)
0<B<
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From (66) it follows
To(Ya) = Na(Ya), a €Z and  T.o (Yg—ct) = Ng—c (Yo—ct) )

We define A, = A, + No, a € Z. Since the family {N,} is uniformly bounded
and {A,} are infinitesimal generators Cy-semigroups then the operators Aa are
also infinitesimal generators of Cp-semigroups and satisfy the condition (A1) of
Theorem 11, see [43]. Thus the system (67)—(68) transforms to:

1° for |a| =0
jo = Aoyo + Bouo, %0(0) =g
2° for |a| > 1
Yo = AaYa + Batla + D I No—eto (Ya—e); Ya(0) = -

keN

Define the operators Co = Ng and éa—e(k) =1l N,_.m, for || > 1, k € N.
Therefore, the obtained system corresponds to the state equation of the form

j=Ay+Bu+ COW, (69)

where A and C are coordinatewise operators corresponding to the families {Aa}

and {CL}, respectively. Moreover, the operators B and C satisfy the assumptions
(A2)—(A4) of Theorem 11. Therefore, it can be applied to the optimal control
problem (45)—(69). O

4. An example involving operators from Malliavin calculus

In this section we focus on semi-explicit ODAES, i.e., systems of a linear semi-
explicit equation subject to an algebraic constraint. These systems of equations are
motivated by applications, e.g., Stokes equations, linearized Navier—Stokes equa-
tions, etc. They are in most cases deterministic and finite-dimensional. However,
recently ODAEs with additive noise have been studied in [1]. Here, we consider an
ODAE of the form

y=Ay +TOy + B*u + f, By =g,

where the operator B is the It6—Skorohod integral § and B* the Malliavin deriv-
ative ID. The operator § is the adjoint operator of D, i.e., the duality relationship

E(F-i(y)) = E(DF, y)),

holds for stochastic processes y and F' belonging to appropriate spaces [41]. Thus,
we study the system

Y= Ay +ou+TOy + f, Dy=g. (70)

More details on properties of the generalized operators of the Malliavin calcu-
lus and the equations involving these operators can be found in [29, 31, 34]. Here we
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assume that the space X is the Hilbert space L*([0,T],H). Let u = > o7 ta Ha,
U € X, o€ Zand F =) 7> penfakéh Hay far € X, @ € Z, k € N and
{&k } ken are the Hermite functions. The Malliavin derivative operator D represents
a stochastic gradient in the direction of white noise and is a linear and continuous
mapping D: X ® (S)_1 - X ® S'(R) ® (S)_1 given by

Du = Z Z o U & Ho—ep

aET keN

A process u belongs to the domain Dom(ID) if and only if for some p € Ny it holds

> laf? fuallk (2N) 7P < oo

acl
The It6—Skorokhod integral ¢ is a linear and continuous mapping §: X ® S’'(R) ®
(8)-1 = X ®(S)-1 and is defined by 6(F) = > 7> pen fakHate, . Note that
the domain Dom(d) = X ® S'(R) ® (S)—_1. In quantum theory I corresponds to
the annihilation operator and ¢§ to the creation operator.

We reduce the system (70) to the following two problems: Dy = g, Ey = ¢°

and 6(u) = v and then apply the results from [29] and [31].

Theorem 14. Let A : X ® (S)-1 — X ® (S)_1 be a coordinatewise operator
corresponding to a uniformly bounded family of deterministic operators Aq : X —
X, a €Z and T be a coordinatewise operator that corresponds to a polynomially
bounded family of operators T, : X — X, a € L. Let g =3 c7 > e JakéuHa €
X®S'R)®(S)-1 and f € X ®(S)_1, such that Ef = Agy® + Toy®. Then there
exists a unique solution y € X ® (S)_1 andu € X ® S'(R) ® (S)_1 of the system
(70) with the initial conditions Ey = y° € X and Ejy = y' € X given by

y=1"+ > L > Gaeto i Ha (71)

|

a€Z,|a|>0 keN
and
o Voyte(k)
U*ZZ(@k‘Fl)m & Ha, (72)
€T keN

wherev =19 — Ay — T Oy — f.
Proof. The initial value problem involving the Malliavin derivative operator
Dy=g, Ey=y° (73)

can be solved by applying the integral operator on both sides of the equation.
Given a process g € X @ S_,(R) ® (S)-1,—¢, p € No, ¢ > p+ 1, represented in
its chaos expansion form g = Zaez ZkeN 9ok &k Ha, the equation (73) has a
unique solution in Dom(ID) represented by (71). Additionally, it holds

HZ/H%{@(S),L,Q < u’lI% +CHgH§(®s,l(R)®(5),l,,q < 0.

The operator A is a coordinatewise operator and it corresponds to an uni-
formly bounded family of operators { A, }acz, i-€., it holds || Ay|| < M, a € Z. For
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ye X ®(S)-1)Dom(D) it holds
1AY Ik es) 1, = 2 lAavalk @N) 7" < Mllylkaes)_,_, <o
acl

and thus Ay € X ® (S)-1,—4. The operators {T, }ocz are polynomially bounded
and it holds TO : X ® (5)-1,—¢ = X ® (5)—1,—¢. Since g, € X ® S_;(R) we can
use the formula for derivatives of the Hermite functions [21]. Thus,

: d k kE+1
Jo = Z Ja,k @ gﬁk = Z Gk @ (\/ggkl - 9 §k+1>

keN keN

and g, € X ® S_;_1(R). We note that the problem Du = y with the initial
condition Egy = y! € X can be solved as (73). Moreover,

191X e0s) 0 < M9 1% +ldlies . @es) .. <
Let f € X ® (S)—1,—4 and denote by v = § — Ay — TOy — f. From the given
assumptions it follows v € X ® (5)_-1,—4 such that Ev = 0. Then, v can be

represented in the form v =% _; o >1 voH, and the integral equation

o(u) = v,

has a unique solution v in X ® S_;_1(R) ® (S)_1,—q, for I > ¢, given in the form
(72), see [31, 35]. Moreover, the estimate

lulss)-r o < € (IWacs)-r o+ 1) - + Il )
also holds. 0
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THE STOCHASTIC LINEAR QUADRATIC CONTROL PROBLEM
WITH SINGULAR ESTIMATES*
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Abstract. We study an infinite dimensional finite horizon stochastic linear quadratic control
problem in an abstract setting. We assume that the dynamics of the problem are generated by a
strongly continuous semigroup, while the control operator is unbounded and the multiplicative noise
operators for the state and the control are bounded. We prove an optimal feedback synthesis along
with well posedness of the Riccati equation for the finite horizon case. Our results extend the ones
proposed in [C. Hafizoglu, Ph.D. Thesis, University of Virginia, Charlottesville, VA, 2006.] to the
case in which disturbance in the control is considered and a final time penalization term is included
in the quadratic cost functional.

Key words. stochastic linear quadratic control, singular estimate control systems, control of
stochastic PDEs
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1. Introduction. We consider the stochastic linear quadratic problem in infinite
dimensions with state and control dependent noise for the so-called singular estimate
control systems. These systems involve dynamics driven by Cp-semigroups and un-
bounded control actions, with the control to state kernel satisfying a singular estimate.
Such a situation is typical in boundary or point control problems where the action of
the control operator B is either only densely defined on a control space or its range is
outside the state space. In order to quantify the “unboundedness” of control, action-
singular estimates play a pivotal role. Such estimate describes the amount of blowup
of the “transfer function.” The latter is necessary for a rigorous analysis of control
problems and the associated feedback synthesis—be it deterministic or stochastic.

For deterministic systems, the infinite dimensional linear quadratic regulator
problem has been studied extensively in the literature [B1, BK, BDDM, LT2]. The
purpose of the theoretical framework is to address optimal control of systems of PDEs.
For most systems, the controlling mechanism can only be applied from the interface of
the system or at finitely many points or curves [BSW] which necessitates developing a
framework for studying boundary/point control. Such control actions can be captured
mathematically using maps which are not bounded with respect to the state space,
but take values in a larger dual space. The most natural class of problems where such
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description has been used are dynamics driven by analytic semigroups. The analytic-
ity property quantifies naturally the blowup of the transfer function when acted upon
by an unbounded operator (compatible with fractional powers of the generator). The
linear quadratic problem for systems driven by analytic semigroups with these type
of control actions was studied by [F2, AT, DI, BDDM, LT2]. The situation is much
more complicated in the non-analytic case, where there is no natural characterization
of singularity other than technical—often brute force—PDE estimates. However, for
some classes of control systems which combine hyperbolic and parabolic dynamics, it
has been observed that the control to state kernel satisfies a singular estimate which
generalizes the case of analytic semigroup dynamics [AL, ABL, L1, LT1, LTul]. Ex-
amples of systems which manifest this type of singular estimate arise frequently in
thermoelastic plate models [BLT, BL, LTu2], acoustic-structure interaction equation
[AL, BSS, LTu2], and fluid-structure interaction models [L.Tu3]. In view of the above,
a deterministic theory of feedback control has been developed for these classes of prob-
lems (singular estimate); see the references given in [L2]. However, in the stochastic
case the only results available in the literature covering unbounded control actions are
the ones dealing with analytic semigroups [D, GT1, F1]. The main goal of the present
work is to develop a stochastic treatment of unbounded control action problems aris-
ing i a general class of dynamical systems which exhibit singular estimates, but are
not necessarily analytic. One of the main challenges is to develop an approximation
framework which would provide rigorous justification of stochastic estimates. In the
analytic case, such a framework is very natural and based on the instant regularizing
effect of the dynamics. In the nonanalytic case, a development of regularizing proce-
dures lies at the heart of the problem. This will be accomplished by expanding and
building on the results presented in [H].

