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Abstract

In this thesis we study some types of stochastic partial differential equations
(SPDEs) in the framework of white noise analysis and thier particular
applications in optimal control. The thesis is divided in two parts: theore-
tical results and applications. In the first part we developed the theore-
tical framework for studying different classes of SPDEs with singular data.
Particularly, we developed generalized Malliavin calculus on spaces of gene-
ralized stochastic functions based on the chaos expansions. We solved
different classes of stochastic evolution equations using the chaos expansion
method and generalized some of these results to the related optimal control
problem.

The second part of the thesis is devoted to applications. We study infinite
dimensional stochastic linear quadratic optimal control problems related to
evolution equations discussed in the previous chapter. We proved an optimal
feedback synthesis along with well-posedness of the Riccati equation in a
general setting. We provided a novel numerical framework for solving this
type of control problems using the method of chaos expansions. We also
presented an approximation framework for computing the solution of the
stochastic linear quadratic control problem on Hilbert spaces. For the
finite horizon case, we proved convergence results of the finite-dimensional
problem to the infinite-dimensional one. In addition, we developed a
stochastic treatment of unbounded control action problems arising in a
general class of dynamical systems which exhibit singular estimates, but
are not necessarily analytic. Moreover, in the same setting we present a
regularization scheme for operator differential algebraic equations with noise
disturbances. Finally, we combined a polynomial chaos expansion method
with splitting methods for solving particular classes of SPDEs.
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Preface

This thesis is devoted to stochastic partial differential equations, their
theoretical treatment and their applications in the framework of white noise
analysis. A major contribution of this thesis is the development of genera-
lized Malliavin calculus in the framework of white noise analysis, based on
chaos expansion representation of stochastic processes and its application
for solving several classes of stochastic differential equations with singular
data. Especially, stochastic equations with singular coefficients and singu-
lar initial conditions involving the main operators of Malliavin calculus are
considered. The polynomial chaos expansion method is also combined with
the operator semigroup theory in order to prove existence and uniqueness of
solutions of nonlinear stochastic evolution equations with Wick-polynomial
nonlinearities, random force and random initial condition. These equations
include the stochastic Fujita equation, the stochastic Fisher-KPP equa-
tion, the stochastic FitzHugh-Nagumo equation and the stochastic Chaffee-
Infante equation. These equations arise in ecology, medicine, engineering
and physics. Additionaly, we proved existence and uniqueness of solutions
of a large class of parabolic stochastic partial differential equations with
multiplicative noise. Special cases include the heat equation with random
potential, the Langevin equation, the Schrödinger equation, the transport
equation driven by white noise. Moreover, a novel approach for numerical
treatment of stochastic evolution equations which combines the polynomial
chaos approach with splitting methods is also included in the thesis. Signifi-
cant contributions are made in applications of the polynomial chaos expan-
sion approach to stochastic control problems. Particularly, in the stochastic
linear quadratic optimal control problem as well as in the regularization of
stochastic operator differential algebraic equations.

Most of the results of this thesis are summarized in:

Book T. Levajković, H. Mena, Equations involving Malliavin calculus opera-
tors: Applications and numerical approximation. SpringerBriefs in
Mathematics. Cham, Springer International Publishing Switzerland,
2017. ISBN: 978-3-319-65677-9.

The thesis is divided into two chapters. Chapter 1 deals with the theo-
retical framework of white noise analysis based on chaos expansion represen-
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2 Preface

tation and solutions of particular equations. The individual sections corres-
pond to the author’s contributions concerning the chaos expansion method
in Malliavin calculus (Section 1.1 and Section 1.2), the study of fundamen-
tal equations with higher order Malliavin operators (Section 1.3), a theo-
retical framework for solving stochastic evolution equations with multiplica-
tive noise (Section 1.4), the solution of Malliavin-type differential equations
(Section 1.5 and Section 1.6) and a theoretical framework for the study of
stochastic evolution equations with Wick-polynomial nonlinearities (Section
1.7). Chapter 1 is based on the following publications:

1.1 T. Levajković, D. Seleši, Malliavin calculus for generalized and test
processes. Filomat 31(13), 4231–4256, 2017.

1.2 T. Levajković, S. Pilipović, D. Seleši, Chaos expansion methods in
Malliavin calculus: A survey of recent results. Novi Sad J. Math.
45(1), 45–103, 2015.

1.3 T. Levajković, S. Pilipović, D. Seleši, Fundamental equations with
higher order Malliavin operators. Stochastic 88(1), 106–127, 2016.

1.4 T. Levajković, S. Pilipović, D. Seleši, M. Žigić, Stochastic evolution
equations with multiplicative noise. Electron. J. Prob. 20(19), 1–23,
2015.

1.5 T. Levajković, H. Mena, Equations involving Malliavin derivative: A
chaos expansion approach, in S. Pilipović, J. Toft (Eds.) Pseudo-
Differential Operators and Generalized Functions, Operator Theory:
Advances and Applications, Vol. 245, 197–214, Springer International
Publishing, 2015.

1.6 T. Levajković, D. Seleši, Nonhomogeneous first order linear Malliavin
type differential equation, in S. Molahajloo, S. Pilipović, J. Toft, M. W.
Wong (Eds.), Pseudo-Differential Operators: Generalized Functions
and Asymptotic, 353–369, Springer, 2013.

1.7 T. Levajković, S. Pilipović, D. Seleši, M. Žigić, Stochastic evolution
equations with Wick-polynomial nonlinearities. Electron. J. Probab.
23(116), 1–25, 2018.

Chapter 2 addresses applications of the theoretical results, extensions
and generalizations to different classes of stochastic differential equations.
Particularly, applications in optimal control problems are shown. Namely,
a novel theoretical framework for solving generalized linear quadratic op-
timal control problems (Section 2.1 and Section 2.2), a feedback synthesis
of the stochastic linear quadratic optimal control problem with singular
estimates on the finite time interval (Section 2.3), a convergence analysis
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in Hilbert spaces (Section 2.4), a numerical treatment of a stochastic li-
near quadratic regulator problem for the infinite horizon case (Section 2.5),
a splitting/polynomial chaos expansion approach for stochastic evolution
equations (Section 2.6) and a regularization approach for operator differen-
tial algebraic equations with noise (Section 2.7). Chapter 2 is based on the
following publications:

2.1 T. Levajković, H. Mena, A. Tuffaha, The stochastic linear quadratic
control problem: A chaos expansion approach. Evol. Equ. Control
Theory 5(1), 105–134, 2016.

2.2 T. Levajković, H. Mena, L.-M. Pfurtscheller, Solving stochastic LQR
problems by polynomial chaos. IEEE Control Systems Letters 2(4),
641–646, 2018.

2.3 T. Levajković, H. Mena, A. Tuffaha, The stochastic LQR optimal con-
trol with fractional Brownian motion, in M. Oberguggenberger, J.
Toft, J. Vindas, P. Wahlberg (Eds.) Advanced in Partial Differen-
tial Equations, Generalized Functions and Fourier Analysis, Dedicated
to Stevan Pilipović on the Occasion of his 65th Birthday, 115–151,
Birkhäuser, 2017.

2.4 C. Hafizoglu, I. Lasiecka, T. Levajković, H. Mena, A. Tuffaha, The
stochastic linear quadratic problem with singular estimates. SIAM J.
Control Optim. 55(2), 595–626, 2017.

2.5 T. Levajković, H. Mena, A. Tuffaha, A numerical approximation frame-
work for the stochastic linear quadratic regulator problem on Hilbert
spaces. Appl. Math. Optim. 75(3), 499–523, 2017.

2.6 A. Kofler, T. Levajković, H. Mena, A. Ostermann, A splitting/poly-
nomial chaos expansion approach for stochastic evolution equations,
Submitted to: Stoch. PDE: Anal. Comp., 2019, arXiv.1903.10786.

2.7 R. Altmann, T. Levajković, H. Mena, Operator differential algebraic
equations with noise arising in fluid dynamics. Monatsh. Math.
182(4), 741–780, 2017.

All of the above publications were written after the completion of the
author’s Ph.D. degree in April 2012. An effort was made to use a consistent
notation in the introductory paragraphs which link to the individual papers.
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In addition, the following publications were completed in the same period
of time:

Publications:

1. D. Babić, B. Begović, T. Levajković, Analysis of the impact of
passenger’ preferences on the airline network structure: A proba-
bilistic approach. Submitted to: Transportation Research Part
B, 2018.

2. T. Levajković, D. Babić, M. Kalić, Airline revenue management
for complex networks. Proceedings of the XLIV International
Symposium on Operational Research, 758–764, 2017.

3. T. Levajković, H. Mena, M. Zarfl, Lévy processes, subordinators
and crime modelling. Novi Sad J. Math. 46 (2), 65–86, 2016.

4. T. Levajković, H. Mena, On deterministic and stochastic
linear quadratic control problems, in V. Mityushev, M. Ruzhansky
(Eds.), Current Trends in Analysis and Its Applications, Trends
in Mathematics, Research Perspectives, pp. 315–322, Springer
International Publishing Switzerland, 2015.

5. T. Levajković, D. Seleši, Chaos expansion methods of stochas-
tic processes for Malliavin-type equations. Electronic Notes in
Discrete Mathematics 43, Elsevier, 289–298, 2013.

Textbooks for bachelor studies:

7. T. Levajković, K. Kukić, M. Borisavljavić, A. Jelović, N. Ćirić,
D. Ilić, A. Perović, Mathematics 1: Book of exercises with solu-
tions (in Serbian). Faculty of Traffic and Transport Engineering,
University of Belgrade, 2015, ISBN: 978-86-7395-333-5.

8. M. Borisavljavić, N. Ćirić, S. Miloradović, T. Levajković, D. Ilić,
K. Kukić, Mathematics book of exercises with solutions: Prepara-
tory book for higher education entrance examination (in Serbian).
Faculty of Traffic and Transport Engineering, University of
Belgrade, Seventh edition, 2015, ISBN: 978-86-7395-302-1.
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2.1 T. Levajković, H. Mena, A. Tuffaha, The stochastic linear quadra-
tic control problem: A chaos expansion approach. Evol. Equ.
Control Theory 5(1), 105–134, 2016.

I contributed in all stages of the work, developing the theoretical
framework for solving stochastic linear quadratic optimal control
problems and proving the two main theorems. The results extend the
ideas of the polynomial chaos approach for solving SPDEs to optimal
control problems. Percentage of personal contribution 40%.
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Chapter 1

Theoretical Results

In this chapter we present the theoretical contributions of this thesis.
Namely, the development of generalized Malliavin calculus in the framework
of white noise analysis based on chaos expansion representation of stochas-
tic processes and its application for solving several classes of stochastic
differential equations with singular coefficients and singular initial condi-
tions. Generalized operators of Malliavin calculus, the Malliavin derivative
operator D, the Skorokhod integral δ and the OrnsteinUhlenbeck operator
R are introduced in terms of chaos expansions. The main properties of the
operators, which are known in the literature for stochastic processes with
finite second moments, are proven using the chaos expansion approach and
extended for generalized stochastic processes. Moreover, fractional versions
of these operators are also discussed and the connection with the
corresponding operators of Mallaivin calculus through an isometry mapping
is proven. Also, several classes of equations involving Malliavin calculus
operators are solved with this technique.

The Malliavin derivative D, the Skorokhod integral δ and the Ornstein-
Uhlenbeck operator R play a crucial role in the stochastic calculus of varia-
tions. They are part of the infinite-dimensional differential calculus on white
noise spaces and is also called the Malliavin calculus [16, 24, 83, 87, 93, 98].
In stochastic analysis, the Malliavin derivative characterizes densities of
distributions, the Skorokhod integral is an extension of the Itô integral to
non-adapted processes, and the Ornstein-Uhlenbeck operator plays the role
of the stochastic Laplacian. Additionally, the Malliavin derivative appears
as the adjoint operator of the Skorokhod integral, while their composition,
the Ornstein-Uhlenbeck operator, is a linear, unbounded and self-adjoint
operator. These operators are interpreted in quantum theory respectively
as the annihilation, the creation and the number operators.

Since the pioneer work of Itô [47] that characterized stochastic inte-
grals in terms of Hermite polynomials, another important keystone was
the development of white noise analysis proposed by Hida [42] who set up
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an appropriate functional analytical framework using nuclear operators to
characterize Gaussian processes. Second quantization operator techniques
are used to obtain weighted spaces of generalized stochastic processes such
as the Hida and Kondratiev spaces. For infinite-dimensional analysis with
a probabilistical approach we refer the reader to [24, 43, 80].

Originally, the Malliavin derivative was introduced by Paul Malliavin in
order to provide a probabilistic proof of Hörmander’s sum of squares theorem
for hypoelliptic operators and to study the existence and regularity of a
density for the solution of stochastic differential equations [82]. Nowadays,
besides applications concerning the existence and smoothness of a density for
the probability law of random variables, it has found significant applications
in stochastic control and mathematical finance, particularly in option pricing
and computing the Greeks (the Greeks measure the stability of the option
price under variations of the parameters) via the Clark-Ocone formula [23,
83, 96]. Recently, in [89] a novel connection between the Malliavin calculus
and the Stein method was discovered, which can be used to estimate the
distance of a random variable from Gaussian variables. In Section 1.2 [74]
this relationship was reviewed using the chaos expansion method.

In the classical setting [24, 79, 87], the domain of these operators is a
strict subset of the set of processes with finite second moments leading to
Sobolev type normed spaces. We recall these classical results and denote the
corresponding domains with a ”zero” in order to retain a symmetry between
test and generalized processes. A more general characterization of the do-
main of these operators in Kondratiev generalized function spaces has been
derived in [69, 72, 73]. Surjectivity of the operators for generalized processes
for ρ = 1 has been developed in [74, 75], while a setting for the domains of
these operators for ρ ∈ [0, 1] and for test processes was developed in [62, 71].
We summarize these recent results, construct the domain of the operators
and prove that they are linear and bounded within the corresponding spaces.
We adopt the notation from [71, 74, 75] and denote the domains of all the
operators in the Kondratiev space of distributions by a ”minus” sign to re-
flect the fact that they correspond to generalized processes and the domains
for test processes denote by a ”plus” sign.

The Malliavin derivative of generalized stochastic processes has first been
considered in [15] using the S-transform of stochastic exponentials and chaos
expansions with n-fold Itô integrals with some vague notion of the Itô inte-
gral of a generalized function. Our approach is different, it relies on chaos
expansions via Hermite polynomials (in the Gaussian case) and provides
more precise results. A fine gradation of generalized and test functions is
followed where each level has a Hilbert structure and consequently each level
of singularity has its own domain, range, set of multipliers, etc. We devel-
oped the calculus including the integration by parts formula, product rules,
the chain rule, using the interplay of generalized processes with their test
processes and different types of dual pairings. We apply the chaos expan-
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sion method to illustrate several known results in Malliavin calculus and
thus provide a comprehensive insight into its capabilities. For example, we
proved some well-known classical results, such as the commutator relation-
ship between D and δ and the relation between Itô integration and Riemann
integration. These results are included in the first part of this chapter and
associated to Section 1.1 [71], Section 1.2 [74] and Section 1.3 [75].

In second part of this chapter we apply the chaos expansion method
for solving stochastic partial differential equations (SPDEs) with singular
data. The focus is on the study of different classes of equations that in-
volve the operators of Malliavin calculus, the study of stochastic evolution
equations with multiplicative noise and stochastic evolution equations with
Wick-polynomial nonlinearities and random force and random initial condi-
tion. These equations include the heat equation with random potential, the
Langevin equation, the Schrödinger equation, the transport equation driven
by white noise, the stochastic Fujita equation, the stochastic Fisher-KPP
equation and the stochastic FitzHugh-Nagumo equation.

The main difficulty that may arise when solving equations with singular
data (both linear and nonlinear) is the problem of multiplication of gener-
alized functions. In this thesis we overcome this difficulty by interpreting
the product as the Wick product (stochastic convolution) within the white
noise analysis. Also, the Wick product is known for representing the highest
order stochastic approximation of the ordinary product [86]. Alternative
approaches have been developed in the theory of regularity structures by
Martin Hairer [40] and in rough path theory and paracontrolled distribu-
tions by Massimiliano Gubinelli, Peter Imkeller and Nicolas Perkowski [38].
Another possibility is to consider the equations in Colombeau algebras of
generalized functions and after regularization interpret the product as a
classical product [21, 90].

The method of chaos expansions has been applied successfully to several
classes of SPDEs [50, 72, 73, 80, 85] to obtain an explicit form of the solu-
tion. The basic idea is to construct the solution of the considered SPDE as a
Fourier series in terms of a Hilbert space basis of orthogonal stochastic poly-
nomials, resulting in an infinite triangular system system of deterministic
equations for the coefficients, which can be solved by induction. Summing
up all coefficients of the expansion, i.e., the solutions of the deterministic
system, and proving its convergence in an appropriate space of stochastic
processes, one obtains the solution of the initial equation.

Besides the fact that the chaos expansion method is easy to apply (since
it uses orthogonal bases and series expansions), the advantage of the method
is that it provides an explicit form of the solution. We avoid using the Her-
mite transform [43] or the S-transform [42], since these methods depend
on the feasibility to apply their inverse transforms. The chaos expansion
method requires only to find an appropriate weight factor to make the re-
sulting series convergent. It is also known for being an efficient method in
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numerical approximations, the so-called stochastic Galerkin method. More-
over, for non-Gaussian processes, convergence can be easily improved by
changing the Hermite basis to another family of the Askey-scheme of hyper-
geometric orthogonal polynomials (Charlier, Laguerre, Meixner, etc.) [102].
The results of the second part of this chapter are related to Section 1.3 [75],
Section 1.4 [76], Section 1.5 [62], Section 1.6 [70] and Section 1.7 [77].

Preliminaries

We consider the Gaussian white noise probability space (S′(R),B, µ), where
S′(R) denotes the space of tempered distributions, B the Borel sigma-algebra
generated by the weak topology on S′(R) and µ the Gaussian white noise
measure corresponding to the characteristic function

∫

S′(R)
ei〈ω,φ〉dµ(ω) = e

− 1
2
‖φ‖2

L2(R) , φ ∈ S(R),

given by the Bochner-Minlos theorem [43].

The Hilbert space of random variables with finite second moments is de-
noted by L2(µ). The set of multi-indices I is (NN

0 )c, i.e. the set of sequences
of non-negative integers which have only finitely many nonzero components.
Particularly, we denote by 0 = (0, 0, 0, . . .) the zero multi-index with all
entries equal to zero and the kth unit vector ε(k) = (0, · · · , 0, 1, 0, · · · ),
k ∈ N, i.e., the sequence of zeros with the number 1 as the kth compo-
nent. The length of a multi-index is |α| = ∑∞

i=1 αi for α = (α1, α2, . . .) ∈ I
and α! =

∏∞
i=1 αi!. We will use the convention that α − β is defined if

αn−βn ≥ 0 for all n ∈ N, i.e., if α−β ≥ 0. Let (2N)α =
∏∞
k=1(2k)αk . Note

that
∑

α∈I(2N)−pα <∞ for p > 1, see [43].

The Wiener-Itô theorem (sometimes also referred as the Cameron-Martin
theorem) states that one can define an orthogonal basis {Hα}α∈I of L2(µ),
where Hα are constructed by means of Hermite orthogonal polynomials hn
and Hermite functions ξn,

Hα(ω) =

∞∏

n=1

hαn(〈ω, ξn〉), α ∈ I, ω ∈ Ω.

Then, every F ∈ L2(Ω, µ) has a unique chaos expansion representation

F (ω) =
∑

α∈I
fαHα(ω), ω ∈ S′(R)

such that ∑

α∈I
|fα|2α! <∞, fα ∈ R, α ∈ I.
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We denote by H1 the subspace of L2(µ), spanned by the polynomials
Hεk(·), k ∈ N. The subspace H1 contains Gaussian stochastic processes,

e.g. Brownian motion is given by Bt(ω) =
∑∞

k=1

∫ t
0 ξk(s)ds Hεk(ω).

Similarly, we denote by Hm the mth order chaos space, i.e. the closure
in L2(Ω, µ) of the linear subspace spanned by the orthogonal polynomials
Hα(·) with |α| = m, m ∈ N0. Then, the Wiener-Itô chaos expansion states
that L2(Ω, µ) =

⊕∞
m=0Hm, where H0 is the set of constants in L2(Ω, µ).

Changing the topology on L2(µ) to a weaker one, Hida [42] defined spaces
of generalized random variables containing the white noise as a weak deriva-
tive of the Brownian motion. Using the same technique as in [43] one can
define Banach spaces (S)ρ,p of test functions and their topological duals
(S)−ρ,−p of stochastic distributions for all ρ ∈ [0, 1] and p ≥ 0.

Definition 1 Let ρ ∈ [0, 1], the stochastic test function spaces are defined by

(S)ρ,p = {F =
∑

α∈I
fαHα ∈ L2(µ) : ‖F‖2(S)ρ,p =

∑

α∈I
(α!)1+ρ|fα|2(2N)pα <∞},

for all p ≥ 0. Their topological duals, the stochastic distribution spaces, are
given by formal sums

(S)−ρ,−p = {F =
∑

α∈I
fαHα : ‖F‖2(S)−ρ,−p =

∑

α∈I
(α!)1−ρ|fα|2(2N)−pα <∞},

for all p ≥ 0. The Kondratiev space of test random variables is (S)ρ =⋂
p≥0(S)ρ,p, endowed with the projective topology. Its dual, the space of

Kondratiev generalized random variables is (S)−ρ =
⋃
p≥0(S)−ρ,−p, endowed

with the inductive topology.

The action of F =
∑

α∈I bαHα ∈ (S)−ρ onto f =
∑

α∈I cαHα ∈ (S)ρ
is given by 〈F, f〉 =

∑
α∈I(bα, cα)α!, where (bα, cα) stands for the inner

product in R. The following Gel’fand triple is obtained

(S)ρ ⊆ L2(µ) ⊆ (S)−ρ.

The spaces (S)ρ,p and (S)−ρ,−p are separable Hilbert spaces. Moreover, (S)ρ
and (S)−ρ are nuclear spaces. For ρ = 0 we obtain the space of Hida stochas-
tic distributions (S)−0 and for ρ = 1 the Kondratiev space of generalized
random variables (S)−1. It holds that

(S)1 ↪→ (S)0 ↪→ L2(µ) ↪→ (S)−0 ↪→ (S)−1,

where ↪→ denotes dense inclusions.
The time derivative of the Brownian motion exists in a generalized sense

and for each fixed t it belongs to the Kondratiev space (S)−1,−p for p ≥ 5
12 .

We refer it as the white noise and its formal expansion is given by W (t, ω) =∑∞
k=1 ξk(t)Hεk(ω).
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The definition of stochastic processes can be extended to processes with
the chaos expansion form U =

∑
α∈I uαHα, where the coefficients uα are

elements of some Banach space of functions X. We say that U is an X-valued
generalized stochastic process, i.e. U ∈ X ⊗ (S)−ρ if there exists p ≥ 0 such
that

‖U‖2X⊗(S)−ρ,−p =
∑

α∈I
(α!)1−ρ‖uα‖2X(2N)−pα <∞.

For example, let X = Ck([0, T ]), k ∈ N. We have proved in [76] that
the differentiation of a stochastic process can be carried out componentwise
in the chaos expansion, i.e. due to the fact that (S)−ρ is a nuclear space
it holds that Ck([0, T ], (S)−ρ) = Ck[0, T ]⊗̂(S)−ρ where ⊗̂ denotes the com-
pletion of the tensor product which is the same for the ε−completion and
π−completion. In the following, we will use the notation ⊗ instead of ⊗̂.
Hence Ck([0, T ])⊗ (S)−ρ,−p and Ck([0, T ])⊗ (S)ρ,p denote subspaces of the
corresponding completions. We keep the same notation when Ck([0, T ]) is
replaced by another Banach space. This means that a stochastic process
U(t, ω) is k times continuously differentiable if and only if all of its coeffi-
cients uα(t), α ∈ I are in Ck([0, T ]).

The same holds for Banach space valued stochastic processes, i.e. ele-
ments of Ck([0, T ], X) ⊗ (S)−ρ, where X is an arbitrary Banach space. It
holds that

Ck([0, T ], X⊗(S)−ρ) = Ck([0, T ], X)⊗(S)−ρ =
⋃

p≥0
Ck([0, T ], X)⊗(S)−ρ,−p.

In addition, if X is a Banach algebra, then the Wick product of the stochastic
processes F =

∑
α∈I fαHα and G =

∑
β∈I gβHβ ∈ X ⊗ (S)−ρ,−p is given by

F♦G =
∑

γ∈I

∑

α+β=γ

fα gβ Hγ =
∑

α∈I

∑

β≤α
fβ gα−βHα,

and F♦G ∈ X ⊗ (S)−ρ,−(p+k) for all k > 1, see [43]. The nth Wick power

is defined by F♦n = F♦(n−1)♦F , F♦0 = 1. Note that Hnε(k) = H♦n
ε(k)

for
n ∈ N0, k ∈ N. Through the thesis we will mostly assume that X is a
Banach algebra.

We also consider processes which are elements of X ⊗ S′(R) ⊗ (S)−ρ.
They are represented in chaos expansion of the form

F =
∑

α∈I

∑

k∈N
fα,k ⊗ ξk ⊗Hα =

∑

α∈I
gα ⊗Hα =

∑

k∈N
hk ⊗ ξk,

where gα =
∑

k∈N fα,k⊗ ξk ∈ X⊗S′(R), hk =
∑

α∈I fα,k⊗Hα ∈ X⊗ (S)−ρ
and fα,k ∈ X. Thus, for some p, l ∈ N0,

‖F‖2X⊗S−l(R)⊗(S)−ρ,−p =
∑

α∈I

∑

k∈N
(α!)1−ρ‖fα,k‖2X (2k)−l(2N)−pα <∞.

The generalized expectation is given by EF =
∑

k∈N f(0,0,...),k⊗ξk = g(0,0,...).
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Operators of generalized Malliavin calculus

Some of the most important operators of stochastic calculus are the opera-
tors of the Malliavin calculus. We recall their definitions in the generalized
S′(R) setting as they appear in Section 1.1 [71], Section 1.2 [74] and Section
1.3 [75]. These definitions are used through this chapter.

The Malliavin derivative

We define the Malliavin derivative operator D on spaces of generalized
stochastic processes, test stochastic processes and classical stochastic pro-
cesses. We also describe the domains in terms of chaos expansion represen-
tations.

Definition 2 ([71]) Let ρ ∈ [0, 1] and let u ∈ X ⊗ (S)−ρ be a generalized
stochastic process given in the chaos expansion form u =

∑
α∈I uα ⊗ Hα,

uα ∈ X, α ∈ I. Then, u belongs to Dom−ρ,−p(D) if there exists p ∈ N0 such
that ∑

α∈I
|α|1+ρα!1−ρ‖uα‖2X(2N)−pα <∞. (1.1)

and its Malliavin derivative is defined by

Du =
∑

|α|>0

∑

k∈N
αkuα ⊗ ξk ⊗Hα−ε(k) (1.2)

where by convention α− ε(k) does not exist if αk = 0, i.e., for a multi-index
α = (α1, ..., αk−1, αk, αk+1, ..., αm, 0, 0, ...) ∈ I if αk ≥ 1 we have Hα−ε(k) =
H(α1,...,αk−1,αk−1,αk+1,...,αm,0,0,...)

Thus, the domain of the Malliavin derivative in X ⊗ (S)−ρ is given by

Dom−ρ(D) =
⋃

p∈N0

Dom−ρ,−p(D) (1.3)

=
⋃

p∈N0

{u ∈ X ⊗ (S)−ρ :
∑

α∈I
|α|1+ρα!1−ρ ‖uα‖2X(2N)−pα <∞}.

All processes that belong to Dom−ρ(D) are called Malliavin differentiable.
The operator D is also called the stochastic gradient.
The range of the Malliavin derivative operator is characterized in the
following theorem. Particularly, for ρ = 1 this characterization was proven
in [73] and for ρ = 0 it was considered in [74].

Theorem 3 ([62, 71]) The Malliavin derivative of a process u ∈ X⊗(S)−ρ
is a linear and continuous mapping

D : Dom−ρ,−p(D)→ X ⊗ S−l(R)⊗ (S)−ρ,−p,

for l > p+ 1 and p ∈ N0.
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Definition 4 Let ρ ∈ [0, 1] and let v ∈ X ⊗ (S)ρ be given in the form
v =

∑
α∈I vα ⊗Hα, vα ∈ X, α ∈ I. We say that u belongs to Domρ,p(D) if

∑

α∈I
|α|1−ρα!1+ρ‖uα‖2X(2N)pα <∞, for all p ∈ N0.

Thus, the domain of the Malliavin derivative operator in X⊗ (S)ρ is the
projective limit of the spaces Domρ,p(D), i.e.,

Domρ(D) =
⋂

p∈N0

Domρ,p(D) (1.4)

=
⋂

p∈N0

{u ∈ X ⊗ (S)ρ,p :
∑

α∈I
|α|1−ρ α!1+ρ ‖uα‖2X(2N)pα <∞}.

Theorem 5 ([71]) The Malliavin derivative of a test stochastic process v ∈
X ⊗ (S)ρ is a linear and continuous mapping

D : Domρ,p(D)→ X ⊗ Sl(R)⊗ (S)ρ, p, for p > l + 1.

Definition 6 The domain of D of a stochastic process u ∈ X ⊗ L2(µ) is
given by

Dom0(D) = {u ∈ X ⊗ L2(µ) :
∑

α∈I
|α|α! ‖uα‖2X <∞}. (1.5)

Theorem 7 ([71]) The Malliavin derivative of a process u ∈ Dom0(D) is
a linear and continuous mapping

D : Dom0(D) → X ⊗ L2(R)⊗ L2(µ).

For ρ ∈ [0, 1] and p ∈ N we obtainedDomρ,p(D) ⊆ Dom0(D) ⊆ Dom−ρ,−p(D),
and therefore Domρ(D) ⊆ Dom0(D) ⊆ Dom−ρ(D).

The Skorokhod integral

The Skorokhod integral, as an extension of the Itô integral for non-adapted
processes, can be regarded as the adjoint operator of the Malliavin derivative
in L2(µ)-sense. In [73] the definition of the Skorokhod integral from Hilbert
space valued processes to the class of S′-valued generalized processes was
extended. Further development in this direction was proposed in [62, 71,
73, 74]. In the following we summarize these results.

Definition 8 Let ρ ∈ [0, 1]. Let F =
∑

α∈I fα ⊗Hα ∈ X ⊗ S′(R) ⊗ (S)−ρ
such that fα ∈ X ⊗S′(R) is given by fα =

∑
k∈N fα,k ⊗ ξk, fα,k ∈ X. Then,

F belongs to Dom−ρ,−l,−p(δ) if it holds

∑

α∈I
|α|1−ρ α!1−ρ ‖fα‖2X⊗S−l(R) (2N)−pα <∞. (1.6)
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Thus, the chaos expansion of its Skorokhod integral is given by

δ(F ) =
∑

α∈I

∑

k∈N
fα,k ⊗Hα+ε(k) =

∑

α>0

∑

k∈N
fα−ε(k),k ⊗Hα. (1.7)

The domain of the Skorokhod integral operator for generalized stochastic
processes in X = X ⊗ S′(R) ⊗ (S)−ρ is denoted by Dom−ρ(δ) and is given
as the inductive limit of the spaces Dom−ρ,−l,−p(δ), l, p ∈ N0, i.e.,

Dom−ρ(δ) =
⋃

p>l+1

Dom−ρ,−l,−p(δ) =
⋃

p>l+1

{F ∈ X : ‖F‖2Dom−ρ,−l,−p <∞},

where ‖F‖2Dom−ρ,−l,−p is given by (1.6). Each stochastic process F ∈ Dom−ρ(δ)
is called integrable in the Skorokhod sense.

Theorem 9 ([64]) Let ρ ∈ [0, 1]. The Skorokhod integral δ is a linear and
continuous mapping

δ : Dom−ρ,−l,−p(δ)→ X ⊗ (S)−ρ,−p, p > l + 1.

Particularly, the domain Dom−1(δ) was characterized in [73, 75].
In the following, we characterize the domains Domρ(δ) and Dom0(δ) of

the Skorokhod integral operator for test processes from X ⊗ S(R) ⊗ (S)ρ
and processes from X ⊗ L2(R)⊗ L2(µ), as modifications of those presented
in [71, 74].

Definition 10 ([64]) Let ρ ∈ [0, 1]. Let F =
∑

α∈I fα ⊗Hα ∈ X ⊗ S(R)⊗
(S)ρ and let fα ∈ X ⊗ S(R) be given by the expansion fα =

∑
k∈N fα,k ⊗ ξk,

fα,k ∈ X. We say that the process F belongs to Domρ,l,p(δ) if

∑

α∈I
|α|1+ρ α!1+ρ ‖fα‖2X⊗Sl(R) (2N)pα <∞. (1.8)

Then, the chaos expansion form of the Skorokhod integral of F is given by
the expression (1.7).

The domain of the Skorokhod integral for test stochastic processes in X ⊗
S(R) ⊗ (S)ρ is denoted by Domρ(δ) and is given as the projective limit of
the spaces Domρ,l,p(δ), l, p ∈ N0, i.e.,

Domρ(δ) =
⋂

l>p+1

Domρ,l,p(δ)

=
⋂

l>p+1

{F ∈ X ⊗ Sl(R)⊗ (S)ρ,p : ‖F‖2Domρ,l,p(δ) <∞},

where ‖F‖2Domρ,l,p(δ) is defined by (1.8). All test processes F that belong to

Domρ(δ) are called Skorokhod integrable.
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Theorem 11 ([64]) The Skorokhod integral δ of a Sl(R)-valued stochastic
test process is a linear and continuous mapping

δ : Domρ,l,p(δ)→ X ⊗ (S)ρ, p, l > p+ 1, p ∈ N.

Definition 12 ([64]) Let F ∈ X ⊗ L2(R) ⊗ L2(µ) be represented in the
form F =

∑
α∈I

∑
k∈N fα,k ⊗ξk⊗Hα, fα,k ∈ X. The process F is Skorokhod

integrable if it belongs to the space Dom0(δ), i.e., if it holds

Dom0(δ) = {F ∈ X ⊗ L2(R)⊗ L2(µ) :
∑

α∈I
|α|α!‖fα‖2X⊗L2(R) <∞}. (1.9)

Theorem 13 ([64]) The Skorokhod integral δ is a linear and continuous
mapping

δ : Dom0(δ) → X ⊗ L2(µ).

The Ornstein-Uhlenbeck operator

The third main operator of the Malliavin calculus is the Ornstein-Uhlenbeck
operator. We describe the domain and the range of the Ornstain-Uhlenbeck
operator for different classes of stochastic processes [62, 71, 74, 75].

Definition 14 The operator R = δ ◦ D defined as the composition of the
Malliavin derivative and the Skorokhod integral is denoted by and is called
the Ornstein-Uhlenbeck operator.

Since the estimate |α| ≤ (2N)α holds for all α ∈ I, the image of the Malliavin
derivative is included in the domain of the Skorokhod integral and thus we
can define their composition. For example, for v ∈ Dom−ρ,−l,−p(δ) and
q + 1− ρ ≤ p we obtain

‖v‖2Dom−ρ,−l,−p(δ) =
∑

α∈I
|α|1−ρα!1−ρ‖vα‖2X⊗S−l(R)(2N)−pα

≤
∑

α∈I
α!1−ρ‖vα‖2X⊗S−l(R)(2N)−qα = ‖v‖2X⊗S−l(R)⊗(S)−ρ,−q ,

i.e., X ⊗ S−l(R) ⊗ (S)−ρ,−q ⊆ Dom−ρ,−l,−p(D) for q + 1 − ρ ≤ p. From
Theorem 3 and Theorem 9 we obtain additional conditions l > q + 1 and
p > l+ 1 and thus for p > q+ 2 the operator R is well defined in X⊗ (S)−ρ.

Theorem 15 ([71]) For a Malliavin differentiable stochastic process u that
is represented in the form u =

∑
α∈I uα ⊗Hα, the Ornstein-Uhlenbeck op-

erator is given by

R(u) =
∑

α∈I
|α|uα ⊗Hα. (1.10)
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For a special choice of u = uα⊗Hα, α ∈ I we obtain that the Fourier-Hermite
polynomials are eigenfunctions of R and the corresponding eigenvalues are
|α|, α ∈ I, i.e.,

R(uα ⊗Hα) = |α| uα ⊗Hα. (1.11)

Moreover, Gaussian processes with zero expectation are the only fixed points
of the Ornstein-Uhlenbeck operator [74].

The domain of the Ornstein-Uhlenbeck operator in X⊗(S)−ρ is given as
the inductive limit Dom−ρ(R) =

⋃
p∈N0

Dom−ρ,−p(R) of the spaces

Dom−ρ,−p(R) = {u ∈ X ⊗ (S)−ρ,−p :
∑

α∈I
|α|2α!1−ρ‖uα‖2X(2N)−pα <∞}.

(1.12)

Theorem 16 ([71]) The operator R is a linear and continuous mapping

R : Dom−ρ,−p(R)→ X ⊗ (S)−ρ,−p, p ∈ N0.

Moreover, Dom−ρ(R) ⊆ Dom−ρ(D), while for ρ = 1 they coincide.

The domain of the Ornstein-Uhlenbeck operator in the space X⊗(S)ρ is
defined as the projective limit Domρ(R) =

⋂
p∈N0

Domρ,p(R) of the spaces

Domρ,p(R) = {v ∈ X ⊗ (S)ρ,p :
∑

α∈I
α!1+ρ |α|2‖vα‖2X(2N)pα <∞}. (1.13)

Theorem 17 ([71, 75]) The operator R is a linear and continuous map-
ping

R : Domρ,p(R)→ X ⊗ (S)ρ, p, p ∈ N0.

Moreover, it holds Domρ(D) ) Domρ(R).

The definition of the domain of the Ornstein-Uhlenbeck operator in the
space X ⊗ L2(µ) corresponds to the classical definition. Denote by

Dom0(R) = {u ∈ X ⊗ L2(µ) :
∑

α∈I
α! |α|2 ‖uα‖2X <∞}. (1.14)

Theorem 18 ([71, 75]) The operator R is a linear and continuous map-
ping

R : Dom0(R) → X ⊗ L2(µ).

Moreover, it holds Dom0(D) ) Dom0(R).

The characterization of the domain, the range of the operator R and its
properties on X ⊗ (S)1 and X ⊗L2(µ) were discussed in [69, 74]. Moreover,
for this particular cases the surjectivity of the mappings was proven in [71,
74, 75].
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Main results of Section 1.1 and Section 1.2

The main results of Section 1.1 and Section 1.2 are twofold. The first group
is related to the proofs of several properties and relations between the op-
erators of generalized Malliavin calculus based on chaos expansions. The
second group of results includes some applications of the Malliavin calculus.

Properties of the operators D, δ and R
Based on the definitions of the operators of generalized Malliavin calculus
we proved the integration by parts formula, i.e., the duality relation between
D and δ, product rules for D and R, the Leibniz formula and the chain rule.

In the classical L2 setting it is known that the Skorokhod integral is
the adjoint of the Malliavin derivative [87]. We extend this result in the
following theorem and prove their duality by pairing a generalized process
with a test process (the classical result is revisited in part 3◦).

Theorem 19 ([71, 74]) (Duality) Assume that either of the following hold:

1◦ F ∈ Dom−ρ(D) and u ∈ Domρ(δ)

2◦ F ∈ Domρ(D) and u ∈ Dom−ρ(δ)

3◦ F ∈ Dom0(D) and u ∈ Dom0(δ) .

Then, the following duality relationship between the operators D and δ holds

E (F · δ(u)) = E (〈DF, u〉) , (1.15)

where (1.15) denotes the equality of the generalized expectations of two ob-
jects in X ⊗ (S)−ρ and 〈·, ·〉 denotes the dual paring of S′(R) and S(R).

Theorem 19 is a special case of a more general identity, i.e. under suitable
assumptions that make all the products well defined, the following holds

F δ(u) = δ(Fu) + 〈D(F ), u〉. (1.16)

By taking the expectation in (1.16) and using the fact that E(δ(Fu)) = 0,
we obtain the duality relation (1.15).

The higher order duality formula, which connects the kth order iterated
Skorokhod integral and the Malliavin derivative operator of kth order, k ∈ N
is proven in [74]. A weaker type of duality than (1.15), which holds in Hida
spaces was proven in [71]. Here we formulate the weak duality and omit its
proof. A similar result is obtained in [74] for Kondratiev spaces when ρ = 1.
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Theorem 20 ([71, 74]) (Weak duality) Let ρ = 0. F ∈ Dom−0,−p(D) and
u ∈ Dom−0,−q(D), for p, q ∈ N. For any ϕ ∈ S−n(R), n < q − 1, it holds
that

� 〈DF,ϕ〉−r, u�−r =� F, δ(ϕu)�−r,
for r > max{q, p+ 1}.

The following theorem states that the Malliavin derivative indicates the
rate of change in time between the ordinary product and the Wick product.

Theorem 21 ([75]) Let h ∈ X ⊗ (S)−ρ and let wt denote white noise.
Then,

h · wt − h♦wt = D(h). (1.17)

The relation (1.17) gave us the motivation to study the fundamental equa-
tions involving kth order operators of Malliavin calculus.
The Malliavin derivative D is not the inverse operator of the Skorokhod in-
tegral δ and also they do not commute. However, the relation (1.18) holds.

Theorem 22 ([71, 74]) If u ∈ Dom−ρ(δ) then Du ∈ Dom−ρ(δ) and it
holds

D(δu) = u+ δ(Du). (1.18)

The commutation relation (1.18) holds for processes u ∈ Domρ(δ) and also
for u ∈ Dom0(δ).

The following theorem states the product rule for the Ornstein-Uhlenbeck
operator. Its special case for F,G ∈ Dom0(R) states that F · G is also in
Dom0(R) and (1.19) holds. The proof can be found for example in [48].

Theorem 23 ([74]) (Product rule for R)

1◦ Let F ∈ Domρ(R) and G ∈ Dom−ρ(R). Then F · G ∈ Dom−ρ(R)
and

R(F ·G) = F · R(G) +G · R(F )− 2 · 〈DF,DG〉, (1.19)

holds, where 〈·, ·〉 is the dual paring between S′(R) and S(R).

2◦ Let F,G ∈ Dom−ρ(R). Then F♦G ∈ Dom−ρ(R) and

R(F♦G) = F♦R(G) +R(F )♦G. (1.20)

3◦ Let F ∈ Domρ(R) and G ∈ Dom−ρ(R) or vice versa (including also
the possibility F,G ∈ Dom0(R)). Then,

E(F · R(G)) = E (〈DF,DG〉) . (1.21)

The property (1.21) holds also for F,G ∈ Dom0(R).
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In the classical literature, e.g. [83, 87], it is proven that the Malliavin
derivative satisfies the product rule (with respect to ordinary multiplication),
i.e., if F,G ∈ Dom0(D), then F · G ∈ Dom0(D) and (1.22) holds. The
following theorem recapitulates this result and extends it for generalized
and test processes, and also for the Wick multiplication [15, 74].

Theorem 24 ([71, 74]) (Product rule for D)

1◦ Let F ∈ Dom−ρ(D) and G ∈ Domρ(D). Then F ·G ∈ Dom−ρ(D) and
it holds

D(F ·G) = F · DG + DF ·G. (1.22)

2◦ Let F,G ∈ Dom−ρ(D). Then F♦G ∈ Dom−ρ(D) and

D(F♦G) = F♦DG + DF♦G.

Theorem 25 ([71, 74]) Assume that either of the following hold:

1◦ F ∈ Dom−ρ(D), G ∈ Domρ(D) and u ∈ Domρ(δ),

2◦ F,G ∈ Domρ(D) and u ∈ Dom−ρ(δ),

3◦ F,G ∈ Dom0(D) and u ∈ Dom0(δ).

Then, the second integration by parts formula holds

E(F 〈DG, u〉) + E(G〈DF, u〉) = E(F Gδ(u)). (1.23)

A generalization of Theorem 24 for higher order derivatives, i.e., the
Leibnitz formula is given [71, 74]. The chain rule for the Malliavin derivative
for processes with finite second moments has been known in the literature
as a direct consequence of the definition of Malliavin derivatives as Fréchet
derivatives [15]. An alternative proof suited for chaos expansions setting
was presented in [71, 74].

Theorem 26 ([71, 74]) (The chain rule) Let φ be a twice continuously
differentiable function with bounded derivatives.

1◦ If F ∈ Domρ(D) (or F ∈ Dom0(D)) then φ(F ) ∈ Domρ(D) (respec-
tively φ(F ) ∈ Dom0(D)) and the chain rule holds

D (φ(F )) = φ′(F ) · D(F ). (1.24)

2◦ If F ∈ Dom−ρ(D) and φ is analytic then φ♦(F ) ∈ Dom−ρ(D) and

D (φ♦(F )) = φ′♦(F )♦D(F ). (1.25)

Additionally, several illustrative examples are provided in [74].
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Applications of the Malliavin calculus

One of the first and most important applications of the Malliavin calculus
concerns the existence and smoothness of a density for the probability law of
random variables. More recent applications in finance have been developed
for option pricing and computing Greeks (Greeks measure the stability of
the option price under variations of the parameters) via the Clark-Ocone
formula [16, 83, 88]. A few years ago it was also discovered that Malliavin
calculus is in a close relationship with the Stein method and can be used for
estimating the distance of a random variable from Gaussian variables [89].
In this section we assume that X = R. The following results appeared in
[74].

Measurability and densities

Let A ∈ B be a Borel set in S′(R). Denote by κA its indicator function,
i.e. the random variable κA(ω) = 1 for ω ∈ A and κA(ω) = 0 for ω ∈ Ac.
Then, κA =

∑
α∈I aαHα, where aα = E(κA · Hα), α ∈ I. Especially,

a0 = E(κA) = P (A).

Proposition 27 ([87]) The indicator function κA ∈ Dom0(D) if and only
if P (A) = 0 or P (A) = 1.

If P (A) ∈ (0, 1), then κA /∈ Dom0(D). For example, f(ω) = κ{Bt(ω)>0} /∈
Dom0(D) since P{Bt > 0} ∈ (0, 1). On the other hand, κA ∈ Dom−(D)
regardless of the value of P (A).

For a closed subspace A of S′(R), we denote by σ[A] the sub-σ-algebra of
B generated by A. A random variable f is measurable with respect to σ[A]
if and only if D(f) = 0 a.e. on Ac. In particular, it was proven ([17, 53, 87]),
that if a stochastic process ft is adapted to the Brownian filtration At =
σ[Bs : s ≤ t], then supp D(ft) = [0, t], i.e. Dft =

∑
α∈I

∑
k∈N αkfα(t) ⊗

ξk(s)⊗Hα−ε(k) = 0 for s > t.

Theorem 28 (Clark-Ocone formula) Let F ∈ Dom0(D) be adapted to the
Brownian filtration. Then,

F (s) = E(F ) +

∫ s

0
E(DF (s)|At) dBt.

In [74] we also showed that absolutely continuous distributions can be
characterized via the Malliavin derivative. Moreover, there exists an explicit
formula for the density of the distribution. We point out that ‖DF‖2L2(R) =

〈DF,DF 〉L2(R) is an element in L2(µ). If F is of the form F =
∑

α∈I fαHα,

then ‖DF‖2L2(R) =
∑

k∈N
(∑

α∈I fα+ε(k)(αk + 1)Hα

)2
.
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Theorem 29 ([53]) Let F ∈ Dom0(D) be such that ‖DF‖L2(R) 6= 0 a.e.

and DF
‖DF‖2 ∈ Dom0(δ). Then for every φ ∈ C2

0 (R),

E(φ′(F )) = E

(
φ(F ) · δ

(
DF

‖DF‖2
L2(R)

))
. (1.26)

Moreover, F is an absolutely continuous random variable and its density ϕ
is given by

ϕ(t) = E

(
κ{F>t} · δ

(
DF

‖DF‖2
L2(R)

))
. (1.27)

Gaussian approximations

In [74] we proved some results which combine the Malliavin calculus with
the Stein method [89]. The properties were proven by using the method of
chaos expansions. It is well-known that a random variable N has N (0, 1)
distribution if and only if E (N · F (N)− F ′(N)) = 0, for every smooth
function F . Thus, according to the Stein lemma, one can measure the
distance to N ∼ N (0, 1), for an arbitrary random variable Z by measuring
the expectation of Z ·F (Z)−F ′(Z). By using Malliavin calculus we showed
that

E (Z · F (Z)) = E
(
F ′(Z) 〈DZ,DR−1 Z〉

)

holds for every F ∈ C2(R). Thus, in order to measure the distance to
N ∼ N (0, 1), one needs to estimate

E|1− 〈DZ,DR−1 Z〉|, (1.28)

where E|1− 〈DZ,DR−1 Z〉| = 0 if and only if Z ∼ N (0, 1).

Theorem 30 ([74]) Let f ∈ Dom+(D) or f ∈ Dom0(D) such that E(f) =
0 and let F ∈ C2(R). Then,

E (f · F (f)) = E
(
F ′(f) · 〈Df,DR−1 f〉

)
.

Thus, if f ∈ Dom+(D) or f ∈ Dom0(D) such that E(f) = 0, then
f ∼ N (0, 1) if and only if 〈Df,DR−1f〉 = 1.

Theorem 31 ([74]) A random variable f has N (0, 1) distribution if and
only if f ∈ L2(µ) ∩ H1 and ‖f‖2L2(µ) = 1, i.e. if it is of the form f =∑∞

j=1 fjHε(j) and
∑∞

j=1 |fj |2 = 1 holds.

The previous theorem was also extended for generalized random variables,
e.g. the white noise process at a fixed time point. These processes have an
infinite variance and can be regarded as elements of the Kondratiev spaces.
Recall that 〈·, ·〉−p denotes the scalar product in the Schwartz space S−p(R).
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Theorem 32 ([74]) Let f ∈ Dom−p(D) and E(f) = 0. The following
statements are equivalent:

• f has a generalized Gaussian distribution,

• f ∈ H1,

• 〈Df,DR−1f〉−p = ‖f‖2(S)−1,−p
<∞.

Theorem 31 and Theorem 32 provide a complete characterization of Gaus-
sian processes (classical and generalized processes). All Gaussian processes
belong to H1 and H1 contains nothing else apart from Gaussian processes.

Theorem 33 ([89]) Let Z ∈ Dom+(D) or Z ∈ Dom0(D) be such that
E(Z) = 0 and V ar(Z) = 1. Then the expectation (1.28) satisfies

E
(
|1− 〈DZ,DR−1 Z〉|

)
≤
√
V ar (〈DZ,DR−1 Z〉).

In order to measure how close is Z to being normally distributed, one has to
estimate how close is V ar

(
〈DZ,DR−1 Z〉

)
to zero. This quantity is larger

than the Kolmogorov distance, but nevertheless still a good approximation.

Equations involving Mallivin calculus operators

This section is devoted to the study of several classes of stochastic equa-
tions involving generalized operators of the Malliavin calculus. In particular,
equations that were discussed in Section 1.2 [74], Section 1.3 [75], Section
1.4 [76], Section 1.5 [62], Section 1.6 [70] and Section 1.7 [77]. We also
consider equations involving the Malliavin derivative operator and the Wick
product with a Gaussian process. Additionally, we study stochastic evolu-
tion equations with multiplicative noise and stochastic evolution equations
with Wick-power nonlinearities. Applying the chaos expansion method in
white noise spaces, we solve these equations and obtain explicit forms of the
solutions in appropriate spaces of stochastic processes.

Fundamental equations

It is of great importance to solve explicitly stochastic differential equations
involving operators of Malliavin calculus, since explicit expansions of solu-
tions can be used in numerical simulations [28, 84, 101]. Particularly, we
consider the following fundamental equations with the kth order operators
of the Malliavin calculus

R(k) u = g D(k) u = h, δ(k) u = f, (1.29)

as well as
Pm(R) u = g, (1.30)
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where Pm is a polynomial of order m. We also consider Wick-type equations
involving Malliavin derivative and a nonhomogeneous linear equation with
D, i.e., respectively

Du = G♦(Au) + h, and Du = c⊗ u + h, (1.31)

satisfying the initial condition Eu = ũ0. Here, G is a Gaussian process, A a
coordinatewise operator, c ∈ S′(R) and h is a Schwartz space valued gener-
alized stochastic process. The three equations in (1.29) have been solved in
Section 1.3 [75]. Particularly, for k = 1 they provide a full characterization
of the range of all three operators, and were considered in [74, 75]. The
study of the Wick-type equation in (1.31) was motivated by [75]. There it
was shown that Malliavin derivative indicates the rate of change in time be-
tween ordinary product and the Wick product (1.17). Moreover, the Wick
product and the Malliavin derivative play an important role in the analysis
of nonlinear problems. For instance, in [100] the authors proved that in
random fields, random polynomial nonlinearity can be expanded in a Tay-
lor series involving Wick products and Malliavin derivatives, the so-called
Wick-Malliavin series expansion.

Equations with the Ornstein-Uhlenbeck operator

We consider stochastic equations involving polynomials of the Ornstein-
Uhlenbeck operator and generalize results from [71, 74, 75].

Theorem 34 ([64]) Let ρ ∈ [0, 1] and let Pm(t) =
∑m

k=0 pkt
k, t ∈ R be a

polynomial of degree m with real coefficients.

a) If Pm(k) 6= 0, for k ∈ N0, then the equation Pm(R)u = g has a unique
solution represented in the form

u =
∑

α∈I

gα
Pm(|α|) ⊗Hα. (1.32)

b) If Pm(k) = 0 for k ∈M , where M is a finite subset of N0 and gα = 0
for |α| = i ∈ M then the equation Pm(R)u = g with the conditions
uα = ci for |α| = i ∈M has a unique solution given by

u =
∑

|α|/∈M

gα
Pm(|α|) ⊗Hα +

∑

|α|=i∈M
ci ⊗Hα. (1.33)

Moreover, the following hold:

1◦ If g ∈ X ⊗ (S)−ρ,−p, p ∈ N then u ∈ Dom−ρ,−p(Rm).

2◦ If g ∈ X ⊗ (S)ρ,p, p ∈ N then u ∈ Domρ,p(Rm).
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3◦ If g ∈ X ⊗ L2(µ) then u ∈ Dom0(Rm).

Remark 35 For Pm(t) = tm, t ∈ R the equation Pm(R)u = g reduces to

Rmu = g, Eu = ũ0 ∈ X. (1.34)

This case was considered in [75]. Assuming that g has zero generalized
expectation, from Theorem 34 it follows that the equation (1.34) has a unique
solution of the form

u = ũ0 +
∑

|α|>0

gα
|α|m ⊗ Hα.

We also note that each stochastic process g can be represented as g =
Eg +R(u), for some u ∈ Dom(R), where Dom(R) denotes the domain of
R in one of the spaces X ⊗ (S)ρ, X ⊗ (S)−ρ or X ⊗ L2(µ).

First order equation with the Malliavin derivative operator

A first order equation involving the Malliavin derivative operator is studied
in Section 1.2 [74]. It also appears as a special case in Section 1.3 [75]. The
following result characterizes the family of stochastic processes that can be
written as the Malliavin derivative of some stochastic process. The results
from [71, 74, 75] are generalized here.

Theorem 36 ([64, 74]) Let ρ ∈ [0, 1]. Let a process h be given in the
chaos expansion representation form h =

∑
α∈I

∑
k∈N hα,k ⊗ ξk ⊗Hα such

that the coefficients hα,k satisfy the condition

1

αk
hα−ε(k),k =

1

βj
hβ−ε(j),j , (1.35)

for all α+ ε(k) = β + ε(j). Then, for each ũ0 ∈ X the equation

Du = h, Eu = ũ0 (1.36)

has a unique solution u represented in the form

u = ũ0 +
∑

α∈I,|α|>0

1

|α|
∑

k∈N
hα−ε(k),k ⊗ Hα. (1.37)

Moreover, the following holds:

1◦ If h ∈ X ⊗ S−p(R)⊗ (S)−ρ,−q, q > p+ 1 then u ∈ Dom−ρ,−q(D).

2◦ If h ∈ X ⊗ Sp(R)⊗ (S)ρ,q, p > q + 1, then u ∈ Domρ,q(D).

3◦ If h ∈ Dom0(δ) then u ∈ Dom0(D).
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In [73] for ρ = 1 we provided another way for solving equation (1.36).
Applying the chaos expansion method directly, we transformed equation
(1.36) into a system of infinitely many equations of the form

uα+ε(k) =
1

αk + 1
hα,k, for all α ∈ I, k ∈ N, (1.38)

from which we calculated uα, by induction on the length of α.
Denote by r = r(α) = min{k ∈ N : αk 6= 0}, for a nonzero multi-

index α ∈ I, i.e., let r be the position of the first nonzero component
of α. Then, the first nonzero component of α is the rth component αr,
i.e., α = (0, ..., 0, αr, ..., αm, 0, ...). Denote by αε(r) the multi-index with all
components equal to the corresponding components of α, except the rth,
which is αr − 1. With the given notation we call αε(r) the representative of
α and write α = αε(r) + ε(r). For α ∈ I, |α| > 0 the set

Kα = {β ∈ I : α = β + ε(j), for those j ∈ N such that αj > 0}

is a nonempty set, because it contains at least the representative of α, i.e.,
αε(r) ∈ Kα. Note that, if α = nε(r), n ∈ N then Card(Kα) = 1 and in all
other cases Card(Kα) > 1. Further, for |α| > 0, Kα is a finite set because α
has finitely many nonzero components and Card(Kα) is equal to the number
of nonzero components of α. In [73] the coefficients uα of the solution of
(1.38) are obtained as functions of the representative αε(r) of a nonzero
multi-index α ∈ I in the form

uα =
1

αr
hα

ε(r)
, r, for |α| 6= 0, α = αε(r) + ε(r).

Theorem 37 ([73]) Let h =
∑

α∈I
∑

k∈N hα,k ⊗ ξk ⊗Hα ∈ X ⊗ S−p(R)⊗
(S)−ρ,−p, for some p ∈ N0 with hα,k ∈ X such that

1

αr
hα

ε(r)
,r =

1

αj
hβ, j , (1.39)

for the representative αε(r) of α ∈ I, |α| > 0 and all β ∈ Kα, such that
α = β + ε(j), for j ≥ r, r ∈ N. Then, (1.36) has a unique solution in
X ⊗ (S)−ρ,−p given in the chaos expansion form

u = ũ0 +
∑

α=α
ε(r)

+ε(r)∈I

1

αr
hα

ε(r)
,r ⊗ Hα. (1.40)

Corollary 38 It holds that D(u) = 0 if and only if u = Eu.

In other words, the kernel of the operator D is H0.
If the input function h is a constant random variable, i.e. an element

of H0, then the solution u of (1.36) is a Gaussian process. Additionally,
for every Skorokhod integrable process h there exists a unique u ∈ Dom(D)
such that Eu = 0 and h = D(u) holds.
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Nonhomogeneous equation with the Malliavin derivative
operator

In Section 1.6 [70] we solved the nonhomogeneous linear Malliavin differen-
tial equation

Du = c⊗ u + h, Eu = ũ0 (1.41)

where c ∈ S′(R), h is a Schwartz space valued generalized stochastic process
and ũ0 ∈ X. Especially, for h = 0 the equation (1.41) reduces to the
corresponding homogeneous equation Du = c ⊗ u satisfying Eu = ũ0, i.e.,
the generalized eigenvalue problem for the Malliavin derivative operator that
was solved in [73]. Moreover, it was proved that in a special case, the
obtained solution coincide with the stochastic exponential. Additionally,
setting c = 0, the initial equation (1.41) transforms to (1.36).

Let αε(r) be the representative of a nonzero multi-index α, i.e., α =
αε(r) + ε(r), |αε(r) | = |α| − 1 and let Card(Kα) > 1. Then, we denote by
r1 the first nonzero component of αε(r) and by αε(r1) its representative, i.e.,
αε(r) = ε(r1) + αε(r1) and |αε(r1) | = |α| − 2. If Card(Kα

ε(r1)
) > 1, we denote

by r2 the first nonzero component of αε(r1) and with αε(r2) its representative,
i.e., αε(r1) = ε(r2) + αε(r2) and so on. With such a procedure we decompose
α ∈ I recursively by new representatives of the previous representatives and
we obtain a sequence of K-sets. Thus, for α = (α1, α2, ..., αm, 0, 0, ...) ∈ I,
|α| = s + 1 there exists an increasing family of integers 1 ≤ r ≤ r1 ≤ r2 ≤
... ≤ rs ≤ m, s ∈ N such that αε(rs) = 0 and every α is decomposed by the
recurrent sum

α = ε(r) + αε(r) = ε(r) + ε(r1) + αε(r1) = . . .

= ε(r) + ε(r1) + ...+ ε(rs) + αε(rs) .
(1.42)

Theorem 39 ([70]) Let ρ ∈ [0, 1]. Let c =
∑∞

k=1 ck ξk ∈ S′(R) and let
h ∈ X ⊗ S′(R) ⊗ (S)−ρ with coefficients hα,k ∈ X such that the following
conditions (C)

1
αr
hα

ε(r)
,r = 1

βk
hβ,k, β ∈ Kα, |α| = 1

1
αrαr1

crhα
ε(r1)

,r1 = 1
βkβk1

ckhβ1,k1 , β ∈ Kα, β1 ∈ Kα
ε(r)

, |α| = 2

. . .

hold for all possible decompositions of α of the form (1.42). If ck ≥ 2k for
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all k ∈ N, then (1.41) has a unique solution in X ⊗ (Sc)−ρ given by

u = uhom + unhom =
∑

α∈I
uhomα ⊗Hα +

∑

|α|>0

unhomα ⊗Hα

= ũ0 ⊗
∑

α∈I

cα

α!
Hα +

∑

|α|>0

( 1

αr
hα

ε(r)
,r +

1

αrαr1
crhα

ε(r1)
,r1

+
1

αrαr1αr2
crcr1hα

ε(r2)
,r2 + ...+

1

α!
crcr1 ...crs−1h0,rs

)
⊗Hα,

(1.43)

where uhom is the solution of the corresponding homogeneous equation Du =
c ⊗ u. The nonhomogeneous part unhom of the solution u is given by the
the second sum in (1.43), which runs through nonzero α represented in the
recursive form (1.42).

The proof for ρ = 1 was given in [70]. Note that the first subcondition in
(C) corresponds to (1.35) and equals (1.39).

Wick-type equations involving the Malliavin derivative

We consider a nonhomogeneous first order equation involving the Malliavin
derivative operator

Du = G♦u+ h, Eu = ũ0, ũ0 ∈ X. (1.44)

This type of problems was considered in Section 1.5 [62]. It is assumed that
h is a S′(R)-valued generalized stochastic process and G ∈ S−l(R)⊗(S)−ρ,−q
is a Gaussian process represented in the form

G =
∑

k∈N
gk ξk ⊗ Hε(k) . (1.45)

Moreover, for some l, q > 0 the condition

∑

k∈N
g2k (2k)−q−l < ∞. (1.46)

holds. First we solve the homogeneous version of (1.44).

Theorem 40 ([62]) Let ρ ∈ [0, 1] and let G ∈ S−l(R) ⊗ (S)−ρ,−q, q, l > 0
be a Gaussian process of the form (1.45) whose coefficients gk, k ∈ N satisfy
the condition (1.46). If gk ≥ 2k for all k ∈ N then the initial value problem

Du = G♦u, Eu = ũ0, ũ0 ∈ X, (1.47)
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has a unique solution in Dom(Dg)−ρ,−p represented in the form

u = ũ0 ⊗
∑

α=2β∈I

Cα
|α|!! (

∞∏

k=1

gβkk )Hα = ũ0 ⊗
∑

2β∈I
C2β

gβ

|2β|!! H2β, (1.48)

where Cα represents the number of all possible decomposition chains con-
necting multi-indices α and α̃, such that α̃ is the first successor of α having
only one nonzero component that is obtained by the subtractions α−2ε(p1)−
...− 2ε(ps) = α̃, for p1, ..., ps ∈ N, s ≥ 0.

Theorem 41 ([62]) Let ρ ∈ [0, 1] and let G ∈ S−l(R) ⊗ (S)−ρ,−q, q, l > 0
be a Gaussian process of the form (1.45) whose coefficients gk, k ∈ N satisfy
(1.46). If gk ≥ 2k for all k ∈ N and if the coefficients of h ∈ X ⊗ S−l ⊗
(S)−ρ,−p, l, p > 0 satisfy (C) for all possible decompositions of α of the form
(1.42), then the nonhomogeneous equation

Du = G♦u + h, Eu = ũ0, (1.49)

for each ũ0 ∈ X has a unique solution in Dom(Dg)−ρ,−p represented in the
form u = uhom + unhom, where uhom is the solution of the corresponding
homogeneous equation (1.47) and is of the form (1.48) and unhom is the
nonhomogeneous part.

The study of more general types of equations is also included in Section
1.6 [62].

Integral equation

We consider an integral type equation involving the Skorokhod integral
operator. In the following theorem we generalize results from [74, 75] for pro-
cesses in X⊗S(R)⊗(S)ρ and generalized processes from X⊗S′(R)⊗(S)−ρ,
ρ ∈ [0, 1].

Theorem 42 Let ρ ∈ [0, 1]. Let f be a stochastic process with zero expec-
tation and chaos expansion representation of the form f =

∑
|α|≥1 fα⊗Hα,

fα ∈ X. Then the integral equation

δ(u) = f, (1.50)

has a unique solution u given by

u =
∑

α∈I

∑

k∈N
(αk + 1)

fα+ε(k)

|α+ ε(k)| ⊗ ξk ⊗ Hα. (1.51)

Moreover, the following hold:

1◦ If f ∈ Dom−ρ,−p(D), p ∈ N then u ∈ Dom−ρ,−l,−p(δ) for l > p+ 1.
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2◦ If f ∈ Domρ,p(D), p ∈ N then u ∈ Domρ,l,p(δ) for l < p− 1.

3◦ If f ∈ Dom0(D), then u ∈ Dom0(δ).

As a consequence, we conclude that each stochastic process f can be
represented as f = Ef+δ(u) for some Schwartz valued process u. In classical
setting, this result is known as the Itô representation theorem.

Higher order integral equations were solved in Section 1.3 [75].

Stochastic evolution equations

We consider stochastic evolution equations with multiplicative noise and
stochastic evolution equations with Wick-polynomial nonlinearities. These
results are related to Section 1.4 [76] and Section 1.7 [77], respectively.

Operators

We consider two classes of operators defined on sets of stochastic processes,
coordinatewise operators and convolution type operators. These classes in-
clude the generalized operators of Malliavin calculus. We follow the clas-
sification given in [68, 76]. Let X be a Banach algebra and let ρ ∈ [0, 1].

Definition 43 We say that an operator A defined on X ⊗ (S)−ρ is:

1◦ a coordinatewise operator if there exists a family of operators {Aα}α∈I ,
Aα : X → X, α ∈ I, such that

Au =
∑

α∈I
Aαuα ⊗ Hα , (1.52)

for all u =
∑

α∈I uα ⊗ Hα ∈ X ⊗ (S)−ρ.

2◦ a simple coordinatewise operator if Aα = A for all α ∈ I, i.e., if it
holds that

Au =
∑

α∈I
A(uα) ⊗ Hα = A(u0) +

∑

|α|>0

A(uα) ⊗ Hα.

Definition 43 can be modified for the operators acting on the spaces
X ⊗ L2(µ) and X ⊗ (S)ρ.

Lemma 44 ([76, 64]) Let A be a coordinatewise operator for which all
Aα, α ∈ I, are polynomially bounded, i.e., ‖Aα‖L(X) ≤ R(2N)rα for some
r,R > 0. Then, A is a bounded operator:

1◦ A : X ⊗ (S)−ρ,−p → X ⊗ (S)−ρ,−q for q ≥ p+ 2r, and
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2◦ A : X ⊗ (S)ρ,p → X ⊗ (S)ρ,q for q + 2r ≤ p.

The condition stating that the deterministic operators Aα, α ∈ I are
polynomially bounded can be formulated as

∑
α∈I ‖Aα‖2L(X)(2N)−rα < ∞

for some r > 0.

Definition 45 The Wick convolution type operator B♦ is defined by

B♦(y) =
∑

α∈I

∑

β≤α
Bβ(yα−β)Hα =

∑

γ∈I

∑

α+β=γ

Bα(yβ)Hγ , (1.53)

for y =
∑

α∈I yαHα.

If the operators Bα, α ∈ I are polynomially bounded and linear on
X, then B♦ is well-defined operator on X ⊗ (S)−ρ and, similarly, also on
X ⊗ (S)ρ.

Lemma 46 ([76]) If the operators Bα, α ∈ I, for some p > 0 satisfy
the condition

∑
α∈I ‖Bα‖2L(X)(2N)−pα < ∞ then B♦ is well-defined as a

mapping B♦ : X ⊗ (S)−ρ,−p → X ⊗ (S)−ρ,−q, for q ≥ p+ r + 1.

The operator of differentiation and the Fourier transform are simple co-
ordinatewise operators, while, for example A(u) = u♦2 cannot be written in
this form. The Ornstein-Uhlenbeck operator, defined by (1.10), is a coordi-
natewise operator, but it is not a simple coordinatewise operator. In [76] we
proved that the Skorokhod integral, defined by (1.7), can be represented in
the form of a convolution type operator. There exists an operator M such
that δ(Mu) = B♦u.

Stochastic evolution equations with multiplicative noise

We consider a stochastic Cauchy problem of the form

d

dt
U(t, x, ω) = AU(t, x, ω) + B♦U(t, x, ω) + F (t, x, ω)

U(0, x, ω) = U0(x, ω),
(1.54)

where t ∈ (0, T ], ω ∈ Ω, and U(t, ·, ω) belongs to X. The operator A
is densely defined, generating a C0−semigroup and B is a linear bounded
operator which combined with the Wick product ♦ introduces convolution-
type perturbations into the equation. All stochastic processes are considered
in the setting of Wiener-Itô chaos expansions.

This study was inspired by [81], where the authors provide a compre-
hensive analysis of equations of the form

d

dt
u(t, x, ω) = Au(t, x, ω) + δ(Mu(t, x, ω))

= Au(t, x, ω) +

∫
Mu(t, x, ω)♦W (x, ω) dx,
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where δ denotes the Skorokhod integral and W denotes the spatial white
noise process. In [76] we proved that for every operator M there exists a
corresponding operator B such that B♦u = δ(Mu). On the other hand, the
class of operators B is much larger.

We have studied elliptic SPDEs in [72, 92], particularly the stochastic
Dirichlet problem of the form L♦u + f = 0. Equations (1.54) also include
as a special case equations of the form d

dtu = Lu + f and d
dtu = L♦u +

f , where L is a strictly elliptic second order partial differential operator.
These equations describe the heat conduction in random media, where the
properties of the material are modeled by a positively definite stochastic
matrix. Other special cases of (1.54) include the heat equation with random
potential d

dtu = ∆u+B♦u, the Schrödinger equation (i~) ddtu = ∆u+B♦u+

f , the transport equation d
dtu = d2

dx2
u + W♦ d

dxu driven by white noise, the

generalized Langevin equation d
dtu = Ju+C(Y ′), where Y is a Lévy process,

J the infinitesimal generator of a C0−semigroup and C a bounded operator,
which was studied in [4], as well as the equation d

dtu = Lu+W♦u, where L
is a strictly elliptic partial differential operator as studied in [19] and [44].
Equations of the form d

dtu = Au + BW were also studied in [85], where
A is not necessarily generating a C0−semigroup, but an r-integrated or a
convolution semigroup.

We prove existence and uniqueness of solution of (1.54) by combining
the chaos expansion method with the operator semigroup theory.

Definition 47 ([76]) It is said that U is a solution of the equation (1.54)
if U ∈ C([0, T ], X)⊗ (S)−1 ∩ C1((0, T ], X)⊗ (S)−1 and U satisfies (1.54).

Theorem 48 ([76]) Let the following assumptions hold:

(A1) Let A be a coordinatewise operator of the form (1.52), acting on pro-
cesses U ∈ Dom(A) ⊆ D ⊗ (S)−1, where

Dom(A) = {U ∈ D⊗(S)−1 : ∃pU > 0,
∑

α∈I
‖Aα(uα)‖2X(2N)−pUα <∞}.

The operators Aα, α ∈ I, defined on the same domain D dense in X,
are infinitesimal generators of C0−semigroups (Tt)α, t ≥ 0, α ∈ I,
uniformly bounded by

‖(Tt)α‖L(X) ≤Mewt, t ≥ 0, for some M,w > 0. (1.55)

(A2) Let B♦ be of the form (1.53), where Bα, α ∈ I, are bounded linear
operators on X so that there exists p > 0 such that

K :=
∑

α∈I
‖Bα‖(2N)−p

α
2 <∞. (1.56)
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(A3) Let the initial value U0 ∈ X ⊗ (S)−1 be such that U0 ∈ Dom(A), i.e.,

U0(ω) =
∑

α∈I
u0αHα(ω) ∈ X ⊗ (S)−1,−p, satisfies

∑

α∈I
‖u0α‖2X(2N)−pα <∞;

(1.57)

and

AU0(ω) =
∑

α∈I
Aαu

0
αHα(ω) ∈ X ⊗ (S)−1,−p, satisfies

∑

α∈I
‖Aαu0α‖2X(2N)−pα <∞.

(1.58)

(A4) Let

F (t, ω) =
∑

α∈I
fα(t)Hα(ω) ∈ C1([0, T ], X)⊗ (S)−1,

where t 7→ fα(t) ∈ C1([0, T ], X), α ∈ I so that

∑

α∈I
‖fα‖2C1([0,T ],X)(2N)−pα

=
∑

α∈I

(
sup
t∈[0,T ]

‖fα(t)‖X + sup
t∈[0,T ]

‖f ′α(t)‖X
)2

(2N)−pα <∞.
(1.59)

Then, the stochastic Cauchy problem (1.54) has a unique solution U in
C1([0, T ], X)⊗ (S)−1,−p.

Stationary equations

We consider stationary equations of the form

Ay + T♦y + f = 0, (1.60)

where A : X ⊗ (S)−ρ → X ⊗ (S)−ρ, ρ ∈ [0, 1] and T♦ : X ⊗ (S)−ρ →
X ⊗ (S)−ρ are the operators of the forms (1.52) and (1.53), respectively.
We assume that {Aα}α∈I and {Tα}α∈I are bounded operators such that
Aα = Ãα +Cα, α ∈ I. We also assume that T0 and Ãα, α ∈ I are compact
operators and Cα are self adjoint for all α ∈ Isuch that Cα(Hα) = rαHα,
α ∈ I. The chaos expansion method is combined with classical results of
elliptic PDEs and the Fredholm alternative [34] in order to prove existence
and uniqueness of the solution of (1.60).

Theorem 49 ([76]) Let ρ ∈ [0, 1]. Let A : X ⊗ (S)−ρ → X ⊗ (S)−ρ and
T♦ : X ⊗ (S)−ρ → X ⊗ (S)−ρ be the operators, for which the following is
satisfied:
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(a1) A is of the form A = B+C, where By =
∑

α∈I Bαyα ⊗ Hα and Bα :
X → X are compact operators for all α ∈ I, Cy =

∑
α∈I rαyα ⊗ Hα,

rα ∈ R, α ∈ I, and T is of the form (1.53), where T0 : X → X is
a compact operator. Assume that there exists K > 0 such that for all
α ∈ I

−rα − ‖Bα‖ − ‖T0‖ ≥ 0 and sup
α∈I

( 1

−rα − ‖Bα‖ − ‖T0‖
)
< K.

(a2) T is of the form (1.53), where Tβ : X → X, β > 0 are bounded
operators and there exists p > 0 such that

K
√

2
∑

β>0

‖Tβ‖ (2N)
−pβ
2 < 1.

(a3) For every α ∈ I

Ker (Bα + (1 + rα)Id + T0) = {0}.

Then, for every f ∈ X ⊗ (S)−ρ,−p there exists a unique solution y ∈ X ⊗
(S)−ρ,−p of the equation (1.60).

Remark 50 Some special cases of the equation (1.60):

1. If Aα = 0 for all α ∈ I and Tα, α ∈ I are second order strictly elliptic
partial differential operators in divergent form

Tα =

n∑

i=1

Di(

n∑

j=1

aijα (x)Dj + biα(x)) +

n∑

i=1

ciα(x)Di + dα(x) (1.61)

with essentially bounded coefficients, then equation (1.60) reduces to
the elliptic equation

T♦U = F,

which was solved in [92].

2. Let Ãα = 0 for all α ∈ I and let Tα, α ∈ I, be second order strictly
elliptic partial differential operators in divergent form (1.61). Let
C = c P (R), for some c ∈ R, where R is the Ornstein-Uhlenbeck
operator, P a polynomial of degree m with real coefficients and P (R)
the differential operator P (R) = pmRm+pm−1Rm−1+...+p1R+p0Id.
Then, the corresponding eigenvalues are rα = cP (|α|), α ∈ I. Hence,
equation (1.60) transforms to the elliptic equation with a perturbation
term driven by the polynomial of the Ornstein-Uhlenbeck operator

T♦U + cP (R)U = F,

that was solved in [72].
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Stochastic evolution equations with Wick-polynomial
nonlinearities

We study stochastic nonlinear evolution equations of the form

ut(t, ω) = Au(t, ω) +
n∑

k=0

aku
♦k(t, ω) + f(t, ω), t ∈ (0, T ] (1.62)

u(0, ω) = u0(ω), ω ∈ Ω,

where u(t, ω) is an X−valued generalized stochastic process, A corresponds
to a densely defined infinitesimal generator of a C0−semigroup and ak, 1 ≤
k ≤ n are constants and an 6= 0. The nonlinear part is the Wick-power
product u♦n = u♦n−1♦u = u♦ . . .♦u, n ∈ N. The Wick product is involved
due to the fact that we allow random terms to be present both in the initial
condition u0 and the driving force f . This leads to singular solutions that
do not allow to use ordinary multiplication, but require a renormalization
of the multiplication, which is done by introducing the Wick product into
the equation.

Some special examples of (1.62) are the stochastic versions of Fujita-type
equations ut = Au + u♦n + f , the stochastic FitzHugh-Nagumo equations
ut = Au + u♦2 − u♦3 + f , the stochastic Fisher-KPP equations ut = Au +
u − u♦2 + f and the stochastic Chaffee-Infante equations ut = Au + u♦3 −
u+ f . These equations arise in ecology, medicine, engineering and physics.
For example, the FitzHugh-Nagumo equation is used to study electrical
activity of neurons in neurophysiology by modeling the conduction of electric
impulses down a nerve axon. The Fisher-KPP equation provides a model
for the spread of an epidemic in a population or for the distribution of
an advantageous gene within a population. Other applications in medicine
involve the modeling of cellular reactions to the introduction of toxins, and
the process of epidermal wound healing. In plasma physics it has been used
to study neutron flux in nuclear reactors, while in ecology it models flame
propagation of fire outbreaks. Thus, the study of their stochastic versions
that arise, e.g. when some of the input factors are disturbed by an external
noise, is very important.

We combined the chaos expansion method with operator semigroup the-
ory in order to prove the existence and the uniqueness of a solution for
(1.62). To solve the propagator system, we exploit the intrinsic relationship
between the Wick product and the Catalan numbers that was discovered in
[49]. We build upon these ideas in order to solve a general class of stochastic
nonlinear equations (1.62).

We first solved the equation (1.62) for a0 = · · · = an−1 = 0 and an = 1.

Definition 51 An X−valued generalized stochastic process

u(t) =
∑

α∈I
uα(t)Hα ∈ X ⊗ (S)−1, t ∈ [0, T ] (1.63)
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is a coordinatewise classical solution of

ut(t, ω) = Au(t, ω) + u♦n(t, ω) + f(t, ω), t ∈ (0, T ] (1.64)

u(0, ω) = u0(ω), ω ∈ Ω,

if u0 is a classical solution of

d

dt
u0(t) = A0u0(t) + un0(t) + f0(t), u0(0) = u00 (1.65)

and for every α ∈ I \ {0}, the coefficient uα is a classical solution of

d

dt
uα(t) = Bα,n(t)uα(t) + gα,n(t), t ∈ (0, T ], uα(0) = u0α, (1.66)

where Bα,n(t) = Aα+nun−10 (t) Id and gα,n(t) = rα,n(t)+fα(t), t ∈ [0, T ] for
all α > 0, and the functions rα,n, n > 1 contain only coordinate functions
uβ, β < α. The coordinatewise solution u(t) ∈ X ⊗ (S)−1, t ∈ [0, T ]
is an almost classical solution of (1.64) if u ∈ C([0, T ], X) ⊗ (S)−1, an
almost classical solution is a classical solution if u ∈ C([0, T ], X)⊗ (S)−1 ∩
C1((0, T ], X)⊗ (S)−1.

We assume that the following conditions hold:

(B1) The operatorsAα, α ∈ I, are infinitesimal generators of C0−semigroups
{Tα(s)}s≥0 with a common domain Dα = D, α ∈ I, dense in X. We
assume that there exist constants m ≥ 1 and w ∈ R such that

‖Tα(s)‖ ≤ mews, s ≥ 0 for all α ∈ I.
The action of A is given by (1.52) for u ∈ D ⊆ D ⊗ (S)−1 of the form
(1.63), where

D =
{
u ∈ D ⊗ (S)−1 : ∃p0 ≥ 0,

∑

α∈I
‖Aα(uα)‖2X(2N)−p0α <∞

}
.

(B2) The initial value u0 =
∑

α∈I u
0
αHα ∈ D, i.e. u0α ∈ D for every α ∈ I

and there exists p ≥ 0 such that
∑

α∈I
‖u0α‖2X(2N)−pα <∞,

∑

α∈I
‖Aα(u0α)‖2X(2N)−pα <∞.

(B3) The inhomogeneous part f(t, ω) =
∑

α∈I fα(t)Hα(ω), t ∈ [0, T ], ω ∈
Ω belongs to C1([0, T ], X)⊗(S)−1; hence t 7→ fα(t) ∈ C1([0, T ], X), α ∈
I and there exists p ≥ 0 such that

∑

α∈I
‖fα‖2C1([0,T ],X)(2N)−pα

=
∑

α∈I

(
sup
t∈[0,T ]

‖fα(t)‖X + sup
t∈[0,T ]

‖f ′α(t)‖X
)2

(2N)−pα <∞.
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(B4-n) The Cauchy problem

d

dt
u0(t) = A0u0(t) + un0(t) + f0(t), t ∈ (0, T ]; u0(0) = u00,

has a classical solution u0 ∈ C1([0, T ], X).

Particularly, if A0 = ∆ is the Laplace operator and f0 ≡ 0, then (1.65)
belongs to the class of Fujita equations

ut = ∆u+ up, u(0) = u0, (1.67)

studied by Fujita, Chen and Watanabe [32, 33]. The authors proved that
for a nonnegative initial condition u0 ∈ C(RN ) ∩ L∞(RN ), equation (1.67)
has a unique classical solution on some [0, T1). Moreover, if p > 1 + 2

N then
there exist a positive bounded solution. For α = 0 equation (1.65) can also
be solved by the Fixed point theorem [104].

Theorem 52 ([77]) Let the assumptions (B1)−(B4−n) be fulfilled. Then,
there exists a unique almost classical solution u ∈ C([0, T ], X) ⊗ (S)−1 of
the stochastic nonlinear evolution equation (1.64).

The linear nonautonomous case

Our analysis gives a simple observation for the linear nonautonomous
equation

ut(t, ω) = A(t)u(t, ω) + f(t, ω), t ∈ (0, T ] (1.68)

u(0, ω) = u0(ω), ω ∈ Ω.

We assume the following:

(b1) The operator A(t) : D′ ⊂ X ⊗ (S)−1 → X ⊗ (S)−1, t ∈ [0, T ] is a
coordinatewise operator depending on t that corresponds to a family
of deterministic operators Aα(t) : D(Aα) ⊂ X → X, α ∈ I. For every
α ∈ I the operator family {Aα(t)}t∈[0,T ] is a stable family of infinitesi-
mal generators of C0−semigroups on X with stability constants m > 1
and w ∈ R not depending on α, therefore the corresponding evolution
systems Sα(t, s) satisfy

‖Sα(t, s)‖ ≤ mew(t−s) ≤ mewT , 0 ≤ s < t ≤ T, α ∈ I.

The domain D(Aα(t)) = D is independent of t ∈ [0, T ] and α ∈
I. For every x ∈ D the function Aα(t)x, t ∈ [0, T ] is continuously
differentiable in X for each α ∈ I.
The action of A(t), t ∈ [0, T ] is given by

A(t)(u) =
∑

α∈I
Aα(t)(uα)Hα,
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for u ∈ D′ ⊆ D ⊗ (S)−1 of the form (1.63), where

D′ =
{
u ∈ D⊗(S)−1 : ∃p0 ≥ 0,

∑

α∈I
sup
t∈[0,T ]

‖Aα(t)(uα)‖2X(2N)−p0α <∞
}
.

(b2) The initial value u0 =
∑

α∈I u
0
αHα ∈ D′, i.e. u0α ∈ D for every α ∈ I

and there exists p ≥ 0 such that

∑

α∈I
‖u0α‖2X(2N)−pα <∞,

∑

α∈I
sup
t∈[0,T ]

‖Aα(t)u0α‖2X(2N)−pα <∞.

For the inhomogeneous part f(t, ω), ω ∈ Ω, t ∈ [0, T ] we assume (B3).

Theorem 53 ([77]) Let the assumptions (b1), (b2) and (B3) be fulfilled.
Then, there exists a unique almost classical solution u ∈ C([0, T ], X)⊗(S)−1
of the linear nonautonomous equation (1.68).

Extensions to nonlinear equations

The results of Theorem 52 are extended to a more general case of stochastic
evolution equation of the form (1.62). In order to apply Theorem 52 we
replace (B4− n) with the following assumption:

(C4-n) The Cauchy problem

d

dt
u0(t) = A0u0(t) +

n∑

k=0

ak u
k
0(t) + f0(t), t ∈ (0, T ]; u0(0) = u00,

(1.69)
has a classical solution u0 ∈ C1([0, T ], X).

For the sake of simplicity in [77] we presented only a procedure for solving
(1.62) for n = 3. The general case can be done in the same way. From the
form of the process (1.63) and its Wick-powers, we obtain the expansion of
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the Wick-polynomial nonlinearity

p♦3 (u) = a0 + a1 u+ a2 u
♦2 + a3 u

♦3

= (a0 + a1u0 + a2 u
2
0 + a3 u

3
0)H0

+
∑

α>0

(
(3a3u

2
0 + 2a2u0 + a1)uα + (3a3u0 + a2)

∑

0<β<α

uα−βuβ

+ a3
∑

0<β<α

∑

0<γ<β

uα−βuβ−γuγ
)
Hα

= p3(u0) +
∑

α>0

(
p′3(u0)uα +

1

2!
· p′′3(u0)

∑

0<β<α

uα−βuβ

+
1

3!
· p′′′3 (u0)

∑

0<β<α

∑

0<γ<β

uα−βuβ−γuγ
)
Hα,

where p′3, p
′′
3 and p′′′3 denote respectively the first, the second and the third

derivative of the polynomial p3. Thus, by applying the chaos expansion
method to the nonlinear stochastic problem (1.62) we obtained the system
of infinitely many deterministic Cauchy problems that have the forms (1.69)
and (1.66).

Theorem 54 ([77]) Let the assumptions (B1)− (B3) and (C4− 3) be ful-
filled. Then, there exists a unique almost classical solution u ∈ C([0, T ], X)⊗
(S)−1 of the stochastic nonlinear equations (1.62).

Fractional operators of the Malliavin calculus

In [64, 68, 69] we defined fractional operators of generalized Malliavin calcu-
lus. They are connected with the corresponding classical operators through
an isometry mapping denoted byM, see [64]. The equations with fractional
operators can be considered in an analogue way as the ones presented in
this thesis.

We denote by D the Malliavin derivative and D(H) the fractional Malli-
avin derivative on X⊗ (S)−ρ (respectively on X⊗ (S)ρ and X⊗L2(µ)). We
say that a process F =

∑
α∈I fα ⊗Hα, fα ∈ X is differentiable in Malliavin

sense if its coefficients satisfy (1.3) (respectively (1.4) and (1.5)). Then, the
chaos expansion form of its Malliavin derivative is given by (1.2), while the
chaos expansion form of its fractional Malliavin derivative is given by

D(H)F =
∑

α∈I

∑

k∈N
αk fα ⊗ e

(H)
k ⊗Hα−ε(k) , (1.70)

where e
(H)
k = M (1−H)ξk, k ∈ N. Denote by D̃ the Malliavin derivative and

by D̃(H) the fractional Malliavin derivative on X ⊗ (S)
(H)
−ρ (respectively on
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X⊗(S)
(H)
ρ and X⊗L2(µH)). If the coefficients of F̃ =

∑
α∈I fα ⊗H̃α, fα ∈

X, α ∈ I satisfy (1.3) (respectively (1.4) and (1.5)), then chaos expansion
forms of these operators are

D̃F =
∑

α∈I

∑

k∈N
αk fα ⊗ e

(H)
k ⊗ H̃α−ε(k) (1.71)

D̃(H)F =
∑

α∈I

∑

k∈N
αk fα ⊗ M (1−H)e

(H)
k ⊗ H̃α−ε(k) ,

Note that both Dom(D) = Dom(D(H)) and Dom(D̃) = Dom(D̃(H)) are
determined by the condition (1.3) (respectively by (1.4) and (1.5)). The
connection between D(H) and D on a classical space and also between D̃(H)

and D̃ on a fractional space is given through the mapping M = M (H) ⊗ Id,
see [64]. In particular, let D(H) : X ⊗ (S)−ρ → X ⊗ S′(R) ⊗ (S)−ρ and
F =

∑
α∈I fα ⊗Hα ∈ Dom(D(H)). Then,

D(H)F = M−1
(∑

α∈I

∑

k∈N
αk fα ⊗ ξk ⊗Hα−ε(k)

)
= M−1 ◦ D F. (1.72)

Similarly, D̃(H) : X ⊗ (S)
(H)
−ρ → X ⊗S′(R)⊗ (S)

(H)
−ρ and for F̃ ∈ Dom(D̃(H))

it holds D̃(H)F̃ = M−1 ◦ D̃ F̃ .

Theorem 55 ([69]) For F ∈ Dom(D) it holds

D(H)F = M−1 ◦ DF =M◦ D̃ ◦M−1 F. (1.73)

We denote by δ(H) the fractional Skorokhod integral on X⊗S′(R)⊗(S)−ρ
(respectively on X ⊗ S′(R) ⊗ (S)−ρ and X ⊗ L2(R) ⊗ L2(µ)) and by δ̃ the

Skorokhod integral on the corresponding fractional space X⊗S′(R)⊗(S)
(H)
−ρ

(respectively on X⊗S′(R)⊗(S)
(H)
ρ and X⊗L2(R)⊗L2(µH)). In particular,

u ∈ Dom(δ) if its coefficients satisfy (1.6) (respectively (1.8) and (1.9)) and
the fractional Skorokhod integral is defined by

δ(H)(u) =
∑

α∈I

∑

k∈N
uHα,k ⊗ Hα+ε(k) , (1.74)

where uHα,k = (uα, e
(H)
k ), α ∈ I and k ∈ N. Let ũ =

∑
α∈I uα ⊗Hα ∈ X ⊗

S′(R)⊗(S)
(H)
−ρ (respectively on X⊗S′(R)⊗(S)

(H)
ρ and X⊗L2(R)⊗L2(µH)),

such that the coefficients uα =
∑

k∈N uα,k ⊗ ξk with uα,k ∈ X satisfy (1.6)

(respectively (1.8) and (1.9)). Then, the Skorokhod integral δ̃ is of the form

δ̃(ũ) =
∑

α∈I

∑

k∈N
uα,k ⊗ H̃α+ε(k) . (1.75)

Theorem 56 ([68]) For ũ ∈ Dom0(δ̃) it holds M(δ̃(ũ)) = δ(M(ũ)).
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The fractional Ornstein-Uhlenbeck operator R(H) on the classical space
is defined as the composition R(H) = δ(H) ◦D(H) and can be represented in
the form

R(H)u = R(H)(
∑

α∈I
uα ⊗ Hα) =

∑

α∈I
|α|uα ⊗ Hα = Ru.

Similarly, the Ornstein-Uhlenbeck operator R̃ = δ̃ ◦ D̃ and the fractional
Ornstein-Uhlenbeck operators R̃(H) = δ̃(H) ◦ D̃(H) in fractional spaces are
also equal

R̃(H)ũ = R̃(H)(
∑

α∈I
ũα ⊗ H̃α) =

∑

α∈I
|α| ũα ⊗ H̃α = R̃ũ.

The corresponding domains remain the same and, depending on a set of
processes, are determined by (1.12), (1.13) or (1.14). More details can be
found in [64].
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Abstract. We extend the Malliavin calculus from the classical finite variance setting to generalized pro-
cesses with infinite variance and their test processes. The domain and the range of the basic Malliavin
operators is characterized in terms of test processes and generalized processes. Various properties are
proved such as the duality of the integral and the derivative in strong and in weak sense, the product rule
with respect to ordinary and Wick multiplication and the chain rule in classical and in Wick sense.

1. Introduction

Stochastic processes with infinite variance (e.g. the white noise process) appear in many cases as
solutions to stochastic differential equations. The Hida spaces and the Kondratiev spaces (see e.g. [3, 4])
have been introduced as the stochastic analogues of the Schwartz spaces of tempered distributions in
order to provide a strict theoretical meaning for these kind of processes. The spaces of the test processes
contain highly regular processes which are needed as windows through which one can detect the action of
generalized processes.

The Malliavin derivative, the Skorokhod integral and the Ornstein-Uhlenbeck operator are fundamental
for the stochastic calculus of variations. Each of them has a meaning also in quantum theory: they represent
the annihilation, the creation and the number operator respectively. In stochastic analysis, the Malliavin
derivative charachterizes densities of distributions, the Skorokhod integral is an extension of the Itô integral
to non-adapted processes, and the Ornstein-Uhlenbeck operator plays the role of the stochastic Laplacian.

In the classical setting followed by [2, 13, 15], the domain of these operators is a strict subset of the
set of processes with finite second moments (L)2, leading to Sobolev type normed spaces. A more general
characterization of the domain of these operators in Kondratiev generalized function spaces has been
derived in [5, 6, 9, 10]. The range of the operators for generalized processes for ρ = 1 has been studied
in [8]. As a conclusion to this series of papers, in the current paper we provide a setting for the domains
of these operators for ρ ∈ [0, 1] and a similar setting for test processes: first we construct a subset of the
Kondratiev space which will be the domain of the operators, then we prove that the operators are linear,
bounded, non-injective within the corresponding spaces and develop a representation of their range. In
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the second part of the paper we fully develop the calculus including the integration by parts, Leibnitz rule
and chain rule etc. using the interplay of generalized processes with their test processes and different types
of dual pairings.

The Malliavin derivative of generalized stochastic processes has first been considered in [1] using the
S-transform of stochastic exponentials and chaos expansions with n-fold Itô integrals with some vague
notion of the Itô integral of a generalized function. Our approach is different, it relies on chaos expansions
via Hermite polynomials and it provides more precise results: a fine gradation of generalized and test
functions is followed where each level has a Hilbert structure and consequently each level of singularity
has its own domain, range, set of multipliers etc.

The organisation of the paper is the following: After a short preview of the basic setting and notions of
chaos expansions (Subsection 2.1), spaces of generalized stochastic processes and test stochastic processes
(Subsection 2.2-2.3), we turn to the question of their multiplication in Subsection 2.4. In Section 3 we provide
the characterisation of the domains of the basic operators of Malliavin calculus and prove their linearity
and boundedness. In Section 4 we provide explicit solutions to the equations Ru = 1, Du = h, δu = f .
In Section 5 we prove some rules of the Malliavin calculus for generalized and test processes, such as the
duality between the derivative D and the integral operator δ (integration by parts formula), the product
rule for D and R both for ordinary multiplication and Wick multiplication, and eventually we prove the
chain rule. Some accompanying examples, applications and supplementary material to our results are
provided in [11].

2. Preliminaries

Consider the Gaussian white noise probability space (S′(R),B, µ), where S′(R) denotes the space of
tempered distributions,B the Borel σ−algebra generated by the weak topology on S′(R) and µ the Gaussian

white noise measure corresponding to the characteristic function
∫

S′(R)
ei〈ω,φ〉dµ(ω) = e−

1
2 ‖φ‖2L2(R) , φ ∈ S(R),

given by the Bochner-Minlos theorem.

Denote by hn(x) = (−1)ne
x2
2 dn

dxn (e−
x2
2 ), n ∈N0,N0 =N∪{0}, the family of Hermite polynomials and ξn(x) =

1
4√π
√

(n−1)!
e−

x2
2 hn−1(

√
2x), n ∈ N, the family of Hermite functions. The family of Hermite functions forms a

complete orthonormal system in L2(R). We follow the characterization of the Schwartz spaces in terms of
the Hermite basis: The space of rapidly decreasing functions as a projective limit space S(R) =

⋂
l∈N0

Sl(R)
and the space of tempered distributions as an inductive limit space S′(R) =

⋃
l∈N0

S−l(R) where

Sl(R) = { f =

∞∑

k=1

ak ξk : ‖ f ‖2l =

∞∑

k=1

a2
k(2k)l < ∞}, l ∈ Z, Z = −N ∪N0.

Note that Sl(R) is a Hilbert space endowed with the scalar product 〈·, ·〉l given by

〈ξk, ξi〉l =

{
0, k , i

‖ξk‖2l = (2k)l, k = i. , l ∈ Z.

2.1. The Wiener chaos spaces
Let I = (NN0 )c denote the set of sequences of nonnegative integers which have only finitely many

nonzero components α = (α1, α2, . . . , αm, 0, 0 . . .), αi ∈ N0, i = 1, 2, ...,m, m ∈ N. The kth unit vector
ε(k) = (0, · · · , 0, 1, 0, · · · ), k ∈ N is the sequence of zeros with the only entry 1 as its kth component. The
multi-index 0 = (0, 0, 0, 0, . . .) has all zero entries. The length of a multi-indexα ∈ I is defined as |α| = ∑∞

k=1 αk.
Operations with multi-indices are carried out componentwise e.g. α + β = (α1 + β1, α2 + β2, . . .),

α! =
∏∞

k=1 αk! and
(α
β

)
= α!

β!(α−β)! . Note that α > 0 (equivalently |α| > 0) if there is at least one compo-
nent αk > 0. We adopt the convention that α − β exists only if α − β > 0 and otherwise it is not defined.

Let (2N)α =
∏∞

k=1(2k)αk . Note that
∑
α∈I(2N)−pα < ∞ for p > 1 (see e.g. [4]).
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Lemma 2.1. The following estimates hold:

1◦
(α
β

) ≤ 2|α| ≤ (2N)α, α ∈ I,

2◦ (θ + β)! ≤ θ!β! (2N)θ+β, θ, β ∈ I.

Proof. 1◦ Since
(n

k
) ≤ 2n, for all n ∈N0 and 0 ≤ k ≤ n, it follows that

(
α
β

)
=

∏

i∈N

(
αi

βi

)
≤

∏

i∈N
2αi = 2|α| ≤

∏

i∈N
(2i)αi = (2N)α,

for all α ∈ I and 0 ≤ β ≤ α.
2◦ From

(α
β

)
= α!

β! (α−β)! and (i) it follows that α! ≤ β! (α − β)! (2N)α. By substituting θ = α − β, we obtain
(θ + β) ≤ θ! β! (2N)θ+β, for all θ, β ∈ I.

Let (L)2 = L2(S′(R),B, µ) be the Hilbert space of random variables with finite second moments. Then

Hα(ω) =

∞∏

k=1

hαk (〈ω, ξk〉), α ∈ I, (1)

forms the Fourier-Hermite orthogonal basis of (L)2 such that ‖Hα‖2(L)2 = α!. In particular, H0 = 1 and for the
kth unit vector Hε(k) (ω) = 〈ω, ξk〉, k ∈ N. The prominent Wiener-Itô chaos expansion theorem states that each
element F ∈ (L)2 has a unique representation of the form

F(ω) =
∑

α∈I
cα Hα(ω), ω ∈ S′(R), cα ∈ R, α ∈ I,

such that ‖F‖2(L)2 =
∑

α∈I
c2
α α! < ∞.

2.2. Kondratiev spaces and Hida spaces

The stochastic analogue of Schwartz spaces as generalized function spaces are the Kondratiev spaces of
generalized random variables. Let ρ ∈ [0, 1].

Definition 2.2. The space of the Kondratiev test random variables (S)ρ consists of elements f =
∑
α∈I cαHα ∈ (L)2,

cα ∈ R, α ∈ I, such that

‖ f ‖2ρ,p =
∑

α∈I
c2
α(α!)1+ρ(2N)pα < ∞, for all p ∈N0.

The space of the Kondratiev generalized random variables (S)−ρ consists of formal expansions of the form
F =

∑
α∈I bαHα, bα ∈ R, α ∈ I, such that

‖F‖2−ρ,−p =
∑

α∈I
b2
α(α!)1−ρ(2N)−pα < ∞, for some p ∈N0.

This provides a sequence of spaces (S)ρ,p = { f ∈ (L)2 : ‖ f ‖ρ,p < ∞}, ρ ∈ [0, 1], such that

(S)1,p ⊆ (S)ρ,p ⊆ (S)0,p ⊆ (L)2 ⊆ (S)0,−p ⊆ (S)−ρ,−p ⊆ (S)−1,−p,

(S)ρ,p ⊆ (S)ρ,q ⊆ (L)2 ⊆ (S)−ρ,−q ⊆ (S)−ρ,−p,
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for all p ≥ q ≥ 0, the inclusions denote continuous embeddings and (S)0,0 = (L)2. Thus, (S)ρ =
⋂

p∈N0

(S)ρ,p, can

be equipped with the projective topology, while (S)−ρ =
⋃

p∈N0

(S)−ρ,−p as its dual with the inductive topology.

Note that (S)ρ is nuclear and the following Gel’fand triple

(S)ρ ⊆ (L)2 ⊆ (S)−ρ

is obtained. Especially, the case ρ = 0 corresponds to the Hida spaces.
We will denote by � ·, · �ρ the dual pairing between (S)−ρ and (S)ρ. Its action is given by

� A,B �ρ=� ∑
α∈I aαHα,

∑
α∈I bαHα �ρ=

∑
α∈I α!aαbα. In case of random variables with finite variance

it reduces to the scalar product� A,B �(L)2= E(AB). Especially, the Hida case will be of importance, thus
note that for any fixed p ∈ Z, (S)0,p, p ∈ Z, is a Hilbert space (we identify the case p = 0 with (L)2) endowed
with the scalar product

� Hα,Hβ �0,p=

{
0, α , β,

α!(2N)pα, α = β,
, for p ∈ Z,

extended by linearity and continuity to

� A,B�0,p=
∑

α∈I
α!aαbα(2N)pα, p ∈ Z.

In the framework of white noise analysis, the problem of pointwise multiplication of generalized
functions is overcome by introducing the Wick product. It is well defined in the Kondratiev spaces of test
and generalized stochastic functions (S)ρ and (S)−ρ; see for example [3, 4].

Definition 2.3. Let F,G ∈ (S)−ρ be given by their chaos expansions F(ω) =
∑
α∈I fαHα(ω) and G(ω) =

∑
β∈I 1βHβ(ω),

for unique fα, 1β ∈ R. The Wick product of F and G is the element denoted by F♦G and defined by

F♦G(ω) =
∑

α∈I

∑

β∈I
fα 1β Hα+β(ω) =

∑

γ∈I



∑

α+β=γ

fα1β


 Hγ(ω).

The same definition is provided for the Wick product of test random variables belonging to (S)ρ.
For the Fourier-Hermite polynomials (1), for all α, β ∈ I it holds Hα♦Hβ = Hα+β.
The nth Wick power is defined by F♦n = F♦(n−1)♦F, F♦0 = 1. Note that Hnε(k) = H ♦n

ε(k) for n ∈N0, k ∈N.
Note that the Kondratiev spaces (S)ρ and (S)−ρ are closed under the Wick multiplication [4], while the

space (L)2 is not closed under it. The most important property of the Wick multiplication is its relation to the
Itô-Skorokhod integration [3, 4], since it reproduces the fundamental theorem of calculus. It also represents
a renormalization of the ordinary product and the highest order stochastic approximation of the ordinary
product [14].

In the sequel we will need the notion of Wick-versions of analytic functions.

Definition 2.4. If ϕ : R→ R is a real analytic function at the origin represented by the power series

ϕ(x) =

∞∑

n=0

an xn, x ∈ R,

then its Wick version ϕ♦ : (S)−ρ → (S)−ρ, for ρ ∈ [0, 1], is given by

ϕ♦(F) =

∞∑

n=0

an F♦n, F ∈ (S)−ρ.
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2.3. Generalized stochastic processes

Let X̃ be a Banach space endowed with the norm ‖ · ‖X̃ and let X̃′ denote its dual space. In this section
we describe X̃−valued random variables. Most notably, if X̃ is a space of functions on R, e.g. X̃ = Ck([a, b]),
−∞ < a < b < ∞ or X̃ = L2(R), we obtain the notion of a stochastic process. We will also define processes
where X̃ is not a normed space, but a nuclear space topologized by a family of seminorms, e.g. X̃ = S(R)
(see e.g. [16]).

Definition 2.5. Let f have the formal expansion

f =
∑

α∈I
fα ⊗Hα , where fα ∈ X, α ∈ I. (2)

Let ρ ∈ [0, 1]. Define the following spaces:

X ⊗ (S)ρ,p = { f : ‖ f ‖2X⊗(S)ρ,p
=

∑

α∈I
α!1+ρ ‖ fα‖2X(2N)pα < ∞},

X ⊗ (S)−ρ,−p = { f : ‖ f ‖2X⊗(S)−ρ,−p
=

∑

α∈I
α!1−ρ ‖ fα‖2X(2N)−pα < ∞},

where X denotes an arbitrary Banach space (allowing both possibilities X = X̃, X = X̃′). Especially, for ρ = 0 and
p = 0, X ⊗ (S)0,0 will be denoted by

X ⊗ (L)2 = { f : ‖ f ‖2X⊗(L)2 =
∑

α∈I
α!‖ fα‖2X < ∞}.

We will denote by E(F) = f0 the generalized expectation of the process F.

Definition 2.6. Generalized stochastic processes and test stochastic processes in Kondratiev sense are elements
of the spaces

X ⊗ (S)−ρ =
⋃

p∈N0

X ⊗ (S)−ρ,−p, X ⊗ (S)ρ =
⋂

p∈N0

X ⊗ (S)ρ,p, ρ ∈ [0, 1]

respectively.

Remark 2.7. The symbol ⊗ denotes the projective tensor product of two spaces, i.e. X̃′ ⊗ (S)−ρ is the completion of
the tensor product with respect to the π-topology.

The Kondratiev space (S)ρ is nuclear and thus (X̃ ⊗ (S)ρ)′ � X̃′ ⊗ (S)−ρ. Note that X̃′ ⊗ (S)−ρ is isomorphic to
the space of linear bounded mappings X̃→ (S)−ρ, and it is also isomporphic to the space of linear bounded mappings
(S)ρ → X̃′.

In [19] and [20] a general setting of S′-valued generalized stochastic process is provided: S′(R)-valued
generalized stochastic processes are elements of X ⊗ S′(R) ⊗ (S)−ρ and they are given by chaos expansions
of the form

f =
∑

α∈I

∑

k∈N
aα,k ⊗ ξk ⊗Hα =

∑

α∈I
bα ⊗Hα =

∑

k∈N
ck ⊗ ξk, (3)

where bα =
∑

k∈N aα,k ⊗ ξk ∈ X ⊗ S′(R), ck =
∑
α∈I aα,k ⊗Hα ∈ X ⊗ (S)−ρ and aα,k ∈ X. Thus,

X ⊗ S−l(R) ⊗ (S)−ρ,−p =

 f =
∑

α∈I

∑

k∈N
aα,k ⊗ ξk ⊗Hα : ‖ f ‖2X⊗S−l(R)⊗(S)−ρ,−p

=
∑

α∈I

∑

k∈N
α!1−ρ‖aα,k‖2X (2k)−l(2N)−pα < ∞


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and

X ⊗ S′(R) ⊗ (S)−ρ =
⋃

p,l∈N0

X ⊗ S−l(R) ⊗ (S)−ρ,−p.

The generalized expectation of an S′-valued stochastic process f is given by E( f ) =
∑

k∈N
a(0,0,...),k ⊗ ξk = b0.

In an analogue way, we define S-valued test processes as elements of X ⊗ S(R) ⊗ (S)ρ, which are given
by chaos expansions of the form (3), where bα =

∑
k∈N aα,k ⊗ ξk ∈ X⊗S(R), ck =

∑
α∈I aα,k ⊗Hα ∈ X⊗ (S)ρ and

aα,k ∈ X. Thus,

X ⊗ Sl(R) ⊗ (S)ρ,p =

 f =
∑

α∈I

∑

k∈N
aα,k ⊗ ξk ⊗Hα : ‖ f ‖2X⊗Sl(R)⊗(S)ρ,p

=
∑

α∈I

∑

k∈N
α!1+ρ ‖aα,k‖2X (2k)l(2N)pα < ∞



and

X ⊗ S(R) ⊗ (S)ρ =
⋂

p,l∈N0

X ⊗ Sl(R) ⊗ (S)ρ,p.

The Hida spaces are obtained for ρ = 0. Especially, for p = l = 0, one obtains the space of processes with
finite second moments and square integrable trajectories X⊗L2(R)⊗ (L)2. It is isomporphic to X⊗L2(R×Ω)
and if X is a separable Hilbert space, then it is also isomorphic to L2(R ×Ω; X).

2.4. Multiplication of stochastic processes
We generalize the definition of the Wick product of random variables to the set of generalized stochastic

processes in the way as it is done in [7, 17] and [18]. For this purpose we will assume that X is closed under
multiplication, i.e. that x · y ∈ X, for all x, y ∈ X.

Definition 2.8. Let F,G ∈ X ⊗ (S)±ρ, ρ ∈ [0, 1], be generalized (resp. test) stochastic processes given in chaos
expansions of the form (2). Then the Wick product F♦G is defined by

F♦G =
∑

γ∈I



∑

α+β=γ

fα1β


 ⊗Hγ. (4)

Theorem 2.9. Let ρ ∈ [0, 1] and let the stochastic processes F and G be given in their chaos expansion forms
F =

∑
α∈I

fα ⊗ Hα and G =
∑
α∈I
1α ⊗ Hα.

1◦ If F ∈ X ⊗ (S)−ρ,−p1 and G ∈ X ⊗ (S)−ρ,−p2 for some p1, p2 ∈ N0, then F♦G is a well defined element in
X ⊗ (S)−ρ,−q, for q ≥ p1 + p2 + 4.

2◦ If F ∈ X ⊗ (S)ρ, p1 and G ∈ X ⊗ (S)ρ, p2 for p1, p2 ∈ N0, then F♦G is a well defined element in X ⊗ (S)ρ, q, for
q ≤ min{p1, p2} − 4.

Proof. 1◦ By the Cauchy-Schwartz inequality, the following holds

‖F♦G‖2X⊗(S)−ρ,−q
=

∑

γ∈I
‖

∑

α+β=γ

fα1β‖2X (γ!)1−ρ(2N)−qγ ≤
∑

γ∈I
‖

∑

α+β=γ

fα1β‖2X (γ!)1−ρ(2N)−(p1+p2+4)γ

=
∑

γ∈I
‖

∑

α+β=γ

fα1β(α + β)!
1−ρ

2 (2N)−
p1+1

2 γ(2N)−
p2+1

2 γ‖2X(2N)−2γ

≤
∑

γ∈I
‖

∑

α+β=γ

fα1β(α!β!(2N)α+β)
1−ρ

2 (2N)−
p1+1

2 α(2N)−
p2+1

2 β‖2X(2N)−2γ

≤
∑

γ∈I
‖

∑

α+β=γ

fα1βα!
1−ρ

2 β!
1−ρ

2 (2N)−
p1+ρ

2 α(2N)−
p2+ρ

2 β‖2X(2N)−2γ

≤
∑

γ∈I
(2N)−2γ‖

∑

α+β=γ

fα1βα!
1−ρ

2 β!
1−ρ

2 (2N)−
p1α

2 (2N)−
p2β

2 ‖2X
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≤
∑

γ∈I
(2N)−2γ



∑

α+β=γ

‖ fα‖2X(α!)1−ρ(2N)−p1α






∑

α+β=γ

‖1β‖2X(β!)1−ρ(2N)−p2β




≤
∑

γ∈I
(2N)−2γ



∑

α∈I
‖ fα‖2X(α!)1−ρ(2N)−p1α






∑

β∈I
‖1β‖2X(β!)1−ρ(2N)−p2β




= M · ‖F‖2X⊗(S)−ρ,−p1
· ‖G‖2X⊗(S)−ρ,−p2

< ∞,

since M =
∑
γ∈I(2N)−2γ < ∞. We also applied Lemma 2.1 part 1◦, inequalities (2N)−

p1+1
2 γ ≤ (2N)−

p1+1
2 α and

(2N)−
p2+1

2 γ ≤ (2N)−
p2+1

2 β since γ ≥ α, γ ≥ β, as well as (2N)−
p1+ρ

2 α ≤ (2N)−
p1α

2 because ρ ∈ [0, 1].
2◦ Let now F ∈ X ⊗ (S)ρ,p1 and G ∈ X ⊗ (S)ρ,p2 for all p1, p2 ∈ N0. Then the chaos expansion form of F♦G

is given by (4) and

‖F♦G‖2X⊗(S)ρ,q
=

∑

γ∈I
γ!1+ρ‖

∑

α+β=γ

fα1β‖2X(2N)qγ =
∑

γ∈I
(2N)−2γ‖

∑

α+β=γ

γ!
1+ρ

2 fα1β(2N)
q+2

2 γ‖2X

≤
∑

γ∈I
(2N)−2γ‖

∑

α+β=γ

α!
1+ρ

2 β!
1+ρ

2 (2N)
1+ρ

2 (α+β) fα1β(2N)
q+2

2 (α+β)‖2X

≤ M



∑

α+β=γ

α!1+ρ‖ fα‖2X(2N)p1α






∑

α+β=γ

β!1+ρ‖1β‖2X(2N)p2β




≤ M



∑

α∈I
α!1+ρ‖ fα‖2X(2N)(q+4))α






∑

β∈I
β!1+ρ‖1β‖2X(2N)(q+4)β




= M · ‖F‖2X⊗(S)ρ,p1
· ‖G‖2X⊗(S)ρ,p2

< ∞,
if q ≤ p1 − 4 and q ≤ p2 − 4. We used the Cauchy-Schwartz inequality along with the estimate (α + β)! ≤
α! β! (2N)α+β, from Lemma 2.1.

Remark 2.10. A test stochastic process u ∈ X ⊗ (S)ρ,p, p ≥ 0 can be considered as a generalized stochastic process
from X ⊗ (S)−ρ,−q, q ≥ 0 since ‖u‖2X⊗(S)−ρ,−q

≤ ‖u‖2X⊗(S)ρ,p
. Therefore, if F ∈ X ⊗ (S)ρ,p1 and G ∈ X ⊗ (S)−ρ,−p2 for some

p1, p2 ∈ N0, then F♦G is a well defined element in X ⊗ (S)−ρ,−q, for q ≥ p2 + 4. This follows from Theorem 2.9 part
1◦ by letting p1 = 0.

Applying the well-known formula for the Fourier-Hermite polynomials (see [4])

Hα ·Hβ =
∑

γ≤min{α,β}
γ!

(
α
γ

) (
β
γ

)
Hα+β−2γ (5)

one can define the ordinary product F · G of two stochastic processes F and G. Thus, by applying formally
(5) we obtain

F · G =
∑

α∈I

∑

β∈I
fα 1β ⊗ Hα ·Hβ =

∑

α∈I

∑

β∈I
fα 1β ⊗

∑

0≤γ≤min{α,β}
γ!

(
α
γ

)(
β
γ

)
Hα+β−2γ

= F♦G +
∑

α∈I

∑

β∈I
fα 1β ⊗

∑

0<γ≤min{α,β}
γ!

(
α
γ

)(
β
γ

)
Hα+β−2γ.

After a change of variables δ = α − γ, θ = β − γ, we obtain Hα ·Hβ =
∑

γ,δ,θ
γ+θ=β,γ+δ=α

α!β!
γ!δ!θ!

Hδ+θ.
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Hα ·Hβ =
∑

0≤τ<δ+β
γ+τ=δ+β,γ+δ=α

α!β!
γ!δ!(τ − δ)!

Hτ =
∑

0≤τ<δ+β
α+τ=β+2δ

α!β!
γ!δ!(τ − δ)!

Hτ, α, β ∈ I

After another change of variables τ = δ + θ we finally obtain the chaos expansion of Hα ·Hβ in (L)2 :

Hα ·Hβ =
∑

τ∈I

∑

γ∈I,δ≤τ
γ+τ−δ=β,γ+δ=α

α!β!
γ!δ!(τ − δ)!

Hτ = Hα+β +
∑

τ∈I

∑

γ>0,δ≤τ
γ+τ−δ=β,γ+δ=α

α!β!
γ!δ!(τ − δ)!

Hτ.

Similarly, we can rearrange the sums for F · G to obtain

F · G = F♦G +
∑

τ∈I

∑

α∈I

∑

β∈I
fα1β

∑

γ>0,δ≤τ
γ+τ−δ=β,γ+δ=α

α!β!
γ!δ!(τ − δ)!

Hτ =
∑

τ∈I

∑

α∈I

∑

β∈I
fα1β aα,β,τ Hτ, (6)

where

aα,β,τ =
∑

γ∈I,δ≤τ,
γ+τ−δ=β,γ+δ=α

α!β!
γ!δ!(τ − δ)!

(7)

Note the following facts: for each α, β, τ ∈ I fixed there exists a unique pair of multi-indices γ, δ ∈ I
such that δ ≤ τ and γ+ τ− δ = β, γ+ δ = α. Moreover, both α+ β and |α− β| are odd (resp. even) if and only
if τ is odd (resp. even). Also, α + β ≥ τ ≥ |α − β|. Thus,

aα,β,τ =
α!β!

(α+β−τ
2 )!(α−β+τ2 )!( β−α+τ

2 )!
.

For example, if τ = (2, 0, 0, 0, . . .), then the coefficient next to Hτ in (6) is f(0,0,0,...)1(2,0,0,...) + f(1,0,0,...)1(1,0,0,...) +
f(2,0,0,...)1(0,0,0,...) + 3 f(1,0,0,...)1(3,0,0,...) + 4 f(2,0,0,...)1(2,0,0,...) + 3 f(3,0,0,...)1(1,0,0,...) + 18 f(3,0,0,...)1(3,0,0,...) + · · · .
Lemma 2.11. Let α, β, τ ∈ I and aα,β,τ be defined as in (7). Then

aα,β,τ ≤ (2N)α+β.

Proof. From the estimate α! =
(2α)!
2|α| ≥ (2α)!

(2N)α , which follows from Lemma 2.1 part 1◦, we obtain

aα,β,τ =
α!β!

(α+β−τ
2 )!(α−β+τ2 )!( β−α+τ

2 )!
≤ α!β!

(α + β − τ)!(α − β + τ)!(β − α + τ)!(2N)−(α+β−τ)
.

Without loss of generality we may assume that α ≤ β. The case β ≤ α can be considered similarly.
First case, if α ≤ β ≤ τ. Then, β ≤ τ implies that α!

(α−β+τ)! ≤ 1, while α ≤ τ implies that β!
(β−α+τ)! ≤ 1. Thus

aα,β,τ ≤ (2N)α+β−τ

(α + β − τ)!
≤ (2N)α+β.

Second case, if α ≤ τ ≤ β. Then, α ≤ τ implies again β!
(β−α+τ)! ≤ 1, while τ ≤ β now implies that α!

(α+β−τ)! ≤ 1.
Thus,

aα,β,τ ≤ (2N)α+β−τ

(α − β + τ)!
≤ (2N)α+β.
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Third case, if τ ≤ α ≤ β. Then β − α + τ ≤ β and α − β + τ ≤ τ. Thus, we obtain

aα,β,τ ≤
∏

i∈N

αi! βi!
(αi + βi − τi)! (αi − βi + τi)! (βi − αi + τi)! (2i)−(αi+βi−τi)

=
∏

i∈N

(αi − βi + τi)! · (αi − βi + τi + 1) . . . (αi − 1) · αi (βi − αi + τi)! · (βi − αi + τi + 1) . . . (βi − 1) · βi

(αi − βi + τi)! (βi − αi + τi)! (αi + βi − τi)! (2i)−(αi+βi−τi)

≤ 1 · (2N)α+β−τ ≤ (2N)α+β

Theorem 2.12. The following holds:

1◦ If F ∈ X ⊗ (S)ρ,r1 and G ∈ X ⊗ (S)ρ,r2 , for some r1, r2 ∈ N0, then the ordinary product F · G is a well defined
element in X ⊗ (S)ρ,q for q ≤ min{r1, r2} − 8.

2◦ If F ∈ X ⊗ (S)ρ,r1 and G ∈ X ⊗ (S)−ρ,−r2 , for r1 − r2 > 8, then their ordinary product F · G is well defined and
belongs to X ⊗ (S)−ρ,−q for r2 ≤ q ≤ r1 − 8.

Proof. 1◦ Let q = p − 8, where p ≤ min{p1, p2} − 8. By Lemma 2.11, Lemma 2.1 and the Cauchy-Schwartz
inequality we have

‖F · G‖2X⊗(S)ρ,q
=

∑

τ∈I
τ!1+ρ‖

∑

α,β∈I
fα1βaα,β,τ‖2X(2N)qτ

≤
∑

τ∈I
τ!1+ρ‖

∑

α,β∈I
τ≤α+β

fα1β(2N)α+β‖2X(2N)(p−8)τ

=
∑

τ∈I
(2N)−2τ‖

∑

α,β∈I
τ≤α+β

fα1β τ!
1+ρ

2 (2N)α+β (2N)
p−6

2 τ‖2X

≤
∑

τ∈I
(2N)−2τ‖

∑

α,β∈I
τ≤α+β

fα1β α!
1+ρ

2 β!
1+ρ

2 (2N)
1+ρ

2 (2N)α+β (2N)
p−6

2 (α+β)‖2X

≤
∑

τ∈I
(2N)−2τ‖

∑

α,β∈I
α!

1+ρ
2 fα(2N)

pα
2 (2N)−ββ!

1+ρ
2 1β (2N)

pβ
2 (2N)−α‖2X

=
∑

τ∈I
(2N)−2τ

( ∑

α,β∈I
α!1+ρ‖ fα‖2X(2N)pα (2N)−2β

∑

α,β∈I
β!1+ρ ‖1β‖2X (2N)pβ (2N)−2α

)

≤
∑

τ∈I
(2N)−2τ

(∑

β∈I
(2N)−2β

∑

α∈I
α!1+ρ‖ fα‖2X(2N)pα

)(∑

α∈I
(2N)−2α

∑

β∈I
β!1+ρ ‖1β‖2X (2N)pβ

)

≤M C1C2

∑

α∈I
α!2‖ fα‖2X(2N)pα

∑

β∈I
α!2‖1β‖2X(2N)pβ

= M C1C2‖F‖2X⊗(S)ρ,p
‖G‖2X⊗(S)ρ,p

< ∞,
where M =

∑
τ∈I(2N)−2τ < ∞, C1 =

∑
β∈I(2N)−2β < ∞ and C2 =

∑
α∈I(2N)−2α < ∞.

2◦ Letϕ ∈ (S)ρ,q and F ∈ X⊗(S)ρ,r1 . Then by Theorem 2.12 part 1◦, F ·ϕ ∈ (S)ρ,s for s ≤ min{r1, q}−8 = r1−8.
Also, G ∈ (S)−ρ,r2 implies that G ∈ (S)−ρ,−c for c ≥ r2. Thus for any c such that r2 ≤ c ≤ s ≤ r1 − 8 we have
F · ϕ ∈ (S)ρ,c and G ∈ (S)−ρ,−c. Now,

‖F · G‖2−ρ,−q = sup
‖ϕ‖q≤1

| � F · G, ϕ�ρ | = sup
‖ϕ‖q≤1

| � G, F · ϕ�ρ |

≤ sup
‖ϕ‖q≤1

‖G‖−ρ,−c · ‖F · ϕ‖ρ,c ≤ sup
‖ϕ‖q≤1

‖G‖−ρ,−c · ‖F‖ρ,r1 · ‖ϕ‖ρ,q.
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This implies

‖F · G‖2−ρ,−q ≤M · ‖G‖−ρ,−r2 · ‖F‖ρ,r1 ,

for some M > 0.

Remark 2.13. Note, for F,G ∈ X ⊗ (L)2 the ordinary product F · G will not necessarily belong to X ⊗ (L)2 (for a
counterexample see [11]), but due to the Hölder inequality it will belong to X ⊗ (L)1.

3. Operators of the Malliavin Calculus

In the classical literature [2, 12, 13, 15] the Malliavin derivative and the Skorokhod integral are defined
on a subspace of (L)2 so that the resulting process after application of these operators necessarily remains
in (L)2. We will recall of these classical results and denote the corresponding domains with a ”zero” in
order to retain a nice symmetry between test and generalized processes. In [6, 7, 9, 10] we allowed values
in the Kondratiev space (S)−1 and thus obtained larger domains for all operators. These domains will be
denoted by a ”minus” sign to reflect the fact that they correspond to generalized processes. In this paper
we introduce also domains for test processes. These domains will be denoted by a ”plus” sign.

Definition 3.1. Let a generalized stochastic process u ∈ X ⊗ (S)−ρ be of the form u =
∑
α∈I uα ⊗Hα. If there exists

p ∈N0 such that
∑

α∈I
|α|1+ρ α!1−ρ ‖uα‖2X(2N)−pα < ∞, (8)

then the Malliavin derivative of u is defined by

Du =
∑

α∈I

∑

k∈N
αk uα ⊗ ξk ⊗Hα−ε(k) =

∑

α∈I

∑

k∈N
(αk + 1) uα+ε(k) ⊗ ξk ⊗Hα, (9)

where by convention α − ε(k) does not exist if αk = 0, i.e. Hα−ε(k) =

{
0, αk = 0

H(α1,α2,...,αk−1,αk−1,αk+1,...,αm,0,0,...), αk ≥ 1 , for

α = (α1, α2, ..., αk−1, αk, αk+1, ..., αm, 0, 0, ...) ∈ I.

For two processes u =
∑
α∈I uα ⊗ Hα, v =

∑
α∈I vα ⊗ Hα and constants a, b the linearity property holds,

i.e. D(au + bv) = aD(u) + bD(v). The set of generalized stochastic processes u ∈ X ⊗ (S)−ρ which satisfy (8)
constitutes the domain of the Malliavin derivative, denoted by Domρ

−(D). Thus the domain of the Malliavin
derivative is given by

Domρ
−(D) =

⋃

p∈N0

Domρ
−p(D) =

⋃

p∈N0

u ∈ X ⊗ (S)−ρ :
∑

α∈I
|α|1+ρ α!1−ρ ‖uα‖2X(2N)−pα < ∞

 .

A process u ∈ Domρ
−(D) is called a Malliavin differentiable process.

Theorem 3.2. The Malliavin derivative of a process u ∈ X ⊗ (S)−ρ is a linear and continuous mapping

D : Domρ
−p(D)→ X ⊗ S−l(R) ⊗ (S)−ρ,−p,

for l > p + 1 and p ∈N0.
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Proof. Let u =
∑
α∈I

uα ⊗Hα ∈ Domρ
−(D). Then,

‖Du‖2X⊗S−l(R)⊗(S)−ρ,−p
=

∑

α∈I

(∑

k∈N
(αk + 1)2 ‖uα+ε(k)‖2X (2k)−l

)
α!1−ρ(2N)−pα

=
∑

|β|≥1

(∑

k∈N
β2

k ‖uβ‖2X (2k)−l
(
β!
βk

)1−ρ
(2k)p

)
(2N)−pβ

=
∑

|β|≥1

(∑

k∈N
β

1+ρ
k (2k)−(l−p)

)
‖uβ‖2X (β!)1−ρ (2N)−pβ

≤
∑

β∈I

( ∞∑

k=1

βk

)1+ρ ( ∞∑

k=1

(2k)−(l−p)
)
‖uβ‖2X (β!)1−ρ(2N)−pβ

= c
∑

β∈I
|β|1+ρ(β!)1−ρ‖uβ‖2X (2N)−pβ = c‖u‖2

Domρ
−p(D)

< ∞,

where c =
∑

k∈N(2k)−(l−p) < ∞ for l − p > 1 and where we used (α − ε(k))! = α!
αk

, αk > 0 and the estimate
∑

k∈N α
1+ρ
k ≤ (

∑
k∈N αk)1+ρ = |α|1+ρ.

For all α ∈ I we have |α| < α!. Thus, the smallest domain of the spaces Domρ
−(D) is obtained for ρ = 0

and the largest is obtained for ρ = 1. In particular we have Dom0−(D) ⊂ Dom1−(D). Moreover if p ≤ q then
Domρ

−p(D) ⊆ Domρ
−q(D).

For square integrable stochastic process u ∈ X ⊗ (L)2 the domain is given by

Dom0(D) =

u ∈ X ⊗ (L)2 :
∑

α∈I
|α|α! ‖uα‖2X < ∞

 .

Theorem 3.3. The Malliavin derivative of a process u ∈ Dom0(D) is a linear and continuous mapping

D : Dom0(D) → X ⊗ L2(R) ⊗ (L)2.

Proof. Let u ∈ Dom0(D) , i.e.
∑
α∈I
|α|α!‖uα‖2X < ∞. Then,

‖Du‖2X⊗L2(R)⊗(L)2 =
∑

α∈I

∑

k∈N
α2

k (α − ε(k))! ‖uα‖2X =
∑

α∈I

∑

k∈N
αk α! ‖uα‖2X =

∑

α∈I
|α|α! ‖uα‖2X < ∞.

In general, for ρ ∈ [0, 1] the domain ofD in X ⊗ (S)ρ is

Domρ
+ =

⋂

p∈N0

Domρ
p(D) =

⋂

p∈N0

u ∈ X ⊗ (S)ρ :
∑

α∈I
|α|1−ρ (α!)1+ρ ‖uα‖2X(2N)pα < ∞

 .

Theorem 3.4. Let ρ ∈ [0, 1]. The Malliavin derivative of a test stochastic process v ∈ X ⊗ (S)ρ is a linear and
continuous mapping

D : Domρ
p(D)→ X ⊗ Sl(R) ⊗ (S)ρ, p,

for l < p − 1 and p ∈N0.
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Proof. Let v =
∑
α∈I

vα ⊗Hα ∈ Domρ
p(D). Then, from (9) and

‖Dv‖2X⊗Sl(R)⊗(S)ρ,p
=

∑

α∈I
‖
∑

k∈N
(αk + 1) vα+ε(k)ξk‖2X⊗Sl(R) α!1+ρ(2N)pα

=
∑

α∈I

(∑

k∈N
(αk + 1)2 ‖vα+ε(k)‖2X (2k)l

)
α!1+ρ(2N)pα

=
∑

|β|≥1

(∑

k∈N
β2

k ‖vβ‖2X (2k)l
(
β!
βk

)1+ρ

(2k)−p
)

(2N)pβ

=
∑

|β|≥1

(∑

k∈N
β

1−ρ
k (2k)−(p−l)

)
‖vβ‖2X β!1+ρ (2N)pβ

≤ c1−ρ
∑

β∈I
|β|1−ρ(β!)1+ρ‖vβ‖2X (2N)pβ < ∞,

the assertion follows, where we used
∑

k∈N
β

1−ρ
k (2k)l−p ≤

(∑

k∈N
βk

)1−ρ(∑

k∈N
(2k)

l−p
1−ρ

)1−ρ ≤ |β|1−ρ · c1−ρ,

and c =
∑

k∈N (2k)
l−p
1−ρ ≤ ∑

k∈N (2k)l−p < ∞, for p > l+1. We also used βk (β−ε(k))! = β!, β ∈ I and (2N)ε
(k)

= (2k),
k ∈N.

Note that Domρ
p(D) ⊆ Dom0(D) ⊆ Domρ

−p(D) for all p ∈N. Therefore, Domρ
+(D) ⊆ Dom0(D) ⊆ Domρ

−(D).
Moreover, using the estimate |α| ≤ (2N)α it follows that

X ⊗ (S)−ρ,−(p−2) ⊆ Domρ
−p(D) ⊆ X ⊗ (S)−ρ,−p, p > 3, and

X ⊗ (S)ρ,p+1 ⊆ Domρ
p(D) ⊆ X ⊗ (S)ρ,p, p > 0.

Remark 3.5. For u ∈ Domρ
+(D) and u ∈ Dom0(D) it is usual to write

Dtu =
∑

α∈I

∑

k∈N
αk uα ⊗ ξk(t) ⊗Hα−ε(k) ,

in order to emphasise that the Malliavin derivative takes a random variable into a process, i.e. thatDu is a function
of t. Moreover, the formula

DtF(ω) = lim
h→0

1
h

(
F(ω + h · κ[t,∞)) − F(ω)

)
, ω ∈ S′(R),

justifies the name stochastic derivative for the Malliavin operator. Since generalized functions do not have point
values, this notation would be somewhat misleading for u ∈ Domρ

−(D). Therefore, for notational uniformity, we omit
the index t inDt that usually appears in the literature and writeD.

The Skorokhod integral, as an extension of the Itô integral for non-adapted processes, can be regarded
as the adjoint operator of the Malliavin derivative in (L)2-sense. In [6] we have extended the definition of
the Skorokhod integral from Hilbert space valued processes to the class of S′-valued generalized processes.

Definition 3.6. Let F =
∑
α∈I fα ⊗Hα ∈ X⊗ S′(R)⊗ (S)−ρ, be a generalized S′(R)-valued stochastic process and let

fα ∈ X ⊗ S′(R) be given by the expansion fα =
∑

k∈N fα,k ⊗ ξk, fα,k ∈ X. If there exist p ≥ 0, l ≥ 0 such that
∑

α∈I

∑

k∈N

(
α! (αk + 1)

)1−ρ ‖ fα,k‖2X (2k)−l (2N)−pα < ∞,
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then the Skorokhod integral of F is given by

δ(F) =
∑

α∈I

∑

k∈N
fα,k ⊗Hα+ε(k) =

∑

α>0

∑

k∈N
fα−ε(k),k ⊗Hα. (10)

A linear combination of two Skorokhod integrable processes F,G is again Skorokhod integrable process
aF + bG, a, b ∈ R such that δ(aF + bG) = aδ(F) + bδ(G).

In general, the domain Domρ
−(δ) of the Skorokhod integral is

Domρ
−(δ) =

⋃

(l,p)∈N2

p>l+1

Domρ
(−l,−p)(δ) =

⋃

(l,p)∈N2

p>l+1

F ∈ X ⊗ S′(R) ⊗ (S)−ρ :
∑

α∈I

∑

k∈N

(
α! (αk + 1)

)1−ρ ‖ fα,k‖2X (2k)−l (2N)−pα < ∞
 .

Theorem 3.7. Letρ ∈ [0, 1]. The Skorokhod integral δ of a S−l(R)-valued stochastic process is a linear and continuous
mapping

δ : Domρ
(−l,−p)(δ)→ X ⊗ (S)−ρ,−p, p > l + 1.

Proof. This statement follows from

‖δ(F)‖2X⊗(S)−ρ,−p
=

∑

|α|≥1

α!1−ρ‖
∑

k∈N
fα−ε(k),k‖2X (2N)−pα =

∑

|α|≥1

‖
∑

k∈N
α!

1−ρ
2 fα−ε(k),k‖2X (2N)−pα

=
∑

β∈I
‖
∑

k∈N
(β + ε(k))!

1−ρ
2 fβ,k (2k)−

p
2 ‖2X (2N)−pβ

=
∑

β∈I
‖
∑

k∈N
(β + ε(k))!

1−ρ
2 fβ,k (2k)−

l
2 (2k)−

p−l
2 ‖2X (2N)−pβ

≤
∑

β∈I

(∑

k∈N
(β + ε(k))!1−ρ‖ fβ,k‖2X (2k)−l

∑

k∈N
(2k)−(p−l)

)
(2N)−pβ

≤ c
∑

β∈I

∑

k∈N
(β! (βk + 1))1−ρ‖ fβ,k‖2X (2k)−l (2N)−pβ = c ‖F‖2

Domρ
(−l,−p)(δ)

< ∞,

where c =
∑

k∈N
(2k)−(p−l) < ∞ for p > l + 1.

Note that for ρ = 1 it holds that Dom1−(δ) = X ⊗ S′(R) ⊗ (S)−1.
Now we characterize the domains Domρ

+(δ) and Dom0(δ) of the Skorokhod integral for test processes
from X ⊗ S(R)⊗ (S)ρ and square integrable processes from X ⊗ L2(R)⊗ (L)2. The form of the derivative is in
all cases given by the expression (10).

For square integrable stochastic processes T ∈ X ⊗ L2(R)⊗ (L)2 of the form T =
∑
α∈I

∑
k∈N tα,k ⊗ ξk ⊗Hα,

tα,k ∈ X, we define

Dom0(δ) =

T ∈ X ⊗ L2(R) ⊗ (L)2 :
∑

α∈I

(∑

k∈N
(αk + 1)

1
2α!

1
2 ‖tα,k‖X

)2
< ∞

 .

Theorem 3.8. The Skorokhod integral δ of an L2(R)-valued stochastic process is a linear and continuous mapping

δ : Dom0(δ) → X ⊗ (L)2.
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Proof. Let T =
∑
α∈I

∑
k∈N

tα,k ⊗ ξk ⊗Hα ∈ Dom0(δ). Then,

‖δ(T)‖2X⊗(L)2 =
∑

|α|≥1

‖
∑

k∈N
tα−ε(k),k‖2X α! =

∑

|α|≥1

‖
∑

k∈N
α!

1
2 tα−ε(k),k‖2X

=
∑

β∈I
‖
∑

k∈N
(β + ε(k))!

1
2 tβ,k‖2X ≤

∑

β∈I

(∑

k∈N
(β + ε(k))!

1
2 ‖tβ,k‖X

)2

=
∑

β∈I

(∑

k∈N
β!

1
2 (βk + 1)

1
2 ‖tβ,k‖X

)2
= ‖T‖2Dom0(δ) < ∞.

In general, for any ρ ∈ [0, 1], the domain Domρ
+(δ) of the Skorokhod integral in X ⊗ S(R) ⊗ (S)ρ is

Domρ
+(δ) =

⋂

(l,p)∈N2

l>p+1

Domρ
(l,p)(δ) =

⋂

(l,p)∈N2

l>p+1

F ∈ X ⊗ Sl(R) ⊗ (S)ρ,p :
∑

α∈I

∑

k∈N
(αk + 1)1+ρα!1+ρ‖ fα,k‖2X(2k)l(2N)pα < ∞

 .

Theorem 3.9. The Skorokhod integral δ of an Sl(R)-valued stochastic test process is a linear and continuous mapping

δ : Domρ
(l,p)(δ)→ X ⊗ (S)ρ,p, l > p + 1.

Proof. Let U =
∑
α∈I uα ⊗ Hα ∈ Domρ

(l,p)(δ), uα =
∑∞

k=1 uα,k ⊗ ξk ∈ X ⊗ Sl(R), uα,k ∈ X, for l > p + 1. Then we
obtain

‖δ(U)‖2X⊗(S)ρ,p
=

∑

β∈I
‖
∑

k∈N
(β + ε(k))!

1+ρ
2 uβ,k (2k)

p
2 ‖2X (2N)pβ

≤
∑

β∈I

(∑

k∈N
(β!(βk + 1))1+ρ ‖uβ,k‖2X (2k)l

∑

k∈N
(2k)−(l−p)

)
(2N)pβ ≤ c ‖U‖2

Domρ
(l,p)(δ)

< ∞,

where c =
∑

k∈N(2k)−(l−p) < ∞ for l > p + 1.

Using the estimates αk + 1 ≤ 2|α|, which holds for all α ∈ I except for α = 0, and |α| ≤ (2N)α, α ∈ I we
obtain

∑

α∈I

∑

k∈N
α!1+ρ‖ fα,k‖2X(2k)l(2N)pα ≤

∑

α∈I

∑

k∈N
(αk + 1)1+ρα!1+ρ‖ fα,k‖2X(2k)l(2N)pα

≤
∑

k∈N
‖ f0,k‖2X(2k)l + 4

∑

α>0

∑

k∈N
|α|2α!1+ρ‖ fα,k‖2X(2k)l(2N)pα

≤ ‖ f0‖2X⊗Sl(R) + 4
∑

α>0

∑

k∈N
α!1+ρ‖ fα,k‖2X(2k)l(2N)(p+2)α

≤ 4‖F‖2X⊗Sl(R)⊗(S)ρ,p+2
.

Thus,

X ⊗ Sl(R) ⊗ (S)ρ,p+2 ⊆ Domρ
(l,p)(δ) ⊆ X ⊗ Sl(R) ⊗ (S)ρ,p, for l > p + 1 and

X ⊗ S−l(R) ⊗ (S)−ρ,−(p−1) ⊆ Domρ
(−l,−p)(δ) ⊆ X ⊗ S−l(R) ⊗ (S)−ρ,−p, for p > l + 1.

The third main operator of the Malliavin calculus is the Ornstein-Uhlenbeck operator.

Definition 3.10. The composition of the Malliavin derivative and the Skorokhod integral is denoted by R = δ ◦D
and called the Ornstein-Uhlenbeck operator.
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Therefore, for u ∈ X ⊗ (S)−ρ given in the chaos expansion form u =
∑
α∈I

uα ⊗Hα, the Ornstein-Uhlenbeck

operator is given by

R(u) =
∑

α∈I
|α|uα ⊗Hα. (11)

The Orstein-Uhlenbeck operator is linear, i.e. by (11) R(au + bv) = aR(u) + bR(v), a, b ∈ R holds.
Let

Domρ
−(R) =

⋃

p∈N0

Domρ
−p(R) =

⋃

p∈N0

u ∈ X ⊗ (S)−ρ :
∑

α∈I
|α|2 ‖uα‖2X (α!)1−ρ(2N)−pα < ∞

 .

Theorem 3.11. The operator R is a linear and continuous mapping

R : Domρ
−p(R)→ X ⊗ (S)−ρ,−p, p ∈N0.

Moreover, Domρ
−(R) ⊆ Domρ

−(D).

Proof. Let v =
∑
α∈I vα ⊗Hα ∈ Domρ

−p(R), for some p ∈N0. Then, from (11) it follows that

‖Rv‖2X⊗(S)−ρ,−p
=

∑

α∈I
|α|2 ‖vα‖2X (α!)1−ρ (2N)−pα < ∞.

For v ∈ Domρ
−(D) we obtain

∑

α∈I
|α|1+ρ ‖vα‖2X (α!)1−ρ (2N)−pα ≤

∑

α∈I
|α|2 ‖vα‖2X (α!)1−ρ (2N)−pα,

and the last assertion follows. Note that for ρ = 1, Dom1−p(R) = Dom1−p(D).

For square integrable processes we define

Dom0(R) =

w ∈ X ⊗ (L)2 :
∑

α∈I
α! |α|2 ‖wα‖2X < ∞

 .

Theorem 3.12. The operator R is a linear and continuous operator

R : Dom0(R) → X ⊗ (L)2.

Moreover, Dom0(R) ⊆ Dom0(D).

Proof. Let w =
∑
α∈I

wα ⊗Hα ∈ Dom0(R). Then R(w) =
∑
α∈I
|α|wα ⊗Hα and

‖R(w)‖2X⊗(L)2 =
∑

α∈I
|α|2 ‖wα‖2X = ‖w‖2Dom0(R) < ∞.

Now from |α| ≤ |α|2 for α ∈ I it follows that Dom0(R) ⊆ Dom0(D).

For test processes, we define

Domρ
+(R) =

⋂

p∈N0

Domρ
p(R) =

⋂

p∈N0

v ∈ X ⊗ (S)ρ,p :
∑

α∈I
(α!)1+ρ |α|2 ‖vα‖2X (2N)pα < ∞

 .

60 Section 1.1
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Theorem 3.13. The operator R is a linear and continuous mapping

R : Domρ
p(R)→ X ⊗ (S)ρ, p, p ∈N.

Moreover, Domρ
p(R) ⊆ Domρ

p(D).

Proof. Let v =
∑
α∈I

vα ⊗Hα ∈ Domρ
p(R). Then,

‖Rv‖2X⊗(S)ρ, p
=

∑

α∈I
‖vα‖2X |α|1+ρ α!2 (2N)pα = ‖v‖2

Domρ
p (R)

< ∞.

From
∑

α∈I
|α|1−ρ α!1+ρ‖vα‖2X (2N)pα ≤

∑

α∈I
|α|2 α!1+ρ‖vα‖2X (2N)pα

follows that Domρ
p(R) ⊆ Domρ

p(D).

Note also that

X ⊗ (S)ρ,p+2 ⊆ Domρ
p(R) ⊆ X ⊗ (S)ρ,p, p ∈N, and

X ⊗ (S)−ρ,−(p−2) ⊆ Domρ
−p(R) ⊆ X ⊗ (S)−ρ,−p.

In [8] we have proven that the mappings δ : Domρ
−(δ)→ X ⊗ (S)−ρ, R : Domρ

−(R)→ X ⊗ (S)−ρ, for ρ = 1,
are surjective on the subspace of centered random variables (random variables with zero expectation). In
the next section we prove the same type of surjectivity of the mappings for ρ ∈ [0, 1) as well, i.e. that the
mappings δ : Domρ

+(δ)→ X ⊗ (S)ρ, R : Domρ
+(R)→ X ⊗ (S)ρ, δ : Dom0(δ)→ X ⊗ (L)2, R : Dom0(R)→ X ⊗ (L)2

have the corresponding range of centered generalized random variables. The mappings D : Domρ
−(D) →

X ⊗ S′(R) ⊗ (S)−ρ, D : Domρ
+(D) → X ⊗ S(R) ⊗ (S)ρ, D : Dom0(D) → X ⊗ L2(R) ⊗ (L)2 are surjective on

the subspace of generalized stochastic processes satisfying a certain symmetry condition which will be
discussed in detail.

4. Range of the Malliavin Operators

Theorem 4.1. (The Ornstein-Uhlenbeck operator) Let 1 have zero generalized expectation. The equation

Ru = 1, Eu = ũ0 ∈ X,

has a unique solution u represented in the form

u = ũ0 +
∑

α∈I,|α|>0

1α

|α| ⊗ Hα.

Moreover, the following holds:

1◦ If 1 ∈ X ⊗ (S)−ρ,−p, p ∈N, then u ∈ Domρ
−p(R).

2◦ If 1 ∈ X ⊗ (S)ρ,p, p ∈N, then u ∈ Domρ
p(R).

3◦ If 1 ∈ X ⊗ (L)2, then u ∈ Dom0(R).
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Proof. Let us seek for a solution in form of u =
∑
α∈I

uα ⊗Hα. From Ru = 1 it follows that

∑

α∈I
|α|uα ⊗Hα =

∑

α∈I
1α ⊗Hα,

i.e., uα =
1α
|α| for all α ∈ I, |α| > 0. From the initial condition we obtain u(0,0,0,0,...) = Eu = ũ0.

1◦ Let 1 ∈ X ⊗ (S)−ρ,−p. Then u ∈ Domρ
−p(R) since

‖u‖2
Domρ

−p(R)
= ‖u0‖2X +

∑

|α|>0

|α|2 (α!)1−ρ ‖uα‖2X(2N)−pα = ‖u0‖2X +
∑

|α|>0

|α|2 (α!)1−ρ ‖1α‖2X
|α|2 (2N)−pα

= ‖u0‖2X +
∑

|α|>0

(α!)1−ρ ‖1α‖2X (2N)−pα = ‖u0‖2X + ‖1‖2X⊗(S)−ρ,−p
< ∞.

2◦ Assume that 1 ∈ X ⊗ (S)ρ,p. Then u ∈ Domρ
p(R) since

‖u‖2
Domρ

p (R)
= ‖u0‖2X +

∑

|α|>0

|α|2 (α!)1+ρ ‖uα‖2X(2N)pα = ‖u0‖2X +
∑

|α|>0

(α!)1+ρ ‖1α‖2X(2N)pα

= ‖u0‖2X + ‖1‖2X⊗(S)ρ,p
< ∞.