The stochastic linear quadratic regulator problem in finite dimensions has been
first studied by Kushner (1962) [K] using dynamic programming. The feedback char-
acterization of the optimal control and the derivation of a matrix Riccati equation
satisfied by the gain matrix is due to Wonham (1968) [W1, W2]. A complete theory
for the stochastic linear quadratic optimal control problem in finite dimensions can
be found in [YZ, DMS, FS]. It is notable that the associated Riccati differential equa-
tion in the stochastic linear quadratic problem is a deterministic differential equation,
and thus the relation between the optimal control and the optimal state which are
random variables is purely deterministic. The linear quadratic problem with random
coefficients in finite dimension has also been investigated in [CLZ]. In this case, the
associated Riccati equation is a backward stochastic equation.

Several early works in the literature have addressed stochastic optimization in
infinite dimensions and the application of a semigroup framework to the stochastic
setting with bounded inputs [B2, B3, C1, FG, Tel, Te2]. The infinite dimensional ana-
log for the stochastic linear quadratic problem and the Riccati equation was treated
by Ichikawa [I] via a dynamic programming approach, where he considered dynamics
driven by Cj semigroups and bounded control and noise operators. In another early
work, Curtain [C2] provides a semigroup framework for studying the infinite dimen-
sional linear quadratic Gaussian along with several examples and applications. A com-
plete Riccati feedback synthesis of the infinite dimensional problem with disturbance
in the state has been addressed by Da Prato [D] for systems with analytic dynamics
and a particular unbounded noise operator which captures the first derivative of the
state in a parabolic equation. The analysis was extended to boundary controls by
Flandoli [F1] and in particular for analytic systems with Neumann-type controls. In
[GRS], the authors consider a more general cost functional and a semilinear state
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equation driven by analytic dynamics, and proceed to solve the problem using a
Hamilton-Jacobi-Bellman approach. For systems with singular estimates, which is
our primary consideration, the stochastic linear quadratic problem has been studied by
one of the authors in [H], but with no disturbance in the control (D = 0) and without
finite time penalization in the cost functional (G=0). In [U], the time varying prob-
lem has been also addressed for systems driven by strongly continuous evolutions with
bounded control and noise operators. In [DMP, D2], the author investigates stochas-
tic linear quadratic differential games involving a stochastic differential equation with
fractional Brownian motion with dynamics generated by analytic semigroups. Some
recent interesting work has also treated the linear quadratic problem with random co-
efficients along with the associated backward stochastic Riccati equation [GT1, GT2].
Some recent works have also addressed the question of numerical implementation and
finite dimensional approximation schemes of the infinite dimensional stochastic linear
quadratic regulator [LM, LMT2, DMSt].

In view of the above the main novel contributions distinguishing this work from
other publications are (1) this is the first treatment of stochastic unbounded control
systems in the nonanalytic setting and (2) the framework allows for consideration
of terminal penalization as well as control action perturbed by noise. Indeed, in the
present paper, we consider a more general setting including disturbance in the control,
and we also consider the case of the Bolza problem which allows for a finite time
penalization in the objective functional whose expected value is to be minimized. This
latter aspect of the Bolza—Meyer problem is particularly challenging in the unbounded
control case. As shown [F1], the solution to the optimal control problem may not
exist, unless a certain closeability hypothesis is introduced. Under such a necessary
hypothesis, we provide an optimal feedback synthesis and a Riccati equation for the
stochastic linear quadratic optimal control in the context of singular estimate control
systems with noise dependence in both state and control.

In the deterministic setting, variational analysis is used to obtain explicit formulas
for the optimal control before proceeding to derive the associated Riccati equations
[LT1, D]. However, such explicit formulas are not available in the stochastic setting—
thus preventing applicability of a method of pivotal importance in the deterministic
and singular case. Moreover, in our setting, the lack of smoothing does not allow for
the application of the stochastic maximum principle or a solution via the Hamilton—
Jacobi-Bellman equation unlike the case of analytic dynamics [GRS]. In particular,
the state trajectories are mild solutions of the state equations and not necessarily
differentiable in the classical sense.

Therefore, in our approach, we derive a differential Riccati equation associated
with the optimal stochastic linear quadratic control problem, by first showing the exis-
tence of a solution to an expanded system in the integral form of the Riccati equation
via a specially crafted fixed point argument. Here we generalize the arguments given
in [H]. We then proceed to derive the differential Riccati equation which requires
making sense of the weak derivative of the evolution generated by deterministic dy-
namics with respect to initial time. Here, the obstacle, as in the deterministic case,
lies in the fact that the terms of the Riccati equation may not be well defined due to
the unboundedness of the control operator. There have been counterexamples in the
literature where the Riccati equation is not well posed in the case of unbounded con-
trol operators [BLT]. Another difficulty is the finite state penalization which gives rise
to possible singularities at the final time and require choosing appropriate spaces to
make sense of the quadratic term in the differential Riccati equation [LTul]. Finally,
we then use a dynamic programming argument to show that the minimum of the
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quadratic functional is realized when the control is expressed in feedback form via
the solution to the differential Riccati equation. Here, we proceed with the dynamic
programming argument on a regularized version of the problem since the It6 formula
only applies to C? functions, while the state and control trajectories are not differ-
entiable in the classical sense. For this reason, a forward approach via a maximum
principle or a variational method to solve for the optimal control before proceeding
to derive the differential Riccati equation is not applicable in this setting.

We first formulate the optimal control problem. Let the abstract stochastic dif-
ferential equation

(1.1) dy(t) = (Ay + Bu) dt + (Cy + Du) dWy,
y(s) = =,

be defined on a Hilbert state space H, where A and C' are operators on H while B
and D are operators acting from the control Hilbert space U to the state space H.
We take C and D to be bounded operators but A and B are typically unbounded.

Let (2, F,P) be a complete probability space, and W; a one dimensional real
valued stochastic Brownian motion on (2, F, P) and F; the sigma algebra generated
by {W, : 7 < t}. We assume that all function spaces are adapted to the filtration F;.
We denote by L2 ([s,T]; H) all stochastic processes X (t,w) : [s,T] x Q — H such that

L [TIX @)% dt < 00 ace. in
2. X(t,-) is Fy-measurable Vt € [s,T].

We also denote by M2([s,T]; H) the space of all strongly measurable square
integrable stochastic processes X : [s,T] x Q@ — H such that fST]E (IX@®)[1%) dt <
oo, and by L*(Q; H'([s,T];U)) all strongly measurable square integrable stochastic
processes u : [s,T] x @ — U such that ngE (lu@®)|Z) dt + ngIE (Jlue()||F) dt < oo.
The objective is to minimize the quadratic cost functional

T
(12) Jsw.u) = B < | Rl + ) e+ ||Gy<T>|%)

S

over all u € M2([s,T];U), where R and G are bounded linear observation operators
taking values in Hilbert spaces W and Z, respectively. The assumptions we consider
are the following.

Assumption 1.1.
1. Operator A is linear and generates a Co-semigroup e4* on H.
2. The linear operator B acts from U — [D(A*)]’ or, equivalently, A™1B is
bounded from U — H.
3. The noise operator D : U — H is a bounded linear operator.
4. There exists a number v € (0,1/2) such that the control to state map kernel
e! B satisfies the singular estimate

&
(1.3) le** Bullm < lullu

for every u € U and 0 < t < 1.
5. The operators R: H - W, G : H — Z, and C : H — H are all bounded
linear operators.

Remark 1.2. Our framework also allows for H-valued Brownian motion W, where
(Cy+ Du) dW, is interpreted as a Wick product (Cy + Du) < dW, of generalized ran-
dom variables on Gaussian white noise probability spaces [HO]. See [LMT1] for chaos
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expansion treatment of the abstract stochastic differential equation and the linear
quadratic control problem in Hilbert spaces.

Remark 1.3. The singular estimate (1.3) should be interpreted in the following

precise sense:
c
(4 A™ Bu, A¢)| < Tllullul|él[n for all ¢ € H.

Remark 1.4. The results can also be extended to the case when D is an unbounded
operator satisfying a similar singular estimate condition to that satisfied by B in
Assumption 1.1(4). This condition allows the inclusion of systems with noise in the
boundary control into the theoretical framework developed below, as illustrated by the
example included in the last section. However, to spare the reader further technical
details, we will just assume D is bounded throughout the paper.

Remark 1.5. In the case when there is no final state penalization, i.e., (G=0), the
value of 7y in (1.3) could be pushed up to 1 —as in the deterministic case [LTul]. How-
ever, the majority of “nonanalytic” examples exhibit singularity of the type assumed
in (1.3). For this reason, we focus on this class only.

In sections 2 and 3, we state our main results and provide some preliminary
results on mild solutions to the stochastic abstract differential equation (1.1). In
section 4, we prove the existence of a local-in-time solution to the integral Riccati
equation via a fixed point argument and we investigate the regularity properties of
the Riccati operator. In section 5, we derive the differential Riccati equation from the
integral form. In section 6, we show the relation between the solution to the Riccati
equation and the optimal control or minimizer of the cost functional (1.2) via dynamic
programming, and then extend the result globally in time and show uniqueness of the
solution to the Riccati equation in sections 7 and 8, respectively. We then return
to complete the proof of the main results Theorems 2.1 and 2.2 in section 9. We
conclude the paper in section 10 with two examples to illustrate the theory: (1) a
hinged thermoelastic plate model with noise and control through Neumann boundary
conditions and (2) a linearized fluid-structure interaction model with boundary control
which we briefly discuss in the next section.

1.1. Motivating example—{fluid-structure interaction. In order to draw
the attention of the reader to the significance of the assumptions imposed above on
the control problem we provide an example of a fluid-structure interaction control
problem with noise which became a motivation for our abstract framework [LTu3].
In the domain €2, we consider a partition into an interior region 23 and an exterior
region Q ¢, where Q is occupied by a fluid while € is occupied by a solid body. The
interaction between the solid and the fluid takes place on the boundary I's which
separates both regions. The dynamics of the fluid are captured by a linear Stokes
equation with multiplicative noise satisfied by fluid velocity u and fluid pressure p:

(1.4) du — Audt+ Vpdt = cpudW, in  Qp x [0,T7,
(1.5) divu=0 in Qfx[0,T].

The dynamics of the solid are modeled by a linear second order equation with multi-
plicative noise

(1.6) dwy —divo(w)dt = cowdW;  in Qg x [0,T]
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in the solid displacement variable w, where ¢ is the stress tensor defined by
oij(w) = Adsj divw + 2pe€;5 (w)

for 4,7 = 1,2,3 and constants A, u > 0, and where € is the strain tensor defined by

( )_1 8wi+8wj
=9\ 0z, " Omi )

Here, W; is a real Brownian motion on a complete probability space (X, F, P).
The interaction between the two bodies at the common interface I's is captured
by the following transmission boundary conditions matching velocities and stresses:

(1.7 u=w; on I's x [0,T],
(1.8) e(w)vy —pr=c(wyy+g+gW(t) on I's x [0,7T],

where v is the outward unit normal and g is a control function acting as a force. On
the outer part of the boundary I'y, we prescribe the no slip boundary condition

(1.9) u=0 on 'y x[0,7T].

When one is given initial conditions in the finite energy space ug € H =
{L£2(Q) : div u = 0,u-v|p, = 0} and (wo,w1) € H'() x L*(), the problem
is to find a control g € L*(3; L?([0,T]; L*(Ts))) to minimize the energy functional

(1.10) J(u, w, wy, g) = E (/0 (lu(®) = ur®)7, @, + 9O 22(r,)) dt

+w(T) = up |, + lw(T) - wDI%Q(QS)>,

where up € La(Qf), wp € La(Qs), ur € La(Q2y x [0,T]) are given tracking targets.

2. Main results. We first state the result pertaining to existence, regularity,
and uniqueness of the solution to the optimal control problem.

THEOREM 2.1. Under Assumption 1.1, there exists a positive self-adjoint operator
P(t) € C([0,T); L(H)) satisfying the Riccati equation
(Pz,y) + (PAz,y) + (A*Pz,y) + (C*PCz,y) + (R* Rz, y)
(2.1) — ((B*P + D*PC)*(I + D*PD)"(B*P + D*PC)z,y) =0,
(2.2) I+ D*P(t)D > 0,
(2.3) P(T)x = G*Gu,

for every x,y € D(A). Moreover, the following holds:
(i) The minimum of the functional (1.2) is given by

inf  J(s,z,u) = (P(s)z, z).
B (s;z,u) = (P(s)z,z)

(ii) The solution P(t) is unique in the class of positive self-adjoint operators in

C([0,T]; £(H)).
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(iii) The solution P(t) satisfies the estimate

1POylla <cllyllg VYtel0,T), yeH.

(iv) The operator B*P(t) satisfies the estimate

I1B* Pyl < Iyl VE€0,T), yeH.

c
Ty

We next state the result on the feedback form of the optimal control and the
associated differential Riccati equation satisfied by the gain operator.

THEOREM 2.2. Under Assumption 1.1, the optimal control problem of minimizing
(1.2) subject to the differential equation (1.1) with initial condition x € H has a
unique solution u°(s,-;x) € L2(Q;C([s,T);U)) and a corresponding optimal state
yO(s, s x) € L2(Q;C([s, T); H)). Moreover,

(i) the optimal control u® satisfies the estimate

E(||u’(s, t; 2)l[3) < Vitels,T);

¢ 2
m”x 7
(ii) the optimal control y° satisfies the estimate

E(ly’(s, s 2)l7) < cll=llf, V¢ € [, T

(iii) the optimal control u® has the feedback characterization in terms of the opti-
mal state

u’(t,s;2) = —(I + D*P(1)D) " (B*P(t) + D*P(t)0)y° (1),
where P(t) is the wunique solution to the differential Riccati equation
(2.1)-(2.3).

Specific examples motivating the theory presented above include coupled PDE
systems with boundary or point control where hyperbolic and parabolic dynamics are
interwined. These, in particular include thermoelasticity, fluid-structure interactions,
and models arising in structural acoustics [L2, ALJ.

Remark 2.3. The analysis and result above easily extends to the case 1/2 <~ < 1
when G = 0. However, for nonzero G, this case 1/2 <y < 1 is more challenging since
the operator

T
GLr =G / AT-T) B dr
0

is no longer bounded C'(L?(Q); L%([s, T); U)) — Z. In fact, the existence of an optimal
control in this case requires closability of GLy [LT1]. Such a condition is trivially
satisfied when G is bounded invertible H — Z.

3. Preliminaries. Following [DZ1], we say y(t, s;x) is a mild solution of the
stochastic differential equation (1.1) if
1 oy(t,s;z) = Aty 4 f: AT Bu(r)dr + f; A=) Cy (1) dW,+
fst A=) Du(1) dW,;
2. y(t, s; ) takes values in D(C);

3. y(t, s; x) satisfies
T
P (/ Iyl dr < oo) ~1
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P (/ [Cy(r)I3 dr < oo> 1

4. Bu and Du are F; measurable Bochner integrable H valued functions.
Results on the existence of mild solutions to (1.1) for a general forcing can be
found in [DZ1, HO]. By strong continuity of the semigroup, we know there exists
numbers a, M > 0 such that |e?tz||y < Me®||z||g for all z € H and t € [s,T]. We
start with the existence of a mild solution to (1.1), for which the proof is a standard
argument, [H].

and

THEOREM 3.1. Let v < 1. Given a function u € M2([s,T);U) and an initial
condition y(s) = x € H, there exists a unique mild solution y € M2([s,T); H) to the
abstract differential equation (1.1). Moreover, if v < 1/2 theny € L*(Q; C([s, T]; H)).

4. Integral Riccati equation. In this section, we establish the existence of a
solution to an integral form of the Riccati equation. The Riccati equation is, by itself,
deterministic. However, its form is generated by the underlying stochastic process.
This results in several additional terms (with respect to deterministic processes) which
require subtle treatment. In fact, the relevant integral form of the differential Riccati
equation is

T T
P(t) = / eV T R*R® (7, t) dr + / A" TN P(r)CB(T, t) dr
t

t

- /T eV "D P*(r)D(I + D*P(r)D)” (B*P(r) + D*P(7)C)®(r,t) dr

t

(41) +eMTIGEGO(T ),
subject to the condition
(I+D*P(t)D)x,z) >0 Vr#0andz e,
where ®(¢, s) is the solution to the equation
(4.2)
B(t,s)x = Al g / t A" B(I+D*P*(1)D) " (B*P(1)+D*P(7)C)®(r, s)x dr.

S
Our main result in this section is the existence of local-in-time solutions to the above
integral equations.

THEOREM 4.1. The integral equations (4.1) and (4.2) have unique local-in-time
solutions P(t) € C([s,T|; H) and ®(-,s) € C([s,T]; H) for s = Tiae < T chosen
such that T — Tynaz 18 sufficiently small. Moreover, the solution P(t) is a positive
self-adjoint operator on the space H and satisfies the estimate

(4.3) |B*P(t)z||s < —ells Vo€ H,telsT).

c
(T —1)

The solutions will be extended to a global solution on the whole interval [s,T] in
section 7. One notices that the integral equation (4.1) depends on composition op-

erators B*P and PB which a priori are not defined at all. It is not even clear that
B*P can be densely defined (due to the unboundedness of B). However, the validity
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of the singular estimate will enable a rigorous analysis of this equation. We also no-
tice that in the deterministic case one will only have the first and the last term in
(4.1). Instead, in the present stochastic case the appearance of the third term pro-
vides quadratic dependence on the composition PB and P. Classical deterministic
methods (either variational or direct) are no longer applicable. In order to tackle
the problem of existence, we shall formulate a rather special iteration scheme which
enables us to “unscramble” the convoluted dependence on the troublesome operator
B* P which a priori has no reason to be even densely defined. After a few preliminaries
in section 4.1, the proof will proceed in steps. _

Step 1: In section 4.2, we first prove existence of a solution (P, (i)) to the linear
integral equation

- T . T .
P(t) = / eV D R*RO(7,t) dr + / AN (1)Q(T) (T, t) dr
t . ) R ) Ii
+ / eV (1) P(T)C () (7, t) dr
t

T
_/ A TGN (1) B P(7) (7, 1) dr + e TG GO(T ),

t

t
B(t, )z = ez — / A2 B (2)® (2, s)a dz,

S

where Q(t), C (t), and 12)(75) are given bounded operators satisfying the singular esti-
mate (4.6).

Remark 4.2. Note these integral equations formally correspond to the system of
linear equations

SP() = ~R'R - Q10)Q() - A°P(H) — P()A ~ CH(OPO)C() + I*()B Plo),
Lblt,s) = (A~ BID)B(0,5),
P(T) =G*G, ¥(s,s) =1.

Step 2: In section 4.3, we next show that the solution Pis a positive self-adjoint
operator in C([s, T]; L(H)) and ®(t, s) is an evolution while B*P(t) satisfies the esti-
mate (4.3).

Step 3: We now define the initial variables

Py(t) = AT GrGeAT—1),

Qo(1) = (I + D*Py(7)D) " (B*Py(7) + D*Py(7)C),

Co(1) = C = D(I + D*Py(1)D) " (B*Py(1) + D*Py(1)C),
Vo = (I + D*Py(1)D) Y (B*Py(7) + D*Py(7)C).