3◦ If 1 is square integrable, then u ∈ Dom0(R) since

‖u‖2Dom0(R) = ‖u0‖2X +
∑

|α|>0

|α|2 α! ‖uα‖2X = ‖u0‖2X +
∑

|α|>0

α! ‖1α‖2X = ‖1‖2X⊗(L)2 < ∞.

Corollary 4.2. Let ρ ∈ [0, 1]. Each process 1 ∈ X ⊗ (S)±ρ, resp. 1 ∈ X ⊗ (L)2 can be represented as 1 = E1 + R(u),
for some u ∈ Domρ

±(R), resp. u ∈ Dom0(R).

In [10] we provided one way for solving equation Du = h: Using the chaos expansion method we
transformed equation (15) into a system of infinitely many equations of the form

uα+ε(k) =
1

αk + 1
hα,k, for all α ∈ I, k ∈N, (12)

from which we calculated uα, by induction on the length of α.
Denote by r = r(α) = min{k ∈ N : αk , 0}, for a nonzero multi-index α ∈ I, i.e. let r be the position

of the first nonzero component of α. Then the first nonzero component of α is the rth component αr, i.e.
α = (0, ..., 0, αr, ..., αm, 0, ...). Denote by αε(r) the multi-index with all components equal to the corresponding
components of α, except the rth, which is αr − 1. With the given notation we call αε(r) the representative of α
and write α = αε(r) + ε(r). For α ∈ I, |α| > 0 the set

Kα = {β ∈ I : α = β + ε( j), for those j ∈N, such that α j > 0}
is a nonempty set, because it contains at least the representative of α, i.e. αε(r) ∈ Kα. Note that, if α = nε(r),
n ∈N then Card(Kα) = 1 and in all other cases Card(Kα) > 1. Further, for |α| > 0,Kα is a finite set because α
has finitely many nonzero components and Card(Kα) is equal to the number of nonzero components ofα. For
example, the first nonzero component ofα = (0, 3, 1, 0, 5, 0, 0, ...) is the second one. It follows that r = 2, αr = 3
and the representative ofα isαε(r) = α−ε(2) = (0, 2, 1, 0, 5, 0, 0, ...). The multi-indexαhas three nonzero compo-
nents, thus the setKα consists of three elements: Kα = {(0, 2, 1, 0, 5, 0, ...), (0, 3, 0, 0, 5, 0, ...), (0, 3, 1, 0, 4, 0, ...)}.

In [10] we obtained the coefficients uα of the solution of (12) as functions of the representative αε(r) of a
nonzero multi-index α ∈ I in the form

uα =
1
αr

hα
ε(r) , r, for |α| , 0, α = αε(r) + ε(r).
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Theorem 4.3. ([10]) Let h =
∑
α∈I

∑
k∈N

hα,k ⊗ ξk ⊗Hα ∈ X ⊗ S−p(R) ⊗ (S)−1,−p, p ∈N0, with hα,k ∈ X such that

1
αr

hα
ε(r) ,r =

1
α j

hβ, j , (13)

for the representative αε(r) of α ∈ I, |α| > 0 and all β ∈ Kα, such that α = β + ε( j), for j ≥ r, r ∈ N. Then, equation
(15) has a unique solution in X⊗ (S)−1,−2p. The chaos expansion of the generalized stochastic process, which represents
the unique solution of equation (15) is given by

u = ũ0 +
∑

α=α
ε(r) +ε(r)∈I

1
αr

hα
ε(r) ,r ⊗ Hα. (14)

Here we provide another way of solving equationDu = h using the Skorokod integral operator.

Theorem 4.4. (The Malliavin derivative) Let h have the chaos expansion h =
∑
α∈I

∑
k∈N

hα,k ⊗ ξk ⊗Hα and assume that

condition (13) holds. Then the equation

Du = h, Eu = ũ0, ũ0 ∈ X, (15)

has a unique solution u represented in the form

u = ũ0 +
∑

α∈I,|α|>0

1
|α|

∑

k∈N
hα−ε(k),k ⊗ Hα. (16)

Moreover, the following holds:
1◦ If h ∈ X ⊗ S−p(R) ⊗ (S)−ρ,−q, q > p + 1, then u ∈ Domρ

−q(D).
2◦ If h ∈ X ⊗ Sp(R) ⊗ (S)ρ,q, p > q + 1, then u ∈ Domρ

q (D).
3◦ If h ∈ Dom0(δ), then u ∈ Dom0(D).

Proof. 1◦ The proof is similar as for case 2◦, so we present the proof of 2◦.
2◦ Let h ∈ X⊗ Sp(R)⊗ (S)ρ,q. Then h ∈ Domρ

(p,q−2)(δ). Now, applying the Skorokhod integral on both sides
of (15) one obtains

Ru = δ(h).

From the initial condition it follows that the solution u is given in the form u = ũ0 +
∑

α∈I,|α|>0
uα ⊗Hα and its

coefficients are obtained from the system

|α|uα =
∑

k∈N
hα−ε(k),k, |α| > 0, (17)

where by conventionα−ε(k) does not exist ifαk = 0. Condition (13) ensures that δ is injective i.e. δ(Du) = δ(h)
impliesDu = h.

It remains to prove that the solution u ∈ Domρ
q (D). Clearly,

‖u − ũ0‖2Domρ
q (D)

=
∑

α∈I
|α|1−ρ (α!)1+ρ ‖uα‖2X (2N)qα =

∑

α∈I,|α|>0

|α|1−ρ (α!)1+ρ

|α|2 ‖
∑

k∈N
hα−ε(k),k‖2X (2N)qα

=
∑

β∈I
‖
∑

k∈N
hβ,k

(β + ε(k))!
1+ρ

2

|β + ε(k)| 1+ρ
2

(2k)
q
2 ‖2X (2N)qβ ≤

∑

β∈I
‖
∑

k∈N
hβ,k β!

1+ρ
2 (2k)

p
2 (2k)

q−p
2 ‖2X (2N)qβ

≤
∑

β∈I

(∑

k∈N
‖hβ,k‖2X β!1+ρ (2k)p

∑

k∈N
(2k)q−p

)
(2N)qβ ≤ c

∑

β∈I

∑

k∈N
‖hβ,k‖2X β!1+ρ (2k)p (2N)qβ

= c ‖h‖2X⊗Sp(R)⊗(S)ρ,q
< ∞,
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since c =
∑

k∈N(2k)q−p < ∞, for p > q + 1. In the fourth step of the estimation we used that
(β + ε(k))!
|β + ε(k)| ≤ β!.

Thus,

‖u‖2
Domρ

q (D)
≤ 2

(
‖ũ0‖2X + c ‖h‖2X⊗Sp(R)⊗(S)ρ,q

)
< ∞

3◦ In this case we have that u given in (16) satisfies

‖u‖2Dom0(D) =
∑

α∈I
|α|α! ‖uα‖2X =

∑

α∈I,|α|>0

α!
|α| ‖

∑

k∈N
hα−ε(k),k‖2X ≤

∑

α∈I
α!‖

∑

k∈N
hα−ε(k),k‖2X = ‖h‖2Dom0(δ) < ∞.

Corollary 4.5. IfD(u) = 0, then u = Eu, i.e. u is constant almost surely.

Remark 4.6. The form of the solution (16) can be transformed to the form (14) obtained in [10]. First we express all
hβ,k in condition (13) in terms of hα

ε(r) , r, i.e.

hβ,k =
α j

αr
hα

ε(r) , r,

where β ∈ Kα correspond to the nonzero components of α in the following way: β = α − ε(k), k ∈ N, and r ∈ N
is the first nonzero component of α. Note that the set Kα has as many elements as the multi-index α has nonzero
components. Therefore, from the form of the coefficients (17) obtained in Theorem 4.4 we have

1
|α|

∑

β∈Kα
hβ,k =

1
|α|

∑

j∈N, α j,0

α j

αr
hα

ε(r) , r =
1
|α|

∑
j∈N

α j

αr
hα

ε(r) , r =
1
αr

hα
ε(r) , r.

Theorem 4.7. (The Skorokhod integral) Let f be a process with zero expectation and chaos expansion representation
of the form f =

∑
α∈I,|α|≥1

fα ⊗Hα, fα ∈ X. Then the integral equation

δ(u) = f , (18)

has a unique solution u in the class of processes satisfying condition (13) given by

u =
∑

α∈I

∑

k∈N
(αk + 1)

fα+ε(k)

|α + ε(k)| ⊗ ξk ⊗ Hα. (19)

Moreover, the following holds:

1◦ If f ∈ X ⊗ (S)−ρ,−p, then u ∈ Domρ
(−l,−p)(δ), for l > p + 1.

2◦ If f ∈ X ⊗ (S)ρ,p, p ∈N, then u ∈ Domρ
(l,p)(δ), for l < p − 1.

3◦ If f ∈ X ⊗ (L)2, then u ∈ Dom0(δ).

Proof. 1◦ Since the proof of 1◦ and 2◦ are analogous, we will conduct only the proof of one of them.
2◦ We seek for the solution in Ran1eρ+(D). It is clear that u ∈ Ran1eρ+(D) is equivalent to u = D(ũ), for

some ũ. Thus, equation (18) is equivalent to the system of equations

u = D(ũ), R (ũ) = f .

The solution to R(ũ) = f is given by

ũ = ũ0 +
∑

α∈I, |α|≥1

fα
|α| ⊗ Hα,
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where ũ(0,0,0,...) = ũ0 can be chosen arbitrarily. Now, the solution of the initial equation (18) is obtained after
applying the operatorD, i.e.

u = D (ũ) =
∑

α∈I, |α|≥1

∑

k∈N
αk

fα
|α| ⊗ ξk ⊗ Hα−ε(k) =

∑

α∈I

∑

k∈N
(αk + 1)

fα+ε(k)

|α + ε(k)| ⊗ ξk ⊗ Hα.

One can directly check that this u satisfies (13): Indeed with uα,k = (αk + 1)
f
α+ε(k)

|α+ε(k) | we have 1
αk

uα−ε(k),k =
fα
|α| for

all k ∈N.
It remains to prove the convergence of the solution (19) in in the space Domρ

(l,p)(δ). First we prove that

ũ ∈ Domρ
p(D) and then u ∈ Domρ

(l,p)(δ) for appropriate l ∈N. We obtain

‖ũ‖2
Domρ

p (D)
=

∑

α∈I
|α|1−ρ (α!)1+ρ ‖uα‖2X (2N)pα = ‖ũ0‖2X +

∑

α∈I,|α|>0

|α|1−ρ (α!)1+ρ
‖ fα‖2X
|α|2 (2N)pα

≤ ‖ũ0‖2X +
∑

α∈I,|α|>0

(α!)1+ρ ‖ fα‖2X (2N)pα = ‖ũ0‖2X + ‖ f ‖2X⊗(S)ρ,p
< ∞

and thus ũ ∈ Domρ
+(D). Now,

‖u‖2
Domρ

(l,p)(δ)
=

∑

α∈I

∑

k∈N
(α!)1+ρ (αk + 1)3+ρ

‖ fα+ε(k)‖2X
|α + ε(k)|2 (2k)l (2N)pα =

∑

α∈I,|α|>0

∑

k∈N
(α!)1+ρ α2

k

‖ fα‖2X
|α|2 (2k)l (2N)p(α−ε(k))

≤
∑

α∈I,|α|>0

(α!)1+ρ ‖ fα‖2X (2N)pα



∑

k∈N

α2
k

|α|2 (2k)l (2k)−p


 ≤ c ‖ f ‖2X⊗(S)ρ,p

< ∞,

since c =
∑

k∈N(2k)l−p < ∞ for p > l + 1. In the second step we used that (α − ε(k))! αk = α!, and in the fourth
step we used αk ≤ |α|.

3◦ In this case we have

‖ũ‖2Dom0(D) =
∑

α∈I
|α|α! ‖uα‖2X = ‖ũ0‖2X +

∑

α∈I,|α|>0

|α|α!
‖ fα‖2X
|α|2 ≤ ‖ũ0‖2X +

∑

α∈I,|α|>0

α! ‖ fα‖2X = ‖ũ0‖2X + ‖ f ‖2X⊗(L)2 < ∞

and thus ũ ∈ Dom0(D). Also,

‖u‖2Dom0(δ) =
∑

α∈I
α!‖

∑

k∈N
(αk + 1)

1
2 (αk + 1)

fα+ε(k)

|α + ε(k)| ‖
2
X =

∑

|β|≥1

‖
∑

k∈N
β

3
2
k (β − ε(k))!

1
2

fβ
|β| ‖

2
X =

∑

|β|≥1

‖
∑

k∈N
βk β!

1
2

fβ
|β| ‖

2
X

=
∑

|β|≥1

β!
|β|2 ‖ fβ‖2X

(∑

k∈N
βk

)2
=

∑

|β|≥1

β! ‖ fβ‖2X = ‖ f ‖2X⊗(L)2 < ∞.

Corollary 4.8. Each process f ∈ X ⊗ (S)±ρ, resp. f ∈ X ⊗ (L)2 can be represented as f = E f + δ(u) for some
u ∈ X ⊗ S(R) ⊗ (S)±ρ, resp. u ∈ X ⊗ L2(R) ⊗ (L)2.

The latter result reduces to the celebrated Itô representation theorem (see e.g. [4]) in case when f is a
square integrable adapted process.
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5. Properties of the Malliavin Operators

In the classical (L)2 setting it is known that the Skorokhod integral is the adjoint of the Malliavin
derivative. We extend this result in the next theorem and prove their duality by pairing a generalized
process with a test process. The classical result is revisited in part 3◦ of the theorem.

Theorem 5.1. (Duality) Assume that either of the following holds:

1◦ F ∈ Domρ
−(D) and u ∈ Domρ

+(δ)

2◦ F ∈ Domρ
+(D) and u ∈ Domρ

−(δ)

3◦ F ∈ Dom0(D) and u ∈ Dom0(δ)

Then the following duality relationship between the operatorsD and δ holds:

E (F · δ(u)) = E (〈DF, u〉) , (20)

where (20) denotes the equality of the generalized expectations of two objects in X ⊗ (S)−ρ and 〈·, ·〉 denotes the dual
pairing of S′(R) and S(R).

Proof. First we show that the duality relationship (20) betweenD and δ holds formally. Let u ∈ Dom(δ) be
given in its chaos expansion form u =

∑
β∈I

∑
j∈N

uβ, j ⊗ξ j ⊗ Hβ. Then δ(u) =
∑
β∈I

∑
j∈N

uβ, j ⊗Hβ+ε( j) . Let F ∈ Dom(D)

be given as F =
∑
α∈I

fα ⊗Hα. ThenD(F) =
∑
α∈I

∑
k∈N

(αk + 1) fα+ε(k) ⊗ ξk ⊗Hα. Therefore we obtain

F · δ(u) =
∑

α∈I

∑

β∈I

∑

j∈N
fαuβ, j ⊗Hα ·Hβ+ε( j)

=
∑

α∈I

∑

β∈I

∑

j∈N
fαuβ, j ⊗

∑

γ≤min{α,β+ε( j)}
γ! ·

(
α
γ

) (
β + ε( j)

γ

)
Hα+β+ε( j)−2γ.

The generalized expectation of F · δ(u) is the zeroth coefficient in the previous sum, which is obtained
when α + β + ε( j) = 2γ and γ ≤ min{α, β + ε( j)}, i.e. only for the choice β = α − ε( j) and γ = α, j ∈N. Thus,

E (F · δ(u)) =
∑

α∈I,|α|>0

∑

j∈N
fαuα−ε( j), j · α! =

∑

α∈I

∑

j∈N
fα+ε( j) uα, j · (α + ε( j))! .

On the other hand,

〈D(F),u〉 =
∑

α∈I

∑

β∈I

∑

k∈N

∑

j∈N
(αk + 1) fα+ε(k) uβ, j 〈ξk, ξ j〉Hα ·Hβ

=
∑

α∈I

∑

β∈I

∑

j∈N
(α j + 1) fα+ε( j) uβ, j

∑

γ≤min{α,β}
γ! ·

(
α
γ

)(
β
γ

)
·Hα+β−2γ

and its generalized expectation is obtained for α = β = γ. Thus

E (〈D(F),u〉) =
∑

α∈I

∑

j∈N
(α j + 1) fα+ε( j) uα, j · α! =

∑

α∈I

∑

j∈N
fα+ε( j) uα, j · (α + ε( j))! = E (F · δ(u)) .

1◦ Let ρ ∈ [0, 1] be fixed. Let F ∈ Domρ
−p(D) and u ∈ Domρ

(r,s)(δ), for some p ∈N and all r, s ∈N, r > s + 1.
Then DF ∈ X ⊗ S−l(R) ⊗ (S)−ρ,−p for l > p + 1. Since r is arbitrary, we may assume that r = l and denote by
〈·, ·〉 the dual pairing between S−l(R) and Sl(R). Moreover, 〈DF,u〉 is well defined in X ⊗ (S)−ρ,−p. On the
other hand, δ(u) ∈ X ⊗ (S)ρ,s and thus by Theorem 2.12, F · δ(u) is also defined as an element in X ⊗ (S)−ρ,−k,
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for k ∈ [p, s− 8], s > p + 8. Since s was arbitrary, one can take any k ≥ p. This means that both objects, F · δ(u)
and 〈DF,u〉 exist in X⊗ (S)−ρ,−k, for k ≥ p. Taking generalized expectations of 〈DF,u〉 and F · δ(u) we showed
that the zeroth coefficients of the formal expansions are equal. Therefore the duality formula is valid for
this case.

2◦ Let F ∈ Domρ
p(D) and u ∈ Domρ

(−r,−s)(δ), for some r, s ∈ N, s > r + 1, and all p ∈ N. Then DF ∈
X⊗Sl(R)⊗ (S)ρ,p, l < p− 1, but since p is arbitrary, so is l. Now, 〈DF,u〉 is a well defined object in X⊗ (S)−ρ,−s.
On the other hand, δ(u) ∈ X ⊗ (S)−ρ,−s and thus by Theorem 2.12, F · δ(u) is also well defined and belongs to
X ⊗ (S)−ρ,−k, for k ∈ [s, p − 8], p > s + 8. Thus, both processes F · δ(u) and 〈DF,u〉 belong to X ⊗ (S)−ρ,−k for
k ≥ s.

3◦ For F ∈ Dom0(D) and u ∈ Dom0(δ) the dual pairing 〈DF,u〉 represents the inner product in L2(R) and
the product Fδ(u) is an element in X ⊗ (L)1 (see Remark 2.13). The classical duality formula is clearly valid
for this case.

The next theorem states a higher order duality formula, which connects the kth order iterated Skorokhod
integral and the Malliavin derivative operator of kth order, k ∈N. For the definition of higher order iterated
operators we refer to [8].

Theorem 5.2. Let f ∈ Domρ
+(D(k)) and u ∈ Domρ

− (δ(k)), or let f ∈ Domρ
−(D(k)) and u ∈ Domρ

+ (δ(k)), k ∈ N. Then
the duality formula

E
(

f · δ(k)(u)
)

= E
(
〈D(k) ( f ), u〉

)

holds, where 〈·, ·〉 denotes the duality pairing of S′(R)⊗k and S(R)⊗k.

Proof. The assertion follows by induction and applying Theorem 5.1 successively k times.

Remark 5.3. The previous theorems are special cases of a more general identity. It can be proven, under suitable
assumptions that make all the products well defined, that the following formulae hold:

F δ(u) = δ(Fu) + 〈D(F),u〉, (21)

F δ(k)(u) =

k∑

i=0

(
k
i

)
δ(k−i)(〈D(i)F,u〉), k ∈N.

Taking the expectation in (21) and using the fact that δ(Fu) = 0, the duality formula (20) follows.

Example 5.4. Let ψ ∈ L2(R). In [6] we have shown that the stochastic exponentials exp♦{δ(ψ)} are eigenvalues of
the Malliavin derivative, i.e. D(exp♦{δ(ψ)}) = ψ · exp♦{δ(ψ)}. We will prove that they are also eigenvalues of the
Ornstein-Uhlenbeck operator. Indeed, using (21) we obtain

R(exp♦{δ(ψ)}) = δ(ψ · exp♦{δ(ψ)}) = δ(ψ) exp♦{δ(ψ)} − 〈D(exp♦{δ(ψ)}), ψ〉
= δ(ψ) exp♦{δ(ψ)} − 〈ψ · exp♦{δ(ψ)}, ψ〉
= (δ(ψ) − ‖ψ‖2L2(R)) exp♦{δ(ψ)}.

In the next theorem we prove a weaker type of duality instead of (20) which holds if F ∈ Dom0−(D) and
u ∈ Dom0−(δ) are both generalized processes. Recall that�, ·, · �r denotes the scalar product in (S)0,r.

Lemma 5.5. Let u ∈ Dom0−q(D) and ϕ ∈ S−n(R), n < q − 1. Then u · ϕ ∈ Dom0
(−n,−q)(δ).

Proof. Let u =
∑
α∈I uαHα and ϕ =

∑
k∈N ϕk ξk. Then, u · ϕ =

∑
α∈I

∑
k∈N uα ϕk ξk Hα and

‖u · ϕ‖2Dom0
(−n,−q)(δ) =

∑

α∈I

∑

k∈N
α! (αk + 1)‖uα‖2X ϕ2

k (2k)−n(2N)−qα =
∑

α∈I
α! ‖uα‖2X

(∑

k∈N
(αk + 1)(2k)−n ϕ2

k

)
(2N)−qα

≤
(
‖u0‖2X + 2

∑

|α|>0

α! |α|‖uα‖2X(2N)−qα
)
·
∑

k∈N
ϕ2

k(2k)−n =
(
‖u0‖2X + 2‖u‖2Dom0−q(D)

)
· ‖ϕ‖2−n < ∞.

We used the estimate αk + 1 ≤ 2 |α|, for |α| > 0, k ∈N.

Section 1.1 67
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Theorem 5.6. (Weak duality) Let ρ = 0 and consider the Hida spaces. Let F ∈ Dom0−p(D) and u ∈ Dom0−q(D) for
p, q ∈N. For any ϕ ∈ S−n(R), n < q − 1, it holds that

� 〈DF, ϕ〉−r,u�0,−r =� F, δ(ϕu)�0,−r,

for r > max{q, p + 1}.
Proof. Let F =

∑
α∈I fαHα ∈ Dom0−p(D), u =

∑
α∈I uαHα ∈ Dom0−q(D) and ϕ =

∑
k∈N ϕkξk ∈ S−n(R). Then, for

k > p + 1, DF ∈ X ⊗ S−k(R) ⊗ (S)0,−p ⊆ X ⊗ S−r(R) ⊗ (S)0,−r if r > p + 1. Also, by Lemma 5.5 it follows that
ϕu ∈ Dom0

(−n,−q)(δ) and since q > n + 1, this implies that δ(ϕu) ∈ X ⊗ (S)0,−q ⊆ X ⊗ (S)0,−r, for r ≥ q. Therefore
we let r > max{p + 1, q}. Thus,

〈DF, ϕ〉−r = 〈
∑

k∈N

∑

α∈I
(αk + 1) fα+ε(k) Hα ⊗ ξk,

∑

k∈N
ϕkξk〉−r

=
∑

k∈N
ϕk

∑

α∈I
(αk + 1) fα+ε(k) Hα (2k)−r,

and consequently

� 〈DF, ϕ〉−r,u�0,−r = �
∑

α∈I

∑

k∈N
ϕk(αk + 1) fα+ε(k) (2k)−rHα,

∑

α∈I
uαHα �0,−r

=
∑

α∈I
α!uα

∑

k∈N
ϕk(αk + 1) fα+ε(k) (2k)−r(2N)−rα.

On the other hand, ϕu =
∑
α∈I

∑
k∈N

uαϕkξk ⊗Hα and δ(ϕu) =
∑
α>0

∑
k∈N

uα−ε(k)ϕkHα. Thus,

� F, δ(ϕu)�0,−r = �
∑

α∈I
fαHα,

∑

α>0

∑

k∈N
uα−ε(k)ϕkHα �0,−r

=
∑

α>0

α! fα
∑

k∈N
uα−ε(k)ϕk(2N)−rα

=
∑

β∈I

∑

k∈N
(β + ε(k))! fβ+ε(k) uβϕk(2N)−r(β+ε(k))

=
∑

β∈I

∑

k∈N
β!(βk + 1) fβ+ε(k) uβϕk(2k)−r(2N)−rβ,

which completes the proof.

The following theorem states the product rule for the Ornstein-Uhlenbeck operator. Its special case for
F,G ∈ Dom0(R) and F · G ∈ Dom0(R) states that (22) holds (see e.g. [2]). We extend the classical (L)2 case
to multiplying a generalized process with a test process. The product rule also holds if we multiply two
generalized processes, but in this case the ordinary product has to be replaced by the Wick product.
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Theorem 5.7. (Product rule for R)

1◦ Let F ∈ Domρ
+(R) and G ∈ Domρ

−(R), or vice versa. Then F · G ∈ Domρ
−(R) and

R(F · G) = F · R(G) + G · R(F) − 2 · 〈DF,DG〉, (22)

holds, where 〈·, ·〉 is the dual pairing between S′(R) and S(R).
2◦ Let F,G ∈ Domρ

−(R). Then F · G ∈ Domρ
−(R) and

R(F♦G) = F♦R(G) + R(F)♦G. (23)

Proof. 1◦ Let F =
∑
α∈I

fα ⊗ Hα ∈ Domρ
+(R) and G =

∑
β∈I
1β ⊗ Hβ ∈ Domρ

−(R). Then, R(F) =
∑
α∈I
|α| fα ⊗ Hα and

R(G) =
∑
β∈I
|β| 1β ⊗Hβ.

The left hand side of (22) can be written in the form

R(F · G) = R


∑

α∈I

∑

β∈I
fα 1β

∑

γ≤min{α,β}
γ!

(
α
γ

) (
β
γ

)
Hα+β−2γ




=
∑

α∈I

∑

β∈I
fα 1β

∑

γ≤min{α,β}
γ!

(
α
γ

) (
β
γ

)
|α + β − 2γ|Hα+β−2γ

=
∑

α∈I

∑

β∈I
fα 1β

∑

γ≤min{α,β}
γ!

(
α
γ

) (
β
γ

) (|α| + |β| − 2|γ|) Hα+β−2γ.

On the other hand, the first two terms on the right hand side of (22) are

R(F) · G =
∑

α∈I

∑

β∈I
fα 1β ⊗

∑

γ≤min{α,β}
γ!

(
α
γ

) (
β
γ

)
|α|Hα+β−2γ (24)

and

F · R(G) =
∑

α∈I

∑

β∈I
fα 1β ⊗

∑

γ≤min{α,β}
γ!

(
α
γ

) (
β
γ

)
|β|Hα+β−2γ. (25)

Since F ∈ Domρ
+(R) ⊆ Domρ

+(D) and G ∈ Domρ
−(R) ⊆ Domρ

−(D) we have D(F) =
∑
α∈I

∑
k∈N αk fα ⊗ ξk ⊗

Hα−ε(k) andD(G) =
∑
β∈I

∑
j∈N β j 1β ⊗ ξ j ⊗Hβ−ε(k) . Thus, the third term on the right hand side of (22) is

〈D(F),D(G)〉 = 〈
∑

α∈I,|α|>0

∑

k∈N
αk fα ⊗ ξk ⊗Hα−ε(k) ,

∑

β∈I,|β|>0

∑

j∈N
β j 1β ⊗ ξ j ⊗Hβ−ε( j)〉

=
∑

|α|>0

∑

|β|>0

∑

k∈N

∑

j∈N
αk β j fα 1β 〈ξk, ξ j〉 ⊗ Hα−ε(k) ·Hβ−ε( j)

=
∑

|α|>0

∑

|β|>0

∑

k∈N
αkβk fα1β ⊗

∑

γ≤min{α−ε(k),β−ε(k)}
γ!

(
α − ε(k)

γ

)(
β − ε(k)

γ

)
Hα+β−2ε(k)−2γ,

where we used the fact that 〈ξk, ξ j〉 = 0 for k , j and 〈ξk, ξ j〉 = 1 for k = j. Now we put θ = γ + ε(k) and use
the identities

αk ·
(
α − ε(k)

γ

)
= αk ·

(
α − ε(k)

θ − ε(k)

)
= θk ·

(
α
θ

)
, k ∈N,
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and θk · (θ − ε(k))! = θ!. Thus we obtain

〈D(F),D(G)〉 =
∑

α∈I

∑

β∈I

∑

k∈N
fα 1β

∑

θ≤min{α,β}
θ2

k (θ − ε(k))!
(
α
θ

) (
β

θ

)
Hα+β−2θ

=
∑

α∈I

∑

β∈I

∑

k∈N
fα 1β

∑

θ≤min{α,β}
θkθ!

(
α
θ

) (
β

θ

)
Hα+β−2θ

=
∑

α∈I

∑

β∈I
fα 1β

∑

θ≤min{α,β}



∑

k∈N
θk


 θ!

(
α
θ

) (
β

θ

)
Hα+β−2θ

=
∑

α∈I

∑

β∈I
fα 1β

∑

θ≤min{α,β}
|θ|θ!

(
α
θ

) (
β

θ

)
Hα+β−2θ.

Combining all previously obtained results we now have

R(F · G) =
∑

α∈I

∑

β∈I
fα 1β

∑

γ≤min{α,β}
γ!

(
α
γ

) (
β
γ

) (|α| + |β| − 2|γ|) Hα+β−2γ

=
∑

α∈I

∑

β∈I
fα 1β

∑

γ≤min{α,β}
γ!

(
α
γ

) (
β
γ

)
|α| Hα+β−2γ +

∑

α∈I

∑

β∈I
fα 1β

∑

γ≤min{α,β}
γ!

(
α
γ

) (
β
γ

)
|β| Hα+β−2γ

− 2
∑

α∈I

∑

β∈I
fα 1β

∑

γ≤min{α,β}
|γ|γ!

(
α
γ

) (
β
γ

)
Hα+β−2γ

= R(F) · G + F · R(G) − 2 · 〈D(F),D(G)〉

and thus (22) holds.
Assume that F ∈ Domρ

−p(R) and G ∈ Domρ
q (R). Then R(F) ∈ X ⊗ (S)−ρ,−p and R(G) ∈ X ⊗ (S)ρ,q. From

Theorem 2.12 it follows that F · R(G) and G · R(F) are both well defined and belong to X ⊗ (S)−ρ,−s, for
s ∈ [p, q − 8], q − p > 8. Similarly, 〈D(F),D(G)〉 belongs to X ⊗ (S)−ρ,−p, since D(F) ∈ X ⊗ S−l1 (R) ⊗ (S)−ρ,−p,
where l1 > p + 1 and D(G) ∈ X ⊗ Sl2 (R) ⊗ (S)ρ,q, where l2 < q − 1 and the dual pairing is obtained for any
l ∈ [l1, l2]. Thus, the right hand side of (22) is in X ⊗ (S)−ρ,−s, s ≥ p. Hence, F · G ∈ Domρ

−s(R).

2◦ From

G♦R(F) =
∑

γ∈I

∑

α+β=γ

|α| fα1β Hγ and F♦R(G) =
∑

γ∈I

∑

α+β=γ

fα|β|1β Hγ,

it follows that

G♦R(F) + F♦R(G) =
∑

γ∈I
|γ|

∑

α+β=γ

fα1β Hγ = R(F♦G).

If F ∈ Domρ
−p(R) and G ∈ Domρ

−q(R), then R(F) ∈ X ⊗ (S)−ρ,−p and R(G) ∈ X ⊗ (S)−ρ,−q. From Theorem 2.9
it follows that R(F)♦G ∈ X ⊗ (S)−ρ,−(p+q+4) and R(G)♦F ∈ X ⊗ (S)−ρ,−(p+q+4). Thus, the right hand side of (23) is
in X ⊗ (S)−ρ,−(p+q+4), i.e. F♦G ∈ Domρ

−r(R) for r = p + q + 4.

Corollary 5.8. Let F ∈ Domρ
+(R) and G ∈ Domρ

−(R), or vice versa (including also the possibility F,G ∈ Dom0(R)).
Then the following property holds:

E(F · R(G)) = E (〈DF,DG〉) .
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Proof. From the chaos expansion form of R(F · G) it follows that ER(F · G) = 0. Moreover, taking the
expectations on both sides of (24) and (25) we obtain

E (R(F) · G) = E (F · R(G)) .

Now, from Theorem 5.7 it follows that

0 = 2E (F · R(G)) − 2E(〈DF,DG〉),
and the assertion follows.

In the classical literature ([2, 15]) it is proven that the Malliavin derivative satisfies the product rule with
respect to ordinary multiplication, i.e. if F,G ∈ Dom0(D) such that F · G ∈ Dom0(D) then (26) holds. The
following theorem recapitulates this result and extends it for multiplication of a generalized process with
a test processes, and extends it also for Wick multiplication.

Theorem 5.9. (Product rule forD)

1◦ Let F ∈ Domρ
−(D) and G ∈ Domρ

+(D) or vice versa. Then F · G ∈ Domρ
−(D) and the product rule

D(F · G) = F ·DG + DF · G (26)

holds.
2◦ Let F,G ∈ Domρ

−(D). Then F♦G ∈ Domρ
−(D) and

D(F♦G) = F♦DG + DF♦G.

Proof. 1◦

D(F · G) = D(
∑

α∈I
fαHα ·

∑

β∈I
1βHβ)

= D



∑

α∈I

∑

β∈I
fα 1β

∑

γ≤min{α,β}
γ!

(
α
γ

) (
β
γ

)
Hα+β−2γ




=
∑

α∈I

∑

β∈I

∑

k∈N
fα1β

∑

γ≤min{α,β}
γ!

(
α
γ

)(
β
γ

)
(αk + βk − 2γk) ξkHα+β−2γ−ε(k)

On the other side we have

F ·D(G) =
∑

α∈I
fαHα ·

∑

β∈I

∑

k∈N
βk 1βξk Hβ−ε(k)

=
∑

α∈I

∑

β∈I

∑

k∈N
fα1β

∑

γ≤min{α,β−ε(k)}
γ!

(
α
γ

)(
β − ε(k)

γ

)
βk ξkHα+β−2γ−ε(k)

and

G ·D(F) =
∑

α∈I

∑

β∈I

∑

k∈N
fα1β

∑

γ≤min{α−ε(k),β}
γ!

(
α − ε(k)

γ

)(
β
γ

)
αk ξkHα+β−2γ−ε(k) .

Summing up the chaos expansions for F ·D(G) and G ·D(F) and applying the identities

αk

(
α − ε(k)

γ

)
= αk · (α − ε(k))!

γ! (α − ε(k) − γ)!
=

α!
γ! (α − γ)!

· (αk − γk) =

(
α
γ

)
(αk − γk)
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and

βk

(
β − ε(k)

γ

)
=

(
β
γ

)
(βk − γk),

for all α, β ∈ I, k ∈N and γ ∈ I such that γ ≤ min{α, β} and the expression (αk−γk) + (βk−γk) = αk +βk−2γk
we obtain (26).

Assume that F ∈ Domρ
−p(D), G ∈ Domρ

q (D). Then D(F) ∈ X ⊗ S−l(R) ⊗ (S)−ρ,−p, l > p + 1, and D(G) ∈
X⊗ Sk(R)⊗ (S)ρ,q, k < q− 1. From Theorem 2.12 it follows that all products on the right hand side of (26) are
well defined, moreover F ·D(G) ∈ X⊗Sk(R)⊗(S)−ρ,−r,D(F) ·G ∈ X⊗S−l(R)⊗(S)−ρ,−r, for r ∈ [p, q−8], q > p+8.
Thus the right hand sifde of (26) can be embedded into X ⊗ S−l(R) ⊗ (S)−ρ,−r, r ≥ p. Thus, F · G ∈ Domρ

−r(D).
2◦ By definition of the Malliavin derivative and the Wick product it can be easily verified that

D(F)♦G + F♦D(G) =
∑

γ∈I

∞∑

k=1

∑

α+β−ε(k)=γ

αk fα1βHγ +
∑

γ∈I

∞∑

k=1

∑

α+β−ε(k)=γ

βk fα1βHγ

=
∑

γ∈I

∞∑

k=1

∑

α+β=γ

γk fα1βHγ−ε(k) = D(F♦G).

If F ∈ Domρ
−p(D) and G ∈ Domρ

−q(D), thenD(F) ∈ X⊗ S−l(R)⊗ (S)−ρ,−p, l > p + 1, andD(G) ∈ X⊗ S−k(R)⊗
(S)−ρ,−q, k > q + 1. From Theorem 2.9 it follows that D(F)♦G and F♦D(G) both belong to X ⊗ S−m(R) ⊗
(S)−ρ,−(p+q+4), m = max{l, k}. Thus, F♦G ∈ Domρ

−r(D) for r = p + q + 4.

A generalization of Theorem 5.9 for higher order derivatives, i.e. the Leibnitz formula is given in the
next theorem.

Theorem 5.10. Let F,G ∈ Domρ
−(D(k)), k ∈N, then F♦G ∈ Domρ

−(D(k)) and the Leibnitz rule holds:

D(k) (F♦G) =

k∑

i=0

(
k
i

)
D(i)(F)♦D(k−i)(G),

whereD(0)(F) = F andD(0)(G) = G.
Moreover, if G ∈ Domρ

+(D(k)) , then F · G ∈ Domρ
−(D(k)) and

D(k) (F · G) =

k∑

i=0

(
k
i

)
D(i)(F) ·D(k−i)(G). (27)

Proof. The Leibnitz rule (27) follows by induction and applying Theorem 5.9. Clearly, (27) holds also if
F,G ∈ Dom0(D(k)) and F · G ∈ Dom0(D(k)).

Theorem 5.11. Assume that either of the following hold:

1◦ F ∈ Domρ
−(D), G ∈ Domρ

+(D) and u ∈ Domρ
+(δ),

2◦ F,G ∈ Domρ
+(D) and u ∈ Domρ

−(δ),

3◦ F,G ∈ Dom0(D) and u ∈ Dom0(δ).

Then the second integration by parts formula holds:

E(F〈DG,u〉) + E(G〈DF,u〉) = E(F G δ(u)).
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Proof. The assertion follows directly from the duality formula (20) and the product rule (26). Assume the
first case holds when F ∈ Domρ

−(D), G ∈ Domρ
+(D) and u ∈ Domρ

+(δ). Then F · G ∈ Domρ
−(D), too, and we

have

E(F G δ(u)) = E(〈D(F · G),u〉) = E(〈F ·D(G) + G ·D(F),u〉)
= E(F 〈D(G),u〉) + E(G 〈D(F),u〉).

The second and third case can be proven in an analogous way.

The next theorem states the chain rule for the Malliavin derivative. The classical (L)2-case has been
known throughout the literature as a direct consequence of the definition of Malliavin derivatives as
Fréchet derivatives. Here we provide an alternative proof suited to the setting of chaos expansions.

Theorem 5.12. (Chain rule) Let φ be a twice continuously differentiable function with bounded derivatives.

1◦ If F ∈ Domρ
+(D), resp. F ∈ Dom0(D), then φ(F) ∈ Domρ

+(D), resp. φ(F) ∈ Dom0(D), and the chain rule holds:

D (φ(F)) = φ′(F) · D(F). (28)

2◦ If F ∈ Domρ
−(D) and φ is analytic, then φ♦(F) ∈ Domρ

−(D) and

D (φ♦(F)) = φ′♦(F)♦D(F). (29)

Proof. 1◦ First we prove that (28) holds true when φ is a polynomial of degree n, n ∈ N. Then we use the
Stone-Weierstrass theorem and approximate a continuously differentiable function φ by a polynomial p̃n of
degree n, and since we assumed that φ is regular enough, p̃′n will also approximate φ′.

By Theorem 5.9 we obtain by induction on k ∈N that

D(Fk+1) = D(F · Fk)

= D(F) · Fk + F ·D(Fk) = D(F) · Fk + F · kFk−1 ·D(F)

= (k + 1)Fk ·D(F).

SinceD is a linear operator, we have for any polynomial pn(x) =
∑n

k=0 akxk with real coefficients ak, k ∈N:

D(pn(F)) =

n∑

k=0

akD(Fk) =

n∑

k=1

ak kF(k−1) ·D(F) = p′n(F) ·D(F). (30)

Let φ ∈ C2(R) and F ∈ Domρ
p(D), p ∈ N. Then, by the Stone–Weierstrass theorem, there exists a

polynomial p̃n such that

‖φ(F) − p̃n(F)‖X⊗(S)ρ,p = ‖φ(F) −
n∑

k=0

akFk‖X⊗(S)ρ,p → 0

and

‖φ′(F) − p̃n
′(F)‖X⊗(S)ρ,p = ‖φ′(F) −

n∑

k=1

akkFk−1‖X⊗(S)ρ,p → 0

as n→∞.
From (30) and the fact thatD is a bounded operator, Theorem 3.2, we obtain (for l < p − 1)

‖D(φ(F)) − φ′(F) ·D(F)‖X⊗Sl(R)⊗(S)ρ,p = ‖D(φ(F)) −D(p̃n(F)) +D(p̃n(F)) − φ′(F) ·D(F)‖X⊗Sl(R)⊗(S)ρ,p

≤ ‖D(φ(F)) −D(p̃n(F))‖X⊗Sl(R)⊗(S)ρ,p + ‖D(p̃n(F)) − φ′(F) ·D(F)‖X⊗Sl(R)⊗(S)ρ,p

= ‖D(φ(F) − p̃n(F))‖X⊗Sl(R)⊗(S)ρ,p + ‖p̃n
′(F) ·D(F) − φ′(F) ·D(F)‖X⊗Sl(R)⊗(S)ρ,p

≤ ‖D‖ · ‖(φ(F) − p̃n(F))‖X⊗(S)ρ,p + ‖p̃n
′(F) − φ′(F)‖ · ‖D(F)‖X⊗(S)ρ,p → 0,
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as n→∞. From this follows (28) as well as the estimate

‖D(φ(F))‖X⊗Sl(R)⊗(S)ρ,p ≤ ‖φ′(F)‖X⊗(S)ρ,p · ‖D(F)‖X⊗Sl(R)⊗(S)ρ,p < ∞,

and thus φ(F) ∈ Domρ
p(D).

2◦ The proof of (29) for the Wick version can be conducted in a similar manner. According to Theorem
5.9 we have

D(F♦k) = k F♦(k−1)♦D(F).

If φ is an analytic function given by φ(x) =
∑∞

k=0 akxk, then φ′(x) =
∑∞

k=1 akkxk−1, and consequently

φ♦(F) =

∞∑

k=0

akF♦k, φ′♦(F) =

∞∑

k=1

akkF♦(k−1).

Thus,

D(φ♦(F)) =

∞∑

k=0

akD(F♦k) =

∞∑

k=0

akkF♦(k−1)♦D(F) = φ′♦(F)♦D(F).

and the identity (29) follows.
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[19] Seleši, D., Hilbert space valued generalized random processes - part I, Novi Sad J. Math. 37(1) (2007), 129–154.
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Abstract. We present a review of the most important historical as well
as recent results of Malliavin calculus in the framework of the Wiener-Itô
chaos expansion.
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1. Introduction

The Malliavin derivative D, the Skorokhod integral δ and the Ornstein-
Uhlenbeck operator R are three operators that play a crucial role in the stochas-
tic calculus of variations, an infinite-dimensional differential calculus on white
noise spaces [2, 7, 35, 41, 42, 47]. These operators correspond respectively to
the annihilation, the creation and the number operator in quantum operator
theory.

• The Malliavin derivative, as a modification of Gâteaux derivatives, rep-
resents a stochastic gradient in direction of the white noise process [3,
35, 42]. Originally, it was invented by Paul Malliavin in order to provide
a probabilistic proof of Hörmander’s sum of squares theorem for hypo-
elliptic operators and to study the existence and regularity of density
of the solution of stochastic differential equations [28], but nowadays it
has found significant applications in stochastic control and mathematical
finance [8, 29, 46].

• The Skorokhod integral, as the adjoint operator of the Malliavin deriva-
tive, is a standard tool in classical (L)2 theory of non-adapted stochastic
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3Department of Mathematics and Informatics, Faculty of Sciences, University of Novi
Sad, e-mail: dora@dmi.uns.ac.rs
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differential equations. It represents an extension of the Itô integral from
the space of adapted processes to the space of non-anticipative processes
[6, 12, 15]. Sometimes it is referred to as the stochastic divergence ope-
rator.

• The Ornstein-Uhlenbeck operator, as the composition of the stochastic
gradient and divergence, is a stochastic analogue of the Laplacian.

It is of great importance to manage solving different classes of equations
which involve the operators of Malliavin calculus. In particular, we consider
the following basic equations involving the operators of Malliavin calculus:

(1.1) R u = g, Du = h, δ u = f.

In the classical setting, the domain of these operators is a strict subset of the
set of processes with finite second moments [7, 26, 35] leading to Sobolev type
normed spaces. A more general characterization of the domain of these opera-
tors in Kondratiev generalized function spaces has been derived in [18, 22, 23],
while in [24] we considered their domains within Kondratiev test function
spaces. The three equations in (1.1), that have been considered in [20] and
[24] provide a full characterization of the range of all three operators. More-
over, the solutions to equations (1.1) are obtained in an explicit form, which is
highly useful for computer modelling that involves polynomial chaos expansion
simulation methods used in numerical stochastic analysis [9, 30, 48].

After a short review of the results on uniqueness of the solutions to equations
(1.1) (Theorem 3.1, Theorem 4.1, Theorem 5.1) obtained in [20] and [24], we
proceed to prove some properties such as the duality relationship between the
Malliavin derivative and the Skorokhod integral (Theorem 6.1) and the chain
rule (Theorem 6.11), as well as many others such as the product rule (Theorem
6.6, Theorem 6.8), partial integration etc.

A special emphasis is put on the characterization of Gaussian processes
and Gaussian solutions of equations (1.1). As an important consequence and
application of our results we obtain a connection between the Wick product
and the ordinary product (Theorem 4.6 and Theorem 5.10). We also provide
several illustrative examples to facilitate comprehension of our results. These
examples can be considered as supplementary material to [20] and [24].

A recent discovery made in [32]-[34] made a nice connection between the
Malliavin calculus and Stein’s method, which is used to measure the distance
to Gaussian distributions. In Theorem 7.10 we review this relationship using
the chaos expansion method.

The method of chaos expansions is used to illustrate several known results
in Malliavin calculus and thus provide a comprehensive insight into its capabili-
ties. For example, we prove using the chaos expansion method some well-known
results such as the commutator relationship between D and δ (Theorem 5.8),
the relation between Itô integration and Riemann integration (Remark 5.9) as
well as the Itô representation theorem (Corollary 5.3).
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We strongly emphasize the methodology of the chaos expansion technique
for solving singular SDEs. This method has been applied successfully to several
classes of SPDEs (e.g. [19, 21, 25, 26, 27, 39, 45]) to obtain an explicit form
of the solution. Therefore, we have chosen to write an expository survey with
detailed step-by-step proofs and comprehensive examples that illustrate the full
advantage of this technique. Some advantages of the chaos expansion technique
are the following:

• It provides an explicit form of the solution. The solution is obtained in
the form of a series expansion.

• It is easy to apply, since it uses orthogonal bases and series expansions,
applying the method of undetermined coefficients. Note that we avoid
using the Hermite transform [13] or the S-transform [12], since these
methods depend on the ability to apply their inverse transforms. Our
method requires only finding an appropriate weight factor to make the
resulting series convergent.

• It can be adapted to create numerical approximations and model sim-
ulations (e.g. by stochastic Galerkin methods). Polynomial chaos ex-
pansion approximations are known to be more efficient than Monte Car-
lo methods. Moreover, for non-Gaussian processes, convergence can be
easily improved by changing the Hermite basis to another family of or-
thogonal polynomials (Charlier, Laguerre, Meixner, etc.).

2. Preliminaries

Consider the Gaussian white noise probability space (S′(R),B, µ), where
S′(R) denotes the space of tempered distributions, B the Borel σ−algebra
generated by the weak topology on S′(R) and µ the Gaussian white noise
measure corresponding to the characteristic function

(2.1)

∫

S′(R)

ei⟨ω,ϕ⟩dµ(ω) = e
− 1

2 ∥ϕ∥2
L2(R) , ϕ ∈ S(R),

given by the Bochner-Minlos theorem.

Denote by hn(x) = (−1)ne
x2

2
dn

dxn (e− x2

2 ), n ∈ N0, N0 = N ∪ {0}, the family

of Hermite polynomials and ξn(x) = 1
4
√

π
√

(n−1)!
e− x2

2 hn−1(
√

2x), n ∈ N, the

family of Hermite functions. The family of Hermite functions forms a complete
orthonormal system in L2(R). For a complete preview of properties of hn and
ξn a comprehensive reference is [10]. We follow the characterization of the
Schwartz spaces in terms of the Hermite basis: The space of rapidly decreasing
functions as a projective limit space S(R) =

∩
l∈N0

Sl(R) and the space of
tempered distributions as an inductive limit space S′(R) =

∪
l∈N0

S−l(R) where

Sl(R) = {f =
∞∑

k=1

ak ξk : ∥f∥2
l =

∞∑

k=1

a2
k(2k)l < ∞}, l ∈ Z, Z = −N ∪ N0.
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Note that Sp(R) is a Hilbert space endowed with the scalar product ⟨·, ·⟩p

given by

⟨ξk, ξl⟩p =

{
0, k ̸= l

∥ξk∥2
p = (2k)p, k = l.

, p ∈ Z.

Moreover, the functions ξ̃k = ξk(2k)− p
2 , k ∈ N, constitute an orthonormal basis

for Sp(R). Indeed,

⟨ξ̃k, ξ̃l⟩p =

{
0, k ̸= l

∥ξ̃k∥2
p = ∥ξk∥2

(L)2 = 1, k = l.
, p ∈ Z.

2.1. The Wiener chaos spaces

Let I = (NN
0 )c denote the set of sequences of nonnegative integers which

have only finitely many nonzero components α = (α1, α2, . . . , αm, 0, 0 . . .), αi ∈
N0, i = 1, 2, ...,m, m ∈ N. The kth unit vector ε(k) = (0, · · · , 0, 1, 0, · · · ), k ∈ N
is the sequence of zeros with the only entry 1 as its kth component. The multi-
index 0 = (0, 0, 0, 0, . . .) has all zero entries. The length of a multi-index α ∈ I
is defined as |α| =

∑∞
k=1 αk.

Operations with multi-indices are carried out componentwise e.g. α+ β =
(α1 + β1, α2 + β2, . . .), α! = α1!α2!α3! · · · ,

(
α
β

)
= α!

β!(α−β)! . Note that α > 0

(equivalently |α| > 0) if there is at least one component αk > 0. We adopt the
convention that α− β exists only if α− β > 0 and otherwise it is not defined.

Let (2N)α =
∏∞

k=1(2k)
αk . Note that

∑
α∈I(2N)−pα < ∞ for p > 1 (see e.g.

[13]).
Let (L)2 = L2(S′(R),B, µ) be the Hilbert space of random variables with

finite second moments. We define by

Hα(ω) =
∞∏

k=1

hαk
(⟨ω, ξk⟩), α ∈ I,

the Fourier-Hermite orthogonal basis of (L)2 such that ∥Hα∥2
(L)2 = α!. In

particular, for the kth unit vector Hε(k)(ω) = ⟨ω, ξk⟩, k ∈ N.
The prominent Wiener-Itô chaos expansion theorem states that each ele-

ment F ∈ (L)2 has a unique representation of the form

F (ω) =
∑

α∈I
cαHα(ω),

ω ∈ S′(R), cα ∈ R, α ∈ I, such that ∥F∥2
(L)2 =

∑
α∈I c2α α! < ∞.

Definition 2.1. The spaces

Hk = {F ∈ (L)2 : F =
∑

α∈I,|α|=k

cαHα}, k ∈ N0,

that are obtained by closing the linear span of the kth order Hermite polyno-
mials in (L)2 are called the Wiener chaos spaces of order k.

78 Section 1.2



Chaos expansion methods in Malliavin calculus: A survey of recent results 49

For example, H0 is the set of constant random variables, H1 is the set
of Gaussian random variables, H2 is the space of quadratic Gaussian random
variables and so on. We will show that H1 contains only Gaussian random
variables and that the most important processes, Brownian motion and white
noise, belong to H1.

Each Hk, k ∈ N0 is a closed subspace of (L)2. Moreover, the Wiener-Itô
chaos expansion theorem can be stated in the form:

(L)2 =
∞⊕

k=0

Hk.

Hence, every F ∈ (L)2 can be represented in the form F (ω) =
∞∑

k=0

∑
α∈I

|α|=k

cαHα(ω),

ω ∈ S′(R), where
∑

|α|=k

cαHα(ω) ∈ Hk, k = 0, 1, 2, . . ..

Theorem 2.2. All random variables which belong to H1 are Gaussian random
variables.

Proof. Random variables that belong to the space H1 are linear combinations
of elements ⟨ω, ξk⟩, k ∈ N, ω ∈ S′(R). From the definition of the Gaussian mea-
sure (2.1) it follows that Eµ(⟨ω, ξk⟩) = 0 and V ar(⟨ω, ξk⟩) = Eµ(⟨ω, ξk⟩2) =
∥ξk∥2

L2(R) = 1. Thus, from the form of the characteristic function we con-

clude that ⟨ω, ξk⟩ : N (0, 1), k ∈ N. Thus, every finite linear combination of

Gaussian random variables
n∑

k=1

ak ⟨ω, ξk⟩ is a Gaussian random variable and

the limit of Gaussian random variables
∞∑

k=1

ak ⟨ω, ξk⟩ = lim
n→+∞

n∑
k=1

ak ⟨ω, ξk⟩ is

also Gaussian. �

After Example 2.13 it will be also clear that H1 is the closed Gaussian space
generated by the random variables Bt(ω), t ≥ 0, where Bt is Brownian motion
(see also [41]).

Remark 2.3. We note the following important facts:

1) Although the space (L)2 is constructed with respect to Gaussian mea-
sure, it contains all (square integrable) random variables, not just those
with Gaussian distribution but also all absolutely continuous, singularly
continuous, discrete and mixed type distributions.

2) All Gaussian random variables belong to H0 ⊕ H1 and thus their chaos
expansion is given in terms of multi-indices of length at most one (those
with zero expectation are strictly in H1). Quadratic Gaussian random
variables belong to H0 ⊕H1 ⊕H2 and by linearity so does the Chi-square
distribution, too. In general, the nth power of a Gaussian random variable

belongs to
n⊕

k=0

Hk, for n ∈ N, and thus its chaos expansion is given in

terms of multi-indices of lengths from zero to n.
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3) Discrete random variables (with finite variance) belong to
∞⊕

k=0

Hk, i.e.

their chaos expansions forms consist of multi-indices of all lengths.

4) All finite sums i.e. partial sums of a chaos expansion correspond to ab-
solutely continuous distributions or almost surely constant distributions.
There is no possibility to obtain discrete random variables by using finite
sums in the Wiener-Itô expansion. This is a consequence of Theorem 7.8.

In the next section we introduce suitable spaces, called Kondratiev spaces,
that will contain random variables with infinite variances.

2.2. Kondratiev spaces

The stochastic analogue of Schwartz spaces as generalized function spaces
are the Kondratiev spaces of generalized random variables.

Definition 2.4. The space of the Kondratiev test random variables (S)1 con-
sists of elements f =

∑
α∈I cαHα ∈ (L)2, cα ∈ R, α ∈ I, such that

∥f∥2
1,p =

∑

α∈I
c2α(α!)2(2N)pα < ∞, for all p ∈ N0.

The space of the Kondratiev generalized random variables (S)−1 consists of
formal expansions of the form F =

∑
α∈I bαHα, bα ∈ R, α ∈ I, such that

∥F∥2
−1,−p =

∑

α∈I
b2α(2N)−pα < ∞, for some p ∈ N0.

Definition 2.5. The space of the Hida test random variables (S)+0 consists of
elements f =

∑
α∈I cαHα ∈ (L)2, cα ∈ R, α ∈ I, such that

∥f∥2
0,p =

∑

α∈I
c2αα!(2N)pα < ∞, for all p ∈ N0.

The space of the Hida generalized random variables (S)−
0 consists of formal

expansions of the form F =
∑

α∈I bαHα, bα ∈ R, α ∈ I, such that

∥F∥2
0,−p =

∑

α∈I
b2αα!(2N)−pα < ∞, for some p ∈ N0.

This provides a sequence of spaces (S)ρ,p = {f ∈ (L)2 : ∥f∥ρ,p < ∞},
ρ ∈ {−1, 0, 1}, p ∈ Z, such that

(S)1,p ⊆ (S)0,p ⊆ (L)2 ⊆ (S)0,−p ⊆ (S)−1,−p,

(S)1,p ⊆ (S)1,q ⊆ (L)2 ⊆ (S)−1,−q ⊆ (S)−1,−p,

for all p ≥ q ≥ 0 and the inclusions denote continuous embeddings and (S)0,0 =
(L)2. Thus, (S)1 =

∩
p∈N0

(S)1,p and (S)+0 =
∩

p∈N0
(S)0,p can be equipped with

the projective topology and (S)−1 =
∪

p∈N0
(S)−1,−p, (S)−

0 =
∪

p∈N0
(S)0,−p as
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their duals with the inductive topology. Note that (S)1, (S)+0 are nuclear and
the following Gel’fand triples

(S)1 ⊆ (L)2 ⊆ (S)−1, (S)+0 ⊆ (L)2 ⊆ (S)−
0

are obtained.
From the estimate α! ≤ (2N)α it follows that

(2N)−pα ≤ α!(2N)−pα ≤ (2N)−(p−1)α,

thus
(S)−1,−(p−1) ⊆ (S)0,−p ⊆ (S)−1,−p, for all p ∈ N,

and similarly

(S)1,p+1 ⊆ (S)0,p ⊆ (S)1,p, for all p ∈ N0.

We will denote by ≪ ·, · ≫ the dual pairing between (S)0,−p and (S)0,p. Its
action is given by ≪ A,B ≫=≪ ∑

α∈I aαHα,
∑

α∈I bαHα ≫=
∑

α∈I α!aαbα.
In case of random variables with finite variance it reduces to the scalar product
≪ A,B ≫(L)2= E(AB). For any fixed p ∈ Z, (S)0,p, p ∈ Z, is a Hilbert space
(we identify the case p = 0 with (L)2) endowed with the scalar product

≪ Hα, Hβ ≫p=

{
0, α ̸= β,

α!(2N)pα, α = β,
, for p ∈ Z,

extended by linearity and continuity to

≪ A,B ≫p=
∑

α∈I
α!aαbα(2N)pα, p ∈ Z.

In the framework of white noise analysis, the problem of pointwise multipli-
cation of generalized functions is overcome by introducing the Wick product.
It is well defined in the Kondratiev spaces of test and generalized stochastic
functions (S)1 and (S)−1; see for example [12, 13].

Definition 2.6. Let F,G ∈ (S)−1 be given by their chaos expansions F (ω) =∑
α∈I fαHα(ω) and G(ω) =

∑
β∈I gβHβ(ω), for unique fα, gβ ∈ R. The Wick

product of F and G is the element denoted by F♢G and defined by

F♢G(ω) =
∑

γ∈I


 ∑

α+β=γ

fαgβ


Hγ(ω)

=
∑

α∈I

∑

β∈I
fα gβ Hα+β(ω).

The same definition is provided for the Wick product of test random variables
belonging to (S)1.

Note that the Kondratiev spaces (S)1 and (S)−1 are closed under the Wick
multiplication [13], while the space (L)2 is not closed under it.
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Example 2.7. The random variable defined by the chaos expansion F =∑∞
n=1

1
n

√
n!
Hnε(n) belongs to (L)2 since ∥F∥2

(L)2 =
∑∞

n=1
1

n2 < ∞, but F♢F is

not in (L)2. Clearly,

∥F♢F∥2
(L)2 =

∞∑

n=1

(
n∑

k=1

1

k(n− k)
√
k!(n− k)!

)2

n!

≥
∞∑

n=1

(
n∑

k=1

1

k(n− k)

)2

= ∞.

The most important property of the Wick multiplication is its relation to
the Itô-Skorokhod integration [12, 13], since it reproduces the fundamental
theorem of calculus. This fact will be revisited in Remark 5.9.

In the sequel we will need the notion of Wick-versions of analytic functions.
For this purpose note that the nth Wick power is defined by F♢n = F♢(n−1)♢F ,
F♢0 = 1. Note that Hnεk

= H♢n
εk

for n ∈ N0, k ∈ N.

Definition 2.8. If φ : R → R is a real analytic function at the origin repre-
sented by the power series

φ(x) =
∞∑

n=0

an x
n, x ∈ R,

then its Wick version φ♢ : (S)−1 → (S)−1 is given by

φ♢(F ) =
∞∑

n=0

an F
♢n, F ∈ (S)−1.

2.3. Generalized stochastic processes

Let X̃ be a Banach space endowed with the norm ∥ · ∥X̃ and let X̃ ′ denote

its dual space. In this section we describe X̃−valued random variables. Most
notably, if X̃ is a space of functions on R, e.g. X̃ = Ck([a, b])), −∞ < a < b <
∞ or X̃ = L2(R), we obtain the notion of a stochastic process. We will also
define processes where X̃ is not a normed space, but a nuclear space topologized
by a family of seminorms, e.g. X̃ = S(R) (see e.g. [38]).

Definition 2.9. Let f have the formal expansion f =
∑

α∈I fα ⊗Hα, where
fα ∈ X, α ∈ I. Define the following spaces:

X ⊗ (S)1,p = {f : ∥f∥2
X⊗(S)1,p

=
∑

α∈I
α!2∥fα∥2

X(2N)pα < ∞},

X ⊗ (S)−1,−p = {f : ∥f∥2
X⊗(S)−1,−p

=
∑

α∈I
∥fα∥2

X(2N)−pα < ∞},

X ⊗ (S)0,p = {f : ∥f∥2
X⊗(S)0,p

=
∑

α∈I
α!∥fα∥2

X(2N)pα < ∞},

X ⊗ (S)0,−p = {f : ∥f∥2
X⊗(S)0,−p

=
∑

α∈I
α!∥fα∥2

X(2N)−pα < ∞},
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whereX denotes an arbitrary Banach space (allowing both possibilitiesX = X̃,
X = X̃ ′).

Especially, for p = 0, X ⊗ (S)0,0 will be denoted by

X ⊗ (L)2 = {f : ∥f∥2
X⊗(S)0,−p

=
∑

α∈I
α!∥fα∥2

X < ∞}.

We will denote by E(F ) = f(0,0,0,...) the generalized expectation of the
process F .

Definition 2.10. Generalized stochastic processes and test stochastic pro-
cesses in Kondratiev sense are elements of the spaces

X ⊗ (S)−1 =
∪

p∈N
X ⊗ (S)−1,−p, X ⊗ (S)1 =

∩

p∈N
X ⊗ (S)1,p,

respectively.
Generalized stochastic processes and test stochastic processes in Hida sense

are elements of the spaces

X ⊗ (S)−
0 =

∪

p∈N
X ⊗ (S)0,−p, X ⊗ (S)+0 =

∩

p∈N
X ⊗ (S)0,p,

respectively.

Remark 2.11. In this case the symbol ⊗ denotes the projective tensor product
of two spaces i.e. X̃ ′ ⊗ (S)−1 is the completion of the tensor product with
respect to the π-topology.

The Kondratiev space (S)1 is nuclear and thus (X̃ ⊗ (S)1)
′ ∼= X̃ ′ ⊗ (S)−1.

Note that X̃ ′ ⊗ (S)−1 is isomorphic to the space of linear bounded mappings
X̃ → (S)−1, and it is also isomporphic to the space of linear bounded mappings
(S)+1 → X̃ ′. The same holds for the Hida spaces, too.

In [43] and [44] a general setting of S′-valued generalized stochastic process
is provided (we restrict our attention to the Kondratiev setting): S′(R)-valued
generalized stochastic processes are elements of X ⊗ S′(R) ⊗ (S)−1 and they
are given by chaos expansions of the form

(2.2) f =
∑

α∈I

∑

k∈N
aα,k ⊗ ξk ⊗Hα =

∑

α∈I
bα ⊗Hα =

∑

k∈N
ck ⊗ ξk,

where bα =
∑

k∈N aα,k ⊗ ξk ∈ X ⊗ S′(R), ck =
∑

α∈I aα,k ⊗Hα ∈ X ⊗ (S)−1

and aα,k ∈ X. Thus,

X⊗S−l(R) ⊗ (S)−1,−p

=



f : ∥f∥2

X⊗S−l(R)⊗(S)−1,−p
=
∑

α∈I,k∈N
∥aα,k∥2

X(2k)−l(2N)−pα<∞




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and
X ⊗ S′(R) ⊗ (S)−1 =

∪

p,l∈N
X ⊗ S−l(R) ⊗ (S)−1,−p.

The generalized expectation of an S′-valued stochastic process f is given
by E(f) =

∑
k∈N

a(0,0,...),k ⊗ ξk = b(0,0,...).

In an analogous way, we define S-valued test processes as elements of
X ⊗S(R)⊗ (S)1, which are given by chaos expansions of the form (2.2), where
bα =

∑
k∈N aα,k ⊗ ξk ∈ X ⊗ S(R), ck =

∑
α∈I aα,k ⊗ Hα ∈ X ⊗ (S)1 and

aα,k ∈ X. Thus,

X⊗Sl(R)⊗ (S)1,p=



f : ∥f∥2

X⊗Sl(R)⊗(S)1,p
=
∑

α∈I,k∈N
α!2∥aα,k∥2

X(2k)l(2N)pα<∞





and
X ⊗ S(R) ⊗ (S)1 =

∩

p,l∈N
X ⊗ Sl(R) ⊗ (S)1,p.

One can define the Hida spaces in a similar way. Especially, for p = l = 0, one
obtains the space of processes with finite second moments and square integrable
trajectories X ⊗ L2(R) ⊗ (L)2. It is isomorphic to X ⊗ L2(R × Ω) and if X is
a separable Hilbert space, then it is also isomorphic to L2(R × Ω;X).

Remark 2.12. In the sequel we will use the notation Hk, k ∈ N0, to denote not
just (L)2-random variables, but also generalized stochastic processes and test
processes which have a chaos expansion of the form (2.2) only with multi-indices
of length |α| = k.

Example 2.13. Brownian motion as an element of S′(R)⊗ (L)2, is defined by

Bt(ω) := ⟨ω, κ[0,t]⟩, ω ∈ S′(R),

where κ[0,t] is the characteristic function of the interval [0, t], t > 0. It is a Gaus-
sian process with zero expectation and covariance function Eµ(Bt(ω)Bs(ω)) =
min{t, s}. The chaos expansion of Brownian motion is given by

Bt(ω) =
∞∑

k=1




t∫

0

ξk(s)ds


Hε(k)(ω).

For all k ∈ N, its coefficients
t∫
0

ξk(s)ds are in C∞(R).

Singular white noise is defined by the chaos expansion

Wt(ω) =
∞∑

k=1

ξk(t)Hε(k)(ω),

and it is an element of the space Sk(R) ⊗ (S)−1,−p for k, p ≥ 1. d
dtBt = Wt

holds with weak derivatives in the (S)−1 sense. Both Brownian motion and
singular white noise belong to the Wiener chaos space of order one.
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2.4. Multiplication of stochastic processes

We generalize the definition of the Wick product of random variables to
the set of generalized stochastic processes in the way as it is done in [19, 39]
and [40]. From now on we assume that X is closed under multiplication, i.e.
x · y ∈ X for all x, y ∈ X.

Definition 2.14. Let F,G ∈ X ⊗ (S)±1 be generalized (resp. test) stochastic
processes given by chaos expansions f =

∑
α∈I fα ⊗Hα, g =

∑
α∈I gα ⊗Hα,

where fα, gα ∈ X, α ∈ I. Then the Wick product F♢G is defined by

(2.3) F♢G =
∑

γ∈I


 ∑

α+β=γ

fαgβ


⊗Hγ .

Theorem 2.15. Let the stochastic processes F and G be given in their chaos
expansion forms F =

∑
α∈I

fα ⊗ Hα and G =
∑

α∈I
gα ⊗ Hα.

1. If F ∈ X ⊗ (S)−1,−p1 and G ∈ X ⊗ (S)−1,−p2 for some p1, p2 ∈ N0, then
F♢G is a well defined element in X ⊗ (S)−1,−q, for q ≥ p1 + p2 + 2.

2. If F ∈ X ⊗ (S)1, p1 and G ∈ X ⊗ (S)1, p2 for p1, p2 ∈ N0, then F♢G is a
well defined element in X ⊗ (S)1, q, for q ≤ min{p1, p2} − 2.

Proof. 1. By the Cauchy-Schwartz inequality, the following holds

∥F♢G∥2
X⊗(S)−1,−q

=
∑

γ∈I
∥
∑

α+β=γ

fαgβ∥2
X (2N)−qγ

≤
∑

γ∈I
∥
∑

α+β=γ

fαgβ∥2
X (2N)−(p1+p2+2)γ

≤
∑

γ∈I


∑

α+β=γ

∥fα∥2
X(2N)−p1γ




 ∑

α+β=γ

∥gβ∥2
X(2N)−p2γ


(2N)−2γ

≤


∑

γ∈I
(2N)−2γ



(∑

α∈I
∥fα∥2

X(2N)−p1α

)
∑

β∈I
∥gβ∥2

X(2N)−p2β




= M · ∥F∥2
X⊗(S)−1,−p1

· ∥G∥2
X⊗(S)−1,−p2

< ∞,

since M =
∑

γ∈I(2N)−2γ < ∞ by the nuclearity of (S)−1.

2. Let now F ∈ X ⊗ (S)1,p1 and G ∈ X ⊗ (S)1,p2 for all p1, p2 ∈ N0. Then the
chaos expansion form of F♢G is given by (2.3) and
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∥F♢G∥2
X⊗(S)1,q

=
∑

γ∈I
γ!2∥

∑

α+β=γ

fαgβ∥2
X(2N)qγ · (2N)2γ(2N)−2γ

=
∑

γ∈I
(2N)−2γ∥

∑

α+β=γ

γ!fαgβ(2N)
q+2
2 γ∥2

X

≤
∑

γ∈I
(2N)−2γ∥

∑

α+β=γ

α!β!(2N)α+βfαgβ(2N)
q+2
2 (α+β)∥2

X

≤M
(∑

α∈I
α!2∥fα∥2

X(2N)2(
q+2
2 +1)α

)
∑

β∈I
β!2∥gβ∥2

X(2N)2(
q+2
2 +1)β




≤ M

(∑

α∈I
α!2∥fα∥2

X(2N)p1α

)
∑

β∈I
β!2∥gβ∥2

X(2N)p2β




= M · ∥F∥2
X⊗(S)1,p1

· ∥G∥2
X⊗(S)1,p2

< ∞,

if q ≤ p1 − 2 and q ≤ p2 − 2. We used beside the Cauchy-Schwartz inequality
the estimate (α+ β)! ≤ α!β! (2N)α+β , for all α, β ∈ I. �

Applying the well-known formula for the Fourier-Hermite polynomials (see
[13])

(2.4) Hα ·Hβ =
∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ

one can define the ordinary product F ·G of two stochastic processes F and G.
Thus, by applying formally (2.4) we obtain

F ·G =
∑

α∈I
fα ⊗Hα ·

∑

β∈I
gβ ⊗Hβ

=
∑

α∈I

∑

β∈I
fα gβ ⊗ Hα ·Hβ

=
∑

α∈I

∑

β∈I
fα gβ ⊗

∑

0≤γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ

= F♢G+
∑

α∈I

∑

β∈I
fα gβ ⊗

∑

0<γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ

= F♢G+
∑

τ∈I

∑

α∈I

∑

β∈I
fαgβ

∑

γ>0,δ≤τ
γ+τ−δ=β,γ+δ=α

α!β!

γ!δ!(τ − δ)!
Hτ .

For example, for Brownian motion we have

Bt1 ·Bt2 = Bt1♢Bt2 + min{t1, t2}, B2
t = B♢2

t + t.
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Note also that, E(F♢G) = f0 g0 = EF · EG, without the assumption of
independence of F and G as opposed to E(F ·G) ̸= EF · EG.

Particularly, it is clear that the following identities hold for the Fourier-
Hermite polynomials:

Hε(k) ·Hε(l) =

{
H2ε(k) + 1 , k = l
Hε(k)+ε(l) , k ̸= l

=

{
H♢2

ε(k) + 1 , k = l
Hε(k)♢Hε(l) , k ̸= l

.

In Section 4 we will use the Malliavin derivative operator to express the
difference between the ordinary product and the Wick product of a generalized
stochastic process from X ⊗ (S)−1 and singular white noise Wt (Theorem 4.6).
Here we state some general cases when the ordinary product is well defined.

Theorem 2.16. The following holds:

1. If F,G ∈ X ⊗ (S)1 then the product F · G is a well defined element in
X⊗(S)1. Moreover, for every m ∈ N0 there exist r, s ∈ N0 and C(m) > 0
such that

∥F ·G∥X⊗(S)1,m
≤ C(m)∥F∥X⊗(S)1,r

∥G∥X⊗(S)1,s

holds.

2. If F ∈ X ⊗ (S)1 and G ∈ X ⊗ (S)−1 then their product F · G is well
defined and belongs to X ⊗ (S)−1.

The proof is similar to the one for multiplication of Schwartz test functions
and multiplication of tempered distributions with test functions.

Note, for F,G ∈ X ⊗ (L)2 the ordinary product F · G does not have to
belong to X ⊗ (L)2.

2.5. Operators of the Malliavin calculus

In [2, 7, 25, 26, 35, 42] the Malliavin derivative and the Skorokhod integral
are defined on a subspace of (L)2 so that the resulting process after application
of these operators necessarily remains in (L)2. We will recall of these classical
results and denote the corresponding domains with a ”zero” in order to retain
a nice symmetry between test and generalized processes. In [18, 19, 22, 23]
we allowed values in (S)−1 and thus obtained larger domains for all operators.
These domains will be denoted by a ”minus” sign to reflect the fact that they
correspond to generalized processes. In [24] we introduced also domains for
test processes. These domains will be denoted by a ”plus” sign.

Definition 2.17. Let a generalized stochastic process u ∈ X⊗ (S)−1 be of the
form u =

∑
α∈I

uα ⊗Hα. If there exists p ∈ N such that

(2.5)
∑

α∈I
|α|2 ∥uα∥2

X(2N)−pα < ∞,
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then the Malliavin derivative of u is defined by

(2.6) Du =
∑

α∈I

∑

k∈N
αk uα ⊗ ξk ⊗Hα−ε(k) ,

where by convention α− ε(k) does not exist if αk = 0, i.e.

Hα−ε(k) =

{
0, αk = 0

H(α1,α2,...,αk−1,αk−1,αk+1,...,αm,0,0,...), αk ≥ 1
.

for α = (α1, α2, ..., αk−1, αk, αk+1, ..., αm, 0, 0, ...) ∈ I.

The set of generalized stochastic processes u ∈ X⊗(S)−1 which satisfy (2.5)
constitutes the domain of the Malliavin derivative, denoted byDom−(D). Thus
the domain of the Malliavin derivative is given by

Dom−(D) =
∪

p∈N
Dom−p(D)

=
∪

p∈N

{
u ∈ X ⊗ (S)−1 :

∑

α∈I
|α|2 ∥uα∥2

X(2N)−pα < ∞
}
.

A process u ∈ Dom−(D) ⊂ X ⊗ (S)−1 is called a Malliavin differentiable
process. Note that (2.6) can also be expressed in the form

(2.7) Du =
∑

α∈I

∑

k∈N
(αk + 1)uα+ε(k) ⊗ ξk ⊗Hα.

For stochastic test processes from X ⊗ (S)1, the Malliavin derivative is
always defined, i.e.

Domp(D) = {u ∈ X ⊗ (S)1 :
∑

α∈I
α!2 ∥uα∥2

X(2N)pα < ∞} = X ⊗ (S)1,p.

In order to retain symmetry in notation, we denote

Dom+(D) =
∩

p∈N
Domp(D) =

∩

p∈N
(X ⊗ (S)1,p) = X ⊗ (S)1.

In the classical literature it is usual to define the Malliavin derivative only
for the (L)2 case:

Definition 2.18. Let a square integrable stochastic process u ∈ X ⊗ (L)2 be
of the form u =

∑
α∈I

uα ⊗Hα. If the condition

(2.8)
∑

α∈I
|α|α! ∥uα∥2

X < ∞
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holds, then u is a Malliavin differentiable process and the Malliavin derivative
of u is defined by (2.6). All processes u satisfying the condition (2.8) belong to
the domain of D denoted by Dom0(D), i.e. the domain is given by

Dom0(D) =

{
u ∈ X ⊗ (L)2 :

∑

α∈I
|α|α! ∥uα∥2

X < ∞
}
.

Theorem 2.19. ([18, 24])

a) The Malliavin derivative of a generalized process u ∈ X ⊗ (S)−1 is a
linear and continuous mapping

D : Dom−p(D) → X ⊗ S−l(R) ⊗ (S)−1,−p,

for l > p+ 1 and p ∈ N.

b) The Malliavin derivative of a test stochastic process v ∈ X ⊗ (S)1 is a
linear and continuous mapping

D : Domp(D) → X ⊗ Sl(R) ⊗ (S)1, p,

for l < p− 1 and p ∈ N.

c) The Malliavin derivative of a square integrable process u ∈ Dom0(D) is
a linear and continuous mapping

D : Dom0(D) → X ⊗ L2(R) ⊗ (L)2.

Proof. a) Let u be as in Definition 2.17. Then,

∥Du∥2
X⊗S−l(R)⊗(S)−1,−p

=
∑

α∈I
∥

∞∑

k=1

αkuα ⊗ ξk∥2
X⊗S−l

(2N)−p(α−ε(k))

=
∑

α∈I

(∑

k∈N
α2

k∥uα∥2
X(2k)−l

)
(2k)p(2N)−pα

≤
∑

α∈I
|α|2∥uα∥2

X(2N)−pα
∑

k∈N
(2k)−l+p

≤ C
∑

α∈I
|α|2∥uα∥2

X(2N)−pα < ∞,

where
∑

k∈N(2k)−l+p = C < ∞ for l > p + 1. We also used the generalized
Minkowski inequality to obtain that

∑

k∈N
α2

k(2k)p−l ≤ (
∑

k∈N
α4

k)
1
2 ·
∑

k∈N
(2k)p−l

and the fact that (
∑
k∈N

α4
k)

1
2 ≤ ∑

k∈N
α2

k ≤ (
∑
k∈N

αk)2 = |α|2.
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b) Let v =
∑

α∈I
vα ⊗ Hα ∈ X ⊗ (S)1,p for all p ≥ 0, i.e. let the condition

∑
α∈I

∥vα∥2
X α! 2 (2N)pα < ∞ hold. Then, from (2.6) and

∥Dv∥2
X⊗Sl(R)⊗(S)1,p

=
∑

α∈I
∥
∑

k∈N
αk vα ⊗ ξk∥2

X⊗Sl(R) (α− ε(k))!2 (2N)p(α−ε(k))

=
∑

α∈I

∑

k∈N
α2

k (α− ε(k))! 2 ∥vα∥2
X (2k)l (2N)p(α−ε(k))

=
∑

α∈I

∑

k∈N
α! 2 ∥vα∥2

X (2k)l−p (2N)pα

≤ C
∑

α∈I
α! 2 ∥vα∥2

X (2N)pα = C ∥v∥2
X⊗(S)1, p

< ∞,

the assertion follows, where C =
∑
k∈N

(2k)l−p < ∞ for p > l + 1. We also used

αk (α− ε(k))! = α!, k ∈ N, α ∈ I and (2N)ε(k)

= (2k), k ∈ N.
c) Let u ∈ Dom0(D) , i.e.

∑
α∈I

|α|α!∥uα∥2
X < ∞. Then,

∥Du∥2
X⊗L2(R)⊗(L)2 =

∑

α∈I

∑

k∈N
α2

k (α− ε(k))! ∥wα∥2
X

=
∑

α∈I

∑

k∈N
αk α! ∥wα∥2

X =
∑

α∈I
|α|α! ∥wα∥2

X < ∞.

�

Note that Domp(D) ⊆ Dom0(D) ⊆ Dom−p(D) for all p ∈ N. Therefore

Dom+(D) ⊆ Dom0(D) ⊆ Dom−(D).

Moreover, using the estimate |α| ≤ (2N)α it follows that
∑

α∈I
∥uα∥2

X(2N)−pα ≤
∑

α∈I
|α|2∥uα∥2

X(2N)−pα ≤
∑

α∈I
∥uα∥2

X(2N)−(p−2)α, i.e.,

X ⊗ (S)−1,−(p−2) ⊆ Dom−p(D) ⊆ X ⊗ (S)−1,−p, p > 3.

Remark 2.20. For u ∈ Dom+(D) and u ∈ Dom0(D) it is usual to write

Dtu =
∑

α∈I

∑

k∈N
αk uα ⊗ ξk(t) ⊗Hα−ε(k) ,

in order to emphasise that the Malliavin derivative takes a random variable
into a process i.e. that Du is a function of t. Moreover, the formula

DtF (ω) = lim
h→0

1

h

(
F (ω + h · κ[t,∞)) − F (ω)

)
, ω ∈ S′(R),

justifies the name stochastic derivative for the Malliavin operator. Since gene-
ralized functions do not have point values, this notation would be somewhat
misleading for u ∈ Dom−(D). Therefore, for notational uniformity, we omit
the index t in Dt that usually appears in the literature and write D.
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The Skorokhod integral, as an extension of the Itô integral for non-adapted
processes, can be regarded as the adjoint operator of the Malliavin derivative
in (L)2-sense. In [18] we have extended the definition of the Skorokhod inte-
gral from Hilbert space valued processes to the class of S′-valued generalized
processes.

Definition 2.21. Let F =
∑

α∈I
fα ⊗Hα ∈ X ⊗S′(R)⊗ (S)−1, be a generalized

S′(R)-valued stochastic process and let fα ∈ X ⊗S′(R) be given by the expan-
sion fα =

∑
k∈N fα,k ⊗ ξk, fα,k ∈ X. Then the process F is integrable in the

Skorokhod sense and the chaos expansion of its stochastic integral is given by

(2.9) δ(F ) =
∑

α∈I

∑

k∈N
fα,k ⊗Hα+ε(k) .

In [20] we proved that the domain Dom−(δ) of the Skorokhod integral is

Dom−(δ) = X ⊗ S′(R) ⊗ (S)−1

=
∪

(l,p)∈N2

Dom(−l,−p)(δ) =
∪

(l,p)∈N2

(X ⊗ S−l(R) ⊗ (S)−1,−p).

In [24] we characterized the domains Dom+(δ) and Dom0(δ) of the Sko-
rokhod integral for test processes from X ⊗ S(R) ⊗ (S)1 and square integrable
processes from X ⊗ L2(R) ⊗ (L)2. The form of the derivative is in all cases
given by the expression (2.9).

The domain Dom+(δ) of the Skorokhod integral is

Dom+(δ) =
∩

(l,p)∈N2

Dom(l,p)(δ),

Dom(l,p)(δ)=

{
F∈X⊗Sl(R)⊗(S)1,p :

∑

α∈I

∑

k∈N
(αk + 1)2α!2∥fα,k∥2

X(2k)l(2N)pα<∞
}
.

For square integrable stochastic processes T ∈ X⊗L2(R)⊗(L)2 of the form
T =

∑
α∈I

∑
k∈N

tα,k ⊗ ξk ⊗Hα, tα,k ∈ X, the classical definition is:

Dom0(δ) =

{
T ∈ X ⊗ L2(R) ⊗ (L)2 :

∑

α∈I

∑

k∈N
(αk + 1)α!∥tα,k∥2

X < ∞
}
.

Theorem 2.22. ([18, 24])

a) The Skorokhod integral δ of an S−l(R)-valued generalized stochastic pro-
cess is a linear and continuous mapping

δ : X ⊗ S−l(R) ⊗ (S)−1,−p → X ⊗ (S)−1,−q, q ≥ p, q > l + 1, l ∈ N.
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b) The Skorokhod integral δ of a Sl(R)-valued stochastic test process is a
linear and continuous mapping

δ : Dom(l,p)(δ) → X ⊗ (S)1, q, q ≤ min{l, p},
for all l, p ∈ N.

c) The Skorokhod integral δ of an L2(R)-valued stochastic process is a linear
and continuous mapping

δ : Dom0(δ) → X ⊗ (L)2.

Proof. a) Let F be as in Definition 2.21. Clearly,

∥δ(F )∥2
X⊗(S)−1,−q

=
∑

α∈I
∥
∑

k∈N
fα,k∥2

X(2N)−q(α+ε(k))

=
∑

α∈I
∥
∑

k∈N
fα,k(2k)− q

2 ∥2
X(2N)−qα

≤
∑

α∈I

(∑

k∈N
|fα,k|(2k)− l

2 (2k)− (q−l)
2

)2

(2N)−qα

≤
∑

α∈I

(∑

k∈N
|fα,k|2(2k)−l

∑

k∈N
(2k)−(q−l)

)
(2N)−qα

≤
∑

α∈I
∥fα∥2

−l(2N)−pα ·
∑

k∈N
(2k)−(q−l)

≤ M ∥F∥2
X⊗S−l(R)⊗(S)−1,−p

< ∞,

for q ≥ p, where we used the Cauchy-Schwarz inequality and the fact that
M =

∑
k∈N(2k)−(q−l) < ∞, for q > l + 1.

b) Let U =
∑

α∈I uα ⊗Hα ∈ X ⊗ Sl(R) ⊗ (S)1,p, uα =
∑∞

k=1 uα,k ⊗ ξk ∈
X ⊗ Sl(R), uα,k ∈ X, for p, l ≥ 1. Then we obtain

∥δ(U)∥2
X⊗(S)1, q

=
∑

α∈I

∑

k∈N
∥uα,k∥2

X (α+ ε(k))!2 ∥ (2N)q(α+ε(k))

=
∑

α∈I

∑

k∈N
∥uα,k∥2

X α! 2 (αk + 1)2 (2k)q (2N)qα

≤ ∥U∥2
Dom(l,p)(δ)

< ∞,

for q ≤ p, q ≤ l.
c) Let T =

∑
α∈I

∑
k∈N

tα,k ⊗ ξk ⊗Hα ∈ Dom0(δ). Then,

∥δ(T )∥2
X⊗(L)2 =

∑

α∈I

∑

k∈N
∥t2α,k∥2

X (α+ ε(k))!

=
∑

α∈I

∑

k∈N
∥tα,k∥2

X(αk + 1) α! < ∞,

where we used (α+ ε(k))! = (αk + 1)α!, for α ∈ I, k ∈ N. �
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Using the estimate αk+1 ≤ 2|α|, which holds for all α ∈ I except for α = 0,
we obtain
∑

α∈I

∑

k∈N
α!2 ∥fα,k∥2

X(2k)l(2N)pα ≤
∑

α∈I

∑

k∈N
(αk + 1)2α!2∥fα,k∥2

X(2k)l(2N)pα

≤
∑

k∈N
∥f0,k∥2

X(2k)l + 4
∑

α>0

∑

k∈N
|α|2α!2∥fα,k∥2

X(2k)l(2N)pα

≤ ∥f0∥2
X⊗Sl(R) + 4

∑

α>0

∑

k∈N
α!2∥fα,k∥2

X(2k)l(2N)(p+2)α

≤ 4∥F∥2
X⊗Sl(R)⊗(S)1,p+2

.

Thus,

X ⊗ Sl(R) ⊗ (S)1,p+2 ⊆ Dom(l,p)(δ) ⊆ X ⊗ Sl(R) ⊗ (S)1,p, p ∈ N.

The third main operator of the Malliavin calculus is the Ornstein-Uhlenbeck
operator. We describe the domain of the Ornstain-Uhlenbeck operator for
different classes of generalized stochastic processes.

Definition 2.23. The composition of the Malliavin derivative and the Sko-
rokhod integral is denoted by R = δ ◦ D and called the Ornstein-Uhlenbeck
operator.

Therefore, for a generalized process u ∈ X ⊗ (S)−1 given in the chaos
expansion form u =

∑
α∈I

uα ⊗Hα, the Ornstein-Uhlenbeck operator is given by

(2.10) R(u) =
∑

α∈I
|α|uα ⊗Hα.

Let

Dom−(R) =
∪

p∈N
Dom−p(R)

=
∪

p∈N

{
u ∈ X ⊗ (S)−1 :

∑

α∈I
|α|2 ∥uα∥2

X(2N)−pα < ∞
}
.

For test processes, we define

Dom+(R) =
∩

p∈N
Domp(R)

=
∩

p∈N

{
v ∈ X ⊗ (S)1 :

∑

α∈I
α! 2 |α|2 ∥vα∥2

X (2N)pα < ∞
}
.

For square integrable processes the classical definition is:

Dom0(R) =

{
w ∈ X ⊗ (L)2 :

∑

α∈I
α! |α|2 ∥wα∥2

X < ∞
}
.
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Theorem 2.24. ([22, 24])

a) The operator R is a linear and continuous mapping

R : Dom−p(R) → X ⊗ (S)−1,−p, p ∈ N.

In this case the domains of D and R coincide, i.e. Dom−(R) = Dom−(D).

b) The operator R is a linear and continuous mapping

R : Domp(R) → X ⊗ (S)1, p, p ∈ N.

In this case the domains of the operators D and R do not coincide, i.e.
Dom+(D) ) Dom+(R).

c) The operator R is a linear and continuous operator

R : Dom0(R) → X ⊗ (L)2.

In this case the domains of the operators D and R also do not coincide and
Dom0(D) ) Dom0(R).

Proof. a) Let u =
∑

α∈I
uα ⊗Hα ∈ X ⊗ (S)−1, −p, for some p ∈ N. Clearly,

∥Ru∥2
X⊗(S)−1, −p

=
∑

α∈I
∥uα∥2

X |α|2 (2N)−pα = ∥u∥2
Dom−p(R) < ∞.

b) Let a stochastic process v =
∑

α∈I
vα ⊗Hα ∈ X⊗ (S)1, p, for all p ∈ N, i.e.

∑
α∈I

∥vα∥2
X α! 2 (2N)pα < ∞, for all p ∈ N. Then,

∥Rv∥2
X⊗(S)1, p

=
∑

α∈I
∥vα∥2

X |α|2 α!2 (2N)pα = ∥v∥2
Domp(R) < ∞,

and the statement follows.
c) Let w =

∑
α∈I

wα ⊗Hα ∈ Dom0(R). Then R(w) =
∑

α∈I
|α|wα ⊗Hα and

∥R(w)∥2
X⊗(L)2 =

∑

α∈I
|α|2 ∥wα∥2

X < ∞,

by the assumption w ∈ Dom0(R). �

Note also that

∑

α∈I
α!2∥uα∥2

X(2N)pα ≤
∑

α∈I
α!2|α|2∥uα∥2

X(2N)pα ≤
∑

α∈I
α!2∥uα∥2

X(2N)(p+2)α,

i.e., X ⊗ (S)1,p+2 ⊆ Domp(R) ⊆ X ⊗ (S)1,p, p ∈ N.
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Remark 2.25. Note that D : Hk → Hk−1 reduces the Wiener chaos space order
and therefore Malliavin differentiation corresponds to the annihilation operator,
while δ : Hk → Hk+1 increases the chaos order and thus Skorokhod integration
corresponds to the creation operator. Clearly, R : Hk → Hk and the Ornstein-
Uhlenbeck operator corresponds to the number operator in quantum theory.

In the following sections we prove that the mappings D : Dom±(D) →
X ⊗ S′(R) ⊗ (S)±1, δ : Dom±(δ) → X ⊗ (S)±1, R : Dom±(R) → X ⊗ (S)±1,
given in this section are surjective.

3. The Ornstein-Uhlenbeck operator

Theorem 3.1. ([20, 24]) Let g have zero generalized expectation. The equation

Ru = g, Eu = ũ0 ∈ X,

has a unique solution u represented in the form

u = ũ0 +
∑

α∈I,|α|>0

gα

|α| ⊗ Hα.

Moreover, the following holds:

1. If g ∈ X ⊗ (S)−1,−p, p ∈ N, then u ∈ Dom−p(R).

2. If g ∈ X ⊗ (S)1,p, p ∈ N, then u ∈ Domp(R).

3. If g ∈ X ⊗ (L)2, then u ∈ Dom0(R).

Proof. Let us seek for a solution in form of u =
∑

α∈I
uα ⊗Hα. From Ru = g it

follows that ∑

α∈I
|α|uα ⊗Hα =

∑

α∈I
gα ⊗Hα,

i.e., uα = gα

|α| for all α ∈ I, |α| > 0. From the initial condition we obtain

u(0,0,0,0,...) = Eu = ũ0.
1. Assume that g ∈ X ⊗ (S)−1,−p. Then, u ∈ Dom−p(R) since

∥u∥2
Dom−p(R) =

∑

|α|>0

|α|2∥uα∥2
X(2N)−pα =

∑

|α|>0

∥gα∥2
X(2N)−pα

= ∥g∥2
X⊗(S)−1,−p

< ∞.

2. In this case u ∈ Domp(R) since

∥u∥2
Domp(R) =

∑

|α|>0

α!2 |α|2 ∥uα∥2
X(2N)pα

=
∑

|α|>0

α!2 ∥gα∥2
X (2N)pα = ∥f∥2

X⊗(S)1,p
< ∞.
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3. If g is square integrable, then u ∈ Dom0(R) since

∥u∥2
Dom0(R) =

∑

|α|>0

|α|2 α! ∥uα∥2
X =

∑

|α|>0

α! ∥hα∥2
X = ∥h∥2

X⊗(L)2 < ∞.

�

Remark 3.2. Note that Ru = u if and only if u ∈ H1 i.e. Gaussian processes
with zero expectation are the only fixed points for the Ornstein-Uhlenbeck
operator. For example, R(Bt) = Bt and R(Wt) = Wt.

Also, it is clear that Hm is the eigenspace corresponding to the eigenvalue
m (m ∈ N) of the Ornstein-Uhlenbeck operator.

Remark 3.3. If Eu = 0, one can define the pseudo-inverse R−1 as in [32, 35],
given by

R−1u = R−1


 ∑

α∈I,|α|>0

uα ⊗ Hα


 =

∑

α∈I,|α|>0

uα

|α| ⊗Hα.

Thus,

(3.1) RR−1(u) = u and R−1R(u) = u.

In the general case, for Eu ̸= 0, we have

RR−1(u− Eu) = u and R−1R(u) = u.

Corollary 3.4. Each process g ∈ X ⊗ (S)±1, resp. g ∈ X ⊗ (L)2, can be
represented as

g = Eg + R(u),

for some u ∈ Dom±(R), resp. u ∈ Dom0(R).

Proof. The assertion follows for u = R−1(g − Eg). �

Remark 3.5. We note that if a stochastic process f belongs to the Wiener chaos
space

⊕m
i=0 Hi for some m ∈ N, then the solution u of the equation Ru = f

belongs also to the Wiener chaos space
⊕m

i=0 Hi.

4. The Malliavin derivative

Theorem 4.1. ([20, 24]) Let a process h have the chaos expansion represen-
tation h =

∑
α∈I

∑
k∈N

hα,k ⊗ ξk ⊗Hα. Then the equation

(4.1)

{
Du = h,
Eu = ũ0, ũ0 ∈ X,

has a unique solution u represented in the form

(4.2) u = ũ0 +
∑

α∈I,|α|>0

1

|α|
∑

k∈N
hα−ε(k),k ⊗ Hα.

Moreover, the following holds:
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1. If h ∈ X ⊗ S−p(R) ⊗ (S)−1,−q, p, q ∈ N, then u ∈ Dom−q(D).

2. If h ∈ X ⊗ L2(R) ⊗ (L)2, then u ∈ Dom0(D).

3. If h ∈ X ⊗ Sp(R) ⊗ (S)1,q, p, q ∈ N, then u ∈ Domq(D).

Proof. 1. Applying the Skorokhod integral on both sides of (4.1) one obtains

Ru = δ(h),

for a given h ∈ X ⊗ S′(R) ⊗ (S)−1 = Dom−(δ). From the initial condition it
follows that the solution u is given in the form u = ũ0 +

∑
α∈I,|α|>0

uα ⊗Hα and

its coefficients are obtained from the system

(4.3) |α|uα =
∑

k∈N
hα−ε(k),k, |α| > 0,

where by convention α − ε(k) does not exist if αk = 0. Hence, the solution u
is given in the form (4.2). Now, we prove that the solution u belongs to the
space Dom−q(D). Clearly,

∥u∥2
Dom−q(D) =

∑

α∈I
|α|2 ∥uα∥2

X (2N)−qα

=
∑

α∈I,|α|>0

∥
∑

k∈N
hα−ε(k),k∥2

X(2N)−qα

=
∑

α∈I
∥
∑

k∈N
hα,k∥2

X (2N)−qα (2N)−qε(k)

≤
∑

α∈I

(∑

k∈N
∥hα,k∥X (2k)− p

2 (2k)− (q−p)
2

)2

(2N)−qα

≤
∑

α∈I

∑

k∈N
∥hα,k∥2

X (2k)−p (2N)−qα
∑

k∈N
(2k)−(q−p)

= C∥h∥2
X⊗S−p(R)⊗(S)−1,−q

< ∞,

since C =
∑
k∈N

(2k)−(q−p) < ∞, for q > p+ 1.

2. In this case we have that

∥u∥2
Dom0(D) =

∑

α∈I
|α|α! ∥uα∥2

X =
∑

α∈I,|α|>0

α!

|α| ∥
∑

k∈N
hα−ε(k),k∥2

X

=
∑

α∈I
∥
∑

k∈N
hα,k∥2

X

(α+ ε(k))!

|α+ ε(k)|

≤
∑

α∈I

∑

k∈N
∥hα,k∥2

Xα!

=
∑

α∈I
α!∥fα∥2

X⊗L2(R) = ∥f∥2
X⊗L2(R)⊗(L)2 < ∞.
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We have made use of the fact
(α+ ε(k))!

|α+ ε(k)| ≤ α!.

3. Clearly, δ can again be applied onto h, since h ∈ X ⊗ Sp(R) ⊗ (S)1,q ⊆
Dom(p,q−2)(δ). It remains to prove that the solution u given in the form (4.2)
belongs to Domq(D). Clearly,

∥u∥2
Domq(D) =

∑

α∈I
α!2 ∥uα∥2

X (2N)qα

=
∑

α∈I,|α|>0

α!2

|α|2 ∥
∑

k∈N
hα−ε(k),k∥2

X (2N)qα

=
∑

α∈I
∥
∑

k∈N
hα,k∥2

X

(α+ ε(k))!2

|α+ ε(k)|2 (2N)qα (2N)qε(k)

≤
∑

α∈I
∥
∑

k∈N
hα,k∥2

X α!2 (2N)qα (2k)q

=
∑

α∈I
∥

∞∑

k=1

hα,k(2k)
q
2 ∥2

Xα!2(2N)qα

=
∑

α∈I
∥

∞∑

k=1

hα,k(2k)
p
2 (2k)

q−p
2 ∥2

Xα!2(2N)qα

≤
∑

α∈I

∞∑

k=1

∥hα,k∥2
X(2k)p

∞∑

k=1

(2k)q−p α!2(2N)qα

= C · ∥h∥2
X⊗Sp(R)⊗(S)1,q

< ∞,

since C =
∑
k∈N

(2k)q−p < ∞, for p > q + 1. In the fourth step of the estimation

we used again that
(α+ ε(k))!

|α+ ε(k)| ≤ α!. �

Corollary 4.2. If D(u) = 0, then u = Eu i.e. u is constant almost surely.

In other words, the kernel of the operator D is H0.

Corollary 4.3. For every h ∈ X⊗S′(R)⊗ (S)±1, resp. h ∈ X⊗L2(R)⊗ (L)2,
there exists a unique u ∈ Dom±(D), resp. u ∈ Dom0(D), such that Eu = 0
and h = D(u) holds.

Proof. The assertion follows for u = R−1(δ(h)). �

Example 4.4. Let t ≥ 0. Consider now the following examples which illustrate
the results of Theorem 4.1.

1. Denote by κ[0,t0] =

{
1, t ∈ [0, t0]
0, t ̸∈ [0, t0]

the characteristic function of the

interval [0, t0]. It is an element of L2(R) and thus its expansion repre-

sentation is κ[0,t0](t) =
∞∑

k=1

(∫ t0
0
ξk(t)dt

)
ξk(t). Consider the initial value
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problem

(4.4) Du = κ[0,t0](t), Eu = ũ0.

Recall that H(0,0,0,...) = 1 and then we may regard h in (4.1) as
h = κ[0,t0](t) ∈ L2(R)⊗H0. Therefore, u ∈ L2(R)⊗(H0⊕H1). From (4.3)
we obtain the form of the coefficients of the solution
uε(k) = h0,k =

∫ t0
0
ξk(t) dt. Then the solution of the equation (4.4) is

of the form

u(t0, ω) = ũ0 +
∞∑

k=1

∫ t0

0

ξk(t)dtHε(k)(ω) = ũ0 +Bt0(ω),

i.e. it is Brownian motion with drift parameter ũ0.

2. Consider the equation

(4.5) Du = dt0(t), Eu = ũ0,

where dt0(t) denotes the Dirac delta function concentrated at t0, repre-
sented in the chaos expansion form

dt0(t) =

∞∑

k=1

ξk(t0) ξk(t) =

∞∑

k=1

ξk(t0) ξk(t)H0(ω).

The solution to (4.5) belongs to the space S′(R) ⊗ (H0 ⊕ H1) because
dt0(t) ∈ S′(R) ⊗ H0. The chaos expansion form of the solution is given
by

u = ũ0 +

∞∑

k=1

ξk(t0)Hε(k)(ω) = ũ0 +Wt0(ω),

i.e. it represents singular white noise.

3. Consider now an equation with singular white noise

Du = Wt(ω), Eu = 0.

Wt belongs to the Wiener chaos space of order one and (since we assumed
Eu = 0) the solution u will belong to the Wiener chaos space of order
two. From Wt =

∑∞
k=1 ξkHε(k) it follows that hα,k = 1 only for α = ε(k)

and hα,k = 0 for all α ̸= ε(k). Thus, hα−ε(k),k = hε(k),k = 1 only for

α = 2ε(k) and is equal to zero for all other α ∈ I. Thus, with |α| = 2 we
obtain uα from (4.3), and the form of the solution is

u(ω) =
1

2

∞∑

k=1

H2ε(k)(ω).
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4. Consider the equation

Du = Bt0(ω)κ[0,t0](t), Eu = 0.

The chaos expansion of the right hand side is

Bt0(ω)κ[0,t0](t) =

∞∑

k=1

∞∑

j=1

(∫ t0

0

(∫ t0

0

ξk(s)ds

)
ξj(t)dt

)
ξj(t)Hε(k)(ω)

=
∞∑

k=1

∞∑

j=1

(∫ t0

0

ξk(s)ds

)(∫ t0

0

ξj(s)ds

)
ξj(t)Hε(k)(ω).

This implies hε(k),j = 1
2

(∫ t0
0
ξk(s)ds

)(∫ t0
0
ξj(s)ds

)
. Again, hα−ε(l),l is

nonzero only for α of the form α = ε(l) + ε(k) and in this case we have
with |α| = 2 that

uε(k),l =
1

2
hε(k),l =

1

2

(∫ t0

0

ξk(s)ds

)(∫ t0

0

ξl(s)ds

)
.

Thus, the solution belongs to the space L2(R) ⊗ H2 and is of the form

u =
1

2

∞∑

k=1

∞∑

l=1

(∫ t0

0

ξk(t)dt

) (∫ t0

0

ξl(s)ds

)
Hε(k)+ε(l)(ω).

Note that the solution can be represented in terms of the Wick product

u =
1

2
Bt0(ω)♢2.

5. Consider now the equation

D(u) = Bt1κ[0,t2](t), Eu = 0.

Similarly as in the previous case it can be shown by symmetry of t1 and
t2 that it is equivalent to the equation

D(u) = Bt2κ[0,t1](t), Eu = 0,

and that both equations have the solution

u =
1

2
Bt1♢Bt2 =

1

2
(Bt1Bt2 − min{t1, t2}).

6. Similarly as in the previous cases, u = 1
2Wt1♢Wt2 solves the equation

Du = Wt1(ω)dt2(t) = Wt2(ω)δt1(t),

while u = 1
2 Wt0(ω)♢2 is the solution to the equation

Du = Wt0(ω)dt0(t).
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Remark 4.5. If a stochastic process h belongs to the Wiener chaos space⊕m
i=0 Hi for some m ∈ N, then the unique solution u of the equation (4.1)

belongs to the Wiener chaos space
⊕m+1

i=0 Hi. In particular, if the input func-
tion h is a constant random variable i.e. an element of H0, then the solution u
to (4.1) is a Gaussian process.

Theorem 4.6. ([20]) Let h ∈ X ⊗ (S)−1 and Wt, Bt denote white noise and
Brownian motion, respectively. Then,

h ·Wt − h♢Wt = D(h),

i.e. d
dt (h ·Bt − h♢Bt) = D(h) in the weak S′(R)-sense.

Proof. Let h be of the form h =
∑

α∈I hαHα and Wt =
∑∞

n=1 ξn(t)Hε(n) .
Then,

h♢Wt =
∑

γ∈I

∑

α+ε(n)=γ

hαξn(t)Hγ =
∑

γ∈I

∞∑

n=1

hγ−ε(n)ξn(t)Hγ

and

h ·Wt =
∑

α∈I

∞∑

n=1

hα−ε(n)ξn(t)Hα−ε(n)Hε(n) .

Now, applying the well-known formula (2.4) for Hermite polynomials one
obtains

Hα−ε(n) ·Hε(n) = Hα + (α− ε(n))nHα−2ε(n) ,

where we used
(

α
ε(k)

)
= αk, k ∈ N. Hence,

h ·Wt =
∑

α∈I

∞∑

n=1

hα−ε(n)ξn(t)(Hα + (αn − 1)Hα−2ε(n)),

which implies

h ·Wt − h♢Wt =
∑

α∈I

∞∑

n=1

hα−ε(n)ξn(t)(αn − 1)Hα−2ε(n)

=
∑

α∈I

∞∑

n=1

hα+ε(n)ξn(t)(αn + 1)Hα

= D(h),

using (2.7). Thus the assertion follows. �

Remark 4.7. Note that if h ∈ X ⊗ (S)−1,−p, then D(h) ∈ X ⊗ S−l(R) ⊗
(S)−1,−(p+2), l > p+ 1. Thus, apart from the Wick product h♢Wt being well-
defined, the ordinary product is also well-defined in the generalized sense as an
element of X ⊗ S′(R) ⊗ (S)−1, and it is given by h ·Wt = h♢Wt + D(h).
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Example 4.8. Let X = S′(R) and h = Wt0 . Then

(4.6) Wt0 ·Wt = Wt0♢Wt + D(Wt0) = Wt0♢Wt + dt0(t)

holds in S′(R)⊗S′(R)⊗(S)−1. Note that (4.6) is well defined for all (t, t0) ∈ R2,
except for t = t0, where the Dirac delta distribution dt0(t) = d(t − t0) ∈
S′(R) ⊗ S′(R) has its singularity. It is possible to give meaning to dt0(t0) =∑∞

n=1 ξn(t0)
2 as the point value of a distribution in the sense of Colombeau

generalized numbers. Thus, in Colombeau sense, it will be possible to define
W 2

t = W♢2
t + dt(t). For the Colombeau theory, we refer the reader to [5, 11].

The previous theorem states that the Malliavin derivative indicates the
speed of change between the ordinary product and the Wick product.

A generalization of Theorem 4.6 can be obtained by replacing white noise
with an arbitrary process of first chaos order, i.e. considering f ∈ H1 and
comparing the difference between h · f and h♢f . This will be done in Theorem
5.10 in the next section.

Remark 4.9. Note that if a stochastic process h belongs to the Wiener chaos
space

⊕m
i=0 Hi for some m ∈ N, then the unique solution u of the equation

D(u) = h belongs to the Wiener chaos space
⊕m+1

i=0 Hi.

Remark 4.10. It is easy to check that if ψ ∈ S−l(R) is given by ψ =
∑∞

i=1 ψiξi,
then δ(ψ) ∈ (S)−1,−l and it is given by δ(ψ) =

∑∞
i=1 ψiHε(i) . Moreover, one

can define the Wick version of the stochastic exponential:

exp♢ δ(ψ) =
∞∑

k=0

δ(ψ)♢k

k!
=
∑

α∈I

ψα

α!
Hα, where ψα =

∞∏

i=1

ψαi
i .

In [18] we have proven that the stochastic exponentials are eigenvectors of
the Malliavin derivative corresponding to the eigenvalue ψ, i.e. the process
u = ũ0 ⊗ exp♢ δ(ψ) ∈ X ⊗ S−l(R) ⊗ (S)−1,−l is the unique solution to the
equation {

Du = ψ ⊗ u, ψ ∈ S′(R)
Eu = ũ0, ũ0 ∈ X

.

5. The Skorokhod integral

Theorem 5.1. ([20, 24]) Let f be a process with zero expectation and chaos
expansion representation of the form f =

∑
α∈I,|α|≥1

fα ⊗Hα, fα ∈ X. Then the

integral equation

(5.1) δ(u) = f,

has a unique solution u given by

(5.2) u =
∑

α∈I

∑

k∈N
(αk + 1)

fα+ε(k)

|α+ ε(k)| ⊗ ξk ⊗ Hα.

Moreover, the following holds:
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1. If f ∈ X⊗(S)−1,−p, p ∈ N, then u ∈ X⊗S−l(R)⊗(S)−1,−p, for l > p+1.

2. If f ∈ X ⊗ (S)1,p, p ∈ N, then u ∈ Dom(l,p)(δ), for l < p− 1.

3. If f ∈ X ⊗ (L)2, then u ∈ Dom0(δ).

Proof. 1. We seek for the solution inRange−(D). It is clear that u ∈ Range−(D)
is equivalent to u = D(ũ), for some ũ. This approach is general enough, since ac-
cording to Theorem 4.1, for all u ∈ X⊗S′(R)⊗(S)−1 there exists ũ ∈ Dom−(D)
such that u = D(ũ) holds. Thus, equation (5.1) is equivalent to the system of
equations {

u = D(ũ),
R (ũ) = f.

The solution to R(ũ) = f is given by

ũ = ũ0 +
∑

α∈I, |α|≥1

fα

|α| ⊗ Hα,

where ũ(0,0,0,...) = ũ0 can be chosen arbitrarily. Now, the solution of the initial
equation (5.1) is obtained after applying the operator D, i.e.

u = D (ũ) =
∑

α∈I, |α|≥1

∑

k∈N
αk

fα

|α| ⊗ ξk ⊗ Hα−ε(k)

=
∑

α∈I

∑

k∈N
(αk + 1)

fα+ε(k)

|α+ ε(k)| ⊗ ξk ⊗ Hα.

It remains to prove the convergence of the solution (5.2) in X ⊗ S′(R) ⊗
(S)−1. Under the assumption f ∈ X ⊗ (S)−1,−p, for some p > 0, we prove first
that ũ ∈ Dom−p(D). Clearly,

∥ũ∥2
Dom−p(D) =

∑

α∈I
|α|2 ∥ũα∥2

X (2N)−pα

=
∑

α∈I, |α|>0

|α|2 ∥fα∥2
X

|α|2 (2N)−pα

=
∑

α∈I, |α|>0

∥fα∥2
X (2N)−pα < ∞.

Hence, the convergence of the solution u in the space X ⊗ S−l ⊗ (S)−1,−p, for
l > p+ 1 follows from

∥u∥2
X⊗S−l⊗(S)−1,−p

=
∑

α∈I

∑

k∈N

(αk + 1)2

|α+ ε(k)|2 ∥fα+ε(k)∥2
X ∥ξk∥2

−l (2N)−pα

≤
∑

α∈I, |α|>0

∑

k∈N
∥fα∥2

X (2k)−l (2N)−p(α−ε(k))

≤ M
∑

α∈I
∥fα∥2

X (2N)−pα < ∞,
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since M =
∑
k∈N

(2k)p−l is finite for l > p+ 1.

2. The form of the solution (5.2) is obtained in a similar way as in the previ-
ous case. We prove the convergence of the solution u in the space Dom(l,p)(δ).
First we prove that ũ ∈ Domp(D) and then u ∈ Dom(l,p)(δ) for appropriate
l ∈ N. We obtain

∥ũ∥2
Domp(D) =

∑

α∈I
α!2 ∥uα∥2

X (2N)pα

=
∑

α∈I,|α|>0

α!2
∥fα∥2

X

|α|2 (2N)pα

≤
∑

α∈I,|α|>0

α!2 ∥fα∥2
X (2N)pα = ∥f∥2

X⊗(S)1,p
< ∞

and thus ũ ∈ Dom+(D). Now,

∥u∥2
Dom(l,p)(δ)

=
∑

α∈I

∑

k∈N
α!2 (αk + 1)4

∥fα+ε(k)∥2
X

|α+ ε(k)|2 (2k)l (2N)pα

=
∑

α∈I,|α|>0

∑

k∈N
α!2 α2

k

∥fα∥2
X

|α|2 (2k)l (2N)p(α−ε(k))

≤
∑

α∈I,|α|>0

α!2 ∥fα∥2
X (2N)pα

∑

k∈N
α2

k

1

|α|2 (2k)l (2k)−p

≤ C ∥f∥2
X⊗(S)1,p

< ∞,

since C =
∑
k∈N

(2k)l−p < ∞ for p > l + 1. In the second step we used that

(α− ε(k))! α2
k = α! αk, and in the fourth step we used αk ≤ |α|.

3. In this case we have

∥ũ∥2
Dom0(D) =

∑

α∈I
|α|α! ∥uα∥2

X =
∑

α∈I,|α|>0

|α|α!
∥fα∥2

X

|α|2

≤
∑

α∈I,|α|>0

α! ∥fα∥2
X = ∥f∥2

X⊗(L)2 < ∞

and thus ũ ∈ Dom0(D). Also,

∥u∥2
Dom0(δ)

=
∑

α∈I

∑

k∈N
α! (αk + 1)3

∥fα+ε(k)∥2
X

|α+ ε(k)|2 =
∑

α∈I,|α|>0

∑

k∈N
α!α2

k

∥fα∥2
X

|α|2

=
∑

α∈I,|α|>0

α!

(∑

k∈N

α2
k

|α|2

)
∥fα∥2

X ≤ ∥f∥2
X⊗(L)2 < ∞,

since for |α| > 0 the estimate

∑
k∈N

α2
k

|α|2 ≤
(
∑
k∈N

αk)2

|α|2 = 1. holds. �
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Remark 5.2. If a stochastic process f belongs to the Wiener chaos space⊕m
i=1 Hi for some m ∈ N, then the solution u of the equation (5.1) belongs to

the Wiener chaos space
⊕m−1

i=0 Hi. Especially, if f is a quadratic Gaussian ran-
dom process, i.e. an element of H2, then the solution u to (5.1) is a Gaussian
process.

Corollary 5.3. Each process f ∈ X ⊗ (S)±1, resp. f ∈ X ⊗ (L)2, can be
represented as

f = Ef + δ(u)

for some u ∈ X ⊗ S′(R) ⊗ (S)±1, resp. u ∈ X ⊗ L2(R) ⊗ (L)2.

Proof. The assertion follows for u = D(R−1(f − Ef)). �

Note that the latter result reduces to the celebrated Itô representation the-
orem (see e.g. [13, 41]) in the case when f is a square integrable adapted
process.

Remark 5.4. In [47] a more general formula appears for the f ∈ (L)2 case, which
is equivalent to the classical Wiener-Itô chaos expansion. For f ∈ (L)2 there
exist uk, k ∈ N, such that each uk is a square integrable function symmetric in
all arguments,

f = Ef +
∞∑

k=1

δ(k)(uk),

and uk are given by

uk =
1

k!
E(D(k)f).

Moreover, if f is given by the chaos expansion f =
∑

α∈I fαHα, then

uk =
∑

|α|=k fαξ
⊗̂α, where ξ⊗̂α = ξ⊗̂α1

1 ⊗̂ξ⊗̂α2
2 ⊗̂ · · · and ⊗̂ denotes the sym-

metric tensor product.

Remark 5.5. Since Gaussian processes play an important role in white noise
analysis, we elaborate the explicit form of solutions in special cases for m = 2
and for m = 3.

1. First, assuming that the process f has zero expectation and a chaos
expansion in the Wiener chaos space of maximal order two, i.e.

f =
∑

α∈I,1≤|α|≤2

fα ⊗ Hα ∈ H1 ⊕ H2, fα ∈ X,

the solution u of the equation (5.1) belongs to the Wiener chaos space of
order one u ∈ H0 ⊕ H1, i.e. it is a Gaussian process. Clearly, from (5.2)
we obtain the coefficients uα,k, for lengths |α| ≤ 1 and k ∈ N. Therefore,
for α = (0, 0, ....) the coefficients are

(5.3) u(0,0,...),k = fε(k) ,
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and for α = ε(j), j ∈ N the coefficients are

(5.4) uε(j),k =





f2ε(j) , k = j

1
2 fε(j)+ε(k) , k ̸= j

.

Note that the coefficients of the solution are symmetric, i.e.
uε(j),k = uε(k),j = 1

2 fε(j)+ε(k) , k ̸= j, k, j ∈ N. Thus the solution of
(5.1) is given by

u = u0 +
∞∑

k=1

f2ε(j) ⊗ ξj ⊗Hε(j) +
1

2

∞∑

j=1

∞∑

k=1
k ̸=j

fε(j)+ε(k) ⊗ ξk ⊗Hε(j)

with the generalized expectation

u0 =
∞∑

k=1

fε(k) ⊗ ξk.

2. If f ∈ H1 ⊕ H2 ⊕ H3, then the solution u belongs to the Wiener chaos
space of maximal order two H0 ⊕ H1 ⊕ H2, i.e. can be expressed in
terms of multi-indices of length zero, one and two. The coefficients of
the constant part of the solution (the generalized expectation), obtained
for |α| = 0, are given by (5.3) and of the Gaussian part of the solution,
obtained for |α| = 1, are represented in the form (5.4). For |α| = 2 two
cases may occur, α = 2ε(i), i ∈ N or α = ε(i) + ε(j), i ̸= j. Then, the
coefficients are represented by

u2ε(i),k =

{
f3ε(i) , k = i
2
3 f2ε(i)+ε(k) , k ̸= i

, k ∈ N, and

uε(i)+ε(j),k =





2
3f2ε(i)+ε(j) , k = i
2
3fε(i)+2ε(j) , k = j
1
3 fε(i)+ε(j)+ε(k) , k ̸= i, k ̸= j

, k ∈ N.

3. In general, for any α ∈ I, |α| = n the coefficients are given in the form

u(n−1)ε(k),k = fnε(k) , and u
ε(i1)+ε(i2)+...+ε(in−1),k

=

=





1
n fε(i1)+ε(i2)+...+ε(in−1)+ε(k) , k ̸∈ {i1, i2, ..., in−1}
2
n f2ε(i1)+ε(i3)+...+ε(in−1)+ε(k) , k = i1 ̸∈ {i2, ..., in−1}
3
n f3ε(i1)+ε(i4)+...+ε(in−1)+ε(k) , k = i1 = i2 ̸∈ {i3, ..., in−1}

...
n−1

n f(n−1)ε(i1)+εk , k = i1 = i2 = ... = in−2 ̸= in−1

,

for k, i1, i2, ..., in−1, n ∈ N.

Example 5.6. We provide some examples as illustrations for the integral
equation (5.1).
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1. The solution of the equation

δu = Bt0(ω)

belongs to the Wiener chaos space of order zero and it is obtained in the
form

u(t) =
∑

k∈N

∫ t0

0

ξk(t)dt ξk(t) = κ[0,t0](t),

i.e. it is the characteristic function of the interval [0, t0].

2. Consider the equation with singular white noise

(5.5) δu = Wt0(ω),

where Wt0(ω) =
∞∑

k=1

ξk(t0)Hε(k) . It is clear that Wt0 belongs to the

Wiener chaos space of order one. Hence the solution of (5.5) belongs to
the Wiener chaos space of order zero. From (5.2) we obtain the chaos
expansion form of the solution

u(t) =
∑

k∈N
u(0,0,...),k ξk(t)H0(ω)

=
∑

k∈N
ξk(t0) ξk(t) = dt0(t),

which is the Dirac delta function concentrated at t0.

3. Let δu =
∞∑

j=1

H2ε(j)(ω). The solution belongs to the Wiener chaos space

of order one. From (5.2) we obtain the form of the coefficients

uε(j),k =

{
0, j ̸= k

f2ε(j) , j = k
=

{
0, j ̸= k
1, j = k

.

Thus the solution is obtained in the form

u(t, ω) =
∑

j∈N
uε(j),j ξj(t) Hε(j) =

∑

j∈N
ξj(t) Hε(j) = Wt(ω)

and represents singular white noise.

4. Consider the equation

δu =
1

2
B♢2

t0 (ω),

with right hand side 1
2 B

♢2
t0 (ω) = 1

2 (B2
t0(ω) − t0) in the Wiener chaos

space of order two. The solution will belong to the chaos space of order
one, i.e. it will be a Gaussian process. Since

1

2
B♢2

t0 =
1

2

∞∑

k=1

∞∑

l=1

(∫ t0

0

ξk(t)dt

)(∫ t0

0

ξl(s)ds

)
Hε(k)+ε(l) ,
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by symmetry of the coefficients it follows that

fε(l)+ε(k) = fε(k)+ε(l) =
1

2

(∫ t0

0

ξk(t)dt

)(∫ t0

0

ξl(s)ds

)
.

By partial integration we obtain

∫ t0

0

(∫ t

0

ξk(s)ds

)
ξl(t)dt =

(∫ t0

0

ξk(s)ds

)(∫ t0

0

ξl(s)ds

)

−
∫ t0

0

(∫ t

0

ξl(s)ds

)
ξk(t)dt,

i.e. by symmetry of k and l:

∫ t0

0

(∫ t

0

ξk(s)ds

)
ξl(t)dt =

∫ t0

0

(∫ t

0

ξl(s)ds

)
ξk(t)dt

=
1

2

(∫ t0

0

ξk(s)ds

)(∫ t0

0

ξl(s)ds

)
.

Now, for each j ∈ N, by (5.4) we obtain

uε(j),k =
1

2
(fε(j)+ε(k) + fε(k)+ε(j)) =

1

2

(∫ t0

0

ξk(t)dt

)(∫ t0

0

ξj(s)ds

)

=

∫ t0

0

(∫ t

0

ξj(s)ds

)
ξj(t)dt.

Thus,

u(t, ω) =
∞∑

j=1

∞∑

k=1

(∫ t0

0

(∫ t

0

ξj(s)ds

)
ξk(t)dt

)
⊗ ξk(t) ⊗Hε(j)(ω)

=

∞∑

j=1

(∫ t

0

ξj(s)ds

)
κ[0,t0](t) ⊗Hε(j)(ω)

= Bt(ω)κ[0,t0](t).

Note that the Skorokhod integral coincides with the Itô integral for which
it is well-known that

∫ t0
0
Bt dBt = 1

2 (B2
t0(ω) − t0).

5. Similarly to the previous case, the equation

δu =
1

2
W♢2

t0 (ω)

has the solution

u(t, ω) = Wt(ω)δt0(t).
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Remark 5.7. Note that the operators D and δ are not inverse operators. From
the previous examples we have seen, e.g. that for Z =

∑∞
k=1H2ε(k) we have

D( 1
2Z) = Wt, while δ(Wt) = Z. Also, D( 1

2B
♢2
t0 ) = Bt0κ[0,t0], while δ(Bt0κ[0,t0])

= Bt0δ(κ[0,t0]) = B2
t0 = B♢2

t0 + t0. The ”disturbing” factor 1
2 is a consequence

of the fact that Z and B♢2
t belong to the Wiener chaos space H2.

It is also clear that R( 1
2Z) = δ(D( 1

2Z) = δ(Wt) = Z and R( 1
2B

♢2
t0 ) =

δ(D( 1
2B

♢2
t0 )) = δ(Bt0κ[0,t0]) = B2

t0 = B♢2
t0 + t0, which are both in compliance

with R(Hα) = |α|Hα and Theorem 3.1.
The operators D and δ do not commute, which can easily be seen from

D(δ(Wt)) = D(Z) = 2Wt and δ(D(Wt)) = δ(dt) = Wt.

Theorem 5.8. Let u ∈ X ⊗ S′(R) ⊗ (S)−1. If u ∈ Dom−(D), then δ(u) ∈
Dom−(D) and the following relation holds:

(5.6) D(δu) = u+ δ(Du).

Proof. Let u be of the form u =
∑

α∈I

∞∑
k=1

uα,k ⊗ ξk ⊗ Hα. Then δ(u) =

∑
α∈I

∞∑
k=1

uα,k ⊗Hα+ε(k) , and consequently

D(δ(u)) =
∑

α∈I

∞∑

k=1

uα,k

∞∑

i=1

(α+ ε(k))i ⊗ ξi ⊗Hα+ε(k)−ε(i)

=
∑

α∈I

∞∑

k=1

uα,k


(αk + 1) ⊗ ξk ⊗Hα +

∑

i ̸=k

αi ⊗ ξi ⊗Hα+ε(k)−ε(i)




=
∑

α∈I

∞∑

k=1

uα,k ⊗ ξk ⊗Hα +
∑

α∈I

∞∑

k=1

∞∑

i=1

αiuα,k ⊗ ξi ⊗Hα+ε(k)−ε(i)

= u+ δ(D(u)).

The latter equality follows from D(u) =
∑

α∈I

∞∑

i=1

αi

( ∞∑

k=1

uα,k ⊗ ξk

)
⊗ ξi ⊗

Hα−ε(i) ∈ X ⊗ S′(R) ⊗ S′(R) ⊗ (S)−1 which implies

δ(D(u)) =
∑

α∈I

∞∑

i=1

∞∑

k=1

αiuα,k ⊗ ξi ⊗Hα−ε(i)+ε(k) .

Since u ∈ Dom−(D), from Theorem 2.19 it follows that Du ∈ Dom−(δ).
Theorem 2.22 ensures that the result remains in X ⊗ S′(R) ⊗ (S)−1, thus the
right hand side of (5.6) is well defined and belongs to X ⊗S′(R)⊗ (S)−1. This
means that the left hand side is also an element in X ⊗ S′(R) ⊗ (S)−1, thus
δ(u) must be in the domain of D. �
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Remark 5.9. Note that if u ∈ X ⊗ L2(R) ⊗ (S)−1, then

δ(u) =

∫

R
u♢Wt dt,

where the right hand side is interpreted as the X-valued Bochner integral in the
Riemann sense. This is in accordance with the known fact that Itô-Skorokhod
integration with the rules of Itô integration (Itô’s calculus) generates the same
results as integration interpreted in the classical Riemann sense following the
rules of ordinary calculus, if the integrand is interpreted as the Wick product
with white noise. For example,

∫

[0,t0]

BtdBt = δ(κ[0,t0](t)Bt) =

∫

[0,t0]

Bt♢Wtdt =

∫

[0,t0]

Bt♢B′
tdt

=
1

2
B♢2

t0 =
1

2
(B2

t0 − t0).

The general case follows easily from the definition of the Skorokhod integral.
If u =

∑
α∈I uα ⊗Hα =

∑
α∈I

∑∞
k=1 uα,k ⊗ ξk ⊗Hα is in X ⊗ L2(R) ⊗ (S)−1

then uα,k =
∫

R uα(t)ξk(t)dt for all α ∈ I, k ∈ N. Thus,

δ(u) =
∑

α∈I

∞∑

k=1

uα,k ⊗Hα+ε(k) =
∑

α∈I

∞∑

k=1

∫

R
uα(t)ξk(t)dt⊗Hα+ε(k)

=

∫

R

(∑

α∈I

∞∑

k=1

uα(t)ξk(t) ⊗Hα+ε(k)

)
dt

=

∫

R

(∑

α∈I
uα(t) ⊗Hα

)
♢
( ∞∑

k=1

ξk(t) ⊗Hε(k)

)
dt

=

∫

R
u♢Wt dt.

The following theorem extends the result of Theorem 4.6 and reflects a nice
connection between the Wick product and the ordinary product if one of the
multiplicands is a Gaussian process.

Theorem 5.10. ([20])

(a) Let f ∈ X ⊗ (S)−1 be a Gaussian process, i.e. an element of H0

⊕H1

of the form f =
∑∞

k=0 fkHε(k) . Then, for any h ∈ X ⊗ (S)−1 of the form
h =

∑
α∈I hαHα,

(5.7) h · f − h♢f =
∑

α∈I

∑

k∈N
hα+ε(k)fk(αk + 1)Hα

holds, where the right hand side is an element in X ⊗ (S)1 if only finitely
many of its coefficients are nonzero, otherwise it is understood as a formal
(not necessarily convergent) expansion. Some special cases under which
it is a convergent expansion in X ⊗ (S)−1 are provided below:
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(b) In particular, if g ∈ X ⊗ S(R), where g denotes the unique solution to
δ(g) = f , then

h · δ(g) − h♢δ(g) = ⟨D(h), g⟩
holds in X ⊗ (S)−1.

(c) In particular, if h ∈ X ⊗ (S)1 and g ∈ X ⊗ S′(R), where g denotes the
unique solution to δ(g) = f , then

h · δ(g) − h♢δ(g) = ⟨g,D(h)⟩

holds in X ⊗ (S)−1.

(d) In case g ∈ X ⊗ S(R) and D(h) ∈ X ⊗ L2(R) ⊗ (S)−1, as well as in the
case g ∈ X ⊗L2(R) and D(h) ∈ X ⊗L2(R) ⊗ (S)1, formula (5.7) reduces
to

h · δ(g) − h♢δ(g) =

∫

R
g(t) · D(h)(t) dt.

Proof. (a) Assume E(f) = f0 = 0. Then, according to Theorem 5.1 there exists
a unique g such that δ(g) = f and moreover this g is given by g =

∑∞
k=1 fkξk

as an element of X ⊗ S′(R). Thus,

h♢f = h♢δ(g) =
∑

γ∈I

∞∑

n=1

hγ−ε(n)fnHγ

and

h · δ(g) =
∑

α∈I

∞∑

n=1

hα−ε(n)fnHα−ε(n)Hε(n)

=
∑

α∈I

∞∑

n=1

hα−ε(n)fn(Hα + (αn − 1)Hα−2ε(n)).

This implies

h · δ(g) − h♢δ(g) =
∑

α∈I

∞∑

n=1

hα−ε(n)fn(αn − 1)Hα−2ε(n)

=
∑

α∈I

∞∑

n=1

hα+ε(n)fn(αn + 1)Hα.

Now, for arbitrary f let f̃ = f − E(f) and g̃ such that f = E(f) + δ(g̃).
Since for constants the Wick product and the ordinary product coincide, we
have

h · f − h♢f = h · E(f) + h · δ(g̃) − h♢E(f) − h♢δ(g̃) = h · δ(g̃) − h♢δ(g̃)

=
∑

α∈I

∞∑

n=1

hα+ε(n)fn(αn + 1)Hα.
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Convergence of the series on the right hand side of (5.7) can be proven
only in the special cases (b), (c) and (d). For example, if (b) holds, then

g =
∞∑

k=1

fkξk and fk = ⟨ξk, g⟩, k ∈ N, which reduces to fk =
∫

R g(t)ξk(t)dt in

case of g ∈ L2(R) and since D(h) =
∑

α∈I

∞∑

n=1

hα+ε(n)(αn +1)ξnHα, we may write

the right hand side of (5.7) as

∑

α∈I

∞∑

n=1

hα+ε(n)(αn + 1)⟨ξn, g⟩Hα = ⟨
∑

α∈I

∞∑

n=1

hα+ε(n)(αn + 1)ξnHα, g⟩

= ⟨D(h), g⟩.

Assume that h ∈ X ⊗ (S)−1,−p for some p > 0 and that g ∈ X ⊗ Sl(R) for
all l > 0. Then h · δ(g) − h♢δ(g) =

∑
α∈I

∑∞
n=1 hαfnαnHα−ε(n) is well defined

in X ⊗ (S)−1,−q for q ≥ p+ 2. This follows from the fact that |α| ≤ (2N)α and
thus

∑

α∈I

∞∑

n=1

∥hα∥2
X∥fn∥2

X |αn|2(2N)−q(α−ε(n))

=
∑

α∈I

∞∑

n=1

∥hα∥2
X∥fn∥2

X |αn|2(2N)−qα(2n)q

≤
∑

α∈I
∥hα∥2

X(2N)−(q−2)α
∞∑

n=1

∥fn∥2
X(2n)q

≤
∑

α∈I
∥hα∥2

X(2N)−pα
∞∑

n=1

∥fn∥2
X(2n)l<∞

for q − 2 ≥ p and q ≤ l. Since l is arbitrary this holds for all q ≥ p+ 2.
The proofs of (c) and (d) are similar. �

Remark 5.11. Especially, if f1, f2 are both Gaussian processes such that
fi = δ(gi), gi ∈ X ⊗ L2(R), i = 1, 2, then

δ(g1) · δ(g2) − δ(g1)♢δ(g2) =

∫

R
g1(t)g2(t)dt.

This is in compliance with the (L)2-result from [13].

Example 5.12. For example if g = dt (the Dirac delta distribution) we have
f = δ(dt) = Wt, ⟨dt,D(h)⟩ = D(h)(t) and thus retrieve the result of Theorem
4.6.

From (5.7) it follows that

B2
t −B♢2

t =

∫

R
κ[0,t](s)D(Bt)(s)ds =

∫

R
κ[0,t](s)κ[0,t](s)ds = t.
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Remark 5.13. One might define a new type of ”scalarized” Wick product con-
taining in itself an integral operator, i.e. the scalar product in L2(R) or the
dual pairing ⟨·, ·⟩ of a distribution in S ′(R) and a test function in S(R). Thus,
if a =

∑
α∈I aαHα ∈ L2(R) ⊗ (S)−1, b =

∑
β∈I bβHβ ∈ L2(R) ⊗ (S)−1, then

a�b ∈ (S)−1 is defined by

a�b =
∑

γ∈I

∑

α+β=γ

⟨aα, bβ⟩Hγ .

Similarly, if a ∈ S ′(R)⊗(S)−1, b ∈ S(R)⊗(S)−1, the result will be a�b ∈ (S)−1.
Now, the right hand side of (5.7) can be rewritten as D(h)�D(f). Clearly,

D(h)�D(f) =
∑

α∈I

∑

k∈N
hα+ε(k)(αk + 1)ξkHα�

∑

k∈N
fkξkH(0,0,0,...)

=
∑

γ∈I
⟨
∑

k∈N
hα+ε(k)(αk + 1)ξk,

∑

l∈N
flξl⟩Hγ

=
∑

γ∈I

∑

k∈N
hα+ε(k)(αk + 1)fkHγ ,

since ⟨ξk, ξl⟩ = 1 only for k = l and ⟨ξk, ξl⟩ = 0 for k ̸= l.
Thus, Theorem 5.10 b) - d) state that

h · f = h♢f + D(h)�D(f).

In [14, 31] a more general formula appears in the f, g ∈ X ⊗ (L)2 case,
where the Wick product scalarizes through the n-fold integral:

(5.8) h · f = h♢f +
∑

n∈N

1

n!
(D(n)(h)�D(n)(f)) =

∑

n∈N0

1

n!
(D(n)(h)�D(n)(f)),

under suitable conditions that ensure the convergence of the latter sum.
In a very similar manner to (5.8) it is possible to express the Wick product

through the ordinary product. This has been proved in [14] and used also in
[37]. For f, g ∈ X ⊗ (L)2 it holds that

(5.9) h♢f =
∑

n∈N0

(−1)n

n!
⟨D(n)(h),D(n)(f)⟩,

where ⟨·, ·⟩ denotes the scalar product in L2(R)⊗n.
Both identities: (5.8) and (5.9) can be generalized to the case when

f ∈ Dom+(D) and h ∈ Dom−(D) or vice versa. In this case we interpret
⟨·, ·⟩ as the dual pairing between S′(R)⊗n and S(R)⊗n.

6. Properties of the Malliavin operators

The following theorem states the duality between the Malliavin derivative
and the Skorokhod integral in form of (6.1), which is also called the integration
by parts formula.
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Theorem 6.1. (Duality) Assume that either of the following holds:

(a) F ∈ Dom−(D) and u ∈ Dom+(δ)

(b) F ∈ Dom+(D) and u ∈ Dom−(δ)

(c) F ∈ Dom0(D) and u ∈ Dom0(δ) .

Then the following duality relationship between the operators D and δ holds:

(6.1) E (F · δ(u)) = E (⟨DF, u⟩) ,

where (6.1) denotes the equality of the generalized expectations of two objects
in X ⊗ (S)−1 and ⟨·, ·⟩ denotes the dual paring of S′(R) and S(R).

Proof. First we note that Theorem 2.16 implies that in all three cases (a), (b)
and (c), the product on the left hand side of (6.1) is well defined and F · δ(u)
is an element in X ⊗ (S)−1. Also, the application of the dual pairing in S′(R)
will make ⟨D, u⟩ also an element in X⊗(S)−1. Now we prove that both objects
have the same expectation.

Let u ∈ Dom(δ) be given in its chaos expansion form u =
∑

β∈I

∑
j∈N

uβ,j ⊗

ξj ⊗ Hβ . Then δ(u) =
∑

β∈I

∑
j∈N

uβ,j ⊗ Hβ+ε(j) . Let F ∈ Dom(D) be given as

F =
∑

α∈I
fα ⊗Hα. Then D(F ) =

∑
α∈I

∑
k∈N

(αk + 1) fα+ε(k) ⊗ ξk ⊗Hα. Therefore

we obtain

F · δ(u) =
∑

α∈I

∑

β∈I

∑

j∈N
fαuβ,j ⊗Hα ·Hβ+ε(j)

=
∑

α∈I

∑

β∈I

∑

j∈N
fαuβ,j ⊗

∑

γ≤min{α,β+ε(j)}
γ!

(
α

γ

)(
β + ε(j)

γ

)
Hα+β+ε(j)−2γ .

The generalized expectation of F · δ(u) is the zeroth coefficient in the pre-
vious sum, which is obtained when α+β+ ε(j) = 2γ and γ ≤ min{α, β+ ε(j)},
i.e. only for the choice β = α− ε(j) and γ = α, j ∈ N. Thus,

E (F · δ(u)) =
∑

α∈I,|α|>0

∑

j∈N
fαuα−ε(j), j · α! =

∑

α∈I

∑

j∈N
fα+ε(j)uα,j · (α+ε(j))! .

On the other hand,

⟨D(F ), u⟩ =
∑

α∈I

∑

β∈I

∑

k∈N

∑

j∈N
(αk + 1) fα+ε(k) uβ,j ⟨ξk, ξj⟩Hα ·Hβ

=
∑

α∈I

∑

β∈I

∑

j∈N
(αj + 1) fα+ε(j) uβ,j

∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ

114 Section 1.2



Chaos expansion methods in Malliavin calculus: A survey of recent results 85

and its generalized expectation is obtained for α = β = γ. Thus

E (⟨D(F ), u⟩) =
∑

α∈I

∑

j∈N
(αj + 1) fα+ε(j)uα,j · α!

=
∑

α∈I

∑

j∈N
fα+ε(j)uα,j · (α+ ε(j))!

= E (F · δ(u)) .

�

The next theorem states a higher order duality formula, which connects the
kth order iterated Skorokhod integral and the Malliavin derivative operator of
kth order, k ∈ N.

Theorem 6.2. Let f ∈ Dom+(D(k)) and u ∈ Dom− (δ(k)), or alternatively let
f ∈ Dom−(D(k)) and u ∈ Dom+ (δ(k)), k ∈ N. Then the duality formula

E
(
f · δ(k)(u)

)
= E

(
⟨D(k) (f), u⟩

)

holds, where ⟨·, ·⟩ denotes the duality pairing of S′(R)⊗k and S(R)⊗k.

Remark 6.3. The previous theorems are special cases of a more general identity.
It can be proven that, under suitable assumptions which make all the products
well defined, the following formulae hold:

(6.2) F δ(u) = δ(Fu) + ⟨D(F ), u⟩,

(6.3) F δ(k)(u) =

k∑

i=0

(
k

i

)
δ(k−i)(⟨D(i)F, u⟩), k ∈ N.

The special case of (6.3) when u ∈ Dom0(δ) i.e. when u is square integrable
has been proven in [33]. Taking the expectation in (6.2) and using the fact that
δ(Fu) = 0, the duality formula (6.1) follows.

Example 6.4. Let ψ ∈ L2(R). In Remark 4.10 we have shown that the
stochastic exponentials exp♢{δ(ψ)} are eigenvalues of the Malliavin derivative
i.e. D(exp♢{δ(ψ)}) = ψ · exp♢{δ(ψ)}. We will prove that they are also eigen-
values of the Ornstein-Uhlenbeck operator. Indeed, using (6.2) we obtain

R(exp♢{δ(ψ)}) = δ(ψ · exp♢{δ(ψ)})=δ(ψ) exp♢{δ(ψ)} − ⟨D(exp♢{δ(ψ)}), ψ⟩
= δ(ψ) exp♢{δ(ψ)} − ⟨ψ · exp♢{δ(ψ)}, ψ⟩
= (δ(ψ) − ∥ψ∥2

L2(R)) exp♢{δ(ψ)}.

In the next theorem we prove a weaker type of duality instead of (6.1)
which holds if F ∈ Dom−(D) and u ∈ Dom−(δ) are both generalized processes.
Recall that ≪, ·, · ≫r denotes the scalar product in (S)0,r.
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Theorem 6.5. (Weak duality, [24]) Let F ∈ Dom−p(D) and u ∈ X⊗(S)−1,−q

for p, q ∈ N. For any φ ∈ S−n(R), n ∈ N, it holds that

≪ ⟨DF,φ⟩−r, u ≫−r = ≪ F, δ(φu) ≫−r,

for r > 1 + max{q, p+ 1, n+ 1}.
Proof. Let F =

∑
α∈I fαHα ∈ X⊗ (S)−1,−p, u =

∑
α∈I uαHα ∈ X⊗ (S)−1,−q

and φ =
∑

k∈N φkξk ∈ S−n(R). Let r > 1 + max{q, p + 1, n + 1}. Then, for
k > p + 1, DF ∈ X ⊗ S−k(R) ⊗ (S)−1,−p ⊆ X ⊗ S−(r−1)(R) ⊗ (S)−1,−(r−1) ⊆
X ⊗ S−r(R) ⊗ (S)0,−r. Also, φu ∈ X ⊗ S−n(R) ⊗ (S)−1,−q implies that for
w > max{q, n+ 1}, δ(φu) ∈ X ⊗ (S)−1,−w ⊆ X ⊗ (S)−1,−(r−1) ⊆ X ⊗ (S)0,−r.
Clearly, φ ∈ S−n(R) ⊆ S−r(R). Thus,

⟨DF,φ⟩−r = ⟨
∑

k∈N

∑

α∈I
(αk + 1)fα+ε(k)Hα ⊗ ξk,

∑

k∈N
φkξk⟩−r

=
∑

k∈N
φk

∑

α∈I
(αk + 1)fα+ε(k)Hα (2k)−r,

and consequently

≪ ⟨DF,φ⟩−r, u ≫−r

= ≪
∑

α∈I

∑

k∈N
φk(αk + 1)fα+ε(k)(2k)−rHα,

∑

α∈I
uαHα ≫−r

=
∑

α∈I
α!uα

∑

k∈N
φk(αk + 1)fα+ε(k)(2k)−r(2N)−rα.

On the other hand,

φu =
∑

α∈I

∑

k∈N
uαφkξk ⊗Hα

and
δ(φu) =

∑

α>0

∑

k∈N
uα−ε(k)φkHα.

Thus,

≪ F, δ(φu) ≫−r = ≪
∑

α∈I
fαHα,

∑

α>0

∑

k∈N
uα−ε(k)φkHα ≫−r

=
∑

α>0

α!fα

∑

k∈N
uα−ε(k)φk(2N)−rα

=
∑

β∈I

∑

k∈N
(β + ε(k))!fβ+ε(k)uβφk(2N)−r(β+ε(k))

=
∑

β∈I

∑

k∈N
β!(βk + 1)fβ+ε(k)uβφk(2k)−r(2N)−rβ ,

which completes the proof.
�
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The following theorem states the product rule for the Ornstein-Uhlenbeck
operator. Its special case for F,G ∈ Dom0(R) states that F · G is also in
Dom0(R) and (6.4) holds; the proof can be found e.g. in [16].

Theorem 6.6. (Product rule for R)

a) Let F ∈ Dom+(R) and G ∈ Dom−(R), or vice versa. Then F · G ∈
Dom−(R) and

(6.4) R(F ·G) = F · R(G) +G · R(F ) − 2 · ⟨DF,DG⟩,

holds, where ⟨·, ·⟩ is the dual paring between S′(R) and S(R).

b) Let F,G ∈ Dom−(R). Then F ·G ∈ Dom−(R) and

(6.5) R(F♢G) = F♢R(G) + R(F )♢G.

Proof. a) First let us note that according to Theorem 2.16, F · R(G) and
G·R(F ) are both well defined and belong toX⊗(S)−1. Similarly, ⟨D(F ),D(G)⟩
belongs to X ⊗ (S)−1, thus the right hand side of (6.4) is in X ⊗ (S)−1, which
means that F ·G ∈ Dom−(R) according to Theorem 3.1.

Now let F =
∑

α∈I
fα ⊗Hα ∈ Dom+(R) and G =

∑
β∈I

gβ ⊗Hβ ∈ Dom−(R).

Then, R(F ) =
∑

α∈I
|α| fα ⊗Hα and R(G) =

∑
β∈I

|β| gβ ⊗Hβ .

The left hand side of (6.4) can be written in the form

R(F ·G) = R


∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ




=
∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
|α+ β − 2γ|Hα+β−2γ

=
∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
(|α| + |β| − 2|γ|)Hα+β−2γ .

On the other hand, the first two terms on the right hand side of (6.4) are

(6.6) R(F ) ·G =
∑

α∈I

∑

β∈I
fα gβ ⊗

∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
|α|Hα+β−2γ

and

(6.7) F · R(G) =
∑

α∈I

∑

β∈I
fα gβ ⊗

∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
|β|Hα+β−2γ .

Since F ∈ Dom+(R) ⊂ Dom+(D) andG ∈ Dom−(R) = Dom−(D) we have
D(F ) =

∑
α∈I

∑
k∈N αk fα ⊗ξk ⊗Hα−ε(k) and D(G) =

∑
β∈I

∑
j∈N βj gβ ⊗ξj ⊗
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Hβ−ε(k) . Thus, the third term on the right hand side of (6.4) is

⟨D(F ),D(G)⟩ = ⟨
∑

|α|>0

∑

k∈N
αk fα ⊗ ξk ⊗Hα−ε(k) ,

∑

|β|>0

∑

j∈N
βj gβ ⊗ ξj ⊗Hβ−ε(j)⟩

=
∑

|α|>0

∑

|β|>0

∑

k∈N

∑

j∈N
αk βj fα gβ ⟨ξk, ξj⟩ ⊗ Hα−ε(k) ·Hβ−ε(j)

=
∑

|α|>0

∑

|β|>0

∑

k∈N
αkβkfαgβ ⊗

∑

γ≤min{α−ε(k),β−ε(k)}
γ!

(
α− ε(k)

γ

)(
β − ε(k)

γ

)
Hα+β−2ε(k)−2γ ,

where we used the fact that ⟨ξk, ξj⟩ = 0 for k ̸= j and ⟨ξk, ξj⟩ = 1 for k = j.
Now we put θ = γ + ε(k) and use the identities

αk ·
(
α− ε(k)

γ

)
= αk ·

(
α− ε(k)

θ − ε(k)

)
= θk ·

(
α

θ

)
, k ∈ N,

and θk · (θ − ε(k))! = θ!. Thus we obtain

⟨D(F ),D(G)⟩ =
∑

α∈I

∑

β∈I

∑

k∈N
fαgβ

∑

θ≤min{α,β}
θ2k (θ − ε(k))!