This choice of the positive operator Py guarantees that B*Py(t) is bounded H — U
for t € [s,T) and satisfies (4.3), and that (I + D*Py D)~ is well defined and bounded
on U.
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Step 4: We next set up the following iteration scheme on the equation from Step 1:

T T
Piia(t) :/ e TR R, (7, 1) d7'+/ e QI (1)Qi (1) (7, t) dr
t

t

T
+/ A T (1) Py (1) Ci (1) D4 (1, 8) dr
t

T
- / eA*(Tit)i/;i*(T)B*PiH(T)é’i(ﬂ t)dr + e TG GP (T, 1),
t

where &;(t, )z = eAt=5)g — fst eA0=2) Biy; (2)®;(z, s)x dz, and

Qi(t) = (I + D*Py(t)D)" Y (B*P;(1) + D*Pi(1)C),
Ci(r) = C — D(I + D*P,(t)D) " (B*Pi(1) + D*Pi(1)0),
; = (I + D*P;y(1)D)~Y(B*Pi(1) + D*P,(1)0).
Step 1 guarantees the existence of a solution (Pj11,®;) at each step of the iteration,
and that P,y is a positive self-adjoint operator, such that B*P;,; is bounded for t €
[s,T) and satisfies (4.3). This in turn gives sense to the operator (I + D*P;,(7)D)~*
in £(U) which is needed in the next step of the iteration.

Step 5: Passing through the limit, we finally show that the sequence P; converges
to the solution P of the original integral equation (4.1) in C([s, T]; L(H)).

4.1. Preliminaries. We first introduce the space C([s,T]; L(H)) of the contin-

uous family P(.) of bounded operators on the space H, where

Pllors = su P(t .
| Pllc (s, 0m)) 5§t£T|| )l e

Following [H], we also introduce the space C(7s; L(H)), where
T.={t7)eR*:s<7<t<T}

This space C(7s; L(H)) is a Banach space equipped with the norm

[ fllecr:camy) = (tSHPT ILf () ooy

T)E

We also introduce the Banach space C,([s,T];Y) (following [BDDM]) of contin-
uous functions on [s,T") into a Banach space Y, which is equipped with norm

flle, s vy = sup (T =8)7|[f(£)]ly < oc.
tels,T]

The space accounts for possible singularities at time T of order . We start with the
following useful lemmas [L1, L2, LTul].

LEMMA 4.3.

(i) Themap Ls = f; eAt=7) Bdr is continuous from Cy([s,T);U) to C([s, T]; H)
fory < 1/2.

(ii) The adjoint map L% = ftT B*eA" =Y dr s continuous from C,([s, T); H) to
C([s,T;U) for v < 1/2.
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4.2. Linear integral equation. We first consider the linear integral equations

T * A T * ~
P(t) :/ e (T_t)R*RCI)(T7 t) d7'+/ e (T_t)Q*(T)Q(T)q)(T,t) dr

t t

+ / : A" T (1) P(7)C(7)®(T, t) dr

T
(4.4) - / e Y (1) BEP(1)d(r, t) dr + e T GFGO(T 1),
t
and
¢
(4.5) B(t, )z = ey — / A2 Bi(2)d (2, s)x dz.

In the next lemma, we prove the existence of solutions P and <i>(t, s) to integral
equations (4.4) and (4.5).

LEMMA 4.4. Assume Q(t), C(t), ¥(t) are given bounded operators for every t €
[s,T) satisfying the conditions
rlle] =

(4.6) Q@) el a, IC@) el ar, 1) < T—t Ve e H,telsT),

for some suitably chosen r > 0. Then, there exists a unique local-in-time solution
P e C([To, T); L(H)) and O(-,-) € C(Tr,; L(H)) to the set of integral equations (4.4)
and (4.5) such that

(4.7) 1B*P(t)z|m < WIIZ‘IIH.

To prove the existence of a solution P and <i>, we use a fixed point argument on
the map A defined by

f A11(g)(t) + Ai2(g)(t) + Aiz(f, 9) () + Aralg, ) (t) + Ais(g)(t)
Al g | ()= A2(g)(2)
h Az1(g)(t) + Az2(g)(t) + Asz(f, 9)(t) + Azal(g, h)(t) + Ass(g)(t)

for t € [s,T] on the space X = C([s,T]; L(H)) x C(Ts; L(H)) x Cy([s,T); L(H,U)),

where

T
An(g)(t) = / AR Ry(r, 1) dr,

t

Aalg)(t) = / A TDQH(1)Q(r)g(r ) dor,

t

Aus(fog)(t) = / A C=0E (1) f(r)O(r)g(m ) di,

t

T
Avag, h) () = — / A TG () () g 1) di,

t

T
Ais(g9)(t) = e TG GeAT™0 — A (TG G / AT Bi(r)g(r,t) dr,
t
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and
A2(f797 h) = eA(t_s) - LSB'(Z}()Q(y )(t)7
while
T *
Asi(g)t) = | BV UYR*Ry(r,t)dr,
Asa(g)(t) B*e TIQN(T)Q(r)g (7 ) dr,

T

As3(f.9)(t) B*eN O (r) f(r)C(7)g(r, 1) dr,

If
,\.\He\

Asa(g, h)(1) = — / Bt e Dk (1) (r)g () d,

t

T
Ass(g)(t) = BreA TG GeAT—1) — B*eA*(T_t)G*G/ GA(T_T)B’L/AJ(T)Q(T, t)dr.
t

In order to deal with unboundedness of control operator B, we seek a fixed point
of the system of three equations defined by three variables (operators) which are
f=P,g=o, and h = B*P. All these three quantities will be defined on the
space X. Clearly we will have h = B* f—which then will lead to “hidden” regularity
results obtained for the gain operator B* P. The fixed point f, g, h here represent the
operators P(t), ®(t,s), and B*P, respectively.

LEMMA 4.5. The map A maps the ball B,.(0) C X into itself continuously, and

is a contraction on B,(0) for suitably chosen r > 0 and s = Ty such that T — Ty is
sufficiently small.

Proof. Let [f,g,h] be an element in the ball B,.(0). We estimate the norm of
A[f,g,h] in X, by considering every component. We spare the reader the technical
details of the estimates. Defining cs by

T — 1—v T — 1—2v
Cs = max c(Tfs),c( ) ,c( ) ,
1—v 1—2y

and based on these estimates we impose the condition 6cM2e2*(T=%) 4 6¢, Me*(T—5) x
(r* + 73 + 72 +r) < r or, equivalently,

(4.8) M2 T=3) e MeT=9) (74 43 442 4 1) — /6 < 0.
Let r = 12¢M?e2°T and choose s such that (T — s) is sufficiently small and so that

cMeoT
R I s pr

This guarantees that A acts from B,(0) into B,(0) in X for our choice of s and
r. The contraction property can be shown by estimating the norm of the difference
of Alf1,91,h1])T and A[f2, g2, ho]T. Choosing s = Tp so that T — Ty is sufficiently
small we have that A is a contraction on B,(X) and hence has a unique fixed point
(f,g,h) € X. o
From the above lemma, we have that the fixed points (f,g,h) represent solutions
(P(t),®(t,s), B*P(t)) € X to (4.4) and (4.5). Estimate (4.7) follows from the mem-
bership of B*P in C,([s,T); U). This proves Lemma 4.4.
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4.3. Positivity and self-adjointness of P. Let s = To. In the following
lemma, we prove that the solution P to (4.4) is positive, self-adjoint in addition to
the evolution property of ®(t, s) on the space C(Ts; L(H)).

LEMMA 4.6.
(i) The operator ®(t,s), which is defined by (4.5), is an evolution operator on
C([s,T]; L(H)).
(ii) The operator P solving the integral equation (4.4) is self-adjoint.
(iii) The operator P solving the integral equation (4.4) is positive.

Proof.

(i) This follows from a standard argument using the evolution property of the
semigroup.

(ii) Taking the inner product of (4.4) with y € H and substituting the expression

eA(T—t)y:(i)(T’t)y+/ AT B (2) (2, t)y dz
t

from (4.5) into the equation, we have

(P(t)z,y) = t (RO(7,t)x, RO(1, t)y) dr

(R*R® (7, t)x, / ’ AT Bi(2)D (2, t)y dz) dr

t

+

N

(Q(N)®(r, 1)z, Q1) (1, t)y) dr

+

\,\@\e\ﬂe\e\e\

T

+ [ @ memd e, / AT Bi(2) (2, 1)y dz) dr

t

+ (C*(T)P(T) (T)<I>(T t)x, <I>(T t)x) dr

T

+ [ (C*(nP(7)C(r)d(r, t)w/ AT B (2) (2, )y dz) dr

t
T

(" (1)B*P(7)® (7, t)z, &(r, t)y) dr

(* (1) B*P(7)®(7, )z, /T AT B (2)® (2, t)y dz) dr

t t

+ (GO(T, t)z, GO(T, t)y) + (G*GH(T, t)z, / ' eAT=2) Bij(2)® (2, t)y dz).

Changing the order of integration, the second, fourth, sixth, and eighth terms
combine into

/tT /T<B*6A*(TZ)R*R<1>(T, )z, h(2)® (2, t)y ) dr dz
+/ / (B*eY" T=AQ*(1)Q(7)D (7, ), ) (2)® (2, )y ) dr dz
/ / (B*e" =20 (1) P(1)C(1) D (7, t)a, 1 (2)D(2, t)y) dr dz
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T T . . _ . . .

_ / / (B e =2 () B B()b(r, )z, §(2)B(, )y) dr d
tT z ) ) ) )

+/ (B*eA" T=AG*GO(T, t)x, b (2)®(2, t)y dz
t

T

:/ (B*P(2)®(z, t)z, (2)® (2, t)y )dz,
t

which cancels with the fifth term. Therefore we have

(P(t)z,y) = /t (R®(7, )z, RO(7, t)y) dr + /t (Q(T)®(r, )z, Q(1)®(7, t)y) dr

(4.9) + /t (CH (1) P(T)C(T)®(7, ), B(7, t)y) dr + (GO(T, t)z, GB(T, t)y).

On the other hand, we have

T

(P*(t)z,y) = /t (RO(7, )z, RO(T,t)y) dr + /t (Q(T)®(r, )z, Q(7)®(T, t)y) dr

T
+ /t (C*(7)P*(1)C(T)®(7, t)x, B (7, t)y) dT + (GD(T, t)x, GO(T, t)y).
Taking the difference of the two last equations, we get
~ ~ T ~ ~ ~ N A A
([P =P(t)z,y) :/t (C*(D)[P = PT[(r)C(T) (7, t)z, D(7, t)y) dr.

Estimating the left side, and taking the supremum over all z of unit norm and all y
in H, we obtain

1B(t) — P*(t) | cqar) < o / 1B(r) = P*(1) |l eqany

Using Gronwall’s inequality we conclude that the left-hand side is zero and hence
P(t) = P*(t) for all ¢ € [s,T].

(iii) To prove positivity, we appeal to (4.9). The operator P is then the unique
fixed point of the map S on C([s,T]; L(H)) defined by

T

(S(P)(t)z,y) = /t (R®(7, )z, RO(T,t)y) dr + /t (Q(T)®(r, t)x, Q(T)D(7, t)y) dr
+ /t (C*(T)P(T)C(T)®(7, t)x, ®(7, t)y) dT + (GD(T, t)z, GO(T, t)y).

The map S clearly maps positive operators to positive operators. The set of positive
operators denoted by X1 in £L(H) is a convex set, and the existence of a unique fixed
point for S on C([To,T);X4+) follows by the contraction mapping theorem, for Tj
chosen so that T'— Tj is sufficiently small. 0
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4.4. Step 4: Proof of Theorem 4.1.
Proof. To derive the integral equation (4.1), we use the following iteration scheme

T T
Pia(t) :/ e TR R, (7, 1) d7'+/ e TTNQN()Qs (1) i(, t) dr
t

t

T
+/ AT (1) Py (1) Ci (1) D5 (1, 1) dr
t

T
(4.10) —/ A TG (1) B Py (1) @i (7,8) dr + eV TG GO(T 1),
t

where

Qi(1) = (I + D*Pi(7)D) " (B*Py(1) + D*Pi(1)C),

Ci(r) = C — D(I + D*P(r)D)"Y(B*Pi(t) + D*Pi(1)C),
U; = (I + D*P;(7)D)~Y(B*P,() + D*P;(7)C),

Po(t) — eA*(Tft)G*GeA(Tft%

and <i>1- solves

¢
(4.11) B;(t,s)x = Mg — / A2 By (2) (2, s)a dz.

S

Using the results of Lemmas 4.4 and 4.6 from previous sections, each iteration P; is
well defined, positive self-adjoint, and bounded with

1 Billc s, ey <)

I1B*Pi(t)z||m < ]| &

"
T
Vz € H and Vi € N, while ®; € C(T;; L(H)) such that

@iller: ey <

and this guarantees that the inverse (I + D*P;(t)D)~! is well defined and bounded
on H at each step. Using standard estimates, it is not difficult to show that the
sequence {P;, ®;, B*P;} is Cauchy in X for s = T4 > T chosen such that T —
Tz 1s sufficiently small, and thus converging to some (P(t),®,h(t)) € X with
h(t) = B*P(t). Passing through the limit in (4.10) and (4.11), we obtain (4.1)
and (4.2). O

5. The differential Riccati equation. In this section, we derive the differen-
tial Riccati equation from the integral Riccati equation (4.1). Our main result is then
the following.

THEOREM 5.1. The Riccati operator P(t) solving the integral Riccati equation
(4.1) is a solution to the differential Riccati equation

(P(t)z,y) = —(Ra, Ry) — (Az, P(t)y) — (A*P(t)z,y) — (C*P(t)Cx,y))
(5.1) +((I + D*P(t)D)"Y(B*P(t) + D* P(t)C)x, (B*P(t) + D* P(t)C)y)

for all x,y € D(A).
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A critical step in this process is to establish a “singular estimate” on the transfer
function corresponding to the controlled dynamics. This amounts to the estimate of
singularity on the composition operator ®(¢, s)B. To accomplish this we need several
preliminary results. To carry out the derivation, we shall need to make sense of the
derivative of the evolution ®(t, s) with respect to the initial time s (in the weak sense).

5.1. Preliminaries. We first define the operator M.
DEFINITION 5.2. Denote by M the operator

M= / | ACDB(I 4 D P(r)D) (B P(r) + D*P(r)C) dr

We also define the space ,C([s, T|; H) following [BDDM].

DEFINITION 5.3. Let

JC([s,T; H) = {f e C((s,T);H): sup (t—3s)|fO)]lx < oo}

te(s,T)
The space ,C([s,T]; H) is indeed a Banach space with the norm

[£l,c = sup (t—=3)"[|f ()]l
tels,T]

for v < 1/2. In the following lemma, we establish some of the properties of the
operator M.

LEMMA 5.4.
(i) The operator eAC=*)Bx € ,CO([s,T]; H) Y € U and satisfies the estimate

e Bz ||, ¢y, < ellz]u-

(ii) The operator M is bounded on ,C([s,T]; H) and satisfies the estimate

Myl sy < (T =) Ngll, csrm

for every g € ,C([s,T]; H).
(ili) The operator (I + M) is invertible on ,C([s,T]; H) and the inverse satisfies
the estimate

1T+ M) gl esimm < (T = 9)llgll, s r:m)-
(iv) The evolution ®(t,s) satisfies
B, 8)e =T+ M)Ay veeH.

Proof. The proofs are similar to the deterministic case in which C' = D = 0; see
[LTul, Tu]. o

5.2. Regularity of the “transfer function.” We now make sense of the
transfer function ®(¢,s)B and the derivative of the evolution ®(t,s) with respect to
initial time in an appropriate singular space, which is crucial in the derivation of the
differential Riccati equation.
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PROPOSITION 5.5.
(i) For allz € U and v < 1/2, we have ®(t,s)Bx € ,C([s,T); H) and
c

(ii) For allx € D(A), the derivative of the evolution ®(t, s)x with respect to initial
time in the weak sense is

0

%@(~, s)x = —®(-,s)(A — B(I + D*P(s)D) "' (B*P(s)

+ D*P(s)C))x € ,C([s,T]; H),

and satisfies the estimate

|20008:

C
< c|lzllpay + ——— ]|
" W @5y

Proof. The proof follows from Lemma 5.4; see [LT1, Tu]. |

5.3. Proof of Theorem 5.1.
Proof. Let z,y € D(A) and consider the integral Riccati equation satisfied by
P(t) in (4.1). Taking the derivative with respect to ¢, we have
(P(t)z,y) = —(R*Rx,y) — (C*P(t)Cx,y) + (C*P(t)D(I + D*P(t)D) " (B*P(t)
+ D"P(t)C)z,y) — (A"P(t)r,y)

T ) T o
+ / e TR R—®(r, )2,y ) + / A TICP(r)C 8 (r ),y
. ot t ot

— < / ’ A" TV C*P(r)D(I 4+ D*P(r)D) " (B*P(7) + D*P(T)C)%cp(ﬁ t)z, y> .

We now appeal to Proposition 5.5(ii), where the expression for %(I)(T, t) was derived
so that we obtain

(P(t)z,y) = —(R*Ra,y) — (C*P(t)Cx,y) + (C*P(t)D(I + D*P(t)D)~*(B*P(t)
+ D*P(t)C)z,y) — (A*P(t)z,y)
—(P(t)(A— B(I + D*P(t)D)"")(B*P(t) + D*P(t)C)z,y),
where the last term is well defined by boundedness of P(t)B and its adjoint. Rear-
ranging terms, we obtain the differential Riccati equation
(P(t)z,y) = —(R"Rx,y) — (A" P(t)z,y) — (P(t)Az,y) — (C*P(t)Cz,y)
+((P(t)B + C*P(t)D)(I + D*P(t)D)"Y(B*P(t) + D*P(t)C)z,y). O

Remark 5.6. The differential form of the Riccati equation holds for any elements
x,y € D(A). This form will be used for elements z,y resulting from a stochastic
process. Since stochastic equations do not posses strong solutions, the applicability of
the differential Riccati equation in the stochastic context is questionable. To resolve
this issue, we shall introduce an approximation procedure which consists of two steps.
Step one: the regularity lemma on page 48 of [H] allows one to define the derivative of
P on a stochastic process which originates in the domain of A, with twice differentiable
controls and smooth observations C, D. In the second step we shall regularize the state
y by changing the variable to v,,. This will allow the application of It&’s formula.
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Here we state a regularity lemma and justify the form of the differential Riccati
equation when acting on a stochastic process; page 48 in [H].
LEMMA 5.7. If we have the additional assumptions that the operators AC, AD €
L(H), and u € L*(Q; H}([s,T]; U)) then given x € D(A) we have
E((P(t)X (1), AX(t)) 1) < o0
for all t € [s,T], where X(t) is a solution of the stochastic differential equation

dX = (AX + Bu) dt + (CX + Du) dW,
X(s) =« € D(A).