(
α

θ

)(
β

θ

)
Hα+β−2θ

=
∑

α∈I

∑

β∈I

∑

k∈N
fα gβ

∑

θ≤min{α,β}
θkθ!

(
α

θ

)(
β

θ

)
Hα+β−2θ

=
∑

α∈I

∑

β∈I
fα gβ

∑

θ≤min{α,β}

(∑

k∈N
θk

)
θ!

(
α

θ

)(
β

θ

)
Hα+β−2θ

=
∑

α∈I

∑

β∈I
fα gβ

∑

θ≤min{α,β}
|θ| θ!

(
α

θ

)(
β

θ

)
Hα+β−2θ.

Combining all previously obtained results we now have

R(F ·G) =
∑

α∈I

∑

β∈I
fαgβ

∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
(|α| + |β| − 2|γ|)Hα+β−2γ

=
∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
|α| Hα+β−2γ

+
∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
|β| Hα+β−2γ

− 2
∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
|γ| γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ

= R(F ) ·G+ F · R(G) − 2 · ⟨D(F ),D(G)⟩

and thus (6.4) holds.
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b) If F,G ∈ Dom−(R), then R(F ),R(G) ∈ X⊗ (S)−1. From Theorem 2.15
it follows that R(F )♢G,R(G)♢F ∈ X ⊗ (S)−1. Thus, the right hand side of
(6.5) is in X ⊗ (S)−1 i.e. F♢G ∈ Dom−(R).

From

G♢R(F ) =
∑

γ∈I

∑

α+β=γ

|α|fαgβ Hγ ,

F♢R(G) =
∑

γ∈I

∑

α+β=γ

fα|β|gβ Hγ ,

it follows that

G♢R(F ) + F♢R(G) =
∑

γ∈I
|γ|

∑

α+β=γ

fαgβ Hγ = R(F♢G).

�

Corollary 6.7. Let F ∈ Dom+(R) and G ∈ Dom−(R), or vice versa (inclu-
ding the possibility F,G ∈ Dom0(R)). Then the following property holds:

E(F · R(G)) = E (⟨DF,DG⟩) .

Proof. From the chaos expansion form of R(F ·G) it follows that ER(F ·G) = 0.
Moreover, taking the expectations on both sides of (6.6) and (6.7) we obtain

E (R(F ) ·G) = E (F · R(G)) .

Now, from Theorem 6.6 it follows that

0 = 2E (F · R(G)) − 2E(⟨DF,DG⟩),

and the assertion follows. �

In the classical literature ([29, 35]) it is proven that the Malliavin derivative
satisfies the product rule (with respect to ordinary multiplication) i.e. if F,G ∈
Dom0(D), then F · G ∈ Dom0(D) and (6.8) holds. The following theorem
recapitulates this result and extends it for generalized and test processes, and
extends it also for Wick multiplication [1].

Theorem 6.8. (Product rule for D)

a) Let F ∈ Dom−(D) and G ∈ Dom+(D) or vice versa. Then F · G ∈
Dom−(D) and

(6.8) D(F ·G) = F · DG + DF ·G.

b) Let F,G ∈ Dom−(D). Then F♢G ∈ Dom−(D) and

D(F♢G) = F♢DG + DF♢G.
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Proof. a)

D(F ·G) = D(
∑

α∈I
fαHα ·

∑

β∈I
gβHβ) =

D


∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ


 =

∑

α∈I

∑

β∈I

∑

k∈N
fαgβ

∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
(αk + βk − 2γk) ξkHα+β−2γ−ε(k)

On the other side we have

F · D(G) =
∑

α∈I
fαHα ·

∑

β∈I

∑

k∈N
βk gβξk Hβ−ε(k) =

∑

α∈I

∑

β∈I

∑

k∈N
fαgβ

∑

γ≤min{α,β−ε(k)}
γ!

(
α

γ

)(
β − ε(k)

γ

)
βk ξkHα+β−2γ−ε(k)

and

G · D(F ) =
∑

α∈I

∑

β∈I

∑

k∈N
fαgβ

∑

γ≤min{α−ε(k),β}
γ!

(
α− ε(k)

γ

)(
β

γ

)
αk ξkHα+β−2γ−ε(k) .

Summing up chaos expansions for F · D(G) and G · D(F ) and applying the
identities

αk

(
α− ε(k)

γ

)
= αk · (α− ε(k))!

γ! (α− ε(k) − γ)!
=

α!

γ! (α− γ)!
· (αk − γk)

=

(
α

γ

)
(αk − γk)

and

βk

(
β − ε(k)

γ

)
=

(
β

γ

)
(βk − γk),

for all α, β ∈ I, k ∈ N and γ ∈ I such that γ ≤ min{α, β} and the expression
(αk − γk) + (βk − γk) = αk + βk − 2γk we obtain (6.8).

From Theorem 2.16 it follows that all products on the right hand side
of (6.8) are well defined, thus the right hand side of (6.8) is an element of
X ⊗ S′(R) ⊗ (S)−1. Thus, F ·G ∈ Dom−(D).

b) By definition of the Malliavin derivative and the Wick product it can be
easily verified that

D(F )♢G+ F♢D(G) =
∑

γ∈I

∞∑

k=1

∑

α+β−ε(k)=γ

αkfαgβHγ +
∑

γ∈I

∞∑

k=1

∑

α+β−ε(k)=γ

βkfαgβHγ

=
∑

γ∈I

∞∑

k=1

∑

α+β=γ

γkfαgβHγ−ε(k) = D(F♢G).
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If F,G ∈ Dom−(D), then D(F ),D(G) ∈ X⊗S′(R)⊗ (S)−1. From Theorem
2.15 follows that D(F )♢G and F♢D(G) both belong to X ⊗ S′(R) ⊗ (S)−1.
Thus, F♢G ∈ Dom−(D).

�

A generalization of Theorem 6.8 for higher order derivatives, i.e. the Leib-
nitz formula is given in the next theorem.

Theorem 6.9. Let F,G ∈ Dom−(D(k)), k ∈ N, then F♢G ∈ Dom−(D(k)) and
the Leibnitz rule holds:

D(k) (F♢G) =

k∑

i=0

(
k

i

)
D(i)(F )♢D(k−i)(G),

where D(0)(F ) = F and D(0)(G) = G.
Moreover, if G ∈ Dom+(D(k)) , then F ·G ∈ Dom−(D(k)) and

(6.9) D(k) (FG) =
k∑

i=0

(
k

i

)
D(i)(F ) D(k−i)(G).

Proof. The Leibnitz rule (6.9) follows by induction and applying Theorem 6.8.
Clearly, (6.9) holds also if F,G ∈ Dom0(D(k)). �

Theorem 6.10. Assume that either of the following hold:

• F ∈ Dom−(D), G ∈ Dom+(D) and u ∈ Dom+(δ),

• F,G ∈ Dom+(D) and u ∈ Dom−(δ),

• F,G ∈ Dom0(D) and u ∈ Dom0(δ).

Then the second integration by parts formula holds:

(6.10) E(F ⟨DG, u⟩) + E(G⟨DF, u⟩) = E(F Gδ(u)).

Proof. The assertion (6.10) follows directly from the duality formula (6.1) and
the product rule (6.8). Assume the first case holds when F ∈ Dom−(D),
G ∈ Dom+(D) and u ∈ Dom+(δ). Then F ·G ∈ Dom−(D), too, and we have

E(F Gδ(u)) = E(⟨D(F ·G), u⟩) = E(⟨F · D(G) +G · D(F ), u⟩)
= E(F ⟨D(G), u⟩) + E(G ⟨D(F ), u⟩).

The second and third case can be proven in an analogous way. �

The next theorem states the chain rule for the Malliavin derivative. The
classical (L)2-case has been known throughout the literature and its Wick-
version was introduced in [1].

Theorem 6.11. (Chain rule) Let ϕ be a twice continuously differentiable func-
tion with bounded derivatives.
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1. If F ∈ Dom+(D) (resp. F ∈ Dom0(D)), then ϕ(F ) ∈ Dom+(D) (resp.
ϕ(F ) ∈ Dom0(D)) and the chain rule holds:

(6.11) D (ϕ(F )) = ϕ′(F ) · D(F ).

2. If F ∈ Dom−(D) and ϕ is analytic, then ϕ♢(F ) ∈ Dom−(D) and

(6.12) D (ϕ♢(F )) = ϕ′♢(F )♢D(F ).

Proof. First we prove that (6.11) holds true when ϕ is a polynomial of degree
n, n ∈ N. Then we use the Stone-Weierstrass theorem and approximate a
continuously differentiable function ϕ by a polynomial p̃n of degree n, and
since we assumed that ϕ is regular enough, p̃′

n will also approximate ϕ′.

(i) Denote by qn(x) = xn, n ∈ N and let p(x) =
n∑

k=0

akqk(x) =
n∑

k=0

ak x
k be a

polynomial of degree n with real coefficients a0, a1, ... , an, and an ̸= 0. By
induction on n, we prove the chain rule for qn, i.e. we prove

(6.13) D (pn(F )) = p′
n(F ) · D(F ), n ∈ N.

For n = 1, q1(x) = x and (6.13) holds since

D(q1(F )) = D(F ) = 1 · D(F ) = q′
1(F ) · D(F ).

Assume (6.13) holds for k ∈ N. Then, for qk+1 = xk+1 by Theorem 6.8 we have

D(qk+1(F )) = D(F k+1) = D(F · F k)

= D(F ) · F k + F · D(F k) = D(F ) · F k + F · kF k−1 · D(F )

= (k + 1)F k · D(F ) = q′
k+1(F ) · D(F ).

Thus, (6.13) holds for every n ∈ N.
Since D is a linear operator, (6.13) holds for any polynomial pn, i.e.

D(pn(F )) =

n∑

k=0

akD(qk(F )) =

n∑

k=0

akq
′
k(F ) · D(F ) = p′

n(F ) · D(F ).

(ii) Let ϕ ∈ C2(R) and F ∈ Domp(D), p ∈ N. Then, by the Stone–Weierstrass
theorem, there exists a polynomial p̃n such that

∥ϕ(F ) − p̃n(F )∥X⊗(S)1,p
= ∥ϕ(F ) −

n∑

k=0

akF
k∥X⊗(S)1,p

→ 0

and

∥ϕ′(F ) − p̃n
′
(F )∥X⊗(S)1,p

= ∥ϕ′(F ) −
n∑

k=1

akkF
k−1∥X⊗(S)1,p

→ 0
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as n → ∞.
We denote by Xlp = X ⊗ Sl(R) ⊗ (S)1,p. From (6.13) and the fact that D

is a bounded operator (Theorem 2.19) we obtain (for l < p− 1)

∥D(ϕ(F )) − ϕ′(F ) · D(F )∥X⊗Sl(R)⊗(S)1,p
= ∥D(ϕ(F )) − ϕ′(F ) · D(F )∥Xlp

= ∥D(ϕ(F )) − D(p̃n(F )) + D(p̃n(F )) − ϕ′(F ) · D(F )∥Xlp

≤ ∥D(ϕ(F )) − D(p̃n(F ))∥Xlp
+ ∥D(p̃n(F )) − ϕ′(F )D(F )∥Xlp

= ∥D(ϕ(F ) − p̃n(F ))∥Xlp
+ ∥p̃n

′
(F )D(F ) − ϕ′(F )D(F )∥Xlp

≤ ∥D∥ · ∥(ϕ(F ) − p̃n(F ))∥X⊗(S)1,p
+ ∥p̃n

′
(F ) − ϕ′(F )∥ · ∥D(F )∥X⊗(S)1,p

→ 0,

as n → ∞. From this follows (6.11) as well as the estimate

∥D(ϕ(F ))∥X⊗Sl(R)⊗(S)1,p
≤ ∥ϕ′(F )∥X⊗(S)1,p

· ∥D(F )∥X⊗Sl(R)⊗(S)1,p
< ∞,

and thus ϕ(F ) ∈ Domp(D).
(iii) The proof of (6.12) for the Wick version can be conducted in a similar
manner. According to Theorem 6.8 we have

D(F♢k) = k F♢(k−1)♢D(F ).

If ϕ is an analytic function given by ϕ(x) =
∑∞

k=0 akx
k, then

ϕ′(x) =
∑∞

k=1 akkx
k−1, and thus

ϕ♢(F ) =

∞∑

k=0

akF
♢k, ϕ′♢(F ) =

∞∑

k=1

akkF
♢(k−1).

Thus,

D(ϕ♢(F )) =
∞∑

k=0

akD(F♢k) =
∞∑

k=0

akkF
♢(k−1)♢D(F ) = ϕ′♢(F )♢D(F ).

�

Example 6.12. For example, D(B2
t0) = 2Bt0 · D(Bt0) = 2Bt0 · κ[0,t0](t),

D(B♢2
t0 ) = 2Bt0 · κ[0,t0](t) and D(W♢2

t0 ) = 2Wt0♢D(Wt0) = 2Wt0 · dt0(t), since
the Wick product reduces to the ordinary product if one of the multiplicands
is deterministic. This is in compliance with Example 4.4 and Example 5.6.

Also, D(exp♢(Wt0)) = exp♢(Wt0) · dt0(t), or more generally D(exp♢ δ(h)) =
exp♢ δ(h) · h for any h ∈ S′(R), which verifies once again that the stochastic
exponentials are eigenvectors of the Malliavin derivative (see Remark 4.10).

Example 6.13. Geometric Brownian motion is defined by

Gt0 = G0 · e(µ− 1
2 σ2)t0+σBt0 ,

for some constants µ, σ > 0. Then,

DGt0 = G0 · e(µ− 1
2 σ2)t0 · D(eσBt0 ) = G0 · e(µ− 1

2 σ2)t0 · σ · eσBt0 · D(Bt0)

= G0 · e(µ− 1
2 σ2)t0 · σ · eσBt0 · κ[0,t0](t) = σ ·Gt0 · κ[0,t0](t)

=

{
σ ·Gt0 , t ∈ [0, t0]

0, t /∈ [0, t0]
.
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7. Applications of the Malliavin calculus

One of the first and most important applications of the Malliavin calculus
concerns the existence and smoothness of a density for the probability law of
random variables. Other, more recent applications in finance ([2, 29, 36]) have
been developed for option pricing and computing greeks (greeks measure the
stability of the option price under variations of the parameters) via the Clark-
Ocone formula. A few years ago it was also discovered that Malliavin calculus
is in a close relationship with Stein’s method and can be used for estimating
the distance of a random variable from Gaussian variables.

In this section we provide an overwiev of some applications and capabilities
of the Malliavin calculus.

For simplicity we will assume that X = R.

7.1. Measurability and densities

Let A ∈ B be a Borel set in S′(R). Denote by κA its indicator function i.e.
the random variable κA(ω) = 1 for ω ∈ A and κA(ω) = 0 for ω ∈ Ac. Then
κA =

∑
α∈I aαHα, where aα = E(κA ·Hα), α ∈ I. Especially, a0 = E(κA) =

P (A).

Proposition 7.1. ([35]) κA ∈ Dom0(D) if and only if P (A) = 0 or P (A) = 1.

Proof. Since E(κA) = P (A), the chaos expansion of the indicator function is
κA = P (A) +

∑
α>0 aαHα, aα = E(HακA)

Assume first that P (A) ∈ {0, 1}. Then κA = const a.e. (it is either 0 or 1
a.e.), thus aα = 0 for all α > 0. Clearly, (2.8) is satisfied and κA ∈ Dom0(D).

It remains to prove the other direction, that
∑

α>0 |α|α!|aα|2 cannot be
finite unless aα = 0 for all α > 0.

Assume κA ∈ Dom0(D). Let ϕ ∈ C∞
0 (R) be such that ϕ(t) = t2 for

t ∈ [−1, 1]. According to Theorem 6.11 we have

D(ϕ(κA)) = ϕ′(κA)D(κA).

Since ϕ(κA) = κ2
A = κA, it follows that

D(κA) = 2 · κA · D(κA).

Thus both for ω ∈ A and for ω ∈ Ac we obtain D(κA) = 0. Now, from Corollary
4.2 it follows that κA(ω) = const for almost all ω ∈ Ω. For the chaos expansion
of κA this means that κA = E(κA) = P (A) a.e. and aα = 0 for all α > 0 and
const = P (A). This implies that P (A) is either zero or one. �

Remark 7.2. If P (A) ∈ (0, 1), then κA /∈ Dom0(D). For example, f(ω) =
κ{Bt(ω)>0} /∈ Dom0(D) since P{Bt > 0} ∈ (0, 1).

On the other hand, κA ∈ Dom−(D) regardless of the value of P (A). This
follows from aα = E(κA Hα) ≤ E(Hα) ≤ 1, thus

∥κA∥2
Dom−p(D) ≤

∑

α>0

|α|2(2N)−pα ≤
∑

α>0

(2N)−(p−2)α < ∞, p > 3.
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Remark 7.3. Let A be a closed subspace of S′(R). Denote by σ[A] the sub-σ-
algebra of B generated by A. A random variable f is measurable with respect
to σ[A] if and only if D(f) = 0 a.e. on Ac.

In particular, it can be proven ([3, 17, 35]) that if a stochastic process ft is
adapted to the Brownian filtration At = σ[Bs : s ≤ t], then supp D(ft) = [0, t]
i.e. Dft =

∑
α∈I

∑
k∈N αkfα(t) ⊗ ξk(s) ⊗Hα−ε(k) = 0 for s > t.

Remark 7.4. Let h ∈ L2(R) and let

M(s) = exp♢ δ(hκ[0,s]) = exp

(∫ s

0

h(t)dBt − 1

2

∫ s

0

h2(t)dt

)
, s ≥ 0,

be the stochastic exponential of hκ[0,s]. According to Remark 4.10 it is an
eigenvector of the Malliavin derivative, thus D(M(s)) = h(t)κ[0,s](t)M(s), i.e.

D(M(s)) = h(t)M(s), for t ∈ [0, s].

It is known ([2, 35]) that M(s) is a martingale with respect to the Brownian
filtration, thus for 0 ≤ t ≤ s we have

E(DM(s)|At) = E(h(t)M(s)|At) = h(t)E(M(s)|At) = h(t)M(t).

On the other hand, from Corollary 5.3 it follows that M(s) = E(M) + δ(u) for
u = D(R−1(M − EM)). Since δ(h(t)κ[0,s]M(s)) = δ(D(M(s))) = R(M(s)), it
follows that u = h(t)κ[0,s]M(s), i.e.

M(s) = E(M) +

∫ s

0

h(t)M(t)dBt

= E(M) +

∫ s

0

E(DM(s)|At) dBt.

Since the stochastic exponentials are dense in (L)2 it follows that the latter
formula can be extended to all M ∈ Dom0(D). This result is known as the
Clark-Ocone formula.

Theorem 7.5. (Clark-Ocone formula) Let F ∈ Dom0(D) be adapted to the
Brownian filtration. Then,

F (s) = E(F ) +

∫ s

0

E(DF (s)|At) dBt.

Example 7.6.

B2
T = T+

∫ T

0

E(DB2
T |At)dBt = T+

∫ T

0

E(2BTκ[0,T ]|At)dBt = T+2

∫ T

0

BtdBt,

by the martingale property of Brownian motion.
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Remark 7.7. For the stochastic exponential M it also holds that

D(E(M(s)|At)) = D(M(t)) = h(x)κ[0,t]M(t)

= h(x)κ[0,t]E(M(s)|At) = κ[0,t]E(h(x)κ[0,s]M(s)|At)

= κ[0,t]E(DM(s)|At),

for 0 ≤ t ≤ s. This result extends to all adapted processes: if F ∈ Dom0(D) is
adapted, then E(F |At) ∈ Dom0(D) and

D(E(F (s)|At)) = κ[0,t]E(DF (s)|At).

In the sequel we are going to show that absolutely continuous distribu-
tions can be characterized via the Malliavin derivative and there exists an
explicit formula for the density of the distribution. For this purpose we note
that ∥DF∥2

L2(R) = ⟨DF,DF ⟩L2(R) is an element in (L)2. If F is of the form

F =
∑

α∈I fαHα, then ∥DF∥2
L2(R) =

∑
k∈N

(∑
α∈I fα+ε(k)(αk + 1)Hα

)2
.

Theorem 7.8. ([17]) Let F ∈ Dom0(D) be such that ∥DF∥L2(R) ̸= 0 a.e. and
DF

∥DF∥2 ∈ Dom0(δ). Then for every ϕ ∈ C2
0 (R),

(7.1) E(ϕ′(F )) = E

(
ϕ(F ) · δ

(
DF

∥DF∥2
L2(R)

))
.

Moreover, F is an absolutely continuous random variable and its density φ is
given by

(7.2) φ(t) = E

(
κ{F>t} · δ

(
DF

∥DF∥2
L2(R)

))
.

Proof. Using the chain rule (Theorem 6.11) and the duality relationship
(Theorem 6.1) we obtain

E(ϕ′(F )) = E

(
ϕ′(F )

⟨u,DF ⟩ · ⟨u,DF ⟩
)

= E

(
⟨ u

⟨u,DF ⟩ , ϕ
′(F )DF ⟩

)

= E

(
⟨ u

⟨u,DF ⟩ ,D(ϕ(F ))⟩
)

= E

(
δ

(
u

⟨u,DF ⟩

)
· ϕ(F )

)

holds for any u ∈ Dom0(δ). Especially, for u = DF we obtain (7.1).
Putting ϕ(x) =

∫ x

−∞ κ(a,b)(s)ds, ϕ
′(x) = κ(a,b)(x) into (7.1) (in fact, we

approximate κ(a,b) with a sequence of smooth functions) we obtain by Fubini’s
theorem that

P{a < F < b} = E

(∫ F

−∞
κ(a,b)(s)ds · δ

(
DF

∥DF∥2
L2(R)

))

=

∫ b

a

(
κ{F>s} · δ

(
DF

∥DF∥2
L2(R)

))
ds,
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which proves (7.2).
�

Example 7.9. Let F ∈ (L)2 be a standardized Gaussian random variable i.e.
an element of H1 with chaos expansion F =

∑∞
j=1 fjHε(j) ,

∑∞
j=1 |fj |2 = 1.

Then DF =
∑∞

j=1 fjξj ∈ H0 and ∥DF∥2
L2(R) = 1. Also, δ(DF ) = R(F ) = F

since Gaussian variables are fixed points of the Ornstein-Uhlenbeck operator.
Thus, by (7.2) the density is given by φ(t) = E(κ{F>t}F ). Indeed, it is easy

to verify that
∫∞

t
x 1√

2π
e− x2

2 dx = 1√
2π
e− t2

2 .

7.2. Gaussian approximations

In this section we present some results obtained by combining the Malliavin
calculus with Stein’s method as recently investigated in [34]. It is well-known
that a random variable N has N (0, 1) distribution if and only if

E (N · F (N) − F ′(N)) = 0,

for every smooth function F . Thus, according to Stein’s lemma [4], one can
measure the distance to N ∼ N (0, 1), for an arbitrary random variable Z by
measuring the expectation of Z · F (Z) − F ′(Z). We will show using Malliavin
calculus that

E (Z · F (Z)) = E
(
F ′(Z) ⟨DZ,DR−1 Z⟩

)

holds for every F ∈ C2(R). Thus, in order to measure the distance to
N ∼ N (0, 1), one needs to estimate

(7.3) E|1 − ⟨DZ,DR−1 Z⟩|,

where E|1 − ⟨DZ,DR−1 Z⟩| = 0 if and only if Z ∼ N (0, 1).

Theorem 7.10. Let f ∈ Dom+(D) or f ∈ Dom0(D) such that E(f) = 0 and
let F ∈ C2(R). Then

E (f · F (f)) = E
(
F ′(f) · ⟨Df,D R−1 f⟩

)
.

Proof. Since Ef = 0 from (3.1) it follows that RR−1f = f . Therefore, by the
duality formula (6.1) and Theorem 6.11 we have

E (f · F (f)) = E
(
RR−1(f) · F (f)

)
= E

(
δDR−1(f) · F (f)

)

= E
(
⟨DF (f),DR−1 f⟩

)
= E

(
F ′(f) · ⟨D(f),DR−1 (f)⟩

)
.

�

An immediate consequence of Theorem 7.10 and Stein’s lemma is the fol-
lowing corollary.

Corollary 7.11. Let f ∈ Dom+(D) or f ∈ Dom0(D) such that E(f) = 0.
Then f ∼ N (0, 1) if and only if ⟨Df,DR−1f⟩ = 1.
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Theorem 7.12. A random variable f has N (0, 1) distribution if and only if
f ∈ (L)2 ∩ H1 and ∥f∥2

(L)2 = 1, i.e. if it is of the form f =
∑∞

j=1 fjHε(j) and∑∞
j=1 |fj |2 = 1 holds.

Proof. Let f ∈ (L)2 ∩ H1 and ∥f∥2
(L)2 = 1. According to Theorem 2.2, f must

be Gaussian. Since E(f) = f0 = 0 and V ar(f) = E(f2) = ∥f∥2
(L)2 = 1, it

follows that the underlying distribution is the standardized Gaussian one.
Vice versa, assume that f has N (0, 1) distribution. From Corollary 7.11 it

follows that ⟨Df,DR−1f⟩ = 1. Assume that f has chaos expansion represen-
tation f =

∑
α∈I fαHα.

From Theorem 5.1 follows that the equation δ(u) = f , for Ef = 0 has a
unique solution u = DR−1 f and it is of the form (5.2).

Thus,

1 = ⟨Df,D R−1 f⟩

= ⟨
∑

α∈I

∑

k∈N
(αk + 1) fα+ε(k) ξk ⊗Hα,

∑

β∈I

∑

j∈N
(βj + 1)

fβ+ε(j)

|β + ε(j)| ξj ⊗Hβ⟩

=
∑

α∈I

∑

β∈I

∑

k∈N
(αk + 1) fα+ε(k) · fβ+ε(k)

|β + ε(k)| (βk + 1)
∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ .

The latter expression can be equal to one if and only if its expectation is equal
to one, and all higher order coefficients in the chaos expansion are equal to
zero.

Thus, E(⟨Df,D R−1 f⟩) = 1 implies (for α = β = γ) that

∑

α∈I

∑

k∈N

(αk + 1)2

|α+ ε(k)| · f2
α+ε(k) · α! =

∑

α∈I

∑

k∈N

(αk + 1)

|α| + 1
· (α+ ε(k))!f2

α+ε(k)

=
∑

α∈I

∑

k∈N

αk

|α| · α!f2
α

=
∑

α∈I

α!

|α|

(∑

k∈N
αk

)
f2

α =
∑

α∈I
α!f2

α

= ∥f∥2
(L)2 = 1.

On the other hand, all higher order coefficients have to be equal to zero,
which leaves only the possibility that

fα+ε(k) = 0, for all |α| > 0,

i.e. fα = 0 for all |α| ≥ 2. Thus, f ∈ H1. �

Corollary 7.13. A random variable f has N (m,σ2) distribution if and only if
f ∈ (L)2 ∩H0 ⊕H1 and ∥f∥2

(L)2 = σ2, i.e. if it is of the form f =
∑∞

j=0 fjHε(j)

and
∑∞

j=1 |fj |2 = σ2 holds.
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We extend the previous theorem also for generalized random variables (e.g.
the white noise process at a fixed time point). These processes have an infinite
variance (infinite (L)2 norm) and they can be regarded as elements of the Kon-
dratiev spaces. Recall that ⟨·, ·⟩−p denotes the scalar product in the Schwartz
space S−p(R).

Theorem 7.14. Let f ∈ Dom−p(D) and E(f) = 0. The following statements
are equivalent:

• f has a generalized Gaussian distribution,

• f ∈ H1,

• ⟨Df,DR−1f⟩−p = ∥f∥2
(S)−1,−p

< ∞.

Proof. Similarly as in the proof of Theorem 7.12 we assume that f is of the
form f =

∑
α∈I fαHα. From

const = ⟨Df,D R−1 f⟩−p

=
∑

α∈I

∑

k∈N
(αk + 1) fα+ε(k)Hα

∑

β∈I

∑

j∈N
(βj + 1)

fβ+ε(j)

|β + ε(j)|Hβ ⟨ξk, ξj⟩−p

=
∑

α∈I

∑

β∈I

∑

k∈N
(αk + 1)fα+ε(k)

fβ+ε(k)

|β + ε(k)| (βk + 1)(2k)−p
∑

γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ

follows that

const =
∑

α∈I

∑

k∈N

(αk + 1)2

|α+ ε(k)| f
2
α+ε(k)α!(2k)−p

=
∑

α∈I

α!

|α|f
2
α

∞∑

k=1

αk(2k)−p

and fα = 0 for all |α| ≥ 2 i.e. f ∈ H1. Thus,

const =

∞∑

j=1

ε(j)!

|ε(j)|f
2
ε(j)

∞∑

k=1

δkj(2k)
−p =

∞∑

j=1

f2
ε(j)(2j)

−p

=
∞∑

j=1

f2
ε(j)(2N)−pε(j)

= ∥f∥2
(S)−1,−p

,

where δkj = 0, k ̸= j and δkj = 1, k = j is the Kronecker symbol.
�

Example 7.15. White noise is a generalized Gaussian process. For each fixed
time point t0 we have ∥Wt0∥2

(S)−1,−p
=
∑∞

j=1 |ξj(t0)|2(2j)−p < ∞, for p ≥ 1 by

boundedness of the Hermite functions: supt∈R |ξn(t)| ≤ Cn− 1
12 , n ∈ N.
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Remark 7.16. Theorem 7.12 and Theorem 7.14 together with Theorem 2.2
provide a complete characterization of Gaussian processes (classical and gener-
alized processes): All Gaussian processes belong to H1 and H1 contains nothing
else apart from Gaussian processes.

Theorem 7.17. ([32]) Let Z ∈ Dom+(D) or Z ∈ Dom0(D) be such that
E(Z) = 0 and V ar(Z) = 1. Then the expectation (7.3) satisfies

E
(
|1 − ⟨DZ,DR−1 Z⟩|

)
≤
√
V ar (⟨DZ,DR−1 Z⟩).

Proof. The assertion follows directly from E(Y )2 ≤ E(Y 2), i.e. E(Y ) ≤√
V ar(Y ) and from V ar(1 − U) = V ar(U). �

Thus, in order to measure how close is Z to being normally distributed,
one has to estimate how close is V ar

(
⟨DZ,DR−1 Z⟩

)
to zero. This quantity is

larger than the Kolmogorov distance, but nevertheless still a good approxima-
tion.
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[27] Lototsky, S., Rozovsky, B., Seleši, D., On Generalized Malliavin Calculus.
Stochastic Process. Appl. 122(3) (2012), 808–843.

[28] Malliavin, P., Stochastic calculus of variations and hypoelliptic operators. Proc.
Intern. Symp. SDE, pp. 195-263, 1978.

[29] Malliavin, P., Thalmaier, A., Stochastic Calculus of Variations in Mathematical
Finance. Springer 2005.

[30] Matthies, H., Stochastic finite elements: Computational approaches to stochas-
tic partial differential equations. ZAMM Z. Angew. Math. Mech. 88(11) (2008),
849–873.

[31] Mikulevicius, R., Rozovskii, B., On unbiased stochastic Navier-Stokes equa-
tions. Probab. Theory Related Fields 154 (2012), 787–834.

[32] Nourdin, I., Peccati, G., Normal Approximations with Malliavin Calculus: from
Stein’s Method to Universality. Cambridge Tracts in Mathematics, Cambridge
University Press 2012.

[33] Nourdin, I., Nualart, D., Central Limit Theorems for Multiple Skorokhod Inte-
grals. J Theor Probab 23 (2010), 39-64.

[34] Nourdin, I., Peccati, G., Stein’s method meets Malliavin calculus: a short survey
with new estimates. Interdisciplinary Mathematical Science, Recent Advances in
Stochastic Dynamics and Stochastic Analysis, World Scientific 8 (2009), 207–
236.

[35] Nualart, D., The Malliavin Calculus and related topics, Probability and its Ap-
plications. 2nd edition, New York: Springer-Verlag 2006.

[36] Nualart, E., Introduction to Malliavin calculus and its applications. IMS Text-
books, Cambidge University Press, to appear.

[37] Pelo, P., Lanconelli, A., On a new probabilistic representation for the solution
of the heat equation. Stochastics: An International Journal of Probability and
Stochastic Processes 84 (2012), 171–181.
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CORRIGENDUM AND ADDENDUM TO ”CHAOS
EXPANSION METHODS IN MALLIAVIN CALCULUS:

A SURVEY OF RECENT RESULTS”

Tijana Levajković1, Stevan Pilipović2 and Dora Seleši3

The estimate α! ≤ (2N)α on page 51 in [1], as well as the inclusions
(S)−1,−(p−1) ⊆ (S)0,−p and (S)0,p ⊆ (S)1,p, p ∈ N, are not correct. The
correct inclusions are: (S)1,p ⊆ (S)0,p and (S)0,−p ⊆ (S)−1,−p, p ∈ N0.

Consequently, the statement and proof of Theorem 6.5 will hold only for the
Hida spaces but not for the Kondratiev spaces. For this purpose we note that
we may define Dom0,−p(D) = {u ∈ X ⊗ (S)0,−p :

∑
α∈I ∥uα∥2

X |α|α!(2N)−pα <
∞}, and by the proof of Theorem 2.19 [1], D : Dom0,−p(D) → X ⊗ S−l(R) ⊗
(S)0,−p, l > p + 1. Similarly, we define Dom0,−l,−q(δ) = {u ∈ X ⊗ S−l(R) ⊗
(S)0,−q :

∑
α∈I

∑∞
k=1 ∥uα,k∥2

Xα!(αk +1)(2k)−l(2N)−qα < ∞} and by the proof
of Theorem 2.22 [1], δ : Dom0,−l,−q(δ) → X ⊗ (S)0,−q, q > l + 1, l ∈ N.

The statement and proof of Theorem 6.5 on page 86 now have to be modified
as follows.

Theorem 6.5. (Weak duality) Let F ∈ Dom0,−p(D) and u ∈ Dom0,−q(D) for
p, q ∈ N. For any φ ∈ S−n(R), n < q − 1, it holds that

≪ ⟨DF, φ⟩−r, u ≫−r = ≪ F, δ(φu) ≫−r,

for r > max{q, p + 1}.
Proof. Let F =

∑
α∈I fαHα ∈ Dom0,−p(D), u =

∑
α∈I uαHα ∈ Dom0,−q(D)

and φ =
∑

k∈N φkξk ∈ S−n(R). Then, for k > p + 1, DF ∈ X ⊗ S−k(R) ⊗
(S)0,−p ⊆ X ⊗ S−r(R) ⊗ (S)0,−r if r > p + 1. Also, one can easily check
that φu ∈ Dom0,−n,−q(δ) and since q > n + 1, this implies that δ(φu) ∈
X ⊗ (S)0,−q ⊆ X ⊗ (S)0,−r, for r ≥ q. Therefore we let r > max{p+1, q}. The
rest of the proof is conducted as in [1]. �
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We consider three fundamental equations of the Malliavin calculus: the equation
involving theMalliavin derivative, the Skorokhod integral and the Ornstein–Uhlenbeck
operator of order k, k [ N. These equations provide a complete characterization of the
domain and range of the aforementioned operators. Applying the chaos expansion
method in white noise spaces we solve these equations and obtain an explicit form of the
solutions in the space of Kondratiev generalized stochastic processes.

Keywords: generalized stochastic processes; white noise; chaos expansion; Malliavin
derivative; Skorokhod integral; Ornstein–Uhlenbeck operator

AMS Subject Classification: 60H40; 60H07; 60H10

1. Introduction

Three operators: the Malliavin derivative D, the Skorokhod integral d and the Ornstein–

Uhlenbeck (OU) operator R, play a crucial role in the stochastic calculus of variations.

Especially, the Skorokhod integral is of great importance in the study of non-adapted

stochastic differential equations (SDEs). Some excellent references on Malliavin calculus

and stochastic integration have been written by Nualart [19], Sanz-Solé [24], Dalang [2]

and their coworkers. Since the pioneer work of Itô [8] in characterizing stochastic

integrals in terms of Hermite polynomials, another important keystone was the

development of white noise analysis made by Hida [6] who set up an appropriate

functional analytical framework using nuclear operators to characterize Gaussian

processes. His approach is closely connected to modern quantum theory, where the

Malliavin derivative is known as the annihilation operator, the Skorokhod integral as the

creation operator and the OU operator as the number operator. Second quantization

operator techniques refer to weakening the topology of ðLÞ2 spaces in order to obtain

weighted spaces of generalized stochastic processes such as the Hida spaces, Kondratiev

spaces, etc. Along the line of infinite dimensional analysis, with a more probabilistical

approach are the works of Da Prato [3], Øksendal [7], Rozovsky [14] and of their

coworkers.

It is of great importance to manage solving different classes of equations which

involve the operators of Malliavin calculus, but so far all proofs have been on the line of

pure existence/uniqueness and it has been slightly neglected in the literature to explicitly

solve equations of this kind. In particular, we consider the following basic equations

q 2015 Taylor & Francis
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involving kth order iterated operators (k [ NÞ:

RðkÞ u ¼ g; ð1Þ
DðkÞu ¼ h; ð2Þ
d ðkÞu ¼ f : ð3Þ

All three operators (Malliavin derivative, Skorokhod integral and OU operator) are

considered in a generalized Kondratiev space setting rather than in the usual ðLÞ2 setting.
As a generalization of Hilbert space-valued stochastic processes, we define S0ðRÞ-valued
stochastic processes, which allows further generalizations of the operators.

We provide a new characterization of the domain of all three operators, a more general

one than in the usual ðLÞ2 setting, a characterization we have adopted also in [9,11–13].

We show an appropriate embedding of these domains into the Kondratiev-type spaces,

which makes them convenient to study higher order iterated operators of the Malliavin

calculus. On the other hand, Equations (1)–(3) we considered in this paper will provide

(for k ¼ 1) a full characterization of the range of all three operators. Moreover, we obtain

explicit forms of the solutions of the general kth order Equations (1)–(3), which is highly

useful for computer modelling that involves polynomial chaos expansion (PCE)

simulation methods used in numerical stochastic analysis. Some excellent applications of

the PCE method are made in the papers of Karniadakis [28], Matthies [17], Ernst [4] and

many others with a growing tendency to apply PCE methods in industry.

The main purpose of this paper is to prove the existence and uniqueness of Equations

(1)–(3). We present the methodology of chaos expansions on Equation (1), which is the

most representative to get familiar with its idea. We also correct the estimate obtained in

[9] for the domain of the Skorokhod integral in Theorem 2.8. The first main result of the

paper is the proof of the existence and uniqueness of a solution of Equation (2), which will

be provided in Theorems 4.1 and 4.5. The second main result of the paper is to present an

explicit form of the solution of the integral Equation (3), which will be done in Theorems

5.1 and 5.3. As a consequence, representation forms via kth order integrals and kth order

OU operators follow for singular stochastic processes (Corollaries 3.2 and 5.4).

In [11] we proved that the Malliavin derivative indicates the rate of change in time

between the ordinary product and the Wick product, i.e. h�Wt 2 hSWt ¼ DðhÞ holds.
In this paper we go one step further and prove a similar result for stochastic processes other

than white noise Wt (see Theorem 5.2). Hence, as a consequence one can define the

ordinary product in a generalized sense. This result is closely related to that in [18], where

the authors study nonlinear SDEs by replacing polynomial nonlinearities with Wick type

nonlinearities and estimate the error by a Taylor series involving Wick products and

Malliavin derivatives. We also compare the ordinary derivative with the Malliavin

derivative in Theorem 4.4.

The chaos expansion method we are using to solve Equations (1)–(3) can also be used

to solve equations involving generalized Malliavin operators defined in [16], but this will

be the topic of a future paper.

2. Basic notions

Let ðV;F ;PÞ be the Gaussian white noise probability space ðS0ðRÞ;B;mÞ; where S0ðRÞ
denotes the space of tempered distributions, B the Borel sigma-algebra generated by the

weak topology on S0ðRÞ and m the Gaussian white noise measure corresponding to

2 107Stochastics: An International Journal of Probability and Stochastic Processes
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the characteristic function

ð
S0ðRÞ

eikv;fldmðvÞ ¼ e
2ð1=2Þkfk2

L 2 ðRÞ ; f [ SðRÞ; ð4Þ

given by the Bochner–Minlos theorem.

Denote by hnðxÞ ¼ ð21Þnex 2=2dn=dxn e2ðx 2=2Þ
� �

; n [ N0, N0 ¼ N
Sf0}, the family of

Hermite polynomials and jnðxÞ ¼ 1=
ffiffiffiffi
p4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn2 1Þ!p
e2ðx 2=2Þhn21ð

ffiffiffi
2

p
xÞ, n [ N, the family of

Hermite functions. The family of Hermite functions forms a complete orthonormal system

in L2ðRÞ. We follow the characterization of the Schwartz spaces in terms of the Hermite

basis: the space of rapidly decreasing functions as a projective limit space SðRÞ ¼
>l[N0

SlðRÞ and the space of tempered distributions as an inductive limit space S0ðRÞ ¼S
l[N0

S2lðRÞ where

SlðRÞ ¼ f ¼
X1
k¼1

akjk : kfk2l ¼
X1
k¼1

a2kð2kÞl , 1
( )

; l [ Z;Z ¼ 2N
[

N0: ð5Þ

2.1 The Wiener–Itô chaos expansion

Let I ¼ NN
0

� �
c
denote the set of sequences of non-negative integers which have only

finitely many non-zero components a¼ ða1;a2; . . . ;am;0;0 . . . Þ, ai [N0, i¼ 1;2; . . . ;m,
m[N. The kth unit vector 1 ðkÞ ¼ ð0; . . . ;0;1;0; . . . Þ;k[N is the sequence of zeros with

the number 1 as the kth component. The length of a multi-index a[ I is defined as

jaj ¼P1
k¼1 ak. Let ð2NÞa ¼Q1

k¼1 ð2kÞak . Note that
P

a[I ð2NÞ2pa ,1 for p. 1 (see,

e.g. [7]).

Let ðLÞ2 ¼ L2ðS0ðRÞ;B;mÞ be the Hilbert space of random variables with finite second

moments. We define by

HaðvÞ ¼
Y1
k¼1

hak
ðkv; jklÞ; a [ I ;

the Fourier–Hermite orthogonal basis of ðLÞ2 such that kHak2ðLÞ2 ¼ a!. In particular, for

the kth unit vector H1 ðkÞ ðvÞ ¼ kv; jkl, k [ N.

The prominent Wiener–Itô chaos expansion theorem states that each element

F [ ðLÞ2 has a unique representation of the form

FðvÞ ¼
X
a[I

aa HaðvÞ;

v [ S0ðRÞ, aa [ R, a [ I , such that kFk2ðLÞ2 ¼
P

a[I a
2
a a! , 1.

2.2 Spaces of generalized random variables

The stochastic analogue of Schwartz spaces as generalized function spaces is the

Kondratiev spaces of generalized random variables.

3108 T. Levajković et al.
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Definition 2.1. The space of the Kondratiev test random variables ðSÞ1 consists of

elements f ¼Pa[I aaHa [ ðLÞ2, aa [ R, a [ I , such that

kfk21;p ¼
X
a[I

a2aða!Þ2ð2NÞpa , 1; for all p [ N0:

The space of the Kondratiev generalized random variables ðSÞ21 consists of formal

expansions of the form F ¼Pa[I aaHa, aa [ R, a [ I , such that

kFk221;2p ¼
X
a[I

a2a ð2NÞ2pa , 1; for some p [ N0:

This provides a sequence of spaces ðSÞr;p ¼ ff ¼Pa[I aaHa : kfkr;p , 1},

r [ f21; 1}, p [ Z. Thus, ðSÞ1 ¼ >p[N0
ðSÞ1;p can be equipped with the projective

topology and ðSÞ21 ¼
S

p[N0
ðSÞ21;2p as its dual with the inductive topology. It holds that

ðSÞ1 is a nuclear space and the following Gel’fand triple is obtained

ðSÞ1 # ðLÞ2 # ðSÞ21:

2.3 Generalized processes

Let X be a Banach space of functions on R endowed with k�kX and X0 its dual.

Alternatively, X can be taken as a nuclear space X ¼ >1
k¼0 Xk endowed with a family of

seminorms fk�kk; k [ N0} and X0 ¼ S1
k¼0 X2k its topological dual. The most common

examples used in this paper for X will be the Schwartz spaces SðRÞ, S0ðRÞ and C1ðRÞ.
Definition 2.2. Generalized stochastic processes are elements of the tensor product space

X^ðSÞ21 or X
0^ðSÞ21.

The Kondratiev space ðSÞ1 is nuclear and thus ðX^ðSÞ1Þ0 ø X0^ðSÞ21. Note that

X0^ðSÞ21 is isomorphic to the space of linear bounded mappings X ! ðSÞ21.

Theorem 2.3. ([20]) Let X ¼ >1
k¼0 Xk be a nuclear space endowed with a family of

seminorms fk�kk; k [ N0} and let X0 ¼ S1
k¼0 X2k be its topological dual. Generalized

stochastic processes as elements of X0^ðSÞ21 have a chaos expansion of the form

F ¼
X
a[I

f a^Ha; f a [ X2k; a [ I ; ð6Þ

where k [ N0 does not depend on a [ I , and there exists p [ N0 such that

kFjj2X0^ðSÞ21;2p
¼
X
a[I

kf ak22k ð2NÞ2pa , 1: ð7Þ

The same holds for processes which are elements of X^ðSÞ21, where X is a Banach

space. In this case the norm kFjj2X^ðSÞ21;2p
is defined via (7) where k�k2k should be

replaced by k�kX .
With the same notation as in (6) we will denote by EF ¼ f ð0;0;0; ... Þ the generalized

expectation of the process F.

In [25,26] a general setting of S0-valued generalized stochastic process is provided:

S0ðRÞ-valued generalized stochastic processes are elements of ~X^ðSÞ21, where
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~X ¼ X^S0ðRÞ, and are given by chaos expansions of the form (recall (5))

f ¼
X
a[I

X
k[N

aa;k^jk^Ha ¼
X
a[I

ba^Ha ¼
X
k[N

ck^jk;

where ba ¼Pk[N aa;k^jk [ X^S0ðRÞ, ck ¼
P

a[I aa;k^Ha [ X^ðSÞ21 and aa;k [ X.

Thus, for some p; l [ N0,

kfk2X^ S2lðRÞ^ðSÞ21;2p
¼
X
a[I

X
k[N

kaa;kk2X ð2kÞ2lð2NÞ2pa , 1:

The generalized expectation of an S0-valued stochastic process f is given by

Ef ¼
X
k[N

að0;0; ... Þ;k^jk ¼ bð0;0; ... Þ:

We generalize the definition of the Wick product of random variables to the set of

generalized stochastic processes in the way as it is done in [10,21,22,27].

Definition 2.4. Let F;G [ X^ðSÞ21 be generalized stochastic processes with chaos

expansions of the form (6). Assume X to be a space closed under the multiplication f agb,

for f a; gb [ X. Then the Wick product FSG is defined by

FSG ¼
X
g[I

X
aþb¼g

f agb

 !
^Hg:

2.4 Operators of the Malliavin calculus

We provide now the definitions of the Malliavin derivative, the Skorokhod integral and the

OU operator, which are extensions of the classical definitions of these operators to the

space of generalized stochastic processes. In [1,3,14,15,19,24] the Malliavin derivative

and the Skorokhod integral are defined on a subspace of ðLÞ2 so that the resulting process

after application of these operators always remains in ðLÞ2. In [9,10,12] we allowed values
in ðSÞ21 and thus obtained a larger domain for all operators.

Definition 2.5. Let a generalized stochastic process u [ X^ðSÞ21 be of the form

u ¼Pa[I ua^Ha. If there exists p [ N0 such that
P

a[I jaj2kuak2Xð2NÞ2pa , 1; then
the Malliavin derivative of u is defined by

Du ¼
X
a[I

X
k[N

akua^jk^Ha21 ðkÞ ; ð8Þ

where by convention a2 1 ðkÞ does not exist if ak ¼ 0, i.e.

Ha21 ðkÞ ¼
0; ak ¼ 0

Hða1;a2; ... ;ak21;ak21;akþ1; ... ;am;0;0; ... Þ; ak $ 1

(

for a ¼ ða1;a2; . . . ;ak21;ak;akþ1; . . . ;am; 0; 0; . . . Þ [ I .
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In the white noise setting the operator D is also called the stochastic gradient of a

generalized stochastic process u. The domain of the Malliavin derivative is given by

DomðDÞ ¼
[
p[N0

DompðDÞ ¼
[
p[N0

u [ X^ðSÞ21 :
X
a[I

jaj2kuak2Xð2NÞ2pa , 1
( )

:

A process u [ DomðDÞ , X^ðSÞ21 is called a Malliavin differentiable process.

Theorem 2.6. ([9]) The Malliavin derivative is a linear and continuous mapping

D : DompðDÞ! X^S2lðRÞ^ðSÞ21;2p; l . pþ 1; p [ N0:

The Skorokhod integral, as an extension of the Itô integral for non-adapted processes,

can be regarded as the adjoint operator of the Malliavin derivative in ðLÞ2-sense. In [9] we
have extended the definition of the Skorokhod integral from Hilbert space-valued

processes to the class of S0-valued generalized processes.

Definition 2.7. Let F ¼Pa[I f a^va^Ha [ X^S2pðRÞ^ðSÞ21;2r, p; r [ N0, be a

generalized S2pðRÞ-valued stochastic process and let va [ S2pðRÞ be given by the

expansion va ¼Pk[N va;kjk, va;k [ R. Then the process F is integrable in the Skorokhod

sense and the chaos expansion of its stochastic integral is given by

dðFÞ ¼
X
a[I

X
k[N

va;kf a^Haþ1 ðkÞ : ð9Þ

The following theorem estimates the domain and range of the Skorokhod integral in a

more precise manner than provided in [9] where a minor error occurred.

Theorem 2.8. The Skorokhod integral d is a linear and continuous mapping

d : X^S2pðRÞ^ðSÞ21;2r ! X^ðSÞ21;2q; q $ r; q . pþ 1:

Proof. Clearly,

kdðFÞk2X^ðSÞ21;2q
¼
X
a[I

X
k[N

va;kf a

�����
�����
2

X

ð2NÞ2qðaþ1 ðkÞÞ

¼
X
a[I

X
k[N

va;kf að2kÞ2ðq=2Þ
�����

�����
2

X

ð2NÞ2qa

#
X
a[I

kf ak2X
X
k[N

jva;kjð2kÞ2ðp=2Þð2kÞ2ððq2pÞ=2Þ
 !2

ð2NÞ2qa

#
X
a[I

kf ak2X
X
k[N

jva;kj2ð2kÞ2p�
X
k[N

ð2kÞ2ðq2pÞ
 !

ð2NÞ2qa

#
X
a[I

kf ak2Xkvak22pð2NÞ2ra�
X
k[N

ð2kÞ2ðq2pÞ

# MkFk2X^S2pðRnÞ^ðSÞ21;2r
, 1;
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for q $ r, where we used the Cauchy–Schwarz inequality and the fact that

M ¼
X
k[N

ð2kÞ2ðq2pÞ , 1; q . pþ 1:

A

It follows that the domain of the Skorokhod integral is

DomðdÞ ¼ X^S0ðRÞ^ðSÞ21 ¼
[

ðp;rÞ[N2
0

Domðp;rÞðdÞ ¼
[

ðp;rÞ[N2
0

ðX^S2pðRÞ^ðSÞ21;2rÞ:

Definition 2.9. The composition of the Malliavin derivative and the Skorokhod integral

is denoted by R ¼ d+D and called the OU operator.

Thus, for u ¼Pa[I ua^Ha [ X^ðSÞ21 the OU operator is given by

RðuÞ ¼
X
a[I

jajua^Ha:

Let

DomðRÞ ¼
[
p[N0

DompðRÞ ¼
[
p[N0

u [ X^ðSÞ21 :
X
a[I

jaj2kuak2Xð2NÞ2pa , 1
( )

:

Theorem 2.10. ([12]) The operator R is a linear and continuous mapping

R : DompðRÞ! X^ðSÞ21;2p; p [ N0:

Note that in this setting the domains of D and R coincide, i.e. DomðRÞ ¼ DomðDÞ.
In the following sections we will prove that the mappings R : DomðRÞ! X^ðSÞ21,

D : DomðDÞ! X^S0ðRÞ^ðSÞ21 and d : DomðdÞ! X^ðSÞ21, given in Theorems 2.6, 2.8

and 2.10, are surjective, i.e. the range of the operators are, respectively,

RangeðRÞ ¼ X^ðSÞ21;

RangeðDÞ ¼ X^S0ðRÞ^ðSÞ21;

RangeðdÞ ¼ X^ðSÞ21:

3. Equation with the OU operator

We define iteratively RðkÞ ¼ R+Rðk21Þ, k [ N, where R0 ¼ Id is the identity operator.

Using the fact that RðkÞðHaÞ ¼ jajkHa, a [ I it follows that

DomðRðkÞÞ ¼
[
p[N0

DompðRðkÞÞ ¼
[
p[N0

u [ X^ðSÞ21 :
X
a[I

jaj2kkuak2Xð2NÞ2pa , 1
( )

:

Note that actually for each k [ N, DomðRðkÞÞ ø X^ðSÞ21. Since jaj # ð2NÞa, it
follows thatX

a[I
jaj2kkuak2Xð2NÞ2pa #

X
a[I

kuak2Xð2NÞ2ðp22kÞa #
X
a[I

kuak2Xð2NÞ2qa , 1;
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p2 2k $ q. This means that if u [ X^ðSÞ21;2q for some q $ 0, then u [ DompðRðkÞÞ for
p $ qþ 2k.

Theorem 3.1. Let g [ X^ðSÞ21;2p, p [ N0, have zero generalized expectation. Then for

each k [ N the equation

RðkÞu ¼ g; Eu ¼ ~u0 [ X

has a unique solution u [ DompðRðkÞÞ represented in the form

u ¼ ~u0 þ
X

a[I ;jaj.0

ga

jajk ^Ha:

Proof. If we seek for a solution in the form of u ¼Pa[I ua^Ha, then from RðkÞu ¼ g it

follows that X
a[I

jajkua^Ha ¼
X
a[I

ga^Ha;

i.e. ua ¼ ga=jajk for all a [ I , jaj . 0. Clearly, g must have zero expectation for the

equation to make sense, and therefore uð0;0;0;0; ... Þ can be chosen arbitrarily. On the other

hand, if we have an initial condition EðuÞ ¼ ~u0, then uð0;0;0;0; ... Þ ¼ Eu ¼ ~u0. Also, u [
DompðRðkÞÞ since X

jaj.0

jaj2kkuak2Xð2NÞ2pa ¼
X
jaj.0

kgak2Xð2NÞ2pa , 1:

A

Corollary 3.2. For every k [ N, each process g [ X^ðSÞ21 can be represented in

the form

g ¼ EðgÞ þRðkÞðuÞ;
for a certain u [ X^ðSÞ21 given in terms of g.

Proof. Assume k ¼ 1. If EðgÞ ¼ 0, this is the statement of Theorem 3.1 Otherwise, for

EðgÞ – 0, let ~g ¼ g2 EðgÞ, Eð~gÞ ¼ 0, and apply the previous case to obtain ~u such that

Rð~uÞ ¼ ~g. Now, since ~u ¼ R21ð~gÞ ¼ R21ðg2 EðgÞÞ and g2 EðgÞ ¼ RðR21ðg2 EðgÞÞÞ,
it follows that g ¼ EðgÞ þRðuÞ for u ¼ R21ðg2RðgÞÞ.

Similarly, for arbitrary k [ N, g ¼ EðgÞ þRðkÞðuÞ for u ¼ Rð2kÞðg2 EðgÞÞ,
where Rð2kÞ denotes the inverse operator of RðkÞ and is well defined according to

Theorem 3.1 A

4. Equation with the Malliavin derivative

We consider the initial value problem involving the Malliavin derivative operator

Du ¼ h; h [ X^S0ðRÞ^ðSÞ21

Eu ¼ ~u0; ~u0 [ X

(
ð10Þ
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and prove existence and uniqueness of its solution. We will solve the equation by applying

the integral operator on both sides of the equation and by using Theorem 3.1

Theorem 4.1. Let a process h [ X^S2pðRÞ^ðSÞ21;2q, p [ N0, q . pþ 1, have a chaos

expansion representation h ¼Pa[I
P

k[Nha;k^jk^Ha. Then Equation (10) has a unique

solution in DomqðDÞ represented in the form

u ¼ ~u0 þ
X

a[I ;jaj.0

1

jaj
X
k[N

ha21 ðkÞ;k^Ha: ð11Þ

Proof. From the assumption h [ X^S2pðRÞ^ðSÞ21;2q, for some p $ 0, q . pþ 1, it

follows that h is integrable in the Skorokhod sense and its integral dðhÞ is of the form (9).

Note that the assumption q . pþ 1 does not reduce generality of the theorem, since every

process from X^S2pðRÞ^ðSÞ21;2k for k # pþ 1 can be embedded into the larger space

X^S2pðRÞ^ðSÞ21;2~k, where
~k . pþ 1.

We are looking for a solution of (10) in DomqðDÞ in its explicit form

u ¼
X
a[I

ua^Ha:

First we apply the operator d on both sides of Equation (10) and thus obtain the equation

dðDuÞ ¼ dðhÞ. Putting d+D ¼ R we transform the initial Equation (10) into its equivalent

form

Ru ¼ dðhÞ;

for a given h [ X^S0ðRÞ^ðSÞ21: Thus, the solution u is calculated from

X
a[I

jajua^Ha ¼ d
X
a[I

X
k[N

ha;k^jk^Ha

 !

X
a[I

jajua^Ha ¼
X
a[I

X
k[N

ha;k^Haþ1 ðkÞ

X
a[I ;jaj.0

jajua^Ha ¼
X
a[I

X
k[N

ha21 ðkÞ;k^Ha:

Due to the uniqueness of the chaos expansion of a process represented in the

orthogonal basis fHa}a[I , it follows that

jajua ¼
X
k[N

ha21 ðkÞ;k; jaj . 0:

Thus, for jaj . 0 the coefficients of the solution are represented by

ua ¼ 1

jaj
X
k[N

ha21 ðkÞ;k; for jaj . 0: ð12Þ
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From the initial condition Eu ¼ ~u0 it follows that

uð0;0; ... Þ ¼ ~u0:

Now, we prove that the solution u belongs to the space DomqðDÞ. Clearly,

kuk2DomqðDÞ ¼
X
a[I

jaj2kuak2Xð2NÞ2qa

¼
X
a[I

X
k[N

ha;k

�����
�����
2

X

ð2NÞ2qðaþ1 ðkÞÞ

#
X
a[I

X
k[N

kha;kkXð2kÞ2ðp=2Þð2kÞ2ððq2pÞ=2Þ
 !2

ð2NÞ2qa

#
X
a[I

X
k[N

kha;kk2Xð2kÞ2pð2NÞ2qa
X
k[N

ð2kÞ2ðq2pÞ

¼ Ckhk2X^S2pðRÞ^ðSÞ21;2q
, 1;

since C ¼Pk[N ð2kÞ2ðq2pÞ , 1, for q . pþ 1. A

The following theorem serves as a motivation to consider SDEs with the Malliavin

derivative.

Theorem 4.2. ([11]) Let h [ X^ðSÞ21 and Wt, Bt denote white noise and Brownian

motion, respectively. Then,

h�Wt 2 hSWt ¼ DðhÞ;
i.e. ðd=dtÞðh�Bt 2 hSBtÞ ¼ DðhÞ in weak S0ðRÞ-sense.

Remark 1. Note that if h [ X^ðSÞ21;2p, then DðhÞ [ X^S2lðRÞ^ðSÞ21;2ðpþ2Þ, l . pþ 1.

Thus, apart from the Wick product hSWt being well defined, the ordinary product is also

well defined in the generalized sense as an element of X^S0ðRÞ^ðSÞ21 and it is given by

h�Wt ¼ hSWt þDðhÞ.

Example 4.3. Let X ¼ S0ðRÞ and h ¼ Wt0 , where Wt is singular white noise. Then

Wt0�Wt ¼ Wt0SWt þDðWt0Þ ¼ Wt0SWt þ dt0 ðtÞ ð13Þ

holds in S0ðRÞ^S0ðRÞ^ðSÞ21 (see Section 6). Note that (13) is well defined for all ðt; t0Þ [
R2 except for t ¼ t0 where the Dirac delta distribution dt0 ðtÞ ¼ dðt2 t0Þ [ S0ðRÞ^S0ðRÞ
has its singularity. It is possible to give a meaning to dt0 ðt0Þ ¼

P1
n¼1 jnðt0Þ2 as the point

value of a distribution in the sense of Colombeau generalized numbers, but this

exceeds the scope of this article and will be the topic of an upcoming paper. Thus, in

Colombeau sense, it will be possible to define W2
t ¼ WS2

t þ dtðtÞ. For Colombeau theory

we refer to [5].

The previous theorem stating that the Malliavin derivative indicates the speed of

change in time between the ordinary product and the Wick product motivates us to
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consider equations of the type DðuÞ ¼ ðd=dtÞf , i.e. to compare the Malliavin derivative

with the ordinary derivative.

Theorem 4.4. Let f [ X^S2kðRÞ^ðSÞ21;2p, p . k þ 1, and ~u0 [ X. Assume f is of the

form f ¼Pa[I
P

j[Nf a;j^jj^Ha, where f a;j [ X, a [ I , j [ N. The equation

DðuÞ ¼ d

dt
f ; Eu ¼ ~u0;

has a unique solution u [ DompðDÞ, given by

u ¼ ~u0 þ
X

a[I ;jaj.0

1

jaj f a21 ð1Þ;2 þ
X1
j¼2

f a21 ðjÞ;jþ1

ffiffiffiffiffiffiffiffiffiffi
jþ 1

2

r
2 f a21 ðjÞ;j21

ffiffiffi
j

2

r ! !
^Ha:

Proof. By differentiating f component wise in weak S0ðRÞ sense we obtain

d

dt
f ðtÞ ¼

X
a[I

X1
j¼1

f a;j
d

dt
jjðtÞ

 !
Ha

¼
X
a[I

X1
j¼1

f a;j

ffiffiffi
j

2

r
jj21ðtÞ2

ffiffiffiffiffiffiffiffiffiffi
jþ 1

2

r
jjþ1ðtÞ

 ! !
Ha;

by the well-known identity formula for derivatives of Hermite functions [7]. This is further

equal to

X
a[I

f a;2j1ðtÞ þ
X1
j¼2

f a;jþ1

ffiffiffiffiffiffiffiffiffiffi
jþ 1

2

r
2 f a;j21

ffiffiffi
j

2

r !
jjðtÞ

 !
Ha:

Note that if f a ¼P1
j¼1f a;jjj [ X^S2kðRÞ, a [ I then ðd=dtÞf a [ X^S2ðkþ1ÞðRÞ since

d

dt
f a

����
����2
X^S2ðkþ1ÞðRÞ

# kf a;2k2X þ
X1
j¼1

kf a;jþ1k2Xðjþ 1Þ þ kf a;j21k2XðjÞ
� �

ð2jÞ2ðkþ1Þ

# C
X1
j¼1

kf a;jk2Xð2jÞ2k ¼ Ckf ak2X^S2kðRÞ , 1:

Thus, applying Theorem 4.1 to the equation

DðuÞ ¼
X
a[I

f a;2j1ðtÞ þ
X1
j¼2

f a;jþ1

ffiffiffiffiffiffiffiffiffiffi
jþ 1

2

r
2 f a;j21

ffiffiffi
j

2

r !
jjðtÞ

 !
Ha;

where the right hand side is an element of X^S2ðkþ1ÞðRÞ^ðSÞ21;2p, p . k þ 1, we obtain a

unique solution of the form

u ¼ ~u0 þ
X

a[I ;jaj.0

1

jaj f a21 ð1Þ;2 þ
X1
j¼2

f a21 ðjÞ;jþ1

ffiffiffiffiffiffiffiffiffiffi
jþ 1

2

r
2 f a21 ðjÞ;j21

ffiffiffi
j

2

r ! !
Ha
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that satisfies

kuk2DompðDÞ ¼
X
a[I

jaj2kuak2ð2NÞ2pa

# k~u0k2X þ C
X
jaj.0

X1
j¼1

kf a;jk2Xð2jÞ2kð2NÞ2pa

¼ k~u0k2X þ Ckfk2X^S2kðRÞ^ðSÞ21;2p
, 1:

A

Now we turn to the case of equations involving higher orders of the Malliavin

derivative. Define D0 ¼ Id;DðkÞ ¼ D+Dðk21Þ, k ¼ 1; 2; 3; . . . and recall that

D : DompðDÞ! X^S2lðRÞ^ðSÞ21;2p, for l . pþ 1. For higher order derivatives to be

well defined, it is necessary that each result of the application of the operatorD remains in

its domain. For this purpose we note that if u [ X^ðSÞ21;2q for some q $ 0, then there

always exists p . q such that u [ DompðDÞ. This follows from the fact that jaj # ð2NÞa,
and thus

X
a[I

jaj2kuak2Xð2NÞ2pa #
X
a[I

kuak2Xð2NÞ2ðp22Þa #
X
a[I

kuak2Xð2NÞ2qa , 1;

for p $ qþ 2.

Thus, e.g. for Dð2Þ:

DompðDÞ!DX^S2l1^ðSÞ21;2p # S2l1^Dompþ2ðDÞ!D S2l1^S2l2^X^ðSÞ21;2ðpþ2Þ

where l1 . pþ 1 and l2 . pþ 3.

Similarly, for any k [ N,

DðkÞ : X^ðSÞ21;2ðp22Þ , DompðDÞ! X^S2l1^S2l2^· · ·^S2lk^ðSÞ21;2ðpþ2kÞ

where lj . pþ 1þ 2ðj2 1Þ, j ¼ 1; 2; . . . ; k.

Theorem 4.5. Let h [ X^S2p1ðRÞ^S2p2 ðRÞ· · ·^S2pk ðRÞ^ðSÞ21;2q be of the form

h ¼
X
a[I

X1
i1¼1

X1
i2¼1

· · ·
X1
ik¼1

ha;i1;i2; ... ;ik^ji1^ji2^· · ·^jik^Ha:

The equation

D ðkÞu ¼ h; ð14Þ

together with the initial conditions

Eu ¼ ~u0 [ X; EðDuÞ ¼ ~u1 [ X^S0ðRÞ; . . . ; EðDðk21ÞuÞ ¼ ~uk21 [ X^S0ðRÞ^ðk21Þ;
ð15Þ
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where ~uj [ X^S2pðk2jþ1Þ ðRÞ^· · ·^S2pk ðRÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
j

, j ¼ 1; 2; . . . ; k2 1, is of the form

~uj ¼
X1

iðk2jþ1Þ¼1

X1
iðk2jþ2Þ¼1

· · ·
X1
ik¼1

~uj;iðk2jþ1Þ;iðk2jþ2Þ; ... ;ik^jiðk2jþ1Þ^jiðk2jþ2Þ^· · ·^jik ;

has a unique solution u [ DomqðDÞ,q . 1þmaxfp1; . . . ; pk}, of the form

u ¼ ~u0 þ
X1
ik¼1

~u1;ik^H1 ðik Þ þ 1

2

X1
ik21¼1

X1
ik¼1

~u2;ik21;ik^H1 ðik21Þþ1 ðik Þ

þ 1

3

X1
ik22¼1

X1
ik21¼1

X1
ik¼1

~u3;ik22;ik21;ik^H1 ðik22 Þþ1 ðik21 Þþ1 ðik Þ

þ · · ·þ 1

k

X1
i2¼1

X1
i3¼1

· · ·
X1
ik¼1

~uk21;i2; ... ;ik^H1 ði2 Þþ1 ði3 Þþ· · ·þ1 ðik Þ

þ
X
jaj$k

1

jajk
X1
i1¼1

X1
i2¼1

· · ·
X1
ik¼1

ha21 ði1 Þ21 ði2 Þ2· · ·21 ðik Þ;i1;i2;· · ·;ik^Ha:

ð16Þ

Proof. The proof follows by induction on k and Theorem 4.1.

Applying Theorem 4.1 to the equation

DðDðk21ÞðuÞÞ ¼ h;

where h ¼ P
a[I

P1
i1¼1

P1
i2¼1 · · ·

P1
ik¼1 ha;i1;i2; ... ;ik^ji1^ji2^· · ·^jik^Ha we obtain the

solution in form of

Dðk21ÞðuÞ ¼ ~uk21 þ
X
jaj$1

1

jaj
X1
i1¼1

X1
i2¼1

· · ·
X1
ik¼1

ha21 ði1 Þ;i1;i2; ... ;ik^ji2^ji3^· · ·^jik^Ha:

Applying Theorem 4.1 once again and using that

~uk21 ¼
X1
i2¼1

X1
i3¼1

· · ·
X1
ik¼1

~uk21;i2; ... ;ik^ji2^ji3^· · ·^jik

we obtain

Dðk22ÞðuÞ ¼ ~uk22 þ
X1
i2¼1

X1
i3¼1

· · ·
X1
ik¼1

~uk21;i2; ... ;ik^ji3^· · ·^jik^H1 ði2Þ

þ
X
jaj$2

1

jaj2
X1
i1¼1

X1
i2¼1

· · ·
X1
ik¼1

ha21 ði1 Þ21 ði2 Þ;i1;i2; ... ;ik^ji3^· · ·^jik^Ha:

Following the same procedure with

~uk22 ¼
X1
i3¼1

X1
i4¼1

· · ·
X1
ik¼1

~uk22;i3; ... ;ik^ji3^ji4^· · ·^jik
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we obtain

Dðk23ÞðuÞ ¼ ~uk23 þ
X1
i3¼1

X1
i4¼1

· · ·
X1
ik¼1

~uk22;i3 ... ;ik^ji4^· · ·^jik^H1 ði3 Þ

þ 1

2

X1
i2¼1

X1
i3¼1

· · ·
X1
ik¼1

~uk21;i2; ... ;ik^ji4^· · ·^jik^H1 ði2 Þþ1 ði3 Þ

þ
X
jaj$3

1

jaj3
X1
i1¼1

X1
i2¼1

· · ·
X1
ik¼1

ha21 ði1 Þ21 ði2 Þ21 ði3 Þ;i1;i2; ... ;ik^ji4^· · ·^jik^Ha:

After another k2 3 steps we obtain (16).

Convergence of the series given in (16) follows from

kuk2DomqðDÞ # CðkÞ k~u0k2X þ k~u1k2X^S2pðRÞ þ · · ·þ k~uk21k2X^S2pðRÞ^ðk21Þ

�
þkhk2X^S2pðRÞ^k^ðSÞ21;2q

�
, 1;

where CðkÞ is a constant depending only on k, p ¼ maxfp1; . . . ; pk} and q . pþ 1

according to the assumption. A

5. Equation with the Skorokhod integral

We consider now the integral equation

dðuÞ ¼ f ; ð17Þ

where d denotes the Skorokhod integral. We look for the solution in RangeðDÞ. It is clear
that u [ RangeðDÞ is equivalent to u ¼ Dð~uÞ, for some ~u. This approach is general

enough, since according to Theorem 4.1, for all u [ X^S0ðRÞ^ðSÞ21 there exists ~u [
X^ðSÞ21 such that u ¼ Dð~uÞ holds, i.e. RangeðDÞ ¼ X^S0ðRÞ^ðSÞ21.

Theorem 5.1. Let f [ X^ðSÞ21;2p, p [ N0, with zero expectation, have the chaos

expansion representation of the form

f ¼
X

a[I ;jaj$1

f a^Ha; f a [ X:

Then the integral Equation (17) has a unique solution u in X^S2lðRÞ^ðSÞ21;2p, for

l . pþ 1, given by

u ¼
X
a[I

X
k[N

ðak þ 1Þ f aþ1 ðkÞ

jaþ 1 ðkÞj^jk^Ha: ð18Þ

Proof. Equation (17) is equivalent to the system of equations

u ¼ Dð~uÞ
dðDð~uÞÞ ¼ f ;

(
i:e:

u ¼ Dð~uÞ
Rð~uÞ ¼ f :

(
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First we solve the equation

Rð~uÞ ¼ f : ð19Þ

We are looking for the solution in the form ~u ¼Pa[I ~u^Ha, where ~ua [ X are the

unknown coefficients. Therefore, from

Rð~uÞ ¼
X
a[I

jaj~ua^Ha ¼
X

a[I ;jaj$1

f a^Ha

it follows the form of the coefficients

~ua ¼ f a

jaj ; a [ I ; jaj $ 1:

Hence, the solution of Equation (19) is represented in the form

~u ¼ ~u0 þ
X

a[I ;jaj$1

f a

jaj^Ha; ð20Þ

where ~uð0;0;0; ... Þ ¼ ~u0 can be chosen arbitrarily. Now, the solution (18) of the initial

Equation (17) is obtained after applying the operator D to the solution (20), i.e. from

u ¼ Dð~uÞ ¼
X

a[I ;jaj$1

X
k[N

ak

f a

jaj^jk^Ha21 ðkÞ

¼
X
a[I

X
k[N

ðak þ 1Þ f aþ1 ðkÞ

jaþ 1 ðkÞj^jk^Ha:

Therefore if we are looking for the solution in the form

u ¼
X
a[I

X
k[N

ua;k^jk^Ha;

then the coefficients of the solution are

ua;k ¼ f aþ1 ðkÞ

jaþ 1 ðkÞj ðak þ 1Þ; a [ I ; k [ N: ð21Þ

It remains to prove the convergence of the solution (18) in X^S0ðRÞ^ðSÞ21. Under the

assumption f [ X^ðSÞ21;2p, for some p $ 0, it follows from Theorem 3 that

~u [ DompðDÞ.
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Hence, the convergence of the solution u in the space X^S2l^ðSÞ21;2p, for l . pþ 1,

follows from

kuk2X^S2l^ðSÞ21;2p
¼
X
a[I

X
k[N

kua;kk2Xkjkk22lð2NÞ2pa

¼
X
a[I

X
k[N

ðak þ 1Þ2
jaþ 1 ðkÞj2 kf aþ1 ðkÞ k2Xkjkk22lð2NÞ2pa

#
X
a[I

X
k[N

kf aþ1 ðkÞ k2Xkjkk22lð2NÞ2pa

#
X

a[I ;jaj.0

X
k[N

kf ak2Xð2kÞ2lð2NÞ2pða21 ðkÞÞ

#
X
a[I

X
k[N

kf ak2Xð2kÞ2lð2NÞ2pað2kÞp

# M
X
a[I

kf ak2Xð2NÞ2pa , 1;

since M ¼Pk[Nð2kÞp2l is finite for l . pþ 1. A

Remark 1. It is well known that D and d do not commute and the following holds.

If u [ X^S0ðRÞ^ðSÞ21, then DðduÞ ¼ uþ dðDuÞ.

Theorem 5.2.

(a) Let f [ X^ðSÞ21 be of the form f ¼P1
k¼0 f kH1 ðkÞ . Then, for any h [ X^ðSÞ21 of

the form h ¼Pa[I haHa,

h�f 2 hSf ¼
X
a[I

X1
k¼1

haþ1 ðkÞ f kðak þ 1ÞHa; ð22Þ

where the right-hand side is understood as a formal (not necessarily convergent)

expansion in X^ðSÞ21.

(b) Especially, if g [ X^SðRÞ, where g denotes the unique solution to dðgÞ ¼ f , then

h�dðgÞ2 hSdðgÞ ¼ kDðhÞ; gl

holds in X^ðSÞ21.

(c) Especially, if h [ X^ðSÞ1 and g [ X^S0ðRÞ, where g denotes the unique solution
to dðgÞ ¼ f , then

h�dðgÞ2 hSdðgÞ ¼ kg;DðhÞl

holds in X^ðSÞ21.

(d) In case g [ X^SðRÞ and DðhÞ [ X^L2ðRÞ^ðSÞ21, as well as in the case g [
X^L2ðRÞ and DðhÞ [ X^L2ðRÞ^ðSÞ1, formula (22) reduces to

h�dðgÞ2 hSdðgÞ ¼
ð
R

gðtÞ�DðhÞðtÞ dt:
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Proof. (a) Assume Eðf Þ ¼ f 0 ¼ 0. Then, according to Theorem 5.1 there exists a unique g

such that dðgÞ ¼ f and moreover this g is given by g ¼P1
k¼1 f kjk as an element of

X^S0ðRÞ. Thus,

hSf ¼ hSdðgÞ ¼
X
g[I

X1
n¼1

hg21 ðnÞ f nHg

and

h�dðgÞ ¼
X
a[I

X1
n¼1

ha21 ðnÞ f nHa21 ðnÞH1 ðnÞ

¼
X
a[I

X1
n¼1

ha21 ðnÞ f n Ha þ ðan 2 1ÞHa221 ðnÞ
� �

:

This implies

h�dðgÞ2 hSdðgÞ ¼
X
a[I

X1
n¼1

ha21 ðnÞ f nðan 2 1ÞHa221 ðnÞ

¼
X
a[I

X1
n¼1

haþ1 ðnÞ f nðan þ 1ÞHa:

Now, for arbitrary f let ~f ¼ f 2 Eðf Þ and ~g such that f ¼ Eðf Þ þ dð~gÞ. Since for

constants the Wick product and the ordinary product coincide, we have

h�f 2 hSf ¼ h�Eðf Þ þ h�dð~gÞ2 hSEðf Þ2 hSdð~gÞ ¼ h�dð~gÞ2 hSdð~gÞ

¼
X
a[I

X1
n¼1

haþ1 ðnÞ f nðan þ 1ÞHa:

Convergence of the series on the right-hand side of (22) will be proven only in the

special cases (b), (c) and (d).

(b) Since g ¼P1
k¼1f kjk and f k ¼ kjk; gl, k [ N, which reduces to f k ¼

Ð
R
gðtÞjkðtÞdt

in case of g [ L2ðRÞ and sinceDðhÞ ¼Pa[I
P1

n¼1haþ1 ðnÞ ðan þ 1ÞjnHa, we may write the

right-hand side of (22) as

X
a[I

X1
n¼1

haþ1 ðnÞ ðan þ 1Þkjn; glHa ¼
X
a[I

X1
n¼1

haþ1 ðnÞ ðan þ 1ÞjnHa; g

* +

¼ kDðhÞ; gl:

Assume that h [ X^ðSÞ21;2p for some p . 0, i.e.
P

a[I khak2Xð2NÞ2pa , 1 and that

g [ X^SlðRÞ for all l . 0 (equivalently f ¼ dðgÞ [ X^ðSÞ1;l), i.e.
P1

n¼1 kf nk2Xð2nÞl , 1.

Then h�dðgÞ2 hSdðgÞ ¼Pa[I
P1

n¼1 haf nanHa21 ðnÞ is well defined in X^ðSÞ21;2q for
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152 Section 1.3



q $ pþ 2. This follows from the fact that jaj # ð2NÞa and thus

X
a[I

X1
n¼1

khak2Xkf nk2Xjanj2ð2NÞ2qða21 ðnÞÞ ¼
X
a[I

X1
n¼1

khak2Xkf nk2Xjanj2ð2NÞ2qað2nÞq

#
X
a[I

khak2Xð2NÞ2ðq22ÞaX1
n¼1

kf nk2Xð2nÞq

#
X
a[I

khak2Xð2NÞ2pa
X1
n¼1

kf nk2Xð2nÞl , 1

for q2 2 $ p and q # l. Since l is arbitrary this holds for all q $ pþ 2.

(c) Since h [ X^ðSÞ1,
P

a[I a!
2khak2Xð2NÞpa , 1 for all p . 0. Assume g [

X^S2lðRÞ for some l . 0, i.e.
P1

n¼1 kf nk2Xð2nÞ2l , 1. Similarly as in (b) we can show

that the right-hand side of (22) is equal to kg;DðhÞl and h�dðgÞ2 hSdðgÞ ¼P
a[I

P1
n¼1 haf nanHa21 ðnÞ is well defined in X^ðSÞ21;2q for q ¼ l. Indeed, for all

n [ N, q . 0 and a [ I such that an – 0, we have ð2nÞq # ð2NÞqa and

ð2NÞ2qa # ð2nÞ2q. Since a2 1 ðnÞ is not defined if an ¼ 0, we now obtain

X
a[I

X1
n¼1

khak2Xkf nk2Xjanj2ð2NÞ2qða21 ðnÞÞ ¼
X
a[I

X1
n¼1

khak2Xkf nk2Xjanj2ð2NÞ2qað2nÞq

#
X
a[I

X1
n¼1

khak2Xkf nk2Xð2NÞ2að2nÞ2qð2NÞqa

#
X
a[I

a!2khak2Xð2NÞð2þqÞaX1
n¼1

kf nk2Xð2nÞ2q;

which is finite for q ¼ l.

(d) The proof is similar to those in (b) and (c). A

Now we turn to the case of equations involving higher orders of the Skorokhod

integral. Define d0 ¼ Id, d ðkÞ ¼ d+d ðk21Þ, k [ N and recall that d : X^S2lðRÞ^ðSÞ21;2r!
X^ðSÞ21;2p, p $ r, p . lþ 1.

Thus, for any k [ N,

d ðkÞ : X^S2l1^S2l2^· · ·^S2lk^ðSÞ21;2r ! X^ðSÞ21;2p

for p $ r, p . maxfl1; l2; . . . ; lk}þ 1.

Theorem 5.3. Let f [ X^ðSÞ21;2p, p [ N0, with zero expectation and zero terms in the

chaos subspaces spanned by Ha, jaj ¼ 1; 2; . . . ; k2 1, have the chaos expansion form

f ¼Pjaj$kf a^Ha, f a [ X, a [ I . Then the integral equation

d ðkÞu ¼ f ð23Þ
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has a unique solution u in X^S2l1^S2l2^· · ·^S2lk^ðSÞ21;2p, where maxfl1; l2; . . . ; lk} .
pþ 1, and it is given by

u ¼
X
a[I

X1
i1¼1

X1
i2¼1

· · ·
X1
ik¼1

ai1 þ 1
� �

ai2 þ 1
� �

· · · aik þ 1
� �

f aþ1 ði1Þþ1 ði2 Þþ· · ·þ1 ðik Þ ð24Þ

jaþ 1 ðikÞkaþ 1 ðik21Þ þ 1 ðikÞj· · ·jaþ 1 ði1Þ þ 1 ði2Þ þ · · ·þ 1 ðikÞj� �21
^ji1^· · ·^jik^Ha:

Proof. The proof follows by induction on k and Theorem 5.1.

The equation dðd ðk21ÞuÞ ¼ f , Eðf Þ ¼ 0, has according to Theorem 5.1 the solution

d ðk21Þu ¼
X
a[I

X1
i1¼1

ai1 þ 1
� � f aþ1 ði1 Þ

jaþ 1 ði1Þj^ji1^Ha

and by assumption f b ¼ 0 for jbj ¼ 0; 1, thus Eðd ðk21ÞuÞ ¼ 0. Applying Theorem 5.1 once

again we obtain the solution to the equation

dðd ðk22ÞuÞ ¼
X
a[I

X1
i1¼1

ðai1 þ 1Þ f aþ1 ði1 Þ

jaþ 1 ði1Þj^ji1^Ha

in form of

d ðk22Þu ¼
X
a[I

X1
i2¼1

X1
i1¼1

ai2 þ 1
� �

ai1 þ 1
� � f aþ1 ði1Þþ1 ði2 Þ

jaþ 1 ði2Þkaþ 1 ði1Þ þ 1 ði2Þj^ji1^ji2^Ha:

Since f b ¼ 0 for jbj ¼ 0; 1; 2, we have Eðd ðk22ÞuÞ ¼ 0 and we may apply Theorem 5.1

again to obtain an explicit form for d ðk23Þu. Altogether after k steps one obtains the solution
u in form (24).

Convergence of the series follows from

kukX^S2l1
^· · ·^S2lk

^ðSÞ21;2p
#
X
a[I

X
i1; ... ;ik

kf aþ1 ði1 Þþ· · ·þ1 ðik Þk2Xð2i1Þ2l1 · · ·ð2ikÞ2lk ð2NÞ2pa

#
X
a[I

X
i1; ... ;ik

kf ak2Xð2i1Þ2l1 · · ·ð2ikÞ2lk ð2NÞ2pða21 ði1 Þ2· · ·21 ðik ÞÞ

#
X
a[I

kf ak2Xð2NÞ2pa
X
i1[N

ð2i1Þ2ðl12pÞ· · ·
X
ik[N

ð2ikÞ2ðlk2pÞ , 1;

for li 2 p . 1, i ¼ 1; 2; . . . ; k. A

Corollary 5.4. For every k [ N, each process f [ X^ðSÞ21 can be represented as

f ¼ Eðf Þ þ
Xk
j¼1

d ðjÞðujÞ;

for some uj [ X^S0ðRÞ^· · ·^S0ðRÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
j

^ðSÞ21, j ¼ 1; 2; . . . ; k.
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Proof. Assume first that k ¼ 1. If Eðf Þ ¼ 0, then by Theorem 5.1 follows that there exists u

such that f ¼ dðuÞ. Otherwise, let ~f ¼ f 2 Eðf Þ, Eð~fÞ ¼ 0, and apply the previous case to

obtain ~u such that ~f ¼ dð~uÞ, where ~u ¼ Dð~vÞ, ~v ¼ R21ð~fÞ, i.e. ~u ¼ DðR21ð~fÞÞ. Thus,

f 2 Eðf Þ ¼ dðDðR21ðf 2 Eðf ÞÞÞ, i.e.

f ¼ Eðf Þ þ dðuÞ for u ¼ DðR21ðf 2 Eðf ÞÞ: ð25Þ

Now, for k ¼ 2, it holds that f ¼ Eðf Þ þ dð~u1Þ ¼ Eðf Þ þ dðEð~u1Þ þ dðu2ÞÞ ¼ Eðf Þþ
dðu1Þ þ d ð2Þðu2Þ, ~u1 ¼ ðD+R21Þðf 2 Eðf ÞÞ, u2 ¼ ðD+R21Þð~u1 2 Eð~u1ÞÞ, u1 ¼ Eð~u1Þ.

For arbitrary k [ N we define recursively ~u1 ¼ ðD+R21Þðf 2 Eðf ÞÞ, ~uj ¼ ðD+R21Þ �
ð~uj21 2 Eð~uj21ÞÞ for j ¼ 2; 3; . . . ; k2 1, let uj ¼ Eð~ujÞ, j ¼ 1; 2; . . . ; k2 1 and

uk ¼ ðD+R21Þð~uk21 2 Eð~uk21ÞÞ. With this choice of the integrands uj we obtain

f ¼ Eðf Þ þ dðu1Þ þ d ð2Þðu2Þ þ · · ·þ d ðkÞðukÞ:
A

Remark 2. Note that the statement of Corollary 5.4 reduces to the celebrated Itô

representation theorem (see, e.g. [7,23]) in case when f is a square integrable adapted

process.

6. Examples

(1) The following table provides some illustrative examples to Theorems 3.1, 4.1 and

5.1. In all examples, k½0;t� denotes the characteristic function of the interval ½0; t�,
dt denotes the Dirac delta function concentrated at the point t, Wt ¼P1

k¼1 jkðtÞH1 ðkÞ denotes singular white noise, Bt ¼
P1

k¼1

Ð t
0
jkðsÞds

� �
H1 ðkÞ denotes

Brownian motion and Z ¼P1
k¼1 H21 ðkÞ is a Kondratiev generalized random

variable. Complete explanations and calculations can be found in [11].

(2) Examples of equations with second-order iterated operators, which are

illustrations of Theorems 3.1, 4.5 and 5.3, are given in the following table.

Equations Solutions

RðuÞ ¼ Bt0 , Eu ¼ ~u0 u ¼ ~u0 þ Bt0RðuÞ ¼ Wt0 , Eu ¼ ~u0 u ¼ ~u0 þWt0RðuÞ ¼ BS2
t0
, Eu ¼ 0 u ¼ ð1=2ÞBS2

t0RðuÞ ¼ WS2
t0
, Eu ¼ 0 u ¼ ð1=2ÞWS2

t0RðuÞ ¼ Z, Eu ¼ 0 u ¼ ð1=2ÞZ
DðuÞ ¼ k½0;t0�, Eu ¼ ~u0 u ¼ ~u0 þ Bt0

DðuÞ ¼ dt0 , Eu ¼ ~u0 u ¼ ~u0 þWt0

DðuÞ ¼ Wt, Eu ¼ 0 u ¼ ð1=2ÞZ
DðuÞ ¼ Bt0k½0;t0�, Eu ¼ 0 u ¼ ð1=2ÞBS2

t0
DðuÞ ¼ Wt0dt0 , Eu ¼ 0 u ¼ ð1=2ÞWS2

t0
dðuÞ ¼ Bt0 u ¼ k½0;t0�
dðuÞ ¼ Wt0 u ¼ dt0
dðuÞ ¼ ð1=2ÞBS2

t0
¼ ð1=2Þ B2

t0
2 t0

� �
u ¼ Btk½0;t0�

dðuÞ ¼ ð1=2ÞWS2
t0

u ¼ Wtdt0
dðuÞ ¼ Z u ¼ Wt
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We study parabolic stochastic partial differential equations (SPDEs), driven by two
types of operators: one linear closed operator generating a C0−semigroup and
one linear bounded operator with Wick-type multiplication, all of them set in the
infinite dimensional space framework of white noise analysis. We prove existence
and uniqueness of solutions for this class of SPDEs. In particular, we also treat the
stationary case when the time-derivative is equal to zero.
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1 Introduction and definitions

We consider a stochastic Cauchy problem of the form

d

dt
U(t, x, ω) = AU(t, x, ω) + B♦U(t, x, ω) + F (t, x, ω)

U(0, x, ω) = U0(x, ω),
(1.1)

where t ∈ (0, T ], ω ∈ Ω, and U(t, ·, ω) belongs to some Banach space X. The operator
A is densely defined, generating a C0−semigroup and B is a linear bounded operator
which combined with the Wick product ♦ introduces convolution-type perturbations into
the equation. All stochastic processes are considered in the setting of Wiener-Itô chaos
expansions. A comprehensive explanation of the action of the operators A and B in this
framework will be provided in Section 2.

Our investigations in this paper are inspired by [12] where the authors provide a
comprehensive analysis of equations of the form

d

dt
u(t, x, ω) = Au(t, x, ω) + δ(Mu(t, x, ω)) = Au(t, x, ω) +

∫
Mu(t, x, ω)♦W (x, ω) dx,
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Stochastic evolution equations

where δ denotes the Skorokhod integral and W denotes the spatial white noise process.
In Proposition 2.8 we prove that for every operator M there exists a corresponding
operator B such that B♦u = δ(Mu). On the other hand, the class of operators B is
much larger. This holds also for the class of operators A we consider (a comprehensive
analysis of all operators is given in Section 2.1). Thus, we extend the results of [12] and
[13] to a more general class of stochastic differential equations which are driven by two
linear multiplicative operators: A acting with ordinary multiplication, while B♦ is acting
with the convolution-type Wick product.

We have studied elliptic SPDEs, in particular the stochastic Dirichlet problem of the
form L♦u+ f = 0 in our previous papers [11], [18], [19]. As a conclusion to this series
of papers we study parabolic SPDEs of the form (2.1). Such equations also include as
a special case equations of the form d

dtu = Lu + f and d
dtu = L♦u + f , where L is a

strictly elliptic second order partial differential operator. These equations describe the
heat conduction in random media (inhomogeneous and anisotropic materials), where the
properties of the material are modeled by a positively definite stochastic matrix.

Other special cases of (2.1) include the heat equation with random potential d
dtu =

∆u+B♦u, the Schrödinger equation (i~) ddtu = ∆u+B♦u+f , the transport equation d
dtu =

d2

dx2u+W♦ d
dxu driven by white noise as in [20], the generalized Langevin equation d

dtu =

Ju+ C(Y ′), where Y is a Lévy process, J the infinitesimal generator of a C0−semigroup
and C a bounded operator, which was studied in [1], as well as the equation d

dtu =

Lu+W♦u, where L is a strictly elliptic partial differential operator as studied in [3] and
[8].

Equations of the form d
dtu = Au + BW were also studied in [14] and [15], where

A is not necessarily generating a C0−semigroup, but an r-integrated or a convolution
semigroup.

In order to solve (2.1) we apply the method of Wiener-Itô chaos expansions, also
known as the propagator method. With this method we reduce the SPDE to an infinite
triangular system of PDEs, which can be solved by induction. Summing up all coefficients
of the expansion and proving convergence in an appropriate weight space, one obtains
the solution of the initial SPDE.

We also consider the case of stationary equations AU + B♦U + F = 0. In particular,
elliptic SPDEs have been studied in [11], [13], [18] and [19]. With the method of chaos
expansions one can also treat hyperbolic SPDEs [9] and SPDEs with singularities [21].
One of its advantages is that it provides explicit solutions in terms of a series expansion,
which can be easily implemented also to numerical approximations and computational
simulations.

1.1 C0−semigroups

We recall some well-known facts which will be used in the sequel (see [16]). LetX be a
Banach space. If B is a bounded linear operator on X and A is the infinitesimal generator
of a C0−semigroup {Tt}t≥0 satisfying ||Tt||L(X) ≤Mewt, t ≥ 0, for some M,w > 0, then
A+B is the infinitesimal generator of a C0−semigroup {St}t≥0, on X satisfying

‖St‖L(X) ≤Me(w+M‖B‖L(X))t, t ≥ 0.

Let u(0) = u0 ∈ D = Dom(A) and f ∈ C([0,∞), X). Recall that u : [0, T ] → X is a
(classical) solution on [0, T ] to

d

dt
u(t) = Au(t) + f(t), t ∈ (0, T ], u(0) = u0, (1.2)

if u is continuous on [0, T ], continuously differentiable on (0, T ], u(t) ∈ D, t ∈ (0, T ] and
the equation is satisfied on (0, T ]. If f ∈ L1((0, T ), X), then u(t) = Ttu

0+
∫ t
0
Tt−sf(s)ds, t ∈

EJP 20 (2015), paper 19.
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[0, T ] belongs to C([0, T ], X), and it is called a mild solution. Clearly, a mild solution that
is continuously differentiable on (0, T ] is a classical solution.

Let f ∈ L1((0, T ), X)∩C((0, T ], X) and v(t) =
∫ t
0
Tt−sf(s)ds, t ∈ [0, T ]. The initial value

problem has a solution u for every u0 ∈ D if one of the following conditions is satisfied
(see [16]):

(i) v is continuously differentiable on (0, T ).

(ii) v(t) ∈ D for 0 < t ≤ T and Av(t) is continuous on (0, T ].

If the initial value problem has a solution on [0, T ] for some u0 ∈ D, then v(t) satisfies
both (i) and (ii). Note that if f ∈ C1([0, T ], X) then conditions (i) and (ii) are fulfilled.
Moreover, if f ∈ C1([0, T ], X) and u0 ∈ D(A), then for the solution u of (1.2) we have
that u ∈ C1([0, T ], X) and d

dtu(0) = Au0 + f(0).

1.2 Generalized stochastic processes

Denote by (Ω,F , P ) the Gaussian white noise probability space (S′(R),B, µ), where
S′(R) denotes the space of tempered distributions, B the Borel sigma-algebra generated
by the weak topology on S′(R) and µ the Gaussian white noise measure corresponding
to the characteristic function

∫

S′(R)

ei〈ω,φ〉dµ(ω) = exp

[
−1

2
‖φ‖2L2(R)

]
, φ ∈ S(R),

given by the Bochner-Minlos theorem.
We recall the notions related to L2(Ω, µ) (see [7]) where Ω = S′(R) and µ is Gaussian

white noise measure. Define the set of multi-indices I to be (NN0 )c, i.e. the set of
sequences of non-negative integers which have only finitely many nonzero components.
Especially, we denote by 0 = (0, 0, 0, . . .) the multi-index with all entries equal to zero.
The length of a multi-index is |α| = ∑∞i=1 αi for α = (α1, α2, . . .) ∈ I, and it is always finite.
Similarly, α! =

∏∞
i=1 αi!, and all other operations are also carried out componentwise. We

will use the convention that α− β is defined if αn − βn ≥ 0 for all n ∈ N, i.e., if α− β ≥ 0,
and leave α− β undefined if αn < βn for some n ∈ N.

The Wiener-Itô theorem (sometimes also referred to as the Cameron-Martin theorem)
states that one can define an orthogonal basis {Hα}α∈I of L2(Ω, µ), where Hα are
constructed by means of Hermite orthogonal polynomials hn and Hermite functions ξn,

Hα(ω) =
∞∏

n=1

hαn(〈ω, ξn〉), α = (α1, α2, . . . , αn . . .) ∈ I, ω ∈ Ω = S′(R).

Then, every F ∈ L2(Ω, µ) can be represented via the so called chaos expansion

F (ω) =
∑

α∈I
fαHα(ω), ω ∈ S′(R),

∑

α∈I
|fα|2α! <∞, fα ∈ R, α ∈ I.

Denote by εk = (0, 0, . . . , 1, 0, 0, . . .), k ∈ N the multi-index with the entry 1 at the kth
place. Denote by H1 the subspace of L2(Ω, µ), spanned by the polynomials Hεk(·), k ∈ N.
The subspace H1 contains Gaussian stochastic processes, e.g. Brownian motion is given
by the chaos expansion B(t, ω) =

∑∞
k=1

∫ t
0
ξk(s)ds Hεk(ω).

Denote by Hm the mth order chaos space, i.e. the closure of the linear subspace
spanned by the orthogonal polynomials Hα(·) with |α| = m, m ∈ N0. Then the Wiener-Itô
chaos expansion states that L2(Ω, µ) =

⊕∞
m=0Hm, where H0 is the set of constants in

L2(Ω, µ).
It is well-known that the time-derivative of Brownian motion (white noise process)

does not exist in the classical sense. However, changing the topology on L2(Ω, µ) to

EJP 20 (2015), paper 19.
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a weaker one, T. Hida [6] defined spaces of generalized random variables containing
the white noise as a weak derivative of the Brownian motion. We refer to [6], [7] for
white noise analysis (as an infinite dimensional analogue of the Schwartz theory of
deterministic generalized functions).

Let (2N)α =
∏∞
n=1(2n)αn , α = (α1, α2, . . . , αn, . . .) ∈ I. We will often use the fact

that the series
∑
α∈I(2N)−pα converges for p > 1. Define the Banach spaces

(S)1,p = {F =
∑

α∈I
fαHα ∈ L2(Ω, µ) : ‖F‖2(S)1,p =

∑

α∈I
(α!)2|fα|2(2N)pα <∞}, p ∈ N0.

Their topological dual spaces are given by

(S)−1,−p = {F =
∑

α∈I
fαHα : ‖F‖2(S)−1,−p =

∑

α∈I
|fα|2(2N)−pα <∞}, p ∈ N0.

The Kondratiev space of generalized random variables is (S)−1 =
⋃
p∈N0

(S)−1,−p en-
dowed with the inductive topology. It is the strong dual of (S)1 =

⋂
p∈N0

(S)1,p, called the
Kondratiev space of test random variables which is endowed with the projective topology.
Thus,

(S)1 ⊆ L2(Ω, µ) ⊆ (S)−1

forms a Gelfand triplet.
The time-derivative of the Brownian motion exists in the generalized sense and

belongs to the Kondratiev space (S)−1,−p for p ≥ 5
12 . We refer to it as to white noise and

its formal expansion is given by W (t, ω) =
∑∞
k=1 ξk(t)Hεk(ω).

We extended in [17] the definition of stochastic processes also to processes of the
chaos expansion form U(t, ω) =

∑
α∈I uα(t)Hα(ω), where the coefficients uα are ele-

ments of some Banach space X. We say that U is an X-valued generalized stochastic
process, i.e. U(t, ω) ∈ X ⊗ (S)−1 if there exists p > 0 such that ‖U‖2X⊗(S)−1,−p

=∑
α∈I ‖uα‖2X(2N)−pα <∞.
The Wick product of stochastic processes F =

∑
α∈I fαHα, G =

∑
β∈I gβHβ ∈ X ⊗

(S)−1 is

F♦G =
∑

γ∈I

∑

α+β=γ

fαgβHγ =
∑

α∈I

∑

β≤α
fβgα−βHα,

and the nth Wick power is defined by F♦n = F♦(n−1)♦F , F♦0 = 1. Note that Hnεk = H♦n
εk

for n ∈ N0, k ∈ N.
For example, let X = Ck[0, T ], k ∈ N. In [18] we proved that differentiation of a

stochastic process can be carried out componentwise in the chaos expansion, i.e. due
to the fact that (S)−1 is a nuclear space it holds that Ck([0, T ], (S)−1) = Ck[0, T ]⊗ (S)−1.
This means that a stochastic process U(t, ω) is k times continuously differentiable if and
only if all of its coefficients uα(t), α ∈ I are in Ck[0, T ].

The same holds for Banach space valued stochastic processes i.e. elements of
Ck([0, T ], X)⊗ (S)−1, where X is an arbitrary Banach space. By the nuclearity of (S)−1,
these processes can be regarded as elements of the tensor product space

Ck([0, T ], X ⊗ (S)−1) = Ck([0, T ], X)⊗ (S)−1 =

∞⋃

p=0

Ck([0, T ], X)⊗ (S)−1,−p.

2 Stochastic operators

Definition 2.1. Let X be a Banach space and O : X ⊗ (S)−1 → X ⊗ (S)−1 an oper-
ator acting on the space of stochastic processes. We will call O to be a coordinate-
wise operator if there exists a family of operators oα : X → X, α ∈ I, such that
O(
∑
α∈I fαHα) =

∑
α∈I oα(fα)Hα for all F =

∑
α∈I fαHα ∈ X ⊗ (S)−1.

EJP 20 (2015), paper 19.
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Clearly, not all operators are coordinatewise, for example O(F ) = F♦2 can not be
written in this form.

Definition 2.2. The subclass of simple coordinatewise operators consists of operators
for which oα = oβ = o, α, β ∈ I, that is, they can be written in form of O(

∑
α∈I fαHα) =∑

α∈I o(fα)Hα for some operator o : X → X.

For example, the operator of differentiation [18] and the Fourier transform [21] are
simple coordinatewise operators. The Ornstein-Uhlenbeck operator is a coordinatewise
operator but it is not a simple coordinatewise operator.

Note that even if all oα, α ∈ I, are bounded linear operators, the coordinatewise
operator O itself does not need to be bounded. If oα, α ∈ I, are uniformly bounded by
some C > 0, then O is also a bounded operator. This follows from

‖O(F )‖2X⊗(S)−1,−p ≤
∑

α∈I
‖oα‖2L(X)‖fα‖2X(2N)−pα

≤ C2
∑

α∈I
‖fα‖2X(2N)−pα = C2‖F‖2X⊗(S)−1,−p <∞,

for F ∈ X ⊗ (S)−1,−p.
This condition is sufficient, but not necessary, and can be loosened by the embedding

(S)−1,−p ⊆ (S)−1,−q, q ≥ p.
Lemma 2.3. Let O be a coordinatewise operator for which all oα, α ∈ I, are polynomially
bounded i.e. ‖oα‖L(X) ≤ R(2N)rα for some r,R > 0. Then, there exists q ≥ p such that
O : X ⊗ (S)−1,−p → X ⊗ (S)−1,−q is bounded.

Proof. Let q ≥ p+ 2r. Then,

‖O(F )‖2X⊗(S)−1,−q ≤ R
2
∑

α∈I
(2N)2rα‖fα‖2X(2N)−qα = R2

∑

α∈I
‖fα‖2X(2N)−(q−2r)α

≤ R2
∑

α∈I
‖fα‖2X(2N)−pα = R2‖F‖2X⊗(S)−1,−p <∞.

Thus, ‖O‖L(X)⊗(S)−1
≤ R.

Note that the condition ‖oα‖L(X) ≤ R(2N)rα for some r,R > 0 is actually equivalent
to stating that there exists r > 0 such that

∑
α∈I ‖oα‖2L(X)(2N)−rα <∞.

Throughout the paper we will consider the equation

d

dt
U(t, ω) = AU(t, ω) + B♦U(t, ω) + F (t, ω), t ∈ (0, T ], ω ∈ Ω,

U(0, ω) = U0(ω),
(2.1)

where both operators A and B are assumed to be coordinatewise operators, i.e. com-
posed out of a family of operators {Aα}α∈I , {Bα}α∈I , respectively. The operators Aα,
α ∈ I, are assumed to be infinitesimal generators of C0−semigroups with a common
domain D dense in X and the action of A is given by A(U) =

∑
α∈I Aα(uα)Hα, for

U =
∑
α∈I uαHα ∈ Dom(A) ⊆ D ⊗ (S)−1, where

Dom(A) = {U =
∑

α∈I
uαHα ∈ D ⊗ (S)−1 : ∃pU > 0,

∑

α∈I
‖Aα(uα)‖2X(2N)−pUα <∞}.
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The operators Bα, α ∈ I, are assumed to be bounded and linear on X, and the action of
the operator B♦ : X ⊗ (S)−1 → X ⊗ (S)−1 is defined by

B♦(U) =
∑

α∈I

∑

β≤α
Bβ(uα−β)Hα =

∑

γ∈I

∑

α+β=γ

Bα(uβ)Hγ .

In the next two lemmas we provide two sufficient conditions that ensure the operator
B♦ to be well-defined. Both conditions are actually equivalent to the fact that Bα, α ∈ I,
are polynomially bounded, but they provide finer estimates on the stochastic order
(Kondratiev weight) of the domain and codomain of B♦.

Lemma 2.4. If the operators Bα, α ∈ I, satisfy
∑
α∈I ‖Bα‖2L(X)(2N)−rα < ∞, then B♦

is well-defined as a mapping B♦ : X ⊗ (S)−1,−p → X ⊗ (S)−1,−(p+r+m), m > 1.

Proof. For U ∈ X ⊗ (S)−1,−p and q = p+ r +m we have

∑

γ∈I
‖
∑

α+β=γ

Bα(uβ)‖2X(2N)−qγ ≤
∑

γ∈I

[ ∑

α+β=γ

‖Bα‖L(X)‖uβ‖X
]2

(2N)−(p+r+m)γ

=
∑

γ∈I
(2N)−mγ


 ∑

α+β=γ

‖Bα‖2L(X)(2N)−rγ




 ∑

α+β=γ

‖uβ‖2X(2N)−pγ




≤M
(∑

α∈I
‖Bα‖2L(X)(2N)−rα

)
∑

β∈I
‖uβ‖2X(2N)−pβ


 <∞,

where M =
∑
γ∈I(2N)−mγ <∞, for m > 1.

Lemma 2.5. If the operators Bα, α ∈ I, satisfy
∑
α∈I ‖Bα‖L(X)(2N)−

r
2α <∞, for some

r > 0, then B♦ is well-defined as a mapping B♦ : X ⊗ (S)−1,−r → X ⊗ (S)−1,−r.

Proof. For U ∈ X ⊗ (S)−1,−r, we have by the generalized Minkowski inequality that

∑

γ∈I
‖
∑

α+β=γ

Bα(uβ)‖2X(2N)−rγ ≤
∑

γ∈I

[ ∑

α+β=γ

‖Bα‖L(X)‖uβ‖X
]2

(2N)−rγ

≤
∑

γ∈I

[ ∑

α+β=γ

‖Bα‖L(X)(2N)−
r
2α‖uβ‖X(2N)−

r
2β
]2

≤
(∑

α∈I
‖Bα‖L(X)(2N)−

r
2α

)2∑

β∈I
‖uβ‖2X(2N)−rβ <∞.

2.1 Special cases and relationship to other works

Some of the most important operators of stochastic calculus are the operators of the
Malliavin calculus. We recall their definitions in the generalized S′(R) setting [10].

• The Malliavin derivative, D, as a stochastic gradient in the direction of white noise,
is a linear and continuous mapping D : X ⊗ (S)−1 → X ⊗ S′(R)⊗ (S)−1 given by

Du =
∑

α∈I

∑

k∈N
αk uα ⊗ ξk ⊗Hα−εk , for u =

∑

α∈I
uα ⊗Hα.

In terms of quantum theory it corresponds to the annihilation operator reducing
the order of the chaos space ( D : Hm → Hm−1).
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• The Skorokhod integral, δ, as an extension of the Itô integral to non-anticipating
processes, is a linear and continuous mapping δ : X ⊗ S′(R)⊗ (S)−1 → X ⊗ (S)−1
given by

δ(F ) =
∑

α∈I

∑

k∈N
fα ⊗ vα,k ⊗Hα+εk , for F =

∑

α∈I
fα ⊗

(∑

k∈N
vα,k ξk

)
⊗Hα.

It is the adjoint operator of the Malliavin derivative and in terms of quantum theory
it corresponds to the creation operator increasing the order of the chaos space
(δ : Hm → Hm+1).

• The Ornstein-Uhlenbeck operator, R, as the composition of the previous ones δ ◦D,
is the stochastic analogue of the Laplacian. It is a linear and continuous mapping
R : X ⊗ (S)−1 → X ⊗ (S)−1 given by

R(u) =
∑

α∈I
|α|uα ⊗Hα, for u =

∑

α∈I
uα ⊗Hα.

In terms of quantum theory it corresponds to the number operator. It is a selfadjoint
operator R : Hm → Hm with eigenvectors equal to the basis elements Hα, α ∈ I,
i.e. R(Hα) = |α|Hα, α ∈ I. Thus, Gaussian processes with zero expectation are the
only fixed points for the Ornstein-Uhlenbeck operator.

Clearly, the Ornstein-Uhlenbeck operator is a coordinatewise operator, while the Malli-
avin derivative and the Skorokhod integral are not coordinatewise operators.

The Ornstein-Uhlenbeck operator is the infinitesimal generator of the semigroup
Tt = etR, t ≥ 0, given by Tt(u) =

∑
α∈I e

−|α|tuα⊗Hα, for u =
∑
α∈I uα⊗Hα ∈ X⊗ (S)−1.

It is also closely connected to the Ornstein-Uhlenbeck process. The Ornstein-
Uhlenbeck process is the solution of the SDE du(t, ω) = −u(t, ω)dt+ dB(t, ω), u(0, ω) =

u0(x, ω), and it is given by u(t, ω) = e−tu0(ω) +
∫ t
0
et−sdB(s, ω). It is a Markov pro-

cess with transition semigroup {Tt}t≥0 [2]. The solution of the generalized heat equa-
tion d

dtu + R(u) = 0, u(0) = u0, is given by u = Tt(u0), i.e. u(t, x) = (Ttu0)(x) and
(Ttϕ)(x) = E(ϕ(u(t, x)) for any ϕ ∈ Cb(R) and u is the Ornstein-Uhlenbeck process.

Now we turn to our equation

d

dt
U(t, ω) = AU(t, ω) + B♦U(t, ω) + F (t, ω), (2.2)

where A and B are coordinatewise operators as described in Section 2, composed out of
a family of operators {Aα}α∈I , {Bα}α∈I , respectively, where Aα are infinitesimal gener-
ators on X and Bα are bounded linear operators on X, both families being polynomially
bounded, and their actions given by

AU =
∑

α∈I
Aα(uα)Hα, for U =

∑

α∈I
uαHα, (2.3)

B♦U =
∑

α∈I

∑

β≤α
Bβ(uα−β)Hα, for U =

∑

α∈I
uαHα. (2.4)

Some important special cases include the following:

I) Special cases for A:

1) A is a simple coordinatewise operator, i.e. Aα = A,α ∈ I, where A is the
infinitesimal generator of a C0−semigroup on X. Such operators are, for
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example the Laplacian ∆ on X = W 2,2(Rn) or any strictly elliptic linear
partial differential operator of even order P (x,D) =

∑
|ι|≤2m aι(x)Dι. For

example, second order elliptic operators can be written in divergence form
L = ∇ · (Q∇ ·+b) + c∇·, where Q is a positively definite function matrix.

2) Aα = A+Rα, α ∈ I, where A is as in 1), while Rα, α ∈ I, are bounded linear
operators on X so that R is a coordinatewise operator

RU(t, ω) =
∑

α∈I
Rαuα(t)Hα(ω).

Especially, if we take A = 0 and Rα to be multiplication operators Rα(x) =

rα · x, x ∈ X, then the resulting operator R is a self-adjoint operator with
eigenvalues rα corresponding to the eigenvectors Hα and thus represents a
natural generalization of the Ornstein-Uhlenbeck operator. For rα = |α|, α ∈ I,
we retrieve the Ornstein-Uhlenbeck operator R.

Finally, we note that every bounded linear coordinatewise operator R can be
written in the form Ru = δ(Mu) where M is a generalization of the Malliavin
derivative. This will be done in Proposition 2.6.

II) Special cases for B:

1) B is an operator acting as a multiplication operator with a deterministic
function, i.e. Bα = b for α = (0, 0, 0, 0, . . .) and Bα = 0 for all other α ∈ I. Its
action is thus

B♦U(t, ω) =
∑

α∈I
b · uα(t)Hα(ω).

For example, we may take X = L2(Rn) and b = b(x), x ∈ Rn, for an essentially
bounded function b.

2) B is multiplication with spatial white noise onX = L2(Rn). LetBk := Bεk = ξk,
k ∈ N, and Bα = 0 for α 6= εk, i.e. Bk(v(x)) = ξk(x) · v(x), k ∈ N. Then,

B♦U(t, ω) = W (x, ω)♦U(t, ω).

Clearly,

B♦U =
∑

γ∈I

∑

k∈N
Bk(uα−εk)Hγ =

∑

γ∈I

∑

k∈N
uα−εkξkHγ

=
∑

γ∈I

∑

α+εk=γ

uαξkHγ = W♦U.

Multiplication with spatial white noise is important for applications since it
describes stationary perturbations.

3) B is of the form Bεk = Bk, k ∈ N, and Bα = 0 for α 6= εk, where Bk : X → X,
k ∈ N, are bounded linear operators.

Note that in this case there is a one-to-one correspondence between opera-
tors of the form B♦ and operators of the form δ(Mu) where M is a simple
coordinatewise operator. This will be done in Proposition 2.8.

4) B is a simple coordinatewise operator, i.e. Bα = B,α ∈ I, where B is a
bounded linear operator on X. Alternatively, we may also regard operators as
B : X → X ′ in order to make them bounded; such operators are for example
the divergence ∇· as a mapping from X = W 1,2(Rn) to X ′ = W−1,2(Rn).

5) B♦ = ∇ ·♦(Q♦∇ ·+b♦) + c♦∇· as a strictly elliptic second order operator with
random coefficients. This operator is obtained for Bα = ∇· (Qα∇·+bα) + cα∇·,
α ∈ I, and was studied in [18] and [19].
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Proposition 2.6. Let R : X ⊗ (S)−1 → X ⊗ (S)−1 be a bounded linear coordinatewise
operator defined by Ru(t, ω) =

∑
α∈I Rαuα(t)Hα(ω).

1. There exists an operator M : X ⊗ (S)−1 → X ⊗ S′(R)⊗ (S)−1 of the form

Mu =
∞∑

k=1

Mku⊗ ξk, u ∈ X ⊗ (S)−1,

for some coordinatewise operators Mk : X ⊗ (S)−1 → X ⊗ (S)−1, k ∈ N, such that

Ru = δ(Mu)

holds.
2. Especially, if R is a selfadjoint operator, then M is a generalization of the Malliavin

derivative.

Proof. a) In [10] we proved that the Skorokhod integral is invertible, i.e. there exists a
unique solution to equations of the form δ(v) = f . Considering the equation δ(Mu) =∑
α∈I Rαuα Hα and applying the result from [10], we obtain Mu in the form

Mu =
∑

α∈I

∑

k∈N
(αk + 1)

Rα+εk(uα+εk)

|α+ εk|
⊗ ξk ⊗Hα.

By defining

Mku =
∑

α∈I
(αk + 1)

Rα+εk(uα+εk)

|α+ εk|
⊗Hα, k ∈ N,

we obtain the assertion.
b) Let R be a self-adjoint operator with eigenvalues rα and eigenvectors Hα, α ∈ I,

i.e., an operator of the form Ru =
∑
α∈I rαuαHα. Assume that rα =

∑
k∈N rk,α for some

rk,α ∈ R, k ∈ N, α ∈ I, is an arbitrary decomposition of the value rα.
Define

Mku =
∑

α∈I
rk,αuα ⊗Hα−εk .

Then Mu =
∑
k∈NMku⊗ ξk =

∑
k∈N

∑
α∈I rk,αuα ⊗Hα−εk ⊗ ξk and

δ(Mu) =
∑

k∈N

∑

α∈I
rk,αuα ⊗Hα =

∑

α∈I
rαuα ⊗Hα.

Remark 2.7. The converse is not true. Even if each Mk, k ∈ N, is a simple coordinate-
wise operator (and so is M), R := δ ◦M does not need to be a coordinatewise operator.
This would require that the system Rα(uα) =

∑
k∈Nmk(uα−εk), α ∈ I, is solvable for

Rα(·) given the functions mk(·), k ∈ N, which is not true in general.

Proposition 2.8. Let M : X ⊗ (S)−1 → X ⊗ S′(R)⊗ (S)−1 be of the form

Mu =
∞∑

k=1

Mku⊗ ξk, u ∈ X ⊗ (S)−1, (2.5)

for some simple coordinatewise operators Mk : X ⊗ (S)−1 → X ⊗ (S)−1, k ∈ N. Then,
there exists a coordinatewise operator B such that Bα = 0 for α 6= εk, k ∈ N, and

δ(Mu) = B♦u

holds.
Conversely, for any coordinatewise operator B such that Bα = 0 for α 6= εk, k ∈

N, there exists an operator M of the form Mu =
∑∞
k=1 Mku ⊗ ξk for some simple

coordinatewise operators Mk, k ∈ N, such that δ(Mu) = B♦u holds.
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Proof. Let M be an operator as stated above and since Mk are simple coordinatewise
operators, we can write them as

Mk(u) =
∑

α∈I
mk(uα)Hα, u =

∑

α∈I
uαHα,

for some operators mk : X → X, k ∈ N. Thus,

Mu =

∞∑

k=1

∑

α∈I
mk(uα)Hα ⊗ ξk

which further implies

δ(Mu) =

∞∑

k=1

∑

α∈I
mk(uα)Hα+εk =

∞∑

k=1

∑

α∈I
mk(uα−εk)Hα. (2.6)

On the other hand, if B is such that Bα = 0 for α 6= εk, k ∈ N, and we denote by
Bk := Bεk , k ∈ N, the operators acting on X, then

B♦u =
∑

α∈I

∞∑

k=1

Bk(uα−εk)Hα. (2.7)

From (2.6) and (2.7) it follows that δ(Mu) = B♦u if and only if mk = Bk for all k ∈ N.
Thus, there is a one-to-one correspondence between the operators B♦ and δ ◦M.

Remark 2.9. In [12] and [13] Rozovskii and Lototsky considered the equation d
dt =

Au + δ(Mu) + f , where M is of the form (2.5). They implicitly assumed that all their
operators A and Mk, k ∈ N, belong to our class of simple coordinatewise operators.
This corresponds to our special cases I-1) and II-3).

Some special cases of stochastic differential equations covered by (2.2) include the
following:

• The heat equation with random potential

d

dt
u = ∆u+ B♦u.

In particular, if the random potential is modeled by stationary perturbations, we
may take spatial white noise as a model and obtain d

dtu = ∆u + W♦u. This
corresponds to the special choice of operators I-1) and II-2).

• The heat equation in random (inhomogeneous and anisotropic) media, where the
physical properties of the medium are modeled by a stochastic matrix Q. This
corresponds to the case I-1) with A = 0 and II-5) leading to an equation of the form

d

dt
u = ∇ · ♦(Q♦∇ · u+ b♦u) + c♦∇ · u+ f.

• Taking A = 0 and Bk := Bεk = ξk∇·, k ∈ N, (see special cases II-2) and II-4)) we
obtain the transport equation driven by white noise

d

dt
u = ∆u+W♦∇ · u.

• The Langevin equation
d

dt
u = −λu+W (t),
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λ > 0, corresponding to the case I-1) with A = −λ, f = W and B = 0. Its solution
is the Ornstein-Uhlenbeck process describing the spatial position of a Brownian
particle in a fluid with viscosity λ.

In [1] the authors considered the generalized Langevin equation leading to gener-
alized Ornstein-Uhlenbeck operators driven by Lévy processes

d

dt
u = Ju+ C(

d

dt
Y ),

where Y is a Lévy process, J the infinitesimal generator of a C0−semigroup and C
a bounded operator. All processes are Hilbert space valued. This corresponds to
our case with X being this Hilbert space, A = J , B = 0 and f = C(Y ′).
• The equation d

dt = Au+ δ(Mu) + f , that was extensively studied in [12] and [13].
This corresponds to our special cases I-1) and II-3).

• The equation
d

dt
u = Lu+W♦u,

where L is a strictly elliptic partial differential operator as studied in [3] and [8].
This corresponds to the special case I-1) and II-2).

3 Stochastic evolution equations

Now we turn to the general case of stochastic Cauchy problems of the form d
dtU(t, ω) =

AU(t, ω)+B♦U(t, ω)+F (t, ω), t ∈ (0, T ], ω ∈ Ω, with initial value U(0, ω) = U0(ω), ω ∈ Ω,
and all processes are X-valued for a Banach space X.

Definition 3.1. It is said that U is a solution to (2.1) if U ∈ C([0, T ], X) ⊗ (S)−1 ∩
C1((0, T ], X)⊗ (S)−1 and U satisfies (2.1).

Theorem 3.2. Let A be a coordinatewise operator of the form (2.3), where the operators
Aα, α ∈ I, defined on the same domain D dense in X, are infinitesimal generators of
C0−semigroups (Tt)α, t ≥ 0, α ∈ I, uniformly bounded by

‖(Tt)α‖L(X) ≤Mewt, t ≥ 0, for some M,w > 0. (3.1)

Let B♦ be of the form (2.4), where Bα, α ∈ I, are bounded linear operators on X so that
there exists p > 0 such that

K :=
∑

α∈I
‖Bα‖(2N)−p

α
2 <∞. (3.2)

Let the initial value U0 ∈ X ⊗ (S)−1 be such that U0 ∈ Dom(A) i.e.

U0(ω) =
∑

α∈I
u0αHα(ω) ∈ X ⊗ (S)−1,−p, satisfies

∑

α∈I
‖u0α‖2X(2N)−pα <∞; (3.3)

and

AU0(ω) =
∑

α∈I
Aαu

0
αHα(ω) ∈ X ⊗ (S)−1,−p, satisfies

∑

α∈I
‖Aαu0α‖2X(2N)−pα <∞.

(3.4)

Moreover, let

F (t, ω) =
∑

α∈I
fα(t)Hα(ω) ∈ C1([0, T ], X)⊗ (S)−1, t 7→ fα(t) ∈ C1([0, T ], X), α ∈ I,

so that
∑

α∈I
‖fα‖2C1([0,T ],X)(2N)−pα =

∑

α∈I

(
sup
t∈[0,T ]

‖fα(t)‖X + sup
t∈[0,T ]

‖f ′α(t)‖X
)2

(2N)−pα <∞.

(3.5)
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Then, the stochastic Cauchy problem (2.1) has a unique solution U in C1([0, T ], X)⊗
(S)−1,−p.

Proof. We seek for the solution in form of U(t, ω) =
∑
α∈I uα(t)Hα(ω). Then, the Cauchy

problem (2.1) is equivalent to the infinite system:

d

dt
uα(t) = Aαuα(t) +

∑

β≤α
Bβuα−β(t) + fα(t), t ∈ (0, T ],

uα(0) = u0α ∈ D, α ∈ I.
(3.6)

Let 0 be the multi-index 0 = (0, 0, ...). We rewrite (3.6) as

d

dt
uα(t) = (Aα +B0)uα(t) +

∑

0<β≤α
Bβuα−β(t) + fα(t), t ∈ (0, T ],

uα(0) = u0α ∈ D, α ∈ I.
(3.7)

Next, Aα +B0 are infinitesimal generators of C0−semigroups (St)α in X such that

‖(St)α‖ ≤Me(w+M‖B0‖)t, t ≥ 0, α ∈ I. (3.8)

According to Subsection 1.1, if fα, α ∈ I, fulfills condition (i) or (ii), the inhomoge-
neous initial value problem (3.7) has a solution uα(t) ∈ C([0, T ], X)∩C1((0, T ], X), α ∈ I,
given by

u0(t) = (St)0u
0
0 +

∫ t

0

(St−s)0f0(s)ds, t ∈ [0, T ]

uα(t) = (St)αu
0
α +

∫ t

0

(St−s)α
( ∑

0<β≤α
Bβuα−β(s) + fα(s)

)
ds, t ∈ [0, T ].

(3.9)

Since fα ∈ C1([0, T ], X) it follows by induction on α that

∑

0<β≤α
Bβuα−β(s) + fα(s) ∈ C1([0, T ], X), for all α ∈ I.

Thus, uα ∈ C1([0, T ], X) and d
dtuα(0) = (Aα +B0)u0α +

∑
0<β≤αBβu

0
α−β + fα(0), α ∈ I.

Note that for each fixed α ∈ I, uα(t) exists for all t ∈ [0, T ] and it is the unique
(classical) solution on the whole interval [0, T ]. It remains to prove that

∑
α∈I uα(t)Hα(ω)

converges in C1([0, T ], X)⊗ (S)−1,−p.
First, we show that U(t, ω) =

∑
α∈I uα(t)Hα(ω) ∈ C1([0, T0], X)⊗ S−1,−p for appropri-

ate T0 ∈ (0, T ], i.e. we show that

∑

α∈I
‖uα‖2C1([0,T0],X)(2N)−pα =

∑

α∈I

(
sup

t∈[0,T0]

‖uα(t)‖X + sup
t∈[0,T0]

‖ d
dt
uα(t)‖X

)2
(2N)−pα <∞.

(3.10)
Later on we will prove that the same holds if we take in (3.10) supremums over the

intervals [T0, 2T0], [2T0, 3T0], ... etc. Since [0, T ] can be covered by finitely many intervals
of the form [kT0, (k + 1)T0], k ∈ N0, we conclude that

∑

α∈I
‖uα‖2C1([0,T ],X)(2N)−pα =

∑

α∈I

(
sup
t∈[0,T ]

‖uα(t)‖X + sup
t∈[0,T ]

‖ d
dt
uα(t)‖X

)2
(2N)−pα <∞.

(3.11)
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In order to do this, we introduce a notation for subsets of multi-indices

In,m = {α ∈ I : |α| ≤ n ∧ Index(α) ≤ m}, n,m ∈ N,

where, for α = (α1, α2, . . . , αm, 0, 0, . . . ) ∈ I, we have |α| = α1+α2+ · · ·+αm and Index(α)

is last coordinate where α has a nonzero entry. For later reference, we introduce the
function

C(t) =
M2

(w +M‖B0‖)2
(e(w+M‖B0‖)t − 1)2 (3.12)

and fix T0 ∈ (0, T ] such that C(T0) < 1
5K2 .

First, we show that

∑

α∈I
‖uα(t)‖2C([0,T0],X)(2N)−pα =

∑

α∈I
sup

t∈[0,T0]

‖uα(t)‖2X(2N)−pα <∞,

by proving that partial sums
∑
α∈In,m supt∈[0,T0] ‖uα(t)‖2X(2N)−pα, n,m ∈ N, are bounded

from above.

Using (3.9) we obtain

1

3

∑

α∈In,m
‖uα(t)‖2X(2N)−pα ≤

∑

α∈In,m
‖(St)α‖2‖u0α‖2X(2N)−pα

+
∑

α∈In,m

[ ∫ t

0

‖(St−s)α‖
∑

0<β≤α
‖Bβuα−β(s)‖Xds

]2
(2N)−pα

+
∑

α∈In,m

[ ∫ t

0

‖(St−s)α‖‖fα(s)‖Xds
]2

(2N)−pα.

The first term on the right-hand side, for all t ∈ [0, T0], having in mind (3.3) and (3.8),
satisfies

∑

α∈In,m
‖(St)α‖2‖u0α‖2X(2N)−pα ≤

∑

α∈I
‖(St)α‖2‖u0α‖2X(2N)−pα

≤M2e2(w+M‖B0‖)T0

∑

α∈I
‖u0α‖2X(2N)−pα := Q1 <∞.

(3.13)

Similarly, for all t ∈ [0, T0], using (3.5) and (3.8), the third term satisfies

∑

α∈In,m

[ ∫ t

0

‖(St−s)α‖‖fα(s)‖Xds
]2

(2N)−pα ≤
∑

α∈I

[ ∫ t

0

‖(St−s)α‖‖fα(s)‖Xds
]2

(2N)−pα

≤
[ ∫ t

0

Me(w+M‖B0‖)(t−s)ds
]2∑

α∈I
sup
s∈[0,t]

‖fα(s)‖2X(2N)−pα

≤ M2

(w +M‖B0‖)2
(
e(w+M‖B0‖)T0 − 1

)2∑

α∈I
sup
t∈[0,T ]

‖fα(t)‖2X(2N)−pα := G <∞.

(3.14)

Note that in (3.14) we took the supremum over the whole interval [0, T ].

For the second term, using (3.2), (3.8), (3.12) and the generalized Minkowski inequal-
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ity, we obtain

∑

α∈In,m

[ ∫ t

0

‖(St−s)α‖
∑

β+γ=α

‖Bβ‖‖uγ(s)‖Xds
]2

(2N)−pα

≤ M2

(w +M‖B0‖)2
(
e(w+M‖B0‖)t − 1

)2 ∑

α∈In,m

[ ∑

β+γ=α

sup
s∈[0,t]

‖Bβ‖‖uγ(s)‖X
]2

(2N)−pα

≤ C(T0)
( ∑

β∈In,m
‖Bβ‖(2N)−p

β
2

)2( ∑

γ∈In,m
sup

t∈[0,T0]

‖uγ(t)‖2X(2N)−pγ
)

≤ C(T0)K2
∑

α∈In,m
sup

t∈[0,T0]

‖uα(t)‖2X(2N)−pα. (3.15)

Finally, for all n,m ∈ N, we obtain

1

3

∑

α∈In,m
sup

t∈[0,T0]

‖uα(t)‖2X(2N)−pα ≤ Q1 +G+ C(T0)K2
∑

α∈In,m
sup

t∈[0,T0]

‖uα(t)‖2X(2N)−pα.

Since 1
3 − C(T0)K2 > 1

5 − C(T0)K2 > 0, we have

∑

α∈In,m
sup

t∈[0,T0]

‖uα(t)‖2X(2N)−pα ≤ Q1 +G
1
3 − C(T0)K2

. (3.16)

Let (mn)n∈N be an arbitrary sequence of positive integers tending to infinity. Then,

∑

α∈I
sup

t∈[0,T0]

‖uα(t)‖2X(2N)−pα = lim
n→∞

∑

α∈In,mn

sup
t∈[0,T0]

‖uα(t)‖2X(2N)−pα ≤ Q1 +G
1
3 − C(T0)K2

,

since it is a series of positive numbers and thus does not depend on the order of
summation.

Now we show that

∑

α∈I
‖ d
dt
uα(t)‖2C([0,T0],X)(2N)−pα =

∑

α∈I
sup

t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα <∞.

In order to acomplish that, we differentiate (3.9) with respect to t, and obtain

d

dt
u0(t) = (St)0(A0 +B0)u00 +

∫ t

0

(St−s)0
d

ds
f0(s)ds+ (St)0f(0), t ∈ [0, T ],

d

dt
uα(t) = (St)α(Aα +B0)u0α +

∫ t

0

(St−s)α
( ∑

0<β≤α
Bβ

d

ds
uα−β(s) +

d

ds
fα(s)

)
ds

+ (St)α

( ∑

0<β≤α
Bβuα−β(0) + fα(0)

)
, t ∈ [0, T ], α ∈ I.

(3.17)

In the sequel we estimate partial sums of
∑
α∈I supt∈[0,T0] ‖ ddtuα(t)‖2X(2N)−pα. So,
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1

5

∑

α∈In,m
‖ d
dt
uα(t)‖2X(2N)−pα ≤

∑

α∈In,m
‖(St)α‖2‖(Aα +B0)u0α‖2X(2N)−pα

+
∑

α∈In,m

[ ∫ t

0

‖(St−s)α‖
∑

0<β≤α
‖Bβ

d

ds
uα−β(s)‖Xds

]2
(2N)−pα

+
∑

α∈In,m

[ ∫ t

0

‖(St−s)α‖‖
d

ds
fα(s)‖Xds

]2
(2N)−pα

+
∑

α∈In,m
‖(St)α‖2

[ ∑

0<β≤α
‖Bβuα−β(0)‖X

]2
(2N)−pα

+
∑

α∈In,m
‖(St)α‖2‖fα(0)‖2X(2N)−pα.

According to (3.3) and (3.4), we obtain
∑
α∈I(Aα +B0)u0αHα(ω) ∈ X ⊗ (S)−1,−p. So the

first term on the right-hand side can be evaluated by

∑

α∈In,m
‖(St)α‖2‖(Aα +B0)u0α‖2X(2N)−pα ≤

∑

α∈I
‖(St)α‖2‖(Aα +B0)u0α‖2X(2N)−pα

≤M2e2(w+M‖B0‖)T0

∑

α∈I
‖(Aα +B0)u0α‖2X(2N)−pα := Q′1 <∞. (3.18)

The third term, for all t ∈ [0, T0], satisfies

∑

α∈In,m

[ ∫ t

0

‖(St−s)α‖‖
d

ds
fα(s)‖ds

]2
(2N)−pα ≤

∑

α∈I

[ ∫ t

0

‖(St−s)α‖‖
d

ds
fα(s)‖Xds

]2
(2N)−pα

≤ M2

(w +M‖B0‖)2
(
e(w+M‖B0‖)T0 − 1

)2∑

α∈I
sup
t∈[0,T ]

‖ d
ds
fα(t)‖2X(2N)−pα := G′ <∞.

(3.19)

The fourth term, using (3.2), (3.3), (3.8) and the generalized Minkowski inequality, can
be estimated by

∑

α∈In,m
‖(St)α‖2

[ ∑

0<β≤α
‖Bβuα−β(0)‖X

]2
(2N)−pα ≤

∑

α∈I
‖(St)α‖2

[ ∑

β+γ=α

‖Bβu0γ‖X
]2

(2N)−pα

≤M2e2(w+M‖B0‖)t
∑

α∈I

[ ∑

β+γ=α

‖Bβ‖‖u0γ‖X
]2

(2N)−pα

≤M2e2(w+M‖B0‖)T0

(∑

β∈I
‖Bβ‖(2N)−p

β
2

)2(∑

γ∈I
‖u0γ‖2X(2N)−pγ

)
:= H ′1 <∞.

(3.20)

For the fifth term, using (3.5) and (3.8), we have

∑

α∈In,m
‖(St)α‖2‖fα(0)‖2X(2N)−pα ≤

∑

α∈I
‖(St)α‖2‖fα(0)‖2X(2N)−pα

≤M2e2(w+M‖B0‖)T0

∑

α∈I
sup
t∈[0,T ]

‖fα(t)‖2X(2N)−pα := N ′ <∞. (3.21)

Finally, for the second term, using (3.2), (3.8), (3.12) and the generalized Minkowski
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inequality, we obtain

∑

α∈In,m

[ ∫ t

0

‖(St−s)α‖
∑

β+γ=α

‖Bβ‖‖
d

ds
uγ(s)‖Xds

]2
(2N)−pα

≤ M2

(w +M‖B0‖)2
(
e(w+M‖B0‖)t − 1

)2 ∑

α∈In,m

[ ∑

β+γ=α

sup
s∈[0,t]

‖Bβ‖‖
d

ds
uγ(s)‖X

]2
(2N)−pα

≤ C(t)
( ∑

β∈In,m
‖Bβ‖(2N)−p

β
2

)2( ∑

γ∈In,m
sup
s∈[0,t]

‖ d
dt
uγ(s)‖2X(2N)−pγ

)

≤ C(T0)K2
∑

α∈In,m
sup

t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα. (3.22)

Finally, for all n,m ∈ N, we obtain

1

5

∑

α∈In,m
sup

t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα ≤Q′1 +G′ +H ′1 +N ′

+ C(T0)K2
∑

α∈In,m
sup

t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα.

Since 1
5 − C(T0)K2 > 0, we have

∑

α∈In,m
sup

t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα ≤ Q′1 +G′ +H ′1 +N ′

1
5 − C(T0)K2

. (3.23)

Again, taking (mn)n∈N to be an arbitrary sequence of positive integers tending to infinity,
we have

∑

α∈I
sup

t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα = lim

n→∞

∑

α∈In,mn

sup
t∈[0,T0]

‖ d
dt
uα(t)‖2X(2N)−pα ≤ Q′1 +G′ +H ′1 +N ′

1
5 − C(T0)K2

.

Therefore, we obtain

U(t, ω) ∈ C1([0, T0], X)⊗ (S)−1,−p, i.e.
∑

α∈I

(
sup

t∈[0,T0]

‖uα(t)‖X + sup
t∈[0,T0]

‖ d
dt
uα(t)‖X

)2
(2N)−pα ≤

2
∑

α∈I

(
sup

t∈[0,T0]

‖uα(t)‖2X + sup
t∈[0,T0]

‖ d
dt
uα(t)‖2X

)
(2N)−pα <∞.

(3.24)

Next, we consider in (3.24) supremums over the interval [T0, 2T0]. On [T0, 2T0] one
can rewrite the initial value problem (3.6) in the following equivalent form:

d

dt
vα(t) = Aαvα(t) +

∑

β≤α
Bβvα−β(t) + fα(T0 + t), t ∈ (0, T0]

vα(0) = v0α := uα(T0), α ∈ I.
(3.25)

The semigroup corresponding to the generator Aα +B0 in (3.25) is again the semigroup
(St)α, t ≥ 0. Using (3.6) and (3.24), we have that U(t, ω) ∈ Dom(A), for all t ∈ [0, T0], and
AU(t, ω) ∈ X ⊗ (S)−1,−p, t ∈ [0, T0]. According to this we have that V 0(ω) = U(T0, ω) =∑

α∈I v
0
αHα(ω) ∈ Dom(A) and AV 0(ω) ∈ X ⊗ (S)−1,−p. Thus,

vα(t) = (St)αv
0
α +

∫ t

0

(St−s)α
( ∑

0<β≤α
Bβvα−β(s) + fα(T0 + s)

)
ds, t ∈ [0, T0],
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and clearly vα(t) = uα(T0 + t), t ∈ [0, T0], α ∈ I.
When approximating partial sums of

∑
α∈I supt∈[0,T0] ‖vα(t)‖2X(2N)−pα, comparing to

the previous calculations for uα(t), only the constant Q1 will be different, and here, we
denote it by Q2, so we again obtain

∑

α∈I
sup

t∈[0,T0]

‖vα(t)‖2X(2N)−pα =
∑

α∈I
sup

t∈[T0,2T0]

‖uα(t)‖2X(2N)−pα ≤ Q2 +G
1
3 − C(T0)K2

.

Similarly, for the derivative d
dtV (t, ω) we obtain

∑

α∈I
sup

t∈[0,T0]

‖ d
dt
vα(t)‖2X(2N)−pα ≤ Q′2 +G′ +H ′2 +N ′

1
5 − C(T0)K2

,

where, comparing to the estimates of d
dtU(t, ω), only the constants Q′1 and H ′1 have

changed and we denoted them here by Q′2 and H ′2.
For arbitrary T > 0, one can cover the interval [0, T ] by intervals of the form [kT0, (k+

1)T0], k ∈ N0, in finitely many steps (say in l steps). So we have

∑

α∈I
sup
t∈[0,T ]

‖uα(t)‖2X(2N)−pα ≤ Q+G
1
3 − C(T0)K2

,

where Q = max1≤k≤l{Qk}. Thus,

U(t, ω) =
∑

α∈I
uα(t)Hα(ω) ∈ C([0, T ], X)⊗ (S)−1,−p.

Also, ∑

α∈I
sup
t∈[0,T ]

‖ d
dt
uα(t)‖2X(2N)−pα ≤ Q′ +G′ +H ′ +N ′

1
5 − C(T0)K2

,

where Q′ = max1≤k≤l{Q′k}, H ′ = max1≤k≤l{H ′k}. Since d
dtuα(t) ∈ C([0, T ], X), α ∈ I, we

have
d

dt
U(t, ω) =

∑

α∈I

d

dt
uα(t)Hα(ω) ∈ C([0, T ], X)⊗ (S)−1,−p.

Therefore, U(t, ω) ∈ C1([0, T ], X)⊗ (S)−1,−p and thus, U is a solution of (2.1) in the sense
of Definition 3.1.

The solution U is unique due to the uniqueness of the coordinatewise (classical)
solutions uα in (3.9) and due to uniqueness in the Wiener-Itô chaos expansion.

Note that according to the previous theorem the solution U remains in the same
stochastic order space (S)−1,−p where the input data U0, AU0 and F belong to.

Example 3.3. We provide three examples of equation (2.1) where A is a uniformly
bounded (not a simple) coordinatewise operator. Consider the Banach space X =

Lp(R), 1 ≤ p <∞, and the stochastic Cauchy problem

d

dt
U(t, x, ω) = AU(t, x, ω) +W♦U(t, x, ω) + F (t, x, ω),

U(0, x, ω) = U0(x, ω),
(3.26)

where the operator A : Dom(A) → X ⊗ (S)−1 is a coordinatewise operator composed
out of a family of closed operators {Aα}α∈I of the form Aα = aαD, α ∈ I, where the
functions aα ∈ L∞(R), α ∈ I, are uniformly bounded, i.e. supx∈R |aα(x)| ≤M, α ∈ I, for
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some M > 0, and D is one of the following differential operators: ∂
∂x ,

∂2

∂x2 or ∂2

∂x2 + ∂
∂x ,

and W =
∑
k∈N ξkHεk represents spatial white noise. Then, (3.26) is equivalent to the

infinite system

d

dt
uα(t, x) = Aαuα(t, x) +

∑

k∈N
ξk(x)uα−εk(t, x) + fα(t, x)

uα(0, x) = u0α(x), α ∈ I.

The C0−semigroup that corresponds to the closed operator D, denoted by Tt, t ≥ 0,

is, respectively,

Ttg(x) = g(t+ x), g ∈ Lp(R), for D =
∂

∂x
,

Ttg(x) =
1√
4πt

∫

R

g(x− y)e−
y2

4t dy, g ∈ Lp(R), for D =
∂2

∂x2
,

Ttg(x) =
1√
4πt

∫

R

g(x− y)e−
(y+t)2

4t dy, g ∈ Lp(R), for D =
∂2

∂x2
+

∂

∂x
.

In all cases, we have, using Young’s inequality, that ‖Tt‖ ≤ 1, t ≥ 0. The C0−semigroups
corresponding to the operators Aα, α ∈ I, are of the form (St)α = aαTt. Thus, ‖(St)α‖ ≤
M, α ∈ I. The operators Bα, α ∈ I, are given by Bεk = ξk, k ∈ N and Bα = 0, α 6= εk.

Thus, ‖Bα‖ ≤ supk∈N ‖ξk‖L∞(R) ≤ 1, α ∈ I. Now, according to Theorem 3.2, equation
(3.26) has a unique solution U(t, x, ω) =

∑
α∈I uα(t, x)Hα(ω), where

uα(t, x) = (St)αu
0
α(x) +

∫ t

0

(St−s)α(
∑

k

ξk(x)uα−εk(s, x) + fα(s, x))ds, α ∈ I.

Example 3.4. Consider the Cauchy problem

d

dt
U(t, ω) = AU(t, ω) + B♦U(t, ω) + F (t, ω)

U(0, ω) = U0(ω),

where A is a simple coordinatewise operator Aα = A, α ∈ I, generating a C0−semigroup,
Bα 6= 0 only for α = εk, k ∈ N, are such that

∑
k∈N ‖Bεk‖(2k)−

p
2 <∞, and U0 and F are

deterministic functions, i.e. u0α = 0 and fα = 0 for all α ∈ I \ {0}.
The solution of this system, according to Theorem 3.2, is

u0(t) = Ttu
0
0 +

∫ t

0

Tt−sf0(s)ds,

uα(t) =

∫ t

0

Tt−s
(∑

k∈N
Bεkuα−εk(s)

)
ds, α ∈ I \ 0,

the same form as it was obtained in [12].

We provide two generalisations of Theorem 3.2: one possibility is to allow the
operatorsBα to depend on the time variable t (except forB0 which must be free of t). This
embraces for example SPDEs driven by space-time noises which have zero expectation
(and are thus free of t). The other possibility is to allow B0 to be unbounded but satisfying
certain properties so that Aα +B0 are infinitesimal generators of C0−semigroups. For
example, if Aα = ∂2

∂x2 and B0 = ∂
∂x , then although B0 is unbounded, Aα + B0 is the

generator of a contraction semigroup. Following [4] we will enlist some sufficient
conditions which ensure that Aα +B0 is the generators of a C0−semigroup.
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Remark 3.5. In Theorem 3.2 one can consider operators Bα(t), α ∈ I \ {0}, depending
on t, so that Bα ∈ C1([0, T ], L(X)), α ∈ I \ {0}, B0(t) = B0 ∈ L(X), for all t ∈ [0, T ], and

K : =
∑

α∈I,
α>0

‖Bα‖C1([0,T ],L(X))(2N)−p
α
2

=
∑

α∈I,
α>0

(
sup
t∈[0,T ]

‖Bα(t)‖L(X) + sup
t∈[0,T ]

‖ d
dt
Bα(t)‖L(X)

)
(2N)−p

α
2 <∞. (3.27)

Replacing (3.2) by (3.27) and retaining all other assumptions of Theorem 3.2, one can
again obtain a unique solution U in C1([0, T ], X)⊗ (S)−1,−p of the corresponding Cauchy
problem (2.1).

The solution is U(t, ω) =
∑
α∈I uα(t)Hα(ω), uα(t) ∈ C1([0, T ], X), α ∈ I, where (see

(3.9))

u0(t) = (St)0u
0
0 +

∫ t

0

(St−s)0f0(s)ds, t ∈ [0, T ],

uα(t) = (St)αu
0
α +

∫ t

0

(St−s)α
( ∑

0<β≤α
Bβ(s)uα−β(s) + fα(s)

)
ds, t ∈ [0, T ].

(3.28)

Its derivative is d
dtU(t, ω) =

∑
α∈I

d
dtuα(t)Hα(ω), where (see (3.17))

d

dt
u0(t) = (St)0(A0 +B0)u00 +

∫ t

0

(St−s)0
d

ds
f0(s)ds+ (St)0f(0), t ∈ [0, T ],

d

dt
uα(t) = (St)α(Aα +B0)u0α

+

∫ t

0

(St−s)α
( ∑

0<β≤α

(
Bβ(s)

d

ds
uα−β(s) +

d

ds
Bβ(s)uα−β(s)

)
+

d

ds
fα(s)

)
ds

+ (St)α

( ∑

0<β≤α
Bβ(0)uα−β(0) + fα(0)

)
, t ∈ [0, T ], α ∈ I.

(3.29)

The proof can be performed in the same manner as in Theorem 3.2, now taking T0 ∈ (0, T ]

to be small enough so that C(T0) < 1
6K2 , since now we have six summands in (3.29)

instead of the previous five in (3.17).

Remark 3.6. In Theorem 3.2 one can consider the operator B0 to be unbounded, densely
defined on D (the same domain which is common for all Aα) so that either of the following
holds:

(i) Aα, α ∈ I, are generating contraction semigroups (i.e. M = 1, w = 0), and B0

is dissipative, Aα−bounded with a0α < 1 (i.e. there exist aα, bα > 0 such that
‖B0x‖ ≤ aα‖Aαx‖+ bα‖x‖, x ∈ D, and a0α = inf{aα > 0 : ∃bα > 0,∀x ∈ D, ‖B0x‖ ≤
aα‖Aαx‖+ bα‖x‖}), for all α ∈ I,

(ii) B0 is closable, dissipative and Aα−compact (i.e. B : (D, ‖ · ‖Aα)→ X is compact
where ‖ · ‖Aα denotes the graph norm), for all α ∈ I,

(iii) Aα are generating analytic semigroups (i.e. w < 0), α ∈ I, and B0 is closable and
Aα−compact .

Then, Aα +B0 is the infinitesimal generator of a C0−semigroup (denote it (St)α) for all
α ∈ I. If the semigroups (Tt)α corresponding to Aα are uniformly bounded in α, then
so will be (St)α. Retaining all other assumptions of Theorem 3.2, now we follow the

EJP 20 (2015), paper 19.
Page 19/23

ejp.ejpecp.org

176 Section 1.4



Stochastic evolution equations

same proof pattern with the semigroup (St)α, ‖(St)α‖ ≤ M̃ew̃t, for some M̃ ≥ 1, w̃ ∈ R,
independent of α.