Proof. We first write the form of the mild solution to the abstract differential
equation as

t ¢
X(t) = eMt9)y +/ AT Bu(r) dr +/ eATIOX (1) dW,

S S

t
+ / A7) Du(r) dW,.

We apply operator A to each side and then split the term AX(t) into two parts
AX(t) = Y1 + Ys, where

t t
Yi(t) = e Az + / AT ACX (1) dW, + / A= ADu(r) dW,

S S

and Ya(t) = f; AT ABu(r) dr.
We then estimate the norm of Yy in L?(Q; C([s, T]; H)) to obtain

t

E([Yi(0)]1F) < 3M2e* T | Az + 3M3e* T | AC| |2y, / E(|X (7)|7) dr

t
Jr3]\4262a(T—s)||AD||2£(U)H)/ E(||u()|?) dr,

where we used the Ito isometry to estimate the stochastic integrals. Since X (¢)
is the solution to the abstract differential equation, by Theorem 3.1, its norm in
M?2([s,T]; H) is bounded and satisfies

”X(t)H?\/[E,([s,T];H) < dlz)FH + C|‘u||§\/[,i([s,T];U)'

Hence, E((|Vi(D113) < cQUIACems IAD ey, Il s o myys 1 A@l), where
@ is a polynomial in the indicated norms. We next express Y5 as

Y2(t) = —Bu(t) + /t AT BY/ (1) dr = —Bu(t) + I(t)

via integration by parts in time where we used the fact u(s) =0 since u € H¢ ([s, T]; U)).
The second term can be estimated via the singular estimate condition and Holder’s
inequality as
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“

We are now ready to estimate the term E((P(¢) X (¢), AX (t)) g as

2

H) <2 [ plioloar)

< (T = ) E(lull B 1o y0)-

t 2
/ A=) By (1) dr

S

E(P@)X (1), AX (t))r < [E((P#)X(2), Yi(1))m)| + [E(P (&)X (1), 1(t)) 1)

+ [E((P#)X(t), Bu(t)) )|

<P e EAX @ a)EAYL ()] z)
1P e BAX @) EAL @) )
+ 1B*P(@)| ca,on B[ u(®)[[v )E[ X ()| )

< cQUIAC £y IADI| 2oy POl oy, 1B* P ()| a1,y
lull 220 (1s,7350))» |1 A2 1)

where we used the continuous embedding Hg ([s, T]; U) C C([s, T]; U) in the last step

and where @) is a polynomial in the indicated norms. The right-hand side is finite
which yields the desired result. ]

6. Dynamic programming: The Riccati equation and the optimal
control. In the following lemma, we relate the optimization problem to the solu-
tion of the differential Riccati equation via a dynamic programing argument. This
technique is paramount to a completion of squares technique which furnishes an ex-
pression for the cost functional in which the minimizer and minimum value of the cost
functional can be immediately deduced. However, the use of It6’s formula in this ar-
gument requires C? trajectories, which means that the argument has to be performed
on an approximate regularized version of the abstract stochastic differential equation,
before passing through the limit.

LEMMA 6.1. The quadratic cost functional (1.2) has the form
T
J(t,z,u) =E (/ (I + D*P(7)D)Y?u(r) + (I + D*P(7)D)~Y2(B*P(r)
t

(6.1) +D*P(1)O)y(7) || d7> + (P(t)z, z)

for s <t < T and s = Tpax, where P(t) is a solution to the differential Riccati
equation (5.1) and y is the solution to (1.1) corresponding to u € M2([s,T];U).

Proof. In order to apply Itd’s formula, we must use an appropriate approximate
problem satisfied by a sufficiently regular random variable, and, in particular, a strong
solution of a stochastic differential equation. We follow [H] closely and consider the
following stochastic differential equation

dyn = (Ayn + Bu) dt + (Cnyn + Dnu) dWh

where R(n,A) = (nl — A)~! is the resolvent of A, and C, is defined by C, =
nR(n, A)C, while D,, = nR(n, A)D. Taking u € L*(Q; H}([s,T);U)), we set

Up = Yn + A~ Bu.
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Now, let P(t) € C([s,T];L(H)) be a self-adjoint positive operator satisfying the
differential Riccati equation (5.1) such that B*P(-) € Cy([s,T]; L(H,U)). We rewrite
(P(t)yn(t), yn(t)) in terms of v, as

(6.2)
P(t, vn,u) = (P(E)on(t), vn(t))=2(P(t)vn(t), A~ Bu(t))+(P(t) A~ Bu(t), A~ Bu(t)).

We next observe that v,, is a strong solution of the equation
(6.3) dv, = (Av, + A7 Bu') dt + (Cpypn + Dyu) dWs,

where v’ denotes 4 u. In particular, taking y(s) = = € D(A), and by the variation of
parameters formula we get

t t
yn(t) = eA(t*S)x—O—/ eA(t*T)Bu(T) dT+/ eA(t*T)Cnyn(T) dW.

t
+ / A= D u(r) dW.

Integrating by parts in time in the first integral, we get

t
Yn(t) = X092 — A7 Bu(t) + A= A1 Bu(s) + / MDA B (r) dr

S

t
+/ eA(t*T)(Cnyn + Dpu) dW-.
Adding A= Bu(t) to both sides, we have

t t
v (t) = e (z + A7 Bu(s)) + / A ATIBY (1) dr + / ALy, dW,

S S

t
+ / A=) D dW,,

which shows that v, is a solution to (6.3). Now, we can verify that v, (t) € D(A).
Indeed, applying A to the right-hand side, we have

. t
A9 (Az + Bu(s)) + / AT By (1) dr + / e AC,yy, AW,

S S

t
+ / AT AD wdW,,

and z € D(A) while
¢
E (‘ / A=) By (1) dr

S
(note v < 1/2), where we used the singular estimate condition and Holder’s inequality
in the last step. Moreover, we have by the boundedness of AC, and using It6’s
isometry that

2

) e ([ @l dr)

<ert- 2AYE(HUHHl [s,T]; U))

t
B (1 [ A DaC i) <o [ Bl dr <,
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where we used Theorem 3.1 in the last step. Moreover,

t t
E ( / e"‘“‘T)ADnudWTI?{) <er [ BB dr < el oo

Hence, v,, € D(A) which means it is a strong solution of (6.3).
We now can differentiate the expression for ¢ (¢, v, (t),u(t)) in (6.2) using It6’s
formula [DZ1] to obtain

A (1, vn(7),u(1)) = (P (T)0n(T), 00 (7)) dT + 2(P(T) vy (1), Avy () + A7 B/ (7)) dr
+ 2(P(1)vn(7), Cryn(7T) + Dpu(r)) dW,
+ (P(7)(Cpyn (1) + Dpu(7)), Cryn(7) + Dpu(r)) dr
— 2{P' (1), (1), A"  Bu(7)) dr — 2(P(7)(Av, (7) + A~*Bu/(1)), A~ Bu(7)) dr
— 2(P(7)(Cpyn () + Dpu(r)), A  Bu(r)) dW, — 2(P(7)v, (1), A" Bu/ (1)) dr
+ (P (1)A™'Bu(r), A7 Bu(7)) dr + 2(P(1) A~  Bu/ (1), A~ Bu(7)) dr.

Substituting y,(7) back to eliminate v,(7) using self-adjointness of P'(7), we
obtain

A{P(T)yn(7), yn (7)) = (P'(7)yn (), yn (7)) dT + 2(P(7)yn(T), Ayn(7) + Bu(7)) dr
+ 2(P(T)yn(7), Cryn (1) + Dpu(t)) dW,
+ (P(T)(Cpyn(7) + Dpu(7)), Cryn(T) + Dpu(r)) dr.
We now recall that P(7) solves the differential Riccati equation and, hence, we have
d{P(T)yn(7),yn(7)) = —(A"P(7)yn(7),yn(7)) d7 — (P(7) Ayn(7), yn(7)) d7
— (R*Ryn(7), yn(7)) dr — (C*P(7)Cyn(7), yn(7)) dT
+ ((B*P(1) + D*P(1)C)yn(7), (I + D*P(7)D) Y (B*P(7) + D*P(1)C)y, (1)) dT
+ 2{P(T)yn(7), Ayn (7)) dT + 2{P(7)yn(7), Bu(r)) dr
+ 2{P(T)yn(7), Cryn(7) + Dpu(T)) dWr 4+ (P(7)(Cryn + Dnu), Cpnyn + Dypu) dr,
which simplifies to
A(P(T)yn (1), yn (7)) = =[|Ryn(7)||Z dT — ((C*P(7)C — C; P(1)Cr)yn(T), yn (7)) dr
+ (I + D*P(7)D)~Y%(B*P (1) + D*P(7)C)yn(7)||% dr
+ 2(B*P(1)yn(1),u(r)) dT + 2(D} P(T)Cpyn (1), u(7)) dr
+ (D} P(1)Dpu(7), w(7)) d7 + 2(P(T)yn(7), Cryn(7) + Dpu(T)) dW-,
where (I + D*P(1)D)~1/? is well defined since I + D*P(7)D is a positive operator.
Adding |lu(7)||% dr to both sides and adding and subtracting the term
2(D*P(1)Du(r),u()) dr + 2(D*P(7)Cypn(7), u(r)) dr
to the right-hand side, we get
[u(m)[5 dr + d(P(T)yn (), yu (7))
= —||[Ryn(7)|| dr = {(C*P(7)C — Cy P(7)Cp)yn(T), yn (7)) dr
(I + D*P(r)D) " Y2(B*P(r) + D* P(r)C)yn ()| dr
+ 2((B*P(1)+D*P(1)C)yn (1), u(r)) dr+2((D}y P(T)Cp,—D* P(7)C)yy (1), u(7))dT
+ (I + D*P(1)D)u(r),u(r)) dr + (I + D P(1)D,, — D*P(7)D)u(r),u(r)) dr
+ 2(P(7)yn(7), Coyn(7) + Dnu(r)) dW-.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Section 2.4



Downloaded 05/02/17 to 138.232.236.4. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

Section 2.4

616 HAFIZOGLU ET AL.

This simplifies to

(T ds + d(P(T)yn(T), yn(T))
= —||Ryn(T)||% d7 = ((C*P(7)C = C} P(7)Cp)yn(7), yn(T)) dT
+ (I + D*P(7)D)~"Y*(B*P(7) + D*P(7)C)y, (1) — (I + D*P(7)D)"?u||? dr
+2((D,P(1)C, — D*P (T)C)yn(T) u(r))dr
<(I+D*P( )Dn — D*P(7)D)u(r), u(7)) dr
+ 2(P(7)yn(7), Cryn(7) + Dpu(r)) dW-.

Integrating from ¢ to T' and using the condition P(T) = G*G and y,(t) = z, we
have

/tT lu(r)I dr + /tT 1Ryn (Tl d7 + |Gyn (D)% = (P(t)z, )
- /tT<(C*P(7')C — CLP(7)Cr)yn(7), yn(7)) dr
+ /tT (I + D*P(r)D)~Y*(B*P(7) + D*P(7)C)yn(r)—(I + D*P(r)D)*?u|} dr
+2 [ T((D;P(T)Cn — D*P(7)C)yn(7), u(T)) dr
+ /f«f + D P(7) Dy — D*P(r)D)u(r), u(r)) dr

T
+ 2/t <P(T)yn(7-)v Cnyn(T) + Dnu(T)> dw.

Since (P(7)yn(7), Cpyn (7) + Dyu(r)) is not L?(2; L2([0,T],R)), we cannot simply ap-
ply the expected value to the equation above. However, we appeal to Proposition 7.10
in [D2], from which it suffices that all the integrands are L'(Q; L'([0,7],R)) to con-
clude that (P(T)y,(T), yn(T)) or |Gy, (T)||% is L' (£;R) which means E(||Gy,(T)||%)
< oo and that the expected value is

E(|Gyn(D)]13) = (P(t)z,2) ~ E ( / ' ||u<¢>||%]d¢>
—E ( / IRy (Dl dr - / (PO - CL Py, vl df)
+E ( /t "+ D*P()D)Y2(B* P(+) + D* P(r)C)y ()
—(I + D*P(1)D)Y?u|? d7>

+ 2E ( (D P(1)Cy, — D*P(1)C)yn(7),u(T)) dT)

( {1+ DLP() Dy~ D PR D)ulr ),u(¢))d7>.
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Rearranging, we have
(6.4)

Jo = J(t,z,u) = (P(t)z,z) — E (/f((O*P(ﬂC = CRP(T)Cr)yn(T), yn(T)) dT)
VE ( /t (T4 D*P(r) D)"Y (B* P() + D" P(r)C)yn(r)
—(I + D*P(1)D)Y?u|? d7>
| oF ( /t (D2 P()Co — D P(r)C)n (7). u(r) dT>

+E ( /t (DXP(r)D, — D*P(r)D)u(r), u(r)) dT> .

We next must show that y,, — y € M2([s,T]; H) while the second and the last
two terms in (6.4) go to zero as n — oo.
Estimating the norm of the difference E(||y, — y||%) we have

t 2
E(lyn(t) — y(®)%) < E ( [ 1A Cog = ol dWT)
t 2
+E (/ et =")(Dyu — Du)|| g dWT>
t t
< e [ 10w = Cllkm B -+ [ 10 Elln—ly) dr
t
e / 1D = DI ECull?) dr.

Applying Gronwall’s inequality, we obtain

E(llyn(t) —y(®lE) < c (||Cn = Clizanlwliez (s.1y:) + 1D

_D||2L(H)”ulﬁwﬁ)([s,T];U)) [N ez

Integrating in time and noting that the sequence C,, is uniformly bounded by a
constant M in the norm (since C,, — C), then choosing n sufficiently large, we finally
get

r 2 2 2 T2
/ E(llyn(t) —y@®)|lg) dt < (CEHZIHM;;,([S,T];H) + €||UHM,2U([S,T];U)) M7~

This shows that y, — y in M2([s,T]; H).
Using standard arguments we can easily show that

E (/f (C*P(1)C=CyP(1)Cp)yn(T), yn(T)) dT) —0asn— oo.
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Similarly,
2F (/tT<(D:§P(T)Cn — D*P(7)C)yn (1), u(r)) dT) 50
and
N </tT<(D’*LP(T)D” = D*P(7)D)u(r), u(7)) dT) =0

as n — oo.
As for the second term in (6.4), we have

E ( /t (I + D*P(r)D)~V2(B* P(7) + D* P(+)C)yn(7)
—(I 4+ D*P(r)D)"?u|)? d7>
T
) ( /t (I + D*P(x)D)~Y2(B* P(r) + D* P()C)y(7)

—(I + D*P(7)D)"?ullf, d7> :
Therefore, the functional J,, given in (6.4) converges to

T
J(t,z,u) = (P(t)x,z)+E (/t (I + D*P<T)D)_1/2(B*P(T) + D*P(1)C)y(r)

—(I 4+ D*P(1)D)Y?u|)? d7> .

We finally extend (6.1) for all u € M2 ([s, T];U). By density of L?(Q; H'([s,T];U)) C
M2 ([s,T);U), we then approximate u € M2([s,T];U) by a sequence u,, € L*(Q; H'
([s,T);U)), and pass through the limit. It is easy to show show that y(u,) — y(u) in
M2 ([s,T); H) (continuous dependence of y on the control u). Hence, passing through
the limit in u, — u, we have y,, — y(u) and (6.1) is valid for u € M2 ([s, T]; U). Since
the argument in passing through the limit in J is similar, it will not be repeated. 0O

7. A global-in-time solution to the differential Riccati equation. We
now extend the solution of the Riccati equation from [T,4., 7] to any time interval
[s, T]. We establish a global bound on P(t) since

T
(P(t)z,x) < J(t,7;u=0) =E (/ 1Ry(r)|| dr + IIGy(T)||2z>
t
< eMPTe T a3 + eM2e |2l = Crll= %

for all t € [Tinax, T) and thus | P(t)| zcy < [|1PY?(t)]|% ) < Cr. This bound can
be used to reiterate the proofs of Lemma 4.4 and Theorem 4.1 on a new interval
[Ty, Traz] With G = PY?(Tiax). The bound insures that the choice of the constant
¢ (which depends on G) in (4.8) is global and all the estimates are uniform and that
r and the time step T, — 11 are the same. Hence, the results can be extended by
repeated iteration on equal time steps to any initial time s > 0.
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8. Uniqueness of solution to the differential Riccati equation.

THEOREM 8.1. The solution to the differential Riccati equation is unique in the
class of self-adjoint operators in C([0,T); L(H)) satisfying B*P € Cy([s,T); L(H,U)).

Proof. Assume there is another solution ﬁ(t) to the Riccati equation in this class,

then the same dynamic programming argument from the previous section leads to

min J(t, z,u) = (P(t)z, z) = (P(t)x, x)

for all x € H. Hence, we have for any x,y € H that

0={((P@) = P)(z+y),(z+y)
= (P(t)=P(®)x, ) + (P()=P(t)z,y) + (P(t) = P(t))y, @) + (P()~P(t))y, y)
= 2((P(t) - P(t))z,y)

by self-adjointness of P and P. Thus, P(t) = P(t). o

9. Proof of main Theorems 2.1 and 2.2. We finally obtain our main results
in this paper stated in Theorems 2.1 and 2.2. We start with Theorem 2.1.

Proof.
(i) From (6.1) in Lemma 6.1, the functional J satisfies

inf J y L3 = (P ’ ’
uelwwl(r?s,T];U) (5, 7u) = (P(s)z, )

where P(t) is the solution to the differential Riccati equation.
(ii) The existence of a solution to the differential Riccati equation in C([s, T]; L(H))
follows from Theorem 5.1, and the uniqueness was established in section 8.
(iii), (iv) The regularity properties of P(t) and B*P(t) were established in
Theorem 4.1. ]

Finally, we prove Theorem 2.2.

Proof.
(i), (iii) To show that the minimum of J is realized in (6.1), we can establish the
existence of a unique solution u° € M2([s,T];U) to the equation

u’(t,s;x) = —(I + D*P(t)D)~Y(B*P(t) + D*P(t)C)y(t, s,u’; x)
via a fixed point argument on M2([s, T]; U). Thus,

u’(s,t;x) = —(I + D*P(t)D)~Y(B*P(t) + D*P(t)C)y°(t, s; ),
so that J(s,x;u’) = (P(s)z, x).

(ii) If follows from Theorem 3.1 that the corresponding optimal state y° € L?
(4 C([s, T]; H)).

(iv) Tt then follows by regularity properties of B*P in (4.3) that

(2, 5 2) | 22(00) < ( [l - 0

_°c
T—t)
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10. Applications to control of PDEs. This section is devoted to an applica-
tion of the theory to concrete PDE systems with unbounded control actions.