Finally we note that in case (i) and (ii) Aα + B0 will be generating contraction
semigroups, while in case (iii) they will be generating analytic semigroups.

4 Stationary equations

In this section we consider stationary equations of the form

AU + B♦U + F = 0, (4.1)

where A : X ⊗ (S)−1 → X ⊗ (S)−1 and B♦ : X ⊗ (S)−1 → X ⊗ (S)−1 are coordinatewise
operators as in (2.3) and (2.4). We assume that {Aα}α∈I and {Bα}α∈I are bounded
operators and that Aα are of the form

Aα = Ãα + Cα, α ∈ I,

where B0 and Ãα, α ∈ I are compact operators and Cα are self adjoint operators
for all α ∈ I. Denote by rα the eigenvalue corresponding to the orthogonal family of
eigenvectors Hα, i.e. Cα(Hα) = rαHα, α ∈ I. Using classical results of elliptic PDEs and
the Fredholm alternative (see [5]) we prove existence and uniqueness of the solution to
(4.1).

Theorem 4.1. Let X be a Banach space. Let A : X ⊗ (S)−1 → X ⊗ (S)−1 and B♦ :

X⊗(S)−1 → X⊗(S)−1 be coordinatewise operators, for which the following assumptions
hold:

1. A is of the form A = Ã + C, where Ã(U) =
∑
α∈I

Ãα(uα)Hα and Ãα : X → X are

compact operators for all α ∈ I, C(U) =
∑
α∈I

rαuαHα, rα ∈ R, α ∈ I, and B is of

the form (2.4), where B0 : X → X is a compact operator. Assume there exists
K > 0 such that:

− ‖Ãα‖ − ‖B0‖ − rα ≥ 0, for all α ∈ I, (4.2)

and

sup
α∈I

(
1

−rα − ‖Ãα‖ − ‖B0‖

)
< K. (4.3)

2. B is of the form (2.4), where Bβ : X → X, β ∈ I \ {0}, are bounded operators and
there exists p > 0 such that

K
∑

β∈I
β>0

‖Bβ‖ (2N)
−pβ
2 <

1√
2
. (4.4)

3. For every α ∈ I
Ker

(
Ãα + (1 + rα)Id +B0

)
= {0}. (4.5)

Then, for every F ∈ X ⊗ (S)−1,−p there exists a unique solution U ∈ X ⊗ (S)−1,−p to
equation (4.1).

Proof. Equation (4.1) is equivalent to U − (Ã(U) + CU + U + B♦U) = F and

∑

γ∈I


uγ − Ãγuγ − (1 + rγ)uγ −

∑

α+β=γ

Bα(uβ)


Hγ =

∑

γ∈I
fγHγ .
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Due to uniqueness of the Wiener-Itô chaos expansion this is equivalent to

uγ −
(
Ãγ + (1 + rγ)Id+B0

)
uγ = fγ +

∑

0<β≤γ
Bβ(uγ−β), γ ∈ I. (4.6)

By (4.5) it follows that for each γ ∈ I the homogeneous equation

uγ −
(
Ãγ + (1 + rγ)Id+B0

)
uγ = 0

has only trivial solution uγ = 0. Since the operator Ãγ + (1 + rγ)Id+B0 is compact, the
classical Fredholm alternative implies that for each γ ∈ I there exists a unique uγ that
solves (4.6) and it is of the form

uγ = (Id− ((rγ + 1) Id+ Ãγ +B0))−1


fγ +

∑

β>0

Bβ(uγ−β)


 , γ ∈ I,

so that

‖uγ‖X ≤
1

−rγ − ‖Ãγ‖ − ‖B0‖
·


‖fγ‖X +

∑

β>0

‖Bβ‖‖uγ−β‖X


 , γ ∈ I.

We will prove that
∑
γ∈I

uγ ⊗Hγ converges in X ⊗ (S)−1. Indeed,

∑

γ∈I
‖uγ‖2X(2N)−pγ ≤ K2

∑

γ∈I


‖fγ‖X +

∑

γ=α+β,α>0

‖Bα‖‖uβ‖X




2

(2N)−pγ

≤ 2K2


∑

γ∈I
‖fγ‖2X(2N)−pγ +

∑

γ∈I
(

∑

γ=α+β,α>0

‖Bα‖‖uβ‖X)2(2N)−pγ




≤ 2K2


∑

γ∈I
‖fγ‖2X(2N)−pγ + (

∑

α>0

‖Bα‖(2N)−
pα
2 )2

∑

β∈I
‖uβ‖2X(2N)−pβ


 .

Therefore,

(1− 2K2(
∑

α>0

‖Bα‖(2N)−
pα
2 )2) ·

∑

γ∈I
‖uγ‖2X(2N)−pγ ≤ 2K2

∑

γ∈I
‖fγ‖2X(2N)−pγ .

By assumption (4.4) we have that M = 1− 2K2(
∑
α>0
‖Bα‖(2N)−

pα
2 )2 > 0. This implies

∑

γ∈I
‖uγ‖2X(2N)−pγ ≤ 2K2

M

∑

γ∈I
‖fγ‖2X(2N)−pγ <∞.

Example 4.2. We provide some special cases of equation (4.1).

1. If Aα = 0 for all α ∈ I and Bα, α ∈ I are second order strictly elliptic partial
differential operators in divergent form

Bα =
n∑

i=1

Di(
n∑

j=1

aijα (x)Dj + biα(x)) +
n∑

i=1

ciα(x)Di + dα(x) (4.7)
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with essentially bounded coefficients, then equation (4.1) reduces to the elliptic
equation

B♦U = F,

which was solved in [18] and [19].

2. Let Ãα = 0 for all α ∈ I and let Bα, α ∈ I, be second order strictly elliptic partial
differential operators in divergent form (4.7). Let C = c P (R), for some c ∈ R,
where R is the Ornstein-Uhlenbeck operator, P a polynomial of degree m with real
coefficients and P (R) the differential operator P (R) = pmRm + pm−1Rm−1 + ...+

p1R+ p0Id. Then, the corresponding eigenvalues are rα = cP (|α|), α ∈ I. Hence,
equation (4.1) transforms to the elliptic equation with a perturbation term driven
by the polynomial of the Ornstein-Uhlenbeck operator

B♦U + cP (R)U = F,

that was solved in [11].
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Equations Involving Malliavin Derivative:
A Chaos Expansion Approach

Tijana Levajković and Hermann Mena

Abstract. We study equations involving the Malliavin derivative operator and
the Wick product with a Gaussian process. In particular, we solve an equation
with first-order Malliavin derivative operator by the chaos expansion method
in white noise spaces. We prove necessary and sufficient conditions for ex-
istence and uniqueness of the solution and represent it in explicit way. We
characterize the domains of the Malliavin operators in spaces of Kondratiev
distributions in general form. In addition, as an illustration we apply sto-
chastic Galerkin method for solving numerically a stationary version of the
equation we considered.

Mathematics Subject Classification (2010). 60H07, 60H10, 60H40, 60H35,
60G20.

Keywords. Generalized stochastic process, chaos expansion, Malliavin deriva-
tive, Wick product, stochastic differential equation, Galerkin method.

1. Introduction

The Malliavin derivative D, the divergence operator δ and the Ornstein–Uhlenbeck
R operator are main operators of infinite-dimensional stochastic calculus of vari-
ations, also known as the Malliavin calculus. These operators play a key role in
the study of non-adapted stochastic differential equations. In white noise setting,
the Skorokhod integral is an extension of the stochastic Itô integral of anticipating
processes to the class of non-anticipating processes and the Malliavin derivative
appears as its adjoint operator; the composition of these two operators, called the
Ornstein–Uhlenbeck operator, is a linear, unbounded and self-adjoint operator. In
quantum theory these operators correspond respectively to the annihilation, the
creation and the number operator.

On white noise spaces, a generalized stochastic process has the Wiener–Itô
chaos expansion form, i.e., it can be represented in terms of orthogonal polynomial

c© 2015 Springer International Publishing Switzerland
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basis of a Hilbert space of processes with finite second moments. In [12, 15] oper-
ators of Malliavin calculus are considered only on spaces of random variables. In
this paper we characterize the domains of these operators for generalized stochas-
tic processes which are represented in their chaos expansion form having values in
a certain weight space of stochastic distributions. Part of the contribution of this
paper is this characterization, the theorems in Section 3 improve the results from
[5]–[8]. On the other hand, in Section 4, we study classes of stochastic differential
equations which involve the Malliavin operator D and the Wick product ♦ with a
Gaussian process G

Du = G♦(Au) + h, Eu = ũ0,

where A is a coordinatewise operator on space of generalized stochastic processes
and E is the generalized expectation. For solving the equation, we apply the chaos
expansion method, also known as the propagator method. With this method the
problem is reduced to an infinite triangular system of deterministic equations.
Summing up all coefficients of the expansion and proving convergence in an ap-
propriate weight space, one obtains the solution of the initial equation. As a case
of study, in Theorem 4.1 we prove the existence and uniqueness of the solution, in
the Kondratiev type space of generalized processes, for homogeneous problem

Du = G♦u, Eu = ũ0, (1)

for a Gaussian process G of a special form. The study of equation (1) is motivated
by [9] where it was shown that Malliavin derivative indicates the rate of change in
time between ordinary product and the Wick product, i.e., for a stochastic process
h in a weight space of distributions and Wt being white noise, the following

h ·Wt − h♦Wt = D(h)

holds. Therefore, the ordinary product is well defined in the generalized sense. In
this paper, we deal with Gaussian processes in a more general form than white
noise. This paper contributes to the study of equations with generalized operators
of Malliavin calculus, we refer to previous results [5]–[10]. Wick product and the
Malliavin derivative play an important role in nonlinear problems. For instance,
in [18] the authors proved that in random fields, random polynomial nonlinearity
can be expanded in a Taylor series involving Wick products and Malliavin deriva-
tives, the so-called Wick–Malliavin series expansion. Since the Malliavin derivative
represents a stochastic gradient in the direction of white noise, one can consider
similar equations that include a stochastic gradient in the direction of more general
stochastic process, like the ones defined in [11].

The chaos expansion method is a very useful technique for solving many
types of stochastic differential equations. In [6, 17] the Dirichlet problem of el-
liptic stochastic equations was studied and in [10] parabolic equations with the
Wick-type convolution operators. Another type of equations have been investi-
gated in [4, 14, 11, 12, 16]. Moreover, numerical methods for stochastic differential
equations and uncertainty quantification based on the polynomial chaos approach
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become very popular in recent years. They are highly efficient in practical com-
putations providing fast convergence and high accuracy. For instance, in order to
apply the stochastic Galerkin method the derivation of explicit equations for the
polynomial chaos coefficients is required. This is, as in the general chaos expan-
sion, highly nontrivial and sometimes impossible. On the other hand, having an
analytical representation of the solution all statistical information can be retrieved
directly, e.g, mean, covariance function, variance and even sensitivity coefficients,
see [13, 20] and references therein for a detailed explanation. The major challenge
in stochastic simulations is the high dimensionality, which is even higher solving
stochastic control problems, e.g., the stochastic linear quadratic regulator prob-
lem, as the computational cost increase in the same order as for the simulation but
compared to the deterministic control problem [1]. As an illustration, in Section
5, we solve numerically the stationary form of nonhomogeneous equation (1) with
the Laplace operator by the stochastic Galerkin method.

2. Spaces and processes

Let (Ω,F , P ) be the Gaussian white noise probability space (S′(R),B, μ), where
S′(R) denotes the space of tempered distributions, B the sigma-algebra generated
by the weak topology on Ω. The existence of the Gaussian white noise measure μ
is guaranteed by the Bochner–Minlos theorem∫

S′(R)
ei〈ω,φ〉dμ(ω) = e

− 1
2‖φ‖2

L2(R) , φ ∈ S(R),

where 〈ω, φ〉 denotes the dual paring between a tempered distribution ω and a
rapidly decreasing function φ. Let {ξk, k ∈ N} be the family of Hermite functions
and {hk, k ∈ N0} the family of Hermite polynomials. Recall, the space of rapidly
decreasing functions S(R) =

⋂
l∈N0

Sl(R), where Sl(R) = {ϕ =
∑∞

k=1 ak ξk :∑∞
k=1 a

2
k(2k)

l < ∞}, l ∈ N0, and the space of tempered distributions S′(R) =⋃
l∈N0

S−l(R), where S−l(R) = {f =
∑∞

k=1 bk ξk :
∑∞

k=1 b
2
k(2k)

−l < ∞}, l ∈ N0.

We have a Gel’fand triplet S(R) ⊆ L2(R) ⊆ S′(R).
The white noise analysis was constructed as an infinite-dimensional analogue

of the Schwartz theory of deterministic generalized functions, for more details we
refer to [2, 3]. Denote by I the set of sequences of nonnegative integers which have
only finitely many nonzero components α = (α1, α2, . . . , αm, 0, 0 . . .), where m =
max{i ∈ N : αi �= 0}. The kth unit vector is denoted by ε(k) = (0, . . . , 0, 1, 0, . . . ),
k ∈ N. The length of a multi-index α ∈ I is defined as |α| = ∑∞

k=1 αk. Let a =
(ak)k∈N, ak ≥ 1, aα =

∏∞
k=1 a

αk

k , α! =
∏∞

k=1 αk! and (2Na)α =
∏∞

k=1(2k ak)
αk .

Note that
∑

α∈I(2N)
−pα <∞ if p > 0 and

∑
α∈I a

−pα <∞ if p > 1.

Let (L)2 = L2(S′(R),B, μ) be a space of random variables and Hα(ω) =∏∞
k=1 hαk

(〈ω, ξk〉), α ∈ I be the Fourier–Hermite orthogonal basis of (L)2, where
‖Hα‖2(L)2 = α!. Particularly, Hε(k)(ω) = 〈ω, ξk〉, k ∈ N. From the Wiener–Itô

chaos expansion theorem it follows that every F ∈ (L)2 can be represented in the
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form F (ω) =
∑

α∈I aαHα(ω), aα = Eμ(FHα) ∈ R, ω ∈ Ω such that ‖F‖2(L)2 =∑
α∈I a2αα! <∞.

Denote by H1 the first-order chaos space, i.e., the closure of the linear sub-
space of (L)2 spanned by the polynomials Hεk(·), k ∈ N. We proved in [9] that the
subspace H1 contains Gaussian stochastic processes, e.g., Brownian motion and
singular white noise. The kth-order Wiener chaos spacesHk are obtained by closing
in (L)2 the linear span of the kth-order Hermite polynomials and (L)2 =

⊕∞
k=0 Hk.

2.1. Kondratiev type spaces

Let ρ ∈ [0, 1] and let sequence a = (ak)k∈N, ak ≥ 1. The space of Kondratiev
stochastic test functions modified by a, denoted by

(Sa)ρ =
⋂

p∈N0

(Sa)ρ,p, p ∈ N0,

is the projective limit of spaces

(Sa)ρ,p =

{
f =

∑
α∈I

bαHα ∈ (L)2 :
∑
α∈I

(α!)1+ρ b2α (2Na)pα <∞
}
.

The space of Kondratiev stochastic generalized functions modified by a,

(Sa)−ρ =
⋃

p∈N0

(Sa)−ρ,−p, p ∈ N0,

is the inductive limit of the spaces

(Sa)−ρ,−p =

{
F =

∑
α∈I

cαHα :
∑
α∈I

(α!)1−ρ c2α(2Na)
−pα <∞

}
.

The action of F ∈ (Sa)−ρ onto a test function f ∈ (Sa)ρ is given by 〈〈F, f〉〉 =∑
α∈I α! cαbα. The generalized expectation of F is defined as Eμ(F ) = 〈〈F, 1〉〉 =

c0, the zero coefficient in formal chaos expansion of F . For all ρ ∈ [0, 1] we have
a Gel’fand triplet (Sa)ρ ⊆ (L)2 ⊆ (Sa)−ρ. For ak = 1, k ∈ N these spaces
reduces to the Kondratiev spaces (S)−ρ. Furthermore, the largest space of the
Kondratiev distributions is (S)−1 and the smallest is (S)−0, also called the Hida
space of stochastic generalized functions. In [5] we constructed the Kondratiev
space (Sa)−1.

2.2. Generalized stochastic processes

Let X be a Banach space of functions on R endowed with ‖ · ‖X and ρ ∈ [0, 1].
Following [16], we define stochastic processes (of the Kondratiev type) as elements
of tensor product space X⊗ (Sa)−ρ, as processes having the chaos expansion form

u =
∑
α∈I

uα ⊗ Hα, (2)

where uα ∈ X , such that ‖u‖2X⊗(Sa)−ρ,−p
=
∑

α∈I ‖uα‖2X (α!)1−ρ (2Na)−pα < ∞,

for some p > 0. We denote by Eu = u(0,0,0,...) the generalized expectation of the
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process u. Clearly, stochastic processes of Kondratiev type can be seen as linear
and continuous mappings from X into the space of stochastic distributions (Sa)−ρ.

Example 2.1. Singular white noise is defined by the chaos expansion Wt(ω) =∑∞
k=1 ξk(t)Hε(k)(ω), and it is an element of the space C∞(R)⊗(S)−0,−p for p > 5

12
and for all t.

Now we adapt a general setting of S′-valued generalized stochastic process
provided in [16]. S′(R)-valued generalized stochastic processes are elements of Y ⊗
(Sa)−ρ, where Y = X ⊗ S′(R), and are given by chaos expansions of the form
f =

∑
α∈I

∑
k∈N

dα,k ⊗ ξk ⊗ Hα =
∑

α∈I bα ⊗ Hα =
∑

k∈N
ck ⊗ ξk, where bα =∑

k∈N
dα,k ⊗ ξk ∈ X ⊗ S′(R), ck =

∑
α∈I dα,k ⊗Hα ∈ X ⊗ (Sa)−ρ and dα,k ∈ X .

Thus, for some p, l ∈ N0 it holds

‖f‖2X⊗S−l(R)⊗(Sa)−ρ,−p
=
∑
α∈I

∑
k∈N

‖dα,k‖2X (α!)1−ρ(2k)−l(2Na)−pα <∞.

2.3. Wick product

We generalize the definition of the Wick product of random variables to the set
of generalized stochastic processes in the same way as in [6, 7, 17]. Let F,G ∈
X ⊗ (S)−1 be generalized stochastic processes given in chaos expansions of the
form (2). Assume X to be a space closed under the product fαgβ, for fα, gβ ∈ X .
Then, the Wick product F♦G is defined by

F♦G =
∑
γ∈I

( ∑
α+β=γ

fαgβ

)
⊗Hγ .

3. Characterization of domains of operators of Malliavin calculus

In [5, 7] we provided the definitions of the main operators of the Malliavin calculus:
the Malliavin derivative D, the Skorokhod integral δ and the Ornstein–Uhlenbeck
R which are extensions of the classical definitions of these operators in (L)2 setting
to generalized Kondratiev space of stochastic processes [15].

3.1. Malliavin derivative D

Let u ∈ X ⊗ (S)−ρ be of the form (2). We say that u ∈ Dom(D)−ρ if there exists
p ∈ N0 such that ∑

α∈I
|α|1+ρ(α!)1−ρ‖fα‖2X(2N)−pα <∞ (3)

is satisfied. Then, the Malliavin derivative, i.e., its stochastic gradient, is defined by

Du =
∑
α∈I

∑
k∈N

αk fα ⊗ ξk ⊗Hα−ε(k) ,

where α− ε(k) = (α1, . . . , αk−1, αk − 1, αk+1, . . . , αm, 0, . . . ) is defined for αk ≥ 1.
All processes u that belong to the domain Dom(D)−ρ are called differentiable in
Malliavin sense.
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Now, we characterize the domains of the Malliavin derivative of generalized
stochastic processes which are elements of spaces X ⊗ (S)−ρ.

Theorem 3.1. The Malliavin derivative of a process u ∈ X ⊗ (S)−ρ is a linear and
continuous mapping D : Dom(D)−ρ,−p ∩X ⊗ (S)−ρ,−p → X ⊗S−l(R)⊗ (S)−ρ,−p,
for l > p+ 1 and p ∈ N0.

Proof. We use the property (α−ε(k))! = α!
αk

, for k ∈ N in the proof of this theorem.

Assume that a generalized process u is of the form (2) such that it satisfies (3) for
some p ≥ 0. Then we have

‖Du‖2X⊗S−l(R)⊗(S)−ρ,−p
=
∑
α∈I

∥∥∥∥∑
k∈N

αk fα ⊗ ξk

∥∥∥∥2
X⊗S−l(R)

(2N)−pα+pε(k)

(α− ε(k))1−ρ

=
∑
α∈I

∞∑
k=1

α2
k(α− ε(k))!1−ρ‖fα‖2X(2N)−p(α−ε(k))(2k)−l

=
∑
α∈I

∞∑
k=1

α2
k

(
α!

αk

)1−ρ

‖fα‖2X(2N)−pα(2k)−(l−p)

≤ C
∑
α∈I

( ∞∑
k=1

αk

)1+ρ

(α!)1−ρ‖fα‖2X(2N)−pα

= C
∑
α∈I

|α|1+ρ(α!)1−ρ‖fα‖2X(2N)−pα <∞,

where C =
∞∑
k=1

(2k)−(l−p) <∞ for l > p+ 1. �

When ρ = 1 the result of the previous theorem reduces to the corresponding
one in [5].

For all α ∈ I we have |α| = ∑
k∈N

αk < α! =
∏

k∈N
αk, αk ∈ N. Thus,

the smallest domain of the spaces Dom(D)−ρ is obtained for ρ = 0 and the largest
is obtained for ρ = 1. In particular we have inclusions Dom(D)−0 ⊂ Dom(D)−1.
Moreover if p < q then Dom(D)−ρ,−p ⊆ Dom(D)−ρ,−q. Note for u ∈ Dom(D)−ρ

it follows that u ∈ Dom(Da)−ρ, for a given sequence a = (ak)k∈N, ak ≥ 1, for all
k ∈ N. Indeed, there exists p > 1 such that∑
α∈I

|α|1+ρ (α!)1−ρ ‖uα‖2X (2Na)−pα ≤ C ·
∑
α∈I

|α|1+ρ (α!)1−ρ ‖uα‖2X (2N)−pα <∞,

where C =
∑

α∈I a−pα <∞.

3.2. Skorokhod integral δ

In [8] we extended the definition of the Skorokhod integral from Hilbert space-
valued generalized random variables to to the class of generalized processes. As an
adjoint operator of the Malliavin derivative the Skorokhod integral is defined as
follows.
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Let ρ ∈ [0, 1]. Let F =
∑

α∈I fα⊗ vα⊗Hα ∈ X⊗S−p(R)⊗ (S)−ρ,−p, p ∈ N0

be a generalized S−p(R)-valued stochastic process and let vα ∈ S−p(R) be given
by the expansion vα =

∑
k∈N

vα,k ξk, vα,k ∈ R. Then, the process F is integrable in
the Skorokhod sense and the chaos expansion of its stochastic integral is given by

δ(F ) =
∑
α∈I

∑
k∈N

vα,k fα ⊗Hα+ε(k) .

Theorem 3.2. Let ρ ∈ [0, 1]. The Skorokhod integral δ of a S−q(R)-valued stochastic
process is a linear and continuous mapping δ : X ⊗ S−q(R) ⊗ (S)−ρ,−p → X ⊗
(S)−ρ,−(q+1−ρ), for q − p > 1.

Proof. This statement follows from (α+ ε(k))! = (αk +1)α!, the Cauchy–Schwarz

inequality and inequalities (αk + 1) ≤ |α+ ε(k)| ≤ (2N)α+ε(k)

, when α ∈ I, k ∈ N.
Clearly, we have

‖δ(F )‖2X⊗(S)−ρ,−(l+1−ρ)
=
∑
α∈I

∥∥∥∥∑
k∈N

vα,k fα

∥∥∥∥2
X

(2N)−(l+1−ρ)(α+ε(k)) (α+ ε(k))!1−ρ

≤
∑
α∈I

α!1−ρ ‖fα‖2X
(∑

k∈N

vα,k (2k)
− l

2

)2

(2N)−lα

=
∑
α∈I

α!1−ρ ‖fα‖2X
(∑

k∈N

vα,k (2k)
− q

2 (2k)−
1
2 (l−q)

)2

(2N)−lα

≤ C
∑
α∈I

α!1−ρ ‖fα‖2X
(∑

k∈N

v2α,k (2k)
−q

)
(2N)−lα

≤ C
∑
α∈I

α!1−ρ ‖fα‖2X ‖vα‖2−q (2N)
−pα <∞,

because F ∈ X ⊗ S−q(R)⊗ (S)−ρ,−p and C =
∑

k∈N
(2k)−(l−q) is a finite constant

for l > q + 1. �

3.3. Ornstein–Uhlenbeck operator R
The image of the Malliavin derivative is included in the domain of the Skorokhod
integral and thus we can define their composition, the Ornstein–Uhlenbeck oper-
ator denoted by R = δ ◦ D. We define the domain Dom(R)−ρ to be the set of all
processes u =

∑
α∈I uα ⊗Hα ∈ X ⊗ (S)−ρ such that the condition∑

α∈I
|α|2(α!)1−ρ‖uα‖2X(2N)−pα <∞

is satisfied for some p ≥ 0. If u ∈ X ⊗ (S)−ρ ∩Dom(R)−ρ then

Ru =
∑
α∈I

|α|uα ⊗ Hα.

Recall, Gaussian processes with zero expectation are the only fixed points of the
Ornstein–Uhlenbeck operator [9].
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Note that for ρ ∈ [0, 1] the inclusion Dom(R)−ρ ⊆ Dom(D)−ρ holds. For
ρ = 1 spaces Dom(R)−ρ and Dom(D)−ρ coincide [7]. The domain Dom(Ra)−ρ,
where a = (ak)k∈N, ak ≥ 1, is

∑
α∈I |α|2(α!)1−ρ‖uα‖2X(2Na)−pα < ∞. For p > 1

from ∑
α∈I

|α|2(α!)1−ρ‖uα‖2X(2Na)−pα < C ·
∑
α∈I

|α|2(α!)1−ρ‖uα‖2X(2N)−pα

<∞, for C =
∑
α∈I

a−pα

it follows that if u ∈ Dom(R)−ρ then u ∈ Dom(Ra)−ρ.

4. Wick-type equations involving Malliavin derivative

We consider a nonhomogeneous first-order equation involving the Malliavin deriv-
ative operator and the Wick product with a Gaussian process G

Du = G♦Au+ h, Eu = ũ0, ũ0 ∈ X, (4)

where h is a S′-valued generalized stochastic process and A is a coordinatewise
operator. We assume that a Gaussian process G belongs to S−l(R)⊗ (S)−ρ,−p, for
some l, p > 0, i.e., it can be represented in the chaos expansion form

G =
∑
k∈N

gk ⊗ Hε(k) =
∑
k∈N

∑
n∈N

gkn ξn ⊗ Hε(k) , gkn ∈ R, (5)

such that
∑

k∈N

∑
n∈N

g2kn (2n)−l (2k)−p <∞. We also assume A : X ⊗ (S)−ρ →
X ⊗ (S)−ρ to be a coordinatewise operator, i.e., a linear operator defined by
A(f) =

∑
α∈I Aα(fα) ⊗ Hα, for f =

∑
α∈I fα ⊗ Hα ∈ X ⊗ (S)−ρ, where Aα :

X → X , α ∈ I are polynomially bounded for all α, i.e., there exists r > 0 such that∑
α∈I ‖Aα‖2(2N)−rα < ∞. If we assume Aα = A, for all α ∈ I then an operator

A is called a simple coordinatewise operator, according to the classification from
[10]. Especially, for a simple coordinatewise operator A such that Aα = 0 the
equation (4) reduce to the initial value problem solved in [8].

As a case of study, in this paper we prove existence and uniqueness of a
solution for a special form of (4), providing its solution explicitly. Particularly, we
assume Aα = Id, α ∈ I being the identity operator and a Gaussian process G ∈
S−l(R) ⊗ (S)−ρ,−p obtained from G by choosing gkn =

{
gk, k = n
0, k �= n

, k, n ∈ N.

Clearly, we consider G to be of the form

G =
∑
k∈N

gk ξk ⊗ Hε(k) , (6)

such that its coefficients gk ∈ R, k ∈ N satisfy the convergence condition∑
k∈N

g2k (2n)
−q <∞, for some q > 0. (7)
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Therefore, we are interested to solve

Du = G♦u, Eu = ũ0, ũ0 ∈ X, (8)

i.e., to find a Malliavin differentiable process whose derivative coincides with its
Wick product with a certain Gaussian process.

Theorem 4.1. Let ρ ∈ [0, 1]. Let G ∈ S−l(R) ⊗ (S)−ρ,−p, p, l > 0 be a Gaussian
process of the form (6) satisfying (7). If gk ≥ 1

2k , for all k ∈ N then there exists a
unique solution u in X ⊗ (Sg)−ρ ∩ Dom(D)−ρ,−p of the initial value problem (8)
given by

u =
∑

α=(2β1,2β2,...,2βm,0,... )∈I
β1,β2,...,βm∈N0

Cα

|α|!! (
∞∏
k=1

gβk

k ) ũ0 ⊗ Hα = ũ0 ⊗
∑
β∈I

C2β
gβ

|2β|!! Hβ ,

(9)

where Cα represents the number of all possible decomposition chains connecting
multi-indices α and α1, such that α1 is the first successor of α having only one
nonzero component that is obtained by substractions α− 2ε(p1)− · · ·− 2ε(ps) = α1,
for p1, . . . , ps ∈ N, s ≥ 0.

Proof. We are looking for a solution of (8) in the chaos expansion representation
form

u =
∑
α∈I

uα ⊗ Hα, uα ∈ X (10)

which is Malliavin differentiable and which admits the Wick multiplication with a
Gaussian process of the form (6). This means that we are seeking for unknown coef-
ficients uα ∈ X such that the condition

∑
α∈I |α|1+ρ (α!)1−ρ ‖uα‖2X (2Ng)−pα <∞

is satisfied for some p > 0. Wick product of a process u and a Gaussian process
G, represented in their chaos expansion forms (10) and (6) respectively, is a well-
defined element G♦u given by

G♦u =
∑
k∈N

gk ξk ⊗ Hε(k)♦
∑
α∈I

uα ⊗ Hα =
∑
α∈I

∑
k∈N

gk ξk ⊗ uα ⊗ Hα+ε(k) .

Clearly, assuming (7) and u ∈ X ⊗ (S)−ρ,−p then G♦u ∈ X ⊗ S−l(R)⊗ (S)−ρ,−p,
l, p > 0, because

‖G♦u‖2X⊗S−l(R)⊗(S)−ρ,−p
=
∑
α∈I

∑
k∈N

(α!)1−ρ g2k (2k)−l ‖uα‖2X (2N)−p(α+εk)

≤
∑
α∈I

(α!)1−ρ ‖uα‖2X (2N)−pα ·
∑
k∈N

g2k (2k)
−q

= ‖u‖2X⊗(S)−ρ,−p
· ‖G‖2S−l(R)⊗(S)−ρ,−p

<∞,

where q = l + p. Previous estimates are also valid for processes in the Kondratiev
space modified with a sequence a = (ak)k∈N. Both, the Wick product G♦u and
the action of the Malliavin derivative on u, belong to the domain of the Skorokhod
integral and therefore we can apply the operator δ on both sides of (8). Thus, we
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obtain δ(Du) = δ(G♦u). Substituting the composition δ ◦ D with the Ornstein–
Uhlenbeck operatorR, the initial equation (8) transforms to equivalent one written
in terms of the Skorokhod integral δ and the Ornstein–Uhlenbeck operator R

Ru = δ(G♦u). (11)

We replace all the processes in (11) with their chaos expansion expressions, apply
operators R and δ and obtain unknown coefficients of a process u.

R
(∑

α∈I
uα ⊗ Hα

)
= δ

(∑
α∈I

∑
k∈N

gk uα ⊗ ξk ⊗ Hα+ε(k)

)
∑
α∈I

|α|uα ⊗ Hα =
∑
α∈I

∑
k∈N

gk uα ⊗ Hα+2ε(k) .

We select terms which correspond to multi-indices of length zero and one and
obtain∑
k∈N

uε(k) ⊗ Hε(k) +
∑

α∈I,|α|≥2

|α|uα ⊗ Hα =
∑

α∈I, |α|≥2

∑
k∈N

gk uα−2ε(k) ⊗ Hα. (12)

Due to the uniqueness of chaos expansion representations in the orthogonal
Fourier–Hermite basis, we equalize corresponding coefficients on both sides of (12)
and obtain the triangular system of deterministic equations

uε(k) = 0, k ∈ N (13)

|α|uα =
∑
k∈N

gk uα−2ε(k) , |α| ≥ 2, (14)

where by convention α−2ε(k) does not exist if αk = 0 or αk = 1, thus uα−2ε(k) = 0
for αk ≤ 1. We solve the system of equations (13) and (14) by induction with
respect to the length of multi-indices α and thus obtain coefficients uα, |α| ≥ 1 of
a solution of (8) in explicit form. First, from (14) it follows that uα are represented
in terms of uβ such that |β| = |α| − 2, where uβ are obtained in the previous step
of the induction procedure.

From the initial condition Eu = ũ0 it follows that u(0,0,0,... ) = ũ0 and from
(13) we obtain coefficients uα = 0 for all |α| = 1. For |α| = 2 there are two
possibilities: α = 2ε(k), k ∈ N and α = ε(k) + ε(j), k �= j, k, j ∈ N. From (14) it
follows that

uα =

{
1
2 gk ũ0, α = 2ε(k)

0, α = ε(k) + ε(j), k �= j
.

Note α = 2ε(k), k ∈ N has only one nonzero component, so α = α1, thus only one
term appears in the sum (14) and Cα = 1.

We point out here that uα = 0 for |α| = 3, because these coefficients are
represented through the coefficients of the length one, which are zero. Moreover,
for all α ∈ I of odd length, i.e., for all α ∈ I such that |α| = 2n + 1, n ∈ N the
coefficients uα = 0.
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Our goal is to obtain a general form of the coefficients uα for α ∈ I of
even length, i.e., for |α| = 2n, n ∈ N. Now, for |α| = 4 there are five different
types of α. Without loss of generality we consider α ∈ {(4, 0, 0, . . . ), (3, 1, 0, 0, . . . ),
(2, 1, 1, 0, . . . ), (1, 1, 1, 1, 0, 0, . . . ), (2, 2, 0, 0, . . . )}.

From (14) it follows u(4,0,0,... ) =
1
4 g1 u(2,0,0,0,... ). Using the forms of uα ob-

tained in the previous steps we get u(4,0,0,... ) =
1
4

1
2g

2
1ũ0. We also obtain

u(3,1,0,... ) = u(2,1,1,0,... ) = u(1,1,1,1,0,0,... ) = 0

and

u(2,2,0,0... ) =
1

4
(g1u(0,2,0,... ) + g2u(2,0,0,... )) =

1

4

1

2
g1g2 · ũ0 · 2.

It follows that only nonzero coefficients are obtained for multi-indices of forms
α = 4ε(k), k ∈ N and α = 2ε(k) + ε(j), k �= j, k, j ∈ N. Thus, for |α| = 4

uα =

⎧⎨⎩
1
4!! g

2
k ũ0, α = 4ε(k),

2 · 1
4!! gk gj ũ0, α = 2ε(k) + 2ε(j), k �= j,

0, otherwise.

Note α = 2ε(k) + 2ε(j), for k �= j has two nonzero components, thus there are
two terms in the sum (14) and Cα = 2. For example, α = (2, 2, 0, 0, . . . ) can
be decomposed in one of two following ways α = 2ε(1) + (0, 2, 0, 0, . . . ) or α =
2ε(2) + (2, 0, 0, 0, . . . ), therefore C(2,2,0,0,... ) = 2.

For |α| = 6 we consider only multi-indices which have all their components
even. For the rest uα = 0. For example, from (14) and from the forms of the
coefficients obtained in the previous steps it follows u(6,0,0,... ) = 1

6g1u(4,0,0,... ) =
1
6
1
4
1
2 g

3
1 ũ0. Next, u(4,2,0,0,... ) =

1
6 (g1u(2,2,0,0,... )+g2u(4,0,0,... )) = 3· 16 1

4
1
2 g

2
1 g2 ũ0. Fi-

nally, u(2,2,2,0,... ) = g1u(0,2,2,0,... )+g2u(2,0,2,0,... )+g3u(2,2,0,0,... ) = 6· 16 1
4
1
2 g1 g2 g3 ũ0.

The later coefficient, Cα = 6, meaning that there are six chain decompositions of
α = (2, 2, 2, 0, 0, . . . ) of the form α = 2ε(p1) + 2ε(p2) + · · · + 2ε(ps) + α1, with
α1 having only one nonzero component. This case is illustrated in Figure 1(b).
For α = (4, 2, 0, 0, . . . ) we have Cα = 3, where all decomposing possibilities are
described in Figure 1(a). Thus,

uα =

⎧⎪⎪⎨⎪⎪⎩
1
6!! g

3
k ũ0, α = 6ε(k),

3 · 1
6!!g

2
k gj ũ0, α = 4ε(k) + 2ε(j), k �= j,

6 · 1
6!! gk gj gi ũ0, α = 2ε(k) + 2ε(j) + 2ε(i), k �= i, j, i �= j,

0, otherwise.

We proceed by the same procedure for all even multi-index lengths to obtain
uα in the form

uα =

⎧⎨⎩ Cα

|α|!! · gβ1

1 gβ2

2 · · · gβm
m ũ0,

{
α = (2β1, 2β2, . . . , 2βm, 0, 0) ∈ I,
|α| = 2n, n ∈ N,

0, |α| = 2n− 1, n ∈ N,
(15)

where β = (β1, β2, . . . , βm, 0, 0, . . . ) ∈ I, β1, . . . , βm ∈ N0 and Cα represents
the number of decompositions of α in the way α = 2ε(p1) + · · · + 2ε(ps) + α1,
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(4, 2, 0, . . . )

(4, 0, 0, . . . )

(2, 2, 0, . . . )

(2, 0, 0, . . . )

(0, 2, 0, . . . )

(a) α = (4, 2, 0, . . . )

(2, 2, 2, 0, . . . )

(2, 2, 0, 0, . . . )

(2, 0, 0, . . . )

(0, 2, 0, . . . )

(2, 0, 2, 0, . . . )

(0, 0, 2, . . . )

(2, 0, 0, . . . )

(0, 2, 2, 0, . . . )

(0, 2, 0, . . . )

(0, 0, 2, . . . )

(b) α = (2, 2, 2, 0, . . . )

Figure 1. α values

for all possible p1,. . . , ps, i.e., all the branches paths that connect α and α1 =
(0, 0, . . . , α̃i, 0, 0, . . . ), for some α̃i �= 0.

Note, for α = 2β = (2β1, 2β2, . . . , 2βm, 0, . . . ) ∈ I the coefficient 1 ≤ Cα ≤
m!, i.e., Cα is maximal when all nonzero components of α are equal two.

Summing up all the coefficients in (15) we obtain the form of solution (9). It
remains to prove the convergence of the solution u in the space X ⊗ (Sg)−ρ,−p ∩
Dom(D)−ρ, i.e., ∑

α∈I
|α|1+ρ (α!)1−ρ ‖uα‖2X(2Ng)−pα <∞.

We use inequalities |α| ≤ α! ≤ (2N)α for α ∈ I and that
∑

α∈I(2Ng)
−pα <∞

if p > 0 for a sequence g that satisfies the assumption gk ≥ 1
2k , k ∈ N. Thus, there

exists s > 1 large enough so m! ( α!
|α|!!)

2 ≤ (2N)sα, for α ∈ I and m = max{i ∈ N :

αi �= 0}. For p > max{2, s} we have

‖u‖2X⊗(Sg)−ρ,−p∩Dom(D)−ρ

=
∑

α=(2β1,...,2βm,0,0,... )∈I
|α|1+ρ (α!)1−ρ ‖ũ0‖2X C2

α

g2β

(|α|!!)2 (2Ng)−pα

≤ ‖ũ0‖2X
∑

α=(2β1,...,2βm,0,0,... )∈I

(α!)2 m!

(|α|!!)2 gα (2N)−pα g−pα
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≤ ‖ũ0‖2X
∑
α∈I

(2N)sα (2N)−pα gα g−pα

≤ ‖ũ0‖2X
∑
α∈I

g−(p−1)α
∑
α∈I

(2N)−(p−s)α <∞. �

Example 4.1. For gk = 1, k ∈ N in (6), a Gaussian process G represents a singular
white noise W and equation (8) transforms to the equation

Du = W♦u, Eu = ũ0. (16)

Since the coefficients of W satisfy assumptions of Theorem 4.1, then the equation
(16) has a unique solution in X ⊗ (S)−ρ represented in the form

u = ũ0 ⊗
∑

β=(β1,β2,...,βm,0,... )∈I

C2β

|2β|!! H2β ,

where C2β is the number of all possible chain decompositions of 2β ∈ I described
in Theorem 4.1.

Remark 4.1. a) The same procedure, described in the proof of Theorem 4.1 can be
applied for solving equations with Gaussian processes in general form (5). Hence,
in order to obtain the coefficients uα, α ∈ I of a solution (10) of a homogeneous
equation Du = G♦u, Eu = ũ0, ũ0 ∈ X one has to solve the system of deterministic
equations

uε(k) = 0, for k ∈ N and |α|uα =
∑
k∈N

∑
n∈N

gkn uα−ε(k)−ε(n) , |α| ≥ 2,

that corresponds to the system (13) and (14).

b) Considering a nonhomogeneous problem Du = G♦u + h, Eu = ũ0, ũ0 ∈ X ,
for h ∈ X ⊗ S′(R) ⊗ (S)−ρ the unknown coefficients uα, α ∈ I of a solution u ∈
X⊗(Sg)−ρ are determined from the system of deterministic equations uε(k) = f0,k,
for k ∈ N and

|α|uα =
∑
k∈N

∑
n∈N

gk uα−ε(k)−ε(n) +
∑
k∈N

hα−ε(k),k, |α| ≥ 2.

The solution u belongs to the Kondratiev space of distributions modified by a
sequence g and it can be represented as a sum of the solution that corresponds to
homogeneous part of equation uh and a nonhomogeneous part unh which depends
on f . The proof is rather technical and we omit it in this paper.

c) Consider equation

Du = B(G♦u) + h, Eu = ũ0, ũ0 ∈ X, (17)

where B is a coordinatewise operator, i.e., B : X ⊗ S′(R) ⊗ (S)−ρ → X ⊗
S′(R) ⊗ (S)−ρ is a linear operator defined by B(f) = ∑

α∈I Bα(fα)Hα, for f =∑
α∈I fαHα ∈ X ⊗S′(R)⊗ (S)−ρ, where Bα : X ⊗S′(R)→ X ⊗S′(R), α ∈ I are

linear and of the form Bα =
∑

k∈N
fα,k Bα,k(ξk), α ∈ I, such that Bα,k : S′(R)→

S′(R), k ∈ N. We also assume
∑

α∈I
∑

k∈N
‖Bα,k‖2(2k)−l (2N)−pα <∞, for some
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p, l > 0. Especially, if operator B is a simple coordinatewise operator of the form
Bα,k = B = −Δ+ x2 + 1, α ∈ I, k ∈ N then, in order to solve (17) we can apply
the same procedure explained in Theorem 4.1. Recall, the domain of B contains
S′(R) and the Hermite functions are eigenvectors of B with Bξk = 2k ξk, k ∈ N.
We set h = 0. Clearly,

B(G♦u) = B
(∑

α∈I

∑
k∈N

gk ξk ⊗ uα ⊗ Hα+ε(k)

)
=
∑
α∈I

∑
k∈N

gk Bα,k(ξk)⊗ uα ⊗ Hα+ε(k)

=
∑
α∈I

∑
k∈N

gk Bξk ⊗ uα ⊗ Hα+ε(k)

=
∑
α∈I

∑
k∈N

gk 2k ξk ⊗ uα ⊗ Hα+ε(k) .

Therefore, after applying operator δ we obtain∑
α∈I

|α|uα ⊗ Hα =
∑
α∈I

∑
k∈N

2k gk uα ⊗ Hα+2ε(k) .

The coefficients of the solution are obtained by induction from the system of
equations

uε(k) = 0, for all k ∈ N, and |α|uα =
∑
k∈N

2k gk uα−2ε(k) , |α| ≥ 2.

Under assumptions of Theorem 4.1 it can be proven that there exists a unique
solution of equation in the space X ⊗ (Sg)−ρ,−p ∩ Dom(D)−ρ, for p > max{3, s}
given in the form

u = ũ0 ⊗
∑

2β=(2β1,...,βm,0,0,... )∈I

C2β

|2β|!!
( ∞∏

k=1

(2k) gβk

k

)
H2β .

5. A numerical example

In this section we consider a stationary equation

G♦Au = h, Eu = ũ0, ũ0 ∈ X, (18)

obtained from (4), for Du = 0. Particularly, by applying the stochastic Galerkin
method we solve numerically (18) for a simple coordinatewise operator A with
Aα = Δ, α ∈ I, the Laplace operator in two spatial dimensions and G being a
Gaussian random variable. Thus, (18) reduce to

G(ω)♦
∑
α∈I

Δu(x, y)Hα(ω) = h(ω), (x, y) ∈ D, ω ∈ Ω. (19)
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Note that in the stochastic Galerkin method a finite-dimensional approximation of
Fourier–Hermite orthogonal polynomials {Hα}α∈I is used [4, 20]. The main steps
are sketched in Algorithm 5.1.

Algorithm 5.1 Main steps of the stochastic Galerkin method

1: Choose finite set of polynomials Hα and truncate the random series to a finite
random sum.

2: Solve numerically the deterministic triangular system of equations by a suitable
method.

3: Compute the approximate statistics of the solutions from obtained coefficients.
4: Generate Hα and compute the approximate solutions.

Let D = {(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1} be the spatial domain and let
G = g0 +

∑
k∈N

gk Hε(k) be a Gaussian random variable with mean EG = g0 = 10

and variance VarG =
∑

k∈N
g2k − g20 = 3.32. We denote by Im,p the set of α =

(α1, . . . , αm, 0, 0, . . . ) ∈ I with m = max{i ∈ N : αi �= 0} such that |α| ≤ p. As
a first step, we represent u in its truncated polynomial chaos expansion form ũ,
i.e., we approximate solution with the chaos expansion in ⊕p

k=0Hk with m random

variables ũ(x, y, ω) =
∑

α∈Im,p
ũα(x, y)Hα(ω); the previous sum has P = (m+p)!

m!p!

terms. Hence, (19) transforms to

g0 ·
∑

α∈Im,p

Δũα(x, y)Hα(ω) +
∑

α∈Im,p

m∑
k=1

gk Δũα(x, y)Hα+ε(k)(ω)

=
∑

α∈Im,p

hα Hα(ω).

The unknown coefficients ũα, α ∈ Im,p are obtained by the projection onto
each element of the Fourier–Hermite basis {Hγ}, γ ∈ Im,p, i.e., by taking the
expectations for all γ ∈ Im,p

Eμ

(
Hγ · (g0

∑
α∈Im,p

Δũα(x, y)Hα +
∑

α∈Im,p

m∑
k=1

gk Δũα(x, y)Hα+ε(k))

)

= Eμ

(
Hγ ·

∑
α∈Im,p

hγHα

)
.

From the formula Hα(ω) ·Hβ(ω) =
∑

γ≤min{α,β} γ!
(
α
γ

)(
β
γ

)
Hα+β−2γ(ω) for Hermite

polynomials [3] and the orthogonality of the polynomial basis, it follows that the
initial equation reduces to a system of P deterministic equations for coefficients
ũα. Particularly, we take m = 15, p = 3 and then obtain P = 816 deterministic
equations in the system. We assume hα = 1 for |α| ≤ 3 and hα = 0 for |α| > 3.
We use central differencing to discretize in the spatial dimensions and 170 grid
cells in each spacial direction. Then, we solve numerically the resulting system.
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Figure 2. Expected value (left) and variance (right) of the solution

Once the coefficients of the expansion ũ are obtained, we are able to compute all
the moments of the random field. Particularly the expectation Eu = u0 and the
variance of the solution Varu =

∑
α∈Im,p

α! ũ2
α are plotted in Figure 2, on z-axes

over the domain D. We can observe that the variance of the solution is relatively
high. In general, this behaviour is related to singularities.

We would like to underline that Wiener chaos expansion converges quite fast,
i.e., even small values of p may lead to very accurate approximation. The error
generated by the truncation of the Wiener chaos expansion, in X ⊗ (L)2 is

E2 = ‖u(x, y, ω)− ũ(x, y, ω)‖2X⊗(L)2

= Eμ (u(x, y, ω)− ũ(x, y, ω))

=
∑

α∈I\Im,p

α! ‖uα(x, y)‖2X

for (x, y) ∈ D. Note that if instead of a Gaussian random variable, a stochastic
generalized function is considered, i.e., when the coefficients are singular, the error
E2 → 0 converge in the space of Kondratiev distributions.
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Abstract

We study nonlinear parabolic stochastic partial differential equations with Wick-
power and Wick-polynomial type nonlinearities set in the framework of white noise
analysis. These equations include the stochastic Fujita equation, the stochastic
Fisher-KPP equation and the stochastic FitzHugh-Nagumo equation among many
others. By implementing the theory of C0�semigroups and evolution systems into
the chaos expansion theory in infinite dimensional spaces, we prove existence and
uniqueness of solutions for this class of SPDEs. In particular, we also treat the linear
nonautonomous case and provide several applications featured as stochastic reaction-
diffusion equations that arise in biology, medicine and physics.
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C0�semigroup ; infinitesimal generator ; Catalan numbers .
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1 Introduction

We study stochastic nonlinear evolution equations of the form

ut(t, !) = Au(t, !) +

nX

k=0

aku⌃k(t, !) + f(t, !), t 2 (0, T ] (1.1)

u(0, !) = u0(!), ! 2 ⌦,

where u(t, !) is an X�valued generalized stochastic process; X is a certain Banach alge-
bra and A corresponds to a densely defined infinitesimal generator of a C0�semigroup.
The nonlinear part is given in terms of Wick-powers u⌃n = u⌃n�1⌃u = u⌃ . . .⌃u, n 2 N,
where ⌃ denotes the Wick product. The Wick product is involved due to the fact that we
allow random terms to be present both in the initial condition u0 and the driving force
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f . This leads to singular solutions that do not allow to use ordinary multiplication, but
require a renormalization of the multiplication, which is done by introducing the Wick
product into the equation. The Wick product is known to represent the highest order
stochastic approximation of the ordinary product [16].

In our previous paper [14] we treated the case of linear stochastic parabolic equations
with Wick-multiplicative noise which includes the case n = 1. The present paper is an
extension of [14] to nonlinear equations, where the nonlinearity is generated by a
Wick-polynomial function leading to stochastic versions of Fujita-type equations ut =

Au+u⌃n +f , FitzHugh-Nagumo equations ut = Au+u⌃2�u⌃3 +f , Fisher-KPP equations
ut = Au + u � u⌃2 + f and Chaffee-Infante equations ut = Au + u⌃3 � u + f . These
equations have found ample applications in ecology, medicine, engineering and physics.
For example, the FitzHugh-Nagumo equation is used to study electrical activity of
neurons in neurophysiology by modeling the conduction of electric impulses down a
nerve axon. The Fisher-Kolmogorov-Petrovsky-Piskunov equation provides a model for
the spread of an epidemic in a population or for the distribution of an advantageous
gene within a population. Other applications in medicine involve the modeling of cellular
reactions to the introduction of toxins, and the process of epidermal wound healing.
In plasma physics it has been used to study neutron flux in nuclear reactors, while in
ecology it models flame propagation of fire outbreaks. Thus, the study of their stochastic
versions, when some of the input factors is disturbed by an external noise factor and
hence it becomes randomized, is of immense importance. For instance, a stochastic
version of the FitzHugh-Nagumo equation has been studied in [1] and [3], while the
stochastic Fisher-KPP equation has been studied in [10] and [19].

We implement the Wiener-Itô chaos expansion method combined with the operator
semigroup theory in order to prove the existence and the uniqueness of a solution for
(1.1). Using the chaos expansion method any SPDE can be transformed into a lower
triangular infinite system of PDEs (also known as the propagator system) that can be
solved recursively. Solving this system, one obtains the coefficients of the solution to
(1.1). In order to solve the propagator system, we exploit the intrinsic relationship
between the Wick product and the Catalan numbers that was discovered in [11] where
the authors considered the stochastic Burgers equation. We build upon these ideas in
order to solve a general class of stochastic nonlinear equations (1.1).

The plan of exposition is as follows: In the introductory section we recall upon basic
notions of C0�semigroups, evolution systems and white noise theory including chaos
expansions of generalized stochastic processes. In Section 2, which represents the main
part of the paper, we prove existence and uniqueness of the solution to (1.1) for the case
when a0 = a1 = · · · = an�1 = 0 and an = 1. This normalization is made for technical
simplicity to illustrate the method of solving and to put out in details all building blocks
of the formulae involved. In Section 3 we treat the general case of (1.1) and provide
some concrete examples.

1.1 Evolution systems

We fix the notation and recall some known facts about evolution systems (see [20,
Chapter 5]). Let X be a Banach space. Let {A(t)}t2[s,T ] be a family of linear operators
in X such that A(t) : D(A(t)) ⇢ X ! X, t 2 [s, T ] and let f be an X�valued function
f : [s, T ] ! X. Consider the initial value problem

d

dt
u(t) = A(t)u(t) + f(t), 0  s < t  T, (1.2)

u(s) = x.

EJP 0 (2016), paper 0.
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If u 2 C([s, T ], X) \ C1((s, T ], X), u(t) 2 D(A(t)) for all t 2 (s, T ] and u satisfies (1.2),
then u is a classical solution of (1.2).

A two parameter family of bounded linear operators S(t, s), 0  s  t  T on X is
called an evolution system if the following two conditions are satisfied:

1. S(s, s) = I and S(t, r)S(r, s) = S(t, s), 0  s  r  t  T

2. (t, s) 7! S(t, s) is strongly continuous for all 0  s  t  T.

Clearly, if S(t, s) is an evolution system associated with the homogeneous evolution
problem (1.2), i.e. if f ⌘ 0, then a classical solution of (1.2) is given by u(t) = S(t, s)x, t 2
[s, T ].

A family {A(t)}t2[s,T ] of infinitesimal generators of C0�semigroups on X is called
stable if there exist constants m � 1 and w 2 R (stability constants) such that (w,1) ✓
⇢(A(t)), t 2 [s, T ] and

���
kY

j=1

R(� : A(tj))
���  m

(�� w)k
, � > w,

for every finite sequence 0  s  t1  t2  · · ·  tk  T, k = 1, 2, . . . .

Let {A(t)}t2[s,T ] be a stable family of infinitesimal generators with stability constants
m and w. Let B(t), t 2 [s, T ], be a family of bounded linear operators on X. If kB(t)k 
M, t 2 [s, T ], then {A(t) + B(t)}t2[s,T ] is a stable family of infinitesimal generators with
stability constants m and w + Mm.

Let {A(t)}t2[s,T ] be a stable family of infinitesimal generators of C0�semigroups on
X such that the domain D(A(t)) = D is independent of t and for every x 2 D, A(t)x is
continuously differentiable in X. If f 2 C1([s, T ], X) then for every x 2 D the evolution
problem (1.2) has a unique classical solution u given by

u(t) = S(t, s)x +

Z t

s

S(t, r)f(r)dr, 0  s  t  T.

From the proof of [20, Theorem 5.3, p. 147] one can obtain

d

dt
u(t) = A(t)S(t, s)x + A(t)

Z t

s

S(t, r)f(r)dr + f(t), s < t  T.

Since t 7! A(t) is continuous in B(D, X) and (t, s) 7! S(t, s) is strongly continuous for all
0  s  t  T, we have additionally that the solution u to (1.2) exhibits the regularity
property u 2 C1([s, T ], X) and d

dtu(t)|t=s = A(s)x + f(s). Recall that the evolution system
S(t, s) satisfies:

1. kS(t, s)k  mew(t�s), 0  s  t  T ;

2. @+

@t S(t, s)x
���
t=s

= A(s)x, x 2 D, 0  s  T which implies that @
@tS(t, s)x =

A(t)S(t, s)x since t 7! A(t) is continuous in B(D, X);

3. @
@sS(t, s)x = �S(t, s)A(s)x, x 2 D, 0  s  t  T ;

4. S(t, s)D ✓ D;

5. S(t, s)x is continuous in D for all 0  s  t  T and x 2 D.

Remark 1.1. Considering infinitezimal generators depending on t, we follow the stan-
dard approach of Yosida (cf. [24], [12]). We refer to [18] for a method based on an

EJP 0 (2016), paper 0.
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equivalent operator extension problem (see also references in [18]). The chaos expan-
sion approach, which is the essence of our paper, requires the existence results for the
propagator system i.e. for the coordinate-wise deterministic Cauchy problems. For this
purpose we demonstrate the applications of the hyperbolic Cauchy problem given in
[20].

1.2 Generalized stochastic processes

Denote by (⌦, F , µ) the Gaussian white noise probability space (S0(R), B, µ), where
⌦ = S0(R) denotes the space of tempered distributions, B the Borel sigma-algebra
generated by the weak topology on S0(R) and µ the Gaussian white noise measure
corresponding to the characteristic function

Z

S0(R)

eih!,�idµ(!) = exp


�1

2
k�k2

L2(R)

�
, � 2 S(R),

given by the Bochner-Minlos theorem.
We recall the notions related to L2(⌦, µ) (see [9]). The set of multi-indices I is (NN0 )c,

i.e. the set of sequences of non-negative integers which have only finitely many nonzero
components. Especially, we denote by 0 = (0, 0, 0, . . .) the zero multi-index with all
entries equal to zero, the length of a multi-index is |↵| =

P1
i=1 ↵i for ↵ = (↵1, ↵2, . . .) 2 I

and ↵! =
Q1

i=1 ↵i!. We will use the convention that ↵� � is defined if ↵n � �n � 0 for all
n 2 N, i.e., if ↵� � � 0.

The Wiener-Itô theorem (sometimes also referred to as the Cameron-Martin theorem)
states that one can define an orthogonal basis {H↵}↵2I of L2(⌦, µ), where H↵ are
constructed by means of Hermite orthogonal polynomials hn and Hermite functions ⇠n,

H↵(!) =

1Y

n=1

h↵n(h!, ⇠ni), ↵ = (↵1, ↵2, . . . , ↵n . . .) 2 I, ! 2 ⌦.

Then, every F 2 L2(⌦, µ) can be represented via the so called chaos expansion

F (!) =
X

↵2I
f↵H↵(!), ! 2 S0(R),

X

↵2I
|f↵|2↵! < 1, f↵ 2 R, ↵ 2 I.

Denote by "k = (0, 0, . . . , 1, 0, 0, . . .), k 2 N the multi-index with the entry 1 at the kth
place. Denote by H1 the subspace of L2(⌦, µ), spanned by the polynomials H"k

(·), k 2 N.
The subspace H1 contains Gaussian stochastic processes, e.g. Brownian motion is given
by the chaos expansion B(t, !) =

P1
k=1

R t

0
⇠k(s)ds H"k

(!).

Denote by Hm the mth order chaos space, i.e. the closure in L2(⌦, µ) of the linear
subspace spanned by the orthogonal polynomials H↵(·) with |↵| = m, m 2 N0. Then
the Wiener-Itô chaos expansion states that L2(⌦, µ) =

L1
m=0 Hm, where H0 is the set of

constants in L2(⌦, µ).
Changing the topology on L2(⌦, µ) to a weaker one, T. Hida [8] defined spaces of

generalized random variables containing the white noise as a weak derivative of the
Brownian motion. We refer to [8], [9] for white noise analysis.

Let (2N)↵ =
Q1

n=1(2n)↵n , ↵ = (↵1, ↵2, . . . , ↵n, . . .) 2 I. We will often use the fact
that the series

P
↵2I(2N)�p↵ converges for p > 1. Using the same technique as in [9,

Chapter 2] one can define Banach spaces (S)⇢,p of test functions and their topological
duals (S)�⇢,�p of stochastic distributions for all ⇢ � 0 and p � 0.

Definition 1.1. The stochastic test function spaces are defined by

(S)⇢,p = {F =
X

↵2I
f↵H↵ 2 L2(⌦, µ) : kFk2

(S)⇢,p
=
X

↵2I
(↵!)1+⇢|f↵|2(2N)p↵ < 1},

EJP 0 (2016), paper 0.
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for all ⇢ � 0, p � 0.

Their topological duals, the stochastic distribution spaces, are given by formal sums:

(S)�⇢,�p = {F =
X

↵2I
f↵H↵ : kFk2

(S)�⇢,�p
=
X

↵2I
(↵!)1�⇢|f↵|2(2N)�p↵ < 1},

for all ⇢ � 0, p � 0.

The space of test random variables is (S)⇢ =
T

p�0(S)⇢,p, ⇢ � 0 endowed with the
projective topology.
Its dual, the space of generalized random variables is (S)�⇢ =

S
p�0(S)�⇢,�p, ⇢ � 0

endowed with the inductive topology.

The action of F =
P

↵2I b↵H↵ 2 (S)�⇢ onto f =
P

↵2I c↵H↵ 2 (S)⇢ is given by
hF, fi =

P
↵2I(b↵, c↵)↵!, where (b↵, c↵) stands for the inner product in R. Thus, they

form a Gelfand triplet
(S)⇢ ✓ L2(⌦, µ) ✓ (S)�⇢, ⇢ � 0.

Clearly, the spaces (S)⇢,p and (S)�⇢,�p are separable Hilbert spaces. Moreover, (S)⇢
and (S)�⇢ are nuclear spaces.

For ⇢ = 0 we obtain the space of Hida stochastic distributions (S)�0 and for ⇢ = 1 the
Kondratiev space of generalized random variables (S)�1. It holds that

(S)1 ,! (S)0 ,! L2(⌦, µ) ,! (S)�0 ,! (S)�1,

where ,! denotes dense inclusions. Usually the values of ⇢ are restricted to ⇢ 2 [0, 1] in
order to establish the S�transform (see [8], [9]) when solving SPDEs, but in our case
values ⇢ > 1 may be considered as well.

The time-derivative of the Brownian motion B(t, !) =
P1

k=1

R t

0
⇠k(s)ds H"k

(!) exists
in a generalized sense and belongs to the Kondratiev space (S)�1,�p for p � 5

12 . We refer
it as the white noise and its formal expansion is given by W (t, !) =

P1
k=1 ⇠k(t)H"k

(!).

We extended in [21] the definition of stochastic processes to processes with the chaos
expansion form U(t, !) =

P
↵2I u↵(t)H↵(!), where the coefficients u↵ are elements of

some Banach space of functions X. We say that U is an X-valued generalized stochastic
process, i.e. U(t, !) 2 X ⌦ (S)�⇢ if there exists p � 0 such that kUk2

X⌦(S)�⇢,�p
=P

↵2I(↵!)1�⇢ku↵k2
X(2N)�p↵ < 1.

For example, let X = Ck[0, T ], k 2 N. We have proved in [22] that the differentiation
of a stochastic process can be carried out componentwise in the chaos expansion, i.e. due
to the fact that (S)�⇢ is a nuclear space it holds that Ck([0, T ], (S)�⇢) = Ck[0, T ]⌦̂(S)�⇢

where ⌦̂ denotes the completion of the tensor product which is the same for the
"�completion and ⇡�completion. In the sequel, we will use the notation ⌦ instead
of ⌦̂. Hence Ck[0, T ]⌦ (S)�⇢,�p and Ck[0, T ]⌦ (S)⇢,p denote subspaces of the correspond-
ing completions. We keep the same notation when Ck[0, T ] is replaced by another Banach
space. This means that a stochastic process U(t, !) is k times continuously differentiable
if and only if all of its coefficients u↵(t), ↵ 2 I are in Ck[0, T ].

The same holds for Banach space valued stochastic processes i.e. elements of
Ck([0, T ], X) ⌦ (S)�⇢, where X is an arbitrary Banach space. It holds that

Ck([0, T ], X ⌦ (S)�⇢) = Ck([0, T ], X) ⌦ (S)�⇢ =
[

p�0

Ck([0, T ], X) ⌦ (S)�⇢,�p.

In addition, if X is a Banach algebra, then the Wick product of the stochastic
processes F =

P
↵2I f↵H↵ and G =

P
�2I g�H� 2 X ⌦ (S)�⇢,�p is given by

F⌃G =
X

�2I

X

↵+�=�

f↵g�H� =
X

↵2I

X

�↵

f�g↵��H↵,
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and F⌃G 2 X ⌦ (S)�⇢,�(p+k) for all k > 1 (see [9]). The nth Wick power is defined by
F⌃n = F⌃(n�1)⌃F , F⌃0 = 1. Note that Hn"k

= H⌃n
"k

for n 2 N0, k 2 N. Throughout the
paper we will assume that X is a Banach algebra.

2 Stochastic nonlinear evolution equation of Fujita-type

First we consider the equation (1.1), with a0 = a1 = · · · = an�1 = 0 and an = 1, i.e.
the equation:

ut(t, !) = Au(t, !) + u⌃n(t, !) + f(t, !), t 2 (0, T ] (2.1)

u(0, !) = u0(!), ! 2 ⌦.

Let A : D ⇢ X ⌦ (S)�1 ! X ⌦ (S)�1 be a coordinatewise operator that corresponds
to a family of deterministic operators A↵ : D↵ ⇢ X ! X, ↵ 2 I

Au(t, !) = A

 X

↵2I
u↵(t) H↵(!)

!
=
X

↵2I
A↵u↵(t) H↵(!), u 2 D,

(see [14, Section 2]). We are looking for a solution of (2.1) as an X-valued stochastic
process u(t) 2 X ⌦ (S)�1, t 2 [0, T ] represented in the form

u(t, !) =
X

↵2I
u↵(t) H↵(!), t 2 [0, T ], ! 2 ⌦. (2.2)

The chaos expansion representation of the Wick-square is given by

u⌃2(t, !) =
X

↵2I

⇣X

�↵

u�(t) u↵��(t)
⌘

H↵(!) (2.3)

= u2
0(t) H0(!) +

X

|↵|>0

⇣
2u0(t) u↵(t) +

X

0<�<↵

u�(t) u↵��(t)
⌘

H↵(!),

where t 2 [0, T ], ! 2 ⌦. Let u⌃m
� (t), � 2 I, m 2 N denote the coefficients of the chaos

expansion of the mth Wick power, i.e. u⌃m(t, !) =
P

�2I u⌃m
� (t)H�(!), for m 2 N. Then,

for arbitrary n 2 N, it can be shown that the nth Wick-power is given by

u⌃n(t, !) = u⌃n�1(t, !)⌃u(t, !) =
X

↵2I

⇣X

�↵

u⌃n�1
� (t) u↵��(t)

⌘
H↵(!)

= un
0(t) H0(!) +

X

|↵|>0

 ✓
n

1

◆
un�1
0 (t) u↵(t) +

✓
n

2

◆
un�2
0

X

0<�1<↵

u↵��1
(t) u�1

(t)

+

✓
n

3

◆
un�3
0

X

0<�1<↵

X

0<�2<�1

u↵��1
(t) u�1��2

(t)u�2
(t) + · · · +

+

✓
n

n

◆ X

0<�1<↵

X

0<�2<�1

· · ·
X

0<�n�1<�n�2

u↵��1
(t) u�1��2

(t) . . . u�n�2��n�1
(t)u�n�1

(t)

!
H↵(!)

= un
0(t) H0(!) +

X

|↵|>0

 
n un�1

0 (t) u↵(t) + r↵,n(t)

!
H↵(!),

where t 2 [0, T ], ! 2 ⌦. The functions r↵,n(t), t 2 [0, T ], ↵ 2 I, n > 1 contain only
the coordinate functions u� , � < ↵. Moreover, we recall that the Wick power u⌃n of a
stochastic process u 2 X ⌦ (S)�1,�p is an element of X ⌦ (S)�1,�q, for q > p + n � 1, see
[9].
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We rewrite all processes that figure in (2.1) in their corresponding Wiener-Itô chaos
expansion form and obtain

X

↵2I

d

dt
u↵(t) H↵(!) =

X

↵2I
A↵u↵(t) H↵(!) +

X

↵2I

⇣X

�↵

u⌃n�1
� (t) u↵��(t)

⌘
H↵(!)

+
X

↵2I
f↵(t) H↵(!)

X

↵2I
u↵(0) H↵(!) =

X

↵2I
u0
↵ H↵(!).

Due to the orthogonality of the base H↵ this reduces to the system of infinitely many
deterministic Cauchy problems:

1� for ↵ = 0
d

dt
u0(t) = A0u0(t) + un

0(t) + f0(t), u0(0) = u0
0, and (2.4)

2� for ↵ > 0

d

dt
u↵(t) =

�
A↵ + n un�1

0 (t) Id
�
u↵(t) + r↵,n(t) + f↵(t), u↵(0) = u0

↵. (2.5)

with t 2 (0, T ] and ! 2 ⌦.

Let

B↵,n(t) = A↵ + n un�1
0 (t) Id and g↵,n(t) = r↵,n(t) + f↵(t), t 2 [0, T ]

for all ↵ > 0. Then, the system (2.5) can be written in the form

d

dt
u↵(t) = B↵,n(t) u↵(t) + g↵,n(t), t 2 (0, T ]; u↵(0) = u0

↵. (2.6)

Note that the inhomogeneous part g↵,n in (2.6) does not contain any of the functions
u� , � < ↵ for |↵| = 1, while for |↵| > 1 it involves also u� , � < ↵. Hence, we distinguish
these two cases.

(a) Let |↵| = 1, i.e. ↵ = "k, k 2 N. Then g"k,n = f"k
, k 2 N and thus (2.6) transforms to

d

dt
u"k

(t) = B"k,n(t) u"k
(t) + f"k

(t), t 2 (0, T ]; u"k
(0) = u0

"k
. (2.7)

(b) Let |↵| > 1. Then

d

dt
u↵(t) = B↵,n(t) u↵(t) + g↵,n(t), t 2 (0, T ]; u↵(0) = u0

↵.

Each solution u to (2.1) can be represented in the form (2.2) and hence its coefficients
u0 and u↵ for ↵ > 0 must satisfy (2.4) and (2.6) respectively. Vice versa, if the coefficients
u0 and u↵ for ↵ > 0 solve (2.4) and (2.6) respectively, and if the series in (2.2) represented
by these coefficients exists in X ⌦ (S)�1, then it defines a solution to (2.1).

Definition 2.1. An X�valued generalized stochastic process u(t) =
P

↵2I u↵(t)H↵ 2
X ⌦ (S)�1, t 2 [0, T ] is a coordinatewise classical solution to (2.1) if u0 is a classical
solution to (2.4) and for every ↵ 2 I \ {0}, the coefficient u↵ is a classical solution to
(2.6). The coordinatewise solution u(t) 2 X ⌦ (S)�1, t 2 [0, T ] is an almost classical
solution to (2.1) if u 2 C([0, T ], X) ⌦ (S)�1. An almost classical solution is a classical
solution if u 2 C([0, T ], X) ⌦ (S)�1 \ C1((0, T ], X) ⌦ (S)�1.
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We assume that the following hold:

(A1) The operators A↵, ↵ 2 I, are infinitesimal generators of C0�semigroups {T↵(s)}s�0

with a common domain D↵ = D, ↵ 2 I, dense in X. We assume that there exist
constants m � 1 and w 2 R such that

kT↵(s)k  mews, s � 0 for all ↵ 2 I.

The action of A is given by

A(u) =
X

↵2I
A↵(u↵)H↵,

for u 2 D ✓ D ⌦ (S)�1 of the form (2.2), where

D =
n

u =
X

↵2I
u↵ H↵ 2 D ⌦ (S)�1 : 9p0 � 0,

X

↵2I
kA↵(u↵)k2

X(2N)�p0↵ < 1
o

.

(A2) The initial value u0 =
P

↵2I u0
↵H↵ 2 D, i.e. u0

↵ 2 D for every ↵ 2 I and there exists
p � 0 such that X

↵2I
ku0

↵k2
X(2N)�p↵ < 1,

X

↵2I
kA↵(u0

↵)k2
X(2N)�p↵ < 1.

(A3) The inhomogeneous part f(t, !) =
P

↵2I f↵(t)H↵(!), t 2 [0, T ], ! 2 ⌦ belongs to
C1([0, T ], X) ⌦ (S)�1; hence t 7! f↵(t) 2 C1([0, T ], X), ↵ 2 I and there exists p � 0

such that

X

↵2I
kf↵k2

C1([0,T ],X)(2N)�p↵ =
X

↵2I

⇣
sup

t2[0,T ]

kf↵(t)kX + sup
t2[0,T ]

kf 0
↵(t)kX

⌘2

(2N)�p↵ < 1.

(A4-n) The Cauchy problem

d

dt
u0(t) = A0u0(t) + un

0(t) + f0(t), t 2 (0, T ]; u0(0) = u0
0,

has a classical solution u0 2 C1([0, T ], X).

Remark 2.1. Particularly, if A0 = � is the Laplace operator and f0 ⌘ 0, then (2.4)
belongs to the class of Fujita equations

ut = �u + up, u(0) = u0, (2.8)

studied by Fujita, Chen and Watanabe [6, 7]. The authors proved that for a nonnegative
initial condition u0 2 C(RN ) \ L1(RN ), equation (2.8) has a unique classical solution
on some [0, T1). Moreover, if p > 1 + 2

N then there exist a positive bounded solution.
The Fujita equation (2.8) apart from an interest per se also acts as a scaling limit of
more general superlinear equations whose nonlinearities exhibit a polynomial growth
rate. Originally, it has been developed to describe molecular concentration of a solution
subjected to centrifugation and sedimentation.

Remark 2.2. In general, equations of the form (2.4), i.e. the deterministic equation for
↵ = 0 can be solved by the Fixed Point Theorem [25]. Thus, in order to check if condition
(A4-n) holds, one has to apply fixed point methods or other established methods for
deterministic PDEs. The solution to (2.4) will usually blow-up in finite time. Especially
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the description of blow-up in the Sobolev supercritical regime poses a challenge that has
been tackled in several papers (e.g. [7], [15] for the Fujita equation). We stress that our
equation (2.1) and hence also (2.4) is given on a finite time interval, which is assumed to
provide a solution on the entire interval (we restrict our considerations form the very
start to the interval where no blow-up appears).

Now we focus on solving (2.6) for ↵ > 0.

Lemma 2.3. Let the assumptions (A1)-(A4-n) be fulfilled. Then for every ↵ > 0 the
evolution system (2.6) has a unique classical solution u↵ 2 C1([0, T ], X).

Proof. First, for every ↵ > 0, we consider the family of operators B↵,n(t) = A↵ +

n un�1
0 (t)Id, t 2 [0, T ]. According to assumption (A1), the constant family {A↵(t)}t2[0,T ] =

{A↵}t2[0,T ] is a stable family of infinitesimal generators of a C0�semigroup {T↵(s)}s�0

on X satisfying kT↵(s)k  mews with stability constants m � 1 and w 2 R. Let

Mn = sup
t2[0,T ]

ku0(t)kX . (2.9)

The perturbation n un�1
0 (t)Id : X ! X, t 2 [0, T ] is a family of uniformly bounded linear

operators such that

kn un�1
0 (t)xkX = kn un�1

0 (t)kXkxkX  sup
t2[0,T ]

n ku0(t)kn�1
X kxkX  nMn�1

n kxkX ,

for all x 2 X, t 2 [0, T ], i.e. kn un�1
0 (t)Idk  nMn�1

n , t 2 [0, T ]. Thus, for every ↵ > 0, the
family {A↵ +n un�1

0 (t)Id}t2[0,T ] is a stable family of infinitesimal generators with stability
constants m and w + nMn�1

n m. By assumption (A4-n) the function u0 2 C1([0, T ], X)

so we obtain continuous differentiability of (A↵ + n un�1
0 (t)Id)x, t 2 [0, T ] for every

x 2 D and for every ↵ > 0. Additionally, the domain of the operators n un�1
0 (t)Id is the

entire space X which implies that all of the operators B↵,n(t), t 2 [0, T ] have a common
domain D(B↵,n(t)) = D(A↵) = D not depending on t. Notice here that assumption (A1)
additionally provides the same domain D of the family {B↵,n(t)}t2[0,T ] for all ↵ > 0.

Finally, one can associate the unique evolution system S↵,n(t, s), for 0  s  t  T for
all ↵ > 0 to the system (2.6) such that

kS↵,n(t, s)k  mewn (t�s)  mewn(T�s), 0  s  t  T, ↵ > 0, (2.10)

where wn = w + nMn�1
n m see [20, Thm 4.8., p. 145]. Without loss of generality we may

assume that w > 0 and thus will be wn > 0.
Now one can solve the infinite system of the Cauchy problems (2.6) by induction

on the length of the multiindex ↵. Let |↵| = 1. Since f"k
2 C1([0, T ], X), we obtain the

unique classical solution u"k
2 C1([0, T ], X) to (2.7) given by

u"k
(t) = S"k,n(t, 0) u0

"k
+

Z t

0

S"k,n(t, s) f"k
(s) ds, t 2 [0, T ]. (2.11)

Now let for every � 2 I such that 0 < � < ↵ the unique classical solution of (2.6) satisfy
u� 2 C1([0, T ], X). Then for fixed |↵| > 1 the inhomogeneous part g↵,n 2 C1([0, T ], X)

and the solution to (2.6) is of the form

u↵(t) = S↵,n(t, 0) u0
↵ +

Z t

0

S↵,n(t, s) g↵,n(s) ds, t 2 [0, T ], (2.12)

where u↵ 2 C1([0, T ], X). For more details see [20, Thm 5.3., p. 147].

Now we proceed with four technical lemmas that will be used in the sequel.
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Lemma 2.4. Let ↵ 2 I. Then

|↵|!
↵!

 (2N)2↵.

Proof. This is a direct consequence of [11, Proposition 2.3]. More precisely, in [11]
authors proved that |↵|!  q↵↵! if a sequence q = (qk)k2N satisfies

1 < q1  q2  . . . and
1X

k=1

1

qk
< 1.

Since
1X

k=1

1

(2k)2
=
⇡2

24
< 1, the sequence (2N)2 = ((2k)2)k2N satisfies a required property.

Lemma 2.5. For every c > 0 there exists q > 1 such that the following holds
X

↵2I
c|↵|(2N)�q↵ < 1.

Proof. Let c > 0 and choose s � 0 such that c  2s. Then, for q > s + 1,

X

↵2I
c|↵|(2N)�q↵ 

X

↵2I

1Y

i=1

(2s)↵i

1Y

i=1

(2i)�q↵i 
X

↵2I

1Y

i=1

(2i)(s�q)↵i =
X

↵2I
(2N)(s�q)↵ < 1.

In the next lemma, for the sake of completeness, we give some useful properties of
the well known Catalan numbers, see for example [23].

Lemma 2.6. A sequence {cn}n2N defined by the recurrence relation

c0 = 1, cn =

n�1X

k=0

ck cn�1�k, n � 1 (2.13)

is called the sequence of Catalan numbers. The closed formula for cn is a multiple of the
binomial coefficient, i.e. the solution of the Catalan recurrence (2.13) is

cn =
1

n + 1

✓
2n

n

◆
or cn =

✓
2n

n

◆
�
✓

2n

n + 1

◆
.

The Catalan numbers satisfy the growth estimate

cn  4n, n � 0. (2.14)

Lemma 2.7. [11, p.21] Let {R↵ : ↵ 2 I} be a set of real numbers such that R0 =

0, R"k
, k 2 N are given and

R↵ =
X

0<�<↵

R�R↵�� , |↵| > 1.

Then

R↵ =
1

|↵|

✓
2|↵| � 2

|↵| � 1

◆ |↵|!
↵!

1Y

k=1

R↵k
"k

, |↵| > 1.

Proof. Let ↵ 2 I, |↵| > 1 be given. Then ↵ = (↵1, . . . , ↵d, 0, 0, . . . ) has only finally many
non-zero components, so one can associate to it a d�dimensional vector (↵1, . . . , ↵d) 2
Nd

0. Adopting the proof for the classical Catalan numbers, the authors in [11] consid-
ered the function G(z) =

P
�2Nd

0
M�z� , z 2 Nd

0, where M� =
P

0<�<� M�M��� and
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z� = z�1

1 · · · z�d

d . The function G satisfies G2(z) � G(z) +
Pd

k=1 M"k
zk = 0, which implies

that G(z) =
P1

n=1
1
n

�
2n�2
n�1

� ⇣Pd
k=1 M"k

zk

⌘n

. Finally, applying the multinomial formula
⇣Pd

k=1 M"k
zk

⌘n

=
P

�2Nd
0 , |�|=n

n!
�!

Qd
k=1 (M"k

zk)
�k one obtains

G(z) =
X

�2Nd
0

M�z� =
1X

n=1

X

�2Nd
0 , |�|=n

1

n

✓
2n � 2

n � 1

◆
n!

�!

dY

k=1

M�k
"k

dY

k=1

z�k

k

=
X

�2Nd
0

 
1

|�|

✓
2|�| � 2

|�| � 1

◆ |�|!
�!

dY

k=1

M�k
"k

!
z� .

2.1 Proof of the main theorem

The statement of the main theorem is as follows.

Theorem 2.8. Let the assumptions (A1) � (A4 � n) be fulfilled. Then there exists a
unique almost classical solution u 2 C([0, T ], X) ⌦ (S)�1 to (2.1).

Proof. The proof of Theorem 2.8 will be given by induction with respect to n 2 N in
Theorems 2.9 and 2.10. We will prove in the first one that the statement of the main
theorem holds for n = 2. Since it is technically pretty challenging to write down the
proof of the inductive step for arbitrary n 2 N, in Theorem 2.10 the proof is given for
n = 3 by reducing the problem to the case n = 2. In the same way one can reduce the
problem for arbitrary n 2 N to the case n � 1.

First consider (2.1) for n = 2, i.e.

ut(t, !) = Au(t, !) + u⌃2(t, !) + f(t, !), t 2 [0, T ] (2.15)

u(0, !) = u0(!),

The chaos expansion representation of the Wick-square is given by (2.3). Applying the
Wiener-Itô chaos expansion to the nonlinear stochastic equation (2.15) one obtain

X

↵2I

d

dt
u↵(t) H↵(!) =

X

↵2I
A↵u↵(t) H↵(!) +

X

↵2I

⇣X

�↵

u�(t) u↵��(t)
⌘

H↵(!)

+
X

↵2I
f↵(t) H↵(!)

X

↵2I
u↵(0) H↵(!) =

X

↵2I
u0
↵ H↵(!).

which reduces to the system of infinitely many deterministic Cauchy problems:

1� for ↵ = 0
d

dt
u0(t) = A0u0(t) + u2

0(t) + f0(t), u0(0) = u0
0, and (2.16)

2� for ↵ > 0

d

dt
u↵(t) =

�
A↵+2u0(t) Id

�
u↵(t)+

X

0<�<↵

u�(t) u↵��(t)+f↵(t), u↵(0) = u0
↵. (2.17)

with t 2 (0, T ] and ! 2 ⌦.
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Recall that

B↵,2(t) = A↵ + 2u0(t) Id and g↵,2(t) =
X

0<�<↵

u�(t) u↵��(t) + f↵(t), t 2 [0, T ]

for all ↵ > 0, so the system (2.17) can be written in the form

d

dt
u↵(t) = B↵,2(t) u↵(t) + g↵,2(t), t 2 (0, T ]; u↵(0) = u0

↵. (2.18)

Theorem 2.9. Let the assumptions (A1) � (A4 � 2) be fulfilled. Then there exists a
unique almost classical solution u 2 C([0, T ], X) ⌦ (S)�1 to (2.15).

Proof. According to Lemma 2.3 for every ↵ > 0 the evolution equation (2.18) has an
unique classical solution u↵ 2 C1([0, T ], X). Thus, the generalized stochastic process
u(t, !) =

P
↵2I u↵(t)H↵(!), t 2 [0, T ], ! 2 ⌦ has coefficients that are all classical

solutions to the corresponding deterministic equation (2.18), hence in order to show that
u is an almost classical solution to (2.15) one has to prove that u 2 C([0, T ], X) ⌦ (S)�1.

Let u0 2 X ⌦ (S)�1 be an initial condition satisfying assumption (A2) which states
that there exist p̃ � 0 and K̃ > 0 such that

P
↵2I ku0

↵k2
X(2N)�p̃↵ = K̃. Then there also

exist p � 0 and K 2 (0, 1) such that
P

↵2I ku0
↵k2

X(2N)�2p↵ = K2, or equivalently

(9p � 0) (9K 2 (0, 1)) (8↵ 2 I) ku0
↵kX  K(2N)p↵. (2.19)

The inhomogeneous part f 2 C1([0, T ], X)⌦ (S)�1 satisfies assumption (A3) which states
that there exists p̃ � 0 such that

P
↵2I supt2[0,T ] kf↵(t)k2

X(2N)�p̃↵ < 1. Then there exist
p � 0 and K 2 (0, 1) such that

sup
t2[0,T ]

kf↵(t)kX  K(2N)p↵, ↵ 2 I. (2.20)

The coefficients u↵, ↵ 2 I, ↵ > 0 of the solution u are given by (2.11) and (2.12) for
n = 2. Denote by

L↵ := sup
t2[0,T ]

ku↵(t)kX , ↵ 2 I.

First, for ↵ = 0 using (2.9) one obtain

L0 = sup
t2[0,T ]

ku0(t)kX = M2, (2.21)

since the solution to (2.16) satisfies assumption (A4-2). Let |↵| = 1. Then ↵ = "k, k 2 N
and using (2.11) we have that

ku"k
(t)kX  kS"k,2(t, 0)kku0

"k
kX +

Z t

0

kS"k,2(t, s)kkf"k
(s)kXds, t 2 [0, T ].

From (2.10) we obtain that
Z t

0

kS↵,2(t, s)kds 
Z t

0

mew2(t�s)ds = m
ew2t � 1

w2
 m

w2
ew2T , t 2 [0, T ], ↵ > 0 (2.22)

and now (2.10), (2.19) and (2.20) imply that

L"k
= sup

t2[0,T ]

ku"k
(t)kX  sup

t2[0,T ]

n
kS"k,2(t, 0)kku0

"k
kX + sup

s2[0,t]

kf"k
(s)kX

Z t

0

kS↵,2(t, s)kds
o

(2.23)

 mew2T K(2N)p"k +
m

w2
ew2T K(2N)p"k = m2e

w2T K(2N)p"k , t 2 [0, T ], k 2 N,

EJP 0 (2016), paper 0.
Page 12/25

ejp.ejpecp.org

Section 1.7 227



Stochastic evolution equations with nonlinearities

where m2 = m + m
w2

.

For |↵| > 1 we consider two possibilities for L↵. First, if L↵ 
p

K(2N)p↵ for all
|↵| > 1 then the statement of the theorem follows directly since for q > 2p+1 and, having
in mind (2.21) and (2.23), we obtain
X

↵2I
sup

t2[0,T ]

ku↵(t)k2
X(2N)�q↵ =

X

↵2I
L2
↵(2N)�q↵ = L2

0 +
X

k2N
L2
"k

(2N)�q"k +
X

|↵|>1

L2
↵(2N)�q↵

 M2
2 + (m2e

w2T K)2
X

k2N
(2N)(2p�q)"k + K

X

|↵|>1

(2N)(2p�q)↵ < 1,

i.e. u 2 C([0, T ], X) ⌦ (S)�1,�q.

In what follows, we will assume that L↵ >
p

K(2N)p↵ for some ↵ 2 I, |↵| > 1. Denote
by I⇤ the set of all multi-indices ↵ 2 I, |↵| > 1, for which L↵ >

p
K(2N)p↵. Then from

(2.12) we obtain

u↵(t) = S↵,2(t, 0)u0
↵ +

Z t

0

S↵,2(t, s)
h X

0<�<↵

u↵��(s)u�(s) + f↵(s)
i
ds, t 2 [0, T ].

From this we have

L↵ = sup
t2[0,T ]

ku↵(t)kX

 sup
t2[0,T ]

(
kS↵,2(t, 0)kku0

↵kX +

Z t

0

kS↵,2(t, s)k
���

X

0<�<↵

u↵��(s)u�(s)
���ds

+

Z t

0

kS↵,2(t, s)kkf↵(s)kXds

)

 sup
t2[0,T ]

(
mew2tku0

↵kX + sup
s2[0,t]

X

0<�<↵

ku↵��(s)kXku�(s)kX ·
Z t

0

kS↵,2(t, s)kds

+ sup
s2[0,t]

kf(s)kX

Z t

0

kS↵,2(t, s)kds

)
.

Using (2.22) we obtain

L↵ = sup
t2[0,T ]

ku↵(t)kX

 mew2T ku0
↵kX +

m

w2
ew2T

X

0<�<↵

sup
t2[0,T ]

ku↵��(t)kX sup
t2[0,T ]

ku�(t)kX

+
m

w2
ew2T sup

s2[0,t]

kf(s)kX

 m2e
w2T K(2N)p↵ +

m

w2
ew2T

X

0<�<↵

L↵��L� ,

where again m2 = m + m
w2

. Since m2 � m
w2

, one easily obtains

L↵  m2e
w2T

⇣
K(2N)p↵ +

X

0<�<↵

L↵��L�

⌘
. (2.24)

Let L̃↵, ↵ > 0, ↵ 2 I⇤, be given by

L̃↵ := 2m2e
w2T

⇣ L↵p
K(2N)p↵

+ 1
⌘
, ↵ > 0, ↵ 2 I⇤.
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Thus, from (2.23) we have that for all k 2 N

L̃"k
= 2m2e

w2T
⇣ L"kp

K(2N)p"k

+ 1
⌘
 2m2e

w2T
⇣m2e

w2T K(2N)p"k

p
K(2N)p"k

+ 1
⌘

(2.25)

= 2m2e
w2T (m2e

w2T
p

K + 1).

We proceed with the estimation of the term
P

0<�<↵ L̃�L̃↵�� for given |↵| > 1, ↵ 2 I⇤.

X

0<�<↵

L̃�L̃↵�� =
X

0<�<↵

(2m2e
w2T )2

⇣ L�p
K(2N)p�

+ 1
⌘⇣ L↵��p

K(2N)p(↵��)
+ 1

⌘

� (2m2e
w2T )2

⇣ X

0<�<↵

L�L↵��

K(2N)p↵
+ 1

⌘

=
(2m2e

w2T )2

K(2N)p↵

X

0<�<↵

L�L↵�� + (2m2e
w2T )2.

Using inequality (2.24) we obtain

X

0<�<↵

L̃�L̃↵�� � (2m2e
w2T )2

K(2N)p↵

⇣ L↵

m2ew2T
� K(2N)p↵

⌘
+ (2m2e

w2T )2 =
4m2e

w2T

K(2N)p↵
L↵.

Now since L↵ >
p

K(2N)p↵ for ↵ 2 I⇤ and since K < 1 we obtain

X

0<�<↵

L̃�L̃↵�� � 4m2e
w2T

p
K(2N)p↵

L↵ =
2m2e

w2T

p
K(2N)p↵

L↵ +
2m2e

w2T

p
K(2N)p↵

L↵

� 2m2e
w2T

⇣ L↵p
K(2N)p↵

+ 1
⌘

= L̃↵.

Hence, for all ↵ 2 I⇤, |↵| > 1, we have obtained

X

0<�<↵

L̃�L̃↵�� � L̃↵.

Let R↵, ↵ > 0, be defined as follows:

R"k
= L̃"k

, k 2 N,

R↵ =
X

0<�<↵

R�R↵�� , |↵| > 1.

It is a direct consequence of the definition of the numbers R↵, ↵ > 0, and it can be shown
by induction with respect to the length of the multi-index ↵ > 0 that (see [11, Section 5])

L̃↵  R↵, ↵ > 0. (2.26)

Lemma 2.7 shows that the numbers R↵, ↵ > 0 satisfy

R↵ =
1

|↵|

✓
2|↵| � 2

|↵| � 1

◆ |↵|!
↵!

1Y

i=1

R↵i
"i

, ↵ > 0.

Further on, by (2.25),

1Y

i=1

R↵i
"i

=
1Y

i=1

L̃↵i
"i


1Y

i=1

(2m2e
w2T (m2e

w2T
p

K + 1))↵i .
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Let c = 2m2e
w2T (m2e

w2T
p

K + 1). Then

R↵  c|↵|�1
|↵|!
↵!

c|↵|, ↵ > 0, (2.27)

where cn = 1
n+1

�
2n
n

�
, n � 0 denotes the nth Catalan number (more information on

Catalan numbers is provided in Lemma 2.6). Using Lemma 2.4, (2.26), (2.27) and (2.14)
we obtain that for ↵ 2 I⇤, |↵| > 1 the estimation

L̃↵  R↵  4|↵|�1(2N)2↵c|↵|

holds. Finally, from the definition of L̃↵, ↵ > 0 we obtain

L↵ 
⇣4|↵|�1(2N)2↵c|↵|

2m2ew2T
� 1

⌘p
K(2N)p↵ 

p
K

8m2ew2T
(4c)|↵|(2N)(p+2)↵.

Notice that the upper estimate also holds for |↵| > 1, ↵ 2 I \ I⇤. Indeed, if L↵ <p
K(2N)p↵ then also L↵ <

p
K

8m2ew2T (4c)|↵|(2N)(p+2)↵, so we obtain

L↵ 
p

K

8m2ew2T
(4c)|↵|(2N)(p+2)↵, for all ↵ 2 I, |↵| > 1.

Now we can prove that u(t, !) =
P

↵2I u↵(t)H↵(!) 2 C([0, T ], X) ⌦ (S)�1. Denote by

H =
p

K
8m2ew2T . Then

X

↵2I
sup

t2[0,T ]

ku↵(t)k2
X(2N)�q↵ = sup

t2[0,T ]

ku0(t)k2
X +

X

↵>0

sup
t2[0,T ]

ku↵(t)k2
X(2N)�q↵

= M2
2 +

X

k2N
L2
"k

(2N)�q"k +
X

|↵|>1

L2
↵(2N)�q↵

 M2
2 + (m2e

w2T K)2
X

k2N
(2N)(2p�q)"k + H2

X

|↵|>1

⇣
(4c)|↵|(2N)(p+2)↵

⌘2

(2N)�q↵

= M2
2 + (m2e

w2T K)2
X

k2N
(2N)(2p�q)"k + H2

X

|↵|>1

(16c2)|↵|(2N)(2p+4�q)↵.

Taking that s > 0 is such that 2s � 16c2, according to Lemma 2.5, we obtain
X

↵2I
sup

t2[0,T ]

ku↵(t)k2
X(2N)�q↵  M2

2 + (m2e
w2T K)2

X

k2N
(2N)(2p�q)"k

+ H2
X

|↵|>1

(2N)(2p+4+s�q)↵ < 1

for q > 2p + s + 5.

In the sequel we prove the existence of the almost classical solution of the Cauchy
problem

ut(t, !) = Au(t, !) + u⌃3(t, !) + f(t, !), t 2 [0, T ] (2.28)

u(0, !) = u0(!),

Note that

u⌃3(t, !) = u⌃2(t, !)⌃u(t, !) =
X

↵2I

X

�↵

X

��

u↵��(t) u���(t) u�(t) H↵(!)

= u3
0(t) H0(!)

+
X

|↵|>0

⇣
3u2

0u↵(t) + 3u0

X

0<�<↵

u↵��(t)u�(t) +
X

0<�<↵

X

0<�<�

u↵��(t)u���(t)u�(t)
⌘
H↵(!),

(2.29)
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for t 2 [0, T ], ! 2 ⌦. Applying the Wiener-Itô chaos expansion method to the nonlinear
stochastic equation (2.28) reduces to the system of infinitely many deterministic Cauchy
problems:

1� for ↵ = 0
d

dt
u0(t) = A0u0(t) + u3

0(t) + f0(t), u0(0) = u0
0, and

2� for ↵ > 0

d

dt
u↵(t) =

�
A↵ + 3u2

0(t)Id
�
u↵(t) + 3u0

X

0<�<↵

u↵��(t)u�(t)+

+
X

0<�<↵

X

0<�<�

u↵��(t)u���(t)u�(t) + f↵(t),

u↵(0) = u0
↵.

(2.30)

with t 2 (0, T ] and ! 2 ⌦.

Let

B↵,3(t) = A↵ + 3u2
0(t) Id and

g↵,3(t) = 3u0

X

0<�<↵

u↵��(t)u�(t) +
X

0<�<↵

X

0<�<�

u↵��(t)u���(t)u�(t) + f↵(t), t 2 [0, T ]

(2.31)

for all ↵ > 0, then, the system (2.30) can be written in the form

d

dt
u↵(t) = B↵,3(t) u↵(t) + g↵,3(t), t 2 (0, T ]; u↵(0) = u0

↵. (2.32)

Theorem 2.10. Let the assumptions (A1) � (A4 � 3) be fulfilled. Then, there exists a
unique almost classical solution u 2 C([0, T ], X) ⌦ (S)�1 to (2.28).

Proof. According to Lemma 2.3 for every ↵ > 0 the evolution equation (2.32) has
an unique classical solution u↵ 2 C1([0, T ], X) given in the form (2.12). Thus, the
generalized stochastic process u(t, !), represented in the chaos expansion form (2.2), has
coefficients that are all classical solutions to the corresponding deterministic equation
(2.32). Hence, in order to show that u is an almost classical solution to (2.28), one has to
prove that u 2 C([0, T ], X) ⌦ (S)�1.

We assume that the initial condition u0 2 X ⌦ (S)�1 satisfies assumption (A2),
i.e. the estimate (2.19) holds true. The inhomogeneous part f 2 C1([0, T ], X) ⌦ (S)�1

satisfies assumption (A3), i.e. the estimate (2.20) is true for some p � 0. Moreover, the
coefficients u↵, ↵ 2 I, ↵ > 0 of the solution u are given by (2.11) and (2.12) for n = 3.

Now, for all ↵ 2 I we are going to estimate

L↵ = sup
t2[0,T ]

ku↵(t)kX .

It is clear that for ↵ = 0 , by (A4 � 3) we have L0 = supt2[0,T ] ku0(t)k = M3.
For, |↵| = 1, i.e. for ↵ = "k, k 2 N by (2.11) we have that

ku"k
(t)kX  kS"k,3(t, 0)kku0

"k
kX +

Z t

0

kS"k,3(t, s)kkf"k
(s)kXds, t 2 [0, T ].

From (2.10) we obtain that
Z t

0

kS↵,3(t, s)kds 
Z t

0

mew3(t�s)ds  m

w3
ew3T , t 2 [0, T ], ↵ > 0. (2.33)
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By (2.19), (2.20), (2.10) and (2.33) we obtain

L"k
= sup

t2[0,T ]

ku"k
(t)kX  sup

t2[0,T ]

n
kS"k,3(t, 0)kku0

"k
kX + sup

s2[0,t]

kf"k
(s)kX

Z t

0

kS↵,3(t, s)kds
o

 mew3T K(2N)p"k +
m

w3
ew3T K(2N)p"k ,

which leads to the estimate

L"k
 m3e

w3T K(2N)p"k , k 2 N, (2.34)

where m3 = m + m
w3

.

For |↵| = 2 we have two different forms of the multiindex. First, for ↵ = 2"k, k 2 N
from (2.31) we obtain the form of the inhomogeneous part g2"k,3(t) = 3u0(t) u2

"k
(t) +

f2"k
(t), where

sup
s2[0,t]

kg2"k,3(s)kX  3M3L
2
"k

+ sup
s2[0,t]

kf2"k
(s)kX

 3M3m
2
3e

2w3T K2(2N)2p"k + K(2N)2p"k

 (3M3m
2
3e

2w3T K2 + K) (2N)2p"k .

Then, together with (2.12) we obtain

L2"k
= sup

t2[0,T ]

ku2"k
(t)kX

 sup
t2[0,T ]

n
kS2"k,3(t, 0)kku0

2"k
kX + sup

s2[0,t]

kg2"k,3(s)kX

Z t

0

kS2"k,3(t, s)kds
o

 mew3T K(2N)2p"k +
m

w3
ew3T (3M3m

2
3e

2w3T K2 + K) (2N)2p"k .

Thus,
L2"k

 a1 ew3T K (2N)2p"k , k 2 N, (2.35)

where a1 = m + m
w3

(3M3m
2
3e

2w3T K + 1).
In the second case, for ↵ = "k + "j , k 6= j, k, j 2 N from (2.31) we obtain the

form g"k+"j ,3(t) = 6u0(t) u"k
(t) u"j (t) + f"k+"j (t) of the inhomogeneous part of (2.12). By

applying (2.34) and (2.20) it can be estimated as

sup
s2[0,t]

kg"k+"j ,3(s)kX  6M3L"k
L"j

+ sup
s2[0,t]

kf"k+"j
(s)kX

 6M3m
2
3e

2w3T K2(2N)p"k(2N)p"j + K(2N)p"k+p"j

 (6M3m
2
3e

2w3T K2 + K) (2N)p("k+"j).

Then, (2.12) combined with the previous estimate lead to

L"k+"j
= sup

t2[0,T ]

ku"k+"j
(t)kX

 sup
t2[0,T ]

n
kS"k+"j ,3(t, 0)kku0

"k+"j
kX + sup

s2[0,t]

kg"k+"j ,3(s)kX

Z t

0

kS"k+"j ,3(t, s)kds
o

 mew3T K(2N)p("k+"j) +
m

w3
ew3T (6M3m

2
3e

2w3T K2 + K) (2N)p("k+"j).

Then, we obtained

L"k+"j
 a2 ew3T K (2N)p("k+"j), k, j 2 N, k 6= j, (2.36)
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where a2 = m + m
w3

(6M3m
2
3e

2w3T K + 1). Finaly, from (2.35) and (2.36) we obtain the
estimate for all |↵| = 2

L↵  a2 ew3T K (2N)p↵.

For |↵| > 2 we deal with general form of the inhomogeneous part of (2.32)

g↵,3(t) = 3u0

X

0<�<↵

u↵��(t)u�(t) +
X

0<�<↵

X

0<�<�

u↵��(t) u���(t) u�(t) + f↵(t), t 2 [0, T ].

The solution to (2.32) is of the form

u↵(t) = S↵,3(t, 0)u0
↵

+

Z t

0

S↵,3(t, s)
⇣
3u0

X

0<�<↵

u↵��(t)u�(t)+
X

0<�<↵

X

0<�<�

u↵��(t)u���(t)u�(t) + f↵(t)
⌘
ds.

We underline that in the previous inductive steps, we obtained the estimates of L↵�✓ =

supt2[0,T ] ku↵�✓(t)k for all 0 < ✓ < ↵. Then,

L↵ = sup
t2[0,T ]

ku↵(t)k  me!3T K(2N)p↵

+
m

w3

⇣
3M3

X

0<�<↵

L↵��L� +
X

0<�<↵

X

0<�<�

L↵��L���L� + K(2N)p↵
⌘

 m3e
!3T

⇣
K(2N)p↵ + 3M3

X

0<�<↵

L↵��L� +
X

0<�<↵

L↵��

X

0<�<�

L��� L�

⌘
,

(2.37)

where m3 = m + m
w3

.
In order to estimate L↵ for |↵| > 2 we consider two possibilities: (a) L↵  P

0<�<↵

L↵�� L� ,

|↵| > 2 and (b) L↵ >
P

0<�<↵

L↵�� L� , |↵| > 2.

(a) Define R↵ for |↵| � 1 in the following inductive way

R"k
= L"k

R↵ =
X

0<�<↵

R↵�� R� , |↵| � 2,

then, using Lemma 2.7, we obtain the estimate

L↵  R↵ =
1

|↵|

✓
2|↵| � 2

|↵| � 1

◆ |↵|!
↵!

� 1Y

i=1

R↵i
"i

�
.

Moreover, by (2.34) we get

1Y

i=1

R↵i
"i

=
1Y

i=1

L↵i
"i


1Y

i=1

⇣
m3e

!3T K (2N)p"k

⌘↵i

=
�
m3e

!3T K
�|↵|

1Y

i=1

(2i)p↵i

=
�
m3e

!3T K
�|↵|

(2N)p↵ = c
|↵|
3 (2N)p↵,

where c3 = m3e
!3T K. We also used

Q1
i=1 (2i)p↵i = (2N)p↵ and (2N)"i = 2i. We

recall the form of the Catalan numbers c|↵| = 1
|↵|
�
2|↵|�2
|↵|�1

�
, |↵| � 2. Then, by Lemma

2.4 we obtain

L↵  1

|↵|

✓
2|↵| � 2

|↵| � 1

◆ |↵|!
↵!

c
|↵|
3 (2N)p↵  4|↵|�1 (2N)2↵ c

|↵|
3 (2N)p↵

 (2N)p3↵(2N)(2+p)↵,
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where we used that 4|↵|�1 c
|↵|
3  (2N)p3↵ for some positive p3. Thus, we conclude

L↵  (2N)(p3+p+2)↵.

Finally, for q > 2p3 + 2p + 5 the statement of the theorem follows from
X

↵2I
sup

t2[0,T ]

ku↵(t)k2
X(2N)�q↵ =

X

↵2I
L2
↵(2N)�q↵

= L2
0 +

X

k2N
L2
"k

(2N)�q"k +
X

|↵|>1

L2
↵(2N)�q↵

 M2
3 + (m3e

w3T K)2
X

k2N
(2N)(2p�q)"k

+
X

|↵|>1

(2N)(2(p3+p+2)�q)↵ < 1, (2.38)

i.e. u 2 C([0, T ], X) ⌦ (S)�1,�q. Note that in (2.38) the term
P

k2N(2N)(2p�q)"k is
finite since q > 2p + 1 when q > 2p3 + 2p + 5.

(b) We assume, in the second case, that there exists ↵ 2 I, |↵| � 2 such that

L↵ >
X

0<�<↵

L↵�� L� . (2.39)

Consider the most complicated case. Then, we would have that the inequality
(2.39) is fulfilled for all ↵ 2 I. Then, (2.37) reduces to

L↵  m3e
w3T

0
@K(2N)p↵ + (3M3 + 1)

X

0<�<↵

L↵�� L�

1
A ,

where we used inequality L� >
P

0<�<�

L��� L� for � < ↵. Further, we have

L↵  (3M3 + 1) m3e
w3T

⇣ K

3M3 + 1
(2N)p↵ +

X

0<�<↵

L↵�� L�

⌘
, |↵| � 2.

At this point, we can repeat the proof of Theorem 2.9. Particularly, using the
notation m0

3 = (3M3 + 1) m3 and K 0 = K
3M3+1 , the following inequality

L↵  m0
3e

w3T
⇣
K 0(2N)p↵ +

X

0<�<↵

L↵��L�

⌘

corresponds to the inequality (2.24), since K 0 < 1, and the proof continues in the
same manner as the one from Theorem 2.9, i.e. the proof of solvability of the
equation (2.15) with the Wick-square nonlinearity.

Remark 2.11. Note here that if the almost classical solution u to (2.1) satisfies u 2 D =

DomA then u is a classical solution to (2.1).

2.2 The linear nonautonomous case

Our analysis provides a downright observation for the linear nonautonomous equation

ut(t, !) = A(t) u(t, !) + f(t, !), t 2 (0, T ] (2.40)

u(0, !) = u0(!), ! 2 ⌦.

We assume the following:
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(B1) The operator A(t) : D0 ⇢ X ⌦ (S)�1 ! X ⌦ (S)�1, t 2 [0, T ] is a coordinatewise
operator depending on t that corresponds to a family of deterministic operators
A↵(t) : D(A↵) ⇢ X ! X, ↵ 2 I. For every ↵ 2 I the operator family {A↵(t)}t2[0,T ]

is a stable family of infinitesimal generators of C0�semigroups on X with stability
constants m > 1 and w 2 R not depending on ↵, therefore the corresponding
evolution systems S↵(t, s) satisfy

kS↵(t, s)k  mew(t�s)  mewT , 0  s < t  T, ↵ 2 I.

The domain D(A↵(t)) = D is independent of t 2 [0, T ] and ↵ 2 I. For every x 2 D

the function A↵(t)x, t 2 [0, T ] is continuously differentiable in X for each ↵ 2 I.

The action of A(t), t 2 [0, T ] is given by

A(t)(u) =
X

↵2I
A↵(t)(u↵)H↵,

for u 2 D0 ✓ D ⌦ (S)�1 of the form (2.2), where

D0 =
n

u =
X

↵2I
u↵H↵ 2 D⌦(S)�1 : 9p0 � 0,

X

↵2I
sup

t2[0,T ]

kA↵(t)(u↵)k2
X(2N)�p0↵ < 1

o
.

(B2) The initial value u0 =
P

↵2I u0
↵H↵ 2 D0, i.e. u0

↵ 2 D for every ↵ 2 I and there exists
p � 0 such that X

↵2I
ku0

↵k2
X(2N)�p↵ < 1,

X

↵2I
sup

t2[0,T ]

kA↵(t)u0
↵k2

X(2N)�p↵ < 1.

For the inhomogeneous part f(t, !), ! 2 ⌦, t 2 [0, T ] we assume (A3).

Theorem 2.12. Let the assumptions (B1), (B2) and (A3) be fulfilled. Then there exists
a unique almost classical solution u 2 C([0, T ], X) ⌦ (S)�1 to (2.40).

Proof. Applying the Wiener-Itô chaos expansion method to (2.40) we obtain the system
of infinitely many deterministic Cauchy problems

d

dt
u↵(t) = A↵(t)u↵(t) + f↵(t), t 2 (0, T ] (2.41)

u↵(0) = u0
↵, ↵ 2 I.

By virtue of (B1), (B2) and (A3) the Cauchy problem (2.41) fulfills all the assumptions of
[20, Theorem 5.3, p. 147] so there exists a unique classical solution u↵ 2 C1([0, T ], X)

given by

u↵(t) = S↵(t, 0)u0
↵ +

Z t

0

S↵(t, s)f↵(s)ds, t 2 [0, T ]

for all ↵ 2 I.

It remains to show that u =
P

↵2I u↵H↵ 2 C([0, T ], X) ⌦ (S)�1, i.e. that there exists
q > 0 such that

P
↵2I supt2[0,T ] ku↵(t)k2

X(2N)�q↵ < 1.

Without loss of generality, we may assume that the constants K, p > 0 are such that
for all ↵ 2 I

ku0
↵kX  K(2N)p↵

sup
t2[0,T ]

kf↵(t)kX  K(2N)p↵.
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Now, for all ↵ 2 I, we obtain

sup
t2[0,T ]

ku↵(t)kX  sup
t2[0,T ]

⇢
kS↵(t, 0)kku0

↵kX +

Z t

0

kS↵(t, s)kkf↵(s)kXds

�

 sup
t2[0,T ]

(
kS↵(t, 0)kku0

↵kX + sup
s2[0,t]

kS↵(t, s)kkf↵(s)kX

Z t

0

ds

)

 sup
t2[0,T ]

�
mewtK(2N)p↵ + mewtK(2N)p↵t

 

 (1 + T )mewT K(2N)p↵.

Finally, for q > 2p + 1 we obtain

X

↵2I
sup

t2[0,T ]

ku↵(t)k2
X(2N)�q↵ 

�
(1 + T )mewT K

�2 X

↵2I
(2N)(2p�q)↵ < 1.

3 Extensions and applications

Our results can be extended to a far more general case of stochastic evolution
equation of the form

ut(t, !) = Au(t, !) + p⌃n(u(t, !)) + f(t, !), t 2 (0, T ]

u(0, !) = u0(!), ! 2 ⌦,
(3.1)

with a Wick-polynomial type of nonlinearity

p⌃n(u) =
nX

k=0

ak u⌃k = a0 + a1 u + a2 u⌃2 + a3 u⌃3 + . . . an u⌃n, (3.2)

where an 6= 0 and ak, 0  k  n are either constants or deterministic functions. Equation
(3.1) generalizes equation (2.1) and it can be solved by the very same method presented
in the paper, provided that one stipulates that the corresponding deterministic version
of (3.1) has a solution and modifies assumption (A4 � n) correspondingly. Hence, we
replace (A4 � n) with the following assumption:

(A4-pol-n) The Cauchy problem

d

dt
u0(t) = A0u0(t) + pn(u0(t)) + f0(t), t 2 (0, T ]; u0(0) = u0

0,

has a classical solution u0 2 C1([0, T ], X), where

pn(u) =

nX

k=0

ak uk = a0 + a1 u + a2 u2 + a3 u3 + . . . an un, (3.3)

is a classical polynomial of degree n corresponding to the Wick-polynomial (3.2).

We extend Theorem 2.8, and for the sake of technical simplicity, present only a
procedure for solving (3.1) for n = 3, but note that the general case may be done mutatis
mutandis.

First we note that from the form of the process (2.2) and from the form of its Wick-
powers (2.3), as well as from (2.29) we obtain the expansion of the Wick-polynomial
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nonlinearity

p⌃3 (u) = a0 + a1 u + a2 u⌃2 + a3 u⌃3

= a0H0 + a1

✓
u0H0 +

X

|↵|>0

u↵H↵

◆
+ a2

✓
u2
0H0 +

X

|↵|>0

⇣
2u0u↵ +

X

0<�<↵

u�u↵��

⌘
H↵

◆
+

+ a3

✓
u3
0H0 +

X

|↵|>0

⇣
3u2

0u↵ + 3u0

X

0<�<↵

u↵��u� +
X

0<�<↵

X

0<�<�

u↵��u���u�(t)
⌘

H↵

◆
.

(3.4)

When summing up the corresponding coefficients, the expression (3.4) transforms to

p⌃3 (u) = (a0 + a1u0 + a2 u2
0 + a3 u3

0) H0

+
X

↵>0

⇣
(3a3u

2
0 + 2a2u0 + a1) u↵ + (3a3u0 + a2)

X

0<�<↵

u↵��u�

+ a3

X

0<�<↵

X

0<�<�

u↵��u���u�

⌘
H↵

= p3(u0) +
X

↵>0

⇣
p03(u0)u↵ +

1

2!
· p003(u0)

X

0<�<↵

u↵��u�

+
1

3!
· p0003 (u0)

X

0<�<↵

X

0<�<�

u↵��u���u�

⌘
H↵,

where p03, p003 and p0003 denote the first, the second and the third derivative of the polynomial
(3.3), respectively.
Thus, by applying the Wiener-Itô chaos expansion method to the nonlinear stochastic
problem (3.1) we obtain the system of infinitely many deterministic Cauchy problems:

1� for ↵ = 0
d

dt
u0(t) = A0u0(t) + p3(u0(t)) + f0(t), u0(0) = u0

0, (3.5)

and

2� for ↵ > 0

d

dt
u↵(t) =

�
A↵ + p03(u0(t))Id

�
u↵(t) +

1

2
p003(u0(t))

X

0<�<↵

u↵��(t)u�(t)+

+
1

6
p0003 (u0(t))

X

0<�<↵

X

0<�<�

u↵��(t)u���(t)u�(t) + f↵(t),

u↵(0) = u0
↵.

(3.6)

with t 2 (0, T ] and ! 2 ⌦.

We denote by

B↵,p3(t) = A↵ + p03(u0(t))Id and

g↵,p3(t) =
1

2
· p003(u0)

X

0<�<↵

u↵��(t)u�(t)

+
1

6
· p0003 (u0)

X

0<�<↵

X

0<�<�

u↵��(t)u���(t)u�(t) + f↵(t),
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for t 2 (0, T ] and all ↵ > 0. Hence, the problems (3.6) for ↵ > 0 can be written in the
form

d

dt
u↵(t) = B↵,p3(t) u↵(t) + g↵,p3(t), t 2 (0, T ]

u↵(0) = u0
↵.

(3.7)

Theorem 3.1. Let the assumptions (A1) � (A3) and (A4 � pol � 3) be fulfilled. Then,
there exists a unique almost classical solution u 2 C([0, T ], X) ⌦ (S)�1 to (3.1).

Proof. Under the assumptions (A1) � (A2) and the assumption (A4 � pol � 3) that (3.5)
has a classical solution in C1([0, T ], X), it can be proven (similarly as it was done in
Lemma 2.3) that for every ↵ > 0 the evolution system (3.7) has a unique classical solution
u↵ 2 C1([0, T ], X). Then, in order to show that u is an almost classical solution to (3.1),
one has to prove that u 2 C([0, T ], X) ⌦ (S)�1. Indeed, this can be done in an analogue
way as in the proof of Theorem 2.10, with L0 = supt2[0,T ] ku0(t)k and

M3 = max{ sup
t2[0,T ]

kp3(u0(t))k, sup
t2[0,T ]

kp03(u0(t))k, sup
t2[0,T ]

kp003(u0(t))k, sup
t2[0,T ]

kp0003 (u0(t))k}.

3.1 Examples

We present two classes of stochasic reaction-diffusion equations that belong to the
class of problems (3.1).

3.1.1 Stochastic generalized FitzHugh-Nagumo equation

The nonlinear stochastic evolution equation

ut(t, !) = Au(t, !) + u⌃2(t, !) � u⌃3(t, !) + f(t, !), t 2 (0, T ]

u(0, !) = u0(!), ! 2 ⌦,
(3.8)

which belongs to the class of generalized FitzHugh-Nagumo equations is an equation of
type (3.1). Particularly, for A = 4, the corresponding reaction-diffusion deterministic
equation

ut = 4u(t) + F (u(t)), u(0) = u0, (3.9)

with a nonlinearity of the form F (u) = �u(a � u)(b � u) is the celebrated FitzHugh-
Nagumo equation, which arises in various models of neurophysiology. The equation (3.9)
has been introduced by FitzHugh and Nagumo [5, 17] in order to model the conduction
of electrical impulses in a nerve axon. A stochastic version of the FitzHugh-Nagumo
equation (3.9) was studied in [1], while a control problem for the FitzHugh-Nagumo
equation perturbed by coloured Gaussian noise was solved in [3]. Clearly, the equation
(3.8) is generalizing (3.9) if we choose a = 0 and b = 1 in the form of F (u). For the choice
of a = b = 0 the equation (3.8) reduces to the Fujita type equation (2.1).

Here, by appying Theorem 3.1, we obtain a unique almost classical solution of the
equation (3.8).

3.1.2 Stochastic generalized Fisher-KPP equation

The deterministic nonlinear equation of the form (3.9) with F (u) = au(1 � u) is called
the Fisher equation (also known as the Kolmogorov-Petrovsky-Piskunov equation). Such
equations occur in phase transition problems arising in biology, ecology, plasma physics
[4, 13] etc. Particularly, such an equation provides a deterministic model for the density
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of a population living in an environment with a limited carrying capacity. It also describes
the wave progression of an epidemic outbreak or the spread of an advantageous gene
within a population. Other applications in medicine involve the modeling of cellular
reactions to the introduction of toxins, voltage propagation through a nerve axon, and
the process of epidermal wound healing [2]. In other research areas it has been also
used to study flame propagation of fire outbreaks, and neutron flux in nuclear reactors.

Stochastic models that include random effects due to some external (enviromental)
noise were studied in the framework of white noise analysis [10], where the authors
proved the existence of the traveling wave solution. In the same setting, the stochastic
KPP equation, i.e. heat equations with semilinear potential and perturbation by a
multiplicative noise were considered in [19]. Under suitable assumptions, by applying
the Itô calculus, existence of a unique strong traveling wave solution was proven, and an
implicit Feyman-Kac-like formula for the solution was presented. Here we consider a
generalized Wick-version of the stochastic Fisher-KPP equation

ut(t, !) = Au(t, !) + u(t, !) � u⌃2(t, !) + f(t, !), t 2 (0, T ]

u(0, !) = u0(!), ! 2 ⌦,

which can be solved by applying Theorem 3.1.

3.2 Conclusion

In this paper we have presented a methodology for solving stochastic evolution
equations involving nonlinearities of Wick-polynomial type. However, the applications
and extensions of the theory do not stop here. In place of the nonlinearity u⌃2, one might
consider u⌃ux and with appropriate modifications solve the stochastic Burgers-type
equation ut = uxx + u⌃ux + f or the stochastic KdV equation ut = uxxx + u⌃ux + f ,
coalesced into the form ut = Au + u⌃ux + f . One can also replace the nonlinearity u⌃n

by u⌃|u|n�1, where the modulus of a complex-valued stochastic process is understood as
|u| =

P
↵2I |u↵|H↵, and find explicit solutions to the stochastic nonlinear Schrödinger

equation (i~)ut = �u + u⌃|u|n�1 + f .
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Chapter 2

Applications

In this chapter we present applications of the chaos expansion method to the
study of optimal control problems. In particular, we consider the stochas-
tic linear quadratic optimal control (SLQR) problem in infinite dimensions.
This problem arises naturally in mathematical finance, e.g. in high frequ-
ency trading models in option pricing. Solving stochastic optimal control
problems is strongly related to the problem of solving backward stochastic
differential equations, e.g. if an SLQR problem with random coefficients is
considered. The SLQR problem addresses a minimization of a quadratic
cost functional subject to a stochastic linear differential state equation. In
the finite time horizon case the optimal control is given in a feedback form
in terms of the solution of an operator differential Riccati equation, while in
the infinite horizon case the optimal control is characterized by the solution
of an operator algebraic Riccati equation. In first part of this chapter we
present a novel numerical framework for solving SLQR problems using the
chaos expansion approach [66, 65]. By applying the method of chaos expan-
sions to the state equation, we obtained a system of deterministic partial
differential equations in terms of the coefficients of the state and the control
variables. We set up a control problem for each equation, which resulted
in a set of deterministic linear quadratic regulator problems. We proved
the optimality of the solution expressed in terms of the expansion of these
coefficients and compared it to the direct approach. Moreover, we apply this
approach to SLQR problems with random coefficients, i.e. the state, con-
trol and observation operators are random. We also considered a fractional
version of the SLQR problem. By using the fractional isometries defined
in Chapter 1, the fractional SLQR problems are transferred to the classical
SLQR problems. These results are related to Section 2.1 [66], Section 2.2
[65] and Section 2.3 [68].

The SLQR problem in infinite dimensions was solved by Ichikawa [46]
using a dynamic programming approach. Da Prato [25] and Flandoli [30]
later considered the SLQR problem for systems driven by analytic semi-
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groups with Dirichlet or Neumann boundary controls and with disturbance
in the state only. The infinite dimensional SLQR problem with random
coefficients has been investigated in [36, 37] along with the associated back-
ward stochastic Riccati equation. We proposed a theoretical framework for
the SLQR problem for singular estimates control systems in the presence of
noise in the control and in the case of finite time penalization in the per-
formance index [39]. Considering the general setting described in [39, 63],
we developed an approximation scheme for solving the control problem and
the associated Riccati equation [67]. These results are related to Section 2.4
[39] and Section 2.5 [67].

In addition, we combined the chaos expansion method with splitting
methods for solving particular classes of stochastic evolution equations,
Section 2.6 [52]. Finally, we present a regularization scheme based on chaos
expansions for operator differential algebraic equations with noise distur-
bances, Section 2.7 [3].

The SLQR problem: a chaos expansion approach

We consider the infinite dimensional stochastic linear quadratic optimal con-
trol problem on finite time horizon. The SLQR problem consists of the linear
state equation

dy(t) = (A y(t) + Bu(t)) dt+ C y(t) dBt, y(0) = y0, t ∈ [0, T ], (2.1)

with respect toH-valued Brownian motion Bt in the classical Gaussian white
noise space, and the quadratic cost functional

J(u) = E
[∫ T

0

(
‖R y‖2H + ‖u‖2U

)
dt + ‖G yT ‖2H

]
. (2.2)

The operators A and C are operators on H and B acts from the control
space U to the state space H and y0 is a random variable. Spaces H and
U are Hilbert spaces. The operators B and C are considered to be linear
and bounded, while A could be unbounded. The objective is to minimize
the quadratic functional (2.2) over all admissible controls u and subject
to the condition that y satisfies the state equation (2.1). The operators
R and G are bounded observation operators taking values in a Hilbert
space H, E denotes the expectation with respect to the Gaussian measure
µ and yT = y(T ). For the class of admissible controls we consider square
integrable U-valued adapted controls. The stochastic integration is taken
with respect to H-valued Brownian motion and the integral is considered as
a Bochner-Pettis type integral [26, 99]. For C = 0 the equation (2.1) arises
in the deterministic regulator problem and has been well understood in the
literature [56, 57, 78]. A control process u∗ is called optimal if it minimizes
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the cost functional over all admissible control processes, i.e.,

min
u

J(u) = J (u∗).

The corresponding optimal trajectory is denoted by y∗. Thus, the pair
(y∗, u∗) is the optimal solution of the considered optimal control problem
and is called the optimal pair.

Due to the fundamental theorem of stochastic calculus, for admissible
square integrable processes, we consider an equivalent form of the state
equation (2.1), its Wick version

ẏ(t) = Ay(t) + Bu(t) + Cy(t)♦Wt, y(0) = y0, t ∈ [0, T ]. (2.3)

We solved the optimal control problem (2.1)-(2.2) by combining the chaos
expansion method with the deterministic optimal control theory. The fol-
lowing theorem gives the conditions for the existence of the optimal control
in the feedback form using the associated Riccati equation. For more details
on existence of mild solutions of (2.1) we refer the reader to [26] and for the
optimal control and Riccati feedback synthesis we refer to [46].

Theorem 57 ([26, 46]) Let the following assumptions hold:

(a1) The linear operator A is an infinitesimal generator of a C0-semigroup
(eAt)t≥0 on the space H.

(a2) The linear control operator B is bounded U → H.

(a3) The operators R, G, C are bounded linear operators.

Then, the optimal control u∗ of the linear quadratic problem (2.1)-(2.2)
satisfies the feedback characterization in terms of the optimal state y∗

u∗(t) = −B?P(t) y∗(t),

where P(t) is a positive self-adjoint operator solving the Riccati equation

Ṗ(t) + P(t)A + A?P(t) + C?P(t)C + R?R−P(t)BB?P(t) = 0,
P(T ) = G?G.

(2.4)

Here we also invoke the solution of the inhomogeneous deterministic
control problem of minimizing the performance index

J(u) =

∫ T

0
(‖Rx‖2H + ‖u‖2U ) dt+ ‖Gx(T )‖2H (2.5)

subject to the inhomogeneous differential equation

x′(t) = Ax(t) +Bu(t) + f(t), x(0) = x0. (2.6)
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Besides the assumptions (a1) and (a2), it is enough to assume that
f ∈ L2((0, T ),H), to obtain the optimal solution for the state and control
(x∗, u∗). The feedback form of the optimal control for the inhomogeneous
problem (2.5)-(2.6) is given by

u∗(t) = −B?Pd(t)x
∗(t)−B?k(t), (2.7)

where Pd(t) solves the Riccati equation

〈(Ṗd +PdA+A?Pd +R?R−PdBB?Pd) v, w 〉 = 0, Pd(T )v = G?Gv (2.8)

for all v, w in D(A), while k(t) is a solution of the auxiliary differential
equation

k′(t) + (A? − Pd(t)BB?)k(t) + Pd(t)f(t) = 0

with the boundary conditions Pd(T ) = G?G and k(T ) = 0. For the homo-
geneous problem we refer to [56]. We also refer to [13, 22, 103] for better
insight into optimal control theory.

Definition 58 Let g(t) be a FT -predictable Bochner integrable H-valued
function.

(1) An H-valued adapted process y(t) is a strong solution of the state equa-
tion (2.1) over [0, T ] if

(i) y(t) takes values in D(A) ∩D(C) for almost all t and ω,

(ii) P (
∫ T
0 ‖y(s)‖H + ‖Ay(s)‖H ds <∞) = 1,

(iii) P (
∫ T
0 ‖Cy(s)‖2H ds <∞) = 1, and

(iv) for arbitrary t ∈ [0, T ] and P -almost surely it satisfies the integral
equation

y(t) = y0 +

∫ t

0
Ay(s) ds +

∫ t

0
g(s)ds+

∫ t

0
Cy(s) dBs.

(2) An H-valued adapted process y(t) is a mild solution of the state equa-
tion (2.1) over [0, T ] if

(i) the process y(t) takes values in D(C),

(ii) P (
∫ T
0 ‖y(s)‖Hds <∞) = 1,

(iii) P (
∫ T
0 ‖Cy(s)‖2H ds <∞) = 1 and

(iv) for arbitrary t ∈ [0, T ] and P -almost surely it satisfies the integral
equation

y(t) = eAt y0 +

∫ t

0
eA(t−s)g(s) ds +

∫ t

0
eA(t−s) Cy(s) dBs.
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Note that, under the assumptions of Theorem 57, and given a control
process u ∈ L2([0, T ],U)⊗L2(µ), i.e., g(t) = Bu(t), and deterministic initial
data, there exits a unique mild solution y ∈ L2([0, T ],H) ⊗ L2(µ) of the
controlled state equation (2.1), see [26].

The approach developed in [66] combines the method of chaos expansions
with the deterministic optimal control theory. We recall that the method
of chaos expansions is based on the Wiener-Itô chaos expansion theorem
which states that a random variable, respectively a stochastic process, can
be expressed as series in terms of an orthogonal basis of stochastic polyno-
mials depending on the probability measure. Particularly, if the underlying
probability space is a Gaussian space, then the orthogonal basis of stochastic
polynomials is built in terms of the Hermite polynomials and an orthonormal
basis of H. The case H = L2(R) is very important in applications, where the
orthonormal basis {ek}k∈N can be chosen as the Hermite functions {ξk}k∈N.

The square integrable processes y ∈ L2([0, T ]×Ω,H) and u ∈ L2([0, T ]×
Ω,U) can be represented in their chaos expansion forms

y(t, ω) =
∑

α∈I
yα(t) Hα(ω), u(t, ω) =

∑

α∈I
uα(t) Hα(ω), (2.9)

for t ≥ 0, ω ∈ Ω and where the coefficients yα∈ L2([0, T ],H) and uα ∈
L2([0, T ],U) for all α ∈ I. In this way, the deterministic part of a stochastic
process is split from its random part. The zero coefficients y0(t) = Ey(t, ω)
and u0(t) = Eu(t, ω) in (2.9) are the corresponding expectations of y and
u. All the operators A,B,C,R and G appearing in the problem (2.1)-
(2.2) are assumed to be coordinatewise operators, i.e., the action of A on
y ∈ L2([0, T ]× Ω,H) is given by Ay(t, ω) =

∑
α∈I Aαyα(t)Hα(ω),

Theorem 59 ([68]) Let the following assumptions hold:

(A1) The operator A : L2([0, T ],D)⊗L2(µ)→ L2([0, T ],D)⊗L2(µ) is a co-
ordinatewise linear operator that corresponds to the family of determin-
istic operators Aα : L2([0, T ],D)→ L2([0, T ],H), α ∈ I, where Aα are
infinitesimal generators of strongly continuous semigroups (eAαt)α∈I ,
t ≥ 0, defined on a common domain D that is dense in H, such that
for some m, θ > 0 and all α ∈ I

‖(eAαt)α‖L(H) ≤ meθt, t ≥ 0.

(A2) The operator C : L2([0, T ],H) ⊗ L2(µ) → L2([0, T ],H) ⊗ L2(µ) is a
coordinatewise operator corresponding to a family of uniformly bounded
deterministic operators Cα : L2([0, T ],H)→ L2([0, T ],H), α ∈ I.

(A3) The control operator B is a coordinatewise operator B : L2([0, T ],U)⊗
L2(µ)→ L2([0, T ],H)⊗L2(µ) that is defined by a family of uniformly
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bounded deterministic operators Bα : L2([0, T ],U) → L2([0, T ],H),
α ∈ I.

(A4) Operators R and G are bounded coordinatewise operators correspond-
ing to the families of deterministic operators {Rα}α∈I and {G}α∈I
respectively.

(A5) E‖y0‖2H <∞.

Then, the optimal control problem (2.2)-(2.3) has a unique optimal control
u∗ given in the chaos expansion form

u∗ = −
∑

α∈I
B?
α Pd,α(t) y∗α(t)Hα −

∑

|α|>0

B?
α kα(t)Hα, (2.10)

where Pd,α(t) for every α ∈ I solves the Riccati equation

Ṗd,α(t) + Pd,α(t)Aα +A?αPd,α(t) +RαR
?
α − Pd,α(t)BαB

?
αPd,α(t) = 0

Pd,α(T ) = G?αGα
(2.11)

and kα(t) for each α ∈ I solve the auxiliary differential equation

k′α(t)+(A?α−Pd,α(t)BαB
?
α) kα(t)+Pd,α(t)

(∑

i∈N
Cα−ε(i)yα−ε(i)(t) ·ei(t)

)
= 0,

(2.12)
with kα(T ) = 0 and y∗ =

∑
α∈I y

∗
αHα is the optimal state.

Theorem 59 is an extension of the one from [66], where the case with sim-
ple coordinatewise operators was considered. The following theorem gives
the characterization of the optimal control

u∗(t, ω) =
∑

α∈I
u∗α(t) Hα(ω) =

∑

α∈I
u∗α(t)Hα = u∗0 +

∑

|α|>0

u∗α(t)Hα, (2.13)

in terms of the solution of the stochastic Riccati equation.

Theorem 60 ([68]) Let (A1)-(A5) from Theorem 59 hold and let P be a
coordinatewise operator that corresponds to the family of operators {Pα}α∈I .
Then, the solution of the optimal control problem (2.1)-(2.2) obtained by the
chaos expansion approach

u∗ = −B? Pd y
∗(t) − B?K, (2.14)

where Pd(t) is a coordinatewise operator corresponding to the deterministic
family of operators {Pd,α}α∈I and K is a stochastic process with coefficients
kα(t), i.e., a process of the form K =

∑
α∈I kα(t)Hα, with k0 = 0, is equal

to the one obtained by the Riccati approach

u∗(t) = −B?P(t) y∗(t), (2.15)
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with a positive self-adjoint operator P(t) solving the stochastic Riccati equa-
tion

Ṗ(t) + P(t)A + A?P(t) + C?P(t)C + R?R−P(t)BB?P(t) = 0,
P(T ) = G?G

.

(2.16)
if and only if

C?αPα(t)Cα y
∗
α(t) = Pα(t)(

∑

i∈N
Cα−ε(i)y

∗
α−ε(i)(t) · i(t)), |α| > 0, k ∈ N

(2.17)
hold for all t ∈ [0, T ].

The condition (2.29) that characterizes the optimality represent the
action of the stochastic Riccati operator in each level of the noise. Note
that the stochastic Riccati equation (2.16) and the deterministic one (2.8)
differ only in the term C?αPα(t)Cα, i.e., the operator C?αPα(t)Cα, α ∈ I
captures the stochasticity of the equation. Polynomial chaos projects the
stochastic part in different levels of singularity, the way that Riccati operator
acts in each level is given by (2.29).

Following the proposed approach the numerical treatment of the SLQR
problem relies on solving efficiently Riccati equations arising in the associa-
ted deterministic problems. In recent years, numerical methods for solving
differential Riccati equations have been proposed [7, 12]. Moreover, the
results from [66] were applied also to optimal control problems governing
by state equations involving so-called delta noise. Additionally they were
extended to SLQR problems with random operators, previously considered
by [36, 37].

Although theoretically we have to solve infinitely many control problems,
numerically, when approximating the solution by the pth order chaos, we
have to solve (m+p)!

m!p! problems in order to achieve the L2-convergence. The
value of p is in general equal to the number of uncorrelated random variables
in the system and m is typically chosen by some heuristic method [50, 102].

Details and a complete study of the SLQR problem with chaos expansion
approach are given in Section 2.1 [66].

The SLQR problem: the infinite horizon case

The infinite dimensional SLQR problem consists of the state equation

dy(t) = (Ay(t) + Bu(t)) dt+ Cy(t) dBt, t ≥ 0,

y(0) = y0 (2.18)

defined on the state space H, where A and C are operators on H, B acts
from the control space U to the state space H and y0 is a random variable.
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SpacesH and U are Hilbert spaces and {Bt}t≥0 is aH-valued Wiener process
on a given probability space (Ω,F , µ) in sense of [26]. The operators B and
C are considered to be linear and bounded, while A could be unbounded.
The objective is to minimize the functional

J(u) = E
[∫ ∞

0

(
‖Ry‖2H + ‖u‖2U

)
dt

]
(2.19)

over all possible controls u and subject to the condition that y satisfies the
state equation (2.18). The operator R is bounded and takes values in the
Hilbert space H. A control process u∗ is called optimal if it minimizes the
cost (2.19) over all admissible control processes u ∈ A, i.e., for which it holds

min
u∈A

J(u) = J(u∗).

The corresponding trajectory is denoted by y∗. The pair of stochastic pro-
cesses (y∗, u∗) is called the optimal pair.

The following theorem provides the conditions for the existence of the
optimal control in the feedback form by the associated algebraic Riccati
equation (ARE). To this approach we are going to refer as standard ap-
proach.

Theorem 61 ([27]) Let the following assumptions hold:

(a1) The linear operator A is the infinitesimal generator of a C0 semigroup
(eAt)t≥0 on the space H.

(a2) The linear operator B is bounded U → H.

(a3) The operators R,C are bounded linear operators.

(a4) The system (A,B,C) is stabilizable.

(a5) The system (A,R,C) is detectable.

Then, the optimal control u∗ of the linear quadratic problem (2.18)-(2.19)
satisfies the feedback characterization in terms of the optimal state y∗

u∗(t) = −B? P y∗(t), (2.20)

where P is the unique minimal positive self-adjoint operator solving the Ric-
cati equation

PA+A?P + C?PC +R?R− PBB?P = 0. (2.21)

We applied the method of chaos expansions for solving (2.18)-(2.19). The
square integrable processes y ∈ L2([0,∞)×Ω,H) and u ∈ L2([0,∞)×Ω,U)
can be represented in their chaos expansion forms (2.9) for t ≥ 0, ω ∈ Ω



Applications 249

and where the coefficients yα∈ L2([0,∞),H) and uα ∈ L2([0,∞),U) for all
α ∈ I. All the operators A,B,C and R appearing in the problem (2.18)-
(2.19) are assumed to be simple coordinatewise operators, i.e., the action
of A on y ∈ L2([0,∞) × Ω,H) is given by Ay(t, ω) =

∑
α∈I Ayα(t)Hα(ω),

Hence, by applying the representation forms (2.9) to the equation (2.18) we
transform it to a system of deterministic equations. Namely, in a similar way
to [45] and [64], the solution of (2.18) can be written in the chaos expansion
for (2.9) and its coefficients yα, α ∈ I can be computed from

y′α(t) = Ayα(t) +Buα(t) +
∑

i∈N
Cyα−ε(i) ei(t), (2.22)

with yα(0) = y0α, where the sum is defined for all i such that the difference
of α − ε(i) is nonnegative. Applying the chaos expansion method to the
cost functional (2.19), analogously to [66], one gets a characterization of the
optimal control in terms of the expansion coefficients. This is summarized
in the following theorem.

Theorem 62 ([65]) Let (a1)-(a5) from Theorem 61 hold. Let (A,B,R) be
stabilizable and E‖y0‖2H <∞. Then, the following hold:

(a) Solving the problem (2.18)-(2.19) is equivalent to solving the determin-
istic optimal control problems in each α-level. Particularly, for α = 0:

min
u0

J(u0) = min
u0

∫ ∞

0

(
‖Ry0(t)‖2H + ‖u0(t)‖2U

)
dt (2.23)

subject to
y′0(t) = Ay0(t) +Bu0(t), y0(0) = y00, (2.24)

and for α > 0:

min
uα

J(uα) = min
uα

∫ ∞

0

(
‖Ryα(t)‖2H + ‖uα(t)‖2U

)
dt (2.25)

subject to (2.22).

(b) The optimal control problem (2.18)-(2.19) has a unique optimal control
u∗ given in the chaos expansion form

u∗(t) = −
∑

α∈I
B?Pdy

∗
α(t)Hα −

∑

|α|>0

B?kα(t)Hα

= −B?Pd y
∗(t)−B?K, (2.26)

where the operator Pd is the unique minimal positive self-adjoint so-
lution of the ARE

PdA + A?Pd + RR? −PdBB?Pd = 0 (2.27)
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and K is a stochastic process with the coefficients kα(t) that for all
α ∈ I solve the auxiliary equations

k′α(t) +A?p kα(t) + Pd
(∑

i∈N
Cyα−ε(i)(t) ei(t)

)
= 0, (2.28)

with the operator A?p = A?−PdBB? and the condition lim
T→∞

kα(T ) = 0,

and y∗(t) =
∑

α∈I y
∗
α(t)Hα is the optimal state.

The SLQR problems on finite and infinite horizons are strongly related.
In the deterministic setting the infinite horizon problem is studied as a limit
of the finite horizon time problem, a similar study holds for the stochas-
tic case and also for the chaos expansion approach. This will be presented
somewhere else. The following theorem characterizes the action of the Ric-
cati operator. The recurrence (2.29) can be interpreted as memory property
in the noise.

Theorem 63 ([65]) Let the assumptions from Theorem 62 hold. Then,
the optimal control (2.26) of (2.18)-(2.19) obtained via the chaos expansion
method is equal to the solution (2.20) obtained via the Riccati approach if
and only if for all α > 0 and t ≥ 0 it holds

C?P C y∗α(t) = P
(∑

i∈N
C y∗

α−ε(i)(t) ei(t)
)
. (2.29)

The proposed approach for solving SLQR problems in terms of chaos
expansions is not restricted only to problems (2.18)-(2.19) with Gaussian
noise, but it can be also applied for more general and non-Gaussian type of
noises, e.g. for problems involving colored noise [64]. One needs to replace
the base of Hermite polynomials with another class of orthogonal polynomi-
als from the Askey scheme of hypergeometric orthogonal polynomials that
corresponds to the specific noise arising in the considered stochastic state
equation [102]. More details can be found in Section 2.2 [65].

The SLQR problem with fractional Brownian
motion

We consider a fractional version of the stochastic optimal control problem
(2.1)-(2.2). The state equation is linear stochastic differential equation

dỹ (t) = (Ã ỹ(t) + B̃ ũ(t)) dt + C̃ ỹ(t) dB
(H)
t ỹ (0) = ỹ0, t ∈ [0, T ],

(2.30)
with respect to a H-valued fractional Brownian motion in the fractional
Gaussian white noise space. The objective is to minimize the quadratic cost
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functional

J(H)(ũ) = EµH

[∫ T

0

(
‖R̃ỹ‖2H + ‖ũ‖2U

)
dt + ‖G̃ỹT ‖2H

]
. (2.31)

over all possible controls ũ and subject to the condition that ỹ satisfies
(2.30). A control process ũ∗ is called optimal if min

u
J(H)(ũ) = J(H) (ũ∗).

The corresponding trajectory is denoted by ỹ∗ and is called optimal. Thus,
the pair (ỹ∗, ũ∗) is the optimal solution of the problem (2.30)-(2.31). The
operators Ã and C̃ are defined on H and B̃ acts from the control space
U to the state space H and ỹ0 is a random variable. The operators B̃
and C̃ are considered to be linear and bounded, R̃ and G̃ are bounded
observation operators taking values in H. Instead of the state equation
(2.30), we consider its Wick version

˙̃y(t) = Ãỹ(t) + B̃ũ(t) + C̃ỹ(t)♦W (H)
t , ỹ(0) = y0, t ∈ [0, T ]. (2.32)

In Section 2 Theorem 59 we stated conditions under which the stochastic
control problem (2.1)-(2.2) has an optimal control given in the feedback
form (2.10). In order to apply this result to the corresponding fractional
control problem (2.30)-(2.31), we apply the isometry mapping M [64] to
(2.31)-(2.32) and transform it to (2.1)-(2.2). The solution of the fractional
problem is thus obtained from the solution of the corresponding classical
problem through the inverse fractional map.

Theorem 64 ([68]) Let the fractional operators Ã, B̃, C̃, R̃ and G̃ defined
on fractional space be coorinatewise operators that correspond to the fami-
lies {Aα}α∈I , {Bα}α∈I , {Cα}α∈I , {Rα}α∈I and {Gα}α∈I respectively. Let
the pair (ũ∗, ỹ∗) be the optimal solution of the fractional stochastic optimal
control problem (2.30)-(2.31). Then, the pair (M ũ∗,M ỹ∗) is the optimal
solution (u∗, y∗) of the associated optimal control problem (2.1)-(2.2), where
A, B, C, R and G defined on classical space, are coorinatewise operators
that correspond respectively to the same families of deterministic operators
{Aα}α∈I , {Bα}α∈I , {Cα}α∈I , {Rα}α∈I and {Gα}α∈I . Moreover, if (u∗, y∗)
is the optimal solution of the stochastic optimal control problem (2.1)-(2.2),
then the pair (M−1u∗,M−1y∗) is the optimal solution (ũ∗, ỹ∗) of the corre-
sponding fractional optimal control problem (2.30)-(2.31).

Therefore, the fractional optimal control (2.30)-(2.31) has an optimal
control represented in the feedback form. The optimal solution is obtained
from Theorem 59 and Theorem 64 via the inverse fractional mappingM−1.
These results are included in Section 2.3 [68].

The SLQR problem with singular estimates

In this part of the thesis, we consider the stochastic linear quadratic prob-
lem in infinite dimensions with state and control dependent noise for the
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so-called singular estimate control systems. These systems involve dynam-
ics driven by strongly continuous semigroups and unbounded control actions
with the control to state kernel satisfying a singular estimate. Such situa-
tion is typical in boundary or point control problems where the action of the
control operator is either only densely defined on a control space or its range
is outside the state space. In order to quantify the unboundedness of control
action-singular estimates play an crucial role. Such estimate describes the
amount of blow up of the transfer function. The latter is necessary for a
rigorous analysis of control problems and the associated feedback synthe-
sis. We assume that the multiplicative noise operators for the state and
the control are bounded. Our study includes the SLQR problem in which
disturbance in the control is considered and a final time penalization term
is included in the quadratic cost functional, the so-called Bolza problem.

For deterministic systems, the infinite dimensional linear quadratic regu-
lator problem has been studied extensively in the literature [6, 8, 13, 56].
The purpose of the theoretical framework is to address optimal control of
systems of partial differential equations. For most systems, the controlling
mechanism can only be applied from the interface of the system or at finitely
many points or curves [10] which necessitates developing a framework for
studying boundary/point control. Such control actions can be captured
mathematically using maps which are not bounded with respect to the state
space, but take values in a larger dual space. The most natural class of prob-
lems where such description has been used are dynamics driven by analytic
semigroups. The analyticity property quantifies naturally the blow up of the
transfer function when acted upon by an unbounded operator (compatible
with fractional powers of the generator). The linear quadratic problem for
systems driven by analytic semigroups with these type of control actions
were studied by [1, 14, 27, 31, 56]. The situation is much more complicated
in the non-analytic case, where there is no natural characterization of sin-
gularity other than technical-PDE estimates. However, for some classes of
control systems which combine hyperbolic and parabolic dynamics, it has
been observed that the control-to-state kernel satisfies a singular estimate
which generalizes the case of analytic semigroup dynamics [2, 5, 55, 58, 59].
Examples of systems which manifest this type of singular estimate arise
frequently in thermo-elastic plate models [11, 18, 60], acoustic-structure in-
teraction equation [5, 9, 60], and fluid-structure interaction models [61]. As
described above, a deterministic theory of feedback control has been devel-
oped for these classes of problems (singular estimate) [54]. However, in the
stochastic case the only results available in the literature covering unbounded
control actions are the ones dealing with analytic semigroups [25, 36, 30].

The results of this section are related to [39]. There we proved an optimal
feedback synthesis along with well-posedness of the Riccati equation. We
derived a differential Riccati equation associated with the optimal stochastic
linear quadratic control problem, by first showing the existence of a solu-
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tion to an expanded system in the integral form of the Riccati equation via
a specially crafted fixed point argument. We then proceeded to derive the
differential Riccati equation which requires making sense of the weak deriva-
tive of the evolution generated by deterministic dynamics with respect to
initial time. Here, the obstacle, as in the deterministic case, lies in the fact
that the terms of the Riccati equation may not be well defined due to the
unboundedness of the control operator. Another difficulty is the finite state
penalization which gives rise to possible singularities at the final time and
require choosing appropriate spaces to make sense of the quadratic term in
the differential Riccati equation [59]. Finally, we then used a dynamic pro-
gramming argument to show that the minimum of the quadratic functional
is realized when the control is expressed in feedback form via the solution to
the differential Riccati equation. Here, we proceed with the dynamic pro-
gramming argument on a regularized version of the problem since the Itô
formula only applies to C2 functions, while the state and control trajecto-
ries are not differentiable in the classical sense. For this reason, a forward
approach via a maximum principle or a variational method to solve for the
optimal control before proceeding to derive the differential Riccati equation
is not applicable in this setting.