10.1. Theremoelastic plates with boundary control. We consider a stochas-
tic model for a hinged thermoelastic plate with Neumann thermal boundary control.
Let W} be a one dimensional Wiener process on a complete probability space (£, F, P).
The system consists of a heat equation and a plate equation

(10.1) [I — pAldw; + A?wdt + Afdt = (Vw + bw;) dW, Q % [0,T7, }

df — AOdt — Aw dt = (CglA’w + C3oVw; + 0339) dWy, Q x [0, T],

where w(w, x, t) is the transversal displacement and 6(w, x, t) is the temperature of the
plate which occupies the open domain € in R? or R3, subject to the hinged boundary
conditions

(10.2) w=Aw=0, 902x]0,T],

and thermal control v on the boundary

00 .
(10.3) " + b0 = u(z, t) + u(z, )W (), 0Q x1[0,T].
v

The functions y(w, z,t) = (w(w, z,t), we(w, x,t), 0(w, z, t)) are random variables which
take values in the finite energy space H defined by H = H?(Q) N H}(Q) x HL(Q) x
L2(%).

We are particularly interested in a Bolza-type optimal control of this system with
the objective of minimizing an energy functional

T
J(u, w, we, 0) = E(/O [l Ol Z2o0) + 1wl OlF2 @) + lwe (O q)
(10.4) 100, D)1z () dt + lwl, DIz o) + Ith(-,T)Ilip(m)

over all boundary controls u € M2 ([0, T]; L?>(99)), given initial data in the (wo, w1, 6p)
€ H finite energy space. This problem can be adapted to the abstract setting of the
stochastic linear quadratic regulator, since the deterministic uncontrolled system is
driven by a Cy-semigroup e while a control operator B from the boundary to interior
satisfies the singular estimate [BL].

Following [LT1, BL], we introduce the self-adjoint operator A on L?(Q) defined
by

Ah = A%h
with domain

D(A) = {h € H*(Q) : hlog = a%h log = o}.

The fractional power A'/2 of this operator has a domain which can be identified with
the space H%(Q2) x Hg (). We also introduce the self-adjoint operator Ay on L%(Q)

Anh = —Ah
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with domain

D(Ay) = {h e HX(Q) : %thh =0 on 39}.

—Ant

The operator —Apx is well known to generate an analytic semigroup e on the

space L2(€)).
We also follow [BL] in introducing the operator M on L?(2) given by

with the well-defined bounded inverse M~'. Additionally, we also introduce the
Neumann map N : L?(9Q) — L?(2) defined by
Ng=h < Ah=0in Q,

oh

— +h=gon 00

ov
It is well known that A3/4=¢N is bounded L?(99Q) — L?(). The system can then be
expressed in abstract form as

dy(t) = (Ay + Bu) dt + (C'y + Du) dWy,

where
w
y(t) = | we
0
and
0 I 0
A= -M7'A 0 M AN |,
0 —An —Apn

and with domain

D(A) = D(AY*) x D(AY?) x D(Ay).

Moreover, the control operators B, D are

0
B=D= 0 ,
ANN
and the noise operator C is
0 0 0
C = v b 0

C31A  C3V  Css

for real parameters Cs1, C32, C33,b. Note here that the adjoint B* : D(A*) — L?(92)
is defined by
B*[.Z'l,.%‘g,wgg] = N*AN.%';; = $3|3Q,

which is the restriction to the boundary 0. As for the observation operators in
(10.4), we take R =TI and G = [I,I,0] on the state space H.
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It was shown in [BL] that the set of assumptions in Assumption 1.1 are indeed
satisfied. In particular, the critical singular estimate does hold with any v > 1/4:

C
e Bul|3 < Tijite |l 22 (a0

for every u € L?(02), and A~'B is bounded from L?(9Q) to H. Thus, we are in a
position to apply the conclusions of Theorems 2.1 and 2.2. Thus we have the following
theorem.

THEOREM 10.1. Given initial data (8p,wo,w1) € H, there exists a unique op-
timal control u® € M2([s,T]; L2(09))) to the stochastic thermoelastic plate system
(10.1) with hinged boundary conditions (10.2) and Neumann thermal boundary con-
trol (10.3), which minimizes the cost functional (10.4). Moreover,

1. the optimal control u® € C([s,T); L*(%,09)) and

c 2
E([u ()2 00)) < (77 Ulwollms(@) + lwn @) + [folz2(@))
2. the corresponding optimal state (0°(t), w®(t),w(t)) € C([s,T); L*(X,H)) and

E([[w’ (t)l[32()) + E([wf )7 ) + EN0° 01720y
< e([lwollFr2 () + w7 ) + 1160l|72(6));
3. the optimal control is given in feedback form
u’(t) = —(I + D*P()D) " (D*P(t)C + B*P()) [w’ (), wy (1), 6° (£)]"

for B, D and C defined above and where P(t) is a self-adjoint positive operator
on H satisfying the differential Riccati equation
(AY 2Dy, A 2y1) + (MY 2oy, MM 2yo) + (pag, y3) = — (A 2pr, A 2y,)
+ (p2, Ayr) — (D2, Anys) + (Anps, v2) + (Anps, ys) — (A 22y, AV2y)
+ (Ax1, p2) — (AnT3,P2) + (ANT2,P3) + (ANT3,P3) — (P(t)Cx, Cy)
+{((I+D*P(t)D)"Y(B*P(t)+D*PC)z, (B* P(t)
+ D*PC)y)oq, p1(T), p2(T), p3(T)]
= [z1,22,0]

for allx = (z1,x2,x3) and y = (y1,y2,y3) in D(A), where we denote P(t)x =

[p1(t), p2(t), p3(t)] and P(t)y = [p1(t), p2(t), p3(t)], and by (-,-) the L? inner
product on Q.

10.2. Fluid-structure interaction. Here we shall revisit the motivating ex-
ample introduced in section 1.1. In particular, the system (1.4)—(1.6) with boundary
conditions (1.7)—(1.9) can be expressed in the abstract form

dY = ApgY dt + Bgdt + CY dW, + DgdW,
with

AN ANNU 0
Aps = 0 0 I ],
0 div(e) 0
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where Ay : V' — V' is defined by (An¢,v') = —(e(¢), e(v)) and V is the space
V={veH (Q):divv=0,v[r, =0},
while N : H=Y/2(T',) — V is the map defined by

Ng =h < <ANh7U> = <g7v>Ps7
B, =0,

for every v € V which is well defined by the Lax—Milgram theorem [LTu3]. Denoting
the finite energy space H x H'(Q,) x L?(€);) by H, the operator Aps generates a
Cy-semigroup on the space H. The control operators B and D are defined by

AyN
B=D= 0 :
0

and B : L*(I'y) — [D(A%g)] is the control operator [LTu3] which satisfies an incre-
mentally weaker form of the singular estimate [LTu3]

A C
le?r= Bl < Gl flleee.)

for a > 0, where H® is the lower topology space H® = H x H'=%(Q,) x H=*(Q,).

However, this estimate is sufficient in order to address the control functional
(1.10) with o = 1; cf. [LTu3]. In particular, we take our operator R = [I,0,0] and
G = [I,1,0] and take the observation space W = H and Z = H~!. Moreover, we
determine the noise operator C' as

C1 0 0
(10.5) c=10 o0 o[,
0 Co 0

which is a bounded operator on the state space H. Note here that the adjoint B* :
D(A*) — L3(T,) is defined by

B*[.’El,l‘g,l’g] = N*Ale = T1|r,-

Now that the assumptions of Assumption 1.1 are all satisfied by the system, we
can specialize Theorems 2.1 and 2.2 to this system to obtain the following optimal
control result.

THEOREM 10.2. Given initial data (ug, wo, w1) € H, there exists a unique optimal
control g° € M2([s,T]; L?(Ls)) to the stochastic fluid-structure interaction system
(1.4)—(1.6) with boundary conditions (1.7)—(1.9), which minimizes the cost functional
(1.10). Moreover,

1. the optimal control g° € C([s,T); L*(%,Ts)) and

c 2
E(lg*®)20,)) < (o7 lollzacep + ol + llonllza,) s

2. the corresponding optimal state (0°(t),w°(t),wP(t)) € L*([s,T]; L*(Z,H)) N
C([s,T); L*(Z,H_1)) and

E([u”(®)172 () + Bl ®)72,) + E(w) )17 @)

< c([luollF2(q,) + lwollfn .y + lwrllZ2(,);
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3. The optimal control is given in feedback form
9°(t) = —(I + D*P(t)D)" (D*P(t)C + B*P(t))[u’(t), w’(t), w} (1)

for B, D, and C defined above and where P(t) is a self-adjoint positive oper-
ator on H satisfying the differential Riccati equation

(P16, y1) 5 + (Vp2t, Vy2)s + (p3t,y3)s = —(Anx1,p1) 5 — (ANNo(x2),p1) ¢
— Vi3, Vpo)s—(divo(x2), P3)s
p1, Any1) p—(p1, ANNo(y2))  —(Vp2, Vys)s
p3,divo(y2))s — (cip1, cayr) r — (c2ps, cay2)s — (T1,y1) 5
+((I+D*P)D)" (1 + c))pilr,, (1 + c1)pr
[pl(T 7p2(T),p3(T)] = [xl7w2a0]7
for every x = (x1,22,23) and y = (y1,y2,y3) € D(Ars), where P(t)x =

[pl(t)7p2(t)7p3(t)} a’nd P(t)y = [ﬁl(f%ﬁz(t),ﬁ;’,(t)], whzle <7>f and <'7'>8 de—
note the L? inner product on Qy and §s, respectively.

o~ o~

r.)T.

~

Remark 10.3. The proof of this theorem requires extending the results of
Theorems 2.1 and 2.2 to a generalized singular estimate condition on the observa-
tion spaces [|[ReMBfllw < <[ flv and [|Ge**Bf|lz < Z|/flv Vf € U for some
~v € (0,1/2); cf. [Tu]. This leads to the continuity-in-time property to be satisfied by
the observed optimal state space Ry only on the observation space W as stated in
part 2 of the above theorem.
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