We consider (Ω,F , P ) to be a complete probability space. Let Bt be a
one dimensional real valued stochastic Brownian motion on (Ω,F , P ) and
Ft the sigma algebra generated by {Bτ : τ ≤ t}. We assume that all func-
tion spaces are adapted to the filtration Ft. We denote by L2

w([s, T ],H) all

stochastic processes X(t, ω) : [s, T ]× Ω→ H such that
∫ T
s ‖X(t)‖2H dt <∞

a.e. in Ω, and X(t, ·) is Ft-measurable for all t ∈ [s, T ]. We also denote by
M2
w([s, T ], H), the space of all strongly measurable square integrable stochas-

tic processes X : [s, T ] × Ω → H such that
∫ T
s E

(
‖X(t)‖2H

)
dt < ∞, and

by L2(Ω;H1([s, T ],U)) all strongly measurable square integrable stochas-

tic processes u : [s, T ] × Ω → U for which it holdes
∫ T
s E

(
‖u(t)‖2U

)
dt +∫ T

s E
(
‖ut(t)‖2U

)
dt <∞.

We formulate now the optimal control problem in abstract setting. Let
the state equation be a stochastic partial differential equation of the form

dy(t) = (Ay +Bu) dt+ (Cy +Du) dBt (2.33)

y(s) = y0

be defined on a Hilbert state space H, where A and C are operators on H
while B and D are operators acting from the control space U to the state
space H. We take C and D to be bounded operators but A and B could be
unbounded. The objective is to minimize the quadratic cost functional

J(s, y0, u) = E
(∫ T

s
(‖Ry‖2W + ‖u‖2U ) dt+ ‖Gy(T )‖2Z

)
(2.34)
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over all admissible controls u ∈ M2
w([s, T ],U), where R and G are bounded

linear observation operators taking values in Hilbert spaces W and Z re-
spectively. The optimal control and state are denoted by (u∗, y∗).

The assumptions we consider are the following:

Assumptions 1

(1) The linear operator A is an infinitesimal generator of a C0-semigroup
eAt on the space H.

(2) The linear control operator B acts from U → [D(A?)]′ or equivalently
A−1B is bounded from U → H.

(3) The noise operator D : U → H is a bounded linear operator.

(4) There exists a number γ ∈ (0, 1/2) such that the control to state map
kernel eAtB satisfies the singular estimates

‖eAtBu‖H ≤
c

tγ
‖u‖U (2.35)

for every u ∈ U and 0 < t < 1.

(5) The operators R : H → W, G : H → Z and C : H → H are all
bounded linear operators.

We first state the result pertaining to existence, regularity and unique-
ness of solution to the optimal control problem.

Theorem 65 ([39]) The optimal control problem of minimizing (2.34) sub-
ject to the differential equation (2.33) with initial condition y0 ∈ H has a
unique solution u∗ ∈ L2(Ω, C([s, T ],U)) and a corresponding optimal state
y∗ ∈ L2(Ω, C([s, T ],H)).

We next state the result on the feedback form of the optimal control and
the associated differential Riccati equation satisfied by the gain operator.

Theorem 66 ([39]) Let Assumptions 1 hold. Then, the optimal control u∗

has the feedback characterization in terms of the optimal state

u∗(t, s, y0) = −(I +D?PD)−1(B?P (t) +D?P (t)C)y∗(t),

where P (t) ∈ C([0, T ],L(H)) is a positive self-adjoint operator solving the
Riccati equation for every x, y ∈ D(A)

〈Ṗ x, y〉+ 〈PAx, y〉+ 〈A?Px, y〉+ 〈C?PCx, y〉+ 〈R?Rx, y〉
−〈(B?P +D?PC)?(I +D?PD)−1(B?P +D?PC)x, y〉 = 0, (2.36)

P (T )x = G?Gx,

such that I +D?P (t)D > 0.
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Specific examples motivating the theory presented above include coupled
PDE systems with boundary or point control where hyperbolic and parabolic
dynamics are intertwined. These, in particular include thermoelasticity,
fluid structure interactions and models arising in structural acoustics [5, 54].
The analysis and results above easily extends to the case 1/2 ≤ γ < 1 when
G = 0. However, for nonzero G, this case 1/2 ≤ γ < 1 is more challenging
since operator

GLT ≡ G
∫ T

0
eA(T−τ)B dτ

is no longer bounded C(L2(Ω), L2([s, T ],U)) → Z. In fact, the existence
of an optimal control in this case requires closability of GLT [58]. Such
condition is trivially satisfied when G is bounded and invertible H → Z. In
this case, the fixed point argument is no longer applicable.

Moreover, the derivation of the differential Riccati equation (2.36) from
the integral Riccati equation involves double singularities at initial and final
times in the function Φ(t, s)B, which appears when making sense of the
derivative of the evolution with respect to initial time [59]. Note that in
the case of deterministic singular estimate control systems, uniqueness of
solution to the differential Riccati equation for nonzero G and γ ≥ 1/2 in a
suitable class of operators [59] is not known, even in the analytic case [58],
unless further smoothing properties of G are satisfied.

The results can also be extended to the case when D is unbounded ope-
rator satisfying a similar singular estimate condition to that satisfied by B,
assumption 1. This condition allows the inclusion of systems with noise in
the boundary control into the theoretical framework that we developed. In
the case when there is no final state penalization, i.e., G = 0, the value of γ
in (2.35) could be pushed up to 1. However, the majority of “non analytic”
examples exhibit singularity of the type assumed in (2.35). For this reason,
we focused on this class only. More details are given in Section 2.4 [39].

The SLQR problem: a numerical approximation
framework

In [67] we presented an approximation framework for computing the solu-
tion of the stochastic linear quadratic control problem on Hilbert spaces,
where we focused on the finite horizon case and the related differential Ric-
cati equations (DREs). Our approximation framework is concerned with
singular estimate control systems [55] which model certain coupled systems
of parabolic/hyperbolic mixed partial differential equations with boundary
or point control. We proved that the solutions of the approximate finite-
dimensional DREs converge to the solution of the infinite-dimensional DREs.
In addition, we proved that the optimal state and control of the approxi-
mate finite-dimensional problem converge to the optimal state and control
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of the corresponding infinite-dimensional problem. These results are related
to Section 2.5 [67].

The deterministic linear quadratic control problem for infinite-dimensio-
nal systems has been extensively studied in the literature [13, 14, 56, 57]. In
particular, approximation schemes for Riccati equations in infinite-dimen-
sional spaces have been proposed in recent years. Chronologically, the first
reference is due to Gibson [35], who developed an approximation framework
in order to reduce the inherently infinite-dimensional problems to finite-
dimensional ones using Riccati integral equations. The result proposed by
Gibson requires the approximating problems to be defined on the entire
original state space which leads to some technical difficulties. Assuming that
the dynamics are driven by an analytic semigroup, Banks and Kunisch [8]
avoided these difficulties. In the same setting, convergence results for DREs
can be found in [7], while results on convergence rates can be found in [51].
A complete Riccati theory and convergence analysis for infinite dimensional
systems driven by analytic semigroups and a special class of unbounded
control operators was developed by Lasiecka and Triggiani in [56]. However,
up to our knowledge, convergence results for the stochastic linear quadratic
control problem have not been studied in the literature. One of the reasons
could be the fact that the computational cost of solving the SLQR problem
is much higher compared to the cost in the deterministic case. In this work,
we extended the ideas presented in [7, 8, 63] to the SLQR problem. We also
avoided technical difficulties related with the fact that Gibson’s presentation
requires that each of the approximating problems is defined on the whole
space.

We consider the infinite dimensional stochastic linear quadratic regula-
tor optimal control problem on Hilbert spaces (2.33)-(2.34) for unbounded
control operator B, particularly singular estimate control systems, under the
Assumptions 1. An optimal feedback synthesis along with well-posedness of
the Riccati equation are established in Theorem 65 and Theorem 66.

We present a general convergence framework developed in [67]. The
results given here generalize the deterministic results proposed in [8, 35, 56]
to the stochastic case. In particular, the last reference [56] addresses the
case of analytic semigroups eAt and unbounded operators B : U → [D(A?)]′

satisfying A−γB : U → H, which was generalized by the singular estimate
framework [58].

Let (VN )N∈N, be a sequence of finite-dimensional linear subspaces of
H ∩D(B?) and let

ΠN : H → VN , N ∈ N,

be the canonical orthogonal projections. Assume that for every N ∈ N the
operator AN ∈ L(VN ) is an infinitesimal generator of a C0-semigroup eA

N t

on VN and thus (eA
N t)N∈N is a sequence of strongly continuous semigroups
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on VN . Given operators BN ∈ L(U ,VN ), GN , QN , CN ∈ L(VN ), we
consider the family of finite dimensional stochastic LQR problems on VN

dyN (t) =
(
ANyN (t) +BNu(t)

)
dt+

(
CNyN (t) +DNu(t)

)
dBt,

yN (0) = yN0
(2.37)

and the cost functional

JN (u) = E
[∫ T

0

(
‖QNyN‖2H + ‖u‖2U

)
dt+ ‖GNyN (T )‖2H

]
. (2.38)

The optimal control is given in feedback form by

uN∗ (t) = −(I +DN?PN (t)DN )−1 (BN?PN (t) +DN?PN (t)CN ) yN∗ (t)

where PN (t) ∈ L(VN ) is the unique self-adjoint solution of the differential
Riccati equation:

ṖN + PNAN +AN
?
PN + CN

?
PNCN +QN

?
QN

−(BN?PN +DN?PNCN )?(I +DN?PNDN )−1(BN?PN +DN?PNCN ) = 0,

PN (T ) = GN
?
GN

(2.39)

such that I +DN?PNDN > 0 and yN∗ (t) is the optimal state [103].

We impose the following assumptions on the approximation operators:

Assumptions 2

(1) For all ϕ ∈ H, the semigroups eA
N tΠNϕ converges in H to eAtϕ uni-

formly on [0, T ] and in particular there exists N0 ∈ N such that for
N ≥ N0, we have

‖(eAN tΠN − eAt)x‖H ≤
c

N
‖x‖H, ∀x ∈ H.

(2) For all ϕ ∈ H, the semigroups eA
N?tΠNϕ converge in H to eA

?tϕ
uniformly on [0, T ] and in particular for N ≥ N0

‖(eAN?tΠN − eA?t)x‖H ≤
c

N
‖x‖H, ∀x ∈ H.

(3) For all x ∈ VN we have for N ≥ N0

‖BN?ΠN x‖U ≤ cNγ‖x‖H, ∀x ∈ H.

(4) The projections ΠN satisfy the convergence estimate for N ≥ N0

‖B?(ΠN − I)x‖U ≤
c

N
‖x‖D(B?), ∀x ∈ D(B?).
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(5) For all x ∈ D(B?), BN?ΠNx converges to B?x in U and for N ≥ N0

‖(B? −BN?ΠN )x‖U ≤
c

N
‖x‖D(B?), ∀x ∈ D(B?).

(6) The approximations BN? satisfy the uniform singular estimate

‖BN?eA
N?tΠNx‖U ≤

c

tγ
‖x‖H, ∀x ∈ H, (2.40)

for N ≥ N0 and some γ ∈ (0, 12).

(7) For all v ∈ U , DNv → Dv in H and for all ϕ ∈ H, we have
DN?ΠNϕ→ D?ϕ in U such that for N ≥ N0

‖(DN −D)v‖H ≤
c

N
‖v‖U , ∀v ∈ U ,

and

‖(DN?ΠN −D?)ϕ‖U ≤
c

N
‖ϕ‖H, ∀ϕ ∈ H.

(8) For all ϕ ∈ H, we have CNΠNϕ → Cϕ and CN?ΠNϕ → C?ϕ in H
such that for N ≥ N0

‖(CNΠN − C)ϕ‖H ≤
c

N
‖ϕ‖H, ∀ϕ ∈ H,

and

‖(CN?ΠN − C?)ϕ‖H ≤
c

N
‖ϕ‖H, ∀ϕ ∈ H.

(9) For all ϕ ∈ H, we have QNΠNϕ → Qϕ and QN?ΠNϕ → Q?ϕ in H
such that for N ≥ N0

‖(QNΠN −Q)ϕ‖H ≤
c

N
‖ϕ‖H, ∀ϕ ∈ H,

and

‖(QN?ΠN −Q?)ϕ‖H ≤
c

N
‖ϕ‖H, ∀ϕ ∈ H.

(10) For all ϕ ∈ H, we have GNΠNϕ → Gϕ and GN?ΠNϕ → G?ϕ in H
such that for N ≥ N0

‖(GNΠN −G)ϕ‖H ≤
c

N
‖ϕ‖H, ∀ϕ ∈ H,

and

‖(GN?ΠN −G?)ϕ‖H ≤
c

N
‖ϕ‖H, ∀ϕ ∈ H.
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The assumption (1) implies that ΠNϕ → ϕ for all ϕ ∈ H, which indi-
cates the sense in which the subspaces VN approximate H.

We next state the main convergence results showing convergence of the
solution of the approximate differential Riccati equation (2.39) to the solu-
tion of the original Riccati equation (2.36).

Theorem 67 ([67]) Under Assumptions 1 and Assumptions 2, for ϕ ∈ H,
PN (t)ΠNϕ→ P (t)ϕ uniformly on [0, T ] in H as N →∞, and in particular

‖PN (t)ΠN ϕ− P (t)ϕ‖H ≤
c

N1−γ ‖ϕ‖H
for N ≥ N0 and for all t ∈ [0, T ]. Moreover, it holds

‖BN?PN (t)ΠN ϕ−B?P (t)ϕ‖H ≤
c

N1−γ(T − t)γ ‖ϕ‖H.

The second result (67) establishes convergence of the optimal pair uN∗
and yN∗ of the N problem (2.37) and (2.38) to the optimal pair u∗ and y∗ of
(2.33) and (2.34).

Theorem 68 ([67]) Under Assumptions 1 and Assumptions 2 and given
the condition E(‖y0‖2H) <∞, we have

yN∗ → y∗ uniformly as N →∞ on [0, T ] in L2(Ω,H),

and in particular

E(‖yN∗ (t, yN0 )− y∗(t, y0)‖2H) ≤ c

N2(1−γ) E(‖y0‖2H), ∀t ∈ [0, T ],

while

uN∗ → u∗ uniformly as N →∞ on [0, T − ε] in L2(Ω,U), ε > 0,

and in particular

E(‖uN∗ (t, yN0 )− u∗(t, y0)‖2U ) ≤ c

N2(1−γ)(T − t)2γ E(‖y0‖2H), ∀t ∈ [0, T ].

The approximation framework we have proposed holds with no modifica-
tion for the case in which only disturbance in the state is considered, i.e. for
D = 0. Our results can be also extended to the non-autonomous case, i.e.
the case in which stochastic partial differential equations of the form (2.33)
have time-varying coefficients. Approximation results for the deterministic
non-autonomous case can be found in [7, 35]. The Riccati equation (2.36)
arising in the stochastic linear quadratic control problem is deterministic.
Thus, the convergence analysis was developed in the same framework as for
Riccati equations arising in the deterministic case.

The proposed approximation scheme could be extended to optimal con-
trol problems governed by more general state equations, e.g. when stochastic
perturbations are of Wick type within white noise framework. More details
are given in Section 2.5 [67].
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A splitting/polynomial chaos expansion approach
for stochastic evolution equations

Splitting methods are numerical methods for solving differential equations,
both ordinary and partial differential equations (PDEs), involving operators
that are decomposable into a sum of (differential) operators. Exponential
splitting methods are applied in cases when the explicit solution of a split-
ted equation can be computed. Such computations often rely on applying
fast Fourier techniques, see for instant [97]. Resolvent splitting is used in
cases when the splitted equation cannot be solved explicitly [41, 91]; here
we consider this type of methods. Typical examples include time-dependent
Schrödinger equation with smooth potential, cubic nonlinear Schrödinger
equation (dispersive optical fibers) and nonlinear reaction-diffusion (advec-
tion) equations. The splitting methods have been applied to stochastic prob-
lems, e.g. for incompressible Stokes equation [20]. In this work we present
novel approach for solving stochastic parabolic evolution problems that com-
bines deterministic splitting methods and the chaos expansion method. We
consider stochastic evolution equations of the form

du(t) =
(
(A+B)u(t) + f(t)

)
dt+

(
C u(t) + g(t)

)
dB(t)

u(0) = u0,
(2.41)

where A, B and C are differential operators acting on Hilbert space valued
stochastic processes, {Bt}t≥0 is a cylindrical Brownian motion on a given
probability space (Ω,F ,P) and f and g are deterministic functions. In [79]
equation (2.41) involving Gaussian noise terms was solved in an appropriate
weighted Wiener chaos space. The deterministic problem that corresponds
to (2.41), i.e., the case where C = 0 and g = 0, for particular Au = ∂x(a∂xu),
Bu = ∂y(b∂yu) and f was studied in [29]. We consider equation (2.41)
involving a non-Gaussian noise term. Namely, we consider inhomogeneous
parabolic evolution equations involving the operators that can be split in
A + B and uniformly distributed random inputs. These equations, can be
also written in the form

ut(t, x, ω) = (A+B)u(t, x, ω) +G(t, x, ω)

u(0, x, ω) = u0(x, ω),
(2.42)

where G represents the noise term and u is the solution, see e.g. [43, 76, 77,
79]. The existence of a random parameter ω is due to uncertainties coming
from initial conditions and/or a random force term. Therefore, the solution
is considered to be a stochastic process.

Stochastic processes with finite second moments on white noise spaces
can be represented in series expansion form in terms of a family of or-
thogonal stochastic polynomials. The classes of orthogonal polynomials are
chosen depending on the underlying probability measure [42, 43]. Namely,
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the Askey scheme of hypergeometric orthogonal polynomials and the Sheffer
system [94, 95] can be used to define several discrete and continuous dis-
tribution types [102]. We considered problems with non-Gaussian random
inputs where the noise term is uniformly distributed. It is known that in
order to obtain a square integrable solution of (2.41) with deterministic ini-
tial condition, it is enough to assume that the operator A− 1

2CC
∗ is elliptic

and that the stochastic part (the noise term) is sufficiently regular [26]. In
this work, the assumptions on the input data for problem (2.42) will be set
such that the existence of a square integrable solution is always established.
We do not consider solutions which are generalized stochastic processes as
in [76, 79], since our focus is on numerical treatment.

If (2.41) does have a sufficiently regular solution, this solution can be
projected on an orthonormal basis in some Hilbert space, resulting in a sys-
tem of equations for the corresponding Fourier coefficients. Thus, we use
the method of chaos expansions to define the solution of (2.41) as a formal
Fourier series with the coefficients computed by solving the corresponding
system of deterministic PDEs [79]. With this method, the deterministic part
of a solution is separated from its random part, i.e., it corresponds to the de-
terministic method of the separation of variables in PDEs. By construction,
the solution is strong in the probabilistic sense. It is uniquely determined by
the coefficients, initial condition and the noise term. The coefficients in the
Fourier series are uniquely determined by the equation (2.41) and are com-
puted by solving the corresponding lower-triangular system of deterministic
parabolic equations.

Practical application of the Wiener polynomial chaos involves two trun-
cations, truncation with respect to the number of the random variables and
truncation with respect to the order of the orthogonal Askey polynomials
used (in the particular case considered, the Legendre polynomials). More
details are given in Section 2.6 [52].

Stochastic operator differential algebraic equations

In this section we consider stochastic operator differential algebraic equa-
tions (ODAEs), i.e. a stochastic differential equation subject to an algebraic
constraint

ẏ + Ky + B∗ u = f, B y = g, (2.43)

where the stochastic operator K is a coordinatewise operator such that the
corresponding deterministic operators {Kα}α∈I are densely defined on a
given Hilbert space X. In the special case when B = D and B∗ = δ the
system (2.43) transforms to

ẏ + K y + δ u = f, Dy = g (2.44)
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with the initial condition Ey = y0 and given stochastic processes f and g.
In the following theorem we consider a more general equation than (2.44).
Namely,

ẏ = Ay + T♦y + δu + f, D y = g, (2.45)

which was studied in [64, 68].

Theorem 69 ([64, 68]) Let ρ ∈ [0, 1]. Let A : X ⊗ (S)−ρ → X ⊗ (S)−ρ
be a coordinatewise operator corresponding to a uniformly bounded family
of deterministic operators Aα : X → X, α ∈ I and T be a coordinatewise
operator that corresponds to a polynomially bounded family of operators Tα :
X → X, α ∈ I. Let g =

∑
α∈I

∑
k∈N gα,kξkHα ∈ X ⊗ S′(R) ⊗ (S)−ρ such

that its coefficients gαk satisfy the condition (1.35) and f ∈ X ⊗ (S)−ρ.
Let y0 ∈ X, y1 ∈ X be given and the actions A0y

0 and T0y
0 defined such

that Ef = A0y
0 + T0y

0. Then, the system (2.45) with the initial conditions
Ey = y0 and Eẏ = y1, has unique solution pair y ∈ X ⊗ (S)−ρ and u ∈
X ⊗ S′(R)⊗ (S)−ρ given respectively by

y = y0 +
∑

|α|>0

1

|α|
∑

k∈N
gα−ε(k),k ⊗ Hα and (2.46)

u =
∑

α∈I

∑

k∈N
(αk + 1)

vα+ε(k)

|α+ ε(k)| ⊗ ξk ⊗ Hα, (2.47)

where v = ẏ −Ay −T♦y − f .

A similar result to the one given in Theorem 69 was proved in [3] for semi
explicit ODAEs with noise arising in fluid dynamics. Details and a complete
study of the regularization of of these equations are given in Section 2.7 [3].
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Abstract. We consider the stochastic linear quadratic optimal control prob-

lem for state equations of the Itô-Skorokhod type, where the dynamics are
driven by strongly continuous semigroup. We provide a numerical framework

for solving the control problem using a polynomial chaos expansion approach

in white noise setting. After applying polynomial chaos expansion to the state
equation, we obtain a system of infinitely many deterministic partial differen-

tial equations in terms of the coefficients of the state and the control variables.

We set up a control problem for each equation, which results in a set of deter-
ministic linear quadratic regulator problems. Solving these control problems,

we find optimal coefficients for the state and the control. We prove the opti-

mality of the solution expressed in terms of the expansion of these coefficients
compared to a direct approach. Moreover, we apply our result to a fully sto-

chastic problem, in which the state, control and observation operators can be

random, and we also consider an extension to state equations with memory
noise.

1. Introduction. Stochastic optimization of infinite dimensional systems arise in
many applications, and has become a very active research field in recent years. For
finite dimensional systems, extensive results in the field can be found for instance
in [15, 63]. In particular, the linear quadratic regulator problem (LQR) has been
well studied in deterministic setting. The stochastic analogue in finite dimensions
was first solved by Wonham and Kushner in the 1960’s [32, 60, 61]. In the infinite
dimensional setting, the stochastic linear quadratic regulator (SLQR) problem was
first treated by Ichikawa for systems driven by strongly continuous semigroups and
bounded control and noise operators [27], where a full Riccati synthesis of the
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problem analogous to that obtained in finite dimesnions was developed. In later
works, Flandoli and Da Prato considered the problem in the analytic semigroups
framework for Neumann or Dirichlet type control operators, which represent pa-
rabolic PDE with boundary controls [12, 14]. For systems with singular estimates
which model a certain class of coupled parabolic/ hyperbolic PDEs, the stochastic
linear quadratic problem has been studied by Hafizoglu [22]. In [23], the results
were extended to the case including the disturbance in the control and nonzero G
(Bolza problem). An approximation scheme for solving the control problem and
the associated Riccati equation was also introduced in [39]. Other results have been
proposed for systems with stochastic coefficients in [20, 21].

In this work, we consider a polynomial chaos approach for solving the infinite
dimensional SLQR problem. The aim is to provide a numerical framework that
can be used to obtain efficient numerical solutions to the stochastic linear quadratic
problem (or a generalized version of it) which consists of the state equation

dy(t) = (Ay(t) + Bu(t)) dt+ Cy(t) dW (t), y(0) = y0, t ∈ [0, T ], (1)

defined on Hilbert state space H, where A and C are operators on H and B acts
from the control space U to the state space H and y0 is a random variable. Spaces
H and U are Hilbert spaces. Process W (t) is an H-valued Brownian motion. The
operators B and C are considered to be linear and bounded, while A could be
unbounded. The objective is to minimize the functional

J(u) = E

[∫ T

0

(
‖Ry‖2H + ‖u‖2U

)
dt + ‖GyT ‖2H

]
, (2)

over all possible controls u and subject to the condition that y satisfies the state
equation (1). Operators R and G are bounded observation operators taking values
in H, E denotes the expectation and yT = y(T ). A control process u∗ is called
optimal if it minimizes the cost (2) over all control processes, i.e. for which it holds

min
u

J(u) = J(u∗).

The corresponding trajectory is denoted by y∗. Thus, the pair (y∗, u∗) is the optimal
solution of the problem (1)-(2) and is called the optimal pair.

First of all, note that state equation (1) can be written in an equivalent abstract
form as

ẏ(t) = Ay(t) + Bu(t) + Cy(t)♦ Ẇ (t), y(0) = y0, t ∈ [0, T ],

where ♦ denotes the Wick product and Ẇ (t) an H-valued white noise process. In
order to preserve mean dynamics in (1), we represent the random perturbation as
a stochastic convolution and obtain the Wick-version of the state equation. Us-
ing the Wick product instead of the usual pointwise multiplication we are able to
establish a new approach for solving optimal control problems based on the ap-
plication of the chaos expansion method. Since each square integrable stochastic
process v on Gaussian white noise probability space has a unique chaos expansion
representation in a Fourier-Hermite orthogonal polynomial basis, v =

∑
α∈I vαHα

with deterministic coefficients vα, we are able to split the deterministic effects from
the randomness and to reduce the original stochastic problem to a family of deter-
ministic ones. The Wick product of two processes v and h is a process given in the
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chaos expansion form

v♦h = (
∑

α∈I
vαHα)♦ (

∑

β∈I
hβ Hβ) =

∑

γ∈I
(
∑

α≤γ
vα hγ−α) Hγ .

Moreover, the relation
E (v♦h) = E (v) · E (h),

holds regardless of whether v and h are independent or not. The expectation of the
Wick version of the state equation satisfies the corresponding deterministic optimal
control problem. Recall, if at least one of the processes v, h is deterministic, then
their Wick product and ordinary product coincide, i.e. v♦h = v · h. Historically,
the Wick product first arose in quantum physics, as a renormalization operation,
and later played an important role in many problems involving stochastic partial
differential equations, in the theory of stochastic integration [19, 25]. By introducing
the Wick product ♦ in the considered stochastic problem, one uses an Itô-Skorokhod
interpretation of the SPDE. The study of Wick versions of stochastic equations, both
linear and nonlinear, together with the study of probabilistic properties of obtained
solutions and the comparison with the properties of solutions of corresponding initial
equations, can be found in [8, 25, 45, 48, 58].

In this work we combine known results of control theory for the SLQR problem
with white noise analysis methods. Particularly, in order to characterize the optimal
solution in terms of the polynomial chaos, we apply the chaos expansion method
to (1)-(2). Since the control operator B is bounded, we apply the results from
[27]. Then, we state the sufficient and necessary condition for the existence of the
optimal solution of the considered SLQR problem in terms of the coefficients of the
chaos and the solution of the Riccati equation. Theorem 3.1 and Theorem 3.2 are
the main contribution of the paper.

Our approach can be generalized to different types of state equations. Always
assuming that we are working with linear equations we can consider that operators
in the equation are random, see Section 4.2. Another generalization is to consider
a different type of noise. In particular, we will discuss in detail how the proposed
approach can be extended if we are dealing with noise with memory, which is a
special type of noise that is represented in terms of a stochastic integral [11], i.e.
we consider the state equation of the form

ẏ(t) = Ay(t) + Bu(t) + δ(Cy(t)), t ∈ [0, T ], (3)

with y(0) = y0, where δ represents the Itô-Skorokhod integral. Moreover, we analyze
a problem with an even more general type of noise with memory, which is given by

ẏ(t) = Ay(t) + Bu(t) + δt(Cy(t)), t ∈ [0, T ], (4)

with y(0) = y0, where δt(Cy) is the integral process. Optimal control problems
involving equations of type (3) and (4) have applications in economics and finance
and have been recently studied in [11] using the stochastic maximum principle. Note
that, since the argument of the stochastic integral is given as an action of C on y,
the evolution equation (3) and (4), each respectively contains a memory property.
The disturbance in (3) is a zero mean random variable for all t ∈ [0, T ], while in (4)
the perturbation is given via a zero mean stochastic process. We point out that up
to our knowledge there is no numerical algorithm for solving these problems. The
method proposed in this paper is pioneer in this aspect too.

Polynomial chaos which was first introduced by Wiener in 1938 [59], has recently
been used in engineering applications to quantify evolving uncertainty in systems,
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108 TIJANA LEVAJKOVIĆ, HERMANN MENA AND AMJAD TUFFAHA

see e.g. [18]. Using polynomial chaos, a stochastic system can be represented as
a deterministic system with higher dimensionality, but the computational cost is
reduced since extensive sampling is no longer required to capture the uncertainty.
Only recently, there have been few works on the application of polynomial chaos in
stochastic control of engineering systems (finite dimensional) [26, 49, 55]. Some very
recent works in particular have been concerned with a polynomial chaos approach
to linear control systems modeled by the stochastic LQR, see [16, 17, 57]

White noise analysis was introduced by Hida and furter developed by many au-
thors [25, 45]. In order to build spaces of stochastic test and generalized functions,
one has to use series decompositions via orthogonal functions as a basis, with certain
weight sequences. Depending on the stochastic measure, this basis can be repre-
sented as a family of orthogonal polynomials. The classical Hida approach suggests
to start with a nuclear space E and its dual E ′, such that

E ⊆ L2(R) ⊆ E ′,
and then take the basic probability space to be Ω = E ′ endowed with the Borel sigma
algebra of the weak topology and an appropriate probability measure P [24, 25].
In this work we deal with a Gaussian white noise space. Thus, the underlying
measure is the Gaussian measure. The corresponding orthogonal polynomial basis
is constructed using the Hermite polynomials and any orthogonal basis of L2(R).
In this case E and E ′ are the Schwartz spaces of rapidly decreasing test functions
S(R) and tempered distributions S′(R) respectively.

The spaces of generalized random variables are stochastic analogues of determin-
istic generalized functions. They have no point value for ω ∈ Ω, only an average
value with respect to a test random variable. Following the idea of the construction
of S′(R) as an inductive limit space over L2(R) with appropriate weights, one can
define stochastic generalized random variable spaces over L2(Ω) by adding certain
weights in the convergence condition of the series expansion. Several spaces of this
type, weighted by a sequence q = (qα)α∈I , denoted by (Q)−ρ, for ρ ∈ [0, 1] were
described in [41]. Thus a Gel’ fand triplet

(Q)ρ ⊆ L2(P) ⊆ (Q)ρ,

is obtained, where the inclusions are continuous. The most common weights and
spaces appearing in applications are qα = (2N)α which correspond to the Kondratiev
spaces of stochastic test functions (S)ρ and stochastic generalized functions (S)−ρ,
and exponential weights qα = e(2N)α linked with the exponential growth spaces
of stochastic test functions exp(S)ρ and stochastic generalized functions exp(S)−ρ.
Note that, following ideas from financial mathematics, fractional white noise spaces
could be constructed by replacing Brownian motion with fractional Brownian mo-
tion [25, 41], or more general with Lévy processes .

The problem of pointwise multiplication of generalized stochastic functions in
white noise analysis is overcome by introducing the Wick product. The most im-
portant property of the Wick multiplication is its relation to the Ito-Skorokhod
integration [25]. In Section 3 we express the diffusion component of (1) in terms of
the Wick product as well as in terms of the Itô-Skorokhod integral.

In white noise setting, the Skorokhod integral δ represents an extension of the
Itô integral from a set of adapted processes to a set of non-adaptive processes.
They coincide on the set of adapted processes. It is an adjoint operator of the
Malliavin derivative D. Their composition is known as the Ornstein-Uhlenbeck
operator R and is a self-adjoint operator on L2(Ω) that has the elements of the
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orthogonal basis as its eigenvalues. These operators are the main operators of an
infinite dimensional stochastic calculus of variations called the Malliavin calculus
[50]. Classes of elliptic and evolution stochastic differential equations (SDEs) that
involve operators of the Malliavin calculus within white noise framework were re-
cently studed in [46, 40, 44, 38, 48, 58]. In [42, 43] it was proved that the Malliavin
derivative indicates the rate of change in time between the ordinary product and the
Wick product. In this paper, we consider stochastic optimal control problems with
stochastic perturbations given in an integral form. Moreover, we interpret multi-
plication as a Wick-type multiplication. By use of the Wiener-Itô chaos expansion
representations of integrals we are able to achieve new results.

The chaos expansion methodology is a very useful technique for solving many
types of SDEs [40, 44, 45]. The main statistical properties of the solution, its mean,
variance, higher moments, can be calculated from the formulas involving only the
coefficients of the chaos expansion representation [46, 58]. Moreover, numerical
methods for SDEs and uncertainty quantification based on the polynomial chaos
approach have become very popular in recent years. They are highly efficient in
practical computations providing fast convergence and high accuracy. For instance,
in order to apply the stochastic Galerkin method, the derivation of explicit equations
for the polynomial chaos coefficients is required. This is, as in the general chaos
expansion, highly nontrivial and sometimes impossible. On the other hand, an
analytical representation of the solution allows for all statistical information to be
retrieved directly, e.g. mean, covariance function and even sensitivity coefficients,
see [47, 62] and references therein for a detailed explanation.

In order to illustrate our approach, we consider the stochastic linear quadratic
problem (1)-(2). In [23, 39], the disturbance in the control and the state is given
by a convolution operator. In [44], the authors solve evolution equations involving
stochastic convolution operators by combining the chaos expansion approach and
the deterministic theory of semigroups in white noise framework. In this paper we
will follow the ideas provided in [44] and apply the polynomial chaos expansion
to the state equation, and obtain a system of infinitely many deterministic partial
differential equations in terms of the coefficients of the state and the control. For
each equation we set up a control problem which then gives rise to a system of
infinitely many deterministic LQR problems. Solving each control problem, we find
optimal coefficients for the state y and the control u. Summing up all obtained
optimal coefficients in the chaos expansion representations of the state and the
control we obtain the pair ỹ and ũ. We investigate the optimality of the solutions ỹ
and ũ and then formulate a necessary and sufficient condition for the existence of the
optimal solution of the initial SQLR problem in terms of coefficients, Theorem 3.1
and Theorem 3.2.

In the first part of the paper, we deal with simple coordinatewise operators
(deterministic operators) while in the second part of the paper we extend our ideas
to the fully stochastic problem, i.e. we allow the operators in the state equation and
the cost function to be random. Our approach “chaos expansion+optimization” can
be applied to open loop control systems and in general to optimization problems in
the same setting.

The paper is organized as follows: In Section 2, we briefly introduce basic con-
cepts, results and notations on the infinite dimensional deterministic and stochastic
LQR problems, solutions, white noise analysis and chaos expansions. Then, in Sec-
tion 3 we apply polynomial chaos methodology to the state equation and set up
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linear quadratic control problems in terms of the coefficients and discuss the op-
timality of the solutions expressed in terms of the expansion of these coefficients.
We prove the existence of the optimal control in the feedback form and give the
optimality condition. Applications are included in Section 4, an example of a sto-
chastic optimal control involving state equation with memory. We also discuss our
approach for a general LQR with random coefficients and provide some applica-
tion of an infinite dimensional control system from strucuture-acoustics. Finally, in
Section 5 we discuss the numerical implementation of the proposed approach.

2. Basic concepts and notations. Let U and H be separable Hilbert spaces
of controls and states respectively with norms ‖ · ‖U and ‖ · ‖H, generated by
the corresponding scalar products. Let (Ω,F ,P) be a complete probability space,
(wt)t≥0 be a real valued one-dimensional Brownian motion defined on (Ω,F ,P).
Let (Ft)t≥0 be the complete right continuous σ-algebra generated by (wt)t≥0. We
assume that all function spaces are adapted to the filtration (Ft)t≥0, i.e. we
consider only Ft-predictable processes. Let L2(Ω,P) = L2(Ω,F ,P) be a Hilbert
space of square integrable real valued random variables endowed with the norm
‖F‖2L2(Ω,P) = EP(F 2) = E (F 2), for F ∈ L2(Ω,P), induced by the scalar product

(F,G)L2(Ω,P) = EP (FG), for F,G ∈ L2(Ω,P), and EP denotes the expectation with
respect to the measure P. From here onwards, we will omit the measure and write
in short L2(Ω,P) = L2(P) and E for the expectation.

We denote by L2(Ω,U) a Hilbert space of U-valued square integrable random
variables and by L2([0, T ] × Ω,U) we denote a Hilbert space of square integrable
FT -predictable U-valued stochastic processes u endowed with the norm

‖u‖2L2([0,T ]×Ω,U) =

∫ T

0

E (‖u(t)‖2U ) dt.

Since U is a separable Hilbert space, the spaces L2([0, T ]×Ω,U) and L2([0, T ], L2(Ω,
U)) are isomorphic [43]. Moreover, an H-valued Brownian motion is denoted by
(Wt)t≥0.

We denote by L2([0, T ]×Ω,H) all H-valued stochastic processes X(t, ω) : [0, T ]×
Ω → H such that

∫ T
0
‖X(t)‖2H dt < ∞ a.e. in Ω and X(t, ·) is Ft-measurable

∀t ∈ [0, T ]. We also denote by M2([0, T ] × Ω,H), the space of all strongly mea-
surable H-valued square integrable stochastic processes X : [0, T ] × Ω → H such

that
∫ T

0
E (‖X(t)‖2H) dt < ∞. Let C([0, T ], L2(Ω,H)) be a Hilbert space of FT -

predictable continuous H-valued stochastic processes y endowed with the norm

‖y‖2C([0,T ],L2(Ω,H) = sup
t∈[0,T ]

E (‖y(t)‖2H).

2.1. The SLQR problem: Existence of solution. The infinite dimensional
SLQR optimal control problem on Hilbert spaces is given by the state equation
(1), subject to the quadratic cost functional (2). The dynamics of the problem, the
operator A, is deterministic and represents an infinitesimal generator of a strongly
continuous semigroup (eAt)t≥0 on the state space H. Operators A and C are
operators on H, while operator B is the operator acting from the control space U
to the state space H. We take operator C to be linear and bounded. We assume
operators R and G to be linear and bounded operators on the space W and Z
respectively. We denote by D(S) the domain of a certain operator S, and by S∗ the
adjoint operator of S.
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The aim of the stochastic linear quadratic problem is to minimize the cost func-
tional J(u) over a set of square integrable controls u ∈ L2([0, T ]×Ω,U), which are
adapted to the filtration (Ft)t≥0.

The following theorem gives the conditions for the existence of the optimal control
in the feedback form using the associated Riccati equation. For more details on
existence of mild solutions to the SDE (1) we refer to [13] and for the optimal
control and Riccati feedback synthesis we refer the reader to [27].

Theorem 2.1. ([13, 27]) Let the following assumptions hold:

(a1) The linear operator A is the infinitesimal generator of a C0-semigroup (eAt)t≥0

on the space H.
(a2) The linear control operator B is bounded U → H.
(a3) The operators R, G, C are bounded linear operators.

Then the optimal control u∗ of the linear quadratic problem (1)-(2) satisfies the
feedback characterization in terms of the optimal state y∗

u∗(t) = −B?P(t) y∗(t),

where P(t) is a positive self-adjoint operator solving the Riccati equation

Ṗ(t) + P(t)A + A?P(t) + C?P(t)C + R?R−P(t)BB?P(t) = 0,
P(T ) = G?G.

(5)

2.1.1. Inhomogeneous deterministic LQR problem. Here we invoke the solution to
the inhomogeneous deterministic control problem of minimizing the performance
index

J(u) =

∫ T

0

(‖Rx‖2H + ‖u‖2U ) dt+ ‖Gx(T )‖2H. (6)

subject to the inhomogeneous differential equation

x′(t) = Ax(t) +Bu(t) + f(t), x(0) = x0, (7)

under the same assumptions on A and B. For the homogeneous problem, case
f = 0, we refer to [34], and we refer to [36] where the inhomogeneous optimal
control problem for singular estimate type systems was considered. It is enough
to assume that f ∈ L2((0, T ),H), to obtain the solution for the optimal state and
control (x∗, u∗). The feedback form of the optimal control for the inhomogeneous
problem (6)-(7) is given by

u∗(t) = −B?Pd(t)x∗(t)−B?k(t),

where Pd(t) solves the Riccati equation

〈(Ṗd + PdA+A?Pd +R?R− PdBB?Pd) v, w 〉 = 0,

Pd(T )v = G?Gv
(8)

for all v, w in D(A), while k(t) is a solution to the auxiliary differential equation

k′(t) + (A? − Pd(t)BB?)k(t) + Pd(t)f(t) = 0

with the boundary conditions Pd(T ) = G?G and k(T ) = 0.
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2.1.2. Strong and mild solutions. Let g(t) be a FT -predictable Bochner integrable
H-valued function. An H-valued adapted process y(t) is a strong solution of the
state equation (1) over [0, T ] if:

(1) y(t) takes values in D(A) ∩ D(C) for almost all t and ω;

(2) P (
∫ T

0
‖y(s)‖H + ‖Ay(s)‖H ds <∞) = 1 and P (

∫ T
0
‖Cy(s)‖2H ds <∞) = 1;

(3) for arbitrary t ∈ [0, T ] and P-almost surely, it satisfies the integral equation

y(t) = y0 +

∫ t

0

Ay(s) ds +

∫ t

0

g(s)ds+

∫ t

0

Cy(s) dWs.

An H-valued adapted process y(t) is a mild solution of the state equation

dy(t) = (Ay(t) + g(t)) dt+ Cy(t) dW (t), y(0) = y0,

over [0, T ] if:

(1) y(t) takes values in D(C);

(2) P (
∫ T

0
‖y(s)‖H ds <∞) = 1 and P (

∫ T
0
‖Cy(s)‖2H ds <∞) = 1;

(3) for arbitrary t ∈ [0, T ] and P-almost surely, it satisfies the integral equation

y(t) = eAt y0 +

∫ t

0

eA(t−s)g(s) ds +

∫ t

0

eA(t−s) Cy(s) dWs.

Mild solutions are the limits of strong solutions. In the case of a deterministic state
equation, i.e. for C = 0, a mild solution y ∈ L2([0, T ];H) can be written in the
form

y(t) = eAt y0 +

∫ t

0

eA(t−s)g(s) ds, t ∈ [0, T ].

Note that, under the assumptions of the Theorem 2.1, and given a control u ∈
L2([0, T ];L2(Ω,U)), i.e. g(t) = Bu(t), and the deterministic initial data y0 ∈ H,
there exits a unique mild solution y ∈ L2([0, T ];L2(Ω,H)) to the controlled state
equation (1), cf. [13].

2.2. White noise analysis and chaos expansions. In this section we recall
briefly some basic facts from white noise analysis that are needed in our analysis.

Denote by hn(x) = (−1)ne
x2

2
dn

dxn (e−
x2

2 ), n ∈ N0, N0 = N ∪ {0}, the family of
Hermite polynomials and

ξn(x) =
1

4
√
π
√

(n− 1)!
e−

x2

2 hn−1(
√

2x), n ∈ N,

the family of Hermite functions. The family of Hermite functions forms a complete
orthonormal system in L2(R) with respect to the Lebesgue measure. These func-
tions are the eigenfunctions for the harmonic oscillator in quantum mechanics. The
Hermite functions satisfy the recurrent formula

hn+1(x) = xhn(x) − nhn−1(x), n ∈ N, x ∈ R,
and h′n(x) = nhn−1(x), for n ∈ N and h0(x) = 1, while for the Hermite functions
the identity formula for derivatives

ξ′n(x) =

√
n

2
ξn−1(x) −

√
n+ 1

2
ξn+1(x), x ∈ R

holds. Moreover,

|ξn(x)| ≤
{
cn−

1
2 , |x| ≤ 2

√
n

ce−γx, |x| > 2
√
n
,

270 Section 2.1



STOCHASTIC LINEAR QUADRATIC CONTROL PROBLEM IN HILBERT SPACES 113

for constants c and γ independent of n. Clearly, ξn, n ∈ N belong to the Schwartz
space of rapidly decreasing functions S(R), i.e. they decay faster than polynomial of
any power. The Schwartz spaces can be characterized in terms of the Hermite basis
in the following manner: The space of rapidly decreasing functions as a projective
limit space S(R) =

⋂
l∈N0

Sl(R), where Sl(R) = {f =
∑∞
k=1 ak ξk ∈ L2(R) : ‖f‖2l =∑∞

k=1 a
2
k(2k)l <∞}, l ∈ N0 and the space of tempered distributions as an inductive

limit space S′(R) =
⋃
l∈N0

S−l(R), where S−l(R) = {f =
∑∞
k=1 ak ξk : ‖f‖2l =∑∞

k=1 a
2
k(2k)−l <∞}, l ∈ N0. Also, we have a Gel’ fand triple

S(R) ⊆ L2(R) ⊆ S′(R)

with continuous inclusions.

2.2.1. White noise space. Following the ideas of Hida from [24], we construct white
noise probability space. Particularly, we take E = S(R) the space of rapidly decreas-
ing functions and its dual space E ′ = S′(R) the space of tempered distributions. By
B we denote the Borel sigma algebra generated by the weak topology on S′(R) and
µ the Gaussian white noise measure corresponding to the characteristic function

∫

S′(R)

ei〈ω,φ〉dµ(ω) = e
− 1

2‖φ‖2L2(R) , φ ∈ S(R),

given by the Bochner-Minlos theorem, where 〈ω, φ〉 denotes the dual pairing between
a tempered distribution ω ∈ S′(R) and a test function φ ∈ S(R). Thus, the basic
probability space (Ω,F ,P) is a Gaussian white noise probability space (S′(R),B, µ).

Denote by I = (NN
0 )c the set of sequences of non-negative integers which have

only finitely many nonzero components α = (α1, α2, . . . , αm, 0, 0 . . .), αi ∈ N0,
i = 1, 2, ...,m, m ∈ N. For k ∈ N, the kth unit vector is ε(k) = (0, · · · , 0, 1, 0, · · · )
and the zero vector is 0 = (0, 0, ..., 0, ..). The length of a multi-index α ∈ I is
defined as |α| =

∑∞
k=1 αk. We say α ≥ β if αk ≥ βk, k ∈ N. In that case

α − β = (α1 − β1, α2 − β2, ...). For α < β the difference α − β is not defined.
Particularly, we have α− ε(k) = (α1, ..., αk−1, αk − 1, αk+1, ..., αm, 0, ...), k ∈ N.

We define by

Hα(ω) =

∞∏

k=1

hαk(〈ω, ξk〉), α ∈ I, (9)

the Fourier-Hermite polynomials. They form an orthogonal basis of the separable
Hilbert space L2(Ω) and ‖Hα‖2L2(Ω) = α! holds. In particular, H0(ω) = 1 and for

the kth unit vector Hε(k)(ω) = 〈ω, ξk〉, k ∈ N, see [25].
From the Wiener-Itô chaos expansion theorem it follows that each random va-

riable F ∈ L2(Ω) has a unique representation of the form

F (ω) =
∑

α∈I
aαHα(ω),

ω ∈ Ω, aα ∈ R, α ∈ I, such that it holds ‖F‖2L2(Ω) =
∑
α∈I

a2
α α! <∞.

The space spanned by {Hα : |α| = k} is called the Wiener chaos of order k and
is denoted by Hk, k ∈ N0. Thus, H0 is the set of constant random variables, i.e.
for α = 0 we obtain the expectation of a certain random variable. The space H1

consists of linear combinations of elements 〈ω, ·〉 (for example Brownian motion and
singular white noise are elements of the Wiener chaos of the first order chaos) and

the space
⊕k

j=0Hj is the set of random variables of the form p(〈ω, ·〉), where p is
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a polynomial of degree n ≤ k with real coefficients. This implies that each Hk is a
finite-dimensional subspace of L2(Ω). Moreover,

L2(Ω) =
∞⊕

k=0

Hk,

where the sum is an orthogonal sum [25].

Remark 1. In this paper, the considered white noise space (Ω,F ,P) is the Gauss-
ian white noise space, where the measure P = µ is the Gaussian measure. The
Fourier-Hermite polynomials (9) form an orthogonal basis of the Hilbert space
L2(Ω,P) = L2(Ω, µ). The further analysis will also hold for other types of white
noise spaces or fractional white noise spaces, for which the corresponding Hilbert
space L2(Ω,P) has an orthogonal polynomial basis. For example, for Poisson mea-
sure P = ν, the Charlier polynomials form an orthogonal polynomial basis of the
space L2(Ω, ν). Note here that there exists a unitary mapping between L2(µ) and
L2(ν) [41]. In general, one can work with the Askey-scheme of hypergeometric or-
thogonal polynomials and the Sheffer system [56]. Therefore the presented analysis
can be provided in the same manner in all these cases.

Let H be a real separable Hilbert space with the scalar product < ·, · >H, and let
{ek}k∈N be one orthonormal basis in H. The space of H-valued square integrable
random variables can be represented as L2(Ω,H) =

⊕∞
k=0 Hk(H), i.e. each F ∈

L2(Ω,H) has a chaos expansion representation of the form

F =
∑

α∈I
fαHα =

∑

α∈I

(∑

k∈N
fα,k ek

)
Hα,

for fα =
∑
k∈N

fα,k ek ∈ H, α ∈ I, fα,k ∈ R, such that it holds

‖F‖2L2(Ω,H) =
∑

α∈I
‖fα‖2H α! =

∑

α∈I

∑

k∈N
f2
α,k α! <∞.

One of the typical complications that arise in solving SDEs is the blowup of L2

norms of processes, i.e. their infinite variance. Therefore, the weighted spaces in
which the considered equation has a solution have to be introduced. For example,
such spaces are the Kondratiev spaces (S)−ρ, ρ ∈ [0, 1] of generalized random
variables, which represent the stochastic analogue of Schwartz spaces as generalized
function spaces. The largest space of Kondratiev stochastic distributions is (S)−1,
obtained for ρ = 1.

Now we introduce the Wick product ♦ of random variables. For F =
∑
α∈I fαHα

and G =
∑
β∈I gβHβ the element F♦G is called the Wick product of F and G and

is given in the form

F♦G =
∑

α∈I

∑

β∈I
fα gβ Hα+β =

∑

γ∈I

∑

α≤γ
fα gγ−αHγ . (10)

It is well known that the Kondratiev spaces (S)1 and (S)−1 are closed under the
Wick multiplication. The Wick product is a commutative, associative operation,
distributive with respect to addition. In particular, for the orthogonal polynomial
basis of L2(Ω) we have Hα♦Hβ = Hα+β , for α, β ∈ I. Whenever F , G and F♦G
are integrable it holds E(F♦G) = E(F ) · E(G), without independence requirement
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[25, 43]. The ordinary product F · G of random variables F,G ∈ L2(Ω) is defined
by using the multiplication formula

Hα(ω) ·Hβ(ω) =
∑

0≤γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ(ω),

= F♦G +
∑

0<γ≤min{α,β}
γ!

(
α

γ

)(
β

γ

)
Hα+β−2γ(ω), α, β ∈ I.

2.2.2. Stochastic processes. Since a square integrable stochastic process is defined
as a measurable mapping [0, T ] → L2(Ω), then by a generalized stochastic process
we consider a measurable mapping from [0, T ] into a Kondratiev space (S)−1. The
chaos expansion representation of generalized stochastic process F follows from the
Wiener-Itô chaos expansion theorem. A process F can be represented in the form

Ft(ω) =
∑

α∈I
fα(t)Hα(ω), t ∈ [0, T ] (11)

where fα, α ∈ I are measurable real functions and there exists p ∈ N0 such that
for all t ∈ [0, T ]

‖F‖2(S)−1,−p =
∑

α∈I
|fα(t)|2 (2N)−pα <∞. (12)

If H is a real separable Hilbert space, then the expansion (11) holds also for H-
valued stochastic processes, for fα ∈ H. Particularly, for F ∈ L2([0, T ],H)⊗ (S)−1

the condition (12) transforms to the following

‖F‖2L2([0,T ],H)⊗(S)−1,−p =
∑

α∈I
‖fα‖2L2([0,T ],H) (2N)−pα <∞,

for some p ∈ N0.
For example, one dimensional real valued Brownian motion can be represented

in the chaos expansion form wt(ω) =
∑∞
k=1

(∫ t
0
ξk(s)ds

)
Hε(k)(ω), t ≥ 0. For each t

it is an element of L2(Ω). Singular real valued white noise is defined by the formal
chaos expansion ẇt(ω) =

∑∞
k=1 ξk(t)Hε(k)(ω). From ‖ẇt‖2L2(Ω) =

∑∞
k=1 |ξk(t)|2 >∑∞

k=1
1
k = ∞ and ‖ẇt‖2(S)−1,−p

=
∑∞
k=1 |ξk(t)|2 (2k)−p < ∞, for p > 1 it follows

that singular white noise is an element of the space (S)−1, for all t ≥ 0, see [25]. It
is integrable and the relation d

dtwt = ẇt holds in the distributional sense. Clearly,
both Brownian motion and singular white noise are Gaussian processes.

Let {ek}k∈N be an orthonormal basis of H. Then H-valued white noise process
is given in the form

Ẇt(ω) =
∞∑

k=1

ek(t)Hε(k)(ω). (13)

In general, a chaos expansion representation of an H-valued Gaussian process, that
belongs to the Wiener chaos space of order one is given in the form

Gt(ω) =
∑

k∈N
gk(t)Hε(k)(ω) =

∑

k∈N

(∑

i∈N
gki ei(t)

)
Hε(k)(ω), (14)

with real coefficients gki. If the condition
∑

k∈N
‖gk‖2H <∞ (15)
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is fulfilled, then process G given in the form (14), belongs to the space L2([0, T ]×
Ω,H). If the sum (15) is infinite then the representation (14) is formal, and if
additionally ∑

k∈N
‖gk‖2H (2N)−pε

(k)

=
∑

k∈N
‖gk‖2H (2k)−p <∞,

holds for some p ∈ N0, the process G, for each t, belongs to the Kondratiev space
of stochastic distributions, see [41, 45, 54].

Throughout the paper, we work with Hilbert space valued stochastic processes.
Thus, an H-valued stochastic process v, standard or generalized, has chaos expan-
sion representation of the form

v(t, ω) =
∑

α∈I
vα(t) Hα(ω)

= v0(t) +
∑

k∈N
vε(k)(t)Hε(k)(ω) +

∑

|α|>1

vα(t)Hα(ω), t ∈ [0, T ],
(16)

where the coefficients vα satisfy a certain convergence condition of the form∑
α∈I ‖vα‖2H rα < ∞ for an appropriate family of weights {rα}α∈I . Note that

the deterministic part of v in (16) is the coefficient v0(t), which is the (generalized)
expectation of a process v.

The Wick product of two stochastic processes is defined in an analogous way as
it was defined for random variables and generalized random variables (10), for more
details see [40].

2.2.3. Operators. Following [44], we now introduce two classes of operators that
we are dealing with, namely coordinatewise and simple coordinatewise operators.
An operator O is called a coordinatewise operator if it is composed of a family of
operators {Oα}α∈I , such that for a process v =

∑
α∈I

vαHα it holds

Ov =
∑

α∈I
Oα(vα)Hα.

Moreover, operator O is a simple coordinatewise operator if Oα = O for all α ∈ I,
i.e. if it holds that

Ov =
∑

α∈I
O(vα)Hα = O(v0) +

∑

|α|>0

O(vα)Hα.

2.2.4. Stochastic integration and Wick multiplication. For a square integrable pro-
cess v that is adapted in the filtration (Ft)t≥0 generated by an H-valued Brownian

motion (Wt)t≥0, the corresponding stochastic integral
∫ T

0
vt dWt is considered to

be the Itô integral I(v). When v is not adapted to the filtration, then the stochastic
integral is interpreted as the Itô-Skorokhod integral. From the fundamental theo-
rem of stochastic calculus it follows that the Itô-Skorokhod integral of a H- valued
stochastic process v = vt(ω) can be represented as a Riemann integral of the Wick
product of vt with a singular white noise

δ(v) =

∫ T

0

v dWt(ω) =

∫ T

0

v ♦Ẇt(ω) dt, (17)

where the derivative Ẇt = d
dt Wt is taken in sense of distributions [25].

Thus, for an H-valued adapted processes v the Itô integral and the Skorokhod
integral coincide, i.e. I(v) = δ(v). Note that the Itô integral is an H-valued random
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variable, i.e. I : M2 → L2(Ω). From the Wiener-Itô chaos expansion theorem it
follows that there exists a unique family aα, α ∈ I such that the Itô integral can
be represented in the chaos expansion form

I(v) =
∑

α∈I
aαHα. (18)

On the other hand, applying the property (10) to (17) we obtain a chaos expansion
representation of the Skorokhod integral. Clearly, for v =

∑
α∈I

vα(t)Hα we have

v ♦ Ẇt(ω) =
∑

α∈I
vα(t)Hα(ω)♦

∑

k∈N
ek(t)Hε(k)(ω)

=
∑

α∈I

∑

k∈N
vα(t) ek(t) Hα+ε(k)(ω).

(19)

Thus,

δ(v) =

∫ T

0

vα(t)dWt(ω) =

∫ T

0

vα(t)♦Ẇt(ω)dt =

∫ T

0

∑

α∈I

∑

k∈N
vα(t)ek(t)Hα+ε(k)(ω)

=
∑

α∈I

∑

k∈N

(∫ T

0

vα(t) ek(t) dt

)
Hα+ε(k)(ω) =

∑

α∈I

∑

k∈N
vα,kHα+ε(k)(ω),

(20)

where vα(t) =
∑
k∈N vα,k ek(t) is the chaos expansion representation of vα in the

orthonormal basis with coefficients vα,k =< vα, ek >H∈ R and ω ∈ Ω. Combining
(20) and (18) we obtain the coefficients aα, for all α ∈ I and α > 0 in the form

aα =
∑

k∈N
vα−ε(k),k . (21)

As mentioned in Section 2.2.1, we use the following convention: vα−ε(k) is not defined
if the kth component of α, i.e. αk equals zero. For example, for α = (1, 3, 0, 2, 0, ...)
the coefficient a(1,3,0,2,0,...) is expressed as the sum of three coefficients of the process
v, i.e. from (21) we have

a(1,3,0,2,0,...) = v(0,3,0,2,0,...),1 + v(1,2,0,2,0,...),2 + v(1,3,0,1,0,...),4

Hence we obtained the chaos expansion representation form of the Itô-Skorokhod
integral. Therefore, we are able to represent the stochastic perturbation appearing
in equation (1) explicitly. Note also that δ(v) belongs to the Wiener chaos space of
higher order than v, see also [25, 42].

Therefore, we say that a square integrable H-valued stochastic process v given
in the form v =

∑
α∈I vα(t)Hα(ω), with the coefficients vα(t) =

∑
k∈N vα,k ek(t),

vα ∈ H, vα,k ∈ R for all α ∈ I is integrable in Itô-Skorokhod sense if the condition
∑

α∈I

∑

k∈N
v2
α,k |α| α! < ∞ (22)

holds. Then the Itô-Skorokhod integral of v is of the form (20) and we write
v ∈ Dom(δ).

Theorem 2.2. The Skorokhod integral δ of an H-valued square integrable stochastic
process is a linear and continuous mapping

δ : Dom(δ) → L2(Ω).
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Proof. Let v satisfies the condition (22). Then we have

‖δ(v)‖2L2(Ω) = ‖
∑

α∈I

∑

k∈N
vα,k Hα+ε(k)‖2L2(Ω) =

∑

α∈I

∑

k∈N
v2
α,k (α+ ε(k))!

=
∑

α∈I

∑

k∈N
v2
α,k (αk + 1) α! ≤ 2

∑

α∈I

∑

k∈N
v2
α,k |α| α! <∞,

where we used (α + ε(k))! = (αk + 1)α! and the estimate αk + 1 ≤ 2|α| for all for
α ∈ I, k ∈ N.

Detailed analysis of domain and range of operators of the Malliavin calculus in
spaces of stochastic distributions can be found in [43].

3. Chaos expansions approach. In this section we study the optimal control
problem

min
u

J(u) = E

[∫ T

0

(
‖Ry‖2H + ‖u‖2U

)
dt + ‖GyT ‖2H

]
,

subject to the state equation

dy(t) = [Ay(t) + Bu(t)] dt+ Cy(t) dWt, y(0) = y0, t ∈ [0, T ]

and provide the main results of the paper.
We assume that all the operators are simple coordinatewise operators and:

(A1) Operator A : L2([0, T ] × Ω,D(A)) → L2([0, T ] × Ω,H) is a simple coor-
dinatewise linear operator that corresponds to the deterministic operator
A : D(A) → H, where A is an infinitesimal generator of a C0–semigroup
(eAt)t≥0, defined on a domain D(A) that is dense in H, such that for some
M, θ > 0 we have

‖eAt‖L(H) ≤ Meθt, t ≥ 0.

(A2) The operator C : L2([0, T ]×Ω,H)→ L2([0, T ]×Ω,H) is a simple coordinate-
wise operator corresponding to a bounded deterministic operator C : H → H.

(A3) The control operator B is a simple coordinatewise operator B : L2([0, T ] ×
Ω,U)→ L2([0, T ]×Ω,H) that is defined by a bounded deterministic operator
B : U → H.

(A4) Operators R and G are bounded simple coordinatewise operators correspond-
ing to the deterministic operators R and G respectively.

Thus, the actions of the operators are given by Ay(t, ω) =
∑
α∈I Ayα(t)Hα(ω),

Bu(t) =
∑
α∈I Buα(t)Hα(ω) and Cy(t, ω) =

∑
α∈I Cyα(t)Hα(ω), where

y(t, ω) =
∑

α∈I
yα(t)Hα(ω), u(t, ω) =

∑

α∈I
uα(t)Hα(ω) (23)

such that for all α ∈ I the coefficients yα ∈ L2([0, T ],H) and uα ∈ L2([0, T ],U).
Since the operator C is a bounded linear operator on H while B is bounded from

U to H, then C is a bounded operator on L2([0, T ]×Ω,H), and B is bounded from
L2([0, T ]× Ω,U) into L2([0, T ]× Ω,H).
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Theorem 3.1. Let the assumptions (A1)-(A4) hold and let E‖y0‖2H < ∞. Then,
the optimal control problem (1)-(2) has a unique optimal control u∗ given in the
chaos expansion form

u∗ = −
∑

α∈I
B∗ Pd(t)y

∗
α(t)Hα −

∑

|α|>0

B∗ kα(t)Hα,

where Pd(t) solves the Riccati equation (8), i.e.

Ṗd(t) + Pd(t)A+A?Pd(t) +RR∗ − Pd(t)BB?Pd(t) = 0

Pd(T ) = G?G

and k(t) is a solution to the auxiliary differential equation

k′α(t) + (A? − Pd(t)BB?) kα(t) + Pd(t)
(∑

i∈N
Cyα−ε(i)(t) · ei(t)

)
= 0, (24)

with the terminal condition kα(T ) = 0 and y∗ =
∑
α∈I y

∗
αHα is the optimal state.

Proof. We divide the proof in several steps. First, we analyze the state equation
and apply the chaos expansion method to its equivalent Wick version.

Due to the fundamental theorem of stochastic calculus, an integral of Itô type of
an integrable H-valued stochastic process is equal to the Riemann integral of the
Wick product of a process and H-valued singular white noise (13), i.e.

∫ T

0

Cy(t) dW (t) =

∫ T

0

Cy(t)♦ Ẇ (t) dt,

where W (t) is a H-valued Brownian motion [25]. Therefore, the state equation can
be written in standard differential form, on a class of admissible square integrable
processes, as

ẏ(t) = Ay(t) + Bu(t) + Cy(t)♦Ẇ (t), y(0) = y0, t ∈ [0, T ]. (25)

By applying the chaos expansion method to (25), we obtain a system of deter-
ministic equations. Setting up a control problem for each equation we seek for the
optimal control u and the corresponding optimal state y in the form (23). Thus,
the goal is to obtain the unknown coefficients uα and yα for all α ∈ I.

We apply the chaos expansion method to transform the initial condition y(0) =
y0, for a given H-valued random variable y0. Hence we obtain

∑

α∈I
yα(0)Hα =

∑

α∈I
y0
αHα.

Since the chaos expansion in orthogonal polynomial basis {Hα}α∈I is unique, we
obtain a family of initial conditions for the coefficients of the state

yα(0) = y0
α, for all α ∈ I, where y0

α ∈ H, α ∈ I.
Note that, in case that the initial condition is deterministic y0 ∈ H, then its chaos
expansion representation have only one non-zero element, i.e. y0

0 in the zeroth level.
Next, we apply the chaos expansion method to the state equation (25). The

process y is considered to be differentiable if and only of its coordinates are differ-
entiable deterministic functions and

ẏ =
d

dt
y =

∑

α∈I

d

dt
yα(t)Hα(ω) =

∑

α∈I
y′α(t) Hα(ω),
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we refer to [44]. From the assumption (A2) and the property (19) for each y ∈ D(C)
it follows

C y(t)♦Ẇt =
∑

α∈I

∑

k∈N
(Cyα) ek(t) Hα+ε(k)(ω),

where {ei}i∈N denote the orthonormal basis of functions in H. Then, by (A1) and
(A3), the equation (25) can be written as
∑

α∈I
y′α(t)Hα(ω) =

∑

α∈I
(Ayα(t) +Buα(t)) Hα(ω)+

∑

α∈I

∑

k∈N
(Cyα) ek(t) Hα+ε(k)(ω).

Due to the uniqueness of the chaos expansion representations in orthogonal poly-
nomial basis (9), the previous equation reduces to the system of infinitely many
deterministic initial value problems:

1◦ for α = 0:

y′0(t) = Ay0(t) +Bu0(t), y0(0) = y0
0, (26)

2◦ for |α| > 0:

y′α(t) = Ayα(t) +Buα(t) +
∑

i∈N
Cyα−ε(i)(t) · ei(t), yα(0) = y0

α. (27)

The system of equations (26), (27) is deterministic, and the unknowns correspond to
the coefficients of the control and the state variables. It describes how the stochastic
state equation propagates chaos through different levels. Note that for α = 0, the
equation (26) corresponds to the deterministic version of the problem and the state
y0 is the expected value of y. The terms yα−ε(i)(t) are obtained recursively with
respect to the length of α. The sum in (27) goes through all possible decompositions
of α, i.e., for all j for which α − ε(j) is defined. Therefore, the sum has as many
terms as multi-index α has non-zero components.

Existence and uniqueness of solutions for the systems (26), (27) follows from the
assumptions (A1), (A2) and (A3) made on the operators A, B and C.

Now we set up optimal control problems for each α-level. Considering the deter-
ministic version of the cost function, the problems are defined as:

1◦ for α = 0: the control problem

min
u0

J(u0) =

∫ T

0

(‖Ry0(t)‖2H + ‖u0(t)‖2U ) dt + ‖Gy0(T )‖2H (28)

subject to

y′0(t) = Ay0(t) +Bu0(t), y0(0) = y0
0 , and

2◦ for |α| > 0: the control problem

J(uα) =

∫ T

0

(‖Ryα(t)‖2H + ‖uα(t)‖2U ) dt + ‖Gyα(T )‖2H, (29)

subject to

y′α(t) = Ayα(t) +Buα(t) +
∑

i∈N
Cyα−ε(i)(t) · ei(t), yα(0) = y0

α,

which can be solved by induction on the length of multi-index α ∈ I.
In the next step of the proof we solve the family of deterministic control problems,

i.e. we discuss the solution of the deterministic system of control problems (28)
and (29).
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1◦ For α = 0 the state equation (26) is homogeneous, thus the optimal control
for (26), (28) is given in the feedback form

u∗0(t) = −B? Pd(t) y∗0(t), (30)

where Pd(t) solves the Riccati equation (8).
2◦ For each |α| > 0 the state equation (27) is inhomogeneous and the optimal

control for (29) is given by

u∗α(t) = −B? Pd(t) y∗α(t)−B?kα(t), (31)

where Pd(t) solves the Riccati equation (8), while k(t) is a solution to the
auxiliary differential equation (24) with the terminal condition kα(T ) = 0, as
discussed in Section 2.1.1.

Summing up all the coefficients we obtain the optimal solution (u∗, y∗) represen-
ted in terms of chaos expansions. Thus, the optimal state is given in the form

y∗ =
∑

α∈I
y∗α(t)Hα = y∗0 +

∑

|α|>0

y∗α(t)Hα

and the corresponding optimal control

u∗ =
∑

α∈I
u∗α(t)Hα = u∗0 +

∑

|α|>0

u∗α(t)Hα

= −B? Pd(t) y∗0 −
∑

|α|>0

B? Pd(t) y
∗
α(t)Hα −

∑

|α|>0

B?kα(t)

= −B? Pd y
∗(t) − B?K,

(32)

where Pd(t) is a simple coordinatewise operator corresponding to the deterministic
operator Pd and K is a stochastic process with coefficients kα(t), i.e. of the form
K =

∑
α∈I

kα(t)Hα, with k0 = 0.

In the next step we prove the optimality of the obtained solution. Under the
assumptions of Theorem 2.1, the optimal control problem (1)-(2) is given in feedback
form by

u∗(t) = −B?P(t) y∗(t), (33)

with a positive self-adjoint operator P(t) solving the stochastic Riccati equation
(5). Since the state equations (1) and (25) are equivalent, we are going to interpret
the optimal solution (33), involving the Riccati operator P(t) in terms of chaos
expansions. Thus, J(u∗) = min

u
J(u), holds for u∗ of the form (33).

On the other hand, the stochastic cost function J is related with the deterministic
cost function J by,

J(u) = E

[∫ T

0

(
‖Ry‖2W + ‖u‖2U

)
dt + ‖GyT ‖2Z

]

= E(

∫ T

0

‖Ry‖2W dt) + E(

∫ T

0

‖u‖2U dt) dt + E (‖GyT ‖2Z)

=
∑

α∈I
α! ‖Ryα‖2L2([0,T ],W) +

∑

α∈I
α! ‖uα‖2L2([0,T ],U) +

∑

α∈I
α! ‖Gyα(T )‖2H
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=
∑

α∈I
α!
(
‖Ryα‖2L2([0,T ],W) + ‖uα‖2L2([0,T ],U) + ‖Gyα(T )‖2H

)

=
∑

α∈I
α! J(uα).

We used the fact that {Hα}α∈I is an orthogonal basis of the Hilbert space of square
integrable random variables, i.e. E(HαHβ) = α! δα,β , where δα,β is the Kronecker
delta symbol and also the fact that the norms

‖u‖2L2([0,T ]×Ω,U) = E(

∫ T

0

‖u(t)‖2U dt) =
∑

α∈I
α! ‖uα‖2L2([0,T ],U)

and

‖Ry‖2L2([0,T ]×Ω,W) = E(

∫ T

0

‖Ry(t)‖2L2(Ω,W) dt) =
∑

α∈I
α! ‖Ryα‖2(L2([0,T ],W)

can be represented in terms of the coefficients of processes y and u. Thus

J(u∗) = min
u

J(u) = min
u

∑

α∈I
α! J(uα) =

∑

α∈I
α! min

uα
J(uα) =

∑

α∈I
α! J(u∗α).

and therefore

u∗(t, ω) =
∑

α∈I
u∗α(t)Hα(ω), (34)

i.e. the optimal control obtained via direct Riccati approach u∗ coincides with the
optimal control obtained via chaos expansion approach

∑
α∈I u

∗
α(t)Hα(ω). More-

over, the optimal states are the same and thus the well-posedness of the solution of
the optimal state equation obtained via chaos expansion approach follows.

As a final step in the proof, we provide the convergence of the chaos expansions
in the optimal state. After applying the chaos expansions to the original state
equation we obtained the system of deterministic problems (26) and (27). For each
state equation in this system we formulated an optimal control problem for which
the solution has the feedback form (30) and (31). The set of optimal controls for
the resulting system were then used to determine the set of optimal states via the
system of equations

y′0(t) = (A−BB? Pd(t)) y0(t)

y′α(t) = (A−BB?Pd(t)) yα(t)− BB?kα(t) +
∑

i∈N
Cyα−ε(i)(t) ei(t), |α| ≥ 1, (35)

with the initial conditions yα(0) = y0
α, for all α ∈ I.

We assumed in (A1) that the operator A is an infinitesimal generator of a strongly
continuous semigroup {St}t≥0 = (eAt)t≥0 such that ‖eAt‖L(H) ≤ Meθt holds for
some positive constants M and θ. Since the operators B, B∗ and Pd are determin-
istic and bounded, the operator BB∗Pd is also bounded and thus A+BB∗Pd is an
infinitesimal generator of a strongly evolution (Tt)t≥0 such that

‖Tt‖L(H) ≤Meθt+M‖BB
∗Pd‖L(H)t, for all t ≥ 0.

For more details we refer to [51].
Consider now a small interval [0, T0], for fixed T0 ∈ (0, T ]. Denote by

M1(t) = Meθt+M‖BB
∗Pd‖L(H)t and M2(t) =

M2 e2(θ+M‖BB∗Pd‖L(H)) t

(θ + M‖BB∗Pd‖L(H))2
,
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for t ∈ (0, T0], so that cT0M2(T0)‖C‖2 ≤ 1. In (A3) we assumed that C is a
bounded operator and also that for fixed control u it holds Cy ∈ Dom(δ). Thus,
the condition (22) holds for Cy.

Therefore, the mild solution of (35) is given in the form

y0(t) = Tty
0
0

yα(t) = Tt y
0
α +

∫ t

0

Tt−s

(∑

i∈N
Cyα−ε(i)(s) ei(s) − BB?kα(s)

)
ds, |α| ≥ 1, t ≥ 0.

Since y0 ∈ L2(Ω;H), from the initial condition y(0) = y0 it follows E ‖y0‖2H =
‖y0‖2H < ∞. Operators C, B and B∗ are bounded operators, and therefore the
inhomogeneity part of (35) belongs to the space L2(H), where functions kα, α ∈ I
are given in (24). Thus it holds

‖y‖2L2(Ω,H) =
∑

α∈I
α! ‖yα‖2H = ‖y0‖2H +

∑

|α|≥1

α! ‖yα‖2H

≤ 2M2
1 (T0) · ‖y0

0‖2H + 4M2
1 (T0) ·

∑

|α|≥1

α! ‖y0
α‖2H

+ 4
∑

|α|≥1

α!

∫ t

0

‖Tt−s‖2 ‖
∑

i∈N
(Cyα−ε(i))i −BB?kα(s)‖2ds

≤4M2
1 (T0) · ‖y0‖2L2(Ω;H)

+ cT0M2(T0) ‖C‖2
(∑

α∈I
α! ‖yα‖2H + ‖B‖2‖B∗‖2 ‖K‖2L2([0,T0]×Ω,H)

)
,

where we used the estimate∑

|α|≥1

∑

i∈N

(
(Cyα−ε(i))

)2 ≤ ‖C‖2
∑

α∈I
α! ‖yα‖2 = ‖C‖2 ‖y‖2L2([0,T0]×Ω,H).

It holds K ∈ L2([0, T0] × Ω;H) and also Cy ∈ Dom(δ). Therefore, we group all
the summands with the term ‖y‖2 = ‖y‖2L2([0,T0]×Ω,H) on the left hand side of the

inequality and obtain

‖y‖2L2([0,T0]×Ω,H) ·
(
1− cT0M2(T0) ‖C‖2

)
≤ 4M2

1 (T0) ‖y0‖2L2(Ω,H)

+ cT0M2(T0)‖C‖2‖B‖2‖B∗‖2 ‖K‖2L2([0,T0]×Ω,H).

From the smallness assumption, the boundedness of y on (0, T0] follows. The interval
(0, T ] can be covered by the intervals of the form [kT0, (k + 1)T0] in finitely many
steps. Thus, y ∈ L2([0, T ]× Ω,H).

The importance of the convergence result can be seen in its applications for the
error analysis that arises in the actual truncation when implementing the algorithm
numerically.

3.1. Characterization of optimality. The optimality of our approach (34) can
be characterized in terms of the solution of the stochastic Riccati equation (5). The
following theorem summarizes our result.

Theorem 3.2. Let conditions (A1)-(A4) hold. Assume that y0 is either determin-
istic or a square integrable H-valued random variable, i.e. it holds E‖y0‖2H < ∞
and assume P is a simple coordinatewise operator that corresponds to operator P .
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Then, the solution of the optimal control of the problem (1)-(2) obtained via chaos
expansion (32) is equal to the one obtained via Riccati approach (33) if and only if

C?P (t)C y∗α(t) = P (t)(
∑

i∈N
Cy∗α−ε(i)(t) · ei(t)), |α| > 0, k ∈ N (36)

hold for all t ∈ [0, T ].

Proof. Let us assume first that (32) is equal to (33), then

−B? Pd y
∗(t) = −B? P y∗(t) − B?K

we obtain

(P(t)−Pd) y
∗(t) = K.

The difference between P(t) and Pd(t) is expressed through the stochastic pro-
cess K, which comes from the influence of inhomogeneities. Assuming that P
is a simple coordinatewise operator that corresponds to operator P , we will be
able to see the action of stochastic operator P on the deterministic level, i.e.
level of coefficients. Thus, for y given in the chaos expansion form (23) and
P(t) y∗ =

∑
α∈I P (t) y∗α(t)Hα it holds
∑

α∈I
(P (t)− Pd(t)) y∗α(t)Hα =

∑

α∈I,|α|>0

P (t) kα(t)Hα. (37)

Since k0(t) = 0 it follows P (t) = Pd(t), for t ∈ [0, T ] and for |α| > 0

(P (t)− Pd(t)) y∗α(t) = kα(t),

such that (24) with the condition kα(T ) = 0 holds. We differentiate (37) and
substitute (24), together with (5), (8) and (27). Thus, after all calculations we
obtain for |α| = 0

(P (t)− Pd(t)) y∗0(t) = 0

and for |α| > 0

C?P (t)C y∗α(t) = P (t)
(∑

i∈N
Cy∗α−ε(i)(t) · ei(t)

)
, k ∈ N.

Note that assuming (36) and P is a simple coordinatewise operator that corresponds
to operator P , we can go backwards in the analysis and prove that the optimal
controls (33) and (32) are the same.

The condition (36) for |α| = 1, i.e. α = ε(j), j ∈ N reduces to the condition

C?P (t)C y∗ε(j)(t) = P (t)(Cy0(t) · ej(t)),
while for |α| = 2 it reduces to one of the following situations: for α = 2ε(j), j ∈ N
it becomes

C?P (t)C y∗2ε(j)(t) = P (t)(Cy∗ε(j)(t) · ej(t)),
and for α = ε(j) + ε(k), j, k ∈ N, j 6= k it becomes

C?P (t)C y∗2ε(j)(t) = P (t)(Cy∗ε(j)(t) · ξk(t) + Cy∗ε(k)(t) · ej(t))
and so on. The recurrence involved in (36), represents a memory property in the
noise. This concept has been recently studied in [11]. In the next section we study
a control problem with a state equation involving noise with memory.
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Remark 2. The assumptions (A1)-(A4) from Theorem 3.2 hold for many appli-
cations and they are standard in optimal control [34, 35]. On the other hand, due
to the fact that the Riccati equation (5) is deterministic, its solution is naturally
related to P, where P is a simple coordinatewise operator (Section 2.2.3). The
latter is not necessary true for stochastic Riccati equations (49) (Section 4.2), there
P might not necessary be a simple coordinstewise operator.

Remark 3. Condition (36) which characterizes optimality represents the action of
the stochastic Riccati operator in each level of the noise. Note that the stochastic
Riccati equation (5) and the deterministic one (8) differ only in the term C?P (t)C,
i.e. the operator C?P (t)C captures the stochasticity of the equation.

3.2. SLQR problem with disturbance in the state and the control. In
general, allowing disturbance in both the state and the control, the state equation
can be written as

dy(t) = [Ay(t) + Bu(t)] dt+ [Cy(t) + Du(t)] dWt, y(0) = y0. (38)

where D is a simple coordinatewise operator related to a bounded operator D.
Similar to (25), equation (38) can be written as

ẏ(t) = Ay(t) + Bu(t) + (Cy(t) + Du(t))♦ Ẇ (t), y(0) = y0,

Therefore, by applying the chaos expansion method, one obtains the following de-
terministic system of equations:

a) for |α| = 0: y′0(t) = Ay0(t) +Bu0(t), y0(0) = y0
0,

b) for |α| > 0:

y′α(t) = Ayα(t) +Buα(t) +
∑

i∈N
Cyα−ε(i) ei(t) +

∑

i∈N
Duα−ε(i) ei(t), yα(0) = y0

α.

Then, the optimal states have the form:

1◦ for |α| = 0: y′0(t) = (A−BB? P )y0(t), y0(0) = y0
0,

2◦ for |α| > 0:

y′α(t) = (A−BB?P )yα(t) +
∑

i∈N
(C −DB?P ) yα−ε(i)ei(t)

−
∑

i∈N
DB?k ei(t)−BB? k(t), yα(0) = y0

α.

Note that, our approach is optimal in this case as well. On the other hand, a direct
Riccati approach will lead to an optimal state given by

dy(t) =
(
A−B(I +D?P (t)D)−1(B?P (t) +D?P (t)C)

)
y(t) dt

+
(
C −D(I +D?P (t)D)−1(B?P (t) +D?P (t)C)

)
y(t) dWt,

y(0) = y0,

where P (t) is the solution of

〈(Ṗ + PA+A?P + C?PC +R?R

− (B?P +D?PC)?(I +D?PD)−1(B?P +D?PC)v, w〉 = 0

P (T )v = G?Gv,

(39)

for all v, w in D(A).
From the computational point of view, our approach has a lot of potential as it

avoids solving (39), and will be explored in future work. Finally, we point out that
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a convergence framework for the stochastic linear problem in the general framework
of singular estimates has been developed recently in [39].

4. Applications. In this section we extend the results of Section 3 to optimal
control problems with state equations involving memory noise. We also consider
the state equations with random coefficients following the framework of [20, 21] and
give an example of a control system from structure acoustics.

4.1. State equation with memory noise. We apply the introduced method to
optimal control problems involving noise with memory. Particularly, we study the
SLQR problem with the state equation of the form

ẏ(t) = Ay(t) + Bu(t) + δ(Cy(t)), y(0) = y0, t ∈ [0, T ], (40)

subject to the cost functional J(u) given by (2). Here δ denotes the Itô-Skorokhod
integral. In the same setting, we can also consider the state equation in more general
form

y′(t) = Ay(t) + Bu(t) + δt(Cy(t)), y(0) = y0, t ∈ [0, T ], (41)

where δt(f) =
∫ t

0
f(s) dWs, t ∈ [0, T ] is the integral Itô-Skorokhod process. For

t = T , δ = δT . Note that solving the problem for δ, the problem for δt is straight
forward since δt(f) = δ(f χ[0,t]), t ∈ [0, T ], where χ[0,t] is the characteristic function
on the interval [0, t], i.e. for t ∈ [0, T ]

δt(Cy) =

∫ t

0

Cy(s) dWs =

∫ T

0

Cy(s)χ[0,t](s) dWs = δ(Cy(s)χ[0,t](s)).

As discussed before, the fact that y appears in the stochastic integral implies
that the noise contains a memory property [11]. The disturbance δ is a zero mean
random variable for all t ∈ [0, T ], while δt is a zero mean stochastic process.

There exists an operator C̃ such that there is a one to one correspondence between
C̃♦ and δ ◦ C, i.e.

C̃♦ y = δ(Cy) .

Therefore, (40) can be written as

ẏ(t) = Ay(t) + Bu(t) + C̃♦ y, y(0) = y0, (42)

i.e. there is a correspondence between the Wick form perturbation and the Sko-
rokhod integral representation [44].

In the following, we apply the chaos expansion approach for solving the SLQR
problem related to (40) and compare the solution to the actual solution obtained by
a direct Riccati approach applied to equation (42). Since there is no explicit form

of C̃, the suggested polynomial chaos approach for solving the problem is quite
promising.

Similarly as in the previous section, we apply the chaos expansion method to (40)
and thus transform the equation to a corresponding infinite family of deterministic
equations. We look for the optimal coefficients uα and yα, α ∈ I. Then, we obtain
the system of deterministic optimal control problems

1◦ for α = 0: the control problem

min
u0

J(u0) =

∫ T

0

(‖Ry0(t)‖2H + ‖u0(t)‖2U ) dt + ‖Gy0(T )‖2H
subject to

y′0(t) = Ay0(t) +Bu0(t), y0(0) = y0
0, (43)
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2◦ for |α| > 0: the control problem

J(uα) =

∫ T

0

(‖Ryα(t)‖2H + ‖uα(t)‖2U ) dt + ‖Gyα(T )‖2H,

subject to

y′α(t) = Ayα(t) +Buα(t) +
∑

i∈N
(Cyα−ε(i)(t))i, yα(0) = y0

α, (44)

where (Cyα−ε(i)(t))i denotes the ith component of Cyα−ε(i) , i.e. a real number,
obtained in the previous inductive step. The sum is finite with as many summands
as multi-index α has non-zero components.

For |α| = 0 the state equation in (43) is homogeneous and the optimal control
for the state equation is given in the feedback form (30), with positive self adjoint
operator Pd that satisfies the Riccati equation (8). On the other hand, for each
|α| > 0 the state equation in (44) is inhomogeneous with the inhomogeneity term∑
i∈N (Cyα−ε(i))i. Thus, the optimal control is given by (31), where kα are the

solutions to the auxiliary differential equations

k′α(t) + (A? − Pd(t)BB?)kα(t) + Pd(t)
(∑

i∈N
(Cyα−ε(i)(t))i

)
= 0, (45)

for |α| > 0, with the final condition kα(T ) = 0. Summing up all the coefficients,
obtained as optimal on each level α, the optimal state is then given in the form

y∗ =
∑

α∈I
y∗α(t)Hα = y∗0 +

∑

|α|>0

y∗α(t)Hα

and the corresponding optimal control u∗ =
∑
α∈I

u∗α(t)Hα = u∗0 +
∑
|α|>0

u∗α(t)Hα.

The optimal state in each level is given by:

1◦ for |α| = 0, i.e. α = (0, 0, ...) = 0:

y′0(t) = (A−BB? Pd(t)) y0(t), y0(0) = y0
0,

2◦ for |α| ≥ 0:

y′α(t) = (A−BB?Pd(t)) yα(t)− BB?kα(t) +
∑

i∈N
(Cyα−ε(i)(t))i, yα(0) = y0

α,

where kα are solutions of (24). Thus, the optimal state computed by chaos expan-
sion corresponds to

ẏ(t) = (A − BB?Pd(t)) y(t) + δ(Cy(t)) − BB?K, y(0) = y0, (46)

where BB?Pd is a simple coordinatewise operator given through the deterministic
operator (BB?Pd), where Pd is the solution of (8) and K is a stochastic function
given by the expansion

K =
∑

α∈I
kα(t)Hα = kε(k)(t)Hε(k) +

∑

|α|>1

kα(t)Hα,

where k0 = 0 and kα are given by (45) respectively. Equation (46) represents the
optimal state when we control each level of the chaos expansion. On the other hand,
a direct Riccati approach for the SLQR problem related to (42) or (41), up to our
knowledge has not been studied in the literature.

Section 2.1 285
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Finally, we point out that the convergence of the chaos expansions can be es-
tablished using a similar argument to the one described in the proof of Theorem
3.1.

4.2. Random coefficients. Let us consider a stochastic linear quadratic control
problem of the form

dy(t) = [(Ā + A])y(t) + Bu(t)] dt + Cy(t) dW (t), y(0) = y0, (47)

subject to the performance index

J(u) = E

[∫ T

0

(‖Ry‖2H + ‖u‖2U ) dt+ ‖GyT ‖2Z

]
, (48)

where Ā is independent of ω and is the infinitesimal generator of a C0-semigroup,
A], B, C, R and G are allowed to be random. The optimal control is given in
feedback form in terms of an operator P(t) solving the backward stochastic Riccati
equation

−dP = (R?R + Ā?P + PĀ−P B B? P + A?
]P + PA]) dt

+Tr (C? P C + C? Q + QC) dt + Q dW (t),
(49)

with P0(T ) = G? G. The two operators P and Q are unknown, and Q is sometimes
referred to as a martingale term, see [20, 21] and references therein.

If the operators involved have chaos expansion representations, the same ideas
can be applied to fully stochastic problem. Let us consider the operator Ā to
be a coordinatewise operator, i.e. an operator composed of a family of operators
{Āα}α∈I , where Āα are infinitesimal generators of C0-semigroups defined on a com-
mon domain that is dense in H and

Ā(y) =
∑

α∈I
Āα(y)Hα.

For the case when Ā is independent on randomness, only nonzero operator in the
family {Āα}α∈I is obtained for |α| = 0, i.e. Ā0 = Ā and Āα = 0 for all |α| > 0.

Operators A], B, C, R and G are also coordinatewise operators composed by
the families of deterministic operators {A]α}α∈I , {Bα}α∈I , {Cα}α∈I , {Rα}α∈I and
{Gα}α∈I respectively, and

A](F ) =
∑

α∈I
A]α(fα)Hα, B(U) =

∑

α∈I
Bα(uα)Hα, C(F ) =

∑

α∈I
Cα(fα)Hα,

R(F ) =
∑

α∈I
Rα(fα)Hα, G(F ) =

∑

α∈I
Gα(fα)Hα,

for a H-valued process F =
∑
α∈I fαHα, fα ∈ H and U-valued process

U =
∑
α∈I uαHα, uα ∈ U .

Applying the polynomial chaos method to (47), we obtain:

a) for |α| = 0, i.e. α = (0, 0, ...) = 0:

y′(0,0,...)(t) = (Ā0 +A]0)y(0,0,...)(t) +B0u(0,0,...)(t), y0(0) = y0
0, (50)

b) for |α| > 0:

y′α(t) = (Āα +A]α)yα(t) +Bαuα(t) +
∑

i∈N
(Cαyα−ε(i))i, yα(0) = y0

α. (51)
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Setting up control problems at each level for (50) and (51), as explained in Section
4.1, in analogy to (46) the optimal state is given by

dy(t) =
(
(Ā + A] −BB?P̄)y(t)

)
dt+ Cy(t)♦Ẇ (t) − BB?K̄, y(0) = y0,

where P̄ is a coordinatewise operator composed by the family {Pα}α∈I . The ope-
rators Pα correspond to the solution of the Riccati equation for the coefficients Āα,
A]α, Bα, Cα, Rα and Gα, i.e. it holds

Ṗα + Pα(Aα +A]α) + (Aα +A]α)?Pα + R?αRα − (PαBαB
?
αPα) = 0

Pα(T ) = G?αGα
(52)

for each α ∈ I. Note that (52) is a deterministic Riccati equation for each α. Also
K̄ is a H-valued stochastic process given by

K̄ =
∑

α∈I
kαHα = kε(i) Hε(i) +

∑

|α|>1

kαHα,

where k0 = 0 and kα, for |α| ≥ 1 are given by

k′α(t) + (A?α − Pα(t)BαB
?
α) kα(t) + Pα(t)

(∑

i∈N
Cαxα−ε(i) ei

)
= 0. (53)

Equations (53) have a final condition equal to zero. Therefore, in order to control
the system (47)-(48) we control each level through the chaos expansion. This implies
solving a deterministic control problem at each level. Although theoretically we have

to solve all these problems, numerically we can solve (m+p)!
m!p! problems in order to

achieve convergence. The value of p is in general equal to the number of uncorrelated
random variables in the system and m is typically chosen by some heuristic method
[46, 58, 62].

4.3. A specific example from SPDE control. The approach outlined in this
paper can be applied to a large class of systems in engineering which are mathemat-
ically modeled by partial differential equations. Control problems with stochastic
coefficients also arise naturally in mathematical finance. In particular, the linear
quadratic optimal control problem with stochastic coefficients and the correspond-
ing backward stochastic Riccati equations (BSREs) have been extensively studied
in the finite-horizon and finite-dimensional case [9, 10, 28, 29, 30, 31, 52, 53]. Note
that our approach is also valid for finite-dimensional systems since the polynomial
chaos method can be applied to systems governed by random matrices.

As an example, we include a control system from structure acoustics which has
been well studied in the deterministic setting [2, 3, 4, 37]. The system consists of
an acoustic chamber with piezoelectric control mechanism applied to the flexible
wall of the chamber. Mathematically, the system is modelled by an open region
Ω ⊂ R3 with boundary ∂Ω = Γ0

⋃
Γ1 representing a rigid wall and a flexible wall

respectively. The acoustics in the chamber are modelled by a wave equation in the
variable z which denotes acoustic pressure

dzt = c2∆z dt+ (∇z + zt + w + wt) dWt on Ω× [0, T ],

where c is the speed of sound and Wt is a one dimensional Wiener process on a
complete probability space. On the other hand, the dynamics of the elastic wall Γ1,
are modelled by a damped second order equation in the displacement variable w

dwt + ∆2w dt+ ρ∆wt dt = ρ1zt dt+
∑

J

ajujδ
′
ξj dt+ (∇w + wt + z + zt) dWt
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in Γ1 × [0, T ], where ρ, ρ1 > 0. The piezoelectric control mechanism is mathemat-
ically represented by the derivatives of Dirac delta functions supported at curves
ξj with the controls u ∈ RJ while aj(x) are smooth functions on Γ1. The acoustic
pressure satisfies the boundary conditions

∂

∂ν
z + d1z = 0 in Γ0 × [0, T ]

∂

∂ν
z = wt in Γ1 × [0, T ],

while the clamped boundary conditions are imposed on the boundary of Γ1 denoted
by ∂Γ1

w =
∂

∂ν
w = 0 in ∂Γ1 × [0, T ].

We consider the system subject to the initial conditions z0 ∈ H1(Ω), z1 ∈ L2(Ω)
and w0 ∈ H2(Γ1) ∩H1

0 (Γ1) and w1 ∈ L2(Ω).
The multiplicative noise in the system is captured by a bounded operator C on

the finite energy space. The control objective is to minimize the functional

J(z, z1, w, w1, u) =

E

[∫ T

0

(
‖∆w‖2L2(Γ1) + ‖wt‖2L2(Γ1) + ‖∇z‖2L2(Ω) + ‖zt‖2L2(Ω) +

∑

J

|uj(t)|2
)
dt

]

over all possible controls u = (u1, u2, ...., uJ) ∈ L2([0, T ];RJ). It is well known that
the deterministic system is driven by a C0 semigroup (eAt) with a generator A on
the finite energy space H [2]. Although, the control operator B here is not bounded
and takes values in a larger dual space B : RJ → [D(A?)]′, it exhibits the so called
singular estimate condition which is satisfied by the control-to-state map

‖eAtBu‖H ≤
c|u|
t3/8+ε

,

for all u ∈ RJ [2]. There has been many works in the literature addressing Riccati
feedback synthesis of such control systems known as singular estimate control sys-
tems in the deterministic case [36] and references therein, and more recently in the
stochastic case [22, 23]. The possible extension and application of the polynomial
chaos approach to this class of control systems which typically involve boundary or
point control of systems of coupled hyperbolic-parabolic partial differential equa-
tions with noise, would be numerically very promising.

5. Numerical approximation. Numerical methods for stochastic differential
equations and uncertainty quantification based on the polynomial chaos approach
have become popular in recent years. They are known as stochastic Galerkin meth-
ods and they are highly efficient in practical computations providing fast conver-
gence and high accuracy [62]. In the following, we summarize the numerical frame-
work proposed in this paper for solving the SLQR problem using polynomial chaos
expansion.

First of all, we use a finite dimensional approximation of the Fourier-Hermite
orthogonal polynomials {Hα}α∈I [62]. This is standard in the so-called stochastic
Galerkin methods. Then, we set up deterministic control problems for each level
(28) and (29). We solve the control problem via Riccati approach and compute
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the optimal state for each level. We then compute the approximate optimal state
and optimal control for the original problem. The main steps are sketched in the
following Algorithm:

Main steps of the stochastic Galerkin method for SLQR problems

1: Choose finite set of polynomials Hα and truncate the random series to a finite

random sum.

2: Set up deterministic control problems for each level of the chaos expansion

(26) and (27).

3: Compute the optimal control via Riccati approach for each level.

4: Compute the optimal state for each level.

5: Compute the approximate statistics of the solutions from obtained coefficients.

6: Generate Hα and compute the approximate optimal state and optimal control.

We denote by Im,p the set of α = (α1, ..., αm, 0, 0, ...) ∈ I with m = max{i ∈ N :
αi 6= 0} such that |α| ≤ p. As a first step, we represent y in its truncated polynomial
chaos expansion form ỹ, i.e. we approximate the solution with the chaos expansion
in ⊕pk=0Hk with m random variables ỹ(t, ω) =

∑
α∈Im,p ỹα(t)Hα(ω); the previous

sum has P = (m+p)!
m!p! terms. Once the coefficients of the expansion ỹ are obtained,

we are able to compute all the moments of the random field, e.g. the expectation
Ey = y0 and the variance of the solution V ar(ỹ) =

∑
α∈Im,p α! ỹ2

α.

We would like to underline that the polynomial chaos expansion converges quite
fast, i.e even small values of p may lead to very accurate approximation. The error
generated by the truncation of the chaos expansion, in L2(Ω,H) is

E2 = ‖y(x, ω)− ỹ(x, ω)‖2L2(Ω,H) = E‖y(x, ω)− ỹ(x, ω)‖2H =
∑

α∈I\Im,p
α! ‖yα(x)‖2H,

for x ∈ D. Note that if instead of a Gaussian random variable, a stochastic genera-
lized function is considered, i.e. when the coefficients are singular, the error E2 → 0
converges in a certain space of weighted generalized stochastic functions.

Finally, we would like to point out that efficient solvers for differential Riccati
equations have been proposed in recent years [1, 5, 6, 7, 33]. The potential of this
approach is notable. An efficient numerical implementation is work in progress and
will be reported somewhere else.
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Solving Stochastic LQR Problems by
Polynomial Chaos

Tijana Levajković , Hermann Mena, and Lena-Maria Pfurtscheller

Abstract—We consider the infinite dimensional
stochastic linear quadratic optimal control problem
for the infinite horizon case. We provide a numerical frame-
work for solving this problem using a polynomial chaos
expansion approach. By applying the method of chaos
expansions to the state equation, we obtain a system of
deterministic partial differential equations in terms of the
coefficients of the state and the control variables. We set
up a control problem for each equation, which results
in a set of infinite horizon deterministic linear quadratic
regulator problems. We prove the optimality of the solution
expressed in terms of the expansion of these coefficients
compared to the direct approach. We perform numerical
experiments which validate our approach and compare the
finite and infinite horizon case.

Index Terms—Stochastic optimal control, computational
methods.

I. INTRODUCTION

THE FINITE dimensional stochastic linear quadratic
regulator (SLQR) problem has been deeply studied, a

complete survey can be found in, e.g., [26]. Several early
works in the literature have addressed stochastic optimization
in infinite dimensions. A complete Riccati feedback synthe-
sis of the infinite dimensional problem with disturbance in
the state in the finite horizon case has been addressed by Da
Prato [7]. Recently, a theoretical framework for this problem
has been laid for the general case of singular estimates control
systems in the presence of noise in the control and consider-
ing a finite time penalization in the performance index [13].
Moreover, an approximation scheme for solving the control
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problem and the associated differential Riccati equation (DRE)
has been proposed in [17]. In this letter we consider a poly-
nomial chaos approach (also known as the method of chaos
expansions) for solving infinite dimensional SLQR problems
for the infinite horizon case.

The results of this letter can be obtained in a complete
analogous way for finite dimensional systems. However, we
are interested in applications arising from infinite dimensional
systems, e.g., in the optimal control of the stochastic

heat transfer. Moreover, working in the infinite dimen-
sional framework allows one to combine our approach
directly with numerical schemes for operator equations,
e.g., [5], [10], and [21]. The latter would not be possible by
using a finite dimensional setting.

The infinite dimensional SLQR problem consists of the state
equation

dy(t) = (Ay(t) + Bu(t)) dt + Cy(t) dW(t), t ≥ 0,

y(0) = y0 (1)

defined on the state space H, where A and C are operators
on H, B acts from the control space U to the state space
H and y0 is a random variable. Spaces H and U are Hilbert
spaces and {W(t)}t≥0 is a H-valued Wiener process on a given
probability space (!,F , µ) in sense of [9]. The operators B
and C are considered to be linear and bounded, while A could
be unbounded. The objective is to minimize the functional

J(u) = E
[∫ ∞

0

(
∥Ry∥2

H + ∥u∥2
U
)

dt
]

(2)

over all possible controls u and subject to the condition that
y satisfies the state equation (1). The operator R is bounded
and takes values in the Hilbert space H and E denotes the
expectation with respect to the probability measure µ. A con-
trol process u∗ is called optimal if it minimizes the cost (2)
over all admissible control processes u ∈ A, i.e., for which it
holds

min
u∈A

J(u) = J(u∗).

The corresponding trajectory is denoted by y∗. The pair of
stochastic processes (y∗, u∗) is called the optimal pair.

Polynomial chaos was first introduced by Wiener in
1938 and was further developed by Itô and many other
authors. It has recently been applied to solving different
types of stochastic (partial) differential equations (S(P)DEs),

2475-1456 c⃝ 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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see [15], [18]. The basic idea is to construct the solution of
the considered SPDE as a Fourier series in terms of a Hilbert
space basis of orthogonal stochastic polynomials, resulting in a
system of deterministic equations for the coefficients. Thus, a
stochastic system can be represented as a deterministic system
with higher dimensionality, however, the computational cost
is reduced since there is no need in extensive sampling to
capture the uncertainty. Moreover, the first moments of the
optimal solution can be computed easily. This approach has
already been applied in [14] and [16] for stochastic optimal
control problems. This letter generalizes the results for the
finite horizon case presented in [16] to the infinite horizon case
and provides numerical examples that validate the proposed
approach.

II. SOLUTION OF THE SLQR PROBLEM

In this section we discuss the SLQR problem on a Hilbert
space H. Let {ek}k∈N be an orthonormal basis in H and let U
be another Hilbert space. We denote by L2(!,H) the set of
H-valued random variables with finite second moments. Let
L2([0,∞)×!,H) be the set of all H-valued square integrable
stochastic processes, i.e., which satisfy

∫∞
0 E∥X(t,ω)∥2

Hdt <

∞ and let M2([0,∞) × !,H) be the space of all strongly
measurable H-valued square integrable stochastic processes
such that

∫∞
0 E∥X(t,ω)∥2

Hdt < ∞. We denote by D(S) the
domain, and by S⋆ the adjoint operator of a certain operator S.

Consider the homogeneous stochastic equation

dy(t) = Ay(t)dt + Cy(t) dW(t), y(0) = y0. (3)

We call a stochastic process of the form

y(t) = eAt y0 +
∫ t

0
eA(t−s) Cy(s) dW(s)

the mild solution of the equation (3) if y(t) ∈ D(C),
P(
∫∞

0 ∥y(s)∥2
Hds < ∞) = 1 and P(

∫∞
0 ∥Cy(s)∥2

Hds < ∞) =
1. Then, (A, C) is called stable, if the mild solution of (3)
satisfies

E[∥y(t)∥2
H] ≤ M1e−ωt E∥y0∥2

H, t ≥ 0, (4)

for some M1,ω > 0 and for all y0 ∈ L2(!,H).
The system (A, B, C) is called stabilizable, if there exists

a bounded operator K ∈ L(H,U) such that (A − BK, C) is
stable. Let D ∈ L(H) be bounded, then we call (A, D, C)

detectable, if there exists a bounded operator K1 ∈ L(H) such
that (A − K1D, C) is stable, see [4].

A. Standard Approach
Let us consider the infinite dimensional SLQR optimal con-

trol problem (1) – (2). The following theorem provides the
conditions for the existence of the optimal control in the feed-
back form by the associated algebraic Riccati equation (ARE),
for details we refer to [8].

Theorem 1 [8]: Let the following assumptions hold:
(a1) The linear operator A is the infinitesimal generator of

a C0-semigroup (eAt)t≥0 on the space H.
(a2) The linear operator B is bounded U → H.
(a3) The operators R, C are bounded linear operators.

(a4) The system (A, B, C) is stabilizable.
(a5) The system (A, R, C) is detectable.

Then, the optimal control u∗ of the linear quadratic
problem (1) – (2) satisfies the feedback characterization in
terms of the optimal state y∗

u∗(t) = −B⋆ P y∗(t), (5)

where P is the unique minimal positive self-adjoint operator
solving the Riccati equation

PA + A⋆P + C⋆PC + R⋆R − PBB⋆P = 0. (6)

B. Chaos Expansions Approach
In the following we present another approach for solving

the control problem (1) – (2), which has a great potential
numerically. This approach combines the method of chaos
expansions with the deterministic optimal control theory. The
method of chaos expansions is based on the Wiener-Itô
chaos expansion theorem which states that a random vari-
able, respectively a stochastic process, can be expressed as
series in terms of an orthogonal basis of stochastic polyno-
mials depending on the probability measure. Particularly, if
the underlying probability space is a Gaussian space, then
the orthogonal basis of stochastic polynomials is built in
terms of the Hermite polynomials and an orthonormal basis
of H. The case H = L2(R) is very important in applica-
tions, where the orthonormal basis {ek}k∈N can be chosen
as the Hermite functions {ξk}k∈N. Hence, for k ∈ N0, we

denote by hk(x) = (−1)ke
x2
2 dk

dxk (e
− x2

2 ) the family of Hermite
polynomials and by

ξk(x) = 1
4
√

π
√

(k − 1)!
e− x2

2 hk−1(
√

2x), k ∈ N

the family of Hermite functions. Let I be the set of
sequences of non-negative integers which have only finitely
many nonzero components, i.e., each α ∈ I is of the form
α = (α1,α2, . . . αm, 0, 0, . . .),αj ∈ N0, 1 ≤ j ≤ m, m ∈ N.
The i-th unit vector is denoted by ε(i) and the zero vector
by 0. The sum of all components of α ∈ I is its length
and is denoted by |α|. The Fourier-Hermite polynomials are
defined by

Hα(ω) =
∞∏

i=1

hαi(⟨ω, ei⟩), α ∈ I.

Then, the square integrable processes y ∈ L2([0,∞) × !,H)

and u ∈ L2([0,∞) × !,U) can be represented in their chaos
expansion forms

y(t,ω) =
∑

α∈I
yα(t) Hα(ω)

u(t,ω) =
∑

α∈I
uα(t) Hα(ω), (7)

for t ≥ 0, ω ∈ ! and where the coefficients yα∈
L2([0,∞),H) and uα ∈ L2([0,∞),U) for all α ∈ I. In this
way, the deterministic part of a stochastic process is split from
its random part. The zeroth coefficients y0(t) = Ey(t,ω) and
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LEVAJKOVIĆ et al.: SOLVING STOCHASTIC LQR PROBLEMS BY POLYNOMIAL CHAOS 643

u0(t) = Eu(t,ω) in (7) are the corresponding expectations of
y and u.

All the operators A, B, C and R appearing in the
problem (1) – (2) are assumed to be coordinatewise oper-
ators, i.e., the action of A on y ∈ L2([0,∞) × !,H) is
given by Ay(t,ω) = ∑

α∈I Ayα(t) Hα(ω), (it acts only on the
coefficients yα of the process y). Hence, by applying the rep-
resentation forms (7) to the equation (1) we transform it to a
system of deterministic equations. Namely, in a similar way
to [14] and [15], the solution of (1) can be written in the
chaos expansion form (7) and its coefficients yα , α ∈ I can
be computed from

y′
α(t) = Ayα(t) + Buα(t) +

∑

i∈N
Cyα−ε(i) ei(t), (8)

with yα(0) = y0
α , where the sum is defined for all i such

that the difference of α − ε(i) is nonnegative. Applying the
chaos expansion method to the cost functional (2), analogously
to [16], one gets a characterization of the optimal control in
terms of the expansion coefficients. This is summarized in the
following theorem.

Theorem 2: Let (a1) − (a5) from Theorem 1 hold. Let
(A, B, R) be stabilizable and E∥y0∥2

H < ∞. Then, the fol-
lowing hold:

(a) Solving the problem (1)–(2) is equivalent to solving
the deterministic optimal control problems in each α-level.
Particularly, for α = 0:

min
u0

J(u0) = min
u0

∫ ∞

0

(
∥Ry0(t)∥2

H + ∥u0(t)∥2
U
)

dt (9)

subject to

y′
0(t) = Ay0(t) + Bu0(t), y0(0) = y0

0, (10)

and for α > 0:

min
uα

J(uα) = min
uα

∫ ∞

0

(
∥Ryα(t)∥2

H + ∥uα(t)∥2
U
)

dt (11)

subject to (8).
(b) The optimal control problem (1) – (2) has a unique

optimal control u∗ given in the chaos expansion form

u∗(t) = −
∑

α∈I
B⋆Pdy∗

α(t) Hα −
∑

|α|>0

B⋆kα(t) Hα

= −B⋆Pd y∗(t) − B⋆K, (12)

where the operator Pd is the unique minimal positive self-
adjoint solution of the ARE

PdA + A⋆Pd + RR⋆ − PdBB⋆Pd = 0 (13)

and K is a stochastic process with the coefficients kα(t) that
for all α ∈ I solve the auxiliary equations

k′
α(t) + A⋆

p kα(t) + Pd

(
∑

i∈N
Cyα−ε(i) (t) ei(t)

)

= 0, (14)

with A⋆
p = A⋆ −PdBB⋆ and the condition lim

T→∞
kα(T) = 0, and

y∗(t) = ∑
α∈I y∗

α(t) Hα is the optimal state.
Proof: The proof generalizes the proof from [16] for the

finite horizon case. Here we present the main steps. By apply-
ing the method of chaos expansions to the problem (1)–(2),

it transforms to the system of deterministic optimal con-
trol problems, i.e., the problem (9) – (10) for |α| = 0
and (8)–(11) for all |α| > 0. Namely, for each α ∈ I, we
need to solve the deterministic problems minimizing the cost
J(uα) =

∫∞
0 (∥Ryα∥2

H + ∥uα∥2
U ) dt with respect to

y′
α(t) = Ayα(t) + Buα(t) + fα(t), yα(0) = y0

α, (15)

where the inhomogeneous part is of the form fα = 0 for |α| =
0 and fα(t) = ∑

i∈N Cyα−ε(i) (t)ei(t) for |α| > 0 and t > 0.
Since the inhomogeneity fα ∈ L2((0,∞)H) and the conditions
(a4) − (a5) hold, then for each α ∈ I there exists the optimal
solution in the feedback form

u∗
α(t) = −B⋆Pd y∗

α(t) − B⋆kα(t), (16)

where Pd solves the algebraic Riccati equation (13), while
kα(t) is a solution of the auxiliary differential equation k′

α(t)+
(A⋆−PdBB⋆)kα(t)+Pdfα(t) = 0 satisfying limT→∞ kα(T) = 0,
for |α| > 0 and k0 = 0, see [4, Part V]. The optimal control
for any initial condition y0 exists since the system (A, B, R) is
stabilizable. Moreover, from (a5) it follows that the feedback
operator Ap = A−BB⋆Pd is exponentially stable, and thus the
unique solution of (13) is globally attractive. Next, summing
up the coefficients (16) into the expansion (7) and applying
the linearity properties of the given operators we obtain the
form of the optimal control

u∗(t) = u0(t) +
∑

|α|>0

u∗
α(t)Hα

= −B⋆Pdy∗
0(t) +

∑

|α|>0

(−B⋆Pdy∗
α(t) − B⋆kα(t))Hα

= −B⋆Pd

(
∑

α∈I
y∗
α(t)Hα

)

− B⋆

(
∑

α∈I
kαHα

)

,

which leads to (12). Finally, a proof that the obtained optimal
control is square integrable goes in the similar manner as for
the finite horizon case, see [16]. Namely, we include the feed-
back form (16) of the optimal controls u∗

α , α ∈ I in the state
equations (10) and (8) and obtain

y∗
α

′(t) = Ap y∗
α(t) + gα(t), y∗

α(0) = y0
α, (17)

where gα(t) = −BB⋆kα(t) + fα(t), for |α| > 0 and g0 = 0
for |α| = 0. From the assumption (a1) it follows that A is
the infinitesimal generator of a strongly continuous semigroup
(eAt)t≥0. Since each Hilbert space is a reflexive Banach space,
the family (eA⋆t)t≥0 is a strongly continuous semigroup whose
infinitesimal generator is A⋆, see [4], [22]. The operator Ap can
be interpreted as a perturbation of A with a bounded opera-
tor, and Ap is exponentially stable. Hence, we can associate an
evolution system U(t, s) to the initial value problems (17) such
that the family of solution maps U(t, s)y0

α is an evolution in
C([0,∞),H), see [4]. Also, the adjoint operator A⋆

p, is asso-
ciated to the corresponding adjoint evolution system U⋆(t, s),
0 ≤ s ≤ t, see [22]. Then, for every y0

α ∈ D(Ap) the mild
solution of (17) is given in the form y∗

0(t) = U(t, 0) y0
0 and

y∗
α(t) = U(t, 0) y0

α +
∫ t

0
U(t, s) gα(s)ds,
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for |α| > 0 and 0 ≤ s ≤ t, and yα are continuous functions
for all α ∈ I. Since the inhomogeneity gα ∈ L2([0,∞),H),
from (a3)− (a5), the estimate of the evolution system and the
Grönwall’s lemma we obtain that for each for all α ∈ I, the
coefficients y∗

α satisfiy (4), which together with the assumption
E∥y0∥2

H < ∞ lead to y∗ ∈ L2([0,∞) × !,H).
Note that, for any T > 0 and t < T , the solutions

kα of (14) are expressed in terms of the adjoint evolution
system

kα(t) = U⋆
α(T, t) kα(T) +

∫ T

t
U⋆

α(s, t) Pdfα(s)ds,

for α ∈ I, such that limT→∞ kα(T) = 0, α ∈ I. Similarly as
for the optimal state process y∗, it could be shown that the
process K is square integrable, i.e., K ∈ L2([0,∞) × !,U),
which then implies u∗ ∈ L2([0,∞) × !,U).

The SLQR problems on finite and infinite horizons are
strongly related. In the deterministic setting the infinite
horizon problem is studied as a limit of the finite hori-
zon time, a similar study holds for the stochastic case
and also for the chaos expansion approach. This will be
presented somewhere else. The following theorem char-
acterizes the action of the Riccati operator. The recur-
rence (18) can be interpreted as memory property in the
noise.

Theorem 3: Let the assumptions from Theorem 2 hold.
Then, the optimal control (12) of (1)–(2) obtained via the
chaos expansion method is equal to the solution (5) obtained
via the Riccati approach if and only if for all α > 0 and t ≥ 0
it holds

C⋆P C y∗
α(t) = P

(
∑

i∈N
C y∗

α−ε(i) (t) ei(t)

)

. (18)

Proof: Similarly as for the finite horizon case [16], we
assume that the solutions (12) and (5) are equal. We obtain the
difference P − Pd expressed in terms of a stochastic process
K, whose coefficients are generated by the inhomogeneties fα ,
α ∈ I in (15), i.e.,

(P − Pd) y∗(t) = K, (19)

where y∗(t) = ∑
α∈I y∗

α(t)Hα is the form of the optimal
state. After differentiating (19) and substituting the equa-
tions (6), (8), (13) and (14), the optimality condition (18) is
derived for |α| > 0.

The proposed approach for solving SLQR problems in
terms of chaos expansions is not restricted only to prob-
lems (1) – (2) with Gaussian noise, but it can be also
applied for more general and non-Gaussian type of noises,
e.g., for problems involving colored noise [15]. One needs
to replace the base of Hermite polynomials with another
class of orthogonal polynomials from the Askey scheme of
hypergeometric orthogonal polynomials that corresponds to
the specific noise arising in the considered stochastic state
equation [25].

III. NUMERICAL SIMULATIONS

In this section we present an example for the SLQR
problem. We consider the infinite horizon problem as well

as the finite horizon problem and compare two approaches to
solve these problems.

A. Stochastic Heat Transfer
As a numerical example we introduce a bilinear con-

trolled heat transfer model, see [2]. On a unit square
D = [0, 1] × [0, 1], the heat equation is given with differ-
ent boundary conditions. On two edges we employ Dirichlet
boundary conditions, on the third edge a fixed boundary con-
dition y = u is applied and a stochastic Robin boundary
condition n · ∇y = 0.5(0.5 + ẇ)y is used on the final edge.
We discretize the equation in space and use n = 10 grid
points in every direction. Applying central finite differen-
ces, we obtain the matrices A ∈ Rn2×n2

, C ∈ Rn2×n2
and

B ∈ Rn2×1. Moreover, R is computed by the mean of the
vector y, i.e., R = 1

n2 (1, . . . 1). Thus, we obtain the SLQR
problem (1)–(2). We solve it with two different approaches.
The first one, which we will call in the following the standard
approach, consists of computing the optimal pair using the
results of Theorem 1. Thus, we have to solve the bilinear alge-
braic Riccati equation (6). Applying Newton’s method, one
has to solve a bilinear Lyapunov equation in every step. This
can be done by a low rank alternating direction iteration (ADI)
method, for details we refer to [1]. Then, we apply an implicit
Euler-Maruyama scheme to solve the discretized SPDE (1) and
compute the optimal state and the optimal control in every
time step. The first and the second moments are approximated
by Monte-Carlo integration. In the second case, we com-
bine the polynomial chaos approach described in Section II-B,
with appropriate deterministic numerical methods. We denote
by Im,p the set of α = (α1, . . . αm, 0, 0, . . .) ∈ I with
m = max{i ∈ N : αi ̸= 0} such that |α| ≤ p. We represent
y and u in their chaos expansion forms (7) and truncate the
sums after P = (m+p)!

m!p! terms. Particularly, m is the number of
uncorrelated random variables used in the approximation and
p is the highest order of the stochastic polynomials appear-
ing in the truncated chaos expansions (7). Since the choice of
m and p influences the accuracy of the approximation, these
parameters can be chosen so that the norm of the approx-
imation remainder is smaller than a prespecified error [15].
The obtained system is in the following step solved by an
appropriate numerical method and as outcome the discretized
approximation solution of the system is obtained. The global
error of the proposed numerical scheme depends on the error
generated by the truncation of the chaos expansion and the
error influenced by the discretisation method.

We choose m = 10 and p = 4, which gives P = 1001 differ-
ent levels. For every level α > 0 we solve the deterministic dif-
ferential equation (8) and the auxiliary equation (14) with the
implicit Euler method and the corresponding ARE (13) with a
solver from the LYAPACK toolbox [23]. Once the coefficients
yα are obtained, the moments of the random field, e.g., the
expectation Ey = y0 and the variance Var(y) ≈ ∑

α∈Im,p
α!y2

α

can be computed. We thus apply the two presented approaches
to the example described in this subsection. As initial condition
we choose y(0, x1, x2) = exp(−(x1 − x2)

2) for (x1, x2) ∈ D,
as final time T = 1

2 and as step size (t = 0.0025. Fig. 1, left
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Fig. 1. Left: Mean of the optimal control over time for both approaches.
Right: Variance of the optimal control.

shows the mean of the optimal control for both approaches.
Using the standard approach, the equation (1) is solved for
10.000 different realizations of the Wiener process and the
mean is taken. For the chaos expansion approach, the mean
is computed as in the procedure described above. Similarly,
the variance of the solution over time is plotted in Fig. 1,
right for both schemes. We see that the mean of the solution
converges to a steady state quite fast and also the vari-
ance decays rapidly after some time steps. The difference
between the two different approaches is neglectable and both
work well.

As discussed by Mühlpfordt et al. [20] applying the chaos
expansion method leads to a truncation error. Hence, we use
as reference solution the standard approach with 20.000 simu-
lations and compute the variance of the optimal control. Then,
for a different number m of uncorrelated random variables, the
relative error of the variance is computed, see Fig. 2, left. The
error behaves as expected. For a lower number of polynomials,
the error is larger, whereas, using more polynomials yields to
a more accurate result. However, even for m = 2 the relative
error is of order 1e − 10. Fig. 2, right shows the computa-
tional costs of both approaches for different grid sizes, i.e.,
for different sizes of the matrices in the control problem. As
the most demanding part of the algorithms is the solution of
the ARE, the polynomial chaos approach has great potential
as the resulting matrix equation does not include the bilin-
ear term. Note, that in the standard approach the realizations
were computed in parallel, which would be doable also for the
chaos expansion approach using tensors, however we do not
take advantage of it yet. Therefore, we expect to be even more
competitive. Moreover, Fig. 2 shows also the possible adap-
tivity of the algorithm, depending on the desired accuracy, the
chaos expansion can be truncated after only a few terms.

As the variance of the optimal control has its peak around
0.05, we plot the moments of the optimal state at time
T = 0.05. Thus, in Fig. 3, left the mean computed by the
standard approach is plotted. Again, the differential equation
is solved 10.000 times and we take the mean of the realiza-
tions. Fig. 3, right shows the mean of the chaos expansion
approach. Similarly as for the mean of the optimal control in
Fig. 1, left we observe that the mean of the solution yields to
the same result using either the standard scheme or the chaos
expansion method. We repeat the same calculation and com-
pute the variance of the optimal state, see Fig. 4. We observe
only small differences in the pictures. This is either due to

Fig. 2. Left: Relative error of the optimal control for different number of
polynomials in the chaos expansion. Right: Computational costs of the
two approaches for different space discretizations.

Fig. 3. Left: Mean of the optimal state at T = 0.05 obtained by the stan-
dard approach. Right: Mean of the optimal state at T = 0.05 computed
by the chaos expansion method.

Fig. 4. Left: Variance of the optimal state at T = 0.05 obtained by
the standard approach. Right: Variance of the optimal state at T = 0.05
computed by the chaos expansion method.

the error in the Monte-Carlo sampling or the truncation of the
expansion.

B. Finite Time Horizon Case
Levajković et al. [16] considered the SLQR problem in

finite time horizon. In this section, we integrate the cost func-
tional (2) from 0 to T . Using the standard approach, after a
numerical discretization one has to solve instead of the matrix
ARE a matrix DRE of the form

−Ṗ(t) = ATP(t) + P(t)A + CTP(t)C

− P(t)BBTP(t) + RTR, t ≥ 0,

such that P(T) = 0. We solve this differential equation based
on the splitting schemes proposed in [6]. This method was
first introduced for solving DREs arising in deterministic
LQR problems [24]. Splitting methods in general show bet-
ter performance compared to other standard approaches like
the ones proposed in [3] and [19]. Thus, for the polynomial
chaos approach we have to solve the arising DRE by a split-
ting scheme with one splitting term less than in the standard
approach. The remaining equations are solved by the methods

Section 2.2 297



646 IEEE CONTROL SYSTEMS LETTERS, VOL. 2, NO. 4, OCTOBER 2018

Fig. 5. Left: Mean of the optimal control over time for both approaches.
Right: Variance of the optimal control.

Fig. 6. Norm of the difference between the solution of the DRE and the
ARE for both approaches.

introduced in the previous subsection. Then, using the stochas-
tic heat transfer model described in the previous subsection
with the same parameters, we compute the first moments of
the solution, see Fig. 5. We observe a similar behaviour as
in the infinite horizon case. Note that the solution converges
to the same steady-state. As the only difference between both
problems is given by the related Riccati equations, we com-
pute the absolute difference between the DREs and the AREs
for both approaches, see Fig. 6. For this example the solution
of the finite horizon problem is very close to the infinite hori-
zon one. This is in accordance to the mentioned remark that
the infinite horizon problem can be seen as the limit of the
finite horizon problem. From the numerical solution point of
view solving the finite horizon case is always more expensive
than solving the infinite horizon case as differential Riccati
equations have to be solved instead of algebraic ones.

Remark 1: The proposed method is very competitive for
solving SLQR problems of the form (1) – (2). Moreover, it
has a great potential for solving SLQR problems involving ran-
dom operators [11], [12], where a backward stochastic Riccati
equation has to be solved instead. Also, using the chaos expan-
sion approach allows one to take advantage of state-of-the-art
numerical methods for deterministic problems available in the
literature.
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Abstract. We consider the stochastic linear quadratic optimal control prob-
lem where the state equation is given by a stochastic differential equation
of the Itô–Skorokhod type with respect to fractional Brownian motion. The
dynamics are driven by strongly continuous semigroups and the cost func-
tional is quadratic. We use the fractional isometry mapping defined between
the space of square integrable stochastic processes with respect to fractional
Gaussian white noise measure and the space of integrable stochastic processes
with respect to the classical Gaussian white noise measure. By this mapping
we transform the fractional state equation to a state equation with Brownian
motion. Applying the chaos expansion approach, we can solve the optimal
control problem with respect to a state equation with the standard Brown-
ian motion. We recover the solution of the original problem by the inverse
of the fractional isometry mapping. Finally, we consider a general form of
the state equation related to the Gaussian colored noise, we study the con-
trol problem, a system with an algebraic constraint and a particular example
involving generalized operators from the Malliavin calculus.

1. Introduction

The linear quadratic Gaussian control problem for the control of finite-dimensional
linear stochastic systems with Brownian motion is well understood, see, e.g.,
[15]. The case for fractional Brownian motion [10, 11, 12] as well as the infinite-
dimensional case have been studied recently [9]. A more general problem arises
if the noise depends on the state variable, this is the so-called stochastic linear
quadratic regulator (SLQR) problem. The SLQR problem in infinite dimensions
was solved by Ichikawa in [22] using a dynamic programming approach. Da Prato
[8] and Flandoli [14] later considered the SLQR for systems driven by analytic
semigroups with Dirichlet or Neumann boundary controls, but with disturbance
in the state only. The infinite-dimensional SLQR with random coefficients has
been investigated in [16, 17] along with the associated backward stochastic Riccati
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equation. Recently, a theoretical framework for the SLQR has been laid for sin-
gular estimates control systems in the presence of noise in the control and in the
case of finite time penalization in the performance index [18]. Considering the gen-
eral setting described in [18, 26], an approximation scheme for solving the control
problem and the associated Riccati equation has been proposed in [28]. In [27],
a novel approach for solving the SLQR based on the concept of chaos expansion
from white noise analysis is proposed. In this paper we extend the results from
[27] to the SLQR problem with fractional Brownian motion.

Fractional Brownian motion B(H) is a one-parameter extension of a stan-
dard Brownian motion and the main properties of such a Gaussian process de-
pend on values of the Hurst parameter H ∈ (0, 1). Fractional Brownian motion,
as a process with independent increments which have a long-range dependence
and self-similarity properties found many applications when modeling wide range
of problems in hydrology, telecommunications, queueing theory and mathematical
finance [5]. A specific construction of a stochastic integral with respect to a frac-
tional Brownian motion defined for all possible values H ∈ (0, 1), was introduced
by Elliot and van der Hoek in [13]. Several different definitions of stochastic inte-
gration for fractional Brownian motion appear in literature [5, 13, 39, 42]. In this
paper we follow [13] and use the definition of the fractional white noise spaces by
use of the fractional transform mapping for all values of H ∈ (0, 1) and the ex-
tension of the action of the fractional transform operator to a class of generalized
stochastic processes. The main properties of the fractional transform operator and
the connection of a fractional Brownian motion with a classical Brownian motion
on the classical white noise space were presented in [5, 33].

We consider the infinite-dimensional SLQR problem, which consists of the
state equation

dỹ (t) = (Ã ỹ(t) + B̃ ũ(t)) dt + C̃ ỹ(t) dB(H)(t), ỹ (0) = ỹ0, t ∈ [0, T ], (1)

defined on Hilbert state space H, where Ã and C̃ are operators on H and B̃
acts from the control space U to the state space H and ỹ0 is a random variable.
Spaces H and U are Hilbert spaces. The operators B̃ and C̃ are considered to be
linear and bounded, while A could be unbounded. The objective is to minimize
the functional

J(H)(ũ) = E
[∫ T

0

(
∥R̃ ỹ∥2W + ∥ũ∥2U

)
dt + ∥G̃ ỹT ∥2Z

]
(2)

over all possible controls ũ and subject to the condition that ỹ satisfies the state
equation (1). The operators R̃ and G̃ are bounded observation operators taking
values in Hilbert spaces W and Z respectively, E denotes the expectation and
yT = y(T ). A control process ũ∗ is called optimal if it minimizes the cost (2) over
all control processes, i.e.,

min
u

J(H)(ũ) = J(H) (ũ∗).
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The corresponding optimal trajectory is denoted by ỹ∗. Thus, the pair (ỹ∗, ũ∗) is
the optimal solution of the problem (1) and (2) and is called the optimal pair.

Following [13] and [33] we construct a fractional isometry in order to trans-
form optimal control problem (1)–(2) from a fractional space to the corresponding
optimal control problem with the state equation given with respect to Brownian
motion

dy(t) = (A y(t) + Bu(t)) dt + C y(t) dB(t), y(0) = y0, t ∈ [0, T ],

and the performance index

J(u) = E
[∫ T

0

(
∥R y∥2W + ∥u∥2U

)
dt + ∥G yT∥2Z

]
.

We combine the chaos expansion method with deterministic theory of optimal
control to solve the above optimal control problem. The solution of the initial
problem is thus obtained through the inverse fractional map.

Moreover, we also consider a general state equation of the form

ẏ = Ay +T♦y +Bu, y(0) = y0, (3)

where A is an operator which generates a strongly continuous semigroup, and
T is a linear bounded operator which combined with Wick product ♦ introduces
convolution-type perturbations into the equation. Equation (3) is related to Gauss-
ian colored noise. The existence and uniqueness of its generalized solution was
proven in [34]. Examples of this type of equations are: the heat equation with
random potential, the heat equation in random (inhomogeneous and anisotropic)
media, the Langevin equation, etc. The related control problem for (3) will lead
to an optimal control defined in a space of generalized processes. A particular case
of (3) together with an algebraic constraint arises in fluid dynamics, e.g., Stokes
equations. The resulting system is known as semi-explicit operator differential al-
gebraic equation (ODAE) and it has the form

ẏ = Ay + B⋆u + T♦y + f, B y = g.

We conclude the paper with the study of an ODAE involving generalized opera-
tors of Malliavin calculus. Particularly, we set the operator B to be the Skorohod
integral δ and B⋆ the Malliavin derivative D. Equations involving generalized ope-
rators of Malliavin calculus were studied in [29, 30, 31, 34, 35].

The paper is organized as follows. In Section 2 we briefly state the theoretical
background needed, then in Section 3 we define the fractional isometry operator
M, prove its properties and study the optimal control problem with state equation
given in the form of fractional Itô–Skorokhod integral in fractional space. By using
the fractional isometry we study the control problem in the standard space, prove
the existence and uniqueness of the control and characterize the optimality of
our approach. Finally, we extend our results and solve an ODAE involving the
operators of Malliavin calculus.
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2. Theoretical background

Let U and H be separable Hilbert spaces of controls and states, respectively,
with norms ∥ · ∥U and ∥ · ∥H, generated by the corresponding scalar products.
Let (Ω,F ,P) be a complete probability space and let (bt)t≥0 be a real-valued
one-dimensional Brownian motion defined on (Ω,F ,P). Let (Ft)t≥0 be the com-
plete right continuous σ-algebra generated by (bt)t≥0. We assume that all function
spaces are adapted to the filtration (Ft)t≥0. Let L2(Ω,P) = L2(Ω,F ,P) be the
Hilbert space of square integrable real-valued random variables endowed with the
norm ∥F∥2L2(Ω,P) = EP(F 2), for F ∈ L2(Ω,P), induced by the scalar product

(F,G)L2(Ω,P) = EP (FG), for F,G ∈ L2(Ω,P), and EP denotes the expectation
with respect to the measure P. Throughout the paper, when it is clear which mea-
sure P is used, we will write E for the expectation and L2(Ω) for L2(Ω,P) omitting
P. We denote by L2(Ω,U) the Hilbert space of U-valued square integrable random
variables and by L2([0, T ]×Ω,U) we denote the Hilbert space of square integrable
FT -predictable U-valued stochastic processes u endowed with the norm

∥u∥2L2([0,T ]×Ω,U) =

∫ T

0
E (∥u(t)∥2U) dt.

Let C([0, T ], L2(Ω,H)) be the Hilbert space of FT -predictable continuousH-valued
stochastic processes y endowed with the norm

∥y∥2C([0,T ],L2(Ω,H)) = sup
t∈[0,T ]

E (∥y(t)∥2H).

2.1. The SLQR problem: existence of solution

The infinite-dimensional linear quadratic regulator (LQR) stochastic optimal con-
trol problem on Hilbert spaces with respect to Brownian motion is given by the
state equation

dy(t) = (Ay(t) +Bu(t)) dt+Cy(t) dB(t), y(0) = y0, t ∈ [0, T ], (4)

subject to the quadratic cost functional

J(u) = E
[∫ T

0

(
∥Ry∥2W + ∥u∥2U

)
dt + ∥GyT∥2Z

]
. (5)

The dynamics of the problem, the operator A, is deterministic and represents an
infinitesimal generator of a strongly continuous semigroup (eAt)t≥0 on the state
space H. The operators A and C are operators on H, while B is the operator
acting from the control space U to the state space H. We take the operator C
to be linear and bounded. We assume the operators R and G to be linear and
bounded operators acting on the state space H into Hilbert spaces W and Z
respectively. For simplicity, we shall assume that W = Z = H from here onwards.
We denote by D(S) the domain of a certain operator S, and by S⋆ the adjoint
operator of S.
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The aim of the stochastic linear quadratic problem is to minimize the cost
functional J(u) over a set of square integrable controls u ∈ L2([0, T ], L2(Ω,U)),
which are adapted to the filtration (Ft)t≥0.

The following theorem gives conditions for the existence of the optimal control
in the feedback form using the associated Riccati equation. For more details on
existence of mild solutions to the SDE (4) we refer to [7] and for the optimal
control and Riccati feedback synthesis we refer the reader to [22].

Theorem 1 ([7, 22]). Let the following assumptions hold:

(a1) The linear operator A is the infinitesimal generator of a C0-semigroup
(eAt)t≥0 on the space H.

(a2) The linear control operator B is bounded U → H.
(a3) The operators R, G, C are bounded linear operators.

Then the optimal control u∗ of the linear quadratic problem (4)–(5) satisfies the
feedback characterization in terms of the optimal state y∗

u∗(t) = −B⋆P(t) y∗(t),

where P(t) is a positive self-adjoint operator solving the Riccati equation

Ṗ(t) +P(t)A+A⋆P(t) +C⋆P(t)C+R⋆R−P(t)BB⋆P(t) = 0,

P(T ) = G⋆G.
(6)

2.1.1. Inhomogeneous deterministic LQR problem. Here we invoke the solution to
the inhomogeneous deterministic control problem of minimizing the performance
index

J(u) =

∫ T

0
(∥Rx∥2H + ∥u∥2U) dt+ ∥Gx(T )∥2H (7)

subject to the inhomogeneous differential equation

x′(t) = Ax(t) +Bu(t) + f(t), x(0) = x0. (8)

Besides the assumptions (a1) and (a2) from Theorem 1 made on A and B, it
is enough to assume that f ∈ L2((0, T ),H) to obtain the optimal solution for
the state and control (x∗, u∗). The feedback form of the optimal control for the
inhomogeneous problem (7)–(8) is given by

u∗(t) = −B⋆Pd(t)x
∗(t)− B⋆k(t),

where Pd(t) solves the Riccati equation

⟨(Ṗd + PdA+A⋆Pd +R⋆R− PdBB⋆Pd) v, w ⟩ = 0,

Pd(T )v = G⋆Gv,
(9)

for all v, w in D(A), while k(t) is a solution to the auxiliary differential equation

k′(t) + (A⋆ − Pd(t)BB⋆)k(t) + Pd(t)f(t) = 0

with the boundary conditions

Pd(T ) = G⋆G and k(T ) = 0.
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For the homogeneous problem we refer to [24], and for the inhomogeneous optimal
control problem for singular estimate type systems we refer to [25].

2.1.2. Strong and mild solutions. Let g(t) be an FT -predictable Bochner integrable
H-valued function. An H-valued adapted process y(t) is a strong solution to the
state equation (4) over [0, T ] if:

(1) y(t) takes values in D(A) ∩D(C) for almost all t and ω;

(2) P (
∫ T
0 ∥y(s)∥H + ∥Ay(s)∥H ds <∞) = 1 and P (

∫ T
0 ∥Cy(s)∥2H ds <∞) = 1;

(3) for arbitrary t ∈ [0, T ] and P-almost surely, it satisfies the integral equation

y(t) = y0 +

∫ t

0
Ay(s) ds +

∫ t

0
g(s)ds+

∫ t

0
Cy(s) dBs.

An H-valued adapted process y(t) is a mild solution to the state equation

dy(t) = (Ay(t) + g(t)) dt+Cy(t) dB(t), y(0) = y0, t ∈ [0, T ],

over [0, T ] if:

(1) y(t) takes values in D(C);

(2) P (
∫ T
0 ∥y(s)∥H ds <∞) = 1 and P (

∫ T
0 ∥Cy(s)∥2H ds <∞) = 1;

(3) for arbitrary t ∈ [0, T ] and P-almost surely, it satisfies the integral equation

y(t) = eAt y0 +

∫ t

0
eA(t−s)g(s) ds +

∫ t

0
eA(t−s) Cy(s) dBs.

Note that, under the assumptions of Theorem 1, and given a control u from
L2([0, T ];L2(Ω,U)), i.e., g(t) = Bu(t), and the deterministic initial data y0 ∈ H,
there exits a unique mild solution y ∈ L2([0, T ];L2(Ω,H)) to the controlled state
equation (4), cf. [7].

2.2. Fractional Brownian motion

Fractional Brownian motion is one-parameter extension of a Brownian motion.
It depends on the Hurst index H which takes values in (0, 1). The name is due
to the climatologist Hurst, who developed statistical analysis of the early water
run-offs of the river Nile. In the framework of Hilbert spaces, fractional Brownian
motion was first introduced by Kolmogorov in 1940, where it was called the Wiener
Spirals. The name fractional Brownian motion is due to Mandelbrot and Van Ness,
who gave a stochastic integral representation of this process in terms of Brownian
motion on an infinite interval [38].

Fractional Brownian motion is a process with dependent increments which
have long-range dependence and self-similarity properties. For H > 1

2 fractional
Brownian motion has a certain memory feature, which is suitable for modeling
weather derivatives, temperature at a specific place as a function of time, water
level in a river as a function of time or for describing the values of the log returns
of a stock. On the other hand, for H < 1

2 fractional Brownian motion has a certain
turbulence feature, which is applicable in mathematical finance in the modeling of
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financial turbulence, i.e., empirical volatility of a stock or in modeling the prices
of electricity in a liberated Nordic electricity market [5, 13, 38, 39, 40].

Definition 1. A one-dimensional real-valued fractional Brownian motion with the
Hurst index H ∈ (0, 1) on a probability space (Ω,F ,P) is a Gaussian process
b(H) = (b(H)(·))t∈R satisfying:

(a) b(H)
0 = 0 a.s.,

(b) zero expectation, i.e., E[b(H)
t ] = 0 for all t ∈ R, and

(c) the covariance function is of the form

E
(
b(H)
s b(H)

t

)
=

1

2

{
|t|2H + |s|2H − |t− s|2H

}
, s, t ∈ R. (10)

Fractional Brownian motion is a centered Gaussian process with non-inde-
pendent stationary increments and its dependence structure is modified by the
Hurst parameter H ∈ (0, 1). For H = 1

2 the covariance function can be written in

the form E(b(
1
2 )

t b
( 1
2 )

s ) = min{s, t} and the process b
( 1
2 )

t becomes a Brownian motion
bt, which has independent increments. Moreover, for H ̸= 1

2 fractional Brownian
motion is neither a semimartingale nor a Markov process. From (10) it follows that

E(b(H)
t − b(H)

s )2 = |t− s|2H .

According to the Kolmogorov continuity criterion fractional Brownian motion b(H)

has a continuous modification [39]. The parameter H controls the regularity of tra-
jectories. The covariance function (10) is homogeneous of order 2H , thus fractional

Brownian motion b(H) is an H self-similar process, i.e., b(H)
kt = kHb(H)

t , k > 0.

For any n ∈ Z, n ̸= 0 it holds

r(n) = E[b(H)
1 (b(H)

n+1 − b(H)
n )] = H(2H − 1)

1∫

0

n+1∫

n

(u− v)2H−2dudv

∼ H(2H − 1)|n|2H−1, as |n|→∞.

Therefore, the increments are positively correlated for H ∈ (12 , 1) and negatively
correlated for H ∈ (0, 12 ). More precisely, for H ∈ (12 , 1) fractional Brownian
motion has the long-range dependence property

∑∞
n=1 r(n) = ∞ and for H ∈

(0, 1
2 ) the short-range property

∑∞
n=1 |r(n)| < ∞. For more details we refer to

[5, 20, 39, 41, 46].

2.3. White noise analysis and chaos expansions

In this section, we briefly recall some basic facts from white noise analysis. De-

note by hn(x) = (−1)ne x2

2 dn

dxn (e−
x2

2 ), n ∈ N0, N0 = N ∪ {0}, the family of
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Hermite polynomials and ξn(x) = 1
4√π
√

(n−1)!
e−

x2

2 hn−1(
√
2x), n ∈ N, the fam-

ily of Hermite functions. The family of Hermite functions forms a complete or-
thonormal system in L2(R). These functions are the eigenfunctions for the har-
monic oscillator in quantum mechanics. Clearly, the elements of {ξn}n∈N be-
long to the Schwartz space of rapidly decreasing functions S(R), i.e., they de-
cay faster than polynomials of any degree. The Schwartz spaces can be char-
acterized in terms of the Hermite basis in the following manner: The space of
rapidly decreasing functions as a projective limit space S(R) =

⋂
l∈N0

Sl(R) where
Sl(R) = {f =

∑∞
k=1 ak ξk ∈ L2(R) : ∥f∥2l =

∑∞
k=1 a

2
k(2k)

l < ∞}, l ∈ N0 and the
space of tempered distributions as an inductive limit space S′(R) =

⋃
l∈N0

S−l(R)
where S−l(R) = {f =

∑∞
k=1 ak ξk : ∥f∥2l =

∑∞
k=1 a

2
k(2k)

−l <∞}, l ∈ N0. Also, we
have a Gel’fand triple S(R) ⊆ L2(R) ⊆ S′(R) with continuous inclusions.

2.3.1. Gaussian white noise space. Throughout the paper all analysis is provided
on two white noise spaces. Here we introduce the (classical) Gaussian white noise
space (S′(R),B, µ) and later in Section 2.3.6 we will introduce the fractional Gauss-
ian white noise space (S′(R),B, µH). In both cases, we follow the ideas of Hida
from [19]. The underlying space is the space of tempered distributions S′(R). By
B we denote the Borel sigma-algebra generated by the weak topology on S′(R)
and µ is the Gaussian white noise measure given by the Bochner–Minlos theorem

∫

S′(R)
ei⟨ω,φ⟩dµ(ω) = e−

1
2∥φ∥

2
L2(R) , φ ∈ S(R),

where ⟨ω,φ⟩ denotes the dual pairing between a tempered distribution ω ∈ S′(R)
and a test function φ ∈ S(R).

Denote by I = (NN
0 )c the set of sequences of non-negative integers which

have only finitely many nonzero components. All multi-indices α ∈ I are of the
form α = (α1,α2, . . . ,αm, 0, 0, . . .), αi ∈ N0, i = 1, 2, . . . ,m, m ∈ N. Particularly,
0 = (0, 0, . . . ) is the zeroth vector and ε(k) = (0, . . . , 0, 1, 0, . . . ), k ∈ N is the kth
unit vector. The length of a multi-index α ∈ I is defined by |α| =

∑∞
k=1 αk. Let

(2N)α =
∏∞

k=1(2k)
αk . It was proven that

∑
α∈I(2N)−pα < ∞ for p > 1, cf [21].

We say α ≥ β if αk ≥ βk for all k ∈ N. In this case α− β = (α1− β1,α2− β2, . . . ).
For α < β the difference α− β is not defined.

The space L2(µ) = L2(Ω, µ) = L2(S′(R),B, µ) is the Hilbert space of square
integrable random variables with respect to the Gaussian measure µ, i.e., the space
of random variables with finite second moments.

Definition 2. The Fourier–Hermite polynomials on L2(µ) are defined by

Hα(ω) =
∞∏

k=1

hαk(⟨ω, ξk⟩), α ∈ I. (11)

Particularly, H0(ω) = 1 and Hε(k)(ω) = ⟨ω, ξk⟩, k ∈ N. The family {Hα}α∈I
forms an orthogonal basis of L2(µ) with ∥Hα∥2L2(µ) = α!, see [21].
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Theorem 2 (Wiener–Itô chaos expansion theorem). Each element F ∈ L2(µ) has
a unique representation of the form

F (ω) =
∑

α∈I
aα Hα(ω),

with real coefficients aα, α ∈ I, ω ∈ Ω, such that ∥F∥2L2(µ) =
∑

α∈I a2α α! <∞.

The space spanned by {Hα : |α| = k} is called the Wiener chaos of order
k and is denoted by Hk, k ∈ N0. Each Hk is an infinite-dimensional subspace of
L2(µ) and

L2(µ) =
∞⊕

k=0

Hk,

where the sum is an orthogonal sum [21].
Let H be a real separable Hilbert space. Then each element F of the space of

Hilbert-valued square integrable random variables L2(Ω,H) =
⊕∞

k=0 Hk(H), can
be represented in the form F (ω) =

∑
α∈I fα Hα(ω), for fα ∈ H, α ∈ I, such that

∥F∥2L2(Ω,H) =
∑

α∈I
∥fα∥2H α! <∞.

One of the typical complications that arise in solving stochastic differen-
tial equations is the blowup of L2-norms of F , i.e., infinite variance. Therefore,
weighted spaces of random variables in which the considered equation has a solu-
tion have to be introduced. For example, such spaces are the Kondratiev spaces
(S)−ρ, ρ ∈ [0, 1] of generalized random variables, which represent the stochastic
analogue of the Schwartz spaces as generalized function spaces. The largest space
of Kondratiev stochastic distributions is (S)−1, obtained for ρ = 1.

The space of the Kondratiev test random variables (S)1 can be constructed
as the projective limit of the family of spaces

(S)1,p =

{
f(ω) =

∑

α∈I
aαHα(ω) ∈ L2(µ) : ∥f∥21,p =

∑

α∈I
a2α(α!)

2(2N)pα <∞
}
,

p ∈ N0. The space of the Kondratiev generalized random variables (S)−1 can be
constructed as the inductive limit of the family of spaces

(S)−1,−p =

{
F (ω) =

∑

α∈I
bα Hα(ω) : ∥f∥2−1,−p =

∑

α∈I
b2α (2N)−pα <∞

}
, p ∈ N0.

It holds (S)1 =
⋂

p∈N0
(S)1,p and (S)−1 =

⋃
p∈N0

(S)−1,p. The action of a gene-
ralized random variable F =

∑
α∈I bα Hα(ω) ∈ (S)−1 on a test random variable

f =
∑

α∈I aα Hα(ω) ∈ (S)1 is given by ⟨F, f⟩ =
∑

α∈I α! aα bα. It holds that (S)1
is a nuclear space with the Gel’fand triple (S)1 ⊆ L2(µ) ⊆ (S)−1 with continuous
inclusions [21].
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Definition 3. For F (ω) =
∑

α∈I fαHα(ω) and G(ω) =
∑

β∈I gβHβ(ω) the element
F♦G is called the Wick product of F and G and is given in the form

F♦G(ω) =
∑

α∈I

∑

β∈I
fαgβHα+β(ω) =

∑

γ∈I

∑

α≤γ

fαgγ−αHγ(ω). (12)

The Kondratiev spaces (S)1 and (S)−1 are closed under the Wick multiplica-
tion. The Wick product is a commutative, associative operation, and is distributive
with respect to addition. In particular, for the orthogonal polynomial basis of L2(µ)
we haveHα♦Hβ = Hα+β , for all α,β ∈ I. Whenever F , G and F♦G are integrable
it holds that E(F♦G) = E(F ) · E(G), without independence requirement [21, 31].

2.3.2. Stochastic processes. A square integrable real-valued stochastic process is
defined as a measurable mapping [0, T ]→ L2(µ). A generalized stochastic process
is considered to be a measurable mapping from [0, T ] into a Kondratiev space
(S)−1. The chaos expansion representation of generalized stochastic process F
follows from Theorem 2. A generalized process F can be represented in the form

Ft(ω) =
∑

α∈I
fα(t)Hα(ω), t ∈ [0, T ],

where fα, α ∈ I are measurable real functions and there exists p ∈ N0 such that
for all t ∈ [0, T ] ∑

α∈I
|fα(t)|2 (2N)−pα <∞.

If we assume H to be a real separable Hilbert space, then Theorem 2 can be
extended also for H-valued stochastic processes. Particularly, a square integrable
H-valued stochastic processes v is an element of L2([0, T ]×Ω,H) ∼= L2([0, T ],H)⊗
L2(Ω, µ) and can be represented in the chaos expansion form

v(t,ω) =
∑

α∈I
vα(t)Hα(ω)

= v0(t) +
∑

k∈N
vε(k)(t)Hε(k)(ω) +

∑

|α|>1

vα(t)Hα(ω), t ∈ [0, T ],
(13)

where vα ∈ L2([0, T ],H) such that it holds
∑

α∈I
∥vα∥2L2([0,T ],H) α! <∞. (14)

A process v with the chaos expansion representation (13) that instead of (14)
satisfies the condition

∑

α∈I
∥vα∥2L2([0,T ],H) (2N)−pα <∞ (15)

belongs to L2([0, T ],H) ⊗ (S)−1 and is considered to be a generalized stochastic
process. The coefficient v0(t) is the deterministic part of v in (13) and represents
the (generalized) expectation of the process v.
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Denote by {en(t)}n∈N the orthonormal basis of L2([0, T ],H), i.e., the basis
obtained by diagonalizing the orthonormal basis {bi(t)sj}i,j∈N, where {bi(t)}i∈N
is the orthonormal basis of L2([0, T ]) and {sj}j∈N is the orthonormal basis of H.
The coefficients vα(t) ∈ L2([0, T ],H), α ∈ I can be represented in the form

vα(t) =
∑

j∈N
vα,j(t) sj =

∑

j∈N

∑

i∈N
vα,j,i bi(t) sj , α ∈ I

with vα,j ∈ L2([0, T ]) and vα,j,i ∈ R. Then the chaos expansion (13) of a stochastic
process v ∈ L2([0, T ],H)⊗ L2(Ω, µ) can be written as

v(t,ω) =
∑

α∈I
vα(t)Hα(ω) =

∑

α∈I

∑

j∈N

∑

i∈N
vα,j,i sj bi(t)Hα(ω).

After a diagonalization of N× N→ N it can be rearranged to

v(t,ω) =
∑

α∈I

∑

n∈N
vα,n en(t)Hα(ω), vα,n ∈ R, ω ∈ Ω, t ∈ [0, T ].

Example 1. (a) A one-dimensional real-valuedBrownian motion can be represented

in the chaos expansion form bt(ω) =
∑∞

k=1

(∫ t
0 ξk(s)ds

)
Hε(k)(ω), t ≥ 0. For each

t it is an element of L2(µ). A singular real-valued white noise is defined by the
formal chaos expansion

wt(ω) =
∞∑

k=1

ξk(t)Hε(k) (ω). (16)

Since
∑∞

k=1 |ξk(t)|2 >
∑∞

k=1
1
k = ∞ and

∑∞
k=1 |ξk(t)|2(2k)−p < ∞ holds for

p > 1, it follows that the singular white noise is an element of the space (S)−1,
for all t ≥ 0, see [21]. It is integrable and the relation d

dtbt = wt holds in the
distributional sense. Both Brownian motion and singular white noise are Gaussian
processes and belong to the Wiener chaos space of order one.

(b) An H-valued white noise process is given in the chaos expansion form

Wt(ω) =
∞∑

k=1

ek(t) Hε(k)(ω). (17)

Note that the H-valued white noise can be also defined as
∑

n∈N wn
t (ω) sn, where

w(n)
t (ω) are independent copies of one-dimensional white noise (16) and {sn}n∈N

is the orthonormal basis of H. This definition can be reduced to (17) since
∑

n∈N
w(n)

t (ω)sn =
∑

n∈N

∑

k∈N
ξk(t)Hε(k) (ω)sn

=
∑

i∈N
ξi(t) siHε(i)(ω) sn =

∞∑

i=1

ei(t)Hε(i)(ω),

where {ei}i∈N is the orthogonal basis of L2(R,H) obtained by diagonalizing the
basis {ξk(t)sn}k,n∈N.
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(c) In general, the chaos expansion representation of an H-valued Gaussian
process that belongs to the Wiener chaos space of order one is given in the form

Gt(ω) =
∑

k∈N
gk(t)Hε(k)(ω) =

∑

k∈N

(∑

i∈N
gki ei(t)

)
Hε(k)(ω), (18)

with gk ∈ L2([0, T ],H) and gki = (gk, ei)L2([0,T ],H) is a real constant. If the condi-
tion ∑

k∈N
∥gk∥2L2([0,T ],H) <∞ (19)

is fulfilled, then Gt belongs to the space L2([0, T ]×Ω,H) ∼= L2([0, T ],H)⊗L2(Ω, µ).
If the sum in (19) is infinite then the representation (18) is formal, and if addi-
tionally

∑

k∈N
∥gk∥2L2([0,T ],H) (2N)−pε(k)

=
∑

k∈N
∥gk∥2L2([0,T ],H) (2k)

−p <∞,

holds for some p ∈ N0, the process Gt, for each t, belongs to the Kondratiev space
of stochastic distributions (S)−1, i.e., G ∈ L2([0, T ],H)⊗ (S)−1, see [33, 36, 44].

Note that a Gaussian noise represented in (18) can be interpreted as a colored
noise with the representation operator N and the correlation function C = NN⋆,
such that

∑

k∈N
N⋆fk(t)Hε(k)(ω) =

∑

k∈N
N⋆

(∑

i∈N
fkiei(t)

)
Hε(k)(ω)

=
∑

k∈N

∑

i∈N
λifkiei(t)Hε(k)(ω),

with N⋆ei(t) = λi ei(t), i ∈ N, [37]. Particularly, we will consider the color noise
to be a Gaussian process of the form

Lt(ω) =
∑

k∈N
lk ek(t) Hε(k)(ω), (20)

with a sequence of real coefficients {lk}k∈N such that for some p ∈ N it holds
∑

k∈N
l2k (2k)−p <∞ (21)

The Wick product of two stochastic processes is defined in an analogous way
as it was defined for random variables and generalized random variables (12), for
more details see [30].

2.3.3. Operators. Following [34], we define two classes of operators on spaces of
stochastic processes, namely coordinatewise and simple coordinatewise operators,
that we are going to deal with in the paper.
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Definition 4. An operator O is called a coordinatewise operator if there exists a
family of operators {Oα}α∈I , such that for a process v =

∑
α∈I

vαHα it holds

Ov =
∑

α∈I
Oα(vα)Hα. (22)

Moreover, operator O is a simple coordinatewise operator if Oα = O for all α ∈ I,
i.e., if it holds that

Ov =
∑

α∈I
O(vα)Hα = O(v0) +

∑

|α|>0

O(vα)Hα.

Lemma 1. Let O : L2([0, T ],H) ⊗ L2(Ω, µ) → L2([0, T ],H) ⊗ L2(Ω, µ) be a
coordinatewise operator that corresponds to a deterministic family of operators
Oα : L2([0, T ],H) → L2([0, T ],H), α ∈ I. If the operators Oα, α ∈ I are uni-
formly bounded by c > 0 then O is a bounded operator on L2([0, T ],H)⊗L2(Ω, µ).

Proof. Let ∥Oα∥op ≤ c for all α ∈ I. Then, for v =
∑

α∈I vαHα in L2([0, T ],H)⊗
L2(Ω, µ) it holds

∥Ov∥2L2([0,T ],H)⊗L2(Ω,µ)

=
∑

α∈I
∥Oαvα∥2L2([0,T ],H) α! ≤

∑

α∈I
∥Oα∥2op ∥vα∥2L2([0,T ],H) α!

≤ c2
∑

α∈I
∥vα∥2L2([0,T ],H) α! = c2∥v∥2L2([0,T ],H)⊗L2(Ω,µ). "

2.3.4. Stochastic integration and Wick multiplication. For a square integrable pro-
cess v that is adapted in the filtration (Ft)t≥0 generated by an H-valued Brownian

motion (Bt)t≥0, the corresponding stochastic integral
∫ T
0 vt dBt is considered to

be the Itô integral I(v). When v is not adapted to the filtration, then the stochas-
tic integral is interpreted as the Itô–Skorokhod integral. From the fundamental
theorem of stochastic calculus it follows that the Itô–Skorokhod integral of an H-
valued stochastic process v = vt(ω) can be represented as a Riemann integral of
the Wick product of vt with a singular white noise

δ(v) =

∫ T

0
v dBt(ω) =

∫ T

0
v ♦Wt(ω) dt, (23)

where the derivative Wt =
d
dt Bt is taken in sense of distributions [21].

Thus, for an H-valued adapted processes v the Itô integral and the Skorokhod
integral coincide, i.e., I(v) = δ(v). Note that the Itô integral is anH-valued random
variable. From the Wiener–Itô chaos expansion theorem, Theorem 2, it follows that
there exists a unique family aα, α ∈ I such that the Itô integral can be represented
in the chaos expansion form

I(v) =
∑

α∈I
aα Hα. (24)

tijana.levajkovic@uibk.ac.at

Section 2.3 311
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On the other hand, by (12), (17) and (23) we obtain a chaos expansion represen-
tation of the Skorokhod integral, i.e., for v =

∑
α∈I

vα(t)Hα we have

v ♦Wt(ω) =
∑

α∈I
vα(t)Hα(ω)♦

∑

k∈N
ek(t)Hε(k)(ω)

=
∑

α∈I

∑

k∈N
vα(t) ek(t) Hα+ε(k)(ω).

(25)

Thus, from (23) and (25) we obtain

δ(v) =
∑

α∈I

∑

k∈N
vα,k Hα+ε(k)(ω), (26)

with real coefficients vα,k = (vα, ek)L2([0,T ],H) and ω ∈ Ω. Combining (26) and
(24) we obtain the coefficients aα, for all α ∈ I and α > 0 in the form

aα =
∑

k∈N
vα−ε(k),k . (27)

We use the following convention: vα−ε(k) is not defined if the kth component
of α, i.e., αk equals zero. For example, for α = (0, 3, 0, 2, 0, . . . ) the coefficient
a(0,3,0,2,0,... ) is expressed as the sum of two coefficients of the process v, i.e., from
(27) we have a(0,3,0,2,0,... ) = v(0,2,0,2,0,... ),2 + v(0,3,0,1,0,... ),4. The obtained chaos
expansion representation form of the Itô–Skorokhod integral (26) will be used in
Section 3, where we will be able to represent explicitly the stochastic perturbation
in the optimal control problem (4). Note also that δ(v) belongs to the Wiener
chaos space of higher order than v, see also [21, 35].

Definition 5. A square integrable H-valued stochastic process v given in the form
v =

∑
α∈I vα(t)Hα(ω), with the coefficients vα ∈ L2([0, T ],H) such that

vα(t) =
∑

k∈N vα,k ek(t), vα,k ∈ R for all α ∈ I is integrable in Itô–Skorokhod
sense if the condition

∑

α∈I,|α|>0

α!

(∑

k∈N
vα−ε(k),k

)2

=
∑

α∈I
α!

(∑

k∈N
vα,k

√
αk + 1

)2

<∞ (28)

holds. Then the chaos expansion form of the Itô–Skorokhod integral of v is given
by (26) and we write v ∈ Dom(δ).

Theorem 3. The Skorokhod integral δ of an H-valued square integrable stochastic
process is a linear and continuous mapping

δ : Dom(δ) → L2(Ω).
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Proof. Let u, v ∈ L2([0, T ],H)⊗L2(Ω) be integrable in Itô–Skorokhod sense. Then,
for a, b ∈ R it holds

δ(au+ bv) = δ

( ∑

α∈I

∑

k∈N
(auα,k + bvα,k)ek Hα

)
=
∑

α∈I

∑

k∈N
(auα,k + bvα,k)Hα+ε(k)

= a
∑

α∈I

∑

k∈N
aα,kHα+ε(k) + b

∑

α∈I

∑

k∈N
vα,kHα+ε(k) = aδ(u) + bδ(v).

Moreover, from (28) and (α+ ε(k))! = (αk + 1)α! for α ∈ I, k ∈ N we obtain

∥δ(v)∥2L2(Ω) =

∥∥∥∥
∑

α∈I,|α|>0

∑

k∈N
vα−ε(k),k Hα

∥∥∥∥
2

L2(Ω)

=
∑

|α|>0

(∑

k∈N
vα−ε(k),k

)2

α! <∞. "

From the estimates

∑

α∈I
∥vα∥2L2([0,T ],H) α! =

∑

α∈I
α!

(∑

k∈N
v2α,k

)
≤
∑

α∈I
α!

(∑

k∈N
vα,k

)2

≤
∑

α∈I
α!

(∑

k∈N
vα,k

√
αk + 1

)2

<∞

we conclude that if v ∈ Dom(δ) then v ∈ L2([0, T ],H)⊗ L2(Ω). Moreover, if the
condition ∑

α∈I
|α| ∥vα∥2L2([0,T ],H) α! < ∞ (29)

is fulfilled then v ∈ Dom(δ). This follows from

∑

α∈I
α!

(∑

k∈N
uα,k

√
αk + 1

)2

≤ c
∑

α∈I
α! |α|

∑

k∈N
u2
α,k <∞.

A detailed analysis of domain and range of operators of the Malliavin calculus in
spaces of generalized stochastic processes can be found in [31, 35].

Lemma 2. Let O : L2([0, T ],H)⊗L2(Ω)→ L2([0, T ],H)⊗L2(Ω) be a coordinatewise
operator that corresponds to a uniformly bounded family of linear operators Oα :
L2([0, T ],H) → L2([0, T ],H), α ∈ I. If a stochastic process v =

∑
α∈I vαHα ∈

L2([0, T ],H)⊗ L2(Ω) satisfies the condition (29) then Ov ∈ Dom(δ).

Proof. Since v ∈ L2([0, T ],H) ⊗ L2(Ω) satisfies (29) then v ∈ Dom(δ), i.e., (28)
holds. Let O corresponds to the family Oα : L2([0, T ],H) → L2([0, T ],H), α ∈ I
such that ∥Oα∥L(H) ≤ c, α ∈ I, where L(H) denotes the set of linear bounded
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operators on L2([0, T ],H). From
∑

α∈I
∥Oαvα∥2L2([0,T ],H) |α|α! ≤

∑

α∈I
∥Oα∥2L(H) ∥vα∥2L2([0,T ],H) |α|α!

≤ c2
∑

α∈I
∥vα∥2L2([0,T ],H) |α|α! <∞

it follows that Ov ∈ Dom(δ). "

2.3.5. The fractional transform operator M (H). In [13] the authors developed the
fractional white noise theory for a Hurst parameter H ∈ (0, 1). They introduced
the fractional transform operator M (H), which connects the fractional Brownian

motion b(H)
t and the standard Brownian motion bt on the white noise probability

space (S′(R),B, µ). We extend these results for H-valued Brownian motion Bt

and H-valued white noise Wt and their corresponding fractional versions B(H)
t

and W (H)
t .

Definition 6 ([13]). Let H ∈ (0, 1). The fractional transform operator M (H) :
S(R)→ L2(R) ∩ C∞(R) is defined by

M̂ (H)f(y) = |y| 12−H f̂(y), y ∈ R, f ∈ S(R), (30)

where f̂(y) :=
∫
R e−ixyf(x)dx denotes the Fourier transform of f .

Equivalently, the operatorM (H) for allH ∈ (0, 1) can be defined as a constant
multiple of

− d

dx

∫

R
(t− x) |t− x|H− 3

2 f(t) dt, (31)

such that the constant is chosen so that (30) holds. The operator M (H) has the
structure of a convolution operator. Particularly, from (31) it follows that for

H ∈ (0, 1
2 ) the fractional operator is of the formM (H)f(x) = CH

∫
R

f(x−t)−f(x)

|t|
3
2−H

dt,

then for H ∈ (12 , 1) it is of the form M (H)f(x) = CH

∫
R

f(t)

|t−x|
3
2 −H

dt and for

H = 1
2 it reduces to the identity operator, i.e., M ( 1

2 )f(x) = f(x). The normalizing
constant is CH = (2Γ(H − 1

2 ) cos(
π
2 (H − 1

2 )))
−1 and Γ is the Gamma function.

From (30) we have that the inverse fractional transform operator of the op-
erator M (H) is the operator M (1−H), which is defined by

̂M (1−H)f(y) = |y|H− 1
2 f̂(y), y ∈ R, f ∈ S(R).

Denote by L2
H(R) = {f : R → R : M (H)f(x) ∈ L2(R)} the closure of S(R)

with respect to the norm ∥f∥L2
H(R) = ∥M (H)f∥L2(R), for f ∈ S(R), induced by the

inner product

(f, g)L2
H(R) = (M (H)f,M (H)g)L2(R).

tijana.levajkovic@uibk.ac.at

314 Section 2.3



The SLQR with Fractional Brownian motion 131

The operator M (H) is a self-adjoint operator and for f, g ∈ L2(R) ∩ L2
H(R) we

have

(f,M (H)g)L2
H(R) = (f̂ , M̂ (H)g)L2(R) =

∫

R
|y| 12−H f̂(y)ĝ(y)dy

= (M̂ (H)f, ĝ)L2(R) = (M (H)f, g)L2
H(R).

Remark 1. For fixed H ∈ (12 , 1), define φ(s, t) = H(2H − 1)|s− t|2H−2, s, t ∈ R.
Then, ∫

R
(M (H)f(x))2dx = cH

∫

R

∫

R
f(s)f(t)φ(s, t)dsdt, (32)

with cH constant. The property (32) was used in [13, 20, 32] and [38] in order to
adapt the classical white noise calculus to the fractional one.

Theorem 4 ([6, 13]). Let M (H) : L2
H(R)→ L2(R) defined by (30) be the extension

of the operator M from Definition 6. Then, M (H) is an isometry between the two
Hilbert spaces L2(R) and L2

H(R). The functions

e(H)
n (x) = M (1−H)ξn(x), n ∈ N, (33)

belong to S(R) and form an orthonormal basis in L2
H(R).

From (33) it also follows e(1−H)
n = M (H) ξn, n ∈ N, where we used the fact

that M (1−H) is the inverse operator of the operator M (H). Following [6] and [13]
we extend M (H) onto S′(R) and define the fractional operator M (H) : S′(R) →
S′(R) by

⟨M (H)ω, f⟩ = ⟨ω,M (H)f⟩, f ∈ S(R), ω ∈ S′(R).

2.3.6. Fractional Gaussian white noise space. Following [5], for H ∈ (0, 1) we
denote by

L2(µH) = L2(µ ◦M (1−H)) = {G : Ω→ R ; G ◦M (H) ∈ L2(µ)}.
the stochastic analogue of L2

H(R). It is the space of square integrable functions
on S′(R) with respect to fractional Gaussian white noise measure µH . Thus, the
space (S′(R),B, µH) denotes the fractional Gaussian white noise space.

Since G ∈ L2(µH) if and only if G ◦M (H) ∈ L2(µ), it follows that G has an
expansion of the form

G(M (H)ω) =
∑

α∈I
cαHα(ω) =

∑

α∈I
cα

∞∏

i=1

hαi(⟨ω, ξi⟩)

=
∑

α∈I
cα

∞∏

i=1

hαi(⟨ω,M (H)ei⟩) =
∑

α∈I
cα

∞∏

i=1

hαi(⟨M (H)ω, ei⟩).

Definition 7. The family of fractional Fourier–Hermite polynomials is defined by

H̃α(ω) =
∞∏

k=1

hαk(⟨ω, ek⟩), α ∈ I. (34)
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The family {H̃α}α∈I forms an orthogonal basis of L2(µH) and for all α ∈ I
it holds ∥H̃α∥2L2(µH ) = α!. Therefore, Theorem 2 can be formulated for fractional
square integrable random variables.

Theorem 5. Each G ∈ L2(µH) can be uniquely represented in the form

G(ω) =
∑

α∈I
cα H̃α(ω), cα ∈ R, α ∈ I, ω ∈ Ω

such that ∥G∥2L2(µH) =
∑
α∈I

c2αα! is finite and ∥G∥L2(µH) = ∥G ◦M (H)∥L2(µ).

The fractional Kondratiev spaces (S)(H)
1 and (S)(H)

−1 are defined in an anal-
ogous way as it was done in Section 2.3.1 for stochastic random variables in the
Gaussian white noise case. An H-valued fractional stochastic process ṽ as element
of L2([0, T ],H)⊗ L2(Ω, µH) is uniquely defined by

ṽt(ω) =
∑

α∈I
vα(t) H̃α(ω), (35)

where vα ∈ L2([0, T ],H), α ∈ I such that (14) holds. Moreover, (35) can be written
in the form

ṽt(ω) =
∑

α∈I

∑

n∈N
vα,n en(t) H̃α(ω), vα,n ∈ R, ω ∈ Ω, t ∈ [0, T ].

The fractional generalized process ṽ from L2([0, T ],H) ⊗ (S)(H)
−1 has a chaos ex-

pansion representation of the form (35) such that (15) holds.
The definitions of coordinatewise and simple coordinatewise operators, Sec-

tion 2.3.3, hold for processes defined on both classical white noise space and frac-
tional white noise space.

3. The Stochastic LQR problem with fractional Brownian motion

In order to study the stochastic LQR problem on fractional spaces we introduce
an isometry M between the space of square integrable fractional random variables
L2(µH) and the space of integrable random variables L2(µ). Extending this map-
ping to stochastic processes we can transform the state equation with fractional
Brownian motion to an equation with standard Brownian motion. Therefore, we
can solve the optimal control problem with respect to an equation with standard
Brownian motion and find the solution of the original problem by applying M−1.

3.1. The fractional operator M
Since M (H) is self-adjoint we can connect (11) and (34) for all α ∈ I

Hα(ω) =
∞∏

k=1

hαk(⟨ω, ξk⟩) =
∞∏

k=1

hαk(⟨ω,M (H)ek⟩) =
∞∏

k=1

hαk(⟨M (H)ω, ek⟩)

= H̃α(M
(H)ω)
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and similarly
H̃α(ω) = Hα(M

(1−H)ω).

Therefore we define a new (fractional) operator M which maps the orthogonal
basis of L2(µH) into the orthogonal basis of L2(µ).

Definition 8 ([33]). Let M : L2(µH)→ L2(µ) be defined by

M(H̃α(ω)) = Hα(ω), α ∈ I, ω ∈ Ω.

The operator M and the fractional operator M (1−H) correspond to each
other. For G =

∑
α∈I cαH̃α(ω) ∈ L2(µH), by linearity and continuity we extend

M to

M
( ∑

α∈I
cα H̃α(ω)

)
=
∑

α∈I
cαHα(ω). (36)

Theorem 6 ([33]). The operator M is an isometry between spaces of classical
Gaussian and fractional Gaussian random variables.

Proof. The operator M is the isometry between L2(µH) and L2(µ) because it
holds ∥M(H̃α)∥L2(µ) = ∥Hα∥L2(µ) = α! = ∥H̃α∥L2(µH). "

The action of M can be seen as a transformation of the corresponding ele-
ments of the orthogonal basis {H̃α}α∈I into {Hα}α∈I , see [33]. For every element
F ∈ L2(µ) there exists a unique F̃ ∈ L2(µH) so F = MF̃ and also for each
F̃ ∈ L2(µH) there exists a unique F ∈ L2(µ) so F̃ = M−1 F . Further on, such
pairs of elements F and F̃ , that are connected via M, will be called the associ-
ated pairs. The coefficients of the chaos expansion representations of associated
elements F and F̃ coincide.

Lemma 3. Let F =
∑

α∈I fα Hα ∈ L2(µ) and F̃ =
∑

α∈I f̃α H̃α ∈ L2(µH). Then

F and F̃ are associated if and only if f̃α = fα for all α ∈ I.

Proof. Let F and F̃ be associated. Then it holds
∑

α∈I
fα Hα = F = M (F̃ ) = M

(∑

α∈I
f̃α H̃α

)
=
∑

α∈I
f̃α Hα.

Since the chaos expansion representation in the orthogonal basis {Hα}α∈I is

unique, it follows that fα = f̃α for all α ∈ I. "
The action of the operator M can be extended to a Kondratiev space of

stochastic distributions M : (S)(H)
−1 → (S)−1 by

M
( ∑

α∈I
aα H̃α(ω)

)
=
∑

α∈I
aα Hα(ω), aα ∈ R.

The extension is well defined since there exists p ∈ N so
∑

α∈I a
2
α (2N)−pα < ∞.

In an analogous way the action of the operator M can be extended to stochastic
processes and H-valued (generalized) stochastic processes.
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Example 2. (a) A real-valued fractional Brownian motion b(H)
t (ω), H ∈ (0, 1) as

an element of the fractional Gaussian space L2(µ(1−H)) = L2(µ◦M (H)) is given by

b(H)
t (ω) =

∞∑

k=1

(∫ t

0
ξk(s)ds

)
H̃ε(k)(ω),

with help of the property M (H)ξk = e(1−H)
k , see [33].

(b) A one-dimensional real-valued fractional singular white noise w(H)
t as an

element of the fractional Kondratiev space (S)(1−H)
−1 is defined by the chaos ex-

pansion w(H)
t (ω) =

∑∞
k=1 ξk(t) H̃ε(k)(ω). It is integrable and the relation d

dtb
(H)
t =

w(H)
t holds in the sense of distributions.

Moreover, combining (16) and (36) we obtain

M−1 (wt) = M−1

( ∞∑

k=1

ξk Hε(k)

)
=

∞∑

k=1

ξk H̃ε(k)(ω) = w(H)
t .

(c) An H-valued fractional white noise in the fractional space is given by

W (H)
t (ω) =

∞∑

k=1

ek(t) H̃ε(k)(ω), (37)

where {ek}k∈N is an orthonormal basis in L2([0, T ],H). By (17) and (37) the

relations M(W (H)
t ) = Wt and M−1(Wt) = W (H)

t follow.

From here onwards we will keep the following notation: all processes denoted
with tilde in subscript will be considered as elements of a fractional space. There-
fore, due to Lemma 3, each process v =

∑
α∈I vα Hα from an H-valued classical

space (particularly L2([0, T ],H)⊗ L2(Ω, µ) or L2([0, T ],H)⊗ (S)−1) will be asso-
ciated to a process ṽ =

∑
α∈I vα H̃α from the corresponding H-valued fractional

space (particularly L2([0, T ],H)⊗L2(Ω, µH) or L2([0, T ],H)⊗(S)(H)
−1 ) via the frac-

tional mapping M, i.e., M(ṽ) = v. Since the coefficients of processes ṽ and v are
equal, it also follows

∥ṽ∥2L2([0,T ],H)⊗L2(Ω,µH ) =
∑

α∈I
α! ∥vα∥2L2([0,T ],H) = ∥v∥2L2([0,T ],H)⊗L2(Ω,µ). (38)

Theorem 7. The fractional mapping M satisfies the following properties:

(1) Let the operators Õ : L2([0, T ],H)⊗ L2(Ω, µH) → L2([0, T ],H)⊗ L2(Ω, µH)
and O : L2([0, T ],H)⊗L2(Ω, µ)→ L2([0, T ],H)⊗L2(Ω, µ) be coordinatewise
operators that correspond to the same family of operators Oα : L2([0, T ],H)→
L2([0, T ],H), α ∈ I. Then it holds

M(Õṽ) = O(Mṽ),

(2) M is linear and it also holds M(ũ♦ỹ) = M(ũ)♦M(ỹ) and
(3) M(EµH ṽ) = Eµ(Mṽ),

for ṽ ∈ L2([0, T ],H)⊗ L2(Ω, µH) and ũ, ỹ ∈ L2([0, T ],H)⊗ (S)(H)
−1 .
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Proof. Since M acts on the orthogonal basis of L2(Ω, µH) the following is valid:
(1) Let ṽ ∈ L2([0, T ],H)⊗ L2(Ω, µH). From (22) and (36) we obtain

M(Õṽ) = M
( ∑

α∈I
Oαvα H̃α

)
=
∑

α∈I
Oαvα Hα = O

(∑

α∈I
vα Hα

)
= O(Mṽ).

(2) By definition, the fractional operator M is linear. It is also homogeneous
with respect to the Wick multiplication, i.e., it holds

M(ũ♦ỹ) = M
( ∑

α∈I

∑

β∈I
uαyβH̃α+β

)
=
∑

α∈I

∑

β∈I
uαyβHα+β

= M
( ∑

α∈I
uαH̃α

)
♦M

(∑

β∈I
yβH̃β

)
= M(ũ)♦M(ỹ).

(3) For ṽ ∈ L2([0, T ],H)⊗L2(Ω, µH) an element EµH ṽ is the zeroth coefficient
of fractional expansion of ṽ, i.e., EµH ṽ = v0. Thus, M(EµH ṽ) = v0. On the other
side, Eµ(Mṽ) is the zeroth coefficient of the expansion of Mṽ, which is also equal
to v0. Thus, M(EµH ṽ) = Eµ(Mṽ). "
Theorem 8. For a differentiable H-valued process z̃ from the fractional space the
following holds

M
(

d

dt
z̃

)
=

d

dt

(
Mz̃
)
.

Proof. Differentiation of a stochastic process is a simple coordinatewise operator,
i.e., a process is considered to be differentiable if and only if its coordinates are
differentiable deterministic functions [34]. The assertion follows by applying M to
d
dt z̃ =

∑
α∈I

d
dt zα(t) H̃α(ω) =

∑
α∈I z′α(t) H̃α(ω). We obtain

M(
d

dt
z̃) = M

(∑

α∈I
z′α(t)H̃α

)
=
∑

α∈I
z′α(t)Hα

=
d

dt

( ∑

α∈I
zα(t)Hα

)
=

d

dt

(
Mz̃
)
. "

3.1.1. Fractional integral. The fractional Itô–Skorokhod integral δ(H) of an H-
valued process ũ that belongs to Dom(δ(H)) in the fractional space is defined in
an analogous way as the Itô–Skorokgod integral (23) in classical space, see Section
2.3.4. Clearly, we say that ũ =

∑
α∈I uα H̃α ∈ Dom(δ(H)) if (28) holds. Then

the fractional Itô–Skorokhod integral of a process ũ =
∑

α∈I uα H̃α in fractional
space

δ(H)(ũ) =

∫ T

0
ũ dB(H)

t =

∫ T

0
ũ ♦W (H)

t dt

has the chaos expansion representation of the form

δ(H)(ũ) =
∑

α∈I

∑

k∈N
uα,k H̃α+ε(k) . (39)
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The coefficients uα,k are the coefficients of the expansion of the corresponding
δ(u), where u is the associated process to u =

∑
α∈I uαHα, uα ∈ L2([0, T ],H),

α ∈ I.

Theorem 9. For ũ ∈ Dom(δ) it holds

M(δ(H)(ũ)) = δ(M(ũ)). (40)

Proof. From (26), (39) and the definition of operator M the property (40) follows,
M(δ(H)(ũ)) = δ(u) = δ(M(ũ)) holds for all associated pairs of processes ũ and
u = Mũ. Since M is an isometry it holds

∥δ(u)∥2L2(Ω,µ) = ∥M(δ(H)(ũ))∥2L2(Ω,µ) = ∥δ(H)(ũ))∥2L2(Ω,µH )

=
∑

α∈I
α!

(∑

k∈N
uα,k

√
αk + 1

)2

<∞. "

Remark 2. The definition of the fractional Itô–Skorokhod integral in the classical
Gaussian space is given in [5, 6, 39]. In [33] the authors provided a detailed analysis
on generalized classical and fractional operators of Malliavin calculus on white
noise spaces.

3.2. The optimal control problem

We consider the state equation

dỹ(t) = [Ã ỹ(t) + B̃ ũ(t)] dt+ C̃ ỹ(t) dB(H)
t , ỹ(0) = ỹ0, t ∈ [0, T ], (41)

with respect to an H-valued fractional Brownian motion in the fractional Gaussian
white noise space. The objective is to minimize the functional

J(H)(ũ) = EµH

[∫ T

0

(
∥R̃ỹ∥2H + ∥ũ∥2U

)
dt + ∥G̃ỹT ∥2H

]
(42)

over all ũ ∈ L2([0, T ]× Ω,U).
Due to the fundamental theorem of stochastic calculus, for admissible square

integrable processes, the fractional state equation (41) is equivalent to its Wick
version

˙̃y(t) = Ãỹ(t) + B̃ũ(t) + C̃ ỹ(t)♦W (H)(t), ỹ(0) = ỹ0, t ∈ [0, T ]. (43)

By using the fractional mapping M one can transfer the optimal control
problem (41)–(42) from the fractional space to the corresponding optimal control
problem with the state equation

dy(t) = [Ay(t) +Bu(t)] dt+ Cy(t) dBt, y(0) = y0, t ∈ [0, T ]. (44)

with respect to Brownian motion subject to

J(u) = Eµ

[∫ T

0

(
∥Ry∥2H + ∥u∥2U

)
dt + ∥GyT∥2H

]
, (45)
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in the classical Gaussian white noise space. Instead of the state equation (44),
on a set of square integrable processes, one can consider its equivalent Wick-type
equation

ẏ(t) = Ay(t) +Bu(t) + Cy(t)♦Wt, y(0) = y0, t ∈ [0, T ]. (46)

Once the solution of the optimal control problem (44)–(45) is obtained, then
using the fractional isometry M one can also obtain the solution to the initial
optimal control problem (41)–(42). That is the statement of the following theorem.

Theorem 10. Let the fractional operators Ã, B̃, C̃, R̃ and G̃ defined on fractional
space be coordinatewise operators that correspond to the families of deterministic
operators {Aα}α∈I, {Bα}α∈I, {Cα}α∈I, {Rα}α∈I and {Gα}α∈I respectively. Let
the pair (ũ∗, ỹ∗) be the optimal solution of the fractional stochastic optimal control
problem (41)–(42). Then, the pair (M ũ∗,M ỹ∗) is the optimal solution (u∗, y∗)
of the associated optimal control problem (44)–(45), where the operators A, B, C,
R and G defined on classical space, are coordinatewise operators that correspond
respectively to the same families of deterministic operators {Aα}α∈I, {Bα}α∈I,
{Cα}α∈I, {Rα}α∈I and {Gα}α∈I. Moreover, if (u∗, y∗) is the optimal solution of
the stochastic optimal control problem (44)–(45), then the pair (M−1u∗,M−1y∗)
is the optimal solution (ũ∗, ỹ∗) to the corresponding fractional optimal control prob-
lem (41)–(42).

Proof. Let (ũ∗, ỹ∗) be the optimal pair of the problem (41)–(42), i.e., its equivalent
problem (42)–(43). Then minu J(u) = J(u∗), while y∗ solves (41) and also (43).
Let all operators appearing in the control problem be coordinatewise operators. By
applying the chaos expansion method and the properties of the fractional operator
M stated in Theorem 7 and Theorem 8, we transform (43) in fractional space to
the corresponding state equation in classical space, i.e.,

ẏ(t) = M(Ãỹ(t) + B̃ũ(t) + C̃ỹ(t)♦W (H)(t))

= M(Ãỹ) +M(B̃ũ) +M(C̃ỹ)♦M(W (H)
t )

= Ay + Bu + Cy♦Wt,

where y and u are the associated processes to ỹ and ũ respectively. Moreover,
by Theorem 7 part (3) and (38) the operator M transforms the cost functional
J(H) to

M(J(H)(ũ)) = M(EµH (ṽ)) = Eµ(Mṽ) = Eµ(v) = J(u),

where ṽ and v are associated elements ṽ =
∫ T
0

(
∥R̃ỹ∥2H + ∥ũ∥2U

)
dt+ ∥G̃ỹT ∥2H and

v =
∫ T
0

(
∥Ry∥2H + ∥u∥2U

)
dt + ∥GyT∥2H. "

We will solve the control problem in the classical space (we will generalize
the results from [27]) and then, by use of Theorem 10 via the inverse fractional
mapping M−1, we obtain the optimal solution for the corresponding fractional
problem.
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Theorem 11. Let the following assumptions hold:

(A1) The operator A : L2([0, T ],D) ⊗ L2(Ω, µ) → L2([0, T ],D) ⊗ L2(Ω, µ) is a
coordinatewise linear operator that corresponds to the family of deterministic
operators Aα : L2([0, T ],D) → L2([0, T ],H), α ∈ I, where Aα are infinites-
imal generators of strongly continuous semigroups (eAαt)α∈I , t ≥ 0, defined
on a common domain D that is dense in H, such that for some m, θ > 0 and
all α ∈ I we have

∥(eAαt)α∥L(H) ≤ meθt, t ≥ 0.

(A2) The operator C : L2([0, T ],H) ⊗ L2(Ω, µ) → L2([0, T ],H) ⊗ L2(Ω, µ) is a
coordinatewise operator corresponding to a family of uniformly bounded deter-
ministic operators Cα : L2([0, T ],H)→ L2([0, T ],H), α ∈ I.

(A3) The control operator B is a simple coordinatewise operator B : L2([0, T ],U)⊗
L2(Ω, µ) → L2([0, T ],H)⊗ L2(Ω, µ) that is defined by a family of uniformly
bounded deterministic operators Bα : L2([0, T ],U)→ L2([0, T ],H), α ∈ I.

(A4) The operators R and G are bounded coordinatewise operators corresponding
to the families of deterministic operators {Rα}α∈I and {G}α∈I respectively.

(A5) Eµ∥y0∥2H <∞.

Then, the optimal control problem (45)–(46) has a unique optimal control u∗ given
in the chaos expansion form

u∗ = −
∑

α∈I
B⋆

α Pd,α(t) y
∗
α(t)Hα −

∑

|α|>0

B⋆
α kα(t)Hα,

where Pd,α(t) for every α ∈ I solves the Riccati equation

Ṗd,α(t) + Pd,α(t)Aα +A⋆
αPd,α(t) +RαR

⋆
α − Pd,α(t)BαB

⋆
αPd,α(t) = 0

Pd,α(T ) = G⋆
αGα

(47)

and kα(t) is for each α ∈ I a solution to the auxiliary differential equation

k′α(t) + (A⋆
α − Pd,α(t)BαB

⋆
α) kα(t) + Pd,α(t)

(∑

i∈N
Cα−ε(i)yα−ε(i)(t) · ei(t)

)
= 0,

(48)
with the terminal condition kα(T ) = 0 and y∗ =

∑
α∈I y

∗
α Hα is the optimal state.

Proof. Since all the operators A, B and C are coordinatewise, by (22) the actions
are given by Ay(t,ω) =

∑
α∈I Ayα(t)Hα(ω), Bu(t) =

∑
α∈I Buα(t)Hα(ω) and

Cy(t,ω) =
∑

α∈I Cyα(t)Hα(ω), for

y(t,ω) =
∑

α∈I
yα(t)Hα(ω), u(t,ω) =

∑

α∈I
uα(t)Hα(ω) (49)

such that for all α ∈ I the coefficients yα ∈ L2([0, T ],H) and uα ∈ L2([0, T ],U).
From (A2) and (A3) we conclude that the operators C and B are bounded and
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by Lemma 1 it holds

∥Bu∥2L2([0,T ],H)⊗L2(Ω,µ) =
∑

α∈I
α! ∥Bαuα∥2L2([0,T ],H)

≤ c2
∑

α∈I
α! ∥uα∥2L2([0,T ],U) = c2∥u∥2L2([0,T ],U)⊗L2(Ω,µ),

where ∥Bα∥ ≤ c for all α ∈ I.
We divide the proof into several steps. First, we consider the Wick version

(46) of the state equation (44), we apply the chaos expansion method and obtain a
system of deterministic equations. By representing y and y0 in their chaos expan-
sion forms, the initial condition y(0) = y0, for a given H-valued random variable
y0, is reduced to a family of initial conditions for the coefficients of the state

yα(0) = y0α, for all α ∈ I, where y0α ∈ H, α ∈ I.

With the chaos expansion method the state equation (46) transforms to the
system of infinitely many deterministic initial value problems:

1◦ for α = 0:

y′0(t) = A0y0(t) +B0u0(t), y0(0) = y00, (50)

2◦ for |α| > 0:

y′α(t) = Aαyα(t) +Bαuα(t) +
∑

i∈N
Cα−ε(i)yα−ε(i)(t) · ei(t),

yα(0) = y0α,
(51)

where the unknowns correspond to the coefficients of the control and the state
variables. It describes how the stochastic state equation propagates chaos through
different levels. Note that for α = 0, the equation (50) corresponds to the determi-
nistic version of the problem and the state y0 is the expected value of y. The terms
yα−ε(i)(t) are obtained recursively with respect to the length of α. The sum in (51)
goes through all possible decompositions of α, i.e., for all j for which α − ε(j) is
defined. Therefore, the sum has as many terms as multi-index α has non-zero
components. Existence and uniqueness of solutions of (50), (51) follow from the
assumptions (A1), (A2) and (A3) for the operators Aα, Bα and Cα, α ∈ I.

In the second step, we set up optimal control problems for each α-level.
We seek for the optimal control u and the corresponding optimal state y in the
chaos expansion representation form (49), i.e., the goal is to obtain the unknown
coefficients uα and yα for all α ∈ I.

The problems are defined in the following way:

1◦ for α = 0 the control problem

min
u0

J(u0) =

∫ T

0
(∥R0y0(t)∥2H + ∥u0(t)∥2U ) dt + ∥G0y0(T )∥2H (52)

tijana.levajkovic@uibk.ac.at

Section 2.3 323
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subject to

y′0(t) = A0y0(t) +B0u0(t), y0(0) = y00 , and

2◦ for |α| > 0 the control problem

J(uα) =

∫ T

0
(∥Rαyα(t)∥2H + ∥uα(t)∥2U) dt + ∥Gαyα(T )∥2H, (53)

subject to

y′α(t) = Aαyα(t) +Bαuα(t) +
∑

i∈N
Cα−ε(i)yα−ε(i)(t) · ei(t), yα(0) = y0α,

and can be solved by the induction on the length of multi-index α ∈ I. Next we
solve the family of deterministic control problems, i.e., we discuss the solution of
the deterministic system of control problems (52) and (53):

1◦ For α = 0 the state equation (50) is homogeneous, thus the optimal control
for (50)-(52) is given in the feedback form

u∗
0(t) = −B⋆

0 Pd,0(t) y
∗
0(t), (54)

where Pd,0(t) solves the Riccati equation (9).
2◦ For each |α| > 0 the state equation (51) is inhomogeneous and the optimal

control for (53) is given by

u∗
α(t) = −B⋆

α Pd,α(t) y
∗
α(t)−B⋆

αkα(t), (55)

where Pd,α(t) solves the Riccati equation (47), while kα(t) is a solution to the
auxiliary differential equation (48) with the terminal condition kα(T ) = 0, as
discussed in Section 2.1.1.

Summing up all the coefficients we obtain the optimal solution (u∗, y∗) re-
presented in terms of chaos expansions. Thus, the optimal state is given in the
form

y∗ =
∑

α∈I
y∗α(t)Hα = y∗0 +

∑

|α|>0

y∗α(t)Hα

and the corresponding optimal control

u∗ =
∑

α∈I
u∗
α(t)Hα = u∗

0 +
∑

|α|>0

u∗
α(t)Hα

= −B⋆
0 Pd,0(t) y

∗
0 −

∑

|α|>0

B⋆
α Pd,α(t) y

∗
α(t)Hα −

∑

|α|>0

B⋆
αkα(t)Hα

= −
∑

α∈I
B⋆

α Pd,α(t) y
⋆
α(t)Hα −

∑

α∈I
B⋆

αkα(t)Hα

= −B⋆ Pd y∗(t) − B⋆ K,

(56)

where Pd(t) is a coordinatewise operator corresponding to the deterministic family
of operators {Pd,α}α∈I and K is a stochastic process with coefficients kα(t), i.e.,
process of the form K =

∑
α∈I kα(t)Hα, with k0 = 0.
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In the following step we prove the optimality of the obtained solution. As-
suming (A1)–(A4) it follows that the assumptions of Theorem 1 are fulfilled and
thus the optimal control of the problem (4)–(5) is given in the feedback form by

u∗(t) = −B⋆P(t) y∗(t), (57)

with a positive self-adjoint operator P(t) solving the stochastic Riccati equation
(6). Since the state equations (4) and (46) are equivalent, we are going to interpret
the optimal solution (57), involving the Riccati operator P(t) in terms of chaos
expansions. It holds J(u∗) = min

u
J(u), for u∗ of the form (57).

On the other hand, the stochastic cost function J is related with the deter-
ministic cost function J by

J(u) = E
[∫ T

0

(
∥Ry∥2W + ∥u∥2U

)
dt + ∥GyT∥2Z

]

= E
( ∫ T

0
∥Ry∥2W dt

)
+ E
( ∫ T

0
∥u∥2U dt

)
+ E

(
∥GyT∥2Z

)

=
∑

α∈I
α! ∥Rαyα∥2L2([0,T ],W) +

∑

α∈I
α! ∥uα∥2L2([0,T ],U) +

∑

α∈I
α! ∥Gαyα(T )∥2Z

=
∑

α∈I
α!
(
∥Rαyα∥2L2([0,T ],W) + ∥uα∥2L2([0,T ],U) + ∥Gαyα(T )∥2Z

)

=
∑

α∈I
α! J(uα).

Thus,

J(u∗) = min
u

J(u) = min
u

∑

α∈I
α! J(uα) =

∑

α∈I
α! min

uα

J(uα) =
∑

α∈I
α! J(u∗

α)

and therefore
u∗(t,ω) =

∑

α∈I
u∗
α(t) Hα(ω), (58)

i.e., the optimal control obtained via direct Riccati approach u∗ coincides with
the optimal control obtained via chaos expansion approach

∑
α∈I u

∗
α(t)Hα(ω).

Moreover, the optimal states are the same and the existence and uniqueness of the
solution of the optimal state equation via chaos expansion approach follows from
the direct Riccati approach.

Finally, we prove the convergence of the chaos expansions of the optimal
state. We include the feedback forms (54) and (55) of the optimal controls u∗

α,
α ∈ I in the state equations (50) and (51) and obtain the system

y′0(t) = (A0 −B0B
⋆
0 Pd,0(t)) y0(t)

y′α(t) = (Aα −BαB
⋆
αPd,α(t)) yα(t)− BαB

⋆
αkα(t) +

∑

i∈N
Cyα−ε(i)(t) ei(t),

(59)

for |α| ≥ 1, with the initial conditions yα(0) = y0α, α ∈ I.
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From the assumption (A1) it follows that Aα, α ∈ I are infinitesimal genera-
tors of strongly continuous semigroups (Tt)α = (eAαt)α, t ≥ 0 which are uniformly
bounded, i.e., ∥eAαt∥L(H) ≤ meθt, α ∈ I holds for some positive constants m
and θ, where L(H) denotes the set of linear bounded mappings on L2([0, T ],H).
Moreover, the family (T ⋆

t )α = (eA
⋆
αt)α, t ≥ 0 is a family of strongly continuous

semigroups whose infinitesimal generators are A⋆
α, α ∈ I, the adjoint operators of

Aα, α ∈ I. This follows from the fact that each Hilbert space is a reflexive Banach
space, see [43].

We denote by Sα(t) = Aα −BαB⋆
αPd,α(t), α ∈ I and rewrite (59) in simpler

form
y′0(t) = S0(t) y0(t), y0(0) = y00,

y′α(t) = Sα(t) yα(t) + fα(t), yα(0) = y0α, |α| > 1
(60)

where fα(t) = −BαB⋆
αkα(t) +

∑
i∈N Cyα−ε(i)(t) ei(t), α ∈ I.

The operators Sα(t), α ∈ I can be understood as time dependent continuous
perturbations of the operators Aα. From Theorem 1 it follows that Pd,α(t), α ∈ I
are self adjoint and uniformly bounded operators, i.e., ∥Pd,α(t)∥ ≤ p, α ∈ I,
t ∈ [0, T ]. The operators Bα and thus B⋆

α are uniformly bounded, i.e., for all
α ∈ I we have ∥Bα∥ ≤ b and ∥B∗

α∥ ≤ b, b > 0. Therefore, BαB⋆
αPd,α(t), α ∈ I are

uniformly bounded. Hence, we can associate a family of evolution systems Uα(t, s),
α ∈ I, 0 ≤ s ≤ t ≤ T to the initial value problems (60) such that

∥Uα(t, s)∥L(H) ≤ eθ1 t, for all 0 ≤ s ≤ t ≤ T.

The family of solution maps Uα(t, s)y0α, α ∈ I to the non-autonomous system
(60) is a family of evolutions which are in C([0, T ],H) since BαB⋆

αPd,α, α ∈ I are
bounded for every t, and are for all α ∈ I continuous in time, i.e., elements of
C([0, T ],L(H)), [43]. The adjoint operators (S(t))⋆α = A⋆

α + Pd,α(t)B⋆
αBα, α ∈ I

are associated to the corresponding adjoint evolution systems U⋆
α(t, s), α ∈ I,

0 ≤ s ≤ t ≤ T , see [43].
The operators Cα, α ∈ I are uniformly bounded and for all α ∈ I it holds

∥Cα∥ ≤ d, d > 0. For a fixed control u it also holds Cy ∈ Dom(δ), i.e., (28) holds
for Cy.

Consider a small interval [0, T0], for fixed T0 ∈ (0, T ]. Denote by M1(t) = eθ1t

and M2(t) =
1

2θ1
(e2θ1t − 1)2 for t ∈ (0, T0].

For every y0α ∈ Dom(S(t))α the mild solution of (60) is given in the form

y0(t) = U0(t, 0) y
0
0

yα(t) = Uα(t, 0) y
0
α +

∫ t

0
Uα(t, s)

(∑

i∈N
Cα−ε(i)yα−ε(i)(s) ei(s) − BαB

⋆
αkα(s)

)
ds,

for |α| ≥ 1 and 0 ≤ s ≤ t ≤ T and yα are continuous functions for all α ∈ I.
The operators Cα, Bα and B⋆

α, α ∈ I are uniformly bounded and therefore the
inhomogeneity part of (59) belongs to the space L2([0, T ],H), where the functions
kα, α ∈ I are given in (48). Denote by X = L2([0, T0],H) and X = L2([0, T0],H)⊗
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L2(µ). Thus it holds

∥y∥2X =
∑

α∈I
α! ∥yα∥2X = ∥y0∥2X +

∑

|α|≥1

α! ∥yα∥2X ≤ 2
∑

α∈I
α!∥Uα(t, 0) y

0
α∥2X

+ 2
∑

|α|≥1

α!∥
∫ t

0
(Uα(t, s)

(∑

i∈N
Cα−ε(i)yα−ε(i)(s)ei(s)−BαB

⋆
αkα(s)

)
ds∥2X

≤ 2M2
1 (T0)

∑

α∈I
α!∥y0α∥2X

+ 8M2(T0)d
2
∑

|α|≥1

α! |α| ∥yα∥2X + 4M2(T0) b
4
∑

|α|≥1

α!∥kα(s)∥2X

≤ 2M2
1 (T0)∥y0∥2X + 4M2(T0) d

2 ∥y∥2Dom(δ) + 4M2(T0) b
4 ∥K∥2X , (61)

where ∥K∥2X =
∑

α∈I ∥kα∥2X α!. The coefficients kα are the solutions of (48) and
are expressed in terms of the adjoint evolution system U⋆

α(t, s), α ∈ I. Clearly, the
coefficients are of the form

kα(t) = U⋆
α(T, t)kα(T ) +

∫ T

t
U⋆
α(s, t)Pd,α(s)

(∑

i∈N
Cα−ε(i)yα−ε(i)ei(s)

)
ds, t < T

for α ∈ I. Denote by X1 = L2([T0, T ]) and ∥U⋆
α(T, t)∥ ≤ eθ̃t = M3(t), for θ̃ > 0,

α ∈ I and M4(t) =
1
2θ̃
(e2θ̃(T−t) − 1)2. Since kα(T ) = 0 we obtain

∥K∥2X1
=
∑

α∈I
α! ∥
∫ T

t
U⋆
α(s, t)Pd,α(t)

(∑

i∈N
Cα−ε(i)yα−ε(i) ei(s)

)
ds∥2X

≤ 2M4(T0) p
2 d2

∑

α∈I
α! |α| ∥uα∥2X ≤M4(T0) p

2 d2 ∥y∥2Dom(δ) <∞.

Thus, ∥K∥2X <∞. With this bound we return to (61) and conclude that ∥y∥2X <∞.
The interval (0, T ] can be covered by the intervals of the form [kT0, (k+1)T0]

in finitely many steps. Thus, y ∈ L2([0, T ],H)⊗ L2(µ). "

Theorem 11 is an extension of results from [27], where the case with simple
coordinatewise operators was considered. The importance of the convergence re-
sult can be seen in the error analysis that arises in the actual truncation when
implementing the algorithm numerically.

Remark 3. The previous results might be extended for optimal control prob-
lems with state equations of the form (3), in spaces of stochastic distributions.
By replacing the uniform boundedness conditions on the operators Bα and Cα,
α ∈ I in (A2) and (A3) with the polynomial growth conditions of the type∑

α∈I ∥Cα∥2 (2N)−sα <∞, for some s > 0 one can prove that for fixed admissible
control, the state equation has a unique solution in the space L2([0, T ],H)⊗(S)−1.
A similar theorem to Theorem 11 for the optimal control can be proven. Moreover,
the corresponding optimal control problem with fractional noise can be solved.
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The following theorem gives the characterization of the optimal solution (58)
in terms of the solution of the stochastic Riccati equation (6).

Theorem 12. Let the conditions (A1)–(A5) from Theorem 11 hold and let P be a
coordinatewise operator that corresponds to the family of operators {Pα}α∈I. Then,
the solution of the optimal control problem (4)–(5) obtained via chaos expansion
(56) is equal to the one obtained via Riccati approach (57) if and only if

C⋆
αPα(t)Cα y∗α(t) = Pα(t)

(∑

i∈N
Cα−ε(i)y

∗
α−ε(i)(t) · ei(t)

)
, |α| > 0, k ∈ N (62)

hold for all t ∈ [0, T ].

Proof. Let us assume first that (56) is equal to (57), then

−B⋆P y∗(t) = −B⋆ Pd y∗(t) − B⋆ K;

we obtain
(P(t) −Pd) y

∗(t) = K.

The difference between P(t) and Pd(t) is expressed through the stochastic pro-
cess K, which comes from the influence of inhomogeneities. Assuming that P is a
coordinatewise operator that corresponds to the family of operators {P}α∈I, we
will be able to see the action of stochastic operator P on the deterministic level,
i.e., level of coefficients. Thus, for y given in the chaos expansion form (49) and
P(t) y∗ =

∑
α∈I Pα(t) y∗α(t)Hα it holds
∑

α∈I
(Pα(t)− Pd,α(t)) y

∗
α(t)Hα =

∑

α∈I,|α|>0

kα(t)Hα. (63)

Since k0(t) = 0 it follows P0(t) = Pd,0(t), for t ∈ [0, T ] and for |α| > 0

(Pα(t)− Pd,α(t)) y
∗
α(t) = kα(t),

such that (48) with the condition kα(T ) = 0 holds. We differentiate (63) and
substitute (48), together with (6), (9) and (51). Thus, after all calculations we
obtain for |α| = 0

(P0(t)− Pd,0(t)) y
∗
0(t) = 0

and for |α| > 0

C⋆
αPα(t)Cα y∗α(t) = Pα(t)

(∑

i∈N
Cα−ε(i) y

∗
α−ε(i)(t) · ei(t)

)
, k ∈ N.

Note that assuming (62) and P is a coordinatewise operator that corresponds to
operators Pα, α ∈ I we can go backwards in the analysis and prove that the
optimal controls (57) and (56) are the same. "
Remark 4. The condition that characterizes the optimality (62) represents the
action of the stochastic Riccati operator in each level of the noise. Note that the
stochastic Riccati equation (6) and the deterministic one (9) differ only in the
term C⋆

αPα(t)Cα, i.e., the operator C⋆
αPα(t)Cα, α ∈ I captures the stochasticity
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of the equation. Polynomial chaos projects the stochastic part in different levels
of singularity, the way that Riccati operator acts in each level is given by (62).

Remark 5. Following our approach the numerical treatment of the SLQR problem
relies on solving efficiently Riccati equations arising in the associated determin-
istic problems. In recent years, numerical methods for solving differential Riccati
equations have been proposed, e.g., [2, 3, 4, 23],

3.3. Further extensions

We consider now more general form of the state equation

ẏ = Ay +Bu+T♦y, y(0) = y0, (64)

for bounded coordinatewise operators A and B and T♦, where the operator T♦
for y =

∑
α∈I yαHα is defined by

T♦(y) =
∑

α∈I

∑

β≤α

Tβ(yα−β)Hα. (65)

For more details about T♦ we refer to [34, 44]. We point out that in [34] the authors
proved that (64), for fixed u, has a unique solution in space of stochastic gene-
ralized processes. Here, we will show that the optimal control problem (45)–(64)
for a specific choice of the operator T can be reduced to the problem (45)–(46),
and thus its optimal control can be obtained from Theorem 11. Moreover, one
can also consider the corresponding fractional optimal control problem and thus
apply Theorem 10 and Theorem 11. This extension is connected to the form of a
Gaussian colored noise (20) with the condition (21). We denote X = L2([0, T ],H).

Theorem 13. Let Lt be of the form (20) such that (21) holds. Let N be a coor-
dinatewise operator which corresponds to a family of uniformly bounded operators
{Nα}α∈I and let the operators A, B and C satisfy the assumptions (A1)–(A4) of
Theorem 11. Let the operator T be a coordinatewise operator defined by a family
of operators {Tα}α∈I, Tα : X → X, α ∈ I, such that for |β| ≤ |α|

Tβ(yα−β) =

⎧
⎨

⎩

Nα(yα) , |β| = 0
lk Nα−ε(k)(yα−ε(k)) , |β| = 1, i.e., β = ε(k), k ∈ N
0 , |β| > 1

, (66)

for yα ∈ X, α ∈ I. Then the state equation (64) can be reduced to the state
equation (46). Thus, the optimal control problem (45)–(64) has a unique solution.

Proof. By the definition (65) and the chaos expansion method, the state equation
(64) reduces to the system:

1◦ for |α| = 0

ẏ0 = (A0 + T0) y0 +B0 u0, y0(0) = y00, (67)

2◦ for |α| ≥ 1

ẏα = (Aα + T0) yα +Bαuα +
∑

0<β≤α

Tβ(yα−β), yα(0) = y0α. (68)
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From (66) it follows

T0(yα) = Nα(yα), α ∈ I and Tε(k)(yα−ε(k)) = lkNα−ε(k)(yα−ε(k)).

We define Âα = Aα + Nα, α ∈ I. Since the family {Nα} is uniformly bounded
and {Aα} are infinitesimal generators C0-semigroups then the operators Âα are
also infinitesimal generators of C0-semigroups and satisfy the condition (A1) of
Theorem 11, see [43]. Thus the system (67)–(68) transforms to:

1◦ for |α| = 0

ẏ0 = Â0 y0 +B0 u0, y0(0) = y00

2◦ for |α| ≥ 1

ẏα = Âα yα +Bαuα +
∑

k∈N
lk Nα−ε(k)(yα−ε(k)), yα(0) = y0α.

Define the operators Ĉ0 = N0 and Ĉα−ε(k) = lk Nα−ε(k) , for |α| ≥ 1, k ∈ N.
Therefore, the obtained system corresponds to the state equation of the form

ẏ = Â y + Bu + Ĉ♦Wt, (69)

where Â and Ĉ are coordinatewise operators corresponding to the families {Âα}
and {Ĉα}, respectively. Moreover, the operators B and Ĉ satisfy the assumptions
(A2)–(A4) of Theorem 11. Therefore, it can be applied to the optimal control
problem (45)–(69). "

4. An example involving operators from Malliavin calculus

In this section we focus on semi-explicit ODAEs, i.e., systems of a linear semi-
explicit equation subject to an algebraic constraint. These systems of equations are
motivated by applications, e.g., Stokes equations, linearized Navier–Stokes equa-
tions, etc. They are in most cases deterministic and finite-dimensional. However,
recently ODAEs with additive noise have been studied in [1]. Here, we consider an
ODAE of the form

ẏ = Ay +T♦y + B⋆u + f, B y = g,

where the operator B is the Itô–Skorohod integral δ and B⋆ the Malliavin deriv-
ative D. The operator δ is the adjoint operator of D, i.e., the duality relationship

E (F · δ(y)) = E (⟨DF, y⟩) ,

holds for stochastic processes y and F belonging to appropriate spaces [41]. Thus,
we study the system

ẏ = Ay + δu+T♦y + f, D y = g. (70)

More details on properties of the generalized operators of the Malliavin calcu-
lus and the equations involving these operators can be found in [29, 31, 34]. Here we
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assume that the space X is the Hilbert space L2([0, T ],H). Let u =
∑

α∈I uαHα,
uα ∈ X , α ∈ I and F =

∑
α∈I

∑
k∈N fα,k ξk Hα, fα,k ∈ X , α ∈ I, k ∈ N and

{ξk}k∈N are the Hermite functions. The Malliavin derivative operator D represents
a stochastic gradient in the direction of white noise and is a linear and continuous
mapping D : X ⊗ (S)−1 → X ⊗ S′(R)⊗ (S)−1 given by

Du =
∑

α∈I

∑

k∈N
αk uα ξk Hα−εk .

A process u belongs to the domain Dom(D) if and only if for some p ∈ N0 it holds
∑

α∈I
|α|2 ∥uα∥2X (2N)−pα <∞.

The Itô–Skorokhod integral δ is a linear and continuous mapping δ : X ⊗ S′(R)⊗
(S)−1 → X ⊗ (S)−1 and is defined by δ(F ) =

∑
α∈I
∑

k∈N fα,kHα+εk . Note that
the domain Dom(δ) = X ⊗ S′(R) ⊗ (S)−1. In quantum theory D corresponds to
the annihilation operator and δ to the creation operator.

We reduce the system (70) to the following two problems: Dy = g, Ey = y0

and δ(u) = v and then apply the results from [29] and [31].

Theorem 14. Let A : X ⊗ (S)−1 → X ⊗ (S)−1 be a coordinatewise operator
corresponding to a uniformly bounded family of deterministic operators Aα : X →
X, α ∈ I and T be a coordinatewise operator that corresponds to a polynomially
bounded family of operators Tα : X → X, α ∈ I. Let g =

∑
α∈I
∑

k∈N gα,kξkHα ∈
X ⊗ S′(R)⊗ (S)−1 and f ∈ X ⊗ (S)−1, such that Ef = A0y0 + T0y0. Then there
exists a unique solution y ∈ X ⊗ (S)−1 and u ∈ X ⊗ S′(R)⊗ (S)−1 of the system
(70) with the initial conditions Ey = y0 ∈ X and Eẏ = y1 ∈ X given by

y = y0 +
∑

α∈I,|α|>0

1

|α|
∑

k∈N
gα−ε(k),k Hα (71)

and

u =
∑

α∈I

∑

k∈N
(αk + 1)

vα+ε(k)

|α+ ε(k)|
ξk Hα, (72)

where v = ẏ −Ay −T♦y − f .

Proof. The initial value problem involving the Malliavin derivative operator

Dy = g, Ey = y0 (73)

can be solved by applying the integral operator on both sides of the equation.
Given a process g ∈ X ⊗ S−p(R) ⊗ (S)−1,−q, p ∈ N0, q > p + 1, represented in
its chaos expansion form g =

∑
α∈I
∑

k∈N gα,k ξk Hα, the equation (73) has a
unique solution in Dom(D) represented by (71). Additionally, it holds

∥y∥2X⊗(S)−1,−q
≤ ∥u0∥2X + c ∥g∥2X⊗S−l(R)⊗(S)−1,−q

<∞.

The operator A is a coordinatewise operator and it corresponds to an uni-
formly bounded family of operators {Aα}α∈I, i.e., it holds ∥Aα∥ ≤M , α ∈ I. For
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y ∈ X ⊗ (S)−1
⋂
Dom(D) it holds

∥Ay∥2X⊗(S)−1,−q
=
∑

α∈I
∥Aαyα∥2X (2N)−qα ≤M∥y∥2X⊗(S)−1,−q

<∞

and thus Ay ∈ X ⊗ (S)−1,−q. The operators {Tα}α∈I are polynomially bounded
and it holds T♦ : X ⊗ (S)−1,−q → X ⊗ (S)−1,−q. Since gα ∈ X ⊗ S−l(R) we can
use the formula for derivatives of the Hermite functions [21]. Thus,

ġα =
∑

k∈N
gα,k ⊗

d

dt
ξk =

∑

k∈N
gα,k ⊗

(√
k

2
ξk−1 −

√
k + 1

2
ξk+1

)

and ġα ∈ X ⊗ S−l−1(R). We note that the problem Du̇ = ẏ with the initial
condition Eẏ = y1 ∈ X can be solved as (73). Moreover,

∥ẏ∥2X⊗(S)−1,−q
≤ ∥y1∥2X + c ∥ġ∥2X⊗S−l−1(R)⊗(S)−1,−q

<∞.

Let f ∈ X ⊗ (S)−1,−q and denote by v = ẏ − Ay − T♦y − f . From the given
assumptions it follows v ∈ X ⊗ (S)−1,−q such that Ev = 0. Then, v can be
represented in the form v =

∑
α∈I,|α|≥1 vαHα and the integral equation

δ(u) = v ,

has a unique solution u in X ⊗ S−l−1(R) ⊗ (S)−1,−q, for l > q, given in the form
(72), see [31, 35]. Moreover, the estimate

∥u∥2X⊗(S)−1,−q
≤ c

(
∥y∥2X⊗(S)−1,−q

+ ∥f∥2X⊗(S)−1,−q
+ ∥ẏ∥2X⊗(S)−1,−q

)

also holds. "
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Abstract. We study an infinite dimensional finite horizon stochastic linear quadratic control
problem in an abstract setting. We assume that the dynamics of the problem are generated by a
strongly continuous semigroup, while the control operator is unbounded and the multiplicative noise
operators for the state and the control are bounded. We prove an optimal feedback synthesis along
with well posedness of the Riccati equation for the finite horizon case. Our results extend the ones
proposed in [C. Hafizoglu, Ph.D. Thesis, University of Virginia, Charlottesville, VA, 2006.] to the
case in which disturbance in the control is considered and a final time penalization term is included
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1. Introduction. We consider the stochastic linear quadratic problem in infinite
dimensions with state and control dependent noise for the so-called singular estimate
control systems. These systems involve dynamics driven by C0-semigroups and un-
bounded control actions, with the control to state kernel satisfying a singular estimate.
Such a situation is typical in boundary or point control problems where the action of
the control operator B is either only densely defined on a control space or its range is
outside the state space. In order to quantify the “unboundedness” of control, action-
singular estimates play a pivotal role. Such estimate describes the amount of blowup
of the “transfer function.” The latter is necessary for a rigorous analysis of control
problems and the associated feedback synthesis—be it deterministic or stochastic.

For deterministic systems, the infinite dimensional linear quadratic regulator
problem has been studied extensively in the literature [B1, BK, BDDM, LT2]. The
purpose of the theoretical framework is to address optimal control of systems of PDEs.
For most systems, the controlling mechanism can only be applied from the interface of
the system or at finitely many points or curves [BSW] which necessitates developing a
framework for studying boundary/point control. Such control actions can be captured
mathematically using maps which are not bounded with respect to the state space,
but take values in a larger dual space. The most natural class of problems where such
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description has been used are dynamics driven by analytic semigroups. The analytic-
ity property quantifies naturally the blowup of the transfer function when acted upon
by an unbounded operator (compatible with fractional powers of the generator). The
linear quadratic problem for systems driven by analytic semigroups with these type
of control actions was studied by [F2, AT, DI, BDDM, LT2]. The situation is much
more complicated in the non-analytic case, where there is no natural characterization
of singularity other than technical—often brute force—PDE estimates. However, for
some classes of control systems which combine hyperbolic and parabolic dynamics, it
has been observed that the control to state kernel satisfies a singular estimate which
generalizes the case of analytic semigroup dynamics [AL, ABL, L1, LT1, LTu1]. Ex-
amples of systems which manifest this type of singular estimate arise frequently in
thermoelastic plate models [BLT, BL, LTu2], acoustic-structure interaction equation
[AL, BSS, LTu2], and fluid-structure interaction models [LTu3]. In view of the above,
a deterministic theory of feedback control has been developed for these classes of prob-
lems (singular estimate); see the references given in [L2]. However, in the stochastic
case the only results available in the literature covering unbounded control actions are
the ones dealing with analytic semigroups [D, GT1, F1]. The main goal of the present
work is to develop a stochastic treatment of unbounded control action problems aris-
ing in a general class of dynamical systems which exhibit singular estimates, but are
not necessarily analytic. One of the main challenges is to develop an approximation
framework which would provide rigorous justification of stochastic estimates. In the
analytic case, such a framework is very natural and based on the instant regularizing
effect of the dynamics. In the nonanalytic case, a development of regularizing proce-
dures lies at the heart of the problem. This will be accomplished by expanding and
building on the results presented in [H].

The stochastic linear quadratic regulator problem in finite dimensions has been
first studied by Kushner (1962) [K] using dynamic programming. The feedback char-
acterization of the optimal control and the derivation of a matrix Riccati equation
satisfied by the gain matrix is due to Wonham (1968) [W1, W2]. A complete theory
for the stochastic linear quadratic optimal control problem in finite dimensions can
be found in [YZ, DMS, FS]. It is notable that the associated Riccati differential equa-
tion in the stochastic linear quadratic problem is a deterministic differential equation,
and thus the relation between the optimal control and the optimal state which are
random variables is purely deterministic. The linear quadratic problem with random
coefficients in finite dimension has also been investigated in [CLZ]. In this case, the
associated Riccati equation is a backward stochastic equation.

Several early works in the literature have addressed stochastic optimization in
infinite dimensions and the application of a semigroup framework to the stochastic
setting with bounded inputs [B2, B3, C1, FG, Te1, Te2]. The infinite dimensional ana-
log for the stochastic linear quadratic problem and the Riccati equation was treated
by Ichikawa [I] via a dynamic programming approach, where he considered dynamics
driven by C0 semigroups and bounded control and noise operators. In another early
work, Curtain [C2] provides a semigroup framework for studying the infinite dimen-
sional linear quadratic Gaussian along with several examples and applications. A com-
plete Riccati feedback synthesis of the infinite dimensional problem with disturbance
in the state has been addressed by Da Prato [D] for systems with analytic dynamics
and a particular unbounded noise operator which captures the first derivative of the
state in a parabolic equation. The analysis was extended to boundary controls by
Flandoli [F1] and in particular for analytic systems with Neumann-type controls. In
[GRS], the authors consider a more general cost functional and a semilinear state
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equation driven by analytic dynamics, and proceed to solve the problem using a
Hamilton–Jacobi–Bellman approach. For systems with singular estimates, which is
our primary consideration, the stochastic linear quadratic problem has been studied by
one of the authors in [H], but with no disturbance in the control (D = 0) and without
finite time penalization in the cost functional (G=0). In [U], the time varying prob-
lem has been also addressed for systems driven by strongly continuous evolutions with
bounded control and noise operators. In [DMP, D2], the author investigates stochas-
tic linear quadratic differential games involving a stochastic differential equation with
fractional Brownian motion with dynamics generated by analytic semigroups. Some
recent interesting work has also treated the linear quadratic problem with random co-
efficients along with the associated backward stochastic Riccati equation [GT1, GT2].
Some recent works have also addressed the question of numerical implementation and
finite dimensional approximation schemes of the infinite dimensional stochastic linear
quadratic regulator [LM, LMT2, DMSt].

In view of the above the main novel contributions distinguishing this work from
other publications are (1) this is the first treatment of stochastic unbounded control
systems in the nonanalytic setting and (2) the framework allows for consideration
of terminal penalization as well as control action perturbed by noise. Indeed, in the
present paper, we consider a more general setting including disturbance in the control,
and we also consider the case of the Bolza problem which allows for a finite time
penalization in the objective functional whose expected value is to be minimized. This
latter aspect of the Bolza–Meyer problem is particularly challenging in the unbounded
control case. As shown [F1], the solution to the optimal control problem may not
exist, unless a certain closeability hypothesis is introduced. Under such a necessary
hypothesis, we provide an optimal feedback synthesis and a Riccati equation for the
stochastic linear quadratic optimal control in the context of singular estimate control
systems with noise dependence in both state and control.

In the deterministic setting, variational analysis is used to obtain explicit formulas
for the optimal control before proceeding to derive the associated Riccati equations
[LT1, D]. However, such explicit formulas are not available in the stochastic setting—
thus preventing applicability of a method of pivotal importance in the deterministic
and singular case. Moreover, in our setting, the lack of smoothing does not allow for
the application of the stochastic maximum principle or a solution via the Hamilton–
Jacobi–Bellman equation unlike the case of analytic dynamics [GRS]. In particular,
the state trajectories are mild solutions of the state equations and not necessarily
differentiable in the classical sense.

Therefore, in our approach, we derive a differential Riccati equation associated
with the optimal stochastic linear quadratic control problem, by first showing the exis-
tence of a solution to an expanded system in the integral form of the Riccati equation
via a specially crafted fixed point argument. Here we generalize the arguments given
in [H]. We then proceed to derive the differential Riccati equation which requires
making sense of the weak derivative of the evolution generated by deterministic dy-
namics with respect to initial time. Here, the obstacle, as in the deterministic case,
lies in the fact that the terms of the Riccati equation may not be well defined due to
the unboundedness of the control operator. There have been counterexamples in the
literature where the Riccati equation is not well posed in the case of unbounded con-
trol operators [BLT]. Another difficulty is the finite state penalization which gives rise
to possible singularities at the final time and require choosing appropriate spaces to
make sense of the quadratic term in the differential Riccati equation [LTu1]. Finally,
we then use a dynamic programming argument to show that the minimum of the
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quadratic functional is realized when the control is expressed in feedback form via
the solution to the differential Riccati equation. Here, we proceed with the dynamic
programming argument on a regularized version of the problem since the Itô formula
only applies to C2 functions, while the state and control trajectories are not differ-
entiable in the classical sense. For this reason, a forward approach via a maximum
principle or a variational method to solve for the optimal control before proceeding
to derive the differential Riccati equation is not applicable in this setting.

We first formulate the optimal control problem. Let the abstract stochastic dif-
ferential equation

dy(t) = (Ay +Bu) dt+ (Cy +Du) dWt,(1.1)

y(s) = x,

be defined on a Hilbert state space H, where A and C are operators on H while B
and D are operators acting from the control Hilbert space U to the state space H.
We take C and D to be bounded operators but A and B are typically unbounded.

Let (Ω,F , P ) be a complete probability space, and Wt a one dimensional real
valued stochastic Brownian motion on (Ω,F , P ) and Ft the sigma algebra generated
by {Wτ : τ ≤ t}. We assume that all function spaces are adapted to the filtration Ft.
We denote by L2

w([s, T ];H) all stochastic processes X(t, ω) : [s, T ]×Ω→ H such that

1.
∫ T
s
‖X(t)‖2H dt <∞ a.e. in Ω;

2. X(t, ·) is Ft-measurable ∀t ∈ [s, T ].
We also denote by M2

w([s, T ];H) the space of all strongly measurable square

integrable stochastic processes X : [s, T ] × Ω → H such that
∫ T
s
E
(
‖X(t)‖2H

)
dt <

∞, and by L2(Ω;H1([s, T ];U)) all strongly measurable square integrable stochastic

processes u : [s, T ]× Ω → U such that
∫ T
s
E
(
‖u(t)‖2U

)
dt +

∫ T
s
E
(
‖ut(t)‖2U

)
dt < ∞.

The objective is to minimize the quadratic cost functional

(1.2) J(s, x, u) = E

(∫ T

s

(‖Ry‖2W + ‖u‖2U ) dt+ ‖Gy(T )‖2Z

)

over all u ∈ M2
w([s, T ];U), where R and G are bounded linear observation operators

taking values in Hilbert spaces W and Z, respectively. The assumptions we consider
are the following.

Assumption 1.1.
1. Operator A is linear and generates a C0-semigroup eAt on H.
2. The linear operator B acts from U → [D(A?)]′ or, equivalently, A−1B is

bounded from U → H.
3. The noise operator D : U → H is a bounded linear operator.
4. There exists a number γ ∈ (0, 1/2) such that the control to state map kernel
eAtB satisfies the singular estimate

(1.3) ‖eAtBu‖H ≤
c

tγ
‖u‖U

for every u ∈ U and 0 < t < 1.
5. The operators R : H → W , G : H → Z, and C : H → H are all bounded

linear operators.

Remark 1.2. Our framework also allows forH-valued Brownian motionWτ , where
(Cy+Du) dWτ is interpreted as a Wick product (Cy+Du) �dWτ of generalized ran-
dom variables on Gaussian white noise probability spaces [HO]. See [LMT1] for chaos
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expansion treatment of the abstract stochastic differential equation and the linear
quadratic control problem in Hilbert spaces.

Remark 1.3. The singular estimate (1.3) should be interpreted in the following
precise sense:

|〈eAtA−1Bu,A∗φ〉| ≤ cT
tγ
||u||U ||φ||H for all φ ∈ H.

Remark 1.4. The results can also be extended to the case whenD is an unbounded
operator satisfying a similar singular estimate condition to that satisfied by B in
Assumption 1.1(4). This condition allows the inclusion of systems with noise in the
boundary control into the theoretical framework developed below, as illustrated by the
example included in the last section. However, to spare the reader further technical
details, we will just assume D is bounded throughout the paper.

Remark 1.5. In the case when there is no final state penalization, i.e., (G=0), the
value of γ in (1.3) could be pushed up to 1 —as in the deterministic case [LTu1]. How-
ever, the majority of “nonanalytic” examples exhibit singularity of the type assumed
in (1.3). For this reason, we focus on this class only.

In sections 2 and 3, we state our main results and provide some preliminary
results on mild solutions to the stochastic abstract differential equation (1.1). In
section 4, we prove the existence of a local-in-time solution to the integral Riccati
equation via a fixed point argument and we investigate the regularity properties of
the Riccati operator. In section 5, we derive the differential Riccati equation from the
integral form. In section 6, we show the relation between the solution to the Riccati
equation and the optimal control or minimizer of the cost functional (1.2) via dynamic
programming, and then extend the result globally in time and show uniqueness of the
solution to the Riccati equation in sections 7 and 8, respectively. We then return
to complete the proof of the main results Theorems 2.1 and 2.2 in section 9. We
conclude the paper in section 10 with two examples to illustrate the theory: (1) a
hinged thermoelastic plate model with noise and control through Neumann boundary
conditions and (2) a linearized fluid-structure interaction model with boundary control
which we briefly discuss in the next section.

1.1. Motivating example—fluid-structure interaction. In order to draw
the attention of the reader to the significance of the assumptions imposed above on
the control problem we provide an example of a fluid-structure interaction control
problem with noise which became a motivation for our abstract framework [LTu3].
In the domain Ω, we consider a partition into an interior region Ωs and an exterior
region Ωf , where Ωf is occupied by a fluid while Ωs is occupied by a solid body. The
interaction between the solid and the fluid takes place on the boundary Γs which
separates both regions. The dynamics of the fluid are captured by a linear Stokes
equation with multiplicative noise satisfied by fluid velocity u and fluid pressure p:

du−∆u dt+∇p dt = c1u dWt in Ωf × [0, T ],(1.4)

div u = 0 in Ωf × [0, T ].(1.5)

The dynamics of the solid are modeled by a linear second order equation with multi-
plicative noise

dwt − div σ(w) dt = c2w dWt in Ωs × [0, T ](1.6)
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in the solid displacement variable w, where σ is the stress tensor defined by

σij(w) = λδij divw + 2µεij(w)

for i, j = 1, 2, 3 and constants λ, µ > 0, and where ε is the strain tensor defined by

εij(w) =
1

2

(
∂wi
∂xj

+
∂wj
∂xi

)
.

Here, Wt is a real Brownian motion on a complete probability space (Σ,F , P ).
The interaction between the two bodies at the common interface Γs is captured

by the following transmission boundary conditions matching velocities and stresses:

u = wt on Γs × [0, T ],(1.7)

ε(u)ν − pν = σ(w)ν + g + g Ẇ (t) on Γs × [0, T ],(1.8)

where ν is the outward unit normal and g is a control function acting as a force. On
the outer part of the boundary Γf , we prescribe the no slip boundary condition

(1.9) u = 0 on Γf × [0, T ].

When one is given initial conditions in the finite energy space u0 ∈ H ≡
{L2(Ω) : div u = 0, u · ν|Γf = 0} and (w0, w1) ∈ H1(Ωs) × L2(Ωs), the problem
is to find a control g ∈ L2(Σ;L2([0, T ];L2(Γs))) to minimize the energy functional

J(u,w,wt, g) = E

(∫ T

0

(
‖u(t)− uT (t)‖2L2(Ωf ) + ‖g(t)‖2L2(Γs)

)
dt(1.10)

+ ‖u(T )− uD‖2L2(Ωf ) + ‖w(T )− wD‖2L2(Ωs)

)
,

where uD ∈ L2(Ωf ), wD ∈ L2(Ωs), uT ∈ L2(Ωf × [0, T ]) are given tracking targets.

2. Main results. We first state the result pertaining to existence, regularity,
and uniqueness of the solution to the optimal control problem.

Theorem 2.1. Under Assumption 1.1, there exists a positive self-adjoint operator
P (t) ∈ C([0, T ];L(H)) satisfying the Riccati equation

〈Ṗ x, y〉+ 〈PAx, y〉+ 〈A?Px, y〉+ 〈C?PCx, y〉+ 〈R?Rx, y〉
− 〈(B?P +D?PC)?(I +D?PD)−1(B?P +D?PC)x, y〉 = 0,(2.1)

I +D?P (t)D > 0,(2.2)

P (T )x = G?Gx,(2.3)

for every x, y ∈ D(A). Moreover, the following holds:
(i) The minimum of the functional (1.2) is given by

inf
u∈Mw([s,T ];U)

J(s, x, u) = 〈P (s)x, x〉.

(ii) The solution P (t) is unique in the class of positive self-adjoint operators in
C([0, T ];L(H)).
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THE STOCHASTIC LINEAR QUADRATIC CONTROL PROBLEM 601

(iii) The solution P (t) satisfies the estimate

‖P (t)y‖H ≤ c‖y‖H ∀ t ∈ [0, T ), y ∈ H.
(iv) The operator B?P (t) satisfies the estimate

‖B?Py‖H ≤
c

(T − t)γ ‖y‖H ∀ t ∈ [0, T ), y ∈ H.

We next state the result on the feedback form of the optimal control and the
associated differential Riccati equation satisfied by the gain operator.

Theorem 2.2. Under Assumption 1.1, the optimal control problem of minimizing
(1.2) subject to the differential equation (1.1) with initial condition x ∈ H has a
unique solution u0(s, ·;x) ∈ L2(Ω;C([s, T );U)) and a corresponding optimal state
y0(s, ·;x) ∈ L2(Ω;C([s, T ];H)). Moreover,

(i) the optimal control u0 satisfies the estimate

E(‖u0(s, t;x)‖2U ) ≤ c

(T − t)2γ
‖x‖2H ∀ t ∈ [s, T );

(ii) the optimal control y0 satisfies the estimate

E(‖y0(s, t;x)‖2H) ≤ c‖x‖2H ∀ t ∈ [s, T ];

(iii) the optimal control u0 has the feedback characterization in terms of the opti-
mal state

u0(t, s;x) = −(I +D?P (τ)D)−1(B?P (t) +D?P (t)C)y0(t),

where P (t) is the unique solution to the differential Riccati equation
(2.1)–(2.3).

Specific examples motivating the theory presented above include coupled PDE
systems with boundary or point control where hyperbolic and parabolic dynamics are
interwined. These, in particular include thermoelasticity, fluid-structure interactions,
and models arising in structural acoustics [L2, AL].

Remark 2.3. The analysis and result above easily extends to the case 1/2 ≤ γ < 1
when G = 0. However, for nonzero G, this case 1/2 ≤ γ < 1 is more challenging since
the operator

GLT ≡ G
∫ T

0

eA(T−τ)B dτ

is no longer bounded C(L2(Ω);L2([s, T ];U))→ Z. In fact, the existence of an optimal
control in this case requires closability of GLT [LT1]. Such a condition is trivially
satisfied when G is bounded invertible H → Z.

3. Preliminaries. Following [DZ1], we say y(t, s;x) is a mild solution of the
stochastic differential equation (1.1) if

1. y(t, s;x) = eA(t−s)x +
∫ t
s
eA(t−τ)Bu(τ) dτ +

∫ t
s
eA(t−τ)Cy(τ) dWτ+∫ t

s
eA(t−τ)Du(τ) dWτ ;

2. y(t, s;x) takes values in D(C);
3. y(t, s;x) satisfies

P

(∫ T

s

‖y(τ)‖H dτ <∞
)

= 1
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602 HAFIZOGLU ET AL.

and

P

(∫ T

s

‖Cy(τ)‖2H dτ <∞
)

= 1;

4. Bu and Du are Ft measurable Bochner integrable H valued functions.
Results on the existence of mild solutions to (1.1) for a general forcing can be

found in [DZ1, HO]. By strong continuity of the semigroup, we know there exists
numbers α,M > 0 such that ‖eAtz‖H ≤ Meαt‖z‖H for all z ∈ H and t ∈ [s, T ]. We
start with the existence of a mild solution to (1.1), for which the proof is a standard
argument, [H].

Theorem 3.1. Let γ < 1. Given a function u ∈ M2
w([s, T ];U) and an initial

condition y(s) = x ∈ H, there exists a unique mild solution y ∈ M2
w([s, T ];H) to the

abstract differential equation (1.1). Moreover, if γ < 1/2 then y ∈ L2(Ω;C([s, T ];H)).

4. Integral Riccati equation. In this section, we establish the existence of a
solution to an integral form of the Riccati equation. The Riccati equation is, by itself,
deterministic. However, its form is generated by the underlying stochastic process.
This results in several additional terms (with respect to deterministic processes) which
require subtle treatment. In fact, the relevant integral form of the differential Riccati
equation is

P (t) =

∫ T

t

eA
?(τ−t)R?RΦ(τ, t) dτ +

∫ T

t

eA
?(τ−t)C?P (τ)CΦ(τ, t) dτ

−
∫ T

t

eA
?(τ−t)C?P ?(τ)D(I +D?P (τ)D)−1(B?P (τ) +D?P (τ)C)Φ(τ, t) dτ

+ eA
?(T−t)G?GΦ(T, t),(4.1)

subject to the condition

〈(I +D?P (t)D)x, x〉 > 0 ∀x 6= 0 and x ∈ U,

where Φ(t, s) is the solution to the equation

Φ(t, s)x = eA(t−s)x−
∫ t

s

eA(t−τ)B(I+D?P ?(τ)D)−1(B?P (τ)+D?P (τ)C)Φ(τ, s)x dτ.

(4.2)

Our main result in this section is the existence of local-in-time solutions to the above
integral equations.

Theorem 4.1. The integral equations (4.1) and (4.2) have unique local-in-time
solutions P (t) ∈ C([s, T ];H) and Φ(·, s) ∈ C([s, T ];H) for s = Tmax < T chosen
such that T − Tmax is sufficiently small. Moreover, the solution P (t) is a positive
self-adjoint operator on the space H and satisfies the estimate

(4.3) ‖B?P (t)x‖H ≤
c

(T − t)γ ‖x‖H ∀x ∈ H, t ∈ [s, T ).

The solutions will be extended to a global solution on the whole interval [s, T ] in
section 7. One notices that the integral equation (4.1) depends on composition op-
erators B∗P and PB which a priori are not defined at all. It is not even clear that
B∗P can be densely defined (due to the unboundedness of B). However, the validity
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of the singular estimate will enable a rigorous analysis of this equation. We also no-
tice that in the deterministic case one will only have the first and the last term in
(4.1). Instead, in the present stochastic case the appearance of the third term pro-
vides quadratic dependence on the composition PB and P . Classical deterministic
methods (either variational or direct) are no longer applicable. In order to tackle
the problem of existence, we shall formulate a rather special iteration scheme which
enables us to “unscramble” the convoluted dependence on the troublesome operator
B∗P which a priori has no reason to be even densely defined. After a few preliminaries
in section 4.1, the proof will proceed in steps.

Step 1: In section 4.2, we first prove existence of a solution (P̃ , Φ̂) to the linear
integral equation

P̃ (t) =

∫ T

t

eA
?(τ−t)R?RΦ̂(τ, t) dτ +

∫ T

t

eA
?(τ−t)Q?(τ)Q(τ)Φ̂(τ, t) dτ

+

∫ T

t

eA
?(τ−t)Ĉ?(τ)P̃ (τ)Ĉ(τ)Φ̂(τ, t) dτ

−
∫ T

t

eA
?(τ−t)ψ̂?(τ)B?P̃ (τ)Φ̂(τ, t) dτ + eA

?(T−t)G?GΦ̂(T, t),

Φ̂(t, s)x = eA(t−s)x−
∫ t

s

eA(t−z)Bψ̂(z)Φ̂(z, s)x dz,

where Q(t), Ĉ(t), and ψ̂(t) are given bounded operators satisfying the singular esti-
mate (4.6).

Remark 4.2. Note these integral equations formally correspond to the system of
linear equations

d

dt
P̃ (t) = −R?R−Q?(t)Q(t)−A?P̃ (t)− P̃ (t)A− Ĉ?(t)P̃ (t)Ĉ(t) + ψ̂?(t)B?P̃ (t),

d

dt
Φ̂(t, s) = (A−Bψ̂(t))Φ̂(t, s),

P̃ (T ) = G?G, Φ̂(s, s) = I.

Step 2: In section 4.3, we next show that the solution P̃ is a positive self-adjoint
operator in C([s, T ];L(H)) and Φ̂(t, s) is an evolution while B?P̃ (t) satisfies the esti-
mate (4.3).

Step 3: We now define the initial variables

P0(t) ≡ eA?(T−t)G?GeA(T−t),

Q0(τ) ≡ (I +D?P0(τ)D)−1(B?P0(τ) +D?P0(τ)C),

Ĉ0(τ) ≡ C −D(I +D?P0(τ)D)−1(B?P0(τ) +D?P0(τ)C),

ψ̂0 ≡ (I +D?P0(τ)D)−1(B?P0(τ) +D?P0(τ)C).

This choice of the positive operator P0 guarantees that B?P0(t) is bounded H → U
for t ∈ [s, T ) and satisfies (4.3), and that (I +D?P0D)−1 is well defined and bounded
on U .
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Step 4: We next set up the following iteration scheme on the equation from Step 1:

Pi+1(t) =

∫ T

t

eA
?(τ−t)R?RΦ̂i(τ, t) dτ +

∫ T

t

eA
?(τ−t)Q?i (τ)Qi(τ)Φ̂i(τ, t) dτ

+

∫ T

t

eA
?(τ−t)Ĉi

?
(τ)Pi+1(τ)Ĉi(τ)Φ̂i(τ, t) dτ

−
∫ T

t

eA
?(τ−t)ψ̂i

?
(τ)B?Pi+1(τ)Φ̂i(τ, t) dτ + eA

?(T−t)G?GΦ̂i(T, t),

where Φ̂i(t, s)x = eA(t−s)x−
∫ t
s
eA(t−z)Bψ̂i(z)Φ̂i(z, s)x dz, and

Qi(τ) ≡ (I +D?Pi(τ)D)−1(B?Pi(τ) +D?Pi(τ)C),

Ĉi(τ) ≡ C −D(I +D?Pi(τ)D)−1(B?Pi(τ) +D?Pi(τ)C),

ψ̂i = (I +D?Pi(τ)D)−1(B?Pi(τ) +D?Pi(τ)C).

Step 1 guarantees the existence of a solution (Pi+1,Φi) at each step of the iteration,
and that Pi+1 is a positive self-adjoint operator, such that B?Pi+1 is bounded for t ∈
[s, T ) and satisfies (4.3). This in turn gives sense to the operator (I+D?Pi+1(τ)D)−1

in L(U) which is needed in the next step of the iteration.
Step 5: Passing through the limit, we finally show that the sequence Pi converges

to the solution P of the original integral equation (4.1) in C([s, T ];L(H)).

4.1. Preliminaries. We first introduce the space C([s, T ];L(H)) of the contin-
uous family P (.) of bounded operators on the space H, where

‖P‖C([s,T ],L(H)) = sup
s≤t≤T

‖P (t)‖L(H).

Following [H], we also introduce the space C(Ts;L(H)), where

Ts ≡ {(t, τ) ∈ R2 : s ≤ τ ≤ t ≤ T}.

This space C(Ts;L(H)) is a Banach space equipped with the norm

‖f‖C(Ts;L(H)) = sup
(t,τ)∈Ts

‖f(t, τ)‖L(H).

We also introduce the Banach space Cγ([s, T ];Y ) (following [BDDM]) of contin-
uous functions on [s, T ) into a Banach space Y , which is equipped with norm

‖f‖Cγ([s,T ];Y ) = sup
t∈[s,T ]

(T − t)γ‖f(t)‖Y <∞.

The space accounts for possible singularities at time T of order γ. We start with the
following useful lemmas [L1, L2, LTu1].

Lemma 4.3.
(i) The map Ls ≡

∫ t
s
eA(t−τ)B dτ is continuous from Cγ([s, T ];U) to C([s, T ];H)

for γ < 1/2.

(ii) The adjoint map L?s ≡
∫ T
t
B?eA

?(τ−t) dτ is continuous from Cγ([s, T ];H) to
C([s, T ];U) for γ < 1/2.
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4.2. Linear integral equation. We first consider the linear integral equations

P̃ (t) =

∫ T

t

eA
?(τ−t)R?RΦ̂(τ, t) dτ +

∫ T

t

eA
?(τ−t)Q?(τ)Q(τ)Φ̂(τ, t) dτ

+

∫ T

t

eA
?(τ−t)Ĉ?(τ)P̃ (τ)Ĉ(τ)Φ̂(τ, t) dτ

−
∫ T

t

eA
?(τ−t)ψ̂?(τ)B?P̃ (τ)Φ̂(τ, t) dτ + eA

?(T−t)G?GΦ̂(T, t),(4.4)

and

(4.5) Φ̂(t, s)x = eA(t−s)x−
∫ t

s

eA(t−z)Bψ̂(z)Φ̂(z, s)x dz.

In the next lemma, we prove the existence of solutions P̃ and Φ̂(t, s) to integral
equations (4.4) and (4.5).

Lemma 4.4. Assume Q(t), Ĉ(t), ψ̂(t) are given bounded operators for every t ∈
[s, T ) satisfying the conditions

‖Q(t)x‖H , ‖Ĉ(t)x‖H , ‖ψ̂(t)x‖H ≤
r‖x‖H

(T − t)γ ∀x ∈ H, t ∈ [s, T ),(4.6)

for some suitably chosen r > 0. Then, there exists a unique local-in-time solution
P̃ ∈ C([T0, T ];L(H)) and Φ̂(·, ·) ∈ C(TT0 ;L(H)) to the set of integral equations (4.4)
and (4.5) such that

(4.7) ‖B?P̃ (t)x‖H ≤
c

(T − t)γ ‖x‖H .

To prove the existence of a solution P̃ and Φ̂, we use a fixed point argument on
the map Λ defined by

Λ




f
g
h


 (t) =




Λ11(g)(t) + Λ12(g)(t) + Λ13(f, g)(t) + Λ14(g, h)(t) + Λ15(g)(t)
Λ2(g)(t)

Λ31(g)(t) + Λ32(g)(t) + Λ33(f, g)(t) + Λ34(g, h)(t) + Λ35(g)(t)




for t ∈ [s, T ] on the space X ≡ C([s, T ];L(H)) × C(Ts;L(H)) × Cγ([s, T ];L(H,U)),
where

Λ11(g)(t) ≡
∫ T

t

eA
?(τ−t)R?Rg(τ, t) dτ,

Λ12(g)(t) ≡
∫ T

t

eA
?(τ−t)Q?(τ)Q(τ)g(τ, t) dτ,

Λ13(f, g)(t) ≡
∫ T

t

eA
?(τ−t)Ĉ?(τ)f(τ)Ĉ(τ)g(τ, t) dτ,

Λ14(g, h)(t) ≡ −
∫ T

t

eA
?(τ−t)ψ̂?(τ)h?(τ)g(τ, t) dτ,

Λ15(g)(t) ≡ eA?(T−t)G?GeA(T−t) − eA?(T−t)G?G
∫ T

t

eA(T−τ)Bψ̂(τ)g(τ, t) dτ,
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and

Λ2(f, g, h) = eA(t−s) − LsBψ̂(·)g(·, ·)(t),

while

Λ31(g)(t) ≡
∫ T

t

B?eA
?(τ−t)R?Rg(τ, t) dτ,

Λ32(g)(t) ≡
∫ T

t

B?eA
?(τ−t)Q?(τ)Q(τ)g(τ, t) dτ,

Λ33(f, g)(t) ≡
∫ T

t

B?eA
?(τ−t)Ĉ?(τ)f(τ)Ĉ(τ)g(τ, t) dτ,

Λ34(g, h)(t) ≡ −
∫ T

t

B?eA
?(τ−t)ψ̂?(τ)h?(τ)g(τ, t) dτ,

Λ35(g)(t) ≡ B?eA?(T−t)G?GeA(T−t) −B?eA?(T−t)G?G
∫ T

t

eA(T−τ)Bψ̂(τ)g(τ, t) dτ.

In order to deal with unboundedness of control operator B, we seek a fixed point
of the system of three equations defined by three variables (operators) which are
f = P , g = Φ, and h = B∗P . All these three quantities will be defined on the
space X. Clearly we will have h = B∗f—which then will lead to “hidden” regularity
results obtained for the gain operator B∗P . The fixed point f, g, h here represent the
operators P (t), Φ(t, s), and B?P , respectively.

Lemma 4.5. The map Λ maps the ball Br(0) ⊂ X into itself continuously, and
is a contraction on Br(0) for suitably chosen r > 0 and s = T0 such that T − T0 is
sufficiently small.

Proof. Let [f, g, h] be an element in the ball Br(0). We estimate the norm of
Λ[f, g, h] in X, by considering every component. We spare the reader the technical
details of the estimates. Defining cs by

cs = max

{
c(T − s), c (T − s)1−γ

1− γ , c
(T − s)1−2γ

1− 2γ

}
,

and based on these estimates we impose the condition 6cM2e2α(T−s) +6csMeα(T−s)×
(r4 + r3 + r2 + r) < r or, equivalently,

cM2e2α(T−s) + csMeα(T−s)(r4 + r3 + r2 + r)− r/6 < 0.(4.8)

Let r = 12cM2e2αT and choose s such that (T − s) is sufficiently small and so that

cs <
cMeαT

r4 + r3 + r2 + r
.

This guarantees that Λ acts from Br(0) into Br(0) in X for our choice of s and
r. The contraction property can be shown by estimating the norm of the difference
of Λ[f1, g1, h1]T and Λ[f2, g2, h2]T . Choosing s = T0 so that T − T0 is sufficiently
small we have that Λ is a contraction on Br(X) and hence has a unique fixed point
(f, g, h) ∈ X.

From the above lemma, we have that the fixed points (f, g, h) represent solutions

(P̃ (t), Φ̂(t, s), B?P̃ (t)) ∈ X to (4.4) and (4.5). Estimate (4.7) follows from the mem-

bership of B?P̃ in Cγ([s, T ];U). This proves Lemma 4.4.
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4.3. Positivity and self-adjointness of P̃ . Let s = T0. In the following
lemma, we prove that the solution P̃ to (4.4) is positive, self-adjoint in addition to
the evolution property of Φ̂(t, s) on the space C(Ts;L(H)).

Lemma 4.6.
(i) The operator Φ̂(t, s), which is defined by (4.5), is an evolution operator on

C([s, T ];L(H)).

(ii) The operator P̃ solving the integral equation (4.4) is self-adjoint.

(iii) The operator P̃ solving the integral equation (4.4) is positive.

Proof.
(i) This follows from a standard argument using the evolution property of the

semigroup.
(ii) Taking the inner product of (4.4) with y ∈ H and substituting the expression

eA(τ−t)y = Φ̂(τ, t)y +

∫ τ

t

eA(τ−z)Bψ̂(z)Φ̂(z, t)y dz

from (4.5) into the equation, we have

〈P̃ (t)x, y〉 =

∫ T

t

〈RΦ̂(τ, t)x,RΦ̂(τ, t)y〉 dτ

+

∫ T

t

〈R?RΦ̂(τ, t)x,

∫ τ

t

eA(τ−z)Bψ̂(z)Φ̂(z, t)y dz〉 dτ

+

∫ T

t

〈Q(τ)Φ̂(τ, t)x,Q(τ)Φ̂(τ, t)y〉 dτ

+

∫ T

t

〈Q?(τ)Q(τ)Φ̂(τ, t)x,

∫ τ

t

eA(τ−z)Bψ̂(z)Φ̂(z, t)y dz〉 dτ

+

∫ T

t

〈Ĉ?(τ)P̃ (τ)Ĉ(τ)Φ̂(τ, t)x, Φ̂(τ, t)x〉 dτ

+

∫ T

t

〈Ĉ?(τ)P̃ (τ)Ĉ(τ)Φ̂(τ, t)x,

∫ τ

t

eA(τ−z)Bψ̂(z)Φ̂(z, t)y dz〉 dτ

−
∫ T

t

〈ψ̂?(τ)B?P̃ (τ)Φ̂(τ, t)x, Φ̂(τ, t)y〉 dτ

−
∫ T

t

〈ψ̂?(τ)B?P̃ (τ)Φ̂(τ, t)x,

∫ τ

t

eA(τ−z)Bψ̂(z)Φ̂(z, t)y dz〉 dτ

+ 〈GΦ̂(T, t)x,GΦ̂(T, t)y〉+ 〈G?GΦ̂(T, t)x,

∫ T

t

eA(T−z)Bψ̂(z)Φ̂(z, t)y dz〉.

Changing the order of integration, the second, fourth, sixth, and eighth terms
combine into

∫ T

t

∫ T

z

〈B?eA?(τ−z)R?RΦ̂(τ, t)x, ψ̂(z)Φ̂(z, t)y 〉 dτ dz

+

∫ T

t

∫ T

z

〈B?eA?(τ−z)Q?(τ)Q(τ)Φ̂(τ, t)x, ψ̂(z)Φ̂(z, t)y 〉 dτ dz

+

∫ T

t

∫ T

z

〈B?eA?(τ−z)Ĉ?(τ)P̃ (τ)Ĉ(τ)Φ̂(τ, t)x, ψ̂(z)Φ̂(z, t)y〉 dτ dz
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−
∫ T

t

∫ T

z

〈B?eA?(τ−z)ψ̂?(τ)B?P̃ (τ)Φ̂(τ, t)x, ψ̂(z)Φ̂(z, t)y〉 dτ dz

+

∫ T

t

〈B?eA?(T−z)G?GΦ̂(T, t)x, ψ̂(z)Φ̂(z, t)y 〉dz

=

∫ T

t

〈B?P̃ (z)Φ̂(z, t)x, ψ̂(z)Φ̂(z, t)y 〉dz,

which cancels with the fifth term. Therefore we have

〈P̃ (t)x, y〉 =

∫ T

t

〈RΦ̂(τ, t)x,RΦ̂(τ, t)y〉 dτ +

∫ T

t

〈Q(τ)Φ̂(τ, t)x,Q(τ)Φ̂(τ, t)y〉 dτ

+

∫ T

t

〈Ĉ?(τ)P̃ (τ)Ĉ(τ)Φ̂(τ, t)x, Φ̂(τ, t)y〉 dτ + 〈GΦ̂(T, t)x,GΦ̂(T, t)y〉.(4.9)

On the other hand, we have

〈P̃ ?(t)x, y〉 =

∫ T

t

〈RΦ̂(τ, t)x,RΦ̂(τ, t)y〉 dτ +

∫ T

t

〈Q(τ)Φ̂(τ, t)x,Q(τ)Φ̂(τ, t)y〉 dτ

+

∫ T

t

〈Ĉ?(τ)P̃ ?(τ)Ĉ(τ)Φ̂(τ, t)x, Φ̂(τ, t)y〉 dτ + 〈GΦ̂(T, t)x,GΦ̂(T, t)y〉.

Taking the difference of the two last equations, we get

〈[P̃ − P̃ ?](t)x, y〉 =

∫ T

t

〈Ĉ?(τ)[P̃ − P̃ ?](τ)Ĉ(τ)Φ̂(τ, t)x, Φ̂(τ, t)y〉 dτ.

Estimating the left side, and taking the supremum over all x of unit norm and all y
in H, we obtain

‖P̃ (t)− P̃ ?(t)‖L(H) ≤ cr4

∫ T

t

‖P̃ (τ)− P̃ ?(τ)‖L(H) dτ.

Using Gronwall’s inequality we conclude that the left-hand side is zero and hence
P (t) = P ?(t) for all t ∈ [s, T ].

(iii) To prove positivity, we appeal to (4.9). The operator P̃ is then the unique
fixed point of the map S on C([s, T ];L(H)) defined by

〈S(P )(t)x, y〉 =

∫ T

t

〈RΦ̂(τ, t)x,RΦ̂(τ, t)y〉 dτ +

∫ T

t

〈Q(τ)Φ̂(τ, t)x,Q(τ)Φ̂(τ, t)y〉 dτ

+

∫ T

t

〈Ĉ?(τ)P (τ)Ĉ(τ)Φ̂(τ, t)x, Φ̂(τ, t)y〉 dτ + 〈GΦ̂(T, t)x,GΦ̂(T, t)y〉.

The map S clearly maps positive operators to positive operators. The set of positive
operators denoted by Σ+ in L(H) is a convex set, and the existence of a unique fixed
point for S on C([T0, T ]; Σ+) follows by the contraction mapping theorem, for T0

chosen so that T − T0 is sufficiently small.
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4.4. Step 4: Proof of Theorem 4.1.

Proof. To derive the integral equation (4.1), we use the following iteration scheme

Pi+1(t) =

∫ T

t

eA
?(τ−t)R?RΦ̂i(τ, t) dτ +

∫ T

t

eA
?(τ−t)Q?i (τ)Q?i (τ)Φ̂i(τ, t) dτ

+

∫ T

t

eA
?(τ−t)Ĉi

?
(τ)Pi+1(τ)Ĉi(τ)Φ̂i(τ, t) dτ

−
∫ T

t

eA
?(τ−t)ψ̂i

?
(τ)B?Pi+1(τ)Φ̂i(τ, t) dτ + eA

?(T−t)G?GΦ̂i(T, t),(4.10)

where

Qi(τ) ≡ (I +D?Pi(τ)D)−1(B?Pi(τ) +D?Pi(τ)C),

Ĉi(τ) ≡ C −D(I +D?Pi(τ)D)−1(B?Pi(τ) +D?Pi(τ)C),

ψ̂i = (I +D?Pi(τ)D)−1(B?Pi(τ) +D?Pi(τ)C),

P0(t) = eA
?(T−t)G?GeA(T−t),

and Φ̂i solves

(4.11) Φ̂i(t, s)x = eA(t−s)x−
∫ t

s

eA(t−z)Bψ̂i(z)Φ̂i(z, s)x dz.

Using the results of Lemmas 4.4 and 4.6 from previous sections, each iteration Pi is
well defined, positive self-adjoint, and bounded with

‖Pi‖C([s,T ];L(H)) ≤ r,
‖B?Pi(t)x‖H ≤

r

(T − t)γ ‖x‖H

∀x ∈ H and ∀i ∈ N, while Φi ∈ C(Ts;L(H)) such that

‖Φi‖C(Ts;L(H)) ≤ r,

and this guarantees that the inverse (I + D?Pi(t)D)−1 is well defined and bounded
on H at each step. Using standard estimates, it is not difficult to show that the
sequence {Pi,Φi, B?Pi} is Cauchy in X for s = Tmax ≥ T0 chosen such that T −
Tmax is sufficiently small, and thus converging to some (P (t),Φ, h(t)) ∈ X with
h(t) = B?P (t). Passing through the limit in (4.10) and (4.11), we obtain (4.1)
and (4.2).

5. The differential Riccati equation. In this section, we derive the differen-
tial Riccati equation from the integral Riccati equation (4.1). Our main result is then
the following.

Theorem 5.1. The Riccati operator P (t) solving the integral Riccati equation
(4.1) is a solution to the differential Riccati equation

〈Ṗ (t)x, y〉 = −〈Rx,Ry〉 − 〈Ax, P (t)y〉 − 〈A?P (t)x, y〉 − 〈C?P (t)Cx, y〉)
+ 〈(I +D?P (t)D)−1(B?P (t) +D?P (t)C)x, (B?P (t) +D?P (t)C)y〉(5.1)

for all x, y ∈ D(A).
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610 HAFIZOGLU ET AL.

A critical step in this process is to establish a “singular estimate” on the transfer
function corresponding to the controlled dynamics. This amounts to the estimate of
singularity on the composition operator Φ(t, s)B. To accomplish this we need several
preliminary results. To carry out the derivation, we shall need to make sense of the
derivative of the evolution Φ(t, s) with respect to the initial time s (in the weak sense).

5.1. Preliminaries. We first define the operator M.

Definition 5.2. Denote by M the operator

M≡
∫ t

s

eA(t−τ)B(I +D?P (τ)D)−1(B?P (τ) +D?P (τ)C) dτ.

We also define the space γC([s, T ];H) following [BDDM].

Definition 5.3. Let

γC([s, T ];H) ≡
{
f ∈ C((s, T ];H) : sup

t∈[s,T ]

(t− s)γ‖f(t)‖H <∞
}
.

The space γC([s, T ];H) is indeed a Banach space with the norm

‖f‖
γC = sup

t∈[s,T ]

(t− s)γ‖f(t)‖H

for γ < 1/2. In the following lemma, we establish some of the properties of the
operator M.

Lemma 5.4.
(i) The operator eA(·−s)Bx ∈ γC([s, T ];H) ∀x ∈ U and satisfies the estimate

‖eA(t−s)Bx‖
γC([s,T ];H) ≤ c‖x‖U .

(ii) The operator M is bounded on γC([s, T ];H) and satisfies the estimate

‖Mg‖
γC([s,T ];H) ≤ c(T − s)1−γ‖g‖

γC([s,T ];H)

for every g ∈ γC([s, T ];H).
(iii) The operator (I +M) is invertible on γC([s, T ];H) and the inverse satisfies

the estimate

‖(I +M)−1g‖
γC([s,T ];H) ≤ c(T − s)‖g‖γC([s,T ];H).

(iv) The evolution Φ(t, s) satisfies

Φ(·, s)x = (I +M)−1eA(·−s)x ∀x ∈ H.

Proof. The proofs are similar to the deterministic case in which C = D = 0; see
[LTu1, Tu].

5.2. Regularity of the “transfer function.” We now make sense of the
transfer function Φ(t, s)B and the derivative of the evolution Φ(t, s) with respect to
initial time in an appropriate singular space, which is crucial in the derivation of the
differential Riccati equation.
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Proposition 5.5.
(i) For all x ∈ U and γ < 1/2, we have Φ(t, s)Bx ∈ γC([s, T ];H) and

‖Φ(t, s)Bx‖H ≤
c

(t− s)γ ‖x‖U ∀x ∈ U.

(ii) For all x ∈ D(A), the derivative of the evolution Φ(t, s)x with respect to initial
time in the weak sense is

∂

∂s
Φ(·, s)x = −Φ(·, s)(A−B(I +D?P (s)D)−1(B?P (s)

+D?P (s)C))x ∈ γC([s, T ];H),

and satisfies the estimate

∥∥∥∥
∂

∂s
Φ(t, s)Bx

∥∥∥∥
H

≤ c‖x‖D(A) +
c

(t− s)γ ‖x‖U .

Proof. The proof follows from Lemma 5.4; see [LT1, Tu].

5.3. Proof of Theorem 5.1.

Proof. Let x, y ∈ D(A) and consider the integral Riccati equation satisfied by
P (t) in (4.1). Taking the derivative with respect to t, we have

〈Ṗ (t)x, y〉 = −〈R?Rx, y〉 − 〈C?P (t)Cx, y〉+ 〈C?P (t)D(I +D?P (t)D)−1(B?P (t)

+D?P (t)C)x, y〉 − 〈A?P (t)x, y〉

+

〈∫ T

t

eA
?(τ−t)R?R

∂

∂t
Φ(τ, t)x, y

〉
+

〈∫ T

t

eA
?(τ−t)C?P (τ)C

∂

∂t
Φ(τ, t)x, y

〉

−
〈∫ T

t

eA
?(τ−t)C?P (τ)D(I +D?P (τ)D)−1(B?P (τ) +D?P (τ)C)

∂

∂t
Φ(τ, t)x, y

〉
.

We now appeal to Proposition 5.5(ii), where the expression for ∂
∂tΦ(τ, t) was derived

so that we obtain

〈Ṗ (t)x, y〉 = −〈R?Rx, y〉 − 〈C?P (t)Cx, y〉+ 〈C?P (t)D(I +D?P (t)D)−1(B?P (t)

+D?P (t)C)x, y〉 − 〈A?P (t)x, y〉
− 〈P (t)(A−B(I +D?P (t)D)−1)(B?P (t) +D?P (t)C)x, y〉,

where the last term is well defined by boundedness of P (t)B and its adjoint. Rear-
ranging terms, we obtain the differential Riccati equation

〈Ṗ (t)x, y〉 = −〈R?Rx, y〉 − 〈A?P (t)x, y〉 − 〈P (t)Ax, y〉 − 〈C?P (t)Cx, y〉
+ 〈(P (t)B + C?P (t)D)(I +D?P (t)D)−1(B?P (t) +D?P (t)C)x, y〉.

Remark 5.6. The differential form of the Riccati equation holds for any elements
x, y ∈ D(A). This form will be used for elements x, y resulting from a stochastic
process. Since stochastic equations do not posses strong solutions, the applicability of
the differential Riccati equation in the stochastic context is questionable. To resolve
this issue, we shall introduce an approximation procedure which consists of two steps.
Step one: the regularity lemma on page 48 of [H] allows one to define the derivative of
P on a stochastic process which originates in the domain of A, with twice differentiable
controls and smooth observations C,D. In the second step we shall regularize the state
y by changing the variable to vn. This will allow the application of Itô’s formula.
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Here we state a regularity lemma and justify the form of the differential Riccati
equation when acting on a stochastic process; page 48 in [H].

Lemma 5.7. If we have the additional assumptions that the operators AC,AD ∈
L(H), and u ∈ L2(Ω;H1

0 ([s, T ];U)) then given x ∈ D(A) we have

E(〈P (t)X(t), AX(t)〉H) <∞

for all t ∈ [s, T ], where X(t) is a solution of the stochastic differential equation

dX = (AX +Bu) dt+ (CX +Du) dWt,

X(s) = x ∈ D(A).

Proof. We first write the form of the mild solution to the abstract differential
equation as

X(t) = eA(t−s)x+

∫ t

s

eA(t−τ)Bu(τ) dτ +

∫ t

s

eA(t−τ)CX(τ) dWτ

+

∫ t

s

eA(t−τ)Du(τ) dWτ .

We apply operator A to each side and then split the term AX(t) into two parts
AX(t) = Y1 + Y2, where

Y1(t) = eA(t−s)Ax+

∫ t

s

eA(t−τ)ACX(τ) dWτ +

∫ t

s

eA(t−τ)ADu(τ) dWτ ,

and Y2(t) =
∫ t
s
eA(t−τ)ABu(τ) dτ .

We then estimate the norm of Y1 in L2(Ω;C([s, T ];H)) to obtain

E(‖Y1(t)‖2H) ≤ 3M2e2α(T−s)‖Ax‖2H + 3M2e2α(T−s)‖AC‖2L(H)

∫ t

s

E(‖X(τ)‖2H) dτ

+ 3M2e2α(T−s)‖AD‖2L(U,H)

∫ t

s

E(‖u(τ)‖2U ) dτ,

where we used the Itô isometry to estimate the stochastic integrals. Since X(t)
is the solution to the abstract differential equation, by Theorem 3.1, its norm in
M2
w([s, T ];H) is bounded and satisfies

‖X(t)‖2M2
w([s,T ];H) ≤ c‖x‖2H + c‖u‖2M2

w([s,T ];U).

Hence, E(‖Y1(t)‖2H) ≤ cQ(‖AC‖L(H), ‖AD‖L(H), ‖u‖L2(Ω;H1
0 ([s,T ];U)), ‖Ax‖H), where

Q is a polynomial in the indicated norms. We next express Y2 as

Y2(t) = −Bu(t) +

∫ t

s

eA(t−τ)Bu′(τ) dτ = −Bu(t) + I(t)

via integration by parts in time where we used the fact u(s)=0 since u∈H1
0 ([s, T ];U)).

The second term can be estimated via the singular estimate condition and Hölder’s
inequality as
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E

(∥∥∥∥
∫ t

s

eA(t−τ)Bu′(τ) dτ

∥∥∥∥
2

H

)
≤ E

(∫ t

s

c

(t− τ)γ
‖u′(τ)‖U dτ

)2

≤ c(T − s)1−2γE(‖u‖2H1
0 ([s,T ];U)).

We are now ready to estimate the term E(〈P (t)X(t), AX(t)〉H as

E(〈P (t)X(t), AX(t)〉H ≤ |E(〈P (t)X(t), Y1(t)〉H)|+ |E(〈P (t)X(t), I(t)〉H)|
+ |E(〈P (t)X(t), Bu(t)〉H)|
≤ ‖P (t)‖L(H)E(‖X(t)‖H)E(‖Y1(t)‖H)

+ ‖P (t)‖L(H)E(‖X(t)‖H)E(‖I(t)‖H)

+ ‖B?P (t)‖L(H,U)E(‖u(t)‖U )E(‖X(t)‖H)

≤ cQ(‖AC‖L(H), ‖AD‖L(H), ‖P (t)‖L(H), ‖B?P (t)‖L(H,U),

‖u‖L2(Ω;H1
0 ([s,T ];U)), ‖Ax‖H),

where we used the continuous embedding H1
0 ([s, T ];U) ⊂ C([s, T ];U) in the last step

and where Q is a polynomial in the indicated norms. The right-hand side is finite
which yields the desired result.

6. Dynamic programming: The Riccati equation and the optimal
control. In the following lemma, we relate the optimization problem to the solu-
tion of the differential Riccati equation via a dynamic programing argument. This
technique is paramount to a completion of squares technique which furnishes an ex-
pression for the cost functional in which the minimizer and minimum value of the cost
functional can be immediately deduced. However, the use of Itô’s formula in this ar-
gument requires C2 trajectories, which means that the argument has to be performed
on an approximate regularized version of the abstract stochastic differential equation,
before passing through the limit.

Lemma 6.1. The quadratic cost functional (1.2) has the form

J(t, x, u) = E

(∫ T

t

‖(I +D?P (τ)D)1/2u(τ) + (I +D?P (τ)D)−1/2(B?P (τ)

+D?P (τ)C)y(τ)‖2U dτ
)

+ 〈P (t)x, x〉(6.1)

for s ≤ t ≤ T and s = Tmax, where P (t) is a solution to the differential Riccati
equation (5.1) and y is the solution to (1.1) corresponding to u ∈M2

w([s, T ];U).

Proof. In order to apply Itô’s formula, we must use an appropriate approximate
problem satisfied by a sufficiently regular random variable, and, in particular, a strong
solution of a stochastic differential equation. We follow [H] closely and consider the
following stochastic differential equation

dyn = (Ayn +Bu) dt+ (Cnyn +Dnu) dWt,

where R(n,A) = (nI − A)−1 is the resolvent of A, and Cn is defined by Cn ≡
nR(n,A)C, while Dn ≡ nR(n,A)D. Taking u ∈ L2(Ω;H1

0 ([s, T ];U)), we set

vn = yn +A−1Bu.
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Now, let P (t) ∈ C([s, T ];L(H)) be a self-adjoint positive operator satisfying the
differential Riccati equation (5.1) such that B?P (·) ∈ Cγ([s, T ];L(H,U)). We rewrite
〈P (t)yn(t), yn(t)〉 in terms of vn as

ψ(t, vn, u) = 〈P (t)vn(t), vn(t)〉−2〈P (t)vn(t), A−1Bu(t)〉+〈P (t)A−1Bu(t), A−1Bu(t)〉.
(6.2)

We next observe that vn is a strong solution of the equation

(6.3) dvn = (Avn +A−1Bu′) dt+ (Cnyn +Dnu) dWt,

where u′ denotes d
dtu. In particular, taking y(s) = x ∈ D(A), and by the variation of

parameters formula we get

yn(t) = eA(t−s)x+

∫ t

s

eA(t−τ)Bu(τ) dτ +

∫ t

s

eA(t−τ)Cnyn(τ) dWτ

+

∫ t

s

eA(t−τ)Dnu(τ) dWτ .

Integrating by parts in time in the first integral, we get

yn(t) = eA(t−s)x−A−1Bu(t) + eA(t−s)A−1Bu(s) +

∫ t

s

eA(t−τ)A−1Bu′(τ) dτ

+

∫ t

s

eA(t−τ)(Cnyn +Dnu) dWτ .

Adding A−1Bu(t) to both sides, we have

vn(t) = eA(t−s)(x+A−1Bu(s)) +

∫ t

s

eA(t−τ)A−1Bu′(τ) dτ +

∫ t

s

eA(t−τ)Cnyn dWτ

+

∫ t

s

eA(t−τ)Dnu dWτ ,

which shows that vn is a solution to (6.3). Now, we can verify that vn(t) ∈ D(A).
Indeed, applying A to the right-hand side, we have

eA(t−s)(Ax+Bu(s)) +

∫ t

s

eA(t−τ)Bu′(τ) dτ +

∫ t

s

eA(t−τ)ACnyn dWτ

+

∫ t

s

eA(t−τ)ADnu dWτ ,

and x ∈ D(A) while

E

(∥∥∥∥
∫ t

s

eA(t−τ)Bu′(τ) dτ

∥∥∥∥
2

H

)
≤ E

(∫ t

s

c

(t− τ)γ
‖u′(τ)‖U dτ

)2

≤ c̃T 1−2γE(‖u‖2H1([s,T ];U))

(note γ < 1/2), where we used the singular estimate condition and Hölder’s inequality
in the last step. Moreover, we have by the boundedness of ACn and using Itô’s
isometry that

E
(
‖
∫ t

s

eA(t−τ)ACnyn(τ) dWτ‖2H
)
≤ c1

∫ t

s

E(‖yn(τ)‖2H) dτ <∞,
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where we used Theorem 3.1 in the last step. Moreover,

E
(
‖
∫ t

s

eA(t−τ)ADnu dWτ‖2H
)
≤ c1

∫ t

s

E(‖u(τ)‖2U ) dτ ≤ c1‖u‖2M2
ω([s,T ];U).

Hence, vn ∈ D(A) which means it is a strong solution of (6.3).
We now can differentiate the expression for ψ(t, vn(t), u(t)) in (6.2) using Itô’s

formula [DZ1] to obtain

dψ(τ, vn(τ), u(τ)) = 〈P ′(τ)vn(τ), vn(τ)〉 dτ + 2〈P (τ)vn(τ), Avn(τ) +A−1Bu′(τ)〉 dτ
+ 2〈P (τ)vn(τ), Cnyn(τ) +Dnu(τ)〉 dWτ

+ 〈P (τ)(Cnyn(τ) +Dnu(τ)), Cnyn(τ) +Dnu(τ)〉 dτ
− 2〈P ′(τ)vn(τ), A−1Bu(τ)〉 dτ − 2〈P (τ)(Avn(τ) +A−1Bu′(τ)), A−1Bu(τ)〉 dτ
− 2〈P (τ)(Cnyn(τ) +Dnu(τ)), A−1Bu(τ)〉 dWτ − 2〈P (τ)vn(τ), A−1Bu′(τ)〉 dτ
+ 〈P ′(τ)A−1Bu(τ), A−1Bu(τ)〉 dτ + 2〈P (τ)A−1Bu′(τ), A−1Bu(τ)〉 dτ.
Substituting yn(τ) back to eliminate vn(τ) using self-adjointness of P ′(τ), we

obtain

d〈P (τ)yn(τ), yn(τ)〉 = 〈P ′(τ)yn(τ), yn(τ)〉 dτ + 2〈P (τ)yn(τ), Ayn(τ) +Bu(τ)〉 dτ
+ 2〈P (τ)yn(τ), Cnyn(τ) +Dnu(τ)〉 dWτ

+ 〈P (τ)(Cnyn(τ) +Dnu(τ)), Cnyn(τ) +Dnu(τ)〉 dτ.
We now recall that P (τ) solves the differential Riccati equation and, hence, we have

d〈P (τ)yn(τ), yn(τ)〉 = −〈A?P (τ)yn(τ), yn(τ)〉 dτ − 〈P (τ)Ayn(τ), yn(τ)〉 dτ
− 〈R?Ryn(τ), yn(τ)〉 dτ − 〈C?P (τ)Cyn(τ), yn(τ)〉 dτ
+ 〈(B?P (τ) +D?P (τ)C)yn(τ), (I +D?P (τ)D)−1(B?P (τ) +D?P (τ)C)yn(τ)〉 dτ
+ 2〈P (τ)yn(τ), Ayn(τ)〉 dτ + 2〈P (τ)yn(τ), Bu(τ)〉 dτ
+ 2〈P (τ)yn(τ), Cnyn(τ) +Dnu(τ)〉 dWτ + 〈P (τ)(Cnyn +Dnu), Cnyn +Dnu〉 dτ,

which simplifies to

d〈P (τ)yn(τ), yn(τ)〉 = −‖Ryn(τ)‖2Z dτ − 〈(C?P (τ)C − C?nP (τ)Cn)yn(τ), yn(τ)〉 dτ
+ ‖(I +D?P (τ)D)−1/2(B?P (τ) +D?P (τ)C)yn(τ)‖2U dτ
+ 2〈B?P (τ)yn(τ), u(τ)〉 dτ + 2〈D?

nP (τ)Cnyn(τ), u(τ)〉 dτ
+ 〈D?

nP (τ)Dnu(τ), u(τ)〉 dτ + 2〈P (τ)yn(τ), Cnyn(τ) +Dnu(τ)〉 dWτ ,

where (I +D?P (τ)D)−1/2 is well defined since I +D?P (τ)D is a positive operator.
Adding ‖u(τ)‖2U dτ to both sides and adding and subtracting the term

2〈D?P (τ)Du(τ), u(τ)〉 dτ + 2〈D?P (τ)Cyn(τ), u(τ)〉 dτ
to the right-hand side, we get

‖u(τ)‖2U dτ + d〈P (τ)yn(τ), yn(τ)〉
= −‖Ryn(τ)‖2Z dτ − 〈(C?P (τ)C − C?nP (τ)Cn)yn(τ), yn(τ)〉 dτ

+ ‖(I +D?P (τ)D)−1/2(B?P (τ) +D?P (τ)C)yn(τ)‖2U dτ
+ 2〈(B?P (τ)+D?P (τ)C)yn(τ), u(τ)〉 dτ+2〈(D?

nP (τ)Cn−D?P (τ)C)yn(τ), u(τ)〉dτ
+ 〈(I +D?P (τ)D)u(τ), u(τ)〉 dτ + 〈(I +D?

nP (τ)Dn −D?P (τ)D)u(τ), u(τ)〉 dτ
+ 2〈P (τ)yn(τ), Cnyn(τ) +Dnu(τ)〉 dWτ .
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This simplifies to

‖u(τ)‖2U ds+ d〈P (τ)yn(τ), yn(τ)〉
= −‖Ryn(τ)‖2Z dτ − 〈(C?P (τ)C − C?nP (τ)Cn)yn(τ), yn(τ)〉 dτ

+ ‖(I +D?P (τ)D)−1/2(B?P (τ) +D?P (τ)C)yn(τ)− (I +D?P (τ)D)1/2u‖2U dτ
+ 2〈(D?

nP (τ)Cn −D?P (τ)C)yn(τ), u(τ)〉 dτ
+ 〈(I +D?

nP (τ)Dn −D?P (τ)D)u(τ), u(τ)〉 dτ
+ 2〈P (τ)yn(τ), Cnyn(τ) +Dnu(τ)〉 dWτ .

Integrating from t to T and using the condition P (T ) = G?G and yn(t) = x, we
have
∫ T

t

‖u(τ)‖2U dτ +

∫ T

t

‖Ryn(τ)‖2W dτ + ‖Gyn(T )‖2Z = 〈P (t)x, x〉

−
∫ T

t

〈(C?P (τ)C − C?nP (τ)Cn)yn(τ), yn(τ)〉 dτ

+

∫ T

t

‖(I +D?P (τ)D)−1/2(B?P (τ) +D?P (τ)C)yn(τ)−(I +D?P (τ)D)1/2u‖2U dτ

+ 2

∫ T

t

〈(D?
nP (τ)Cn −D?P (τ)C)yn(τ), u(τ)〉 dτ

+

∫ T

t

〈(I +D?
nP (τ)Dn −D?P (τ)D)u(τ), u(τ)〉 dτ

+ 2

∫ T

t

〈P (τ)yn(τ), Cnyn(τ) +Dnu(τ)〉 dWτ .

Since 〈P (τ)yn(τ), Cnyn(τ)+Dnu(τ)〉 is not L2(Ω;L2([0, T ],R)), we cannot simply ap-
ply the expected value to the equation above. However, we appeal to Proposition 7.10
in [D2], from which it suffices that all the integrands are L1(Ω;L1([0, T ],R)) to con-
clude that 〈P (T )yn(T ), yn(T )〉 or ‖Gyn(T )‖2Z is L1(Ω;R) which means E(‖Gyn(T )‖2Z)
<∞ and that the expected value is

E(‖Gyn(T )‖2Z) = 〈P (t)x, x〉 − E

(∫ T

t

‖u(τ)‖2U dτ
)

− E

(∫ T

t

‖Ryn(τ)‖2W dτ −
∫ T

t

〈(C?P (τ)C − C?nP (τ)Cn)yn(τ), yn(τ)〉 dτ
)

+ E

(∫ T

t

‖(I +D?P (τ)D)−1/2(B?P (τ) +D?P (τ)C)yn(τ)

−(I +D?P (τ)D)1/2u‖2U dτ
)

+ 2E

(∫ T

t

〈(D?
nP (τ)Cn −D?P (τ)C)yn(τ), u(τ)〉 dτ

)

+ E

(∫ T

t

〈(I +D?
nP (τ)Dn −D?P (τ)D)u(τ), u(τ)〉 dτ

)
.
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Rearranging, we have

Jn ≡ J(t, x, u) = 〈P (t)x, x〉 − E

(∫ T

t

〈(C?P (τ)C − C?nP (τ)Cn)yn(τ), yn(τ)〉 dτ
)(6.4)

+ E

(∫ T

t

‖(I +D?P (τ)D)−1/2(B?P (τ) +D?P (τ)C)yn(τ)

−(I +D?P (τ)D)1/2u‖2U dτ
)

+ 2E

(∫ T

t

〈(D?
nP (τ)Cn −D?P (τ)C)yn(τ), u(τ)〉 dτ

)

+ E

(∫ T

t

〈(D?
nP (τ)Dn −D?P (τ)D)u(τ), u(τ)〉 dτ

)
.

We next must show that yn → y ∈ M2
ω([s, T ];H) while the second and the last

two terms in (6.4) go to zero as n→∞.
Estimating the norm of the difference E(‖yn − y‖2H) we have

E(‖yn(t)− y(t)‖2H) ≤ cE
(∫ t

s

‖eA(t−τ)(Cnyn − Cy)‖H dWτ

)2

+ E
(∫ t

s

‖eA(t−τ)(Dnu−Du)‖H dWτ

)2

≤ c
∫ t

s

‖Cn − C‖2L(H)E(‖y‖2H) dτ + c

∫ t

s

‖Cn‖2L(H)E(‖yn−y‖2H) dτ

+ c

∫ t

s

‖Dn −D‖2L(U ;H)E(‖u‖2U ) dτ.

Applying Gronwall’s inequality, we obtain

E(‖yn(t)− y(t)‖2H) ≤ c
(
‖Cn − C‖2L(H)‖y‖2M2

w([s,T ];H) + ‖Dn

−D‖2L(H)‖u‖2M2
w([s,T ];U)

)
‖Cn‖2L(H)t.

Integrating in time and noting that the sequence Cn is uniformly bounded by a
constant M in the norm (since Cn → C), then choosing n sufficiently large, we finally
get

∫ T

s

E(‖yn(t)− y(t)‖2H) dt ≤
(
cε‖y‖2M2

w([s,T ];H) + ε‖u‖2M2
w([s,T ];U)

)
M
T 2

2
.

This shows that yn → y in M2
w([s, T ];H).

Using standard arguments we can easily show that

E

(∫ T

t

〈(C?P (τ)C−C?nP (τ)Cn)yn(τ), yn(τ)〉 dτ
)
→ 0 as n→∞.
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Similarly,

2E

(∫ T

t

〈(D?
nP (τ)Cn −D?P (τ)C)yn(τ), u(τ)〉 dτ

)
→ 0

and

E

(∫ T

t

〈(D?
nP (τ)Dn −D?P (τ)D)u(τ), u(τ)〉 dτ

)
→ 0

as n→∞.
As for the second term in (6.4), we have

E

(∫ T

t

‖(I +D?P (τ)D)−1/2(B?P (τ) +D?P (τ)C)yn(τ)

−(I +D?P (τ)D)1/2u‖2U dτ
)

→ E

(∫ T

t

‖(I +D?P (τ)D)−1/2(B?P (τ) +D?P (τ)C)y(τ)

−(I +D?P (τ)D)1/2u‖2U dτ
)
.

Therefore, the functional Jn given in (6.4) converges to

J(t, x, u) = 〈P (t)x, x〉+E

(∫ T

t

‖(I +D?P (τ)D)−1/2(B?P (τ) +D?P (τ)C)y(τ)

−(I +D?P (τ)D)1/2u‖2U dτ
)
.

We finally extend (6.1) for all u ∈M2
w([s, T ];U). By density of L2(Ω;H1([s, T ];U)) ⊂

M2
w([s, T ];U), we then approximate u ∈ M2

w([s, T ];U) by a sequence un ∈ L2(Ω;H1

([s, T ];U)), and pass through the limit. It is easy to show show that y(un)→ y(u) in
M2
w([s, T ];H) (continuous dependence of y on the control u). Hence, passing through

the limit in un → u, we have yn → y(u) and (6.1) is valid for u ∈M2
w([s, T ];U). Since

the argument in passing through the limit in J is similar, it will not be repeated.

7. A global-in-time solution to the differential Riccati equation. We
now extend the solution of the Riccati equation from [Tmax, T ] to any time interval
[s, T ]. We establish a global bound on P (t) since

〈P (t)x, x〉 ≤ J(t, x;u = 0) = E

(∫ T

t

‖Ry(τ)‖2 dτ + ‖Gy(T )‖2Z

)

≤ cM2Te2αT ‖x‖2H + cM2e2αT ‖x‖2H = CT ‖x‖2H
for all t ∈ [Tmax, T ] and thus ‖P (t)‖L(H) ≤ ‖P 1/2(t)‖2L(H) ≤ CT . This bound can
be used to reiterate the proofs of Lemma 4.4 and Theorem 4.1 on a new interval
[T1, Tmax] with G = P 1/2(Tmax). The bound insures that the choice of the constant
c (which depends on G) in (4.8) is global and all the estimates are uniform and that
r and the time step Tmax − T1 are the same. Hence, the results can be extended by
repeated iteration on equal time steps to any initial time s ≥ 0.
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8. Uniqueness of solution to the differential Riccati equation.

Theorem 8.1. The solution to the differential Riccati equation is unique in the
class of self-adjoint operators in C([0, T ];L(H)) satisfying B?P ∈ Cγ([s, T ];L(H,U)).

Proof. Assume there is another solution P̃ (t) to the Riccati equation in this class,
then the same dynamic programming argument from the previous section leads to

min J(t, x, u) = 〈P (t)x, x〉 = 〈P̃ (t)x, x〉

for all x ∈ H. Hence, we have for any x, y ∈ H that

0 = 〈(P (t)− P̃ (t))(x+ y), (x+ y)〉
= 〈(P (t)−P̃ (t))x, x〉+ 〈(P (t)−P̃ (t))x, y〉+ 〈(P (t)− P̃ (t))y, x〉+ 〈(P (t)−P̃ (t))y, y〉
= 2〈(P (t)− P̃ (t))x, y〉

by self-adjointness of P and P̃ . Thus, P (t) = P̃ (t).

9. Proof of main Theorems 2.1 and 2.2. We finally obtain our main results
in this paper stated in Theorems 2.1 and 2.2. We start with Theorem 2.1.

Proof.
(i) From (6.1) in Lemma 6.1, the functional J satisfies

inf
u∈Mω([s,T ];U)

J(s, x;u) = 〈P (s)x, x〉,

where P (t) is the solution to the differential Riccati equation.
(ii) The existence of a solution to the differential Riccati equation in C([s, T ];L(H))

follows from Theorem 5.1, and the uniqueness was established in section 8.
(iii), (iv) The regularity properties of P (t) and B∗P (t) were established in

Theorem 4.1.

Finally, we prove Theorem 2.2.

Proof.
(i), (iii) To show that the minimum of J is realized in (6.1), we can establish the

existence of a unique solution u0 ∈M2
w([s, T ];U) to the equation

u0(t, s;x) = −(I +D?P (t)D)−1(B?P (t) +D?P (t)C)y(t, s, u0;x)

via a fixed point argument on M2
w([s, T ];U). Thus,

u0(s, t;x) = −(I +D?P (t)D)−1(B?P (t) +D?P (t)C)y0(t, s;x),

so that J(s, x;u0) = 〈P (s)x, x〉.

(ii) If follows from Theorem 3.1 that the corresponding optimal state y0 ∈ L2

(Ω;C([s, T ];H)).

(iv) It then follows by regularity properties of B?P in (4.3) that

‖u0(t, s;x)‖L2(Ω;U) ≤
c

(T − t)γ ‖x‖H .
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10. Applications to control of PDEs. This section is devoted to an applica-
tion of the theory to concrete PDE systems with unbounded control actions.

10.1. Theremoelastic plates with boundary control. We consider a stochas-
tic model for a hinged thermoelastic plate with Neumann thermal boundary control.
LetWt be a one dimensional Wiener process on a complete probability space (Σ,F ,P).
The system consists of a heat equation and a plate equation

[I − ρ∆]dwt + ∆2w dt+ ∆θ dt = (∇w + bwt) dWt, Ω× [0, T ],
dθ −∆θ dt−∆wt dt = (C31∆w + C32∇wt + C33θ) dWt, Ω× [0, T ],

}
(10.1)

where w(ω, x, t) is the transversal displacement and θ(ω, x, t) is the temperature of the
plate which occupies the open domain Ω in R2 or R3, subject to the hinged boundary
conditions

(10.2) w = ∆w = 0, ∂Ω× [0, T ],

and thermal control u on the boundary

(10.3)
∂θ

∂ν
+ bθ = u(x, t) + u(x, t)Ẇ (t), ∂Ω× [0, T ].

The functions y(ω, x, t) ≡ (w(ω, x, t), wt(ω, x, t), θ(ω, x, t)) are random variables which
take values in the finite energy space H defined by H ≡ H2(Ω) ∩H1

0 (Ω) ×H1
0 (Ω) ×

L2(Ω).
We are particularly interested in a Bolza-type optimal control of this system with

the objective of minimizing an energy functional

J(u,w,wt, θ) = E
(∫ T

0

‖u(·, t)‖2L2(∂Ω) + ‖w(·, t)‖2H2(Ω) + ‖wt(·, t)‖2H1(Ω)

+ ‖θ(·, t)‖2L2(Ω) dt+ ‖w(·, T )‖2H2(Ω) + ‖wt(·, T )‖2H1(Ω)

)
(10.4)

over all boundary controls u ∈M2
w([0, T ];L2(∂Ω)), given initial data in the (w0, w1, θ0)

∈ H finite energy space. This problem can be adapted to the abstract setting of the
stochastic linear quadratic regulator, since the deterministic uncontrolled system is
driven by a C0-semigroup eAt while a control operator B from the boundary to interior
satisfies the singular estimate [BL].

Following [LT1, BL], we introduce the self-adjoint operator A on L2(Ω) defined
by

Ah = ∆2h

with domain

D(A) =

{
h ∈ H4(Ω) : h|∂Ω =

∂

∂ν
h |∂Ω = 0

}
.

The fractional power A1/2 of this operator has a domain which can be identified with
the space H2(Ω)×H1

0 (Ω). We also introduce the self-adjoint operator AN on L2(Ω)

ANh = −∆h
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with domain

D(AN ) =

{
h ∈ H2(Ω) :

∂

∂ν
h+ h = 0 on ∂Ω

}
.

The operator −AN is well known to generate an analytic semigroup e−AN t on the
space L2(Ω).

We also follow [BL] in introducing the operator M on L2(Ω) given by

M = (I + ρAN ),

with the well-defined bounded inverse M−1. Additionally, we also introduce the
Neumann map N : L2(∂Ω)→ L2(Ω) defined by

Ng = h ⇐⇒ ∆h = 0 in Ω,

∂h

∂ν
+ h = g on ∂Ω.

It is well known that A3/4−εN is bounded L2(∂Ω)→ L2(Ω). The system can then be
expressed in abstract form as

dy(t) = (Ay +Bu) dt+ (Cy +Du) dWt,

where

y(t) =




w
wt
θ




and

A =




0 I 0
−M−1A 0 M−1AN

0 −AN −AN


 ,

and with domain

D(A) = D(A3/4)×D(A1/2)×D(AN ).

Moreover, the control operators B,D are

B = D =




0
0

ANN


 ,

and the noise operator C is

C =




0 0 0
∇ b 0

C31∆ C32∇ C33




for real parameters C31, C32, C33, b. Note here that the adjoint B? : D(A?)→ L2(∂Ω)
is defined by

B?[x1, x2, x3] = N?ANx3 = x3|∂Ω,

which is the restriction to the boundary ∂Ω. As for the observation operators in
(10.4), we take R = I and G = [I, I, 0] on the state space H.
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It was shown in [BL] that the set of assumptions in Assumption 1.1 are indeed
satisfied. In particular, the critical singular estimate does hold with any γ > 1/4:

‖eAtBu‖H ≤
C

t1/4+ε
‖u‖L2(∂Ω)

for every u ∈ L2(∂Ω), and A−1B is bounded from L2(∂Ω) to H. Thus, we are in a
position to apply the conclusions of Theorems 2.1 and 2.2. Thus we have the following
theorem.

Theorem 10.1. Given initial data (θ0, w0, w1) ∈ H, there exists a unique op-
timal control u0 ∈ M2

w([s, T ];L2(∂Ω)) to the stochastic thermoelastic plate system
(10.1) with hinged boundary conditions (10.2) and Neumann thermal boundary con-
trol (10.3), which minimizes the cost functional (10.4). Moreover,

1. the optimal control u0 ∈ C([s, T );L2(Σ, ∂Ω)) and

E(‖u0(t)‖2L2(∂Ω)) ≤
( c

t1/4+ε
(‖w0‖H2(Ω) + ‖w1‖H1(Ω) + ‖θ0‖L2(Ω))

)2

;

2. the corresponding optimal state (θ0(t), w0(t), w0
t (t)) ∈ C([s, T ];L2(Σ,H)) and

E(‖w0(t)‖2H2(Ω)) + E(‖w0
t (t)‖2H1(Ω)) + E(‖θ0(t)‖2L2(Ω))

≤ c(‖w0‖2H2(Ω) + ‖w1‖2H1(Ω) + ‖θ0‖2L2(Ω));

3. the optimal control is given in feedback form

u0(t) = −(I +D?P (t)D)−1(D?P (t)C +B?P (t))[w0(t), w0
t (t), θ

0(t)]T

for B, D and C defined above and where P (t) is a self-adjoint positive operator
on H satisfying the differential Riccati equation

〈A1/2p1t,A1/2y1〉+ 〈M1/2p2t,M1/2y2〉+ 〈p3t, y3〉 = −〈A1/2p1,A1/2y2〉
+ 〈p2,Ay1〉 − 〈p2, ANy3〉+ 〈ANp3, y2〉+ 〈ANp3, y3〉 − 〈A1/2x2,A1/2p̂1〉
+ 〈Ax1, p̂2〉 − 〈ANx3, p̂2〉+ 〈ANx2, p̂3〉+ 〈ANx3, p̂3〉 − 〈P (t)Cx,Cy〉
+ 〈(I+D?P (t)D)−1(B?P (t)+D?PC)x, (B?P (t)

+D?PC)y〉∂Ω, [p1(T ), p2(T ), p3(T )]

= [x1, x2, 0]

for all x = (x1, x2, x3) and y = (y1, y2, y3) in D(A), where we denote P (t)x =
[p1(t), p2(t), p3(t)] and P (t)y = [p̂1(t), p̂2(t), p̂3(t)], and by 〈·, ·〉 the L2 inner
product on Ω.

10.2. Fluid-structure interaction. Here we shall revisit the motivating ex-
ample introduced in section 1.1. In particular, the system (1.4)–(1.6) with boundary
conditions (1.7)–(1.9) can be expressed in the abstract form

dY = AFSY dt+Bg dt+ CY dWt +Dg dWt

with

AFS =




AN ANNσ 0
0 0 I
0 div(σ) 0


 ,
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THE STOCHASTIC LINEAR QUADRATIC CONTROL PROBLEM 623

where AN : V → V ′ is defined by 〈ANφ, v′〉 = −〈ε(φ), ε(v)〉 and V is the space

V ≡ {v ∈ H1(Ωf ) : div v = 0, v|Γf = 0},

while N : H−1/2(Γs)→ V is the map defined by

Ng = h ⇐⇒ 〈ANh, v〉 = 〈g, v〉Γs ,
h|Γf = 0,

for every v ∈ V which is well defined by the Lax–Milgram theorem [LTu3]. Denoting
the finite energy space H × H1(Ωs) × L2(Ωs) by H, the operator AFS generates a
C0-semigroup on the space H. The control operators B and D are defined by

B = D =




ANN
0
0


 ,

and B : L2(Γs) → [D(A?FS)]′ is the control operator [LTu3] which satisfies an incre-
mentally weaker form of the singular estimate [LTu3]

‖eAFStBf‖H−α ≤ c

t1/4+ε
‖f‖L2(Γs)

for α > 0, where Hα is the lower topology space Hα = H ×H1−α(Ωs)×H−α(Ωs).
However, this estimate is sufficient in order to address the control functional

(1.10) with α = 1; cf. [LTu3]. In particular, we take our operator R = [I, 0, 0] and
G = [I, I, 0] and take the observation space W ≡ H and Z ≡ H−1. Moreover, we
determine the noise operator C as

(10.5) C =




c1 0 0
0 0 0
0 c2 0


 ,

which is a bounded operator on the state space H. Note here that the adjoint B? :
D(A?)→ L2(Γs) is defined by

B?[x1, x2, x3] = N?ANx1 = x1|Γs .

Now that the assumptions of Assumption 1.1 are all satisfied by the system, we
can specialize Theorems 2.1 and 2.2 to this system to obtain the following optimal
control result.

Theorem 10.2. Given initial data (u0, w0, w1) ∈ H, there exists a unique optimal
control g0 ∈ M2

w([s, T ];L2(Γs)) to the stochastic fluid-structure interaction system
(1.4)–(1.6) with boundary conditions (1.7)–(1.9), which minimizes the cost functional
(1.10). Moreover,

1. the optimal control g0 ∈ C([s, T );L2(Σ,Γs)) and

E(‖g0(t)‖2L2(Γs)
) ≤

( c

t1/4+ε
(‖u0‖L2(Ωf ) + ‖w0‖L2(Ωs) + ‖w1‖L2(Ωs))

)2

;

2. the corresponding optimal state (θ0(t), w0(t), w0
t (t)) ∈ L2([s, T ];L2(Σ,H)) ∩

C([s, T ];L2(Σ,H−1)) and

E(‖u0(t)‖2L2(Ωf )) + E(‖w0(t)‖2L2(Ωs)
) + E(‖w0

t (t)‖2H−1(Ωs)
)

≤ c(‖u0‖2L2(Ωf ) + ‖w0‖2H1(Ωs)
+ ‖w1‖2L2(Ωs)

);
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3. The optimal control is given in feedback form

g0(t) = −(I +D?P (t)D)−1(D?P (t)C +B?P (t))[u0(t), w0(t), w0
t (t)]

T

for B, D, and C defined above and where P (t) is a self-adjoint positive oper-
ator on H satisfying the differential Riccati equation

〈p1t, y1〉f + 〈∇p2t,∇y2〉s + 〈p3t, y3〉s = −〈ANx1, p̂1〉f − 〈ANNσ(x2), p̂1〉f
− 〈∇x3,∇p̂2〉s−〈div σ(x2), p̂3〉s
− 〈p1, ANy1〉f−〈p1, ANNσ(y2)〉f−〈∇p2,∇y3〉s
− 〈p3,div σ(y2)〉s − 〈c1p1, c1y1〉f − 〈c2p3, c2y2〉s − 〈x1, y1〉f
+ 〈(I +D?P (t)D)−1(1 + c1)p1|Γs , (1 + c1)p̂1|Γs〉Γs ,

[p1(T ), p2(T ), p3(T )] = [x1, x2, 0],

for every x = (x1, x2, x3) and y = (y1, y2, y3) ∈ D(AFS), where P (t)x =
[p1(t), p2(t), p3(t)] and P (t)y = [p̂1(t), p̂2(t), p̂3(t)], while 〈·, ·〉f and 〈·, ·〉s de-
note the L2 inner product on Ωf and Ωs, respectively.

Remark 10.3. The proof of this theorem requires extending the results of
Theorems 2.1 and 2.2 to a generalized singular estimate condition on the observa-
tion spaces ‖ReAtBf‖W ≤ c

tγ ‖f‖U and ‖GeAtBf‖Z ≤ c
tγ ‖f‖U ∀f ∈ U for some

γ ∈ (0, 1/2); cf. [Tu]. This leads to the continuity-in-time property to be satisfied by
the observed optimal state space Ry0 only on the observation space W as stated in
part 2 of the above theorem.
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1 Introduction

The deterministic linear quadratic control problem for infinite-dimensional systems
has been extensively studied in the literature [7,8,30,31]. An approximation scheme
for Riccati equations in infinite-dimensional spaces have been first proposed by
Gibson [16], who developed an approximation framework in order to reduce inher-
ently infinite-dimensional problems to finite-dimensional ones using Riccati integral
equations. In [16] the deterministic problems with bounded control and observation
operators were considered. The result proposed by Gibson requires the approximating
problems to be defined on the entire original state space which leads to some tech-
nical difficulties. Assuming that the dynamics are driven by an analytic semigroup,
Banks and Kunisch [3] propose an alternative framework which is more amenable to
numerical implementations. In the same setting, convergence results for DREs can
be found in [5], while results on convergence rates can be found in [26]. A complete
Riccati theory and convergence analysis for infinite dimensional systems driven by
analytic semigroups and a special class of unbounded control operators was developed
by Lasiecka and Triggiani in [30]. However, up to our knowledge, convergence results
for the stochastic linear quadratic control problem have not been studied in the liter-
ature. One of the reasons could be the fact that the computational cost of solving the
stochastic linear quadratic regulator (LQR) problem is much higher compared to the
cost in the deterministic case. In this paper, we extend the ideas presented in [3,5,35]
to the stochastic linear quadratic control problem.

The stochastic linear quadratic regulator problem in finite dimensions has been
first studied by Kushner [27] and Wonham [39,40]. On the other hand, the control
problem with stochastic coefficients and the corresponding backward stochastic Ric-
cati equations have been treated in the finite-horizon and finite-dimensional case by
many authors [9,10,22–25]. In [14] the authors provide the study of stochastic LQR
problems subject to both multiplicative white noise and Markovian jumps in finite
dimensions. In [41], one can find a comprehensive treatment of the linear quadratic
optimal control problem in finite dimensions along with a feedback characterization
of the optimal control via a matrix Riccati equation. We note here that the Riccati
equation associated with the stochastic LQR problem is a deterministic differential
equation, and thus the feedback relation between the optimal control and the optimal
state, is deterministic, even though they are both random.

The infinite dimensional analog of the stochastic linear quadratic problem was
solved in [21] using a dynamic programming approach. Da Prato [12] and Flandoli
[15] later considered the stochastic LQR for systems driven by analytic semigroups
with Dirichlet or Neumann boundary controls, but with disturbance in the state only.
The infinite dimensional LQR with random coefficients have also been investigated
recently in [17,18] along with the associated backward stochastic Riccati equation.

In [36], a novel approach for solving the stochastic LQR based on the chaos expan-
sion method in the framework of white noise analysis to the state equation was
proposed. This numerical framework relies on solving standard deterministic Ric-
cati equations. Efficient solvers for Riccati equations have been proposed in recent
years [1,4–6,28].
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For a class of control systems known as singular estimate control systems, where the
dynamics are driven by strongly continuous semigroups and the kernel of the control-
to-state map satisfies a singular estimate, the stochastic analog of the linear quadratic
problem has been first treated byHafizoglu [19]. These control systems capture certain
systems of coupled parabolic/hyperbolic PDEs, with boundary or point control actions
[29,32], and include systems with analytic dynamics as a special case [30]. Examples
of such control systems appear in structure-acoustics, thermoelastic-plates and fluid-
structure interactions [2,11,33]. Recently, a theoretical framework for the stochastic
LQR has been laid out for singular estimate control systems in the presence of noise
in the control and in the case of finite time penalization in the performance index [20].
In this paper, we consider the general setting described in [20] and propose an approx-
imation scheme for solving the control problem and the associated Riccati equation.
In particular, our task is two fold: First of all, we provide an approximation framework
for the singular estimate control systems at the deterministic level which generalizes
some of the results on approximation of analytic dynamics in [30], and second of all,
we extend the results from the deterministic case [3,5,16,30] to the stochastic case.

The paper is organized in the following manner: in Sect. 2 we state the stochastic
LQR problem, give basic notions and derive the Riccati integral equation in terms of a
semigroup. In Sect. 3, we develop a general convergence framework for the stochastic
LQR problem. In Sect. 4, we present and prove our main results in Theorem 4.1 and
Theorem 4.2. Finally, some applications in stochastic control are considered in Sect. 5.

2 The Stochastic LQR Problem

LetU andH be separable Hilbert spaces of controls and states respectively with norms
‖ · ‖U and ‖ · ‖H, generated by the corresponding scalar products. Let (�,F , P) be
a complete probability space, and (Wt )t≥0 a one-dimensional real valued standard
Brownian motion defined on (�,F , P). Let (Ft )t≥0 be the complete right continuous
σ -algebra generated by (Wt )t≥0. We assume that all function spaces are adapted to
the filtration (Ft )t≥0, i.e. we consider only Ft -predictable processes. Let L2(�) =
L2(�,F , P) be a Hilbert space of square integrable real valued random variables
endowed with the norm ‖F‖2

L2(�)
= EP(F2), for F ∈ L2(�), induced by the scalar

product (F,G)L2(�) = EP(FG), for F,G ∈ L2(�), and EP denotes the expectation
with respect to the measure P. Further on, we will write E for the expectation omitting
P.Wedenote by L2(�,U) aHilbert space ofU-valued square integrable randomvalues
and by L2([0, T ]; L2(�,U)), the Hilbert space of square integrable FT -predictable
U-valued stochastic processes u endowed with the norm

‖u‖2L2([0,T ];L2(�,U))
=

∫ T

0
E(‖u(t)‖2U ) dt.

LetC([0, T ], L2(�,H)) be the Hilbert space ofFT -predictable continuousH-valued
stochastic processes y endowed with the norm

‖y‖2C([0,T ];L2(�,H))
= sup

t∈[0,T ]
E(‖y(t)‖2H).
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The infinite dimensional stochastic linear quadratic regulator (SLQR) optimal control
problem on Hilbert spaces is given by an Itô stochastic differential equation

dy(t) = (
Ay(t) + Bu(t)

)
dt + (

Cy(t) + Du(t)
)
dWt , t ∈ [0, T ]

y(0) = y0
(1)

and the quadratic cost functional

J (u) = E
[∫ T

0

(
‖Qy‖2W + ‖u‖2U

)
dt + ‖Gy(T )‖2Z

]
. (2)

The dynamics of the problem, the operator A, is deterministic and represents an infin-
itesimal generator of a (strongly continuous) C0-semigroup eAt on the state space H.
Operators A and C are operators on H, while operators B and D are operators acting
from the control space U to the state space H. The observation spaces W and Z are
also Hilbert spaces. We denote by D(S) the domain of a certain operator S, and by S�

the adjoint operator of S.
It is clear that y in (1) and (2) is a stochastic process y(t, ω), i.e. for fixed t it

represents a random variable and for fixed ω we obtain a realization of the process.
For simplicity we write y(t).

We consider the stochastic LQR problem under the following conditions:

Assumption 2.1 (a) The linear operator A is an infinitesimal generator of a C0-
semigroup eAt on the space H.

(b) The linear control operator B acts from U → [D(A�)]′ or equivalently A−1B is
bounded from U → H.

(c) There exists a number γ ∈ (0, 1/2) such that the control to state map kernel eAt B
satisfies the singular estimate

‖eAt Bu‖H ≤ c

tγ
‖u‖U

for every u ∈ U and 0 < t < 1.
(d) The operators Q : H → W , G : H → Z and C : H → H are all bounded linear

operators.

Clearly, we consider the problem for unbounded control operator B, particularly
singular estimate control systems under the Assumptions 2.1.

The aim of the stochastic LQR problem is tominimize the cost functional J (u) over
the set of square integrable controls u ∈ L2([0, T ]; L2(�,U)), which are adapted in
the filtration. We denote the optimal control by u∗ and the optimal state by y∗ so

J (u∗) = min
u

J (u).
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2.1 Strong and Mild Solutions

Let u ∈ L2([0, T ]; L2(�,U)). An H-valued adapted process y = y(t, ω) is a strong
solution of the state equation (1) over [0, T ] if:
(a) y(t) takes values in D(A) ∩ D(C) for almost all t and ω;
(b) P(

∫ T
0 ‖y(s)‖H + ‖Ay(s)‖H ds < ∞) = 1 and P(

∫ T
0 ‖Cy(s)‖2H ds < ∞) =

1;
(c) for arbitrary t ∈ [0, T ] and P-almost surely, it satisfies the integral equation

y(t) = y0 +
∫ t

0
Ay(s) ds +

∫ t

0
Bu(s) ds +

∫ t

0
Cy(s) dWs +

∫ t

0
Du(s) dWs .

An H-valued adapted process y(t, ω) is a mild solution of the state equation (1)
over [0, T ] if
(a) y takes values in D(C);
(b) P(

∫ T
0 ‖y(s)‖H ds < ∞) = 1 and

P(
∫ T
0 ‖Cy(s)‖2H ds < ∞) = 1;

(c) for arbitrary t ∈ [0, T ] and P-almost surely, it satisfies the integral equation

y(t) = eAt y0 +
∫ t

0
eA(t−s)Bu(s) ds +

∫ t

0
eA(t−s) Cy(s) dWs

+
∫ t

0
eA(t−s) Du(s) dWs .

(d) Bu and Du are Ft measurable Bochner integrable H-valued functions.

Mild solutions are the limits of strong solutions. In the case of a deterministic state
equation, i.e. when C = D = 0, a mild solution y ∈ L2([0, T ];H) can be written in
the form

y(t) = eAt y0 +
∫ t

0
eA(t−s)Bu(s) ds, t ∈ [0, T ].

It is well known that when B is bounded, and given u ∈ L2([0, T ]; L2(�,U))

(Bochner integrable) and the initial data y0 ∈ H, there exists a uniquemild solution y ∈
L2([0, T ]; L2(�,H)) to the controlled state equation (1), see [13]. Using a standard
argument, the existence is extended to the case of B unbounded under Assumptions
2.1 (a) and (b), see [19].

2.2 Optimal Control

It is well known, cf. [21], that if all the operators B,C, D appearing in (1) and (2) are
bounded, then the optimal control is given by

u∗(t) = −(
I + D�P(t)D

)−1 (
B�P(t) + D�P(t)C

)
y∗(t), (3)
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where P(t) is a positive self-adjoint operator solving the Riccati equation for every
v,w ∈ D(A)

〈Ṗv,w〉 + 〈PAv,w〉 + 〈A�Pv,w〉 + 〈C�PCv,w〉 + 〈Q�Qv,w〉
−〈

(B�P + D�PC)�(I + D�PD)−1(B�P + D�PC)v,w
〉 = 0, (4)

P(T )v = G�Gv . (5)

Note that since
(
I + D�P(t)D

)
is a positive operator, the inverse operator

(
I +

D�P(t)D
)−1 is well defined and bounded on the control space U . Moreover, if the

initial condition y0 is deterministic, the optimal cost is

min
u∈L2([0,T ],L2(�,U)

J (u) = J (u∗) = J
(
u∗, y∗(y0, u∗)

) = 〈P(0) y0, y0〉H.

The proof of this feedback characterization in the more general framework of sin-
gular estimates (Assumptions 2.1) can be found in [19] when D = 0, G = 0 but
0 ≤ γ < 1, and in [20] for bounded D and G under the condition 0 ≤ γ < 1/2. In
particular, we include the following theorems from [20].

Theorem 2.1 Under Assumptions 2.1, there exists a positive self-adjoint
operator P(t) ∈ C([0, T ];L(H)) satisfying the Riccati equation (4) and (5). More-
over, the following statements hold:

(i) The solution P(t) is unique in the class of positive self adjoint operators in
C([0, T ];L(H)).

(ii) The solution P(t) satisfies the estimate

‖P(t) x‖H ≤ c ‖x‖H, ∀ t ∈ [0, T ], x ∈ H. (6)

(iii) The operator B�P(t) satisfies the estimate

‖B�P(t) x‖H ≤ c

(T − t)γ
‖x‖H, ∀ t ∈ [0, T ), x ∈ H. (7)

Theorem 2.2 Under Assumptions 2.1, the optimal control problem of minimizing (2)
subject to the differential equation (1) with initial condition y0 ∈ L2(�,H) has a
unique solution u∗(·; y0) ∈ C([0, T ); L2(�,U)) and a corresponding optimal state
y∗(·; y0) ∈ C([0, T ]; L2(�,H)). Moreover,

(i) The optimal control u∗ satisfies the estimate

E(‖u∗(t; y0)‖2U ) ≤ c

(T − t)2γ
E(‖y0‖2H) ∀ t ∈ [0, T ).

(ii) The optimal state y∗ satisfies the estimate

E(‖y∗(t; y0)‖2H) ≤ c · E(‖y0‖2H) ∀ t ∈ [0, T ].
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(iii) The optimal control u∗ has the feedback characterization in terms of the optimal
state

u∗(t; y0) = −(I + D�PD)−1(B�P(t) + D�P(t)C) y∗(t),

where P(t) is the unique solution to the DRE (4)–(5).
(iv) The minimum of the functional (2) is given by

J (u∗) = min
u∈L2([0,T ],L2(�,U))

J (u) = E 〈P(0)y0, y0〉H.

Remark 2.1 The deterministic analogue of these theorems, i.e the case C = 0 and
D = 0, can be found in [29,32]. The framework of Assumptions 2.1 generalizes the
class of systems driven by analytic semigroups with unbounded control operators B
satisfying A−γ B ∈ L(U ,H). A complete analysis of this case, along with numerical
approximations can be found in [30].

Remark 2.2 The theorems above also hold for γ in [1/2, 1) when G = 0. In this
case there is no singularity at the final time T for the operator B�P or the optimal
control, [19]. In particular, the optimal control is continuous on [0, T ], i.e. u∗ ∈
L2(�;C([0, T ];U).

Remark 2.3 For nonzero G, the case of γ ∈ [1/2, 1) is more challenging even in the
deterministic case where additional assumptions on G, are required for the existence
of a minimum for the cost functional (2), see [30].

Remark 2.4 The theorems above can also be applied under an unbounded noise control
operator D satisfying the exact same conditions on B stated in Assumptions 2.1 (b)
and (c). This is particularly interesting because it allows the inclusion of noise in
boundary control of certain classes of coupled PDEs.

In the next section, we show that the solution of the approximate finite-dimensional
DREs converges to the solution of the DRE (4), under the general singular estimates
framework, which extends the case when B is a bounded operator, the case γ = 0.

2.3 Preliminary Results

Since operator A is an infinitesimal generator of a C0-semigroup eAt and is defined
on a dense subset of a Hilbert space H, we have the uniform bound

‖eAt‖L(H) ≤ M eαt , for t ∈ [0, T ] ,

for some positive constants α, M .
Using the feedback expression for the optimal control (3), the state equation (1)

can be expressed as

dy(t) = Ay(t) dt + B̃(t) y(t) dt + C̃(t) y(t) dWt , y(0) = y0, (8)
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where

B̃(t) = −B
(
I + D�P(t)D

)−1(
B�P(t) + D�P(t)C

)
, (9)

C̃(t) = C − D
(
I + D�P(t)D

)−1(
B�P(t) + D�P(t)C

)
. (10)

We first state a lemma on the existence of a unique mild solution y to (8) which is
continuous, i.e. y ∈ C ≡ C([0, T ]; L2(�,H)). This is a standard result for uniformly
bounded operators B̃(t) and C̃(t) on H, cf. [13]. Via standard estimates, the existence
result can be extended to the general case of B̃(t) and C̃(t) satisfying the estimates

‖eAt B̃(t)x‖H ≤ c

(T − t)γ (t − τ)γ
‖x‖H (11)

and

‖eAt C̃(t)x‖H ≤ c

(T − t)γ (t − τ)γ
‖x‖H (12)

for some γ < 1/2 for all x ∈ H and t ∈ [0, T ). Note that if B̃ and C̃ are defined by
(9) and (10), then these estimates follow from Theorem 2.1. If γ ≥ 1/2, then the mild
solution is only L2([0, T ]; L2(�,H)) unless G = 0, cf. [19,20].

Lemma 2.1 Under Assumptions 2.1 and operators B̃ and C̃ satisfying (11) and (12)
respectively, there exists a mild solution y(t) ∈ C to the equation

dy(t) = Ay(t) dt + B̃ y(t) dt + C̃ y(t) dWt , y(0) = y0 ∈ H

satisfying

y(t) = eAt y0 +
∫ t

0
eA(t−s) B̃ y(s) ds +

∫ t

0
eA(t−s) C̃ y(s) dWs . (13)

In Lemma 2.1 we assumed the deterministic initial condition, i.e. y0 ∈ H. The same
statement will also hold if the initial condition is assumed to be a square integrable
H-valued random variable, i.e. satisfying E‖y0‖2H < ∞.

In the following lemma, we prove an integral formulation of the differential Riccati
equation (4), in terms of the semigroup eAt only, which will be used in the convergence
scheme. The analogous formulation for the deterministic case (C = 0, D = 0 and B
bounded) can be found in [16].

Lemma 2.2 Under the assumptions stated in Sect. 2.1, the Riccati integral equation
corresponding to the differential Riccati equation (4) can be expressed in terms of the
semigroup eAt as
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P(t)ϕ =
∫ T

t
eA

�(τ−t)Q�QeA(τ−t)ϕdτ

−
∫ T

t
eA

�(τ−t) (P(τ )B + C�P(τ )D) (I + D�P(τ )D)−1·
· (B�P(τ ) + D�P(τ )C)eA(τ−t)ϕdτ

+ eA
�(T−t)G�GeA(T−t)ϕ +

∫ T

t
eA

�(τ−t)C�P(τ )CeA(τ−t)ϕdτ. (14)

Proof We consider the integral form of (4), which is given by

P(t)ϕ =
∫ T

t
eA

�(τ−t)Q�Q
(τ, t)ϕ dτ +
∫ T

t
eA

�(τ−t)C�P(τ )C
(τ, t)ϕ dτ

−
∫ T

t
eA

�(τ−t)C�P�(τ )D(I + D�P(τ )D)−1(B�P(τ )

+ D�P(τ )C)
(τ, t)ϕ dτ

−
∫ T

t
eA

�(τ−t)P�(τ )B(I + D�P(τ )D)−1D�P(τ )C
(τ, t)ϕ dτ

+ eA
�(T−t)G�G
(T, t)ϕ, (15)

where 
(t, s) is the solution to the equation


(τ, t)x = eA(τ−t)x −
∫ τ

t
eA(τ−η)B(I + D�P�(η)D)−1B�P(η)
(η, t)x dη,

(16)

see [20]. Note that 
(·, s) ∈ L(H, C([s, T ],H) satisfies the differential equation

〈 d
dt


(t, s) v,w
〉
=

〈(
A − BB∗P(t)

)

(t, s) v,w

〉
, 
(s, s) = I,

v ∈ H, w ∈ D(A∗). The positive operator P(t) is self-adjoint and the operator
(t, s)
is an evolution operator on C([s, T ];H), see [20].

Using formula (2.7) from [16, p. 540], the evolution can be expressed as


(τ, t)ϕ = eA(τ−t)ϕ −
∫ τ

t

(τ, η)B(I + D�P�(η)D)−1B�P(η)eA(η−t)ϕ dη.

(17)

Therefore, we can use this formula to rewrite the Riccati equation (15) in terms of the
semigroup eA(.−.) only. Thus, the integral Riccati equation can be expressed as
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P(t)ϕ =
∫ τ

t
eA

�(τ−t)M(τ )
(τ, t)ϕ dτ + eA
�(τ−t)G�G
(τ, t) ϕ,

for s < t < τ < T , where

M(τ ) = Q�Q + C�P(τ )C − C�P(τ )D(I + D�P(τ )D)−1(B�P(τ ) + D�P(τ )C)

−P(τ )B
(
I + D�P(τ )D

)−1
D�P(τ )C.

Substituting the expression (17) for the evolution into (15) we have

P(t)ϕ =
∫ T

t
eA

�(τ−t)M(τ )eA(τ−t)ϕdτ

+
∫ T

t
eA

�(τ−t)M(τ )

∫ τ

t

(τ, η)K(η)eA(η−t)ϕ dη dτ

+ eA
�(T−t)G�GeA(T−t) ϕ

+ eA
�(T−t)G�G

∫ T

t

(T, η)K(η)eA(η−t)ϕ dη,

where K(η) = −B(I + D�P(η)D)−1B�P(η).
Changing the order of integration in the second term and using evolution properties

of the semigroup we get

P(t)ϕ =
∫ T

t
eA

�(τ−t)M(τ )eA(τ−t)ϕ dτ

+
∫ τ

t
eA

�(η−t)
∫ T

η

eA
�(τ−η)M(τ )
(τ, η)K(η)eA(η−t)ϕ dτ dη

+ eA
�(T−t)G�GeA(T−t)ϕ

+
∫ T

t
eA

�(η−t)eA
�(T−η)G�G
(T, η)K(η)eA(η−t)ϕ dη

=
∫ T

t
eA

�(τ−t)M(τ )eA(τ−t)ϕ dτ

+
∫ T

t
eA

�(η−t)P(η)K(η)eA(η−t)ϕ dη

+ eA
�(T−t)G�GeA(T−t)ϕ.

Hence, we obtain the integral Riccati equation in terms of the semigroup

P(t)ϕ =
∫ T

t
eA

�(τ−t)Q�QeA(τ−t)ϕ dτ

−
∫ T

t
eA

�(τ−t)(P(τ )B + C�P(τ )D
) (

I + D�P(τ )D
)−1
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·(B�P(τ ) + D�P(τ )C
)
eA(τ−t)ϕdτ

+ eA
�(T−t)G�GeA(T−t)ϕ +

∫ T

t
eA

�(τ−t)C�P(τ )CeA(τ−t)ϕ dτ .

as claimed in (14). ��

We will use the form (14) of the Riccati equation to prove the convergence results in
Sect. 4.

3 Approximation Scheme

In this section, we develop a general convergence framework which can be used in
computational techniques for solving the stochastic LQR problem. The results given
here generalize the deterministic results proposed in [3,5,16,30] to the stochastic case.
In particular, the last reference [30] addresses the case of analytic semigroups eAt and
unbounded operators B : U → [D(A�)]′ satisfying A−γ B : U → H, which was
generalized by the singular estimate framework [32].

Let (VN )N∈N, be a sequence of finite-dimensional linear subspaces of H ∩ D(B�)

and let

�N : H → VN , N ∈ N,

be the canonical orthogonal projections. Assume that for every N ∈ N the operator
AN ∈ L(VN ) is an infinitesimal generator of a C0-semigroup eA

N t on VN and thus
(eA

N t )N∈N is a sequence of strongly continuous semigroups on VN . Given operators
BN ∈ L(U ,VN ),GN , QN ,CN ∈ L(VN ), we consider the family of finite dimensional
stochastic LQR problems on VN :

dyN (t) =
(
AN yN (t) + BNu(t)

)
dt +

(
CN yN (t) + DNu(t)

)
dWt , t ∈ [0, T ]

yN (0) = yN0 (18)

and the cost functional

J N (u) = E
[∫ T

0

(
‖QN yN‖2H + ‖u‖2U

)
dt + ‖GN yN (T )‖2H

]
. (19)

For simplicity we consider the observation spaces W = Z = H.
The optimal control is given in feedback form by

uN∗ (t) = −(I + DN �
PN (t)DN )−1 (BN �

PN (t) + DN �
PN (t)CN ) yN∗ (t) (20)
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where PN (t) ∈ L(VN ) is the unique positive self-adjoint solution of the differential
Riccati equation:

Ṗ N + PN AN + AN �
PN + CN �

PNCN + QN �
QN

−(BN �
PN + DN �

PNCN )�(I + DN �
PN DN )−1(BN �

PN + DN �
PNCN ) = 0,

(I + DN �
PN DN ) > 0,

PN (T ) = GN �
GN , (21)

and yN∗ (t) is the optimal state. We refer the reader to [41] for an extensive treatment
of the finite dimensional stochastic LQR.

We impose the following assumptions on the approximation operators:

Assumption 3.1 (i) For all x ∈ H, the semigroup eA
N t�N x converges in H to

eAt x uniformly on [0, T ] as N → ∞ and in particular there exists N0 ∈ N such
that for N ≥ N0, we have

‖(eAN t�N − eAt )x‖H ≤ c

N
‖x‖H, ∀x ∈ H, ∀t ∈ [0, T ].

(ii) For all x ∈ H, the semigroups eA
N�t�N x converge in H to eA

�t x uniformly on
[0, T ] and in particular for N ≥ N0

‖(eAN�t�N − eA
�t )x‖H ≤ c

N
‖x‖H, ∀x ∈ H, ∀t ∈ [0, T ].

(iii) For all x ∈ VN we have for N ≥ N0

‖BN��N x‖U ≤ cN γ ‖x‖H, ∀x ∈ H.

(iv) The projections �N satisfy the convergence estimate for N ≥ N0

‖B�(�N − I ) x‖U ≤ c

N
‖x‖D(B�), ∀x ∈ D(B�).

(v) For all x ∈ D(B�), BN��N x converges to B�x in U and for N ≥ N0

‖(B� − BN��N ) x‖U ≤ c

N
‖x‖D(B�), ∀x ∈ D(B�).

(iv) The approximations BN� satisfy the uniform singular estimate

‖BN�eA
N�t�N x‖U ≤ c

tγ
‖x‖H, ∀x ∈ H, ∀t ∈ [0, T ), (22)

for N ≥ N0. The parameter γ ∈ (0, 1/2) is the exponent of singularity in
Assumption 2.1 (c) satisfied by eAt B.
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(vii) For all v ∈ U , DNv → Dv inH and for all ϕ ∈ H, we have DN��Nϕ → D�ϕ

in U such that for N ≥ N0

‖(DN − D)v‖H ≤ c

N
‖v‖U , ∀v ∈ U ,

and

‖(DN��N − D�) ϕ‖U ≤ c

N
‖ϕ‖H, ∀ϕ ∈ H.

(viii) For all ϕ ∈ H, we have CN�Nϕ → Cϕ and CN��Nϕ → C�ϕ in H such that
for N ≥ N0

‖(CN�N − C)ϕ‖H ≤ c

N
‖ϕ‖H, ∀ϕ ∈ H,

and

‖(CN��N − C�) ϕ‖H ≤ c

N
‖ϕ‖H, ∀ϕ ∈ H.

(ix) For all ϕ ∈ H, we have QN�Nϕ → Qϕ and QN��Nϕ → Q�ϕ in H such that
for N ≥ N0

‖(QN�N − Q) ϕ‖H ≤ c

N
‖ϕ‖H, ∀ϕ ∈ H,

and

‖(QN��N − Q�) ϕ‖H ≤ c

N
‖ϕ‖H, ∀ϕ ∈ H.

(x) For all ϕ ∈ H, we have GN�Nϕ → Gϕ and GN��Nϕ → G�ϕ in H such that
for N ≥ N0

‖(GN�N − G)ϕ‖H ≤ c

N
‖ϕ‖H, ∀ϕ ∈ H,

and

‖(GN��N − G�)ϕ‖H ≤ c

N
‖ϕ‖H, ∀ϕ ∈ H.

Assumption (i) implies that �Nϕ → ϕ for all ϕ ∈ H, which indicates the sense in
which the subspaces VN approximate H.

Remark 3.1 If eAt is an analytic semigroup, and A−γ B ∈ L(U ,H), then one can
alternatively assume the condition of uniform analyticity on the approximations [30]

‖(AN )θeA
N t‖L(H) ≤ c

tθ
. (23)
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This assumption along with the uniform bound on BN

‖BN x‖H ≤ ‖Aγ x‖H (24)

can replace the uniform singular estimate condition (vi) in Assumptions 3.1. We refer
the reader to [30] for a detailed treatment of this case.

4 Convergence

Wenext state themain convergence results, showing convergence of the solution of the
approximate differential Riccati equation (21) to the solution of the original Riccati
equation (4).

Theorem 4.1 Under Assumptions 2.1 and Assumptions 3.1, for ϕ ∈ H, PN (t)�N

ϕ → P(t)ϕ uniformly on [0, T ] in H as N → ∞, and in particular

‖PN (t)�N ϕ − P(t) ϕ‖H ≤ c

N 1−γ
‖ϕ‖H (25)

for N ≥ N0 and for all t ∈ [0, T ]. Moreover, for all t ∈ [0, T ), we have

‖BN�PN (t)�N ϕ − B�P(t) ϕ‖H ≤ c

N 1−γ (T − t)γ
‖ϕ‖H. (26)

The second theorem below establishes convergence of the optimal pair uN∗ and yN∗
of the N problem (18) and (19) to the optimal pair u∗ and y∗ of (1) and (2).

Theorem 4.2 Under Assumptions 2.1 and Assumptions 3.1 and given the condition
E(‖y0‖2H) < ∞, we have

yN∗ → y∗ uniformly as N → ∞ on [0, T ] in L2(�,H), (27)

and in particular

E(‖yN∗ (t; yN0 ) − y∗(t; y0)‖2H) ≤ c

N 2(1−γ )
E(‖y0‖2H), ∀t ∈ [0, T ], (28)

while

uN∗ → u∗ uniformly as N → ∞ on [0, T − ε] in L2(�,U), ε > 0, (29)

and in particular

E(‖uN∗ (t; yN0 ) − u∗(t; y0)‖2U ) ≤ c

N 2(1−γ )(T − t)2γ
E(‖y0‖2H), ∀t ∈ [0, T ).

(30)
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4.1 Preliminary Results

Lemma 4.1 The following convergence estimate

‖(B�eA
�t − BN�eA

N�t�N ) x‖U ≤ c

N 1−γ tγ
‖x‖H (31)

follows from Assumptions 3.1 (i)–(vi) for every x ∈ H, t ∈ [0, T ), and N ≥ N0.

Proof We estimate the term as

‖(B�eA
�t − BN�eA

N�t�N )x‖U ≤ ‖(B� − BN��N )eA
�t x‖U+

+ ‖BN��N (eA
�t − eA

N�t�N )x‖U

≤ c

N
‖eA�t x‖D(B�) + cN γ ‖(eAN�t�N − eA

�t )x‖H

where we used Assumptions 3.1 (v) and (iii), respectively. Hence, by the singular
estimate condition and Assumption 3.1 (ii), we have

‖(B�eA
�t − BN�eA

N�t�N ) x‖U ≤ c

Ntγ
‖x‖H + c

N 1−γ
‖x‖H

≤ cT
N 1−γ tγ

‖x‖H,

where cT = c + cT γ and γ ∈ (0, 1
2 ). ��

Lemma 4.2 The solution PN to (21) satisfies the uniform estimates:

‖PN (t)�N x‖H ≤ c ‖x‖H, (32)

‖BN�PN (t)�N x‖U ≤ c

(T − t)γ
‖x‖H, (33)

for all t ∈ [0, T ), x ∈ H and N ≥ N0.

Proof Assumptions 3.1 guarantee uniform bounds independent of N on all
operators eA

N t , QN , GN , CN , DN and their adjoints. Moreover, we have a uniform
singular estimate assumption 3.1 (vi) satisfied by eA

N t BN . Hence, (32) and (33) follow
from (6) and (7) of Theorem 2.1 applied to the N problem in (18) and (19). ��

4.2 Proof of Theorem 4.1

Proof It suffices to prove convergence of solutions of the equivalent integral formu-
lation (14). Let P be the solution of the Riccati integral equation (14) and let PN be
the solution of the N approximate integral equation
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PN (t)x =
∫ T

t
eA

N �
(τ−t)QN �

QNeA
N (τ−t)x dτ

−
∫ T

t
eA

N �
(τ−t)(PN (τ )BN + CN �

PN (τ )DN )(I + DN �
PN (τ )DN )−1 ·

·(BN �
PN (τ ) + DN �

PN (τ )CN )eA
N (τ−t)x dτ

+ eA
N �

(T−t)GN �
GNeA

N (T−t)x

+
∫ T

t
eA

N �
(τ−t)CN �

PN (τ )CNeA
N (τ−t)x dτ. (34)

Estimating the difference ‖PN (t)�N − P(t)‖L(H) via (32) and (33) using standard
arguments we obtain

‖PN (t)�N − P(t)‖L(H)

≤
∫ T

t
ckN (τ ) dτ +cgN (t)+c

∫ T

t

1

(T−τ)γ
‖BN�PN (τ )�N −B�P(τ )‖L(H,U) dτ

+
∫ T

t

c

(T − τ)2γ
dN (τ ) dτ +

∫ T

t

c

(T − τ)γ
‖PN (τ )�N − P(τ )‖L(H) dτ,

(35)

where

kN (τ ) ≡ ‖QN�QN�N − Q�Q‖L(H) + ‖eAN�τ�N − eA
�τ‖L(H)

+ ‖eAN τ�N − eAτ‖L(H) ≤ c

N
(36)

by Assumptions 3.1 (i), (ii) and (ix) for all τ ≤ T while

gN (t) ≡ ‖eAN�(T−t)�N − eA
�(T−t)‖L(H) + ‖eAN (T−t)�N − eA(T−t)‖L(H)

+ ‖GN��N − G�‖L(H) + ‖GN�N − G‖L(H) ≤ c

N
(37)

for all τ ≤ T by Assumptions 3.1 (i), (ii) and (x). Similarly,

dN (τ ) ≡ ‖eAN�τ�N − eA
�τ‖L(H) + ‖eAN τ�N − eAτ‖L(H)

+ ‖CN�N − C‖L(H) + ‖DN − D‖L(U ,H)

+ ‖CN��N − C�‖L(H) + ‖DN��N − D�‖L(U ,H) ≤ c

N
(38)

for all τ ≤ T by Assumptions 3.1 (i), (ii), (vii) and (viii). Therefore, (35) becomes

‖PN (t)�N − P(t)‖L(H)

≤ c

N
(1 + T + T 1−2γ ) +

∫ T

t

c

(T − τ)γ
‖BN�PN (τ )�N

− B�P(τ )‖L(H,U) dτ
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+
∫ T

t

c

(T − τ)γ
‖PN (τ )�N − P(τ )‖L(H) dτ. (39)

Similarly, applying B� and BN� to (14) and (34) respectively, we can estimate
(T − t)γ ‖BN�PN (t)�N − B�P(t)‖L(H,U), using the uniform singular estimate (22)
in Assumption 3.1 (iv) in addition to the uniform estimates (32) and (33), so that we
obtain

(T − t)γ ‖BN�PN (t)�N − B�P(t)‖L(H,U)

≤ (T − t)γ
∫ T

t
ck̃N (τ ) dτ + (T − t)γ g̃N (t)

+ c(T − t)γ
∫ T

t

(T − τ)γ

(τ − t)γ (T − τ)2γ
‖BN�PN (τ )�N − B�P(τ )‖L(H,U) dτ

+ (T − t)γ
∫ T

t

c

(T − τ)2γ
d̃N (τ ) dτ

+ (T − t)γ
∫ T

t

c

(τ − t)γ (T − τ)γ
‖PN (τ )�N − P(τ )‖L(H) dτ, (40)

where

k̃N (τ ) ≡ kN (τ )

(τ − t)γ
+ ‖BN�eA

N�(τ−t)�N − B�eA
�(τ−t)‖L(H),

while

g̃N (t) ≡ gN (t)

(T − t)γ
+ ‖BN�eA

N�(T−t)�N − B�eA
�(T−t)‖L(H)

and

d̃N (τ ) ≡ dN (τ )

(τ − t)γ
+ ‖BN�eA

N�(τ−t)�N − B�eA
�(τ−t)‖L(H).

Again, using (31) in Lemma 4.1 and (36)–(38), note that

k̃N (τ ) ≤ c

N 1−γ (τ − t)γ

g̃N (t) ≤ c

N 1−γ (T − t)γ

d̃N (τ ) ≤ c

N 1−γ (τ − t)γ
.
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Thus, (40) becomes

(T − t)γ ‖BN�PN (t)�N − B�P(t)‖L(H,U)

≤ c

N 1−γ
(1 + T + T 1−2γ )

+ c(T − t)γ
∫ T

t

(T − τ)γ

(τ − t)γ (T − τ)2γ
‖BN�PN (τ )�N − B�P(τ )‖L(H,U) dτ

+ (T − t)γ
∫ T

t

c

(τ − t)γ (T − τ)γ
‖PN (τ )�N − P(τ )‖L(H) dτ. (41)

Adding the two estimates (39) and (41) and noting that the right hand side is finite,
we apply Grönwall’s inequality to obtain

(T − t)γ ‖BN�PN (t)�N − B�P(t)‖L(H,U) + ‖PN (t)�N − P(t)‖L(H)

≤ c(1+T+T 1−2γ )

N1−γ exp
(
(T − t)γ

∫ T
t

c
(τ−t)γ (T−τ)2γ

dτ
)

.

Now, since γ < 1/2 the time integral can be estimated as

(T − t)γ
∫ T

t

c

(τ − t)γ (T − τ)2γ
dτ

≤ c (T − t)γ
(∫ T+t

2

t

dτ

(τ − t)γ (T − t)2γ
+

∫ T

T+t
2

dτ

(T − t)γ (T − τ)2γ

)

≤ c

(∫ T+t
2

t

dτ

(τ − t)2γ
+

∫ T

T+t
2

dτ

(T − τ)2γ

)

≤ 22γ c

1 − 2γ
(T − t)1−2γ ≤ 22γ c

1 − 2γ
T 1−2γ

Hence,

(T − t)γ ‖BN�PN (t)�N − B�P(t)‖L(H,U) + ‖PN (t)�N − P(t)‖L(H) ≤ cT
N 1−γ

and the result is established. ��

4.3 Proof of Theorem 4.2

Proof Substituting (20) into (18), the optimal states yN∗ are then the solutions of the
stochastic differential equations

dyN (t) = AN yN (t) dt + B̃N yN (t) dt + C̃ N yN (t) dWt , yN (0) = yN0 , (42)
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for t ∈ [0, T ] where

B̃N (t) = −BN (I + DN �
PN (t)DN )−1(BN �

PN (t) + DN �
PN (t)CN ),

C̃ N (t) = CN − DN (I + DN �
PN (t)DN )−1(BN �

PN (t) + DN �
PN (t)CN ).

From Assumptions 3.1 (i)–(x) and the convergence estimates (25) and (26) of
Theorem 4.1, we have

‖(eAN (t−τ) B̃N (τ ) − eA(t−τ) B̃(τ )) x‖H ≤ c

N 1−γ (t − τ)γ (T − τ)γ
‖x‖H (43)

‖eAN (t−τ) B̃N (τ ) x‖H ≤ c

(t − τ)γ (T − τ)γ
‖x‖H (44)

‖(eAN (t−τ)C̃ N (t) − eA(t−τ)C̃(t)) x‖H ≤ c

N 1−γ (T − τ)γ
‖x‖H (45)

‖eAN (t−τ)C̃ N (τ ) x‖H ≤ c

(T − τ)γ
‖x‖H. (46)

for all x ∈ H.
We apply Lemma 2.1 and represent the solutions y∗(t) and yN∗ (t) of (8) and (42)

respectively in the form (13), i.e.

y∗(t) = eAt y0 −
∫ t

0
eA(t−τ) B̃ y∗(τ ) dτ +

∫ t

0
eA(t−τ) C̃ y∗(τ ) dWτ and

yN∗ (t) = eA
N t yN0 −

∫ t

0
eA

N (t−τ) B̃N yN∗ (τ ) dτ +
∫ t

0
eA

N (t−τ) C̃ N yN∗ (τ ) dWτ ,

with yN0 = �N y0. Taking the difference of y∗(t) and yN∗ (t) and factorizing corre-
sponding terms, we obtain

y∗(t) − yN∗ (t) = (eAt−eA
N t�N )y0−

∫ t

0

(
eA(t−τ) B̃ y∗(τ )−eA

N (t−τ) B̃N yN∗ (τ )
)
dτ

+
∫ t

0

(
eA(t−τ) C̃ y∗(τ ) − eA

N (t−τ) C̃ N yN∗ (τ )
)
dWτ , (47)

for t ∈ [0, T ]. The second term on the right hand side of (47) can be expressed in the
form

∫ t

0

(
eA(t−τ) B̃ y∗(τ ) − eA

N (t−τ) B̃N yN∗ (τ )
)
dτ

=
∫ t

0

(
eA(t−τ) B̃ − eA

N (t−τ) B̃N ) y∗(τ ) + eA
N (t−τ) B̃N (y∗(τ ) − yN∗ (τ ))

)
dτ (48)
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and similarly the third term on the right hand side of (47) can be written as follows

∫ t

0

(
eA(t−τ)C̃ y∗(τ ) − eA

N (t−τ)C̃ N yN∗ (τ )
)
dWτ

=
∫ t

0

(
eA(t−τ)C̃ − eA

N (t−τ)C̃ N ) y∗(τ ) + eA
N (t−τ)C̃ N (y∗(τ ) − yN∗ (τ ))

)
dWτ .

(49)

We want to show that ‖y∗ − yN∗ ‖2C → 0, when N → ∞. Therefore, we estimate

E(‖y∗(t) − yN∗ (t)‖2H)

≤ 3 · E(‖(eAt − eA
N t�N ) y0‖2H)

+3 · E

(∥∥∥∥
∫ t

0
(eA(t−τ) B̃ y∗(τ ) − eA

N (t−τ) B̃N yN∗ (τ )) dτ

∥∥∥∥
2

H

)

+3 · E

(∥∥∥∥
∫ t

0
(eA(t−τ) C̃ y∗(τ ) − eA

N (t−τ) C̃ N yN∗ (τ )) dWτ

∥∥∥∥
2

H

)
. (50)

We will estimate the right hand side by estimating each of the three terms separately.
First,

E(‖(eAt − eA
N t�N ) y0‖2H) ≤ c

N 2 · E(‖y0‖2H), (51)

which holds because Assumption 3.1 (i). Next, using (48), the second term in (50) can
be estimated in the following way

E

(∥∥∥∥
∫ t

0
(eA(t−τ) B̃ y∗(τ ) − eA

N (t−τ) B̃N yN∗ (τ )) dτ

∥∥∥∥
2

H

)

≤ ‖y∗‖2C
(∫ t

0

c

N 1−γ (t − τ)2γ
dτ

)2

+ E
(∫ t

0

c

(t − τ)2γ
‖y∗(τ ) − yN∗ (τ )‖H dτ

)2

≤ c T 2(1−2γ )

N 2(1−γ )
‖y∗‖2C + T (1−2γ )

∫ t

0

c

(t − τ)2γ
E(‖y∗(τ ) − yN∗ (τ )‖2H) dτ, (52)

where we used (43) and the uniform estimate (44). At last, we estimate the term

E
(∥∥∥

∫ t
0 (eA(t−τ) C̃ y∗(τ ) − eA

N (t−τ) C̃ N yN∗ (τ )) dWτ

∥∥∥
2

H

)
. Applying the Itô isometry

and using (49), we obtain

E
(∥∥∥

∫ t
0 (eA(t−τ) C̃ y∗(τ ) − eA

N (t−s) C̃ N yN∗ (τ )) dWτ

∥∥∥
2

H

)

≤ 2 · E
( ∫ t

0 ‖(eA(t−τ)C̃ − eA
N (t−τ)C̃ N ) y∗(τ )‖2H dτ

)
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+2 · E
(∫ t

0 ‖eAN (t−τ)C̃ N (y∗(τ ) − yN∗ (τ ))‖2H dτ

)

≤ c T 2(1−2γ )

N2(1−γ ) ‖y∗‖2C + ∫ t
0

c
(t−τ)2γ

E(‖y∗(τ ) − yN∗ (τ )‖2H) dτ. (53)

where again we used (45) and the uniform estimate (46).
We finally combine estimates (51), (52) and (53) together in (50) and get

E(‖y∗(t) − yN∗ (t)‖2H) ≤ cT
N2(1−γ ) · ‖y∗‖2C + cT

N2 E(‖y0‖2H)

+ cT
∫ t
0

c
(t−τ)2γ

E(‖y∗(τ ) − yN∗ (τ )‖2H )dτ.

Noting again that γ < 1/2 and the right hand side is finite, we apply the Grönwall’s
inequality to obtain

E(‖y∗(t) − yN∗ (t)‖2H) ≤
(

cT c
N2(1−γ ) + cT

N2

)
E(‖y0‖2H) ecT T

1−2γ
. (54)

In the last step we used the bound ‖y∗‖2C ≤ c · E(‖y0‖2H) from Theorem 2.2 (ii).
Therefore, the right hand side of (54) tends to 0 as N → ∞ and (29) holds, which
means the optimal trajectories yN∗ of the finite dimensional problems converge to
the corresponding optimal trajectory y∗ in C. Consequently, the convergence of the
optimal controls uN∗ to u∗ and the estimate (30) follows from the feedback relation (3)
and the convergence estimate (26) on BN�PN in Theorem 4.1. ��
Remark 4.1 As in the deterministic case, see [3,5], it is possible to prove analogous
theorems to Theorems 4.1 and 4.2 without the requirement VN ⊆ H. If we assume
that (H, ‖.‖), (VN , ‖.‖N ) are Hilbert spaces (in general VN � H), with eAt , eA

N t

strongly continuous semigroups on H and VN respectively, with a slight modification
of the set of Assumptions 3.1.

Remark 4.2 Our results can be extended to the non-autonomous case, i.e. the case
in which stochastic partial differential equations (PDEs) of the form (1) have time-
varying coefficients.Approximation results for the deterministic non-autonomous case
can be found in [5,16].

Remark 4.3 The approximation scheme, proposed in this paper, could be extended
to optimal control problems with state equations given in more general form, when
stochastic perturbations are of Wick type within white noise framework, see [34].

5 Applications in SPDE Control

The approximation framework described in this paper can be used for a large class
of parabolic systems. In particular, our assumptions are fulfilled in the case of par-
abolic systems with disturbance in the state and in the control. Let us consider the
deterministic system
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∂y

∂t
=

n∑

i, j=1

∂

∂xi

(
ai j (x)

∂y

∂x j

)
+

n∑

i=1

bi (x)
∂y

∂xi
+ cy + Bu(t), (55)

for t > 0, x ∈ G ⊂ Rn with Dirichlet boundary conditions y|∂G = 0 and known
initial data y|t=0 = φ. This model appears in connection with insect dispersal inves-
tigations and was studied by Banks and Kunisch in [3]. There, the authors prove that
the operators related to (55) fulfill the assumptions needed for the application of the
approximation framework to the deterministic linear quadratic regulator problem. For
the operators involving the deterministic part of (1), we assume the same Assump-
tions 3.1 as in the deterministic linear quadratic regulator problem, see hypotheses [3,
(H2’) p 688]. In addition, if we assume operators C and D to be deterministic and to
satisfy Assumptions 3.1 (vii) and (viii), then the results are extended to the stochastic
analogue of this system.

5.1 Specific Example

We consider an example coming from an important industrial task of cooling a rail
in a rolling mill [37,38]. This problem arises in a rolling mill when different stages
in the production process require different temperatures of the raw material. An infi-
nitely long steel profile is assumed so that a 2-dimensional heat diffusion process is
considered. Exploiting the symmetry of the workpiece, an artificial boundary �0 is
introduced on the symmetry axis, and � = ⋃

�i for i = 1, ...7. A linearized version
of the model has the form

c�xt (ξ, t) = λ�x(ξ, t) in � × (0, T ),

λ∂νx(ξ, t) + κx(ξ, t) = κui on �i where i = 0, . . . , 7,

x(ξ, 0) = x0(ξ) in �,

for λ, κ > 0, where x(ξ, t) represents the temperature at time t at point ξ , and ui
represents the temperature in the profile surface i = 1, .....7 to be controlledWe define
the problem on the state space H ≡ L2(�) and introduce the operator A defined as
A = λ�, with the domain

D(A) = {x ∈ H2(�) : (λ∂νx + κx)|�i = 0} ,

so that −A is a positive self-adjoint operator and in fact A generates an analytic
semigroup on H. We also introduce the map N : L2(�) → L2(�) which is defined
by

Nφ = h ⇐⇒ �h = 0, (λ∂νh + κh)|� = φ .

The map N is well defined since the above elliptic problem has a unique solution and
is bounded L2(�i ) → L2(�). Moreover, we have that A3/4−εN : L2(�i ) → L2(�).
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We rewrite the system above in the abstract formulation

c�xt (t) = A(x(t) − κNu)

x(0) = x0 in H,

and extending the action of the operator A onto L2(�) → [D(A)]′ we have

c�xt (t) = Ax(t) + Bu on [D(A)]′,
x(0) = x0 in H,

with the control operator B : L2(�i ) → [D(A)]′ defined by

B ≡ −κAN .

Note that the operator B is unbounded when considered as acting on L2(�), and the
control u|�i = ui .

We next incorporate noise or disturbance into the system state and control, with
W (t) representing a one dimensional real valued Brownian motion on a complete
probability space (�,F , P). In particular, we have the system

c�dx(ξ, t) = λ�x(ξ, t) dt + cx(ξ, t) dWt in � × (0, T ),

λ∂νx(ξ, t) + κx(ξ, t) = κui + r ui Ẇt on �i , i = 0, . . . , 7,

x(ξ, 0) = x0(ξ) in �,

where the control noise operator D is similarly captured by D = −r AN where r > 0.
The state noise operator here is simply C = cI where c > 0.

The objective is to minimize the cost functional

J (x, u) = E

(∫ T

0
‖x(t)‖2L2(�)

+ ‖u(t)‖2L2(�)
dt + ‖x(T )‖2L2(�)

)
, (56)

over all random variables u ∈ L2([0, T ]; L2(�, L2(�))). The operator A here gener-
ates an analytic semigroup while the control operator B = AN satisfies A−1/4+εB :
L2(�) → L2(�). The singular estimate assumption 2.1(c) is automatically satisfied
with γ = 1/4 − ε since

‖eAt Bu‖L2(�) = ‖eAt A1/4−ε A−1/4+εBu‖L2(�) ≤ C

t1/4−ε
‖u‖L2(�)

by analyticity of the semigroup. Hence, the abstract approximation framework devel-
oped in this paper can be applied to this control problem.
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6 Conclusions

Wepresent an approximation framework for the computation of the finite time stochas-
tic linear quadratic control problem on Hilbert spaces. We proved that the solutions of
the approximate finite-dimensional DREs converge to the solutions of the infinite-
dimensional DREs. In addition, we prove that the sequence of solutions to the
approximate finite dimensional optimal control problems, converges to the optimal
solutions of the original infinite dimensional problem. Our approximation framework
holds for a large class of parabolic systems and mixed parabolic hyperbolic couple
systems with boundary or point control (also known as Singular Estimate Control
Systems). Moreover, our results can be extended to the non-autonomous case, i.e. the
case in which stochastic PDEs considered here have time-varying coefficients. In the
same setting, approximation results for the infinite horizon as well as convergence
rates can be developed. This is work in progress and will be reported somewhere else.

Acknowledgements The paper was partially supported by the project Solution of large-scale Lyapunov
Differential Equations (P 27926) founded by the Austrian Science Foundation.
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1 Introduction

Splitting methods are numerical methods for solving differential equations,
both ordinary and partial differential equations (PDEs), involving operators
that are decomposable into a sum of (differential) operators. These methods
are used to improve the speed of calculations for problems involving decompos-
able operators and to solve multidimensional PDEs by reducing them to a sum
of one-dimensional problems [10]. Splitting methods have been successfully ap-
plied to many types of PDEs, e.g. [14,16]. Exponential splitting methods are
applied in cases when the explicit solution of a splitted equation can be com-
puted. Such computations often rely on applying fast Fourier techniques, see
for instant [38]. Resolvent splitting is used in cases when the splitted equation
cannot be solved explicitly [17,34]; here we consider this type of methods.

There are also many results in the literature about the approximation of
solutions of SPDEs using splitting methods, see e.g. [2,3,4,5,9,12,15] and refe-
rences therein. In [12] a splitting method for nonlinear stochastic equations of
Schrödinger type is proposed. There the authors approximate the solution of
the problem by a sequence of solutions of two types of equations: one without
stochastic term and other containing only the stochastic term. They prove
that an appropriate combination of the solutions of these equations converges
strongly to the solution of the original problem. Exponential integrators for
nonlinear Schrödinger equations with white noise dispersion were proposed in
[5]. For a stochastic incompressible time-dependent Stokes equation different
time-splitting methods were studied in [4]. In [2] the convergence of a Douglas–
Rachford type splitting algorithm is presented for general SPDEs driven by
linear multiplicative noise. In this work a splitting/polynomial chaos expansion
is considered for stochastic evolution equations. Our approach has not been
considered in the literature for solving these types of SPDEs so far.

We consider stochastic evolution equations of the form

du(t) =
�
(A + B) u(t) + f(t)

�
dt +

�
C u(t) + g(t)

�
dB(t)

u(0) = u0,
(1)

where A, B and C are differential operators acting on Hilbert space valued
stochastic processes, {Bt}t�0 is a cylindrical Brownian motion on a given prob-
ability space (⌦, F , P) and f and g are deterministic functions. In [30] equa-
tion (1) involving Gaussian noise terms was solved in an appropriate weighted
Wiener chaos space. The deterministic problem that corresponds to (1), i.e.,
the case where C = 0 and g = 0, for particular Au = @x(a@xu), Bu = @y(b@yu)
and f was studied in [10]. We consider equation (1) involving a non-Gaussian
noise term. Namely, we consider inhomogeneous parabolic evolution equations
involving the operators that can be split in A + B and uniformly distributed
random inputs. These equations, can be also written in the form

ut(t, x, !) = (A + B) u(t, x, !) + G(t, x, !)

u(0, x, !) = u0(x, !),
(2)
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where G represents the noise term, see e.g. [20,25,28,29,30]. The existence of
a random parameter ! is due to uncertainties coming from initial conditions
and/or a random force term. Therefore, the solution is considered to be a
stochastic process.

Stochastic processes with finite second moments on white noise spaces can
be represented in series expansion form in terms of a family of orthogonal
stochastic polynomials. The classes of orthogonal polynomials are chosen de-
pending on the underlying probability measure [19,20]. Namely, the Askey
scheme of hypergeometric orthogonal polynomials and the Sheffer system [36,
37] can be used to define several discrete and continuous distribution types
[39]. For example, in the case of the Gaussian measure, the orthogonal basis
of the space of random variables with finite second moments is constructed by
the use of the Hermite polynomials. We consider problems with non-Gaussian
random inputs. The noise term is considered to be uniformly distributed. It is
known that in order to obtain a square integrable solution of (1) with deter-
ministic initial condition, it is enough to assume that the operator A� 1

2CC⇤ is
elliptic and that the stochastic part (the noise term) is sufficiently regular, see
e.g. [8]. In this work, the assumptions on the input data for problem (2) will
be set such that the existence of a square integrable solution is always estab-
lished. We do not consider solutions which are generalized stochastic processes
as in [28,30], since our focus is on numerical treatment.

Our approach is general enough to be applied to problems with additive
noise, problems involving multiplicative noise and problems with convolution-
type noise [28]. For instance, with this approach the heat equation with random
potential, the heat equation in random (inhomogeneous and anisotropic) me-
dia and the Langevin equation can be solved. If (1) does have a sufficiently
regular solution, this solution can be projected on an orthonormal basis in
some Hilbert space, resulting in a system of equations for the corresponding
Fourier coefficients. Thus, we use the so-called polynomial chaos method or
the chaos expansion method and define the solution of (1) as a formal Fourier
series with the coefficients computed by solving the corresponding system of
deterministic PDEs [30]. With this method, the deterministic part of a solu-
tion is separated from its random part. Particularly, in the case of Gaussian
noise, the orthonormal basis of stochastic polynomials involves the Hermite
polynomials and in the case when the noise term is uniformly distributed, the
orthonormal basis involves the Legendre polynomials [36]. By construction, the
solution is strong in the probabilistic sense. It is uniquely determined by the
coefficients, free terms, initial condition and the noise term. The coefficients
in the Fourier series are uniquely determined by equation (1) and are com-
puted by solving (numerically) the corresponding lower-triangular system of
deterministic parabolic equations. The polynomial chaos method has been suc-
cessfully applied for solving general classes of SPDEs. The list of references is
long, here we mention just a few [20,28,32,33]. In [25,26,27] this approach has
been recently applied to the stochastic optimal regulator control problem [13].

Practical application of the Wiener polynomial chaos involves two trun-
cations, truncation with respect to the number of the random variables and
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truncation with respect to the order of the orthogonal Askey polynomials used
(in the particular case considered, the Legendre polynomials), see e.g. [21].

The paper is organized as follows. In Section 2 we introduce the notation
and basic concepts used in the following sections. In Section 3 we present
the splitting/polynomial chaos expansion approach and provide a complete
convergence analysis. Finally, in Section 4 we validate our approach with a
numerical experiment.

2 Preliminaries

In this section we briefly recall polynomial chaos representations of random
variables and stochastic processes. Particular emphasis is given to Legendre
polynomials and the corresponding Wiener–Legendre expansion, and to the
Karhunen–Loève expansion.

2.1 Polynomial chaos representation

Let I = (NN
0 )c be the set of sequences of non-negative integers which have

only finitely many nonzero components ↵ = (↵1, ↵2, . . . , ↵m, 0, 0, . . .), ↵i 2 N0,
i = 1, 2, ..., m, m 2 N. Particularly, (0, 0, . . . ) is the zero vector. We denote by
"(k) = (0, · · · , 0, 1, 0, · · · ), k 2 N the kth unit vector. The length of ↵ 2 I is
the sum of its components |↵| =

P1
k=1 ↵k.

First, we briefly recall the main results from the Wiener–Itô chaos ex-
pansion. Let (⌦, F , µ) be a probability space with the Gaussian probability
measure µ and let (L)2 = L2(⌦, F , µ) denote the space of random variables
with finite second moments on the probability space (⌦, F , µ). The space (L)2

is a Hilbert space. The scalar product of two random variables F, G 2 (L)2 is
given by

(F (!), G(!))(L)2 = E(F (!) G(!)),

where E denotes the expectation with respect to the measure µ.
Let {hn}n2N0 be the Hermite polynomials given through the recursion

h0(x) = 1,

h1(x) = x,

hn+1(x) = xhn(x) + nhn�1(x) for n � 2, x 2 R.

Define the ↵th Fourier–Hermite polynomial as the product

H↵(⇠(!)) = H(↵1,↵2,...)((⇠1(!), ⇠2(!), ...)) =
Y

i2N
h↵i

(⇠i(!)),

represented in terms of the Hermite polynomials evaluated at appropriate
components of the sequence ⇠ = (⇠1, ⇠2, ...) of independent Gaussian variables
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with zero mean and unit variance. Especially,

H(0,0,... )(⇠(!)) =
Y

i2N
h0(⇠i(!)) = 1 and

H"(k)(⇠(!)) = h1(⇠k(!))
Y

i 6=k,i2N
h0(⇠i(!)) = ⇠k(!), k 2 N.

Theorem 1 (Wiener–Itô chaos expansion theorem, [20]) Each square
integrable random variable F 2 (L)2 can be uniquely represented in the form

F (⇠(!)) =
X

↵2I
f↵ H↵(⇠(!)), (3)

where f↵ 2 R for ↵ 2 I. Moreover, it holds

kFk2
(L)2 =

X

↵2I
f2
↵ kH↵k2

(L)2 < 1.

The family of stochastic polynomials {H↵}↵2I forms an orthogonal basis
of (L)2 such that

E(H↵ H�) = ↵! �↵� , (4)

for all ↵, � 2 I, see [20]. Here �↵� denotes the Kronecker delta. Thus, the
sequence of the coefficients in (3), which is a sequence of real numbers, is
obtained from f↵ = 1

↵! E(F H↵), ↵ 2 I. Also, we have

E(H(0,0,... )) = 1 and E(H↵) = 0 for |↵| > 0.

Property (4) is a consequence of the orthogonality of the Hermite polynomials
Z

R
hn(x) hm(x) dµ(x) =

1p
2⇡

Z

R
hn(x) hm(x) e�

x2

2 dx = n! �m,n

for all m, n 2 N.
In [39] it was shown that the initial construction of the Wiener chaos which

corresponds to the Gaussian measure and Hermite polynomials can be ex-
tended also to other types of measures, where instead of the Hermite polyno-
mials other classes of orthogonal polynomials from the Askey scheme [36] are
used. For example, the Gamma distribution corresponds to the Laguerre poly-
nomials and thus to the Wiener–Laguerre chaos, while the Beta distribution
is related to the Jacobi polynomials and thus to the Wiener–Jacobi chaos etc.
Moreover, in [36] it was proven that the optimal exponential convergence rate
for each Wiener-Askey chaos can be realized.

In this paper, we deal with stochastic evolution problems with non-Gaussian
random inputs which are uniformly distributed. From the Askey scheme of or-
thogonal polynomials it follows that the uniform distribution, as a special case
of the Beta distribution, corresponds to the special class of the Jacobi poly-
nomials, the Legendre polynomials. Therefore, we are going to work with the
Wiener–Legendre polynomial chaos.
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2.2 Wiener–Legendre chaos representation

Denote by {pn(x)}n2N0 the Legendre polynomials on [�1, 1]. These polynomi-
als are defined by the recursion

p0(x) = 1,

p1(x) = x,

(n + 1)pn+1(x) = (2n + 1)xpn(x) � npn�1(x) for n � 1.

(5)

They can be also obtained from Rodrigues’ formula [36]

pn(x) =
1

2nn!

dn

dxn
(x2 � 1)n.

The Legendre polynomials satisfy the second order differential equation
(1 � x2)p00n(x) � 2xp0n(x) + n(n + 1)pn(x) = 0, which appears in physics when
solving the Laplace equation in spherical coordinates [36]. These polynomials
are orthogonal and it holds

Z 1

�1

pm(x) pn(x) dx =
2

2n + 1
�m,n, m, n 2 N0. (6)

The previous property (6) is equivalent to the orthogonality relation with
respect to the uniform measure, i.e., the measure with the constant weighting
function w(x) = 1

2 .
We consider square integrable random variables and stochastic processes

on a probability space (⌦, F , P) with the measure P generated by the uniform
distribution. Let (L)2 = L2(⌦, F , P) be the Hilbert space of square integrable
random variables with respect to the measure P.
We define the ↵th Fourier–Legendre polynomial as the product

L↵(⇠(!)) =
Y

i2N
p↵i(⇠i(!)), ↵ = (↵1, ↵2, . . . ) 2 I, (7)

where {pn}n2N0
are the Legendre polynomials and ⇠ = (⇠1, ⇠2, ...) is a sequence

of independent uniformly distributed random variables with zero mean and
unit variance. Note that the product in (7) is finite since each ↵ 2 I has only
finitely many nonzero components. Particularly,

L(0,0,... )(⇠(!)) = 1 and
L"(k)(⇠(!)) = ⇠k(!) for k 2 N.

We also have

E(L(0,0,... )) = 1 and E(L↵(⇠(!))) = 0 for |↵| > 0, (8)

since ⇠(!) has zero mean. Moreover, from the orthogonality (6) of the Legendre
polynomials we obtain that the family of the Fourier–Legendre polynomials
{L↵}↵2I is also orthogonal and

E(L↵ L�) = EL2
↵ �↵,� =

1Q
k2N (2↵k + 1)

�↵� (9)
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for all ↵, � 2 I.
Now we formulate the representation of a random variable in an analoguous

way to Theorem 1.

Theorem 2 (Wiener–Legendre chaos expansion theorem) Each ran-
dom variable F 2 (L)2 can be uniquely represented in the form

F (⇠(!)) =
X

↵2I
f↵ L↵(⇠(!)), (10)

where
f↵ =

1

E(L2
↵)

E(FL↵), ↵ 2 I

is the corresponding sequence of real coefficients. Moreover, it holds

kFk2
(L)2 =

X

↵2I
f2
↵ EL2

↵ =
X

↵2I

f2
↵Q

k2N (2↵k + 1)
< 1.

Remark 1 We note here that the chaos representation (10) of a random vari-
able with finite second moment with respect to the underlying probability
measure P can be extended also to square integrable stochastic processes,
where a family of real numbers f↵ is replaced by an appropriate family of
functions with values in a certain Banach space X. Particularly, an X-valued
square integrable process u = u(t, x, !) can be represented as

u(t, x, !) =
X

↵2I
u↵(t, x) L↵(⇠(!)). (11)

In this context, the notation u 2 C([0, T ], X)⌦(L)2 means that the coefficients
of the process u given in the form (11) satisfy u↵ 2 C([0, T ], X) for all ↵ 2 I.
Additionally, the estimate

X

↵2I
ku↵k2

C([0,T ],X) EL2
↵ =

X

↵2I
sup

t2[0,T ]

ku↵(t)k2
X EL2

↵ < 1

holds, where the expectation EL2
↵ is given by (9). Similarly, a process u 2

C1([0, T ], X)⌦ (L)2 can be represented in the form (11), where its coefficients
u↵ 2 C1([0, T ], X) for all ↵ 2 I. Moreover, it holds

X

↵2I
ku↵k2

C1([0,T ],X) EL2
↵ < 1.

2.3 Karhunen–Loève expansion

The Karhunen–Loève expansion gives a way to represent a stochastic process
as an infinite linear combination of orthogonal functions on a bounded in-
terval. It is used to represent spatially varying random inputs in stochastic
models. Various applications of the Karhunen–Loève expansion can be found
in uncertainty propagation through dynamical systems with random parame-
ter functions [7,11,24].
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Theorem 3 (Karhunen–Loève expansion theorem, [11]) Let v(x, !) be
a spatially varying square integrable random field defined over the spatial do-
main D and a given probability space (⌦, F , P), with mean v̄(x) and continuous
covariance function Cv(x1, x2). Then, v(x, !) can be represented in the form

v(x, !) = v̄(x) +
X

k2N

p
�k ek(x) Zk(!), (12)

where �k and ek, k 2 N are the eigenvalues and eigenfunctions of the covari-
ance function, i.e., they solve the integral equation

Z

D

Cv(x1, x2) ek(x2) dx2 = �k ek(x1), x1 2 D, k 2 N, (13)

and Zk are uncorrelated zero mean random variables that have unit variance.

For some particular covariance functions Cv, the eigenpairs (�k, ek)k2N are
known a priory, and the eigenvalues �k decay as k increases. In general, the
eigenvalues and eigenvectors of the covariance function have to be calculated
numerically, i.e., by solving the discrete version of (13). This constitutes the
bottleneck of the method as it requires a large number of calculations.

In practical applications, the series are truncated, i.e., the random field is
approximated by

ṽ(x, !) = v̄(x) +

nX

k=1

p
�k ek(x) Zk(!), (14)

which is the finite representation with the minimal mean square error over all
such finite representations.

Remark 2 Comparing the representation (12) with the form (10) we conclude
that the random field v is represented in terms of the Wiener–Askey polynomial
chaos of orders zero and one, i.e., it is equivalent to the representation

v(x, !) = v̄(x) +
X

k2N
v"(k)(x) L"(k)(Z(!)), (15)

since Zk(!) = L"(k)(Z(!)), k 2 N with Z(!) = (Z1(!), Z2(!), . . . ) being a
sequence of uncorrelated uniformly distributed zero mean random variables
that have unit variance. The truncated version of the representation (15) is
given by

ṽ(x, !) = v̄(x) +
nX

k=1

v"(k)(x) L"(k)(Z(!)). (16)

There, n corresponds to the finite number of random variables of the sequence
Z = (Z1, Z2, . . . Zn) that are applied in the approximation. This is used in
Section 4.

More details on methods based on stochastic polynomial representations
can be found, for example, in [1,6,11,24,39].
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3 Splitting methods for SPDEs

In this section, we introduce a new numerical method which combines the
Wiener–Askey polynomial chaos expansion [39] with deterministic splitting
methods [10]. The method is then applied to problem (1) with non-Gaussian
random inputs. First, we are going to state a theorem on the existence and
uniqueness of the solution of (2). Then, we recall some convergence results
of splitting methods in the deterministic setting. Finally, we provide a con-
vergence analysis of our approach which is the main result of this section.
Thorough this section we denote L = A + B.

3.1 Existence and uniqueness of the solution

Recall that a solution of the considered stochastic evolution problem (2) be-
longs to the space of square integrable stochastic processes whose coefficients
are continuously differentiable deterministic functions with values in X.

Definition 1 A process u is a (classical) solution of (2) if u 2 C([0, T ], X) ⌦
(L)2 \ C1((0, T ], X) ⌦ (L)2 and if u satisfies (2) pointwise.

Let the following assumptions hold:

(A1) Let L be a coordinatewise operator defined on some domain D(L) dense
in X, i.e.,

L u =
X

↵2I
L (u↵) L↵

for u of the form (11). Moreover, let L be the infinitesimal generator of a
C0 semigroup (St)t�0 of type (M, w), i.e.,

kStkL(X)  M ewt, t � 0

for some M > 0 and w 2 R.
(A2) Let u0 2 X ⌦ (L)2 and Lu0 2 X ⌦ (L)2, i.e.,

X

↵2I
ku0

↵k2
X EL2

↵ < 1 and
X

↵2I
kLu0

↵k2
X EL2

↵ < 1.

(A3) The noise process is given in the form G(t, x, !) =
P
↵2I

g↵(t, x) L↵ 2

C1([0, T ], X) ⌦ (L)2, i.e., it holds
X

↵2I
kg↵k2

C1([0,T ],X) EL2
↵ < 1.

We note here that the derivative is a coordinatewise operator, i.e., for a
process u 2 C1([0, T ], X) ⌦ (L)2 it holds

d

dt
u(t, !) =

d

dt

⇣X

↵2I
u↵(t) L↵(⇠(!))

⌘
=
X

↵2I

⇣ d

dt
u↵(t)

⌘
L↵(⇠(!)).
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Theorem 4 (Existence and uniqueness of the solution) If the assum-
ptions (A1)-(A3) hold, then the stochastic Cauchy problem

ut(t, !) = L u(t, !) + G(t, !), u(0, !) = u0(!) (17)

has a unique solution

u(t, !) =
X

↵2I

⇣
Stu

0
↵ +

Z t

0

St�s g↵(s) ds
⌘

L↵(!) (18)

in C1([0, T ], X) ⌦ (L)2.

Proof We present the main steps of the proof. We are looking for a solution
in chaos representation form

u(t, !) =
X

↵2I
u↵(t) L↵(!).

Then, by applying the chaos expansion method, the stochastic equation (17)
is transformed to the infinite system of deterministic problems

d

dt
u↵(t) = L u↵(t) + g↵(t),

u↵(0) = u0
↵

(19)

for all ↵ 2 I that can be solved in parallel. Since g↵ 2 C1([0, T ], X) the
inhomogeneous initial value problem (19) has a solution u↵(t) 2 C1((0, T ], X)
for all ↵ 2 I. Moreover, the solution u↵ is given by

u↵(t) = Stu
0
↵ +

Z t

0

St�s g↵(s) ds, t 2 [0, T ],

see [35]. Thus, for all fixed ↵ 2 I the solution u↵(t) exists for all t 2 [0, T ],
and it is a unique classical solution on the whole interval [0, T ]. Also,

d

dt
u↵(t) = St Lu0

↵ +

Z t

0

St�s
d

ds
g↵(s) ds + St g↵(0), ↵ 2 I, t 2 [0, T ].

Moreover, the series
P

↵2I u↵(t) L↵ converges in C1([0, T ], X)⌦(L)2. Namely,
from the assumptions (A1)-(A3) we obtain
X

↵2I
ku↵k2

C1([0,T ],X) EL2
↵ =

X

↵2I

�
sup

t2[0,T ]

ku↵(t)k2
X + sup

t2[0,T ]

k d

dt
u↵(t)k2

X

�
EL2

↵

 c
X

↵2I

⇣
ku0

↵k2
X + kLu0

↵k2
X + kg↵k2

C1([0,T ],X)

⌘
EL2

↵ < 1,

where c = c(M, w, T ) is a constant depending on M, w and T . ut
Remark 3 If an operator A is the infinitesimal generator of a C0 semigroup and
B is a bounded operator then the operator L = A+B is also the infinitesimal
generator of a C0 semigroup and Theorem 4 holds. In particular, Theorem 4
also holds for analytic semigroups.
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3.2 Splitting methods for deterministic problems

We briefly recall the convergence of two operator resolvent splitting meth-
ods: resolvent Lie splitting (a first-order method) and trapezoidal resolvent
splitting (a second-order method). Resolvent splitting methods for the time
integration of abstract evolution equations were studied in [17]. The conver-
gence properties of splitting methods for inhomogeneous evolution equations
were analyzed in [34]. Other splitting methods were also considered in the
literature. For example, exponential splitting methods for homogeneous prob-
lems with unbounded operators were presented in [14,16]. The inhomogeneous
case was studied in [10]. Error bounds for exponential operator splittings were
further discussed in [23].

3.2.1 Analytic setting

Let X be an arbitrary Hilbert space with norm denoted by k · k. Let X⇤ be
the dual space of X. For t 2 [0, T ] we consider the inhomogeneous evolution
equation

d

dt
u(t) = Lu(t) + g(t)

= Au(t) + Bu(t) + g(t), u(0) = u0,
(20)

where (D(L), L), (D(A), A) and (D(B), B) are linear unbounded operators in
X such that D(L) ✓ D(A) \ D(B) and g : [0, T ] ! X. We recall the main
results from [17] and [34].

Let the following assumptions hold:

(a1) The operators (D(L), L), (D(A), A) and (D(B), B) are maximal dissipative
and densely defined in X.

(a2) D(L2) ✓ D(AB)
(a3) Let 0 2 ⇢(L), let L�1g(t) 2 D(AB) for all t 2 [0, T ] and

max
0tT

kABL�1g(t)k  c

with a moderate constant c.

Recall that an operator (D(G), G) is maximal dissipative in X if the fol-
lowing conditions hold:

(i) for every x 2 D(G) there exists an element f 2 F (x) = {h 2 X⇤ : h(x) =
kxk2 = khk2} ✓ X⇤ such that Re f(Gx)  0 and

(ii) range (I � G) = X.

Since we assumed that X is a Hilbert space, every maximal dissipative
operator in X is densely defined. The assumption (a1) is equivalent to claiming
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that the operators generate C0 semigroups of contractions on X, see [35].
Additionally, from (a1) the following estimates hold

k(I � hA)�1k  1 and k(I � hB)�1k  1 for all h � 0.

We recall briefly the results from regularity theory for analytic semigroups
needed in the following sections.

Theorem 5 ([31]) Let L be the generator of an analytic semigroup and let
the data of problem (20) satisfy

u0 2 D(L), g 2 C✓([0, T ], X)

for some ✓ > 0. Then, the exact solution of problem (20) is given by the
variation of constants formula

u(t) = etLu0 +

Z t

0

e(t�⌧)L g(⌧) d⌧, 0  t  T. (21)

It possesses the regularity

u 2 C1([0, T ], X) \ C([0, T ], D(L)).

The same regularity is obtained if g is only continuous but has a slightly
improved spatial regularity, see [31, Corollary 4.3.9].

Theorem 6 ([34]) Let L be the generator of an analytic semigroup. Under
the further assumptions

u0 2 D(L), Lu0 + g(0) 2 D(L), g 2 C1+✓([0, T ], X) (22)

for some ✓ > 0, the solution (21) of the evolution equation (20) possesses the
improved regularity

u 2 C2([0, T ], X) \ C1([0, T ], D(L)). (23)

In the following we present two deterministic resolvent splitting methods
[22], the resolvent Lie splitting and the resolvent trapezoidal splitting, that were
both applied to inhomogeneous evolution equations (20) in [34].

3.2.2 Resolvent Lie splitting

The exact solution of the evolution equation (20) is given by the variation of
constants formula (21). Then, at time tn+1 = tn + h, with a positive step size
h, the solution can be written as

u(tn+1) = ehLu(tn) +

Z h

0

e(h�s)L g(tn + s) ds.

After expanding g(tn + s) in Taylor form we obtain

u(tn+1) = ehLu(tn)+

Z h

0

e(h�s)L
⇣
g(tn)+sg0(tn)+

Z tn+s

tn

(tn+s�⌧)g00(⌧)d⌧
⌘

ds,
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see [34]. For resolvent Lie splitting, the numerical solution of (20) at time tn+1

is denoted by un+1 and it is given by

un+1 = (I � hB)�1(I � hA)�1(un + h g(tn)). (24)

Theorem 7 (Resolvent Lie splitting, [34]) Let the assumptions (a1), (a2)
and (a3) be fulfilled and let the solution satisfy (23). Then the resolvent Lie
splitting (24) is first-order convergent, i.e., the global error satisfies the bound

ku(tn) � unk  Ch, 0  tn  T (25)

with a constant C that can be chosen uniformly on [0, T ] and, in particular,
independently of n and h.

Remark 4 The constant C in (25) depends on derivatives of the solution u and
on ABL�1 g(t), which are uniformly bounded on [0, T ] due to the asumptions
of Theorem 7. A detailed proof is given in [34].

In particular, for a homogeneous evolution problem (g = 0) the global error
(25) can be estimated as

ku(tn) � unk  ch
�
ku0k + kLu0k + kL2u0k

�
,

where the positive constant c is independent on n and h, see [17].
We note that the full-order convergence of Lie resolvent splitting only re-

quires additional smoothness in space of the inhomogeneity g.

3.2.3 The trapezoidal splitting

For a trapezoidal splitting method, the numerical solution of (20) at time
tn+1 = tn + h with a positive time step size h is given by

un+1 =
⇣
I� h

2
B
⌘�1⇣

I� h

2
A
⌘�1⇣⇣

I+
h

2
A
⌘⇣

I+
h

2
B
⌘

un+
h

2

�
g(tn)+g(tn+1)

�⌘

(26)
with u0 = u(0).

As we are considering a second-order method, we need more regularity
of the solution. For analytic semigroups, this requirement can be expressed in
terms of the data. The following modification of the assumption (a3) is needed:

(a4) Let 0 2 ⇢(L), let L�1g0(t) 2 D(AB) for all t 2 [0, T ] and

max
0tT

kABL�1g0(t)k  c

with a moderate constant c.

Since we assumed X to be a Hilbert space, it follows from assumption (a1)
that the estimates

k(I + hA)(I � hA)�1k  1 and k(I + hB)(I � hB)�1k  1

hold for all h > 0.

Section 2.6 405



14 A. Kofler et al.

Theorem 8 ([34]) Let L be the generator of an analytic semigroup. If

g 2 C2+✓([0, T ], X),

u0 2 D(L), Lu0 + g(0) 2 D(L), L2u0 + Lg(0) + g0(0) 2 D(L)
(27)

for some ✓ > 0, then the exact solution (21) of the inhomogeneous evolution
equation (20) satisfies

u 2 C3([0, T ], X) \ C2([0, T ], D(L)). (28)

Theorem 9 (The trapezoidal splitting method, [34]) Let the assump-
tions (a1), (a2) and (a4) be fulfilled and let the solution satisfy (28). Then the
trapezoidal splitting method (26) is second-order convergent, i.e., the global
error satisfies the bound

ku(tn) � unk  Ch2, 0  tn  T (29)

with a constant C that can be chosen uniformly on [0, T ] and, in particular,
independently of n and h.

Remark 5 The constant C in (29) depends on derivatives of the solution u and
on ABL�1 g0(t), which are uniformly bounded on [0, T ] due to the asumptions
of Theorem 9. More details are given in [34].

3.3 Convergence analysis

In order to solve problem (17) numerically, we approximate the solution u by
the truncated chaos representation form

ũ =
X

↵2Im,K

u↵ L↵, (30)

where Im,K = {↵ 2 I : ↵ = (↵1, . . . , ↵m, 0, 0, . . . ), |↵|  K}. Here, K 2 N is
the highest degree of Legendre polynomials and m 2 N is the number of ran-
dom variables we want to use in the approximation (30). The m-dimensional
random vector ⇠ = (⇠1, . . . , ⇠m) has independent and identically distributed
components ⇠i ⇠ U([�1, 1]) for i = 1, . . . , m. The choice of m and K influences
the accuracy of the approximation. They can be chosen so that the norm of
the approximation remainder u� ũ is smaller than a given tolerance. The sum
in (30) has

P =
(m + K)!

m! K!
(31)

terms, which means that P coefficients of the solution will be computed. Thus,
only the first P equations of the system (19) are solved and in this way the
approximation of the solution of the system is obtained. The global error of the
proposed numerical scheme depends on the error generated by the truncation
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of the chaos expansion and the error of the discretisation method. Also, the
statistics Eũ and Var ũ of the approximated solution can be calculated in terms
of the obtained discretized coefficients. For more details on the truncation (30)
see for instance [39]. In the following, we consider the two numerical resolvent
splitting methods, Lie splitting and trapezoidal splitting, and provide error
analysis for both of them.

Theorem 10 (Error generated by the truncation of the Wiener–
Legendre chaos expansion) Let ũ denote the truncated chaos representa-
tion of the solution u of the stochastic evolution problem (17) given in the form
(30). Let the assumptions (A1)-(A3) hold. Then, ũ approximates the solution
u and the approximation error satisfies the a priori bound

ku � ũk2
C1([0,T ],X)⌦(L)2

 c
X

↵2I\Im,K

⇣
ku0

↵k2
X + kLu0

↵k2
X + kg↵k2

C1([0,T ],X)

⌘
EL2

↵ < 1. (32)

Proof The approximation error due to the elimination of the higher order
components of the Wiener–Legendre chaos expansion and the truncation of
the noise term is obtained by

ku � ũk2
C1([0,T ],X)⌦(L)2 = k

X

↵2I\Im,K

u↵ L↵k2
C1([0,T ],X)⌦(L)2

=
X

↵2I\Im,K

ku↵k2
C1([0,T ],X) EL2

↵

 c
X

↵2I\Im,K

⇣
ku0

↵k2
X + kLu0

↵k2
X + kg↵k2

C1([0,T ],X)

⌘
EL2

↵,

which is finite by the assumptions (A1)-(A3). In the last estimate, we employed
the bound derived in the proof of Theorem 4. ut

Theorem 11 (Discretization error) Let ũ denote the truncated chaos rep-
resentation of the solution u of the stochastic evolution problem (17) given in
the form (30). Let a square integrable process ũn

dis be given in the form

ũn
dis =

X

↵2Im,K

un
↵,dis L↵,

where its coefficients un
↵,dis, ↵ 2 Im,K are numerical approximations of u↵

for ↵ 2 Im,K at time tn = nh with a positive step size h. Assume that the
coefficients u↵ are sufficiently regular and the approximation

ku↵(tn) � un
↵,diskX  e↵, ↵ 2 Im,K (33)

holds for the particular numerical method applied. Then, the difference between
ũ evaluated at tn and ũn

dis can be estimated by the a priori bound
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16 A. Kofler et al.

kũ(tn) � ũn
disk2

X⌦(L)2 
X

↵2Im,K

ku↵(tn) � un
↵,disk2

X EL2
↵


X

↵2Im,K

e2
↵ EL2

↵ < 1.

Proof From Parseval’s identity and the orthogonality of the polynomial basis
{L↵}, and using that the error (33) for a concrete numerical method, we obtain

kũ(tn) � ũn
disk2

X⌦(L)2 = k
X

↵2Im,K

u↵(tn)L↵ �
X

↵2Im,K

un
↵,disL↵k2

X⌦(L)2

=
X

↵2Im,K

ku↵(tn) � un
↵,disk2

X EL2
↵


X

↵2Im,K

e2
↵ EL2

↵ < 1,

which completes the proof. ut

In order to apply the splitting methods in the setting of [34], we are going to
consider the analytic case and adapt Theorem 11. We replace the assumption
(A1) with the assumption:

(B1) Let (A, D(A)), (B, D(B)) and (L, D(L)) be coordinatewise operators that
generate analytic semigroups of contractions on X. Let D(L2) ✓ D(AB).

Further, for the case of the resolvent Lie splitting we replace the assump-
tions (A2) and (A3) by:

(B2) The noise process given by

G =
X

↵2I
g↵ L↵ (34)

belongs to C1+✓([0, T ], X) ⌦ (L)2 for some ✓ > 0, i.e.,
X

↵2I
kg↵k2

C1+✓([0,T ],X) EL2
↵ < 1 (35)

holds.
(B3) Let u0 2 D(L) ⌦ (L)2 and Lu0 + G(0) 2 D(L) ⌦ (L)2, i.e.,

X

↵2I
ku0

↵k2
D(L) EL2

↵ < 1 and
X

↵2I
kLu0

↵ + g↵(0)k2
D(L) EL2

↵ < 1.

(B4) Let 0 2 ⇢(L), let L�1G(t) 2 D(AB) ⌦ (L)2 for all t 2 [0, T ] and let the
coefficients g↵ of G given by (34), satisfy the estimate

max
0tT

kABL�1g↵(t)k  c↵, 0  t  T

with a moderate constant c↵ for each ↵ 2 I.
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A splitting/polynomial chaos expansion approach 17

Note that, under these assumptions, the existence theorem, Theorem 4,
still holds. Particularly, for the resolvent Lie splitting it reads:

Theorem 12 Let L be the generator of an analytic semigroup. Under the as-
sumptions (B2) and (B3), the solution (18) of the stochastic evolution problem
(2) posseses the improved regularity

u 2 C2([0, T ], X) ⌦ (L)2 \ C1([0, T ], D(L)) ⌦ (L)2. (36)

Proof By the method of chaos expansion, the stochastic evolution problem (2)
transforms to the system of deterministic problems (19). From (B2) and (B3)
it follows that u0

↵ and g↵ for each ↵ 2 I satisfy the assumptions (22). After
applying Theorem 6 we obtain the improved regularity u↵ 2 C2([0, T ], X) \
C1([0, T ], D(L)), ↵ 2 I. ut

Theorem 13 (Discretization error, the resolvent Lie splitting) Let
the assumptions (B1)-(B4) be fulfilled. Then, for the resolvent Lie splitting,
Theorem 11 holds with

e↵  c↵ h, ↵ 2 Im,K .

The constants c↵ can be chosen uniformly on [0, T ] and, in particular, inde-
pendently of n and h.

Proof The coefficients u↵, for each ↵ 2 Im,K are the exact solutions of the
deterministic initial value problems (19) and un

↵,dis are their numerical approx-
imations obtained by the resolvent Lie splitting (24). Moreover, u↵ satisfy the
assumptions (22) for all ↵ 2 I. Thus, we can apply Theorem 7 to each initial
value problem (19) and obtain the global estimate (25) for each ↵ 2 Im,K , i.e.
e↵  c↵h, for ↵ 2 Im,K . This leads to the desired result. ut

In the case of the trapezoidal resolvent splitting, we need the following
additional assumptions:

(B5) The noise process G given by (34) belongs to C2+✓([0, T ], X) ⌦ (L)2 for
some ✓ > 0.

(B6) Let L2u0 + LG(0) + G0(0) 2 D(L) ⌦ (L)2, i.e.,

X

↵2I
kL2u0

↵ + Lg↵(0) + g0↵(0)k2
D(L) EL2

↵ < 1.

(B7) Let 0 2 ⇢(L), let L�1G0(t) 2 D(AB) ⌦ (L)2 for all t 2 [0, T ] and let the
coefficients g↵ of G given by (34), satisfy the estimate

max
0tT

kABL�1g0↵(t)k  c↵

with a moderate constant c↵ for each ↵ 2 I.
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Theorem 14 Let L be the generator of an analytic semigroup. Under the
assumptions (B3), (B5) and (B6), the solution (18) of the stochastic evolution
problem (2) posseses the improved regularity

u 2 C3([0, T ], X) ⌦ (L)2 \ C2([0, T ], D(L)) ⌦ (L)2.

Proof The method of chaos expansion transforms the stochastic evolution
problem (2) to the system of deterministic problems (19). From (B3), (B5)
and (B6) it follows that u0

↵ and g↵ for each ↵ 2 I satisfy the assumptions
(27). Then, the improved regularity u↵ 2 C3([0, T ], X) \ C2([0, T ], D(L)), for
↵ 2 I follows from Theorem 8. ut

Theorem 15 (Discretization error, the trapezoidal resolvent split-
ting) Let the assumptions (B1), (B3) and (B5)-(B7) be fulfilled. Then, for
the trapezoidal resolvent splitting, Theorem 11 holds with

e↵  c↵ h2, ↵ 2 Im,K .

The constants c↵ can be chosen uniformly on [0, T ] and, in particular, inde-
pendently of n and h.

Proof From the assumptions it follows that the coefficients u0
↵ and g↵ satisfy

(27) for each ↵ 2 Im,K . We apply the trapezoidal resolvent splitting (26) in
order to obtain the approximation un

↵,dis of the exact solution u↵(tn) evaluated
at tn of the initial value problem (19) for each ↵ 2 Im,K . Thus, by Theorem 9
we obtain the global error estimate (29), i.e. e↵  c h2 for each ↵ 2 Im,K . ut

Denote by 1
2� the constant on the right hand side of the estimate (32)

obtained in Theorem 10. The full error estimates of the Wiener–Legendre
chaos expansion combined with the two splitting methods are given in the
following theorem.

Theorem 16 (Full error estimate)

(1) Let the assumptions of Theorem 13 hold. Then, the full error estimate
of the Wiener–Legendre chaos expansion combined with the resolvent Lie
splitting satisfies the following bound

ku(tn) � ũn
disk2

X⌦(L)2  �+ c h2. (37)

(2) Let the assumptions of Theorem 15 hold. Then, the full error estimate of the
Wiener–Legendre chaos expansion combined with the trapezoidal resolvent
splitting satisfies the bound

ku(tn) � ũn
disk2

X⌦(L)2  �+ c h4. (38)
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Proof The full error estimate reads

ku(tn) � ũn
disk2

X⌦(L)2 = k
X

↵2I
u↵(tn)L↵ �

X

↵2Im,K

un
↵,dis L↵k2

X⌦(L)2

= k
X

↵2I\Im,K

u↵(tn) L↵ +
X

↵2In,K

(u↵(tn) � un
↵,dis) L↵k2

X⌦(L)2

 2
X

↵2I\Im,K

ku↵(tn)k2
X EL2

↵ + 2
X

↵2Im,K

ku↵(tn) � un
↵,disk2

X EL2
↵

 �+ 2
X

↵2Im,K

e2
↵ EL2

↵

by the triangle inequality and the orthogonality property (9). We apply Theo-
rem 10 to the first term. In the case of the resolvent Lie splitting, the estimate
(37) follows after applying Theorem 13, while in case of the trapezoidal resol-
vent splitting, Theorem 15 leads to the desired estimate (38). ut

4 Numerical Results

In this section, we validate the proposed method and the convergence analy-
sis presented in the previous section. For this purpose, we consider the two-
dimensional problem

ut = Lu + v + 1, u(0) = 0, u
��
@D

= 0, (39)

where the operator L is defined by Lu = (A+ B)u = (aux)x + (buy)y over the
spatial domain D = [�1, 1]2 with state variables x and y, spatial non-Gaussian
noise v given in the form (12) and t 2 [0, T ] for some T > 0. This problem is
an example of the problem class (2) with zero initial and boundary conditions.
The solution u of the considered problem (39) is given in its polynomial chaos
representation (11) and approximated by a truncated expansion (30) in terms
of Fourier–Legendre polynomials. The truncation procedure is explained in
detail in Section 3.3.

Consider the set of multiindices Im,K ⇢ I, i.e.,

Im,K = {↵ 2 I : ↵ = (↵1, . . . , ↵m, 0, 0, . . . ), |↵|  K}.

In this section, elements ↵ 2 Im,K will be denoted as m-tuples ↵ = (↵1, . . . , ↵m),
omitting the components ↵j = 0, j � m + 1. Moreover, we set

"(k) = ("
(k)
1 , . . . , "(k)

m ), "
(k)
j = �kj .

For fixed m 2 N we consider an index function

Km : Im,K ! {0, 1, . . . , P � 1}
which enumerates multi-indices ↵ = (↵1, ↵2, . . . , ↵m) 2 Im,K . The function
Km is a bijection and each ↵ 2 Im,K corresponds to a unique Km(↵) = p 2
{0, 1, . . . P � 1}.
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20 A. Kofler et al.

For our purpose, we define the function Km by

Km(0, 0, . . . , 0, 0) = 0,

Km("(k)) = k for 1  k  m,

Km("(k) + "(`)) = m + (m � 1) + . . . + (m � k + 1) + ` for 1  k  `  m,

. . .

Km(0, 0, . . . , 0, K) = P � 1.

We use the index function Km to enumerate the Fourier–Legendre polyno-
mials L↵ for each ↵ 2 Im,K . Thus, we denote by (�p)p2{0,1,...,P�1} the ordered
Fourier–Legendre polynomials

�p(⇠(!)) = �Km(↵)(⇠(!)) = L↵(⇠(!))

for p = Km(↵), ↵ 2 Im,K , where we use the definition (7) of the Fourier–
Legendre polynomials. For example, following the just introduced notation,
we have �0(⇠(!)) = L(0,0,...,0)(⇠(!)) = 1 and

�k(⇠(!)) = L"(k)(⇠(!)) = ⇠k(!) for 1  k  m.

Also, by applying the definition of the Legendre polynomials (5) we have

�m+1(⇠(!)) = L(2,0,...,0)(⇠(!)) = p2(⇠1(!)) =
3

2
⇠21(!) � 1

2
,

as well as

�m+2(⇠(!)) = L(1,1,0,...,0)(⇠(!)) = p1(⇠1(!))p1(⇠2(!)) = ⇠1(!)⇠2(!).

Moreover, it holds

�P�1(⇠(!)) = L(0,0,...,0,K)(⇠(!)) = pK(⇠n(!)).

In the next step, we represent the solution u of problem (39) by its trun-
cated polynomial chaos expansion (30) and the noise term by its representation
(16). Inserting the representations in (39) gives

X

↵2Im,K

(u↵)t L↵ =
X

↵2Im,K

Lu↵ L↵ + v̄ + 1 +
mX

j=1

p
�j ej Zj .

By performing a Galerkin projection we obtain
X

↵2Im,K

(u↵)t E(L↵L�) =

=
X

↵2Im,K

Lu↵ E(L↵L�) + (v̄ + 1)EL� +
mX

j=1

p
�j ej E(ZjL�)

for � 2 Im,K . Then, by applying the properties of the Fourier–Legendre
polynomials (8) and (9), we obtain a system of deterministic equations (19).
Particularly,
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(i) for |↵| = 0:

(u(0,0,...,0))t = Lu(0,0,...,0) + v̄ + 1, u(0,0,...,0)(0) = 0, u(0,0,...,0)

��
@D

= 0
(40)

(ii) for |↵| = 1, i.e., ↵ = "(k), 1  k  m:

(u"(k))t = Lu"(k) +
p
�k ek , u"(k)(0) = 0, u"(k)

��
@D

= 0 (41)

(iii) for |↵| > 1:
(u↵)t = Lu↵, u↵(0) = 0, u↵

��
@D

= 0. (42)

From (42) we clearly deduce that u↵ ⌘ 0 for |↵| > 1. In the calculations
we also used E(L(0,0,...,0)Zj) = EZj = 0 for j � 1 and

E(Zj L�) = E(p1(Zj) L�) = E(L"(j) L�) = ��,"(j) EL2
"(j) = ��,"(j) · 1

3
.

This particularly implies

mX

j=1

p
�j ej E(ZjL"(k)) =

p
�k ek for 1  k  m,

which was used in equation (41).
The obtained system (40), (41) and (42) can be represented in terms of the

index function Km, i.e., in the form

(up)t = Lup + gp, up(0) = 0, up

��
@D

= 0 (43)

for 0  p  P � 1, where each p corresponds to an ↵ 2 Im,K Each equation
in (43) has the form of an inhomogeneous deterministic initial value problem,
where the inhomogeneities gp are given by: g0 = v̄ + 1 and gp =

p
�p ep for

1  p  m and gp = 0 for m < p  P � 1.
One way to approximate numerically a problem of the form

ut = (A + B)u + g, u(0) = u0, u
��
@D = 0

with D = [�1, 1]2 is to define a grid consisting of N ⇥ N equidistant compu-
tational points and define the discrete operators As and Bs by

(Asu
dis)i,j =

1

2s

⇣ d

dx
ai,j (udis

i+1,j � udis
i�1,j)

⌘
+

1

s2

⇣
ai,j (udis

i+1,j � 2udis
i,j + udis

i�1,j)
⌘
,

(Bsu
dis)i,j =

1

2s

⇣ d

dy
bi,j (udis

i,j+1 � udis
i,j�1)

⌘
+

1

s2

⇣
bi,j (udis

i,j+1 � 2udis
i,j + udis

i,j�1)
⌘
,

where

d

dx
ai,j =

d

dx
a(is, js), and ai,j = a(is, js),

d

dy
bi,j =

d

dy
b(is, js), and bi,j = b(is, js)
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for i, j = 1, . . . , N and s = 2/(N + 1). Due to the homogeneous Dirichlet
boundary conditions we have:

udis
0,j = udis

N+1,j = udis
i,0 = udis

i,N+1 = 0

for all i, j = 0, . . . , N + 1. By setting Ls = As + Bs we obtain the discretized
problem

d

dt
udis = Lsu

dis + gs(t), udis(0) = 0,

where gs denotes the discretization of the inhomogeneity g.
Note that the number P of partial differential equations one has to solve

in (43) increases fast due to the factorials occurring in (31). Since gp = 0 for
all m < p  P � 1, up = 0 is consequently the solution of the pth partial
differential equation of (43). Therefore, we only have to solve the first m + 1
partial differential equations instead of all P . Further, we see that the solution
does not depend on the highest degree K of the m-dimensional Legendre
polynomials.

Let un
p denote the numerical solution up at time tn = hn and gn

p the
function gp evaluated at time tn. By setting

un+1
p = (I � hAs)

�1(I � hBs)
�1
�
un

p + hgn
p

�
(44)

the Lie resolvent splitting method is defined, see (24).
The trapezoidal splitting method is given by

un+1
p =

⇣
I� h

2
Bs

⌘�1⇣
I� h

2
As

⌘�1h⇣
I +

h

2
As

⌘⇣
I +

h

2
Bs

⌘
un

p +
h

2

�
gn

p +gn+1
p

�i
,

see (26).
In our numerical experiment, we consider (39) with constant coefficients

a(x, y) = b(x, y) = 1 for all (x, y) 2 D = [�1, 1]2 and set T = 1. Note that
for some p 2 {0, . . . , m} the inhomogeneities gp might be incompatible with
the boundary conditions at the corners of the spatial domain D. Such an
incompatibility results in order reduction, see [18]. This in particular leads to
large errors near the corners of D. To overcome this problem, we apply the
modified Lie resolvent splitting [18] in this situation.

For p 2 {0, . . . , m}, let up be the solution of the partial differential equation
(43). Let I = {1, 2, 3, 4} be the set of indices of the corners of the spatial
domain D. They are enumerated from 1 to 4 counter-clockwise starting from
the corner with coordinates (�1,�1). Suppose that the inhomogeneity gp does
not vanish at the corners Ip ⇢ I. Let gp,i(t) denote the value of the function
gp at corner i 2 Ip and time t � 0. For gp,i(0) 6= 0 we set

fi =
Pi gp(0)

gp,i(0)
,
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where the polynomials Pi are given by

P1 =
1

4
(x � 1)(y � 1), P2 = �1

4
(x + 1)(y � 1),

P3 =
1

4
(x + 1)(y + 1), P4 = �1

4
(x � 1)(y + 1).

These four polynomials form a partition of unity.
Let vi be the solution of the stationary problem

Lvi = fi in D, vi

��
@D

= 0,

for i 2 Ip. Note that vi can be computed once and for all. Then, let

g̃p(t) = gp(t) +
X

i2Ip

g0p,i(t) vi � gp,i(t) fi, ũp,0 = up(0) +
X

i2Ip

gp,i(0) vi

and apply the resolvent Lie splitting to the problem

(ũp)t = Lũp(t) + g̃p(t), ũp(0) = ũp,0, ũp

��
@D

= 0.

By setting
un,mod

p = ũn
p �

X

i2Ip

gp,i(nh) vi for n 2 N, (45)

we obtain the modified splitting scheme. Note that in our case g0p,i(t) = 0 for
all i 2 Ip and for all p = 0, . . . , m since none of the inhomogeneities gp is time
dependent.

In the implementation, the set Ip for p = 0, . . . , m is constructed by check-
ing the values of the inhomogeneities gp at the corners, i.e.,

Ip =
�
i 2 {1, 2, 3, 4}

�� |gp,i(0)| � TOL
 

for a user chosen tolerance TOL. If Ip = ;, the standard Lie resolvent splitting
given in (44) is applied.

In the following, we consider problem (39) with v given by (12) with co-
variance function

Cv(x,y) = exp{�kx � yk2}.

The reference solution uref
p at time t is calculated according to

uref
p (t) = exp(t L)up(0) + t'1(t L) gp,

where '1(z) = exp(z)�1
z and exp(·) denotes the matrix exponential. In all

the examples shown we fix the highest degree of ordered Fourier–Legendre
polynomials to K = 3 and use a maximal number of m = 120 uncorrelated
zero-mean random variables Zj used in the truncated Karhunen–Loève expan-
sion (14). If not stated explicitly, we fix the number of computational points
to N ⇥ N = 40 ⇥ 40.

Figure 1 illustrates the impact of the modification of the Lie resolvent split-
ting method. The figure shows the pointwise error of the numerical solution
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Fig. 1 Pointwise error of u0 over the domain D = [�1, 1]2 for the Lie splitting (left) and
the modified Lie splitting (right).

at time T = 1, i.e., |u0(T ) � uref
0 (T )| over the spatial domain D = [�1, 1]2

when calculated with the Lie splitting and the modified Lie splitting given
in (44) and (45), respectively. The pointwise error of the solution u0 is not
only reduced at all the four corners of the domain D but also approximately
decreases by an order of magnitude.

Figure 2 shows the discrete L2 error of up, p = 0, . . . , 7 calculated with
different time step sizes h. The time step sizes are set to hq = 2q for q =
�13, . . . ,�4. The blue line denotes the error of the modified Lie splitting
scheme of order 1. The red line and the green line illustrate the error of the
Crank–Nicolson scheme and the trapezoidal splitting method, both of order
two. The black dashed lines have slope 1 and 2, respectively. We see that for
each m, the order plots confirm the respective orders of the methods which
can be derived from theory.

The empirical variance Var(u) of u is given by

Var(u) = E[u � E(u)] =
PX

p=1

u2
p E(�2

p),

where we used the linearity of E and the orthogonality of the Fourier–Legendre
polynomials. Furthermore, since u↵ ⌘ 0 for |↵| > 1, i.e., up ⌘ 0 for p > m,
the number of non-zero summands in the sum is m and since E(�2

p) = 1
3 for

1 < p  m, Var(u) reduces to

Var(u) =
1

3

mX

p=1

u2
p.
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Fig. 2 Order plots for the first eight different solutions up, p = 0, . . . , 7 computed with the
correspondent methods.

Figure 3 shows the discrete L2 error of the empirical variance of u at
time T = 1 where the summation is truncated at different n. The time step
h used for the calculations is h = 2�10. Here, we clearly see the superiority of
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Fig. 3 Discrete L2 error of Var(u) for different number of variables m used in the Karhunen–
Loève expansion. The employed methods are: Crank–Nicolson (CN), modified Lie splitting
(MLSPL), and trapezoidal splitting (TSPL).
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the methods of order two compared to the modified Lie splitting for which the
numerical approximation error prevails over the error induced by the trunca-
tion of the sum.

Finally, we report the computational work which is needed to solve the
system of partial differential equations given in (40) - (42). Table 1 summarizes
the computational time needed to obtain one solution of the system of partial
differential equations as a function of the number of spatial grid points N⇥N =
2k ⇥ 2k for k = 2, 3, . . . 7. The highest number of grid points we are able to
use (16 384) is quite low due to the fact that the calculation of the eigenvalues
and eigenfunctions of the integral equation given in (13) requires the storage
of a dense matrix of the size N2⇥N2. We clearly see that the Crank–Nicolson
method is by far the slowest. Both splitting methods perform approximately
the for smaller N , while for N = 27, Lie splitting starts to clearly outperform
trapezoidal splitting in terms of computational time.

Table 1 Average computational time (in seconds) for the calculation of one solution um

for different degrees of freedom N , i.e., the number of computational points used in the
discretization of D and the operator L. The employed methods are: Crank–Nicolson (CN),
modified Lie splitting (MLSPL) and trapezoidal splitting (TSPL).

N ⇥ N CN [s] MLSPL [s] TSPL [s]

4 ⇥ 4 0.0133 0.0373 0.0530
8 ⇥ 8 0.0214 0.0241 0.0379

16 ⇥ 16 0.1005 0.1008 0.0948
32 ⇥ 32 0.4098 0.3652 0.4047
64 ⇥ 64 2.7620 1.8051 1.8237

128 ⇥ 128 41.1284 9.3921 13.5091
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Abstract We study linear semi-explicit stochastic operator differential algebraic
equations (DAEs) for which the constraint equation is given in an explicit form. In
particular, this includes the Stokes equations arising in fluid dynamics. We combine a
white noise polynomial chaos expansion approach to include stochastic perturbations
with deterministic regularization techniques.With this,we are able to includeGaussian
noise and stochastic convolution terms as perturbations in the differential as well as in
the constraint equation. By the application of the polynomial chaos expansionmethod,
we reduce the stochastic operator DAE to an infinite system of deterministic opera-
tor DAEs for the stochastic coefficients. Since the obtained system is very sensitive
to perturbations in the constraint equation, we analyze a regularized version of the
system. This then allows to prove the existence and uniqueness of the solution of the
initial stochastic operator DAE in a certain weighted space of stochastic processes.
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1 Introduction

The governing equations of an incompressible flow of a Newtonian fluid are described
by the Navier–Stokes equations [43]. Therein, one searches for the evolution of a
velocity field u and the pressure p to given initial data, a volume force, and boundary
conditions. For results on the existence of a (unique) solution, we refer to [20], [42,
Ch. 25], and [43, Ch.III].

In this paper, we consider the linear case but allow amore general constraint, namely
that the divergence of the velocity does not vanish. Note that this changes the analysis
and numerics since the state-of-the-art methods are often tailored for the particular
case of a vanishing divergence. An application with non-vanishing divergence is given
by the optimal control problem constrained by the Navier–Stokes equations where the
cost functional includes the pressure [23].

TheNavier–Stokes equations, aswell as the corresponding linearized equations, can
be formulated as differential-algebraic equations (DAEs) in an abstract setting [3,4].
These so-called operator DAEs correspond to the weak formulation in the framework
of partial differential equations (PDEs). As generalization of finite-dimensional DAEs,
see [19,25,26] for an introduction, also here considered constrained PDEs suffer from
instabilities and ill-posedness. This is the reason why the stable approximation of the
pressure (which is nothing else than a Lagrange multiplier to enforce the incompress-
ibility) is a great challenge.

One solution strategy is to perform a regularization which corresponds to an index
reduction in the finite-dimensional setting. With this, the issue of instabilities with
respect to perturbations is removed. In the case of fluid dynamics, this has been shown
in [4].

In this paper, we study the stochastic version of operator DAEs considered in
the framework of white noise analysis and chaos expansions of generalized stochas-
tic processes [18,21,39]. More precisely, we consider semi-explicit operator DAEs
with perturbations of stochastic type. We combine the polynomial chaos expansion
approach from the white noise theory with the deterministic theory of operator DAEs.
Particularly, in the fluid flow case, we deal with the stochastic equations of the form

u̇(t) − �u(t) + ∇ p(t) = F(t) + “noise”,
div u(t) = G(t) + “noise”

with an initial value for u(0). In order to preserve the mean dynamics, we deal with
stochastic perturbations of zero mean. This implies that the expected value of the
stochastic solution equals the solution of the corresponding deterministic operator
DAE. For the “noise” processes we consider either a general Gaussian white noise
process or perturbationswhich can be expressed in the formof a stochastic convolution.
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Within this paper, we consider the Gaussian white noise space (�,F , μ) with
the Gaussian probability measure μ to be the underlying probability space. Instead,
the same analysis can be provided also on Poissonian white noise space (�,F , ν),
with the Poissonian probability measure ν, on fractional Gaussian white noise space
(�,F , μH ), or on fractional Poissonianwhite noise space (�,F , νH ), for H ∈ (0, 1).
This follows from the existence of unitarymappings betweenGaussian and Poissonian
white noise spaces, and between Gaussian and fractional Gaussian white noise spaces
[27].

With the application of the polynomial chaos expansion method, also known as the
propagatormethod, the problemof solving the initial stochastic equations is reduced to
the problem of solving an infinite triangular systems of deterministic operator DAEs,
which can be solved recursively. Summing up all coefficients of the expansion and
proving convergence in an appropriate space of stochastic processes, one obtains the
stochastic solution of the initial problem.

The chaos expansionmethodology is a very useful technique for solvingmany types
of stochastic differential equations, linear and nonlinear, see e.g. [6,18,29,30,32–
34,40,46]. The main statistical properties of the solution, its mean, variance, and
higher moments, can be calculated from the formulas involving only the coefficients
of the chaos expansion representation [16,36].

The proposed method allows to apply regularization techniques from the theory
of deterministic operator DAEs to the related stochastic system. Applications arise
in fluid dynamics, but are not only restricted to this case. The same procedure can
be used to regularize other classes of equations that fulfill our setting. A specific
example with the operators of the Malliavin calculus is described in Sect. 5. For this
reason, in the present paper, we develop a general abstract setting based on white
noise analysis and chaos expansions. Numerical experiments with truncated chaos
expansions, i.e., stochastic Galerkin methods, are not included in this paper. However,
once we regularize each system, it becomes numerically well-posed [3] and then the
stochastic equation is well-posed as well.

The paper is organized as follows. In Sect. 2 we introduce the concept of (deter-
ministic) operator DAEs with special emphasis on applications in fluid dynamics.
Considering perturbation results for such systems, we detect the necessity of a
regularization in order to allow stochastic perturbations. The stochastic setting for
the chaos expansion is then given in Sect. 3. Furthermore, we discuss stochastic noise
terms in the differential as well as in the constraint equation and the systems which
result from the chaos expansions, Theorems 6, 8 and 9. The extension to more general
cases is then subject of Sect. 4. Therein, we consider more general operators and sto-
chastic convolution terms. We also provide proofs of the convergence of the obtained
solutions in appropriate spaces of generalized stochastic processes, Theorem 11. In
Sect. 5 we consider shortly a specific example of DEAs that involve stochastic oper-
ators arising in Malliavin calculus. The proof of existence of a unique solution in a
space of generalized stochastic processes is given in Theorem 13. Finally, we discuss
extensions of our results to specific types of nonlinear equations.
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2 Operator DAEs

In this section we introduce the concept of operator DAEs, analyze the influence of
perturbations, provide regularization of operator DAEs, and state stability results.

2.1 Abstract setting

First we consider operator DAEs (also called PDAEs) which equal constrained PDEs
in the weak setting or DAEs in an abstract framework [3,15]. Thus, we work with
generalized derivatives in time and space. In particular, we consider semi-explicit
operator DAEs for which the constraint equation is explicitly stated.

We consider real, separable, and reflexive Banach spaces V andQ and a real Hilbert
space H. Furthermore, we assume that we have a Gel’fand triple of the form

V ⊆ H ⊆ V∗,

which means that V is continuously and densely embedded in H [47, Ch. 23]. As a
consequence, well-known embedding theorems yield the continuous embedding

{
v ∈ L2(T ;V) : v̇ ∈ L2(T ;V∗)

}
↪→ C(T ;H).

Note that L2(T ;V) denotes the Bochner space of abstract functions on a time interval
T with values in V , see [14, Ch. 7.1] for an introduction. The corresponding norm of
L2(T ;V), which we denote by ‖ · ‖L2(V), is given by

‖u‖2L2(V)
:= ‖u‖2L2(T ;V)

:=
∫

T
‖u(t)‖2V dt.

The (deterministic) problem of interest has the form

u̇(t) + Ku(t) + B∗λ(t) = F(t) in V∗, (1a)

Bu(t) = G(t) in Q∗, (1b)

with (consistent) initial condition u(0) = u0 ∈ H. The need of consistent initial values
is one characteristic of DAEs in the finite dimensional setting [10,25]. The condition
in the infinite-dimensional case is discussed in Remark 1 below.

Furthermore, we need the operators and right-hand sides of (1) to satisfy the fol-
lowing assumptions.

Assumption 1 1. The right-hand sides of (1) satisfy

F ∈ L2(T ;V∗) and G ∈ H1(T ;Q∗) ↪→ C(T ;Q∗).

2. The constraint operator B : V → Q∗ is linear and there exists a right-inverse
which is denoted by B−.
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3. Operator K : V → V∗ is linear, positive on the kernel of B, and continuous.

Note that the involved operators B : V → Q∗ and K : V → V∗ can be extended to
Nemytskii mappings of the form B : L2(T ;V) → L2(T ;Q∗) and K : L2(T ;V) →
L2(T ;V∗), see [41, Ch. 1.3]. From here onwards, we restrict ourselves to the linear
case.

As search space for the solution (u, λ) we consider

u ∈ L2(T ;V) with u̇ ∈ L2(T ;V∗) and λ ∈ L2(T ;Q).

Note that the actual meaning of equation (1a) is that for all test functions v ∈ V and
� ∈ C∞(T ) it holds that

∫

T

〈
u̇(t) + Ku(t) + B∗λ(t), v

〉
�(t) dt =

∫

T

〈
F(t), v

〉
�(t) dt.

Remark 1 (Consistent initial values) DAEs require consistent initial data because of
the given constraints which also apply to the initial condition. This remains valid for
the operator case. However, since we allow u0 ∈ H, the constraint operator B is not
applicable to u0. In this case, the condition has the form

u0 = u0B + B−G(0)

where u0B is an arbitrary element from the closure of the kernel of B in H [4,15]. If
u0 ∈ V is given, then we get the same decomposition but with u0B ∈ Ker B.

In the following, we write a � b meaning that there exists a positive constant c
such that a ≤ cb. We show that the solution is bounded in terms of the initial data, the
right-hand sides, and their derivative, cf. [3, Sect. 6.1.3].

Theorem 1 (Stability estimate) Given Assumption 1 and consistent initial data u0 =
u0B + B−G(0) ∈ H, the solution of the operator DAE (1) satisfies the estimate

‖u‖2L2(V)
�

∥
∥
∥u0B

∥
∥
∥
2

H + ‖F‖2L2(V∗) + ‖G‖2H1(Q∗). (2)

Proof We consider a splitting of the space V = VB ⊕ Vc which we will also use later
within the regularization in Sect. 2.3. Therein, VB denotes the kernel of the operator B
and Vc is any complementary space. This gives a unique decomposition u = u1 + u2
where u1, u2 take values in VB , Vc, respectively. Thus, we have Bu = Bu2 = G and
therefore u2 = B−G. The assumption on G implies u2 ∈ H1(T ;V) and

‖u2‖L2(V) � ‖G‖L2(Q∗), ‖u̇2‖L2(V) � ‖Ġ‖L2(Q∗).

It remains to find a bound of u1. For this, we insert u1 in (1a) as test function which
leads to
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1

2

d

dt
‖u1‖2H + ‖u1‖2V � 〈u̇1, u1〉 + 〈Ku1, u1〉

= 〈F, u1〉 − 〈u̇2, u1〉 − 〈Ku2, u1〉
� ‖F‖V∗‖u1‖V + ‖Ġ‖Q∗‖u1‖V + ‖G‖Q∗‖u1‖V .

Note that the Lagrange multiplier λ vanishes, since the test function is element of VB .
Thus, by the Young’s inequality we obtain

d

dt
‖u1‖2H + ‖u1‖2V � ‖F‖2V∗ + ‖G‖2Q + ‖Ġ‖2Q∗ .

An integration of this estimate over the given time interval T = [0, tend] finally leads
to

‖u1(tend)‖2H + ‖u1‖2L2(V)
� ‖u1(0)‖2H + ‖F‖2L2(V∗) + ‖G‖2L2(Q)

+ ‖Ġ‖2L2(Q∗).

This completes the proof, since u1(0) = u0B . 
�
Remark 2 Throughout the paper, we concentrate on results for the variable u which
corresponds to the velocity in terms of fluid flow applications. Similar results for
the Lagrange multiplier λ (respectively the pressure) are valid but require stronger
regularity assumptions on F and u0. For a detailed stability analysis of the Lagrange
multiplier, we refer to [50, Ch. 3.1.2]. Note that Assumption 1 is not sufficient to prove
λ ∈ L2(T ;Q).

Since this paper focuses on fluid flows, we show that the linear Stokes equations
fit into the given framework. Note that also the Navier–Stokes equations may be
considered in the given setting if we allow the operator K in (1) to be nonlinear.
However, we exclude the nonlinear case in this paper.

Example 1 (Stokes equations) The linear Stokes equations provide a leading-order
simplification of the Navier–Stokes equations and describe the incompressible flow
of a Newtonian fluid in a bounded domain D, cf. [43]. We consider homogeneous
Dirichlet boundary conditions and set

V = [H1
0 (D)]d , H = [L2(D)]d , Q = L2(D)/R.

Furthermore, we define G ≡ 0, B = div with dual operator B∗ = −∇, and K which
equals the weak form of the Laplace operator, i.e.,

〈Ku, v〉 :=
∫

D
∇u · ∇v dx .

The solution u describes the velocity of the fluid whereas λ measures the pressure.
The operator equations (1) then equal the weak formulation of the Stokes equations

u̇ − �u + ∇λ = f, ∇ · u = 0, u(0) = u0.
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For the Stokes equations with stochastic noise, we refer to Example 7 below.

Example 2 (Linearized Navier–Stokes equations) With a simple modification of the
operator K , the frameworkgiven inExample 1 includes any linearizationof theNavier–
Stokes equations such as the Oseen equations.

Given the characteristic velocity u∞, the Oseen equations include the operator

〈Ku, v〉 :=
∫

D
(u∞ · ∇)uv + ν∇u · ∇v dx

or even

〈Ku, v〉 :=
∫

D
(u∞ · ∇)uv + (u · ∇)u∞v + ν∇u · ∇v dx .

Note that u describes the ’disturbance velocity’, i.e., the variation around u∞.

Although we focus here on applications in fluid dynamics, we emphasize that the
given framework is not restricted to this class. Further examples are given by PDEs
with boundary control [11] (with B being the trace operator) as well as applications
in elastodynamics which leads to second-order systems of similar structure [2].

2.2 Influence of perturbations

DAEs are known for its high sensitivity to perturbations. The reason for this is that
derivatives of the right-hand sides appear in the solution. In particular, this implies that
a certain smoothness of the right-hand sides is necessary for the existence of solutions.
Furthermore, the numerical approximation is much harder than for ODEs, since small
perturbations - such as round-off errors or errors within iterative methods - may have
a large influence [38].

The resulting level of difficulty in the numerical approximationofDAEs ismeasured
by the so-called index. There exist several index concepts [35] and we use here the
differentiation index, see [10, Def. 2.2.2] for a precise definition. A comparable index
concept for operator DAEs which may be used to classify systems of the form (1) does
not exist. Thus, in order to obtain information about stability issues it is advisable to
analyse the influence of perturbations. Furthermore, a spatial discretization of system
(1) by finite elements (under some basic assumptions) leads to a DAE of index 2. Note
that the understanding of the index is not crucial for the further reading of this paper.
However, we comment on the index from time to time for additional insight.

We consider system (1) with additional perturbations δ ∈ L2(T ;V∗) and θ ∈
H1(T ;Q∗). The perturbed solution (û, λ̂) then satisfies the system

˙̂u + Kû + B∗λ̂ = F + δ in V∗,
Bû = G + θ in Q∗.

Let e1 denote the difference of u and û projected to the kernel of the constraint operator
B. Accordingly, we denote the projected initial error by e1,0. In [5] it is shown that
with the given assumptions on the operators K and B of Assumption 1, we have
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‖e1‖2C(T ;H) + ‖e1‖2L2(V)
� ‖e1,0‖2H + ‖δ‖2L2(V∗) + ‖θ‖2L2(Q∗) + ‖θ̇‖2L2(Q∗). (3)

This estimate shows that the error depends on the derivative of the perturbation θ .
Note that this is crucial if we consider stochastic perturbations in Sect. 3 where we
apply the chaos expansion method to reduce the given problem to an infinite number
of deterministic systems. Similar to index reduction procedures for DAEs, cf. [10,25],
the operator DAE can be regularized in view of an improved behaviour with respect
to perturbations.

2.3 Regularization of operator DAEs

In this subsection, we introduce an operator DAEwhich is equivalent to (1), but where
the solution of the perturbed systemdoes not dependonderivatives of the perturbations.
Furthermore, a semi-discretization in space of the regularized system directly leads to
a DAE of index 1 and thus, is better suited for numerical integration [25].

In the case of the Stokes equations, the right-hand side G vanishes since we search
for divergence-free velocities. In this case, the constrained system is often reduced to
the kernel of the constraint operator B which leads to an operator ODE, i.e., a time-
dependent PDE. However, with the stochastic noise term in the constraint, we cannot
ignore the inhomogeneity anymore. In addition, the inclusion of G enlarges the class
of possible applications. Thus, we propose to apply a regularization of the operator
DAE.

For the regularization we follow the procedure introduced first in [2] for second-
order systems. The idea is to add the derivative of the constraint, the so-called hidden
constraint, to the system. In order to balance the number of equations and variables,
we add a so-called dummy variable v2 to the system. The assumptions are as before,
but we split the space V into V = VB ⊕ Vc were

VB := Ker B

and Vc is any complementary space on which B is invertible, i.e., there exists a right-
inverse of B, namely B− : Q∗ → Vc with BB−q = q for all q ∈ Q∗. In the example
of the Stokes equations, cf. Example 1, VB is the space of divergence-free functions
which build a proper subspace of V and Vc equals its orthogonal complement in V .
We then search for a solution (u1, u2, v2, λ) where u1 takes values in VB and u2, v2
in the complement Vc. The extended (but equivalent) system then reads

u̇1(t) + v2(t) + K
(
u1(t) + u2(t)

) + B∗λ(t) = F(t) in V∗, (4a)

Bu2(t) = G(t) in Q∗, (4b)

Bv2(t) = Ġ(t) in Q∗ (4c)

with initial condition

u1(0) = u0B − B−G(0) ∈ H. (4d)
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Recall that u0B is an element of the closure ofVB inH, cf. Remark 1. The connection of
system (1) and (4) is given by u = u1+u2 and v2 = u̇2. Note, however, that in system
(4) u2 is not differentiated anymore and corresponds to an algebraic variable in the
finite-dimensional case. For the regularized formulation (4) we obtain the following
stability result.

Theorem 2 (Influence of perturbations) Let Assumption 1 be satisfied and consider
perturbations δ ∈ L2(T ;V∗) and θ, ξ ∈ L2(T ;Q∗) of the right-hand sides of (4) with
the corresponding perturbed solution (û1, û2, v̂2, λ̂). Then, the error in u1, namely
e1 = û1 − u1, satisfies the estimate

‖e1‖2C(T ;H) + ‖e1‖2L2(V)
� ‖e1,0‖2H + ‖δ‖2L2(V∗) + ‖θ‖2L2(Q∗) + ‖ξ‖2L2(Q∗). (5)

Proof We introduce the remaining errors e2 := û2−u2, ev := v̂2−v2, and eλ := λ̂−λ.
The difference of the original and the perturbed problem then yields an operator DAE
for e1, e2, ev , and eλ of the form (4), namely

ė1(t) + ev(t) + K
(
e1(t) + e2(t)

) + B∗eλ(t) = δ(t) in V∗,
Be2(t) = θ(t) in Q∗,
Bev(t) = ξ(t) in Q∗

with initial condition e1(0) = e1,0. From this point on, we follow the arguments of
the proof of Theorem 1, using

‖e2‖L2(V) � ‖θ‖L2(Q∗), ‖ev‖L2(V) � ‖ξ‖L2(Q∗)

instead of the estimates of u2 and u̇2 therein. Thus, we obtain the estimate

‖e1(t)‖2H + ‖e1‖2L2(V)
� ‖e1(0)‖2H + ‖δ‖2L2(V∗) + ‖θ‖2L2(Q∗) + ‖ξ‖2L2(Q∗)

for all t ∈ T . Thus, maximizing over t and using the initial condition, we obtain the
stated assertion. 
�
Note that, in contrast to the original formulation, estimate (5) does not depend on
derivatives of the perturbations. This is crucial when we consider stochastic perturba-
tions.

3 Inclusion of stochastic perturbations

In this section, we consider the operator DAE (1) with additional stochastic perturba-
tion terms, also called noise terms. Clearly, we perturb the deterministic system with
zero mean disturbances. First, we consider the noise, only in the differential equation,
i.e., we study

u̇(t) + Ku(t) + B∗λ(t) = F(t) + “noise”, (6a)

Bu(t) = G(t). (6b)
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Afterwards, we also add a noise term in the constraint equation,

u̇(t) + Ku(t) + B∗λ(t) = F(t) + “noise”, (7a)

Bu(t) = G(t) + “noise”. (7b)

As discussed in Sect. 2.2, perturbations in the second equation, i.e., in the constraint
equation, lead to instabilities. Thus,we also consider the regularizedoperator equations
(4) with stochastic perturbations. In any case, we assume a consistent initial condition
of the form u(0) = u0. Note that with the inclusion of stochastic perturbations, we
also allow the initial data u0 to be random.

From the modeling point of view, noise may enter the physical system either as
temporal fluctuations of internal degrees of freedom or as random variations of some
external control parameters; internal randomness often reflects itself in additive noise
terms, while external fluctuations gives rise to multiplicative noise terms. Moreover,
the additive noises may appear in various forms, ranging from the space time white
noise to colored noises generated by some infinite dimensional Brownian motion with
a prescribed covariance operator [13].

3.1 Preliminaries

In this section, we recall some basic facts and notions of thewhite noise theory, random
variables, stochastic processes, and operators. Then we apply the chaos expansion
method in order to solve stated problems.

3.1.1 White noise space

We consider stochastic DAEs in the white noise framework. For this, the spaces of
stochastic test and generalized functions are built by use of series decompositions
via orthogonal functions as a basis with certain weight sequences. The classical Hida
approach [21] suggests to start with a Gel’fand triple

E ⊆ L2(R) ⊆ E ′,

with continuous inclusions, formed by a nuclear space E and its dual E ′. As basic
probability space we set � = E ′ endowed with the Borel sigma algebra of the weak
topology and an appropriate probability measure, see [21,22]. Without loss of gener-
ality, in this paper we assume that the underlying probability space is the Gaussian
white noise probability space (S′(R),B, μ). Therefore, we take E and E ′ to be the
Schwartz spaces of rapidly decreasing test functions S(R) and tempered distributions
S′(R), respectively, and B the Borel sigma algebra generated by the weak topology on
S′(R). By the Bochner-Minlos theorem, there exists a uniquemeasureμ on (S′(R),B)

such that for each φ ∈ S(R) the relation

∫

S′(R)

e〈ω,φ〉 dμ(ω) = e
− 1

2 ‖φ‖2
L2(R)
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holds, where 〈ω, φ〉 denotes the action of a tempered distribution ω ∈ S′(R) on a
test function φ ∈ S(R). We denote by L2(�,μ), or in short L2(�), the space of
square integrable random variables L2(�) = L2(�,B, μ). It is the Hilbert space
of random variables which have finite second moments. Here, the scalar product is
(F,G)L2(�) = Eμ(F · G), where Eμ denotes the expectation with respect to the
measure μ. In the sequel, we omit μ and simply write E.

In the case of a Gaussian measure, the orthogonal polynomial basis of L2(�) can
be represented as a family of orthogonal Fourier-Hermite polynomials defined by use
of the Hermite functions and the Hermite polynomials. We denote by {hn(x)}n∈N0

the family of Hermite polynomials and {ξn(x)}n∈N the family of Hermite functions,
where

hn(x) = (−1)n e
x2
2 dn

dxn

(
e− x2

2

)
, n ∈ N0,

ξn(x) = 1
4√π

√
(n−1)! e

− x2
2 hn−1

(√
2x

)
, n ∈ N,

for x ∈ R. The family of Hermite polynomials forms an orthogonal basis of the space

L2(R) with respect to the Gaussian measure dμ = 1√
2π

e− x2
2 dx , while the family of

Hermite functions forms a complete orthonormal system in L2(R) with respect to the
Lebesque measure. We follow the characterization of the Schwartz spaces in terms of
the Hermite basis [17]. Clearly, the Schwartz space of rapidly decreasing functions
can be constructed as the projective limit of the family of spaces

Sl(R) =
{

f (t) =
∑

k∈N
ak ξk(t) ∈ L2(R) : ‖ f ‖2l =

∑

k∈N
a2k (2k)l < ∞

}

, l ∈ N0.

The Schwartz space of tempered distributions is isomorphic to the inductive limit of
the family of spaces

S−l(R) =
{

F(t) =
∑

k∈N
bk ξk(t) : ‖F‖2−l =

∑

k∈N
b2k (2k)−l < ∞

}

, l ∈ N0.

It holds that S(R) = ⋂
l∈N0

Sl(R) and S′(R) = ⋃
l∈N0

S−l(R). The action of a
generalized function F = ∑

k∈N bk ξk ∈ S′(R) on a test function f = ∑
k∈N ak ξk ∈

S(R) is given by 〈F, f 〉 = ∑
k∈N ak bk .

3.1.2 Spaces of random variables

LetI = (NN

0 )c be the set of sequences of non-negative integerswhichhaveonlyfinitely
many nonzero components α = (α1, α2, . . . , αm, 0, 0, . . .), αi ∈ N0, i = 1, 2, . . . ,m,
m ∈ N. The k-th unit vector ε(k) = (0, . . . , 0, 1, 0, . . .), k ∈ N, is the sequence of
zeros with the entry 1 as the k-th component and 0 is the multi-index with only zero
components. The length of a multi-index α ∈ I is defined as |α| = ∑∞

k=1 αk . We
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say α ≥ β if αk ≥ βk for all k ∈ N and thus α − β = (α1 − β1, α2 − β2, . . .).
For α < β the difference α − β is not defined. Particularly, for αk > 0 we have
α − ε(k) = (α1, . . . , αk−1, αk − 1, αk+1, . . . , αm, 0, . . .), k ∈ N. We denote (2N)α =∏∞

k=1(2k)
αk .

Theorem 3 ([49]) It holds that
∑

α∈I(2N)−pα < ∞ if and only if p > 1.

The proof can be foud in the paper of Zhang [49], also in [22, Prop. 2.3.3].
We define by

Hα(ω) =
∞∏

k=1

hαk (〈ω, ξk〉) , α ∈ I,

the Fourier-Hermite orthogonal polynomial basis of L2(�) such that ‖Hα‖2
L2(�)

=
E(Hα)2 = α!. In particular, H0(ω) = H(0,0,...)(ω) = 1, and for the k-th unit vector
Hε(k) (ω) = h1(〈ω, ξk〉) = 〈ω, ξk〉, k ∈ N.

Theorem 4 ([22]) (Wiener-Itô chaos expansion theorem) Each random variable f ∈
L2(�) has a unique representation of the form

f (ω) =
∑

α∈I
aα Hα(ω), aα ∈ R, ω ∈ �

such that it holds

‖ f ‖2L2(�)
=

∑

α∈I
a2α α! < ∞.

The spaces of generalized random variables are stochastic analogues of determi-
nistic generalized functions. They have no point value for ω ∈ � but an average
value with respect to a test random variable. Following the idea of the construction of
S′(R) as an inductive limit space over L2(�) with appropriate weights [48], one can
define stochastic generalized random variable spaces over L2(�) by adding certain
weights in the convergence condition of the series expansion. Several spaces of this
type, weighted by a sequence q = (qα)α∈I , denoted by (Q)−ρ , for ρ ∈ [0, 1] were
described in [27]. Thus a Gel’fand triple

(Q)ρ ⊆ L2(�) ⊆ (Q)−ρ

is obtained, where the inclusions are again continuous. Themost commonweights and
spaces appearing in applications are qα = (2N)α which correspond to the Kondratiev
spaces of stochastic test functions (S)ρ and stochastic generalized functions (S)−ρ ,
for ρ ∈ [0, 1]. Exponential weights qα = e(2N)α are linked with the exponential
growth spaces of stochastic test functions exp(S)ρ and stochastic generalized functions
exp(S)−ρ [21,22,27,39,40]. In this paper, we consider the largest Kondratiev space of
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stochastic distributions, i.e., ρ = 1. For definition of the Kondratiev spaces we follow
[22].

The space of the Kondratiev test random variables (S)1 can be constructed as the
projective limit of the family of spaces

(S)1,p =
{

f (ω) =
∑

α∈I
aαHα(ω) ∈ L2(�) : ‖ f ‖21,p =

∑

α∈I
a2α(α!)2(2N)pα < ∞

}

,

p ∈ N0. The space of the Kondratiev generalized random variables (S)−1 can be
constructed as the inductive limit of the family of spaces

(S)−1,−p =
{

F(ω) =
∑

α∈I
bα Hα(ω) : ‖ f ‖2−1,−p =

∑

α∈I
b2α (2N)−pα < ∞

}

, p ∈ N0.

It holds that (S)1 = ⋂
p∈N0

(S)1,p and (S)−1 = ⋃
p∈N0

(S)−1,p. The action of a gene-
ralized random variable F = ∑

α∈I bα Hα(ω) ∈ (S)−1 on a test random variable
f = ∑

α∈I bα Hα(ω) ∈ (S)1 is given by 〈F, f 〉 = ∑
α∈I α! aα bα . It holds that (S)1

is a nuclear space with the Gel’fand triple structure

(S)1 ⊆ L2(�) ⊆ (S)−1,

with continuous inclusions. Moreover, for 0 ≤ p ≤ q it holds (S)1,q ⊆ (S)1,p ⊆
(S)1,0 ⊆ L2(�) ⊆ (S)−1,0 ⊆ (S)−1,−p ⊆ (S)−1,−q . The proof of nuclearity of (S)1
can be found in [21] and in [22, Lemma 2.8.2].

The problem of pointwise multiplications of generalized stochastic functions in the
white noise analysis is overcome by introducing the Wick product, which represents
the stochastic convolution. The fundamental theorem of stochastic calculus states the
relation of the Wick multiplication to the Itô-Skorokhod integration [22].

Let L and S be random variables given in their chaos expansion representations
L = ∑

α∈I �αHα and S = ∑
α∈I sα Hα , �α, sα ∈ R for all α ∈ I. Then, the Wick

product L♦S is defined by

L♦S =
∑

γ∈I

⎛

⎝
∑

α+β=γ

�αsβ

⎞

⎠ Hγ (ω). (8)

Note here that the space L2(�) is not closed under the Wick multiplication.

Example 3 Consider the random variable F = ∑
k∈N 1

k Hε(k) and its Wick square

F♦2 = F♦F = ∑∞
n=1

∑n−1
k=0

1
n (n−k) Hε(n) . Then F ∈ L2(�), since ‖F‖2

L2(�)
=

∑
k∈N 1

k2
< ∞. In contrast, its Wick square F♦2 is not an element of L2(�), since it

holds that

∞∑

n=1

(
n−1∑

k=0

1

n (n − k)

)2

≥
∞∑

k=1

1

k (k + 1)
=

∞∑

k=1

(
1 − 1

k + 1

)
= +∞.
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Kondratiev spaces (S)1 and (S)−1 are closed under the Wick multiplication. For
the proof we refer to [22, Lemma 2.4.4].

3.1.3 Stochastic processes

Classical stochastic process can be defined as a family of functions v : T × � →
R such that for each fixed t ∈ T , v(t, ·) is an R-valued random variable and for
each fixed ω ∈ �, v(·, ω) is an R-valued deterministic function, called trajectory.
Here, following [39], we generalize the definition of a classical stochastic process
and define generalized stochastic processes. By replacing the space of trajectories
with some space of deterministic generalized functions, or by replacing the space of
random variables with some space of generalized random variables, different types of
generalized stochastic processes can be obtained. In this manner, we obtain processes
generalized with respect to the t argument, the ω argument, or even with respect to
both arguments [22,39].

A very general concept of generalized stochastic processes, based on chaos expan-
sions was introduced in [39] and further developed in [27,28]. In [22] generalized
stochastic processes are defined as measurable mappings T → (S)−1. Thus, they are
defined pointwise with respect to the parameter t ∈ T and generalized with respect to
ω ∈ �. We define such processes by their chaos expansion representations in terms
of an orthogonal polynomial basis.

Let X̃ be a Banach space endowed with the norm ‖ · ‖X̃ and let X̃ ′ denote its
dual space. If, for example, X̃ is a space of functions on R such as X̃ = Ck(T ) or
X̃ = L2(R), we obtain stochastic processes. The definition of processes where X̃ is
not a normed space, but a nuclear space topologized by a family of seminorms, e.g.
X̃ = S(R) is given in [39].

Let u have the formal expansion u = ∑
α∈I uα ⊗ Hα , where fα ∈ X and α ∈ I.

We define the spaces

X ⊗ (S)1,p =
{

f : ‖ f ‖2X⊗(S)1,p
= ∑

α∈I
α!2‖ fα‖2X (2N)pα < ∞

}

and

X ⊗ (S)−1,−p =
{

f : ‖ f ‖2X⊗(S)−1,−p
= ∑

α∈I
‖ fα‖2X (2N)−pα < ∞

}

,

where X denotes an arbitrary Banach space (both possibilities X = X̃ and X = X̃ ′
are allowed).

Definition 1 Generalized stochastic processes and test stochastic processes in Kon-
dratiev sense are elements of the spaces respectively

X ⊗ (S)−1 =
⋃

p∈N
X ⊗ (S)−1,−p and X ⊗ (S)1 =

⋂

p∈N
X ⊗ (S)1,p.

In this case the symbol ⊗ denotes the projective tensor product of two spaces, i.e.,
X̃ ′ ⊗ (S)−1 is the completion of the tensor product with respect to the π -topology.
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Remark 3 From the nuclearity of the Kondratiev space (S)1 it follows that (X̃ ⊗
(S)1)

′ ∼= X̃ ′ ⊗ (S)−1. Moreover, X̃ ′ ⊗ (S)−1 is isomorphic to the space of linear
bounded mappings X̃ → (S)−1, and it is also isomporphic to the space of linear
bounded mappings (S)1 → X̃ ′. More details can be found in [28,32,39].

Throughout the paper we consider generalized stochastic processes u which belong
to X ⊗ (S)−1 and are given by the chaos expansion form

u =
∑

α∈I
uα ⊗ Hα = u0(t) +

∑

k∈N
uε(k) ⊗ Hε(k) +

∑

|α|>1

uα ⊗ Hα. (9)

Therein, the coefficients uα ∈ X satisfy for some p ∈ N0 the convergence condition

‖u‖2X⊗(S)−1,−p
=

∑

α∈I
‖uα‖2X (2N)−pα < ∞.

The value p corresponds to the level of singularity of the process u. Note that the
deterministic part of u in (9) is the coefficient u0, which represents the generalized
expectation of u. In the applications of fluid flows, the space X equals one of the
Sobolev-Bochner spaces L2(T ;V) or L2(T ;Q).

Example 4 If X = L2(R), then u ∈ L2(R) ⊗ L2(�) is given in the chaos expansion
form u(t, ω) = ∑

α∈I uα(t) Hα(ω), t ∈ R, ω ∈ � such that

‖u‖2L2(R)⊗L2(�)
=

∑

α∈I
α! ‖uα‖2L2(R)

=
∑

α∈I

∫

R

α! |uα(t)|2 dt < ∞.

Stochastic processes which are elements of the space X ⊗ S′(R) ⊗ (S)−1 =⋃
p,l∈N X ⊗ S−l(R)⊗ (S)−1,−p are defined similarly, cf. [27–29,31]. More precisely,

F ∈ X ⊗ S′(R) ⊗ (S)−1 has a chaos expansion representation

F =
∑

α∈I

∑

k∈N
aα,k ⊗ ξk ⊗ Hα =

∑

α∈I
bα ⊗ Hα =

∑

k∈N
ck ⊗ ξk, (10)

where bα = ∑
k∈N aα,k ⊗ ξk ∈ X ⊗ S′(R), ck = ∑

α∈I aα,k ⊗ Hα ∈ X ⊗ (S)−1, and
aα,k ∈ X . Thus, for some p, l ∈ N0, it holds that

‖F‖2X⊗ S−l (R)⊗(S)−1,−p
=

∑

α∈I

∑

k∈N
‖aα,k‖2X (2k)−l(2N)−pα < ∞.

The generalized expectation of F is the zero-th coefficient in the expansion represen-
tation (10), i.e., it is given by

∑
k∈N a0,k ⊗ ξk = b0.

Space of processes with finite second moments and square integrable trajectories
X ⊗ L2(R)⊗ (L)2. It is isomporphic to X ⊗ L2(R×�) and if X is a separable Hilbert
space, then it is also isomorphic to L2(R × �, X).
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Example 5 Consider X = Ck(T ), k ∈ N, where T denotes a time interval. From
the nuclearity of (S)1 and the arguments provided in Remark 3 it follows that
Ck(T ; (S)−1) = Ck(T ) ⊗ (S)−1, i.e., differentiation of a stochastic process can be
carried out componentwise in the chaos expansion, cf. [28,32]. This means that a
stochastic process u(t, ω) is k times continuously differentiable if and only if all of its
coefficients uα , α ∈ I are inCk(T ). The same holds for Banach space valued stochas-
tic processes, i.e., for elements of Ck(T ; X) ⊗ (S)−1, where X is an arbitrary Banach
space. These processes can be regarded as elements of the tensor product space

Ck(T ; X ⊗ (S)−1) = Ck(T ; X) ⊗ (S)−1 =
∞⋃

p=0

Ck(T ; X) ⊗ (S)−1,−p.

Since we consider weak solutions, i.e., solutions in Sobolev-Bochner spaces such as
L2(T ; X), it also holds L2(T ; X⊗(S)−1) = L2(T ; X)⊗(S)−1, as well as H1(T ; X⊗
(S)−1) = H1(T ; X) ⊗ (S)−1.

In this way, by representing stochastic processes in their polynomial chaos expansion
form, we are able to separate the deterministic component from the randomness of the
process.

Example 6 Brownian motion Bt (ω) := 〈ω, χ[0,t]〉, ω ∈ S′(R), t ≥ 0 is defined by
passing though the limit in L2(R), where χ[0,t] is the characteristic function on [0, t].
The chaos expansion representation has the form

Bt (ω) =
∑

k∈N

∫ t

0
ξk(s) ds Hε(k) (ω).

Note that for fixed t , Bt is an element of L2(�). Brownianmotion is aGaussian process
with zero expectation and the covariance function E(Bt (ω)Bs(ω)) = min{t, s}. Fur-
thermore, almost all trajectories are continuous, but nowhere differentiable functions.

Singular white noise is defined by the formal chaos expansion

Wt (ω) =
∞∑

k=1

ξk(t)Hε(k) (ω), (11)

and is an element of the space C∞(R) ⊗ (S)−1,−p for p > 1, cf. [22]. With weak
derivatives in the (S)−1 sense, it holds that d

dt Bt = Wt . Both, Brownian motion and
singular white noise, areGaussian processes and have chaos expansion representations
via Fourier-Hermite polynomials with multi-indeces of length one, i.e., belong to the
Wiener chaos space of order one.

More general, the chaos expansion of a Gaussian process Gt in S′(R)⊗ (S)−1, which
belongs to the Wiener chaos space of order one, is given by

Gt (ω) =
∞∑

k=1

mk(t)Hε(k) (ω) =
∞∑

k=1

∞∑

n=1

mkn ξn(t)Hε(k) (ω), (12)
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with coefficients mk being deterministic generalized functions and mkn ∈ R such that
the condition

∞∑

k=1

‖mk‖2−l(2k)
−p =

∞∑

k=1

∞∑

n=1

m2
kn (2n)−l (2k)−p < ∞

holds for some l, p ∈ N0. One can also consider a generalized Gaussian process
G ∈ X ⊗ (S)−1 with a Banach space X of the form

G =
∞∑

k=1

mk Hε(k) ,

with coefficients mk ∈ X that satisfy

∞∑

k=1

‖mk‖2X (2k)−p < ∞, (13)

For example, in Sect. 3.3 we deal with X = L2(T ;V∗).
TheWick product of two stochastic processes is defined in an analogueway as it was

defined for random variables in (8) and generalized random variables [30]. Let F and
G be stochastic processes given in their chaos expansion forms F = ∑

α∈I fα ⊗ Hα

and G = ∑
α∈I gα ⊗ Hα , fα, gα ∈ X for all α ∈ I. Assuming that fα gβ ∈ X , for

all α, β ∈ I, the Wick product F♦G is defined by

F♦G =
∑

γ∈I

⎛

⎝
∑

α+β=γ

fαgβ

⎞

⎠ ⊗ Hγ . (14)

The examples considered in this paper use either X = L2(T ;V∗) or X = Ck(T ).
The space of stochastic processes X ⊗ (S)−1 is closed under the Wick multiplication.
This is stated in the following theorem. The proof can be found in [28].

Theorem 5 ([28]) Consider F ∈ X ⊗ (S)−1,−p1 and G ∈ X ⊗ (S)−1,−p2 for some
p1, p2 ∈ N0. Then the Wick product F♦G is a well-defined element in the space
X ⊗ (S)−1,−q for q ≥ p1 + p2 + 2.

3.1.4 Coordinatewise operators

We follow the classification of stochastic operators given in [32] and consider the
following two classes. We say that an operator A defined on X ⊗ (S)−1 is a coordi-
natewise operator if it is composed of a family of operators {Aα}α∈I , Aα : X → X ,
α ∈ I, such that for a process u = ∑

α∈I uα ⊗ Hα ∈ X ⊗ (S)−1, uα ∈ X , α ∈ I it
holds that

Au =
∑

α∈I
Aαuα ⊗ Hα .
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If Aα = A for all α ∈ I, then the operator A is called a simple coordinatewise
operator.

3.2 Chaos expansion approach

We return to the stochastic operator DAEs (6) and (7) where the noise terms are
generalizedGaussian stochastic processes as given in (12).Within the next two subsec-
tions, we consider the influence of these perturbations. Applying the chaos expansion
method, we transform the stochastic systems into deterministic problems, which we
solve by induction over the length of the multi-index α. Clearly, we represent all the
processes appearing in the stochastic equation by their chaos expansion forms and,
since the representation in the Fourier-Hermite polynomial basis is unique, equalize
the coefficients. In this section, we assume K and B to be simple coordinatewise
operators, i.e., for u = ∑

α∈I uα ⊗ Hα we have

Ku =
∑

α∈I
Kuα ⊗ Hα and Bu =

∑

α∈I
Buα ⊗ Hα. (15)

Note that this implies that B∗ is a simple coordinatewise operator as well. A more
general case of coordinatewise operators is considered in Sect. 4. In the following, we
assume that K and B are linear and that they satisfy Assumption 1. For the right-hand
side of the differential equation (6a), namely stochastic process F , and the constraint
(6b), namely stochastic processG, we assume that they are given in the chaos expansion
forms

F =
∑

α∈I
fα ⊗ Hα and G =

∑

α∈I
gα ⊗ Hα. (16)

Therein, corresponding to the deterministic setting of Sect. 2.1, the deterministic coef-
ficients satisfy fα ∈ L2(T ;V∗) and gα ∈ H1(T ;Q∗). Furthermore, we assume that
for some positive p it holds that

∑

α∈I
‖ fα‖2L2(V∗)(2N)−pα < ∞ and

∑

α∈I
‖gα‖2H1(Q∗)(2N)−pα < ∞. (17)

Remark 4 Since the family of spaces (S)−1,−p is monotone, i.e., it holds that
(S)−1,−p1 ⊂ (S)−1,−p for p1 < p, we may assume in (17) that all the conver-
gence conditions hold for the same level of singularity p. Clearly, for two different
p1 and p2 we can take p to be p = max{p1, p2} and thus, obtain that generalized
stochastic processes satisfies (17) in the biggest space (S)−1,−p. In that sense, we use
in the sequel always the same level of singularity p.

We seek for solutions u and λ of stochastic operator DAEs (6) and (7), which are
stochastic processes belonging to L2(V) ⊗ (S)−1 and L2(Q) ⊗ (S)−1, respectively.
Their chaos expansions are given by

u =
∑

α∈I
uα ⊗ Hα and λ =

∑

α∈I
λα ⊗ Hα. (18)
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The aim is to calculate the unknown coefficients uα and λα for all α ∈ I, which then
give the overall solutions u and λ. Furthermore, we are going to prove bounds on the
solutions, provided that the stated assumptions on the given processes F and G, the
initial condition, and the noise terms are fulfilled.

Considering the stochastic operator DAE equations (6) and (7), we apply at first
the chaos expansion method to the initial condition u(0) = u0 and obtain

u0 =
∑

α∈I
uα(0) Hα =

∑

α∈I
u0α Hα.

Thus, the initial condition reduces to the family of conditions uα(0) = u0α ∈ H for
every α ∈ I. In order to achieve consistency, the initial data has to be of the form

u0α = u0B,α + B−gα(0), α ∈ I, (19)

with an arbitrary u0B,α from the closure of the kernel of B in H and B− denoting the
right-inverse of the operator B, cf. Remark 1.

3.3 Noise in the differential equation

Consider the system (6)with a stochastic perturbationgiven in the formof a generalized
Gaussian stochastic process in the Wiener chaos space of order one as in (12), i.e., we
consider the initial value problem

u̇(t) + Ku(t) + B∗λ(t) = F(t) + Gt ,

Bu(t) = G(t), u(0) = u0 = u0B + B−G(0). (20)

Example 7 (Randomly forced Stokes equation) We consider the randomly forced
Stokes equation, i.e. Stokes equation with noise forcing term. In this case, the operator
equation (20) is equal to the weak formulation of the stochastically perturbed Stokes
equations

u̇ − �u + ∇λ = f̃ , ∇ · u = 0, u(0) = u0,

where the flow f̃ = f +Gt , t ∈ T , is subject to an external forcing.We refer the reader
to [12] for a detailed explanation. Note that, in general, additive noise is interpreted
in applications as a perturbation of the original model (in this case Example 4).

We summarize the needed requirements in the following assumption.

Assumption 2 1. OperatorsK andB are simple coordinatewise operators with cor-
responding deterministic operators K : V → V∗ and B : V → Q∗, which satisfy
the assumptions stated in Assumption 1.

2. The stochastic processes F and G are given in their chaos expansion forms (16)
such that the conditions in (17) hold.
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3. The process Gt is a Gaussian noise term represented in the form (12), with mk ∈
L2(T ;V∗), k ∈ N, such that (13) holds.

4. The stochastic process u0 has the chaos expansion form u0 = ∑
α∈I u0α Hα such

that for some p ∈ N0 it holds that

∑

α∈I

∥
∥
∥u0α

∥
∥
∥
2

H (2N)−pα < ∞. (21)

Remark 5 If the initial data is consistent, then Assumption 2 and equation (19) imply
that condition (21) can be replaced by

∑

α∈I

∥
∥
∥u0B,α

∥
∥
∥
2

H (2N)−pα < ∞, (22)

with u0B,α given in (19).

Theorem 6 Let Assumption 2 be satisfied. Then, for any consistent initial data there
exists a unique solution u ∈ L2(T ;V) ⊗ (S)−1 of the stochastic DAE (20).

Proof We represent all the processes in (20) in their chaos expansion forms, apply
(15) and thus, reduce it to an infinite triangular system of deterministic initial value
problems, which can be solved recursively over the length of multi-index α. We obtain
the system

∑

α∈I

(
u̇α(t) + Kuα(t) + B∗λα(t)

)
Hα(ω) =

∑

α∈I
fα(t) Hα(ω) +

∑

k∈N
mk(t) Hα(ω),

∑

α∈I
Buα(t) Hα(ω) =

∑

α∈I
gα(t) Hα(ω)

with u(0) = u0, i.e., initial data with coefficients given in (19) that satisfy (21). Thus,

1. for |α| = 0, i.e., for α = 0 = (0, 0, . . .), we have to solve

u̇0(t) + Ku0(t) + B∗λ0(t) = f0(t), Bu0(t) = g0(t), u0 = u0B,0 + B−g0(0).
(23)

Note that system (23) is a deterministic problem of the form (1), where F and
G from (1) are equal to f0 and g0, respectively. Moreover, the system (23) can
be obtained by taking the expectation of the system (20). The assumptions on
the operators and right-hand sides f0 ∈ L2(T ;V∗), g0 ∈ H1(T ;Q∗) imply the
existence of a solution u0, λ0.

2. for |α| = 1, i.e., for α = ε(k), k ∈ N, we obtain the system

u̇ε(k) (t) + Kuε(k) (t) + B∗λε(k) (t) = fε(k) (t) + mk(t), Buε(k) (t) = gε(k) (t) (24)

with initial conditionuε(k) (0) = u0
B,ε(k)+B−gε(k) (0). For each k ∈ N system (24) is

a deterministic initial value problemof the form (1), with the choice F = fε(k) +mk

and G = gε(k) .
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3. for |α| > 1, we finally solve

u̇α(t)+Kuα(t)+B∗λα(t) = fα(t), Buα(t) = gα(t), uα(0) = u0B,α+B−gα(0).
(25)

Again, system (25) is a deterministic operator DAE, which can be solved in the
same manner as the system (23).

From (23) we obtain u0 and λ0. Further, from (24) we obtain the coefficients uα and
λα for |α| = 1 and from (25) the remaining coefficients. Note that all these systems
may be solved in parallel.

As the last step of the analysis, we prove the convergence of the obtained solu-
tion in the space of Kondratiev generalized stochastic processes, i.e., we prove that
‖u‖2

L2(V)⊗(S)−1
< ∞, for u = ∑

α∈I uα ⊗ Hα . More precisely we show that

∑

α∈I
‖uα‖2L2(V)

(2N)−pα < ∞

holds for some p ∈ N0. For this, we apply the estimate from Theorem 1 to the
deterministic operator DAEs (23)–(25) for the coefficients uα . For u0 we obtain by
Theorem 1 the estimate

‖u0‖2L2(V)
�

∥
∥
∥u0B,0

∥
∥
∥
2

H + ‖ f0‖2L2(V∗) + ‖g0‖2H1(Q∗) . (26)

Similarly, for |α| = 1 and |α| > 1, we obtain respectively the estimates

‖uε(k)‖2L2(V)
�

∥
∥
∥u0B,ε(k)

∥
∥
∥
2

H + ∥
∥ fε(k) + mk

∥
∥2
L2(V∗) + ‖gε(k)‖2H1(Q∗), k ∈ N and

‖uα‖2L2(V)
�

∥
∥
∥u0B,α

∥
∥
∥
2

H + ‖ fα‖2L2(V∗) + ‖gα‖2H1(Q∗), |α| > 1.

Note that the involved constants are equal for all estimates, since we have assumed
simple coordinatewise operators. Summarizing the results, we obtain

∑

α∈I
‖uα‖2L2(V)

(2N)−pα �
∑

α∈I

∥
∥
∥u0B,α

∥
∥
∥
2

H (2N)−pα +
∑

α∈I
‖ fα‖2L2(V∗)(2N)−pα

+
∞∑

k=1

‖mk‖2L2(V∗)(2k)
−p+

∑

α∈I
‖gα‖2H1(Q∗)(2N)−pα < ∞,

where we have used the linearity, the triangular inequality, and the relation (2N)ε
(k) =

2k, k ∈ N. The assumptions (13), (17), and (21) show that the right-hand side is
bounded and thus, completes the proof. 
�
Remark 6 If the processF in (20) is a deterministic function, then it can be represented
by F = f0, since the remaining coefficients satisfy fα = 0 for all |α| > 0. Therefore,
systems (24) and (25) further simplify.
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As mentioned in Remark 2, a similar result can be formulated for the Lagrange
multiplier if we assume stronger regularity assumptions. For completeness we state
the following result for the Lagrange multiplier but leave out the proof.

Theorem 7 Let Assumption 2 be satisfied. Assume additionally fα ∈ L2(T ;H∗) and
u0B,α ∈ V and let the operator K be symmetric. Then, for any consistent initial data

there exists a unique Lagrange multiplier λ ∈ L2(T ;Q) ⊗ (S)−1 of the stochastic
operator DAE (20).

Onemay also consider stochastic operator DAEs (20) which include amore general
form of the Gaussian noise Gt , i.e.,

Gt (ω) =
∑

|α|>0

mα(t) Hα(ω), (27)

whereGt has also non-zero coefficients of order greater than one. The solution for this
case can be provided similarly to the presented case for Gaussian noise in the Wiener
chaos space of order one.

Theorem 8 Let the assumptions 1, 2 and 4 from Assumption 2 hold and let the process
Gt be a Gaussian process of the form (27) such that for some p ≥ 0 it holds that

∑

|α|>0

‖mα‖2L2(ν∗) (2N)−pα < ∞.

Then, for any consistent initial data that satisfies (21) the stochastic operator DAE
(20) has a unique solution u ∈ L2(T ;V) ⊗ (S)−1.

Proof The system of deterministic DAEs obtained from (20) by applying the chaos
expansion method contains (23) for |α| = 0 and

u̇α(t) + Kuα(t) + B∗λα(t) = fα(t) + mα(t),

Buα(t) = gα(t), (28)

with the condition uα(0) = u0B,α + B−gα(0), for |α| > 0. By solving the obtained
systems, we obtain the unknown coefficients uα , α ∈ I. By applying Theorem 1, we
obtain the estimates (26) for |α| = 0 and

‖uα‖2L2(V)
�

∥
∥
∥u0B,α

∥
∥
∥
2

H + ‖ fα + mα‖2L2(V∗) + ‖gα‖2H1(Q∗)

for |α| > 0. Hence, the solution u = ∑
α∈I uαHα satisfies the estimate

∑

α∈I
‖uα‖2L2(V)

(2N)−pα �
∑

α∈I

∥
∥
∥u0B,α

∥
∥
∥
2

H
(2N)−pα +

∑

α∈I
‖ fα‖2L2(V∗)

(2N)−pα

+
∞∑

|α|>0

‖mα‖2L2(V∗)
(2N)−pα +

∑

α∈I
‖gα‖2H1(Q∗)

(2N)−pα < ∞. (29)

This shows that u belongs to L2(T ;V) ⊗ (S)−1. 
�
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Remark 7 Let the assumptions of Theorem 8 hold. If we assume additionally that
fα ∈ L2(T ;H∗), u0B,α ∈ V and the operator K is symmetric, then there exists a

unique Lagrange multiplier λ ∈ L2(T ;Q) ⊗ (S)−1 of the stochastic operator DAE
(20).

3.4 Noise in the constraint equation

Consider the stochastic operator DAE (7), where the noise terms are given in the form
of two Gaussian white noise processes Gt and G(1)

t belonging to the Wiener chaos
space of order one. More precisely, we consider the initial value problem

u̇(t) + Ku(t) + B∗λ(t) = F(t) + Gt ,

Bu(t) = G(t) + G(1)
t

(30)

with the initial condition u(0) = u0. Note that the initial data u0 has to be consistent
again. Here, the consistency condition includes the perturbation G(1)

t such that the
consistent initial data of the unperturbed problem may not be consistent in this case.
We assume

G(1)
t (ω) =

∞∑

k=1

m(1)
k (t) Hε(k) (ω), (31)

where m(1)
k ∈ L2(T ;Q∗). We still keep the Assumption 2 for the operators K and B,

processes F and G and Gaussian noise Gt . Note that mk ∈ L2(T ;V∗), k ∈ N. Then,
system (30) reduces to the following deterministic systems:

1. for |α| = 0, i.e., for α = 0 = (0, 0, . . .), we obtain

u̇0(t) + Ku0(t) + B∗λ0(t) = f0(t), Bu0(t) = g0(t), u0 = u00. (32)

2. for |α| = 1, i.e., for α = ε(k), k ∈ N, we have

u̇ε(k) (t) + Kuε(k) (t) + B∗λε(k) (t) = fε(k) (t) + mk(t),

Buε(k) (t) = gε(k) (t) + m(1)
k (t),

uε(k) (0) = u0
ε(k) . (33)

3. for |α| > 1, we solve

u̇α(t) + Kuα(t) + B∗λα(t) = fα(t),

Buα(t) = gα(t),

uα(0) = u0α. (34)

We emphasize that the operator DAEs (32)–(34) can be solved in parallel again.
However, system (33) is deterministicwith a perturbation in the constraint, cf. Sect. 2.2
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with θ = m(1)
k . The estimate (3) shows that this results in instabilities such that the

stochastic truncation cannot converge. To see this, note that a computation as in the
proof of Theorem 6 includes terms of the form ‖ṁ(1)

k ‖L2(Q∗). Thus, the assumed
boundedness

∞∑

k=1

∥
∥
∥m(1)

k

∥
∥
∥
L2(Q∗)

(2k)−p < ∞,

is not sufficient to bound the termswhich involve the derivatives ofm(1)
k . Consequently,

we have to consider the regularized formulation.

3.5 Regularization

We have seen that the solution is very sensitive to perturbations in the constraint
equation. As for the deterministic case in Sect. 2.3, we need a regularization. The
extended (but equivalent) system to (30) with stochastic noise terms, has the form

u̇1(t) + v2(t) + K(
u1(t) + u2(t)

) + B∗λ(t) = F(t) + Gt (35a)

Bu2(t) = G(t) + G(1)
t (35b)

Bv2(t) = Ġ(t) + G(2)
t . (35c)

Note that, because of the extension of the system, we consider another perturbation
G(2)

t in (35), represented in the form

G(2)
t (ω) =

∞∑

k=1

m(2)
k (t) Hε(k) (ω). (36)

The chaos expansion approach leads again to a system of deterministic operator DAEs.
Since the perturbations have zero mean and are of order one only, we only consider
the case with α = ε(k), which leads to

u̇1,ε(k) (t) + v2,ε(k) (t) + K
(
u1,ε(k) + u2,ε(k)

)
(t) + B∗λε(k) (t) = fε(k) (t) + mk(t),

Bu2,ε(k) (t) = gε(k) (t) + m(1)
k (t),

Bv2,ε(k) (t) = ġε(k) (t) + m(2)
k (t).

(37)

Note here that the obtained system (37) corresponds to the perturbed extended
system with perturbations in the constraint equation, i.e., it corresponds to the system
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u̇1,ε(k) (t) + v2,ε(k) (t) + K
(
u1,ε(k) + u2,ε(k)

)
(t) + B∗λε(k) (t) = fε(k) (t) + mk(t),

Bu2,ε(k) (t) = gε(k) (t),

Bv2,ε(k) (t) = ġε(k) (t), (38)

that is equivalent to (24). Therefore, the stochastic operator DAE (30) can be treated as
perturbed stochastic operatorDAE (20)with the perturbation appearing in its constraint
equation.

Recall that the formulation (37) allows an estimate of the coefficients u1,ε(k) without
the derivatives of the perturbations, cf. estimate (5). This then leads to a uniform bound
of the solution u1, u2, similarly as in Theorem6. Furthermore, the regularization solves
the problem of finding consistent initial data. Here, the condition reads u1,ε(k) (0) =
u0
1,ε(k) and thus, does not depend on the perturbations. Finally, Theorem 9 summarizes

the discussion. Therein we use the following notation. We denote by (u1, u2, v2, λ2)
the solution of

u̇1(t) + v2(t) + K(
u1(t) + u2(t)

) + B∗λ(t) = F(t) + Gt (39a)

Bu2(t) = G(t) (39b)

Bv2(t) = Ġ(t) (39c)

and by (û1, û2, v̂2, λ̂2) the solution of its perturbed operator DAE (35), while by e1
we denote the error in u1, i.e. e1 = û1 − u1.

Theorem 9 Let the Assumption 2 hold. Consider the perturbations G(1)
t and G(2)

t of
the right hand sides of the operator DAE (39) that are of the forms (31) and (36), with
the coefficients m(1)

k ∈ L2(T ;Q∗) and m(2)
k ∈ L2(T ;Q∗) such that

∞∑

k=1

∥
∥
∥m(1)

k

∥
∥
∥
2

L2(Q∗)
(2k)−p < ∞ and

∞∑

k=1

∥
∥
∥m(2)

k

∥
∥
∥
2

L2(Q∗)
(2k)−p < ∞ (40)

for some p ∈ N0. Then, the error e1 satisfies the following estimate

‖e1‖2C(T ;H)⊗(S)−1,−p
+ ‖e1‖2L2(V)⊗(S)−1,−p

�
∑

k∈N

∥
∥
∥m(1)

k

∥
∥
∥
L2(Q∗)

(2k)−p + ∑

k∈N

∥
∥
∥m(2)

k

∥
∥
∥
L2(Q∗)

(2k)−p < ∞.
(41)

Proof After applying the chaos expansion method to the extended operator DAE (39)
we obtain the system of deterministic problems, i.e. for |α| = 1 we obtain (38), while
for all |α| �= 1 we obtain

u̇1,α(t) + v2,α(t) + K
(
u1,α(t) + u2,α(t)

) + B∗λα(t) = fα(t),

Bu2,α(t) = gα(t),

Bv2,α(t) = ġα(t). (42)
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On the other hand, by applying the chaos expansion method to the extended operator
DAE (35) we obtain the deterministic systems, i.e. for |α| = 1 we obtain (37) and for
|α| �= 1 the system (42).

The difference between the systems (38)–(42) of the original problem (39) and the
system (37)–(42) of the perturbed problem (35) is seen only for α = ε(k), k ∈ N.
Thus, only nonzero coefficients of the error e1 are obtained for α = ε(k), k ∈ N,
i.e., e1,ε(k) = û1,ε(k) − u1,ε(k) and e1,α = û1,α − u1,α = 0, for |α| �= 1. Similarly,
the remaining nonzero errors are e2,ε(k) = û2,ε(k) − u2,ε(k) , ev,ε(k) = v̂ε(k) − vε(k) and

eλ,ε(k) = λ̂ε(k) − λε(k) . Moreover, the notation of Theorem 2, we have δε(k) (t) = 0,

θε(k) = m(1)
k ∈ L2(T ;Q∗) and ξε(k) (t) = m(2)

k ∈ L2(T ;Q∗), k ∈ N and e1,0 = 0.
Therefore, we apply Theorem 2 and obtain the estimates

∥
∥e1,ε(k)

∥
∥2
C(T ;H)

+ ∥
∥e1,ε(k)

∥
∥2
L2(T ;V)

�
∥
∥
∥m(1)

k

∥
∥
∥
2

L2(Q∗)
+

∥
∥
∥m(1)

k

∥
∥
∥
2

L2(Q∗)
, (43)

for all k ∈ N. Since it holds

‖e1‖2L2(V)⊗(S)−1
= ∑

k∈N

∥
∥e1,ε(k)

∥
∥2
L2(V)

(2k)−p + ∑

|α|�=1

∥
∥e1,α

∥
∥2
L2(V)

(2N)−pα

= ∑

k∈N

∥
∥e1,ε(k)

∥
∥2
L2(V)

(2k)−p

and similarly

‖e1‖2C(T ;H)⊗(S)−1
=

∑

k∈N

∥
∥e1,ε(k)

∥
∥2
C(T ;H)

(2k)−p

also holds, then by (43) we obtain

‖e1‖2C(T ;H)⊗(S)−1,−p
+ ‖e1‖2L2(V)⊗(S)−1,−p

=
∞∑

k=1

∥
∥e1,ε(k)

∥
∥2
C(T ;H)

(2k)−p +
∞∑

k=1

∥
∥e1,ε(k)

∥
∥2
L2(V)

(2k)−p

=
∞∑

k=1

(∥
∥e1,ε(k)

∥
∥2
C(T ;H)

+ ∥
∥e1,ε(k)

∥
∥2
L2(V)

)
(2k)−p

�
∑

k∈N

(∥
∥
∥m(1)

k

∥
∥
∥
L2(Q∗)

+
∥
∥
∥m(2)

k

∥
∥
∥
L2(Q∗)

)
(2k)−p < ∞

and the estimate (41) follows. 
�

3.6 Convergence of the truncated expansion

In practice, only the coefficients uα ,λα formulti-indices of amaximal length P , i.e., up
to a certain order P , can be computed. Thus, the infinite sum has to be truncated such
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that a given tolerance is achieved. Clearly, denoting by ũ the approximated (truncated)
solution and ur the truncation error, i.e.,

ũ =
∑

|α|≤P

uα ⊗ Hα and ur =
∑

|α|>P

uα ⊗ Hα,

we can represent the process as u = ũ + ur . In applications, one computes uα for
|α| < P such that the desired bound ‖ur‖V⊗L2(�) = ‖u − ũ‖V⊗L2(�) ≤ ε is carried
out. Convergence in L2 is attained if the sum is truncated properly [24,33,46]. The
truncation procedure relies on the regularity of the solution, the type of noise, and the
discretization method for solving the deterministic equations involved, see e.g. [8] for
finite element methods. Numerical treatment of elliptic PDEs perturbed by Gaussian
noise with error estimate in appropriate weighted space of stochastic processes is
presented in [45].

Algorithm 3.1Main steps of the numerical approximation

1: Find finite dimensional approximations of the infinite dimensional Gaussian processes.
2: Choose a finite set of polynomials Hα and truncate the random series.
3: Regularize the operator DAEs if necessary.
4: Compute/approximate the solutions of the resulting systems.
5: Generate Hα to compute the approximate solution.
6: Compute the approximate statistics of the solution from the obtained coefficients.

Similar results for specific equations can be found, e.g., in [1,7,9]. A general trun-
cation method is stated in [24]. The same ideas can be applied to our equations once
we have performed the regularization to the deterministic system (such that opera-
tor DAE is well-posed in each level), the convergence of the truncated expansion is,
in general, guaranteed by the stability result of Theorem 6. The main steps of the
numerical approach are sketched in Algorithm 3.1.

4 More general cases

This section is devoted to the discussion of two generalizations. First, we consider
general coordinatewise operators instead of simple coordinatewise operators as in the
previous section.Thus, following the definition fromSect. 3.1.4,we allow theoperators
K and B to be composed out from families of deterministic operators {Kα}α∈I and
{Bα}α∈I , respectively, which may not be the same for all multi-indices. Second, we
replace the Gaussian noise term by a stochastic integral term. The mean dynamics will
remain unchanged, while the perturbation in the differential equation will be given in
the form of a stochastic convolution.

Throughout this section we keep the following assumptions.

Assumption 3 1. The operator K is a coordinatewise operator that corresponds to
a family {Kα}α∈I of deterministic operators Kα : V → V∗, α ∈ I. The operators
Kα , α ∈ I, are linear, continuous, and positive on the kernel of B.
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2. The constraint operator B is a coordinatewise operator that corresponds to a
family {Bα}α∈I of deterministic operators Bα : V → Q∗, α ∈ I. The opertors Bα

are linear and for every α ∈ I there exists a right-inverse which is denoted by B−
α .

3. The operators Kα and Bα are uniformly bounded.
4. The stochastic processes F and G are given in their chaos expansion forms (16)

such the conditions (17) hold.

4.1 Coordinatewise operators

In the given application, we consider the coordinatewise operators K, B with

Ku =
∑

α∈I
Kαuα ⊗ Hα and Bu =

∑

α∈I
Bαuα ⊗ Hα

such that Assumption 3 holds and the processes G(1)
t and G(2)

t are of the forms (31)
and (36). This also implies that B∗ is a coordinatewise operator, which corresponds
to the family of operators {B∗

α}α∈I such that for λ = ∑
α∈I λαHα it holds that

B∗λ =
∑

α∈I
B∗

αλα ⊗ Hα.

The chaos expansion method applied to the system with the Gaussian noise in the
constraint equation (30) then leads to the following deterministic systems:

1. for |α| = 0, i.e., for α = 0,

u̇0(t) + K0u0(t) + B∗
0λ0(t) = f0(t),

B0u0(t) = g0(t), u0 = u00.

2. for |α| = 1, i.e., for α = ε(k), k ∈ N,

u̇ε(k) (t) + Kε(k)uε(k) (t) + B∗
ε(k)λε(k) (t) = fε(k) (t) + m(1)

k (t),

Bε(k)uε(k) (t) = gε(k) (t) + m(2)
k (t),

with uε(k) (0) = u0
ε(k) .

3. for the remaining |α| > 1,

u̇α(t) + Kαuα(t) + B∗
αλα(t) = fα(t),

Bαuα(t) = gα(t), uα(0) = u0α.

Asbefore, these systemsmaybe solved in parallel. Furthermore, since the constraint
equation includes again a perturbation, a regularization as in Sect. 3.5 is necessary.
We omit further details here.
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4.2 Stochastic convolution

Consider the problem (7), where the stochastic disturbance is given in terms of a
stochastic convolution term. More precisely, we are dealing with the problem of the
form

u̇(t) + Ku(t) + B∗λ(t) = F(t) + δ(Cu),

Bu(t) = G(t) + G(1)
t (44)

with a consistent initial condition u(0) = u0. We assume that Assumption 3 holds
for operators K and B and processes F and G. Additionally, we assume that G(1)

t is
a Gaussian noise as in (12). The term δ(Cu) stays for an Itô-Skorokhod stochastic
integral. The Skorokhod integral is a generalization of the Itô integral for processes
which are not necessarily adapted. The fundamental theorem of stochastic calculus
connects the Itô-Skorokhod integral with the Wick product by

δ(Cu) =
∫

R

Cu dBt =
∫

R

Cu♦Wt dt, (45)

where the integral on the right-hand side of the relation is the Riemann integral and
the derivative is taken in sense of distributions [22]. We assume that the operator C is a
linear coordinatewise operator composed of a family of uniformly bounded operators
{Cα}α∈I such that Cu is integrable in the Skorokhod sense [22]. The stochastic integral
is the Itô-Skorokhod integral and it exists not only for processes adapted to the filtration
but also for non-adapted ones. It is equal to the Riemann integral of a process Cu,
stochastically convoluted with a singular white noise.

The operator δ is the adjoint operator of the Malliavin derivativeD. Their composi-
tion is known as the Ornstein-Uhlenbeck operatorR which is a self-adjoint operator.
These operators are the main operators of an infinite dimensional stochastic calculus
of variations called the Malliavin calculus [37]. We consider these operators in Sect.
5.

For adapted processes v the Itô integral and the Skorokhod integral coincide, i.e.,
I (v) = δ(v). Because of this fact, we refer to the stochastic integral as the Itô-
Skorokhod integral. Applying the definition of the Wick product (14) to the chaos
expansion representation (9) of a process v and the representation (11) of a singular
white noise in the definition (45) of δ(v), we obtain a chaos expansion representation
of the Skorokhod integral. Clearly, for v = ∑

α∈I vα(t)Hα we have

v ♦Wt =
∑

α∈I

∑

k∈N
vα(t)ξk(t) Hα+ε(k) (ω),

and thus, it holds that

δ(v) =
∑

α∈I

∑

k∈N
vα,k Hα+ε(k) (ω). (46)
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Therein, we have used that vα(t) = ∑
k∈N vα,k ξk(t) ∈ L2(R) is the chaos expansion

representation of vα in the orthonormal Hermite functions basis with coefficients
vα,k ∈ R. Therefore, we are able to represent stochastic perturbations appearing in the
stochastic equation (44) explicitly. Note that δ(v) belongs to the Wiener chaos space
of higher order than v, see also [22,28].

Definition 2 We say that a L2(R)-valued stochastic process v = ∑
α∈I vα Hα , with

coefficients vα(t) = ∑
k∈N vα,k ξk(t), vα,k ∈ R, for all α ∈ I is integrable in the

Itô-Skorokhod sense if it holds that

∑

α∈I

∑

k∈N
v2α,k |α| α! < ∞. (47)

Then, the Itô-Skorokhod integral of v is of the form (46) and we write v ∈ Dom(δ).

Theorem 10 The Skorokhod integral δ of an L2(R)-valued stochastic process is a
linear and continuous mapping

δ : Dom(δ) → L2(�).

Proof Let v satisfy condition (47). Then we have

‖δ(v)‖2L2(�)
=

∥
∥
∥

∑

|β|>0

∑

k∈N
vβ−ε(k),k Hβ

∥
∥
∥
2

L2(�)
= ∑

|β|>0

(
∑

k∈N
vβ−ε(k),k

)2

β!

= ∑

α∈I

(
∑

k∈N
vα,k

√
αk + 1

)2

α! ≤ c
∑

α∈I
∑

k∈N
v2α,k |α| α! < ∞,

where we used β! = (α + ε(k))! = (αk + 1) α!, for α ∈ I, k ∈ N. 
�

A detailed analysis of the domain and the range of operators of the Malliavin
calculus in spaces of stochastic distributions can be found in [28,29,31].

First, we solve the stochastic operator DAE (44) with the stochastic perturbations
given in terms of a stochastic convolution and without disturbance in the constraint
equation. In order to prove the convergence of obtained solution in the Kondratiev
space of generalized processes it is necessary to assume uniform boundness of the
family of operators Cα , α ∈ I. Then, we consider the stochastic operator DAE (44)
with perturbation in the constraint equation that is given by a Gaussian noise term.

Theorem 11 Let Assumption 3 hold for the operators K and B and stochastic
processes F and G and let C be a coordinatewise operator that corresponds to a
family of deterministic operators {Cα}α∈I , Cα : V → V∗ for α ∈ I that satisfy

‖Cα‖ ≤ d < 1, for all α ∈ I. (48)
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Then, for any consistent initial data that satisfies (21) there exists a unique solution
u ∈ L2(T ;V) ⊗ (S)−1 of the stochastic operator DAE

u̇(t) + Ku(t) + B∗λ(t) = F(t) + δ(Cu), (49a)

Bu(t) = G(t). (49b)

Proof We are looking for the solution in the chaos expansion form (9). For this, we
apply the polynomial chaos expansionmethod to problem (49) andobtain the following
systems of deterministic operator DAEs:

1◦ for |α| = 0, i.e., for α = 0,

u̇0(t) + K0u0(t) + B∗
0λ0(t) = f0(t),

B0u0(t) = g0(t). (50)

2◦ for |α| = 1, i.e., for α = ε(k), k ∈ N,

u̇ε(k) (t) + Kε(k) uε(k) (t) + B∗
ε(k) λε(k) (t) = fε(k) + (C0 u0)k,

Bε(k) uε(k) (t) = gε(k) (t).
(51)

3◦ for |α| > 1,

u̇α(t) + Kα uα(t) + B∗
α λα(t) = fα(t) +

∑

k∈N

(
Cα−ε(k) uα−ε(k)

)
k ,

Bα uα(t) = gα(t). (52)

Note that the corresponding initial conditions are given as in systems (32)–(34). The
term (C0u0)k appearing in (51) represents the kth component of the action of the
operator C0 on the solution u0 obtained in the previous step, i.e., on the solution of the
system (50). Similarly, the term (Cα−ε(k) uα−ε(k) )k from (52) represents the kth coeffi-
cient obtained by the action of the operatorCα−ε(k) on uα−ε(k) calculated in the previous
steps.We use the convention thatCα−ε(k) exists only for those α ∈ I for which αk ≥ 1.
Therefore, the sum

∑
k∈N(Cα−ε(k) uα−ε(k) )k has asmany summands as themulti-index

α has non-zero components. For example, forα = (2, 0, 1, 0, 0, . . .)with twonon-zero
components α1 = 2 and α3 = 1, the sum has two terms (C(1,0,1,0,0,...)u(1,0,1,0,0,...))1
and (C(2,0,0,0,0,...)u(2,0,0,0,0,...))3.

We point out that, in contrast to the previous cases, the unknown coefficients are
obtained by recursion. Thus, in order to calculate uα , we need the solutions uβ for
β < α from the previous steps. Also this case can be found in applications, see for
example [24,29,31,33].

We apply the estimate (2) fromTheorem 1 to the deterministic operator DAEs (50)–
(52) for the coefficients uα in each step recursively and then prove the convergence of
u in L2(T ;V) ⊗ (S)−1. Particularly, we have to show that for some p ∈ N it holds

∑

α∈I
‖uα‖2L2(V)

(2N)−pα < ∞.
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For |α| = 0, from the system (50) and by (2) we estimate the coefficient u0, i.e.,

‖u0‖2L2(V)
� ‖u0B,0‖2H + ‖ f0‖2L2(V∗) + ‖g0‖2H1(Q∗).

For |α| = 1, i.e., for α = ε(k), k ∈ N, by the system (51) we obtain the estimate

‖uε(k)‖2L2(V)
� ‖u0B,ε(k)‖2H + ‖ fε(k) + (C0u0)k‖2L2(V∗) + ‖gε(k)‖2H1(Q∗), k ∈ N,

while for |α| > 1 from (52) we obtain

‖uα‖2L2(V)
� ‖u0B,α‖2H + ∥

∥ fα +
∑

k∈N
(Cα−ε(k)uα−ε(k) )k

∥
∥2
L2(V∗) + ‖gα‖2H1(Q∗).

We sum up all the coefficients and apply the obtained estimates. Thus, we get

∑

α∈I
‖uα‖2L2(V)

(2N)−pα �
∑

α∈I
‖u0B,α‖2H(2N)−pα +

∑

α∈I
‖ fα‖2L2(V∗)(2N)−pα

+
∑

α∈I
‖gα‖2H1(Q∗)(2N)−pα

+
∑

α∈I,|α|>0

(
∑

k∈N
(Cα−ε(k)uα−ε(k) )k

)2

(2N)−pα. (53)

From the assumptions (17) and (22) it follows that the first three summands on the
right hand side of (53) are finite. The last term can be estimated in the following way

∑

|α|>0

(
∑

k∈N

(
Cα−ε(k)uα−ε(k)

)
k

)2

(2N)−pα ≤ ∑

β∈I

(
∑

k∈N

(
Cβuβ

)
k (2k)−

p
2

)2

(2N)−pβ

≤ ∑

β∈I

(
∑

k∈N

(
Cβuβ

)2
k

∑

k∈N
(2k)−p

)

(2N)−pβ ≤ M
∑

β∈I
‖Cβuβ‖2 (2N)−pβ

≤ M d
∑

β∈I
‖uβ‖2 (2N)−pβ = M d ‖u‖2

L2(V)⊗(S)−1,−p
.

Therein, we have first used the substitution α = β + ε(k) and the property

(2N)β+ε(k) = (2N)β · (2N)ε
(k) = (2N)β · (2k),

then the Cauchy-Schwartz inequality, the uniformly boundness of the family {Cα}α∈I
from (48), and at last the sum M = ∑

k∈N (2k)−p < ∞ for p > 1. Finally, putting
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everything together in (53), we obtain

‖u‖2
L2(V)⊗(S)−1

≤ c

(
∑

α∈I

∥
∥
∥u0B,α

∥
∥
∥
2

H (2N)−pα + ∑

α∈I
‖ fα‖2

L2(V∗) (2N)−pα

+ ∑

α∈I
‖gα‖2

H1(Q∗)(2N)−pα

)

+ M d ‖u‖2
L2(V)⊗(S)−1

.

We group the two summands with the term ‖u‖2
L2(V)⊗(S)−1

on the left hand side of the
inequality and obtain

‖u‖2
L2(V)⊗(S)−1

(1 − Md) �
∑

α∈I

∥
∥
∥u0B,α

∥
∥
∥
2

H (2N)−pα + ∑

α∈I
‖ fα‖2

L2(V∗)(2N)−pα

+
∞∑
k=1

‖mk‖2L2(V∗)(2k)
−p + ∑

α∈I
‖gα‖2

H1(Q∗)(2N)−pα.

Since (48) holds, one can choose p large enough so that 1 − Md > 0. With this, we
have proven that the solution u of (49) the norm ‖u‖2

L2(V)⊗(S)−1
is finite and thus,

complete the proof of theorem norm. 
�
Let us now consider briefly the stochastic operator DAE (44). This problem corre-

sponds to the stochastic operatorDAE (49)with additional disturbance in the constraint
equation. Similar to Theorem 9, the regularization is needed and will be provided only
for the coefficients uα , when |α| = 1. Thus one can obtain the error estimate of the
solution of the initial problem (49) and the perturbed one (44), i.e. of the solutions of
their corresponding problems in extended forms. Here we state the theorem, but omit
the proof.

Theorem 12 Let the assumptions of Theorem 11 hold. Let (u1, u2, v2, λ2) be the
solution of operator DAE

u̇1(t) + v2(t) + K(
u1(t) + u2(t)

) + B∗λ(t) = F(t) + δ(Cu)

Bu2(t) = G(t)

Bv2(t) = Ġ(t)

and (û1, û2, v̂2, λ̂2) the solution of the corresponding perturbed operator DAE

u̇1(t) + v2(t) + K(
u1(t) + u2(t)

) + B∗λ(t) = F(t) + δ(Cu)

Bu2(t) = G(t) + G(1)
t

Bv2(t) = Ġ(t) + G(1)
t ,

where the perturbations G(1)
t and G(2)

t are considered to be of the forms (31) and (36),
with the coefficients m(1)

k ∈ L2(T ;Q∗) and m(2)
k ∈ L2(T ;Q∗) such that (40) holds
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for some p ∈ N0. . Then, the error e1 = û1 − u1 satisfies the following estimate

‖e1‖2C(T ;H)⊗(S)−1,−p
+ ‖e1‖2L2(V)⊗(S)−1,−p

�
∑

k∈N

∥
∥
∥m(1)

k

∥
∥
∥
L2(Q∗)

(2k)−p + ∑

k∈N

∥
∥
∥m(2)

k

∥
∥
∥
L2(Q∗)

(2k)−p < ∞.

With this result, we close this section and consider a further generalization, namely
the fully stochastic case.

5 An example involving operators of Malliavin calculus

We present an example involving operators of Malliavin calculus which has the same
structure as the deterministic operator DAE (1). Although this example does not arise
in fluid dynamics it is related with the extension of our results to nonlinear equations in
particular Navier–Stokes equation. Thus, we consider a semi-explicit systems includ-
ing the stochastic operators from theMalliavin calculus and use their duality relations.
Denote by D and δ the Malliavin derivative operator and the Itô-Skorokhod integral,
respectively. As mentioned above, the Itô-Skorokhod integral is the adjoint operator
of the Malliavin derivative, i.e., the duality relationship

E (F · δ(u)) = E (〈DF, u〉) ,

holds for stochastic functions u and F belonging to appropriate spaces [37].
Assume that the stochastic operator K is a coordinatewise operator such that the

corresponding deterministic operators {Kα}α∈I are densely defined on a given Banach
space X . Taking in (1) the operators B = D and thus B∗ = δ, we can consider the
stochastic operator DAE of the form

u̇ + K u + δ λ = v

D u = y (54)

such that the initial condition u(0) = u0 holds and given stochastic processes v and
y.

The results concerning the generalizedMalliavin calculus and the equations involv-
ing these operators can be found in [28,29,31,32]. The chaos expansion method
combined with the regularization techniques presented in the previous sections can
be applied also in this case. Here we present the direct chaos expansion approach and
prove the convergence of the obtained solution.

In the generalized S′(R) setting, the operators of the Malliavin calculus are defined
as follows:

1. The Malliavin derivative, namely D, as a stochastic gradient in the direction of
white noise, is a linear and continuous mapping D : Dom(D) ⊆ X ⊗ (S)−1 →
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X ⊗ S′(R) ⊗ (S)−1 given by

Du =
∑

α∈I

∑

k∈N
αk uα ⊗ ξk ⊗ Hα−εk , (55)

for u = ∑
α∈I uα ⊗ Hα , uα ∈ X , α ∈ I. We say that a process u is differentiable

in Malliavin sence, i.e., it belongs to the domain Dom(D) if and only if for some
p ∈ N0 it holds that

∑

α∈I
|α|2 ‖uα‖2X (2N)−pα < ∞.

The operator D reduces the order of the Wiener chaos space and it holds that the
kernel Ker(D) consists of constant random variables, i.e., random variables having
the chaos expansion in the Wiener chaos space of order zero. In terms of quantum
theory, this operator corresponds to the annihilation operator.

2. The Itô-Skorokhod integral, namely δ, is a linear and continuous mapping δ : X ⊗
S′(R) ⊗ (S)−1 → X ⊗ (S)−1 given by

δ(F) =
∑

α∈I

∑

k∈N
fα ⊗ vα,k ⊗ Hα+εk , for F =

∑

α∈I
fα ⊗

(
∑

k∈N
vα,k ξk

)

⊗ Hα.

Note that the domain Dom(δ) = X ⊗ S′(R)⊗ (S)−1. The operator δ is the adjoint
operator of the Malliavin derivative. It increases the order of the Wiener chaos
space and in terms of quantum theory δ corresponds to the creation operator.

3. The Ornstein-Uhlenbeck operator, namely R, as the composition δ ◦ D, is the
stochastic analogue of the Laplacian. It is a linear and continuousmappingR : X⊗
(S)−1 → X ⊗ (S)−1 given by

R(u) =
∑

α∈I
|α|uα ⊗ Hα for u =

∑

α∈I
uα ⊗ Hα.

Clearly, R is a coordinatewise operator and its domain Dom(R) coincides with
the domain Dom(D). In terms of quantum theory, the operator R corresponds to
the number operator. It is a self-adjoint operator with eigenvectors equal to the
basis elements Hα , α ∈ I, i.e., R(Hα) = |α|Hα , α ∈ I. Therefore, Gaussian
processes from the Wiener chaos space of order one with zero expectation are the
only fixed points for the Ornstein-Uhlenbeck operator [28,31].

In this section we present the direct method of solving system (54), which relies
on the results obtained in [27,29,31]. First, we solve the second equation with the
initial condition in (54) and obtain the solution u in the space of stochastic processes
X ⊗ (S)−1. Then by subtracting the obtained solution u in the first equation of (54) we
solve an integral equation and obtain the explicit form of λ in the space of generalized
S′(R)-stochastic processes.
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Theorem 13 Let the operatorK satisfy the assumptions1◦ and3◦ ofAssumption3. Let
a process y ∈ X⊗S′(R)⊗(S)−1 have a chaos representation y = ∑

α∈I
∑

k∈N yα,k⊗
ξk⊗Hα and a process v ∈ X⊗(S)−1 have a chaos representation v = ∑

α∈I vα ⊗Hα

such that Ev = K0 u0. Then the stochastic problem (54) with the initial condition
Eu = u0 ∈ X has a unique solution u ∈ X ⊗ (S)−1 and λ ∈ X ⊗ S(R)⊗ (S)−1 given
respectively by

u = u0 +
∑

α∈I,|α|>0

1

|α|
∑

k∈N
yα−ε(k),k ⊗ Hα (56)

and

λ =
∑

α∈I

∑

k∈N
(αk + 1)

v
(1)
α+ε(k)

|α + ε(k)| ⊗ ξk ⊗ Hα, (57)

where v(1) = v − u̇ − Ku.

Proof We search for the solution represented of the form (18). The initial value prob-
lem involving the Malliavin derivative operator

Du = y, Eu = u0 ∈ X (58)

can be solved by applying the integral operator on both sides of the equation. For a
given process y ∈ X ⊗ S−l(R)⊗ (S)−1,−q , l ∈ N0, q > l+1, represented in its chaos
expansion form y = ∑

α∈I
∑

k∈N yα,k ⊗ ξk ⊗ Hα , the equation (58) has a unique
solution in Dom(D) given by (56), [27,29]. Clearly, it holds that

‖u‖2X⊗(S)−1,−q
≤

∥
∥
∥u0

∥
∥
∥
2

X
+ c ‖y‖2X⊗S−l (R)⊗(S)−1,−q

< ∞.

The operator K is a coordinatewise operator and corresponds to a uniformly
bounded family of operators {Kα}α∈I , i.e., it holds that ‖Kα‖ ≤ M , α ∈ I. For
u ∈ X ⊗ (S)−1

⋂
Dom(D) it holds that

‖Ku‖2X⊗(S)−1,−q
=

∑

α∈I
‖Kαuα‖2X (2N)−qα ≤ M‖u‖2X⊗(S)−1,−q

< ∞

and thus we conclude thatKu ∈ X ⊗ (S)−1,−q . Since yα ∈ X ⊗ S−l(R), we can apply
the formula for derivatives of the Hermite functions [22]. Thus,

ẏα =
∑

k∈N
yα,k ⊗ d

dt
ξk =

∑

k∈N
yα,k ⊗

(√
k

2
ξk−1 −

√
k + 1

2
ξk+1

)

and it holds that ẏα ∈ X⊗ S−l−1(R). We note that the problemDu̇ = ẏ with the initial
condition Eu̇ = u1 ∈ X also holds and it can be solved as equation (58). Hence, the
following estimate holds

‖u̇‖2X⊗(S)−1,−q
≤

∥
∥
∥u1

∥
∥
∥
2

X
+ c ‖ẏ‖2X⊗S−l−1(R)⊗(S)−1,−q

< ∞.
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Let v ∈ X ⊗ (S)−1,−q and denote by v(1) = v − u̇ −Ku. From the given assumptions
it follows v(1) ∈ X ⊗ (S)−1,−q and it has zero expectation. Let

v1 =
∑

α∈I,|α|≥1

v(1)
α ⊗ Hα, v(1)

α ∈ X.

Then the integral equation
δλ = v1

has a unique solution λ in X ⊗ S−l−1(R) ⊗ (S)−1,−q , for l > q, given in the form
(57), see [28,31]. The estimate

‖v‖2X⊗(S)−1,−q
≤ c

(
‖u‖2X⊗(S)−1,−q

+ ‖v‖2X⊗(S)−1,−q
+ ‖u̇‖2X⊗(S)−1,−q

)

also holds. 
�
Theorem 14 Let y = ∑

α∈I
∑

k∈N yα,k ⊗ ξk ⊗ Hα ∈ X ⊗ S′(R)⊗ (S)−1. The initial
value problem (58) is equivalent to the system of two initial values problems

D u1 = 0, Eu1 = u0 ∈ X and D u2 = y, Eu2 = 0, (59)

where u = u1 + u2.

Proof Let u1 and u2 be the solutions of the system (59). From the linearity of the
operator D and the linearity of E it follows Du = D(u1 + u2) = Du1 +Du2 = y and
Eu = E(u1 + u2) = Eu1 + Eu2 = u0. Thus the superposition of u1 and u2 solves
(58).

Let now u be the solution of (58). By Theorem 13 it has chaos expansion represen-
tation form (56). The kernel of D, i.e., Ker(D) is equal to H0 and therefore u can be
expressed in the form u = u1 + u2, where u1 ∈ Ker(D) and u2 ∈ Im(D). Thus, by
(56) we conclude that Du1 = 0 and Eu1 = u0, while Du2 = y and Eu2 = 0. 
�

5.1 Extension to nonlinear equations

In [36] the authors show that a random polynomial nonlinearity can be expanded in
a Taylor alike series involving Wick products and Malliavin derivatives. This result
has been applied to the nonlinear advection term in the Navier–Stokes equations [44].
There a detailed study of the accuracy and computational efficiency of these Wick-
type approximations is shown. We point out that following the same approach we can
extend the ideas presented in this paper to Navier–Stokes equations. Specifically, by
the product formula, of two square-integrable stochastic processes u and v,

uv =
P∑

i=0

D
(i)u ♦D

(i)v

i ! ,
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where ♦ denotes the Wick product and D(i) is the i th order of the Malliavin derivative
operator, one can construct approximations of finite stochastic order. Particularly, the
nonlinear advection term in the Navier–Stokes equations can be approximated by

(u · ∇)u �
Q∑

i=0

(D(i)♦∇)D(i)u

i ! , (60)

where Q denotes the highest stochastic order in the Wick-Malliavin expansion. The
zero-order approximation (u · ∇)u � (u♦∇)u is known as the Wick approximation,
while (u · ∇)u � (u♦∇)u + (Du♦∇)Du is the first-order Wick-Malliavin approxi-
mation [44]. As the Malliavin derivate has an explicit chaos expansion representation
form (55), the formula (60) allows us to express the nonlinear advection term in terms
of chaos expansions. Therefore, the ideas presented in this paper for the linear semi-
explicit stochastic operator DAEs can be extended to Navier–Stokes equations and in
general to equations with nonlinearities of the type (60). Moreover, the multiplication
formula

v G = v♦G +
∑

α∈I

∑

k∈N
(αk + 1) vα+ε(k) gk Hα,

holds for a Gaussian process G = g0 + ∑
k∈N gk Hε(k) ∈ X ⊗ (S)−1 and a process

v = ∑
α∈I vαHα ∈ X ⊗ (S)−1 [28,31]. The equations involving higher orders of

the Malliavin derivarive operator were solved in [31]. Thus, the results proved in this
paper and the ones in [36,44] can be generalized for this type of general processes
(not necessary square integrable). We intent to investigate this in a future work.

6 Conclusion

We have analyzed the influence of stochastic perturbations to linear operator DAEs
of semi-explicit structure. With the application of the polynomial chaos expansion,
we could reduce the problem to a system of deterministic operator DAEs. Since the
obtained system is very sensitive to perturbations in the constraint equation, we ana-
lyze a regularized version of the system. With this, we have proven the existence and
uniqueness of a solution of the stochastic operator DAE in a weighted space of gener-
alized stochastic processes. Examples analyzed in this paper are the Stokes equations
and the linearized Navier–Stokes equations. Moreover, the results of this paper can be
extended to a certain type of nonlinear equations including Navier–Stokes.
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30. Levajković, T., Pilipović, S., Seleši, D.: The stochastic Dirichlet problem driven by the Ornstein-
Uhlenbeck operator: approach by the Fredholm alternative for chaos expansions. Stoch. Anal. Appl.
29, 317–331 (2011)
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Preface

This book provides a comprehensive and unified introduction to stochastic differ-
ential equations involving Malliavin calculus operators. Particularly, it contains
results on generalized stochastic processes, linear quadratic optimization and
specific applications that appear in the literature as a series of papers ranging from
classical Hilbert spaces to numerical approximations in a white noise analysis
setting. The intended audience are researchers and graduate students interested in
stochastic partial differential equations and related fields. This book is
self-contained for readers familiar with white noise analysis and Malliavin calculus.
A major contribution of this book is the development of generalized Malliavin
calculus in the framework of white noise analysis, based on chaos expansion
representation of stochastic processes and its application for solving several classes
of stochastic differential equations with singular data, i.e., singular coefficients and
singular initial conditions, involving the main operators of Malliavin calculus.

This book is divided into four chapters. The first, entitled White Noise Analysis
and Chaos Expansions, includes notation and provides the reader with the theo-
retical background needed to understand the subsequent chapters. In particular, we
introduce spaces of random variables and stochastic processes, and consider pro-
cesses that have finite variance on classical and fractional Gaussian white noise
probability spaces. We also present processes with infinite variance, particularly
Kondratiev stochastic distributions. We introduce the Wick and ordinary multi-
plication of the processes and state where these operations are well defined.

In Chap. 2, Generalized Operators of Malliavin Calculus, the Malliavin
derivative operator D, the Skorokhod integral d and the Ornstein–Uhlenbeck
operator R are introduced in terms of chaos expansions. The main properties of the
operators, which are known in the literature for the square integrable processes, are
proven using the chaos expansion approach and extended for generalized and test
stochastic processes. Moreover, we discuss fractional versions of these operators.
Chapter 3, Equations Involving Malliavin Calculus Operators, is devoted to the
study of several types of stochastic differential equations that involve the operators
of Malliavin calculus, introduced in the previous chapter. In particular, we describe
the range of the operators D, d and R.
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In Chap. 4, we present applications of the chaos expansion method in optimal
control and stochastic partial differential equations. In particular, we consider the
stochastic linear quadratic optimal control problem where the state equation is given
by a stochastic differential equation of the Ito-Skorokhod type with different forms
of noise disturbances, operator differential algebraic equations arising in fluid
dynamics, stationary equations and fractional versions of the studied equations.
Moreover, we provide a numerical framework based on chaos expansions and
perform numerical simulations.

We would like to express our gratitude to our institutions, University of
Innsbruck (Austria) and Yachay Tech (Ecuador) for giving us the opportunity to
work in great environments. H. Mena thanks the support of the Austrian Science
Foundation (FWF) – project id: P27926. Special thanks go to all our co-authors and
colleagues, who contributed greatly in making this project enjoyable and success-
ful. Last but not least, we would like to thank our families for their love and
support.
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Chapter 1
White Noise Analysis and Chaos Expansions

Abstract In the framework of white noise analysis, random variables and stochastic
processes can be represented in terms of Fourier series in a Hilbert space orthogonal
basis, namely in their chaos expansion forms. We briefly summarize basic concepts
and notations of white noise analysis, characterize different classes of stochastic
processes (test, square integrable and generalized stochastic processes) in terms of
their chaos expansion representations and review the main properties of the Wick
calculus and stochastic integration.

1.1 Introduction

White noise analysis, introduced by Hida in [9] and further developed by many
authors [11, 26], as a discipline of infinite dimensional analysis, has found applica-
tions in solving stochastic differential equations (SDEs) and thus in the modeling of
stochastic dynamical phenomena arising in physics, economy, biology [6, 27, 29,
34, 37]. In this context, white noise analysis was proposed as an infinite dimensional
analogue of the Schwartz theory of deterministic generalized functions.

Stochastic processes with infinite variance, e.g. the white noise process, appear
in many cases as solutions of SDEs. The Hida spaces and the Kondratiev spaces
[9, 11] have been introduced as the stochastic analogues of the Schwartz space of
tempered distributions in order to provide a strict theoretical meaning for this kind of
processes. The spaces of test processes contain highly regular processes which allow
one to detect the action of generalized processes. The chaos expansion of a stochastic
process provides a series decomposition of a square integrable process in a Hilbert
space orthogonal basis built upon a class of special functions, Hermite polynomials
and functions, in the framework of white noise analysis. In order to build spaces of
stochastic test and generalized functions, one has to use series decompositions via
orthogonal functions as a basis, with certain weight sequences. Here, we follow the
classical Hida approach [9], which suggests to start with a nuclear space G and its
dual G ′, such that G ⊆ L2(R) ⊆ G ′, and then take the basic probability space to
be Ω = G ′ endowed with the Borel sigma algebra of the weak topology and an
appropriate probability measure P .

© The Author(s) 2017
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SpringerBriefs in Mathematics, DOI 10.1007/978-3-319-65678-6_1
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2 1 White Noise Analysis and Chaos Expansions

We consider P to be either the Gaussian white noise probability measure μ or the
fractionalGaussianwhite noise probabilitymeasureμH . In these cases the orthogonal
basis of L2(P) can be constructed from any orthogonal basis of L2(R) that belongs
to G and from the Hermite polynomials [11]. Note that, in the case of a Poissonian
measure the orthogonal basis of L2(P) is constructed using the Charlier polynomials
together with the orthogonal basis of L2(R). We will focus on the case where G and
G ′ are the Schwartz spaces of rapidly decreasing test functions S(R) and tempered
distributions S′(R). In this case, the orthogonal family of L2(R) can be represented
in terms of the Hermite functions.

Fractional Brownianmotion b(H)
t is one-parameter extension of a standardBrown-

ian motion bt and the main properties of such a Gaussian process depend on values
of the Hurst parameter H ∈ (0, 1). Fractional Brownian motion, as a process with
independent increments which have a long-range dependence and self-similarity
properties, found many applications modeling wide range of problems in hydrology,
telecommunications, queuing theory andmathematical finance [3, 6]. A specific con-
struction of stochastic integrals with respect to fractional Brownian motion defined
for all possible values H ∈ (0, 1), was introduced by Elliot and van der Hoek in
[7]. Several different definitions of stochastic integration for fractional Brownian
motion appear in literature [3, 7, 33, 36]. We follow [7] and use the definition of
the fractional white noise spaces by use of the fractional transform mapping for all
values of H ∈ (0, 1) and the extension of the action of the fractional transform
operator to a class of generalized stochastic processes. The main properties of the
fractional transform operator and the connection of a fractional Brownian motion
with a classical Brownian motion on the classical white noise space were presented
in [3, 19].

The spaces of generalized random variables are stochastic analogues of determin-
istic generalized functions. They have no point value for ω ∈ Ω , only an average
value with respect to a test random variable [9, 11, 16]. We introduce the Kondratiev
spaces of stochastic distributions (S)P−ρ , ρ ∈ [0, 1], with respect to the probability
measure P , and thus obtain a Gel’fand triplet (S)P

ρ ⊆ L2(P) ⊆ (S)P−ρ .
We consider generalized stochastic processes to be measurable mappings from

R into (S)P−ρ or more general, elements of a tensor product X ⊗ (S)P−ρ , [23, 37].
Altogether we work with three different types of processes: test, square integrable
and generalized stochastic processes. We will characterize them in terms of chaos
expansions and review the main properties of the Wick calculus and stochastic inte-
gration. Finally, we will introduce coordinatewise operators and convolution type of
operators acting on all considered sets of stochastic processes.

1.2 Deterministic Background

TheSchwartz spaces of rapidly decreasing functions S(R) and tempered distributions
S′(R) can be characterized in terms of Fourier series representations in the Hermite
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1.2 Deterministic Background 3

functions orthonormal basis. This gives a motivation to build analogous spaces of
stochastic elements which allow the chaos decompositions in terms of an orthogonal
basis of the Fourier-Hermite polynomials.

The Hermite polynomial of order n for n ∈ N0 is defined by

hn(x) = (−1)ne
x2

2
dn

dxn
(e− x2

2 ), x ∈ R,

and the Hermite function of order n + 1, n ∈ N0, is defined by

ξn+1(x) = 1
4
√

π
√

n!e− x2

2 hn(
√
2x), x ∈ R. (1.1)

The following relations for the derivatives of the Hermite polynomials and the Her-
mite functions hold h′

n(x) = nhn−1(x), n ∈ N and

ξ ′
n(x) =

√
n

2
ξn−1 −

√
n + 1

2
ξn+1, n ∈ N. (1.2)

Moreover, |ξn| ≤ c n− 1
12 for |x | ≤ 2

√
n and |ξn| ≤ c e−γ x2

for |x | > 2
√

n for
constants c and γ independent of n, [11]. Recall, the family { 1√

n! hn}n∈N0 forms

an orthonormal basis of the space L2(R) with respect to the Gaussian measure

dμ = 1√
2π

e− x2

2 dx . The family of Hermite functions {ξn+1}n∈N0 constitutes a com-

plete orthonormal system of L2(R) with respect to the Lebesque measure. Namely,
every deterministic function g ∈ L2(R) have Fourier series representation

g(x) =
∑
k∈N

ak ξk(x), (1.3)

with coefficients ak = (g, ξk)L2(R) ∈ R satisfying
∑

k∈N a2
k < ∞.

The Schwartz space of rapidly decreasing functions is defined as

S(R) = { f ∈ C∞(R) : ∀α, β ∈ N0, ‖ f ‖α,β = sup
x∈R

|xα Dβ f (x)| < ∞},

and the topology on S(R) is given by the family of seminorms ‖ f ‖α,β . The space
S(R) is a nuclear countableHilbert space and the family ofHermite functions {ξn}n∈N
forms an orthonormal basis of S(R), [12]. The Schwartz space of rapidly decreasing
functions can be constructed as the projective limit S(R) = ⋂

l∈N0
Sl(R) of the family

of spaces

Sl(R) = {ϕ =
∞∑

k=1

ak ξk ∈ L2(R) : ‖ϕ‖2l =
∞∑

k=1

a2
k (2k)l < ∞}, l ∈ N0. (1.4)
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4 1 White Noise Analysis and Chaos Expansions

Note that Sl(R), l ∈ Z is a Hilbert spaces endowed with the scalar product 〈·, ·〉l ,
l ∈ Z given by 〈ξk, ξ j 〉l = 0 for k 
= j and 〈ξk, ξ j 〉l = ‖ξk‖2l = (2k)l for k = j .
Moreover, Sl1 ⊆ Sl2 , for l1 ≥ l2. The Schwartz space of tempered distributions S′(R)

is the dual space of the space S(R) equipped with the strong topology, which is
equivalent to the inductive topology. Its elements are called generalized functions
or distributions [12]. The Schwartz space of tempered distributions is isomorphic to
the inductive limit S′(R) = ⋃

l∈N0
S−l(R) of the family of spaces

S−l(R) = { f =
∞∑

k=1

bk ξk : ‖ f ‖2−l =
∞∑

k=1

b2
k (2k)−l < ∞}, l ∈ N0.

The action of a generalized function f = ∑
k∈N bkξk ∈ S′(R) onto a test function

ϕ = ∑
k∈N akξk ∈ S(R) is given by 〈 f, ϕ〉 = ∑

k∈N akbk . Also, S(R) ⊆ L2(R) ⊆
S′(R) is a Gel’fand triple with continuous inclusions.

1.3 Spaces of Random Variables

Throughout thismanuscriptwework on twoGaussianwhite noise probability spaces,
namely the classical (S′(R),B, μ) and the fractional (S′(R),B, μH )which respec-
tively correspond to the Gaussian probability measures μ and μH , Sects. 1.3.1 and
1.3.6. In this section, we recall notions of random variables, not only square inte-
grable but also those which are elements of the Hida-Kondratiev spaces. We state
the famous Wiener-Itô chaos expansion theorem and characterize random variables
through their chaos expansion forms. We follow the ideas from [7, 9, 11, 15].

1.3.1 Gaussian White Noise Space

Consider the Schwartz space of tempered distributions S′(R), the Borel sigma-
algebra B generated by the weak topology on S′(R) and a given characteristic
function C . Recall, a mapping C : S(R) → C given on a nuclear space S(R) is
called a characteristic function if it is continuous, positive definite, i.e.,

n∑
i=1

n∑
j=1

zi z j C(ϕi − ϕ j ) ≥ 0,

for all ϕ1, ..., ϕn ∈ S(R) and z1, ..., zn ∈ C, and if it satisfies C(0) = 1. Then, by the
Bochner-Minlos theorem, there exists a unique probability measure P on (S′(R),B)

such that for all ϕ ∈ S(R) the relation EP(ei〈ω,ϕ〉) = C(ϕ) holds [9, 11]. Here EP

denotes the expectation with respect to the measure P and 〈ω, ϕ〉 denotes the dual
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1.3 Spaces of Random Variables 5

pairing between a tempered distributionω ∈ S′(R) and a rapidly decreasing function
ϕ ∈ S(R). Further on, we will omit writing the measure P . Thus,

∫
S′(R)

ei〈ω,ϕ〉d P(ω) = C(ϕ), ϕ ∈ S(R). (1.5)

The triplet (S′(R),B, P) is called the white noise probability space and the measure
P is called the white noise probability measure.

If we choose in (1.5) the characteristic function of a Gaussian random variable

C(ϕ) = exp

[
−1

2
‖ϕ‖2L2(R)

]
, ϕ ∈ S(R), (1.6)

then the corresponding uniquemeasure P from theBochner-Minlos theorem is called
the Gaussian white noise measure and is denoted by μ. The triplet (S′(R),B, μ) is
called the Gaussian white noise probability space.

The space L2(μ) = L2(S′(R),B, μ) is the Hilbert space of square integrable
random variables on S′(R)with respect to the Gaussian measure μ. Thus, from (1.5)
and (1.6) it follows

∫
S′(R)

ei〈ω,ϕ〉dμ(ω) = e− 1
2 ‖ϕ‖2

L2(R) , ϕ ∈ S(R). (1.7)

From (1.7) we conclude that the random element 〈ω, ϕ〉, ϕ ∈ S(R), ω ∈ S′(R) is a
centered Gaussian square integrable random variable with the variance

V ar(〈ω, ϕ〉) = E(〈ω, ϕ〉2) = ‖ϕ‖2L2(R). (1.8)

The element 〈ω, ϕ〉 is called smoothed white noise and themapping J1 : ϕ → 〈ω, ϕ〉,
ϕ ∈ S(R) can be extended to an isometry from L2(R) to L2(μ).

Example 1.1 Brownian motion. By extending the action of a distribution ω ∈ S′(R)

not only onto test functions from S(R) but also onto elements of L2(R) we obtain
Brownian motion with respect to the measure μ in the form

bt (ω) = 〈ω, χ [0, t]〉, ω ∈ S′(R),

where χ [0, t] represents the characteristic function of interval [0, t], t ∈ R. To
be precise, 〈ω, χ [0, t]〉 is a well defined element of L2(μ) for all t , defined by
lim

n→∞〈ω, ϕn〉, where ϕn → χ [0, t], n → ∞ in L2(R). It has a zero expectation and

its covariance function equals

E (〈ω, χ [0, t]〉〈ω, χ [0, s]〉) = E(bt (ω) bs(ω)) = min{t, s}, t, s > 0.
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6 1 White Noise Analysis and Chaos Expansions

Recall, Brownian motion is a Gaussian process whose almost all trajectories are
continuous but nowhere differentiable functions [14, 39].

Example 1.2 The Itô integral. For a deterministic function f ∈ L2(R), the smoothed
white noise 〈ω, f 〉 can be represented in the form of a stochastic integral with respect
to Brownian motion

〈ω, f 〉 =
∫
R

f (t) dbt (ω).

Clearly, 〈ω, f 〉 equals to the (one-fold) Itô integral I1( f ). Thus, E( I1( f )) = 0 and
also the Itô isometry ‖I1( f )‖2L2(μ)

= ‖ f ‖2L2(R)
holds.

Remark 1.1 For different choices of positive definite functionals C(ϕ) in (1.5) one
can obtain different white noise probabilistic measures, which then correspond to
such functionals. In particular, C(ϕ) is the characteristic function of the compound
Poisson random variable then the corresponding white noise measure is the Pois-
sonian white noise measure. In [34] the authors replaced the characteristic function
C(ϕ) by a completely monotonic function defined by the Mittag-Leffler function of
order 0 < β ≤ 1 and obtained the gray noise measure, which is more general then
the white noise measure. With a similar construction, one can also obtain the Lévy
white noise measure [6, 42].

1.3.2 Wiener-Itô Chaos Expansion of Random Variables

Denote by I = (NN

0 )c the set of sequences of non-negative integers which have
finitely many nonzero components. Its elements are multi-indices α ∈ I of the
form α = (α1, α2, . . . , αm, 0, 0 . . .), αi ∈ N0, i = 1, 2, ..., m, m ∈ N, where
I ndex(α) = max{k ∈ N : αk 
= 0} = m. Particularly, 0 = (0, 0, ...) denotes
the zeroth vector and ε(k) = (0, · · · , 0, 1, 0, · · · ), k ∈ N is the kth unit vector.
The length of α ∈ I is defined by |α| = ∑∞

k=1 αk . Operations with multi-indices
are carried out componentwise, e.g. α! = ∏∞

k=1 αk !,
(
α

β

) = α!
β!(α−β)! and (2N)α =∏

i∈N(2i)αi . Note that α > 0 if it has at least one nonzero component, i.e., αk > 0
for some k ∈ N. We say α ≥ β if it holds αk ≥ βk for all k ∈ N and in that
case α − β = (α1 − β1, α2 − β2, ...). Particularly, for αk > 0 we have α − ε(k) =
(α1, ..., αk−1, αk − 1, αk+1, ..., αm, 0, ...), k ∈ N. For α < β the difference α − β is
not defined.

Lemma 1.1 ([20]) The following estimates hold:

1◦ (
α

β

) ≤ 2|α| ≤ (2N)α, α ∈ I , β ≤ α,

2◦ (θ + β)! ≤ θ !β! (2N)θ+β, θ, β ∈ I .

Proof 1◦ Since
(n

k

) ≤ 2n , for all n ∈ N0 and 0 ≤ k ≤ n, it follows that
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1.3 Spaces of Random Variables 7

(
α

β

)
=

∏
i∈N

(
αi

βi

)
≤

∏
i∈N

2αi = 2|α| ≤
∏
i∈N

(2i)αi = (2N)α,

for all α ∈ I and 0 ≤ β ≤ α.
2◦ Let α ≥ β. From part 1◦ and

(
α

β

) = α!
β! (α−β)! we obtain the following inequality

α! ≤ β!(α − β)!(2N)α , which after substituting θ = α − β leads to desired
estimate (θ + β)! ≤ θ !β!(2N)θ+β for all θ, β ∈ I . ��

As a consequence of Lemma 1.1 we have that the estimates |α|! ≥ α! and (2α)! ≤
(2α)!!2 = (2|α|α!)2 hold for α ∈ I .

Theorem 1.1 ([45]) It holds that

∑
α∈I

(2N)−pα < ∞ if and only if p > 1. (1.9)

The proof can be found in [11, 45].

Remark 1.2 Consider a sequence of real numbersa = (ak)k∈N,ak ≥ 1.Wedenote by

aα = ∏∞
k=1 aαk

k , aα

α! = ∏∞
k=1

a
αk
k

αk ! and (2Na)α = ∏∞
k=1(2k ak)

αk . The result (1.9) is
used to verify the statement

∑
α∈I

(2Na)−pα < ∞ if and only if p > 1.

Definition 1.1 For agivenα ∈ I theα-thFourier-Hermite polynomial is defined by

Hα(ω) =
∞∏

k=1

hαk (〈ω, ξk〉), α ∈ I . (1.10)

For each α ∈ I the product (1.10) has finitely many terms, since each α has
finitely many nonzero components and it holds h0(x) = 1. Particularly, for α = 0
the zeroth Fourier-Hermite polynomial is H0(ω) = 1, for the kth unit vector ε(k) the
Fourier-Hermite polynomial is

Hε(k) (ω) = h1(〈ω, ξk〉) = 〈ω, ξk〉 =
∫
R

ξk(t) d Bt (ω) = I1(ξk), k ∈ N

and for α = (2, 0, 1, 0, ...) we have

H(2,0,1,0,...)(ω) = h2(〈ω, ξ1〉)h1(〈ω, ξ3〉)=(〈ω, ξ1〉2−1)〈ω, ξ3〉=(I1(ξ1)
2−1)I1(ξ3).

Theorem 1.2 ([11]) The family of Fourier-Hermite polynomials {Hα}α∈I forms an
orthogonal basis of the space L2(μ), where ‖Hα‖2L2(μ)

= E(H 2
α ) = α!.
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8 1 White Noise Analysis and Chaos Expansions

Theorem 1.3 ([11, 44]) (Wiener-Itô chaos expansion theorem) Each square inte-
grable random variable F ∈ L2(μ) has a unique representation of the form

F(ω) =
∑
α∈I

cα Hα(ω), cα ∈ R, ω ∈ Ω, (1.11)

such that it holds
‖F‖2L2(μ) =

∑
α∈I

c2α α! < ∞. (1.12)

The coefficients are unique and are obtained from cα = 1
α! E (F Hα), α ∈ I .

Example 1.3 A smoothed white noise 〈ω, ϕ〉, where ϕ ∈ S(R) and ω ∈ S′(R) is a
zero-mean Gaussian random variable with the variance (1.8). By (1.3) and (1.4) we
represent ϕ = ∑∞

k=1 (ϕ, ξk)L2(R)ξk ∈ S(R). Then, the chaos expansion representa-
tion of 〈ω, ϕ〉 is given by

〈ω, ϕ〉 =
∞∑

k=1

(ϕ, ξk)L2(R) 〈ω, ξk〉 =
∞∑

k=1

(ϕ, ξk)L2(R) Hε(k) (ω).

Definition 1.2 The spacesHk that are obtained by closing the linear span of the kth
order Hermite polynomials in L2(μ) are called the Wiener chaos spaces of order k

Hk = {F ∈ L2(Ω) : F =
∑

α∈I ,|α|=k

cα Hα}, k ∈ N0.

Particularly, H0 is the set of constant random variables, H1 is a set of Gaussian
random variables, H2 is a space of quadratic Gaussian random variables and so on.
Since eachHk , k ∈ N0 is a closed subspace of L2(μ) theWiener-Itô chaos expansion
theorem can be stated in the form L2(μ) = ⊕∞

k=0 Hk . Therefore, every F ∈ L2(μ)

can be uniquely represented in the form

F(ω) =
∑
α∈I

cα Hα(ω) =
∞∑

k=0

( ∑
|α|=k

cα Hα(ω)
)

=
∞∑

k=0

Fk(ω),

where Fk(ω) = ∑
|α|=k cα Hα(ω) ∈ Hk , k ∈ N0, ω ∈ S′(R).

Remark 1.3 The Wiener-Itô chaos expansion theorem, Theorem 1.3, can be for-
mulated also in terms of iterated Itô integrals. Although this formulation will not
play central role in our presentation, for completeness we include it here. Clearly,
the second formulation of the Wiener-Itô chaos expansion theorem states that each
F ∈ L2(μ) is determined by a unique family of symmetric deterministic functions
fn , such that

F(ω) =
∞∑

n=0

In( fn), (1.13)
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1.3 Spaces of Random Variables 9

where In denotes n-fold iterated Itô integral. The connection between two formula-
tions (1.11) and (1.13) was provided by Itô in [13]. For α = (α1, · · · , αm, 0, · · · ) ∈
I of the length n the symmetrized tensor product with factors ξ1, ...ξm is defined by
ξ ⊗̂α = ξ

⊗α1
1 ⊗̂ . . . ⊗̂ξ⊗αm

m , where each ξi is taken αi times. Then, it holds

Hα(ω) =
∫
Rn

ξ ⊗̂α(t) dbt
⊗n(ω).

The connection between two chaos expansion forms is given by fn = ∑
|α|=n cαξ ⊗̂α

n .
Further on we will focus only on the formulation (1.11).

Theorem 1.4 ([23]) All random variables which belong to the space H1 are
Gaussian random variables.

Proof Random variables that belong to the space H1 are linear combinations
of elements 〈ω, ξk〉, k ∈ N, ω ∈ S′(R). From the definition of the Gaussian
measure (1.7) we obtain E (〈ω, ξk〉) = 0 and V ar(〈ω, ξk〉) = E (〈ω, ξk〉2) =
‖ξk‖2L2(R)

= 1. Due to the form of the characteristic function we conclude that
〈ω, ξk〉 : N (0, 1), k ∈ N. Thus, every finite linear combination of Gaussian random
variables

∑n
k=1 ak〈ω, ξk〉 is a Gaussian random variable and the limit of Gaussian

random variables
∑∞

k=1 ak〈ω, ξk〉 = lim
n→+∞

∑n
k=1 ak 〈ω, ξk〉 is also Gaussian. ��

We note that H1 is the closed Gaussian space generated by the random variables
bt (ω), t ≥ 0, see Example 1.7 and also [39].

Remark 1.4 Although the space L2(μ) is constructed with respect to the Gaussian
measure μ, it contains all square integrable random variables, not just those with
Gaussian distribution but also all absolutely continuous, singularly continuous, dis-
crete and mixed type distributions. All elements in H0 ⊕ H1 are Gaussian (those
with zero expectation are strictly in H1), but the converse is not true. There exist
Gaussian random variables with higher order chaos expansions. Representative ele-
ments of H0 ⊕ H1 ⊕ H2 are for example, quadratic Gaussian random variables
and the Chi-square distribution as a finite sum of independent quadratic Gaussian
variables. Discrete random variables with finite variance belong to

⊕∞
k=0 Hk , i.e.,

their chaos expansion forms consist of multi-indices of all lengths. All finite sums,
i.e., partial sums of a chaos expansion correspond to absolutely continuous distribu-
tions or almost surely constant distributions. There is no possibility to obtain discrete
random variables by using finite sums in the Wiener-Itô expansion, see [23].

The multiplication formula for the ordinary product of Fourier-Hermite polynomials
is proven in [11] and is given by

Hα · Hβ =
∑

γ≤min{α,β}
γ !

(
α

γ

)(
β

γ

)
Hα+β−2γ , (1.14)
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10 1 White Noise Analysis and Chaos Expansions

for allα, β ∈ I . Particularly, for k, j ∈ N it holds Hε(k) ·Hε( j) =
{

H2ε(k) + 1 , k = j
Hε(k)+ε( j) , k 
= j

.

In next section we introduce suitable spaces, called Kondratiev spaces, that will con-
tain random variables which do not satisfy (1.12), i.e., random variables with infinite
variances.

1.3.3 Kondratiev Spaces

Following the ideas introduced in [9, 11, 26, 27] we define weighted spaces of
stochastic test functions and stochastic generalized functions, which represent the
stochastic analogue of the Schwartz spaces. The choice of weights depends on a
concrete problem studied. Here we will work with polynomial weights and Hida-
Kondratiev spaces of test and generalized random variables. We characterize these
spaces in terms of chaos expansions [2, 11]. In [8, 15] the authors usedS -transform.
Another type of weighted spaces, spaces of exponential growth, was investigated and
characterized in [19].

Definition 1.3 Let ρ ∈ [0, 1].
1◦ The space of Kondratiev test random variables (S)ρ consists of elements

f = ∑
α∈I bα Hα ∈ L2(μ), bα ∈ R, α ∈ I , such that

‖ f ‖2ρ,p =
∑
α∈I

α!1+ρ b2
α (2N)pα < ∞ for all p ∈ N0. (1.15)

2◦ The space of Kondratiev generalized random variables (S)−ρ consists of formal
expansions of the form F = ∑

α∈I cα Hα , cα ∈ R, α ∈ I , such that

‖F‖2−ρ,−p =
∑
α∈I

α!1−ρ c2α (2N)−pα < ∞ for some p ∈ N0. (1.16)

The generalized expectation of F is defined as E (F) = c0, i.e., it is the zeroth
coefficient in the chaos expansion of F . For F ∈ L2(μ) it coincides with the expec-
tation.

The space (S)ρ can be constructed as the projective limit (S)ρ = ⋂
p∈N0

(S)ρ,p of
the family (S)ρ,p = { f = ∑

α∈I bα Hα ∈ L2(μ) : ‖ f ‖2ρ,p < ∞}, p ∈ N0. The Kon-
dratiev space (S)−ρ can be constructed as the inductive limit (S)−ρ = ⋃

p∈N0
(S)−ρ,−p

of the family (S)−ρ,−p = {F = ∑
α∈I cα Hα : ‖F‖2−ρ,−p < ∞}, p ∈ N0. It also

holds (S)ρ ⊆ L2(μ) ⊆ (S)−ρ , with continuous inclusions. The largest space of the
Kondratiev generalized random variables is (S)−1 and is obtained for ρ = 1, while
the smallest one is obtained for ρ = 0. The spaces (S)0 = (S) and (S)−0 = (S)∗,
obtained for ρ = 0, are called the Hida spaces of test and generalized random
variables. Hence, for ρ ∈ [0, 1] we obtain a sequence of spaces such that
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1.3 Spaces of Random Variables 11

(S)1,p ⊆ (S)ρ,p ⊆ (S)0,p ⊆ L2(μ) ⊆ (S)−0,−p ⊆ (S)−ρ,−p ⊆ (S)−1,−p. (1.17)

For all p ≥ q ≥ 0 it holds (S)ρ,p ⊆ (S)ρ,q ⊆ L2(μ) ⊆ (S)−ρ,−q ⊆ (S)−ρ,−p

and the inclusions denote continuous embeddings with (S)0,0 = L2(μ). In [9, 11]
it was proven that the spaces (S)1 and (S)0 are nuclear. We denote by � ·, · �ρ

the dual pairing between (S)−ρ and (S)ρ . Its action is given by � F, f �ρ=
� ∑

α∈I cα Hα,
∑

α∈I bα Hα �ρ= ∑
α∈I α!cαbα . Especially, for ρ = 0 and any

fixed p ∈ Z the space (S)0,p is a Hilbert space endowed with the scalar product
� Hα, Hβ �0,p= 0 for α 
= β and � Hα, Hβ �0,p= α!(2N)pα for α = β,
extended by linearity and continuity to � F, f �0,p= ∑

α∈I α!cαbα(2N)pα . In
case of randomvariableswith finite varianceswe have� F, f �0,0= (F, f )L2(μ) =
E(F f ).

Remark 1.5 Kondratiev spaces modified by a sequence. Definition 1.3 can be gener-
alized for polynomial weights which are modified by a given sequence a = (ak)k∈N,
ak ≥ 1. The obtained spaces are introduced in [22] and are called the Kondratiev
spaces modified by the sequence a. Let ρ ∈ [0, 1] and let a = (ak)k∈N, ak ≥ 1.

1◦ The space of Kondratiev test random variables modified by the sequence a,
denoted by (Sa)ρ , consists of elements f = ∑

α∈I bα Hα ∈ L2(μ), bα ∈ R,
α ∈ I , such that

‖ f ‖2ρ,p =
∑
α∈I

α!1+ρ b2
α (2Na)pα < ∞ for all p ∈ N0. (1.18)

2◦ The space of Kondratiev generalized random variables modified by the
sequence a, denoted by (Sa)−ρ , consists of formal expansions of the form
F = ∑

α∈I cα Hα , cα ∈ R, α ∈ I such that

‖F‖2−ρ,−p =
∑
α∈I

α!1−ρ c2α (2Na)−pα < ∞ for some p ∈ N0. (1.19)

It is clear that for ak = 1, k ∈ N these spaces reduce to the Kondratiev spaces (S)ρ
and (S)−ρ . For all ρ ∈ [0, 1] we have (Sa)ρ ⊆ L2(μ) ⊆ (Sa)−ρ .

1.3.4 Hilbert Space Valued Kondratiev Type Random
Variables

Let H be a separable Hilbert space with the orthonormal basis {s j } j∈N and the
inner product (·, ·)H . We denote by L2(Ω,H ) the space of random variables on
Ω with values in H , which are square integrable with respect to the white noise
measureμ. It is aHilbert space equippedwith the inner product� F, G �L2(Ω,H )=
E((F, G)H ), for all F, G ∈ L2(Ω,H ). The family of functions { 1√

α! Hαs j } j∈N,α∈I
forms an orthonormal basis of L2(Ω,H ). Hence, each F ∈ L2(Ω,H ) can be
represented in the chaos expansion form
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12 1 White Noise Analysis and Chaos Expansions

F(ω) =
∑
α∈I

∑
k∈N

aα,k sk Hα(ω), (1.20)

where aα,k ∈ R, ω ∈ Ω such that

∑
α∈I

∑
k∈N

α! a2
α,k < ∞.

In the following we define H -valued Kondratiev test and generalized random
variables over L2(Ω,H ).

Definition 1.4 ([41]) Let ρ ∈ [0, 1].
1◦ The space of H -valued Kondratiev test random variables S(H )ρ consists of

functions f ∈ L2(Ω,H ) given in the chaos expansion form (1.20) such that
for all p ∈ N0 it holds

‖ f ‖2S(H )ρ,p
=

∑
α∈I

∑
k∈N

α!1+ρ a2
α,k (2N)pα =

∑
k∈N

∑
α∈I

α!1+ρ a2
α,k (2N)pα < ∞.

2◦ The corresponding H -valued Kondratiev space of generalized random vari-
ables S(H )−ρ consists of formal expansions of the form

F(ω) =
∑
α∈I

∑
k∈N

bα,k sk Hα(ω), bα,k ∈ R,

such that for some p ∈ N0 it holds

‖F‖2S(H )−ρ,−p
=

∑
α∈I

∑
k∈N

α!1−ρ b2α,k (2N)−pα =
∑
k∈N

∑
α∈I

α!1−ρ b2α,k (2N)−pα < ∞.

Note here that f ∈ S(H )ρ can be expressed in several ways

f (ω) =
∑
α∈I

∑
k∈N

aα,k sk Hα(ω) =
∑
α∈I

aα Hα(ω) =
∑
k∈N

ak(ω) sk,

aα = ( f, Hα)L2(μ) = ∑
k∈N aα,k sk ∈ H and ak(ω) = ( f, sk)H = ∑

α∈I aα,k

Hα(ω) ∈ (S)ρ , with aα,k =� f, sk Hα �L2(Ω,H )∈ R for k ∈ N, α ∈ I . Similarly,
a generalized random variable F ∈ S(H )−ρ can be expressed as

F(ω) =
∑
α∈I

∑
k∈N

bα,k sk Hα(ω) =
∑
α∈I

bα Hα(ω) =
∑
k∈N

bk(ω) sk,

where bα = ∑
k∈N bα,ksk ∈ H and bk(ω) = ∑

α∈I bα,k Hα(ω) ∈ (S)−ρ , bα,k ∈
R for k ∈ N and α ∈ I . The action of F onto f is given by � F, f �=∑

α∈I α!(bα, aα)H . Since (S)ρ is nuclear, the following important results is valid
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1.3 Spaces of Random Variables 13

S(H )−ρ
∼= (S)−ρ ⊗ H . (1.21)

The isomorphism (1.21) with tensor product spaces is investigated in [41]. The space
S(H )ρ is a countably Hilbert space and S(H )ρ ⊆ L2(Ω,H ) ⊆ S(H )−ρ . An
important example arises when the separable Hilbert space H is the space L2(R)

with the Hermite functions orthonormal basis {ξi }i∈N.

Remark 1.6 Hilbert space valued Kondratiev type random variables modified by a
sequence that belong to the space Sa(H )ρ of test variables and the space Sa(H )−ρ

of distributions are defined in a similar way. In the convergence conditions for
‖ f ‖2Sa(H )ρ,p

and ‖F‖2Sa(H )−ρ,−p
, (2N)α is replaced by (2Na)α .

1.3.5 Wick Product

The problem of pointwise multiplication of generalized functions, in the framework
of white noise analysis, is overcome by introducing the Wick product. Historically,
the Wick product first arose in quantum physics as a renormalization operation. It is
closely connected to the S -transform [8, 15]. The most important property of the
Wick multiplication is its relation to the Itô-Skorokhod integration. For more details
we refer to [11, 26, 28].

The Wick product is well defined in the Hida and the Kondratiev spaces of test
and generalized stochastic functions [9, 11, 16]. In [37] it is defined for stochastic
test functions and distributions of exponential growth.

Definition 1.5 Let ρ ∈ [0, 1]. Let F and G be random variables given in the forms
F(ω) = ∑

α∈I fα Hα(ω) and G(ω) = ∑
β∈I gβ Hβ(ω), for fα, gβ ∈ R, α ∈ I .

Their Wick product F♦G is a random variable defined by

F♦G (ω) =
∑
γ∈I

⎛
⎝ ∑

α+β=γ

fαgβ

⎞
⎠ Hγ (ω). (1.22)

From (1.22) we obtain Hα♦Hβ = Hα+β for α, β ∈ I and particularly for j, k ∈ N

it holds Hε(k)♦Hε( j) = Hε(k)+ε( j) . The Wick product can be interpreted as a stochastic
convolution. It also represents a renormalization of the ordinary product and the
highest order stochastic approximation of the ordinary product [32]. Note here that
the space L2(μ) is not closed under the Wick multiplication.

Example 1.4 The random variable F(ω) = ∑∞
n=1

1
n Hε(n) (ω) belongs to L2(μ) since

‖F‖2L2(Ω)
= ∑∞

n=1
1
n2 < ∞. The Wick product F♦F , also called the Wick square

F♦2, is not an element of L2(μ) since

∞∑
n=1

(
n−1∑
k=0

1

n (n − k)

)2

≥
∞∑

k=1

1

k (k + 1)
=

∞∑
k=1

(1 − 1

k + 1
) = +∞.
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14 1 White Noise Analysis and Chaos Expansions

In [11] it was proven that the spaces (S)0, (S)−0, (S)1 and (S)−1 are closed under
the Wick multiplication. In the following theorem we prove that this also holds for
the spaces (S)ρ and (S)−ρ for any ρ ∈ [0, 1].
Theorem 1.5 Let ρ ∈ [0, 1]. The Kondratiev spaces (S)ρ and (S)−ρ are closed
under the Wick multiplication.

Proof Let F, G ∈ (S)−ρ . Then, F(ω) = ∑
α∈I fα Hα(ω) and G(ω) = ∑

β∈I gβ

Hβ(ω) for fα, gβ ∈ R, α, β ∈ I and from (1.16) there exist p1, p2 ≥ 0 such that

‖F‖2−ρ,−p1 =
∑

α∈I
α!1−ρ f 2α (2N)−p1α < ∞, ‖G‖2−ρ,−p2 =

∑
β∈I

β!1−ρ g2β(2N)−pα < ∞.

The Wick product is given by F♦G(ω) = ∑
γ∈I cγ Hγ (ω) with cγ = ∑

α+β=γ

fαgβ . Then, for q ≥ p1 + p2 + 3 − ρ we obtain

‖F♦G‖2−ρ,−q =
∑

γ∈I
γ !1−ρc2γ (2N)−qγ ≤

∑
γ∈I

γ !1−ρ(
∑

α+β=γ

fαgβ)2 (2N)−(p1+p2+3−ρ)γ

≤
∑

γ∈I
(2N)−2γ

( ∑
α+β=γ

fα gβ γ ! 1−ρ
2 (2N)

− p1
2 α

(2N)
− p2

2 β
(2N)

− (1−ρ)
2 γ

)2

≤
∑

γ∈I
(2N)−2γ

( ∑
α+β=γ

fαgβ(α!β!(2N)α+β)
1−ρ
2 (2N)

− p1
2 α

(2N)
− p2

2 β
(2N)

− (1−ρ)
2 (α+β)

)2

≤
∑

γ∈I
(2N)−2γ

( ∑
α+β=γ

α!1−ρ f 2α (2N)−p1α
)( ∑

α+β=γ

β!1−ρ g2β (2N)−p2α
)

≤m · ‖F‖2−ρ,−p1 · ‖G‖2−ρ,−p2 < ∞,

where m = ∑
γ∈I (2N)−2γ < ∞ by (1.9). First we used α ≤ γ , β ≤ γ , then

applied the inequality γ ! = (α +β)! ≤ α!β!(2N)γ proved in Lemma 1.1 part 2◦ and
at last used the Cauchy-Schwarz inequality.

Assume now F, G ∈ (S)ρ . By (1.15) for p1, p2 ≥ 0 the estimates hold

‖F‖2ρ,p1 =
∑
α∈I

α!1+ρ f 2α (2N)p1α < ∞, ‖G‖2ρ,p2 =
∑
β∈I

β!1+ρg2
β(2N)p2α < ∞.

Then, ‖F♦G‖2ρ,q = ∑
γ∈I

γ !1+ρ
( ∑

α+β=γ

fαgβ

)2
(2N)qγ is finite since
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1.3 Spaces of Random Variables 15

‖F♦G‖2ρ,q =
∑
γ∈I

(2N)−2γ
( ∑

α+β=γ

γ ! 1+ρ

2 fαgβ(2N)
q+2
2 γ

)2

≤
∑
γ∈I

(2N)−2γ
( ∑

α+β=γ

(α!β!(2N)α+β)
1+ρ

2 fαgβ(2N)
q+2
2 (α+β)

)2

≤
∑
γ∈I

(2N)−2γ
( ∑

α+β=γ

α!1+ρ f 2α (2N)(q+3+ρ)α
)( ∑

α+β=γ

β!1+ρg2
β(2N)(q+3+ρ)β

)

≤ m · ‖F‖2ρ,p1 · ‖G‖2ρ,p2 < ∞,

for q + 3 + ρ ≤ min{p1, p2}, where m = ∑
γ∈I (2N)−2γ < ∞. ��

If F is a deterministic function then theWick product F♦G reduces to the ordinary
product F · G. This follows from the property H0♦Hβ = H0 · Hβ , for β ∈ I . The
Wick product is a commutative, associative operation, distributive with respect to
addition. Moreover, whenever F, G and F♦G are μ−integrable it holds

E (F♦G) = E F · E G, (1.23)

where the independence of F and G is not required [11].

Definition 1.6 Let ρ ∈ [0, 1]. The Wick powers of F ∈ (S)−ρ are defined induc-
tively

F♦ 0 = 1, F♦k = F♦ F♦ (k−1), k ∈ N.

Definition 1.7 Let Pm(x) = ∑m
k=0 pk xk , pm ∈ R, pm 
= 0, x ∈ Rbe a polynomial

of degree m with real coefficients. The Wick version P♦
m : (S)−ρ → (S)−ρ of the

polynomial Pm is defined by

P♦
m (F) =

m∑
k=0

pk F♦k, for F ∈ (S)−ρ.

For F, G ∈ (S)−ρ and n ∈ N the element (F + G)♦n also belongs to (S)−ρ and
the binomial formula holds

(F + G)♦n =
n∑

k=0

(
n

k

)
F♦k ♦ G♦(n−k).

Particularly, if n = 2 we obtain (F + G)♦ 2 = F♦2 + 2F♦G + G♦2. Note that all
analytic functions have their Wick versions. For example, the Wick exponential of
F ∈ (S)−ρ is defined as a formal sum

exp♦ F =
∞∑

n=0

F♦n

n! , (1.24)
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16 1 White Noise Analysis and Chaos Expansions

while the Wick versions of trigonometric functions are defined as formal sums

sin♦ F =
∞∑

n=1

(−1)k−1 F♦(2k−1)

(2k − 1)! , cos♦ F =
∞∑

n=0

(−1)k F♦2k

(2k)! . (1.25)

For F, G ∈ (S)−ρ by (1.23), (1.24) and (1.25) we obtain E(exp♦ F) = exp(EF),
E(sin♦ F) = sin(EF) and E(cos♦ F) = cos(EF). Moreover, the element
exp♦(F + G) ∈ (S)−ρ and exp♦(F + G) = exp♦ F ♦ exp♦ G, see [11].

The most important property of the Wick multiplication is its relation to the Itô-
Skorokhod integration, also known as the fundamental theorem of calculus [9, 11],
which will be discussed in Chap.2.

1.3.6 Fractional Gaussian White Noise Space

In [7] the authors developed fractional white noise theory for Hurst parameter
H ∈ (0, 1). They introduced the fractional transform operator M (H) which connects
fractional Brownianmotion b(H)

t and standard Brownianmotion bt on thewhite noise
probability space (S′(R),B, μ). We extend these results for H -valued Brownian
motion Bt andH -valued white noise Wt and their corresponding fractional versions
B(H)

t and W (H)
t .

Definition 1.8 ([7]) Let H ∈ (0, 1). The fractional transform operator M (H) :
S(R) → L2(R) ∩ C∞(R) is defined by

M̂ (H) f (y) = |y| 1
2 −H f̂ (y), y ∈ R, f ∈ S(R), (1.26)

where f̂ (y) = ∫
R

e−i xy f (x)dx denotes the Fourier transform of f .

Equivalently, the operator M (H) for all H ∈ (0, 1) can be defined as a constant
multiple of

− d

dx

∫
R

(t − x) |t − x |H− 3
2 f (t) dt, (1.27)

where the constant is chosen so that (1.26) holds. The operator M (H) has the
structure of a convolution operator. Particularly, from (1.27) it follows that for
H ∈ (0, 1

2 ) the fractional operator is of the form M (H) f (x) = CH
∫
R

f (x−t)− f (x)

|t | 32 −H
dt,

then for H ∈ ( 12 , 1) it is of the form M (H) f (x) = CH
∫
R

f (t)

|t−x | 32 −H
dt and for H = 1

2

it reduces to the identity operator, i.e., M ( 1
2 ) f (x) = f (x). The normalizing constant

is CH = (2Γ (H − 1
2 ) cos(

π
2 (H − 1

2 )))
−1 and Γ is the Gamma function.

From (1.26) we have that the inverse fractional transform operator of M (H) is the

operator M (1−H) defined by M̂ (1−H) f (y) = |y|H− 1
2 f̂ (y) for y ∈ R, f ∈ S(R).
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1.3 Spaces of Random Variables 17

Denote by
L2

H (R) = { f : R → R; M (H) f (x) ∈ L2(R)}

the closure of S(R)with respect to the norm‖ f ‖L2
H (R) = ‖M (H) f ‖L2(R) for f ∈ S(R)

induced by the inner product

( f, g)L2
H (R) = (M (H) f, M (H)g)L2(R).

The operator M (H) is a self-adjoint operator and for f, g ∈ L2(R)∩ L2
H (R) we have

( f, M (H)g)L2
H (R) = ( f̂ , M̂ (H)g)L2(R) =

∫
R

|y| 1
2 −H f̂ (y)ĝ(y)dy = (M (H) f, g)L2

H (R).

Remark 1.7 For fixed H ∈ ( 12 , 1) we denote by φ(s, t) = H(2H − 1)|s − t |2H−2,
s, t ∈ R. Then,

∫
R

(M (H) f (x))2dx = cH

∫
R

∫
R

f (s) f (t)φ(s, t)dsdt, (1.28)

with constant cH . The property (1.28) was used in [7, 10, 18, 31] in order to adapt
the classical white noise calculus to the fractional one.

Theorem 1.6 ([4, 7]) Let M (H) : L2
H (R) → L2(R) defined by (1.26) be the exten-

sion of the operator M (H) from Definition 1.8. Then, M (H) is an isometry between
the two Hilbert spaces L2(R) and L2

H (R). The functions

e(H)
n (x) = M (1−H)ξn(x), n ∈ N, (1.29)

belong to S(R) and form an orthonormal basis in L2
H (R).

From (1.29) it also follows that e(1−H)
n (x) = M (H) ξn(x), n ∈ N, where we used

the fact that M (1−H) is the inverse operator of the operator M (H). Following [4, 7] we
extend M (H) onto S′(R) and define the fractional operator M (H) : S′(R) → S′(R)

by 〈M (H)ω, f 〉 = 〈ω, M (H) f 〉 for f ∈ S(R), ω ∈ S′(R).
We denote by

L2(μH ) = L2(μ ◦ M (1−H)) = {G : Ω → R ; G ◦ M (H) ∈ L2(μ)}, H ∈ (0, 1)

the stochastic analogueof L2
H (R), see [3]. It is the space of square integrable functions

on S′(R)with respect to fractional Gaussianwhite noisemeasureμH . Thus, the triple
(S′(R),B, μH ) denotes the fractional Gaussian white noise space.

Since G ∈ L2(μH ) if and only if G ◦ M (H) ∈ L2(μ), it follows that G has the
chaos expansion of the form
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18 1 White Noise Analysis and Chaos Expansions

G(M (H)ω) =
∑
α∈I

cα Hα(ω) =
∑
α∈I

cα

∞∏
i=1

hαi (〈ω, ξi 〉)

=
∑
α∈I

cα

∞∏
i=1

hαi (〈ω, M (H)e(H)
i 〉) =

∑
α∈I

cα

∞∏
i=1

hαi (〈M (H)ω, e(H)
i 〉).

Definition 1.9 For a given α ∈ I the α-th fractional Fourier-Hermite polynomial
is defined by

H̃α(ω) =
∞∏

k=1

hαk (〈ω, e(H)
k 〉), α ∈ I . (1.30)

The family {H̃α}α∈I forms an orthogonal basis of L2(μH ) and for all α ∈ I
it holds ‖H̃α‖2L2(μH )

= α!. Therefore, Theorem 1.3 can be formulated for fractional
square integrable random variables.

Theorem 1.7 Each G ∈ L2(μH ) can be uniquely represented in the form

G(ω) =
∑
α∈I

cα H̃α(ω), cα ∈ R, α ∈ I

such that ‖G‖2L2(μH )
= ∑

α∈I
c2αα! is finite and ‖G‖L2(μH ) = ‖G ◦ M (H)‖L2(μ) holds.

Let ρ ∈ [0, 1]. The fractional Kondratiev spaces (S)(H)
ρ and (S)

(H)
−ρ are defined in

an analogous way as the spaces (S)ρ and (S)−ρ in Sect. 1.3.3.

Definition 1.10 Let ρ ∈ [0, 1] and let F = ∑
α∈I bα H̃α , fα ∈ R, α ∈ I . The

Kondratiev space of fractional random variables (S)(H)
ρ is defined as the projective

limit (S)(H)
ρ = ⋂

p∈N0
(S)ρ,p of the family (S)(H)

ρ,p = {F ∈ L2(μH ) : ‖F‖2ρ,p < ∞},
p ∈ N0. The Kondratiev space of fractional generalized random variables (S)

(H)
−ρ is

constructed as the inductive limit (S)
(H)
−ρ = ⋃

p∈N0
(S)

(H)
−ρ,−p of the family (S)

(H)
−ρ,−p =

{F : ‖F‖2−ρ,−p < ∞}, p ∈ N0.

Similarly as in Sect. 1.3.4 one can define spaces ofH -valued fractional test and
generalized random variables. Moreover the Wick product in (S)(H)

ρ and (S)
(H)
−ρ is

defined as in Definition 1.5, where Hα is replaced by H̃α .

1.4 Stochastic Processes

In this section we characterize different classes of stochastic processes in terms of
chaos expansion representation forms. Particularly, beside classical processes (those
with finite variances) we deal with test and generalized stochastic processes.
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1.4 Stochastic Processes 19

Recall, a real valued (classical) stochastic process can be defined as a family of
functions v : T × Ω → R such that for each fixed t ∈ T , v(t, ·) is an R-valued
random variable and for each fixed ω ∈ Ω , v(·, ω) is an R-valued deterministic
function, called trajectory. Here, following [37], we generalize the definition of
classical stochastic processes and define test and generalized stochastic processes. By
replacing the space of trajectorieswith a space of deterministic generalized functions,
or by replacing the space of random variables with a space of generalized random
variables, different types of generalized stochastic processes can be obtained. In this
manner, processes generalizedwith respect to the t argument, theω argument, or even
with respect to both arguments can be obtained [11, 37]. A very general concept of
generalized stochastic processes, based on chaos expansions was introduced in [37]
and further developed in [19, 20, 23]. In [11] generalized stochastic processes are
defined as measurable mappings I → (S)−1 (one can consider also other spaces of
generalized random variables instead). Thus, they are defined pointwise with respect
to the parameter t ∈ I and generalized with respect to ω ∈ Ω . Detailed survey on
generalization of classical stochastic processes is given in [37], where several classes
of generalized stochastic processeswere distinguished and represented in appropriate
chaos expansions. Here we will consider a class of generalized stochastic process to
be wider than the one in [11]. We follow [20, 23, 37, 41] to define such processes
and characterize them in terms of chaos expansion representations in orthogonal
polynomial basis.

In [37] the authors considered generalized stochastic processes to be linear and
continuous mappings from a certain space of deterministic functions T into the
Kondratiev space (S)−1, i.e., elements ofL (T , (S)−1) and proved expansion theo-
rems. Particularly, this class of generalized processes contains stochastic processes
with coefficients in the Schwartz space of tempered distributions S′(R). Following
these ideas, we consider generalized stochastic processes to be elements of a tensor
product space of the form X ⊗ (S)−ρ , ρ ∈ [0, 1], where X is a Banach space.

1.4.1 Chaos Expansion Representation of Stochastic
Processes

Let X̃ be a Banach space endowed with the norm ‖ · ‖X̃ and let X̃ ′ denote its dual
space. In this section we describe X̃−valued random variables. Most notably, if X̃ is
a space of functions on R, e.g. X̃ = Ck([0, T ]), T > 0 or X̃ = L2(R), we obtain the
notion of a stochastic process.We will also define processes where X̃ is not a normed
space, but a nuclear space topologized by a family of seminorms, e.g. X̃ = S(R),
see [23, 37].

Definition 1.11 Let a process u has the formal expansion

u =
∑
α∈I

uα ⊗ Hα , where uα ∈ X, α ∈ I . (1.31)
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20 1 White Noise Analysis and Chaos Expansions

Let ρ ∈ [0, 1]. We define the following spaces:

X ⊗ (S)ρ,p = {u : ‖u‖2X⊗(S)ρ,p
=

∑
α∈I

α!1+ρ ‖uα‖2X (2N)pα < ∞}, (1.32)

X ⊗ (S)−ρ,−p = {u : ‖u‖2X⊗(S)−ρ,−p
=

∑
α∈I

α!1−ρ ‖uα‖2X (2N)−pα < ∞},

where X denotes an arbitrary Banach space (allowing both possibilities X = X̃ ,
X = X̃ ′). Especially, for ρ = 0 and p = 0 we denote by X ⊗ (S)0,0 the space

X ⊗ L2(μ) = {u : ‖u‖2X⊗L2(μ) =
∑
α∈I

α!‖uα‖2X < ∞}.

Definition 1.12 Test stochastic processes and generalized stochastic processes in
Kondratiev sense are respectively elements of the spaces

X ⊗ (S)ρ =
⋂
p∈N0

X ⊗ (S)ρ,p, X ⊗ (S)−ρ =
⋃
p∈N0

X ⊗ (S)−ρ,−p, ρ ∈ [0, 1].

Remark 1.8 The symbol ⊗ denotes the projective tensor product of two spaces, i.e.,
X̃ ′ ⊗ (S)−ρ is the completion of the tensor product with respect to the π -topology.
The Kondratiev space (S)ρ is nuclear and thus (X̃ ⊗ (S)ρ)

′ ∼= X̃ ′ ⊗ (S)−ρ . Note that
X̃ ′ ⊗ (S)−ρ is isomorphic to the space of linear bounded mappings X̃ → (S)−ρ , and
it is also isomporphic to the space of linear bounded mappings (S)ρ → X̃ ′. More
details can be found in [23, 37, 43].

The action of a generalized stochastic process u, represented in the form (1.31),
onto a test function ϕ ∈ X gives a generalized random variable from the space (S)−ρ

� u, ϕ �=
∑
α∈I

〈uα, ϕ〉 Hα ∈ (S)−ρ

and the action of such process u onto a test random variable from the Kondratiev
space θ ∈ (S)ρ gives a generalized deterministic function in X̃ ′

〈u, θ〉 =
∑
α∈I

� Hα, θ � uα ∈ X̃ ′.

The most common examples used in applications are Schwartz spaces X = S(R)

and X ′ = S′(R), distributions with compact support X = E (R) and X ′ = E ′(R), the
Sobolev spaces X = W 1,2

0 (R) and X ′ = W −1,2(R). In applications of fluid flows, the
space X is one of the Sobolev-Bochner spaces L2([0, T ],V ) and L2([0, T ],V ∗),
whereV is a real, separable, and reflexive Banach space such that we have aGel’fand
triple of the form V ⊆ H ⊆ V ∗ and H is a real Hilbert space [1].
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1.4 Stochastic Processes 21

Example 1.5 If X = S(R) then for θ = ∑
β∈I θβ Hβ ∈ (S)ρ the action of process

u = ∑
α∈I uα Hα , for uα = ∑

k∈N uα,kξk(t) ∈ S′(R) on θ = ∑
β∈I θβ Hβ is given

by
〈u, θ〉 =

∑
α∈I

uα � Hα,
∑
β∈I

θβ Hβ �=
∑
α∈I

θα uα α!

=
∑
α∈I

∑
k∈N

α! θα uα,k ξk(t) =
∑
k∈N

(∑
α∈I

α! θα uα,k

)
ξk(t).

A generalized stochastic processes u which belong to X ⊗ (S)−ρ given by (1.31)
can be written in the form

u =
∑
α∈I

uα ⊗ Hα = u0 +
∑
k∈N

uε(k) ⊗ Hε(k) +
∑
|α|>1

uα ⊗ Hα, (1.33)

such that the coefficients uα ∈ X for some p ∈ N0 satisfy

‖u‖2X⊗(S)−ρ,−p
=

∑
α∈I

α!1−ρ‖uα‖2X (2N)−pα < ∞. (1.34)

The value p corresponds to the level of singularity of the process u. Note that the
deterministic part of u in (1.33) is the coefficient u0, which represents the generalized
expectation of u. In this way, by representing stochastic processes in their polynomial
chaos expansion forms, we are able to separate the deterministic component from
the randomness of the process.

Example 1.6 If X = L2(R), then u ∈ L2(R)⊗L2(μ) is given in the chaos expansion
form u(t, ω) = ∑

α∈I uα(t) Hα(ω), t ∈ R, ω ∈ Ω such that

‖u‖2L2(R)⊗L2(μ) =
∑
α∈I

α! ‖uα‖2L2(R) =
∑
α∈I

α!
∫
R

|uα(t)|2dt < ∞.

Example 1.7 The chaos expansion representation of a Brownian motion bt (ω), for
ω ∈ S′(R), t ≥ 0, considered in Example 1.1, is given by

bt (ω) =
∑
k∈N

∫ t

0
ξk(s) ds Hε(k) (ω), (1.35)

such that for all k ∈ N the coefficients
∫ t
0 ξk(s)ds are in C∞(R). Moreover, for fixed

t , bt is an element of L2(μ).

Example 1.8 Singular white noise is defined by the formal chaos expansion

wt (ω) =
∞∑

k=1

ξk(t)Hε(k) (ω). (1.36)
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22 1 White Noise Analysis and Chaos Expansions

Since
∑∞

k=1 |ξk(t)|2 >
∑∞

k=1
1
k = ∞ and

∑∞
k=1 |ξk(t)|2(2k)−p < ∞ holds for

p > 1 it follows that it is an element of the space C∞(R) ⊗ (S)0,−p for p > 1.
Moreover, since the inclusions (1.17) hold, it can be considered to be an element of
C∞(R) ⊗ (S)−ρ,−p for all ρ ∈ [0, 1] and p > 1. With weak derivatives in the (S)−ρ

sense, it holds that d
dt bt = wt . Both, Brownian motion and singular white noise are

Gaussian processes and have chaos expansion representations given in terms of the
Fourier-Hermite polynomials with multi-indices of length one, i.e., they both belong
to the Wiener chaos space of order one.

Example 1.9 Let X be aBanach space.AgeneralizedGaussian process in X⊗(S)−ρ ,
which belongs to the Wiener chaos space of order one, is given in the form

G =
∞∑

k=1

mk Hε(k) , (1.37)

with the coefficients mk ∈ X such that for some p ∈ N0

∞∑
k=1

‖mk‖2X (2k)−p < ∞. (1.38)

Particularly, the chaos expansion form (1.37) for Gt ∈ S′(R) ⊗ (S)−ρ in the Wiener
chaos space of order one transforms to

Gt (ω) =
∞∑

k=1

mk(t)Hε(k) (ω) =
∞∑

k=1

∞∑
n=1

mkn ξn(t)Hε(k) (ω)

and the condition (1.38) modifies to

∞∑
k=1

‖mk‖2−l(2k)−p =
∞∑

k=1

∞∑
n=1

m2
kn (2n)−l (2k)−p < ∞

for some l, p ∈ N0. Here, the coefficients mk are deterministic generalized functions
represented as formal sums mk(t) = ∑∞

n=1 mknξn(t), k ∈ N, with mkn ∈ R.

Example 1.10 A real valued fractional Brownian motion b(H)
t (ω), H ∈ (0, 1) is

given by

b(H)
t (ω) =

∞∑
k=1

(∫ t

0
ξk(s)ds

)
H̃ε(k) (ω). (1.39)

For t fixed b(H)
t is an element of L2(μH ), see [19]. Recall, fractional Brownian

motion is a Gaussian process with zero expectation and the covariance function

E
(
b(H)

s b(H)
t

) = 1

2
(|t |2H + |s|2H − |t − s|2H ), s, t ∈ R. (1.40)
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1.4 Stochastic Processes 23

It is one-parameter extension of a Brownian motion and it depends on the Hurst
index H . Fractional Brownian motion is a centered Gaussian process with depen-
dent increments which have long-range dependence, modified by the Hurst parame-
ter, and self-similarity properties. For H = 1

2 the covariance function can be written

as E(b
( 1
2 )

t b
( 1
2 )

s ) = min{s, t} and the process b
( 1
2 )

t reduces to bt , which has indepen-
dent increments. Moreover, for H 
= 1

2 fractional Brownian motion is neither a
semimartingale nor a Markov process. In addition, it holds

E(b(H)
t − b(H)

s )2 = |t − s|2H .

According to the Kolmogorov continuity criterion fractional Brownian motion b(H)

has a continuous modification. The parameter H controls the regularity of trajec-
tories. The covariance function (1.40) is homogeneous of order 2H , thus fractional
Brownian motion is an H self-similar process, i.e., b(H)

kt = k H b(H)
t , k > 0. For any

n ∈ Z, n 
= 0 the autocovariance function is given by

r(n) = E[b(H)
1 (b(H)

n+1 − b(H)
n )] = H(2H − 1)

1∫
0

n+1∫
n

(u − v)2H−2dudv

∼ H(2H − 1)|n|2H−1, when |n| → ∞.

Therefore, the increments are positively correlated for H ∈ ( 12 , 1) and negatively
correlated for H ∈ (0, 1

2 ). More precisely, for H ∈ ( 12 , 1) fractional Brownian
motion has the long-range dependence property

∑∞
n=1 r(n) = ∞ and for H ∈ (0, 1

2 )

the short-range property
∑∞

n=1 |r(n)| < ∞. For applications we refer to [3, 10, 31,
33, 35, 40].

Remark 1.9 Generalized stochastic processes as elements of X ⊗ (Sa)−ρ . Similarly
to Definition 1.12, one can define stochastic processes which are elements of X ⊗
(Sa)−ρ and X ⊗ (Sa)ρ , ρ ∈ [0, 1]. We denote by

X ⊗ (Sa)ρ,p = {u : ‖u‖2X⊗(Sa)ρ,p
=

∑
α∈I

α!1+ρ ‖uα‖2X (2aN)pα < ∞},

X ⊗ (Sa)−ρ,−p = {u : ‖u‖2X⊗(Sa)−ρ,−p
=

∑
α∈I

α!1−ρ ‖uα‖2X (2aN)−pα < ∞}.

Then, test and generalized stochastic processes of the Kondratiev type modified by
a sequence a = (ak)k∈N, ak ≥ 1, k ∈ N are elements of the spaces respectively

X ⊗ (Sa)ρ =
⋂
p∈N0

X ⊗ (Sa)ρ,p and X ⊗ (Sa)−ρ =
⋃
p∈N0

X ⊗ (Sa)−ρ,−p.
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24 1 White Noise Analysis and Chaos Expansions

Therefore, these processes have the chaos expansion form (1.31) such that for some
p ∈ N0 it holds

‖u‖2X⊗(Sa)−ρ,−p
=

∑
α∈I

‖uα‖2X α!1−ρ (2Na)−pα < ∞.

Definition 1.13 Let ṽ have the formal expansion

ṽ =
∑
α∈I

ṽα ⊗ H̃α , where ṽα ∈ X, α ∈ I . (1.41)

Let ρ ∈ [0, 1] and let X be an arbitrary Banach space. We define the spaces:

X ⊗ (S)(H)
ρ,p = {̃v : ‖̃v‖2

X⊗(S)
(H)
ρ,p

=
∑
α∈I

α!1+ρ ‖̃vα‖2X (2N)pα < ∞},

X ⊗ (S)
(H)
−ρ,−p = {̃v : ‖̃v‖2

X⊗(S)
(H)
−ρ,−p

=
∑
α∈I

α!1−ρ ‖̃vα‖2X (2N)−pα < ∞}.

Especially, for ρ = 0 and p = 0, we denote the space X ⊗ (S)
(H)
0,0 by

X ⊗ L2(μH ) = {̃v : ‖̃v‖2X⊗L2(μH ) =
∑
α∈I

α!‖̃vα‖2X < ∞}.

Definition 1.14 Test and generalized fractional stochastic processes in Kondratiev
sense are respectively elements of the spaces

X ⊗ (S)(H)
ρ =

⋂
p∈N0

X ⊗ (S)(H)
ρ,p and X ⊗ (S)

(H)
−ρ =

⋃
p∈N0

X ⊗ (S)
(H)
−ρ,−p.

1.4.2 Schwartz Spaces Valued Stochastic Processes

A general setting of Schwartz spaces valued generalized stochastic process was
provided in [41] and further developed in [19, 22–24].

Definition 1.15 Let F has a formal expansion

F =
∑
α∈I

∑
k∈N

fα,k ⊗ ξk ⊗ Hα , where fα,k ∈ X, α ∈ I , K ∈ N.

Let ρ ∈ [0, 1]. Define the following spaces:
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1.4 Stochastic Processes 25

X ⊗ Sl(R) ⊗ (S)ρ,p

= {F : ‖F‖2X⊗Sl (R)⊗(S)ρ,p
=

∑
α∈I

∑
k∈N

α!1+ρ ‖ fα,k‖2X (2k)l(2N)pα < ∞},

X ⊗ S−l(R) ⊗ (S)−ρ,−p

= {F : ‖F‖2X⊗S−l (R)⊗(S)−ρ,−p
=

∑
α∈I

∑
k∈N

α!1−ρ ‖ fα,k‖2X (2k)−l(2N)−pα < ∞}.

Definition 1.16 The Schwartz space of generalized stochastic processes in Kon-
dratiev sense are elements of the space

X ⊗ S′(R) ⊗ (S)−ρ =
⋃

p,l∈N0

X ⊗ S−l(R) ⊗ (S)−ρ,−p,

while theSchwartz space of test stochastic processes inKondratiev sense are elements
of the space

X ⊗ S(R) ⊗ (S)ρ =
⋂

p,l∈N0

X ⊗ Sl(R) ⊗ (S)ρ,p.

Therefore, S′(R)-valued generalized stochastic processes as elements of X ⊗S′(R)⊗
(S)−ρ are given in the chaos expansion form

F =
∑
α∈I

∑
k∈N

fα,k ⊗ ξk ⊗ Hα =
∑
α∈I

bα ⊗ Hα =
∑
k∈N

ck ⊗ ξk, (1.42)

where bα = ∑
k∈N fα,k ⊗ ξk ∈ X ⊗ S′(R), ck = ∑

α∈I fα,k ⊗ Hα ∈ X ⊗ (S)−ρ

and fα,k ∈ X . Its generalized expectation is the zeroth coefficient in the expansion
representation (1.42), i.e., it is given by E(F) = ∑

k∈N f0,k ⊗ ξk = b0. Moreover,

‖F‖2X⊗S−l (R)⊗(S)−ρ,−p
=

∑
α∈I

‖bα‖2X⊗S−l (R)(2N)−pα =
∑
k∈N

‖ck‖2X⊗(S)−ρ,−p
(2k)−l .

On the other side, S(R)-valued test processes as elements of X ⊗ S(R) ⊗ (S)ρ ,
which are given by chaos expansions of the form (1.42), where bα = ∑

k∈N fα,k ⊗
ξk ∈ X ⊗ S(R), ck = ∑

α∈I fα,k ⊗ Hα ∈ X ⊗ (S)ρ and fα,k ∈ X .
The Hida spaces are obtained for ρ = 0. The space X ⊗ L2(R)⊗(S)0,0 is denoted

by

X ⊗ L2(R) ⊗ L2(μ) = {F : ‖F‖2X⊗L2(R)⊗L2(μ) =
∑
α∈I

∑
k∈N

α!‖ fα,k‖2X < ∞}

and represents the space of processes with finite second moments and square inte-
grable trajectories. It is isomporphic to X ⊗L2(R×Ω) and if X is a separable Hilbert
space, then it is also isomorphic to L2(R × Ω; X), see [43].
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26 1 White Noise Analysis and Chaos Expansions

Example 1.11 Let T > 0 and let X = Ck([0, T ]), k ∈ N. From the nuclearity of
(S)ρ and the arguments provided in Remark 1.8 it follows that Ck([0, T ], (S)−ρ) is
isomorphic to Ck([0, T ]) ⊗ (S)−ρ , i.e., differentiation of a stochastic process can
be carried out componentwise in the chaos expansion [23, 25]. This means that a
stochastic process u(t, ω) is k times continuously differentiable if and only if all its
coefficients uα , α ∈ I are in Ck([0, T ]). The same holds for Banach space valued
stochastic processes, i.e., for elements of Ck([0, T ], X) ⊗ (S)−ρ , where X is an
arbitrary Banach space. These processes can be regarded as elements of the space
Ck([0, T ], X ⊗ (S)−ρ) which is isomorphic to

Ck([0, T ], X) ⊗ (S)−ρ =
⋃
p∈N0

Ck([0, T ], X) ⊗ (S)−ρ,−p.

In applications in fluid mechanics [1] we considered weak solutions of SDEs,
i.e., we dealt with stochastic processes whose coefficients are elements in Sobolev-
Bochner spaces such as L2([0, T ], X). Moreover, due to the nuclearity of the
Kondratiev spaces we have L2([0, T ], X ⊗ (S)−ρ) ∼= L2([0, T ], X) ⊗ (S)−ρ and
H 1([0, T ], X ⊗ (S)−ρ) ∼= H 1([0, T ], X) ⊗ (S)−ρ.

Remark 1.10 Let ρ ∈ [0, 1]. The Schwartz spaces valued generalized and test
stochastic processes modified by a sequence a = (ak)k∈N, ak ≥ 1, k ∈ N are
respectively elements of X ⊗ S′(R) ⊗ (Sa)−ρ and X ⊗ S(R) ⊗ (Sa)ρ . Then,
F ∈ X ⊗ S′(R) ⊗ (Sa)−ρ can be represented in the chaos expansion form (1.42),
where bα = ∑

k∈N fα,k ⊗ ξk ∈ X ⊗ S′(R), ck = ∑
α∈I fα,k ⊗ Hα ∈ X ⊗ (Sa)−ρ

and fα,k ∈ X , such that for some p, l ∈ N0 it holds

‖F‖2X⊗S−l (R)⊗(Sa)−ρ,−p
=

∑
α∈I

∑
k∈N

‖ fα,k‖2X α!1−ρ(2k)−l(2Na)−pα < ∞.

On the other hand, F ∈ X ⊗ S(R) ⊗ (Sa)ρ can be represented in the form (1.42),
where bα = ∑

k∈N fα,k ⊗ ξk ∈ X ⊗ S(R), ck = ∑
α∈I fα,k ⊗ Hα ∈ X ⊗ (Sa)ρ and

fα,k ∈ X , such that for all p, l ∈ N0 it holds

‖F‖2X⊗Sl (R)⊗(Sa)ρ,p
=

∑
α∈I

∑
k∈N

‖ fα,k‖2X α!1−ρ(2k)l(2Na)pα < ∞.

Example 1.12 Let H be a separable Hilbert space and let X = L2([0, T ],H ).
A square integrable H -valued stochastic processes v is an element of L2([0, T ] ×
Ω,H ) ∼= L2([0, T ],H ) ⊗ L2(μ) and is of the form

v(t, ω) =
∑
α∈I

vα(t)Hα(ω)

= v0(t) +
∑
k∈N

vε(k) (t) Hε(k) (ω) +
∑
|α|>1

vα(t) Hα(ω), t ∈ [0, T ],
(1.43)
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1.4 Stochastic Processes 27

where vα ∈ L2([0, T ],H ) such that it holds

∑
α∈I

‖vα‖2L2([0,T ],H ) α! < ∞. (1.44)

A process v with the chaos expansion representation (1.43) that instead of (1.44)
satisfies the condition

∑
α∈I

‖vα‖2L2([0,T ],H ) α!1−ρ (2N)−pα < ∞ (1.45)

belongs to L2([0, T ],H ) ⊗ (S)−ρ and is considered to be a generalized stochas-
tic process. The coefficient v0(t) is the deterministic part of v in (1.43) and is the
generalized expectation of the process v.

Denote by {en(t)}n∈N the orthonormal basis of L2([0, T ],H ), i.e., the basis
obtained by diagonalizing the orthonormal basis {bi (t)s j }i, j∈N, where {bi (t)}i∈N is
the orthonormal basis of L2([0, T ]) and {s j } j∈N is the orthonormal basis ofH . The
coefficients vα(t) ∈ L2([0, T ],H ), α ∈ I can be represented in the form

vα(t) =
∑
j∈N

vα, j (t) s j =
∑
j∈N

∑
i∈N

vα, j,i bi (t) s j , α ∈ I

with vα, j ∈ L2([0, T ]) and vα, j,i ∈ R. Then, (1.43) can be rewritten in the form

v(t, ω) =
∑
α∈I

vα(t)Hα(ω) =
∑
α∈I

∑
j∈N

∑
i∈N

vα, j,i s j bi (t)Hα(ω).

After a diagonalization of N × N → N, (i, j) �→ n = n(i, j), it can be rearranged
to

v(t, ω) =
∑
α∈I

∑
n∈N

vα,n en(t) Hα(ω), vα,n ∈ R, ω ∈ Ω, t ∈ [0, T ].

Example 1.13 AnH -valued Brownian motion {Bt }t≥0 on (Ω,F , P) is a family of
mappings Bt : H → L2(P) such that {Bt h}h∈H ,t≥0 is a Gaussian centered process
with the covariance EP(Bt h Bsh1) = (h, h1)H min{t, s}, for t, s ≥ 0, h, h1 ∈ H .
Moreover, for every h ∈ H the process {Bt h} is a real Brownian motion [5]. Let
{b(i)

t }i∈N be a sequence of independent one dimensional Brownian motions of the
form (1.35). An H -valued Brownian motion is then given by

Bt (ω) =
∞∑

i=1

b(i)
t si =

∞∑
k=1

θk(t) Hε(k) (ω),

tijana.levajkovic@uibk.ac.at

Book 497



28 1 White Noise Analysis and Chaos Expansions

where θk(t) = δn(i, j),k (
∫ t
0 ξ j (s)ds) si , and δn(i, j),k is the Kronecker delta function,

see [41]. Particularly, Bt with values in R reduces to the standard Brownian motion
bt .

Example 1.14 An H -valued white noise process is given by the formal sum

Wt (ω) =
∞∑

k=1

ek(t) Hε(k) (ω). (1.46)

Following [5], an H -valued white noise can be also defined as
∑

n∈N wn
t (ω) sn ,

where w(n)
t (ω) are independent copies of one dimensional white noise (1.36) and

{sn}n∈N is the orthonormal basis ofH . This definition can be reduced to (1.46) since

∑
n∈N

w(n)
t (ω)sn =

∑
n∈N

∑
k∈N

ξk(t) Hε(k) (ω)sn =
∑
i∈N

ξi (t) Hε(i) (ω) sn =
∞∑
j=1

e j (t)Hε( j) (ω),

where {e j } j∈N is the orthogonal basis of L2(R,H ) obtained by diagonalizing the
basis {ξk(t)sn}k,n∈N and ξn are the Hermite functions (1.1). The process Wt is an
element in S(H )−ρ , for all ρ ∈ [0, 1].

More generally, chaos expansion representation of anH -valuedGaussian process
that belongs to the Wiener chaos space of order one is given by

Gt (ω) =
∑
k∈N

gk(t) Hε(k) (ω) =
∑
k∈N

(∑
i∈N

gki ei (t)

)
Hε(k) (ω), (1.47)

with gk ∈ L2([0, T ],H ) and gki = (gk, ei )L2([0,T ],H ) is a real constant. If the
condition ∑

k∈N
‖gk‖2L2([0,T ],H ) < ∞ (1.48)

is fulfilled, then Gt belongs to the space L2([0, T ] × Ω,H ) ∼= L2([0, T ],H ) ⊗
L2(μ). If the sum in (1.48) is infinite then the representation (1.47) is formal, and if
additionally

∑
k∈N ‖gk‖2L2([0,T ],H )

(2N)−pε(k) = ∑
k∈N ‖gk‖2L2([0,T ],H )

(2k)−p < ∞
holds for some p ∈ N0, then for each t the process Gt belongs to the Kondratiev
space of stochastic distributions (S)−ρ , see [19, 26, 37].

From the representation (1.47) we conclude that a Gaussian noise can be inter-
preted as a colored noise with the representation operator N and the correlation
function C = N N � such that

∑
k∈N

N� fk(t) Hε(k) (ω) =
∑
k∈N

N�

⎛
⎝∑

i∈N
fki ei (t)

⎞
⎠ Hε(k) (ω) =

∑
k∈N

∑
i∈N

λi fki ei (t)Hε(k) (ω),
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1.4 Stochastic Processes 29

with N �ei (t) = λi ei (t), i ∈ N, [30]. Hence, in the following we will assume the
color noise to be a Gaussian process of the form

Lt (ω) =
∑
k∈N

lk ek(t) Hε(k) (ω), (1.49)

with a sequence of real coefficients {lk}k∈N such that for some p ∈ N it holds

∑
k∈N

l2k (2k)−p < ∞. (1.50)

Example 1.15 For X = L2([0, T ],H ) we obtain the space ofH -valued fractional
stochastic processes. In prticular, ṽ ∈ L2([0, T ],H ) ⊗ L2(μH ) is uniquely defined
by

ṽt (ω) =
∑
α∈I

ṽα(t) H̃α(ω), (1.51)

where ṽα ∈ L2([0, T ],H ), α ∈ I such that
∑

α∈I ‖̃vα‖2X α! < ∞. Moreover,
(1.51) can be written in the form ṽt (ω) = ∑

α∈I
∑

n∈N vα,n en(t) H̃α(ω), vα,n ∈ R,
ω ∈ Ω , t ∈ [0, T ]. Fractional generalized processes ṽ from L2([0, T ],H )⊗ (S)

(H)
−ρ

has a chaos expansion representation of the form (1.51) such that (1.45) holds.

1.4.3 Fractional OperatorM

In this section we introduce an isometry M between the space of square integrable
fractional random variables L2(μH ) and the space of integrable random variables
L2(μ), and then extend this mapping to an isometry between the spaces stochastic
processes X ⊗ (S)H−ρ and X ⊗ (S)−ρ . Since the operator M (H), defined in Sect. 1.3.6,
is self-adjoint, we can for each α ∈ I connect the Fourier-Hermite polynomials
(1.10) and (1.30) in the following way

Hα(ω) =
∞∏

k=1

hαk (〈ω, ξk〉) =
∞∏

k=1

hαk (〈ω, M (H)e(H)
k 〉) =

∞∏
k=1

hαk (〈M (H)ω, e(H)
k 〉)

= H̃α(M (H)ω)

and similarly H̃α(ω) = Hα(M (1−H)ω). Hence, we define a fractional operatorM as
follows.

Definition 1.17 ([19]) Let M : L2(μH ) → L2(μ) be defined by

M (H̃α(ω)) = Hα(ω), α ∈ I , ω ∈ Ω.
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30 1 White Noise Analysis and Chaos Expansions

The action of M can be seen as a transformation of the corresponding elements
of the orthogonal basis {H̃α}α∈I into {Hα}α∈I . The fractional operators M and
M (1−H) correspond to each other. For G = ∑

α∈I cα H̃α(ω) ∈ L2(μH ) by linearity
and continuity we extend M to

M (G) = M

(∑
α∈I

cα H̃α(ω)

)
=

∑
α∈I

cα Hα(ω). (1.52)

Theorem 1.8 ([19]) Operator M is an isometry between spaces of classical
Gaussian and fractional Gaussian random variables.

Proof The operatorM is an isometry between L2(μH ) and L2(μ) because it holds
‖M (H̃α)‖2L2(μ) = ‖Hα‖2L2(μ)

= α! = ‖H̃α‖2L2(μH ). ��

Further on, each pair of elements F and F̃ , that are connected via M , will be
called the associated pairs. The coefficients of the chaos expansion representations
of associated elements F and F̃ coincide.

Lemma 1.2 Let F = ∑
α∈I fα Hα ∈ L2(μ) and F̃ = ∑

α∈I f̃α H̃α ∈ L2(μH ).
Then, F and F̃ are associated if and only if f̃α = fα for all α ∈ I .

Proof Let F and F̃ be associated. Then,

∑
α∈I

fα Hα = F = M (F̃) = M (
∑
α∈I

f̃α H̃α) =
∑
α∈I

f̃α Hα.

Due to the uniqueness of the chaos expansion representation in {Hα}α∈I we obtain
fα = f̃α for all α ∈ I . ��
The action of the operator M can be extended to Kondratiev space of stochas-

tic distributions M : (S)
(H)
−ρ → (S)−ρ by (1.52) for G ∈ (S)

(H)
−ρ . The extension,

also denoted by M , is well defined since there exists p ∈ N such that it holds∑
α∈I α!1−ρ f 2α (2N)−pα < ∞. In an analogous way, the action of the operator M

can be extended to all classes of stochastic processes (test, square integrable and
generalized) and H -valued stochastic processes.

Example 1.16 The connection between a Brownian motion bt and a fractional
Brownian motion b(H)

t , that are respectively represented by (1.35) and (1.39), in
terms of the operator M is given by M−1(bt ) = b(H)

t .

Example 1.17 One dimensional real valued fractional singular white noise w(H)
t for

fixed t is an element of fractional Kondratiev space (S)
(1−H)
−ρ . It is defined by the

formal expansion

w(H)
t (ω) =

∞∑
k=1

ξk(t) H̃ε(k) (ω). (1.53)
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1.4 Stochastic Processes 31

It is integrable and the relation d
dt b(H)

t = w(H)
t holds in the sense of distributions.

Moreover, by combining (1.36) and (1.53) we obtain

M−1 (wt ) = M−1

( ∞∑
k=1

ξk Hε(k)

)
=

∞∑
k=1

ξk H̃ε(k) (ω) = w(H)
t .

Example 1.18 AnH -valued fractionalwhite noise in the fractional space is given by

W (H)
t (ω) =

∞∑
k=1

ek(t) H̃ε(k) (ω), (1.54)

where {ek}k∈N is an orthonormal basis in L2([0, T ],H ). By (1.46) and (1.54), the
relations M (W (H)

t ) = Wt and M−1(Wt ) = W (H)
t follow.

From here onwards we will keep the following notation: all processes denoted
with tilde in superscript will be considered as elements of a certain fractional space.
Therefore, due to Lemma 1.2, each process v = ∑

α∈I vα Hα from an H -valued
classical space (particularly L2([0, T ],H ) ⊗ L2(μ) or L2([0, T ],H ) ⊗ (S)−ρ)
will be associated to a process ṽ = ∑

α∈I vα H̃α from the correspondingH -valued
fractional space (particularly L2([0, T ],H )⊗ L2(μH ) or L2([0, T ],H )⊗ (S)

(H)
−ρ )

via the fractional mappingM , i.e.,M (̃v) = v. Since the coefficients of processes ṽ
and v are equal it also follows

‖̃v‖2L2([0,T ],H )⊗L2(μH ) =
∑
α∈I

α! ‖vα‖2L2([0,T ],H ) = ‖v‖2L2([0,T ],H )⊗L2(μ). (1.55)

1.4.4 Multiplication of Stochastic Processes

In this section we deal with two types of products of stochastic processes. First,
we generalize the definition of the Wick product of random variables to the set of
generalized stochastic processes as it was done in [11, 21, 24]. For this purpose we
will assume that X is closed under multiplication, i.e., that x · y ∈ X , for all x, y ∈ X .
Then, we consider the ordinary (usual) product of stochastic processes.

Definition 1.18 For stochastic processes F and G given in chaos expansion forms
(1.31), their Wick product F♦G is a stochastic process defined by

F♦G =
∑
γ∈I

( ∑
α+β=γ

fαgβ

) ⊗ Hγ . (1.56)

In [23] it was proven that the spaces of stochastic processes X ⊗ (S)−1 and X ⊗ (S)1
are closed under the Wick multiplication, providing the conditions only in terms
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32 1 White Noise Analysis and Chaos Expansions

of the level of singularity p. Here we prove the closability of the Wick product in
X ⊗ (S)−ρ and X ⊗ (S)ρ for ρ ∈ [0, 1] by stating the conditions involving both the
level of singularity p and ρ.

Theorem 1.9 Let ρ ∈ [0, 1] and let F and G be given in their chaos expansion
forms F = ∑

α∈I fα ⊗ Hα and G = ∑
α∈I gα ⊗ Hα , fα, gα ∈ X, α ∈ I .

1◦ If F ∈ X ⊗ (S)−ρ,−p1 and G ∈ X ⊗ (S)−ρ,−p2 for some p1, p2 ∈ N0, then F♦G
is a well defined element in X ⊗ (S)−ρ,−q , for q ≥ p1 + p2 + 3 − ρ.

2◦ If F ∈ X ⊗ (S)ρ, p1 and G ∈ X ⊗ (S)ρ, p2 for p1, p2 ∈ N0, then F♦G is a well
defined element in X ⊗ (S)ρ, q , for q + 3 + ρ ≤ min{p1, p2}.

Proof 1◦ Let F ∈ X ⊗ (S)−ρ,−p1 and G ∈ X ⊗ (S)−ρ,−p2 for some p1, p2 ∈ N0.
Then, from (1.56) by the Cauchy-Schwarz inequality and Lemma 1.1, part 2◦, the
following holds

‖F♦G‖2X⊗(S)−ρ,−q
=

∑
γ∈I

γ !1−ρ‖
∑

α+β=γ

fαgβ‖2X (2N)−qγ

≤
∑
γ∈I

γ !1−ρ‖
∑

α+β=γ

fαgβ‖2X (2N)−(p1+p2+3−ρ)γ

≤
∑
γ∈I

(2N)−2γ ‖
∑

α+β=γ

fαgβ(α!β!(2N)α+β)
1−ρ

2 (2N)−
p1++p2+1−ρ

2 (α+β)‖2X

≤
∑
γ∈I

(2N)−2γ
( ∑

α+β=γ

‖ fα‖2Xα!1−ρ(2N)−p1α
)( ∑

α+β=γ

‖gβ‖2Xβ!1−ρ(2N)−p2β
)

≤ m · ‖F‖2X⊗(S)−ρ,−p1
· ‖G‖2X⊗(S)−ρ,−p2

< ∞,

since m = ∑
γ∈I (2N)−2γ < ∞.

2◦ Let now F ∈ X ⊗ (S)ρ,p1 and G ∈ X ⊗ (S)ρ,p2 for all p1, p2 ∈ N0. Then, the
chaos expansion form of F♦G is given by (1.56) and

‖F♦G‖2X⊗(S)ρ,q
=

∑
γ∈I

γ !1+ρ‖
∑

α+β=γ

fαgβ‖2X (2N)qγ

=
∑
γ∈I

(2N)−2γ ‖
∑

α+β=γ

γ ! 1+ρ

2 fαgβ(2N)
q+2
2 γ ‖2X

≤
∑
γ∈I

(2N)−2γ ‖
∑

α+β=γ

α! 1+ρ

2 β! 1+ρ

2 (2N)
1+ρ

2 (α+β) fαgβ(2N)
q+2
2 (α+β)‖2X

≤ m

⎛
⎝ ∑

α+β=γ

α!1+ρ‖ fα‖2X (2N)(q+3+ρ)α

⎞
⎠

⎛
⎝ ∑

α+β=γ

β!1+ρ‖gβ‖2X (2N)(q+3+ρ)β

⎞
⎠

≤ m · ‖F‖2X⊗(S)ρ,p1
· ‖G‖2X⊗(S)ρ,p2

< ∞,

for q + 3 + ρ ≤ min{p1, p2}, where m = ∑
γ∈I (2N)−2γ < ∞. ��
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1.4 Stochastic Processes 33

Remark 1.11 A test stochastic process u ∈ X ⊗ (S)ρ,p, p ≥ 0 can be considered
also as an element in X ⊗(S)−ρ,−q , q ≥ 0 since it holds ‖u‖2X⊗(S)−ρ,−q

≤ ‖u‖2X⊗(S)ρ,p
.

Therefore, if F ∈ X ⊗ (S)ρ,p1 and G ∈ X ⊗ (S)−ρ,−p2 for some p1, p2 ∈ N0, then
F♦G is a well defined element in X ⊗ (S)−ρ,−q , for q ≥ p2 + 3 + ρ. This follows
from Theorem 1.9 part 1◦ by letting p1 = 0.

Applying the formula for the product of Fourier-Hermite polynomials (1.14), the
ordinary product F · G of two stochastic processes F and G can be defined. Thus,
formally we obtain

F · G =
∑
α∈I

∑
β∈I

fα gβ ⊗ Hα · Hβ

=
∑
α∈I

∑
β∈I

fα gβ ⊗
∑

0≤γ≤min{α,β}
γ !

(
α

γ

)(
β

γ

)
Hα+β−2γ (1.57)

= F♦G +
∑
α∈I

∑
β∈I

fα gβ ⊗
∑

0<γ≤min{α,β}
γ !

(
α

γ

)(
β

γ

)
Hα+β−2γ .

After the change of variables δ = α − γ , θ = β − γ and τ = δ + θ we obtain

Hα · Hβ =
∑
τ∈I

∑
γ∈I ,δ≤τ

γ+τ−δ=β,γ+δ=α

α!β!
γ !δ!(τ − δ)! Hτ = Hα+β +

∑
τ∈I

∑
γ>0,δ≤τ

γ+τ−δ=β,γ+δ=α

α!β!
γ !δ!(τ − δ)! Hτ .

Therefore, we can rearrange the sums for F · G and obtain

F · G = F♦G +
∑
τ∈I

∑
α∈I

∑
β∈I

fαgβ

∑
γ>0,δ≤τ

γ+τ−δ=β,γ+δ=α

α!β!
γ !δ!(τ − δ)! Hτ

=
∑
τ∈I

∑
α∈I

∑
β∈I

fαgβ aα,β,τ Hτ ,

(1.58)

where

aα,β,τ =
∑

γ∈I ,δ≤τ,

γ+τ−δ=β,γ+δ=α

α!β!
γ !δ!(τ − δ)! . (1.59)

Note that for each α, β, τ ∈ I fixed, there exists a unique pair of multi-indices
γ, δ ∈ I such that δ ≤ τ and γ + τ − δ = β, γ + δ = α. Moreover, both α + β

and |α − β| are odd (respectively even) if and only if τ is odd (respectively even).
Also, α + β ≥ τ ≥ |α − β|. Thus,

aα,β,τ = α!β!
(

α+β−τ

2 )!( α−β+τ

2 )!( β−α+τ

2 )! .
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34 1 White Noise Analysis and Chaos Expansions

For example, if τ = (2, 0, 0, 0, . . .), then the coefficient next to Hτ in (1.58)
is f(0,0,0,...)g(2,0,0,...) + f(1,0,0,...)g(1,0,0,...) + f(2,0,0,...)g(0,0,0,...) + 3 f(1,0,0,...)g(3,0,0,...) +
4 f(2,0,0,...)g(2,0,0,...) + 3 f(3,0,0,...)g(1,0,0,...) + 18 f(3,0,0,...)g(3,0,0,...) + · · · .
Lemma 1.3 ([20]) Let α, β, τ ∈ I and aα,β,τ be defined as in (1.59). Then,

aα,β,τ ≤ (2N)α+β.

The proof is rather technical and it is omitted here. We refer the reader to [20].

Theorem 1.10 The following hold:

1◦ If F ∈ X ⊗ (S)ρ,p1 and G ∈ X ⊗ (S)ρ,p2 , for p1, p2 ∈ N0, then the ordinary
product F ·G is a well defined element in X ⊗(S)ρ,q for q+7+ρ ≤ min{p1, p2}.

2◦ If F ∈ X ⊗ (S)ρ,p1 and G ∈ X ⊗ (S)−ρ,−p2 , for p1− p2 > 8, then their ordinary
product F · G is well defined and belongs to X ⊗ (S)−ρ,−q for q ≥ p2 + 7− ρ.

Proof 1◦ Let F ∈ X ⊗ (S)ρ,p1 and G ∈ X ⊗ (S)ρ,p2 , for p1, p2 ∈ N0. By Lemma
1.3, Lemma 1.1 and the Cauchy-Schwarz inequality we have

‖F · G‖2X⊗(S)ρ,q
=

∑
τ∈I

τ !1+ρ‖
∑

α,β∈I
fαgβaα,β,τ‖2X (2N)qτ

≤
∑
τ∈I

τ !1+ρ‖
∑

τ≤α+β

τ ! 1+ρ

2 fαgβ(2N)α+β (2N)
q
2 τ‖2X

≤
∑
τ∈I

(2N)−2τ‖
∑

τ≤α+β

(2N)2(α+β) fαgβ (α!β!(2N)α+β)
1+ρ

2 (2N)
q
2 (α+β)‖2X

≤
∑
τ∈I

(2N)−2τ‖
∑

α,β∈I
(2N)−βα! 1+ρ

2 fα (2N)−αβ! 1+ρ

2 gβ(2N)
r
2 (α+β)‖2X

≤
∑
τ∈I

(2N)−2τ
( ∑

α,β∈I
α!1+ρ‖ fα‖2X (2N)rα(2N)−2β

∑
α,β∈I

β!1+ρ‖gβ‖2X (2N)rβ(2N)−2α
)

≤m
(∑

β∈I
(2N)−2β

∑
α∈I

α!1+ρ‖ fα‖2X (2N)p1α
)(∑

α∈I
(2N)−2α

∑
β∈I

β!1+ρ‖gβ‖2X (2N)p2β
)

≤ m
(

c1
∑
α∈I

α!2‖ fα‖2X (2N)p1α
) (

c2
∑
β∈I

α!2‖gβ‖2X (2N)p2β
)

= m c1c2‖F‖2X⊗(S)ρ,p1
‖G‖2X⊗(S)ρ,p2

< ∞,

for r = q + 7+ ρ ≤ min{p1, p2}, where m = ∑
τ∈I (2N)−2τ , c1 = ∑

β∈I (2N)−2β

and c2 = ∑
α∈I (2N)−2α are finite.

2◦ Let F ∈ X ⊗ (S)ρ,p1 and G ∈ X ⊗ (S)−ρ,−p2 , for p1, p2 ∈ N0 such that
p1 > p2 + 8, and assume q ≥ p2 + 7 − ρ. Then,

‖F · G‖2X⊗(S)−ρ,−q
=

∑
τ∈I

τ !1−ρ‖
∑

α,β∈I
fαgβaα,β,τ‖2X (2N)−qτ
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1.4 Stochastic Processes 35

≤
∑
τ∈I

‖
∑

τ≤α+β

τ ! 1−ρ

2 fαgβ(2N)α+β (2N)−
p2+7−ρ

2 τ‖2X

≤
∑
τ∈I

(2N)−2τ‖
∑

τ≤α+β

(2N)2(α+β) fαgβ (α!β!(2N)α+β)
1−ρ

2 (2N)−
p2+7−ρ

2 (α+β)‖2X

≤
∑
τ∈I

(2N)−2τ‖
∑

α,β∈I
(2N)−βα! 1−ρ

2 fα (2N)−
p2
2 α(2N)−αβ! 1−ρ

2 gβ(2N)−
p2
2 β‖2X

≤
∑
τ∈I

(2N)−2τ‖
∑

α,β∈I
(2N)−βα! 1+ρ

2 fα (2N)
p1
2 α(2N)−αβ! 1−ρ

2 gβ(2N)−
p2
2 β‖2X

≤
∑
τ∈I

(2N)−2τ
( ∑

α,β∈I
α!1+ρ‖ fα‖2X (2N)p2α−2β

∑
α,β∈I

β!1−ρ‖gβ‖2X (2N)−p2β−2α
)

≤
∑
τ∈I

(2N)−2τ
(

c1
∑
α∈I

α!1+ρ‖ fα‖2X (2N)p1α
)(

c2
∑
β∈I

β!1−ρ‖gβ‖2X (2N)−p2β
)

≤ m c1c2‖F‖2X⊗(S)ρ,p1
‖G‖2X⊗(S)−ρ,p2

< ∞,

where m = ∑
τ∈I (2N)−2τ , c1 = ∑

β∈I (2N)−2β , c2 = ∑
α∈I (2N)−2α are finite. ��

In [20] the authors proved similar theorem to Theorem 1.10, where the conditions
were given only in terms of level of singularities.

Remark 1.12 For F, G ∈ X ⊗ L2(μ) the ordinary product F ·G will not necessarily
belong to X ⊗ L2(μ), but due to the Hölder inequality it will belong to X ⊗ L1(μ).
This also follows from the fact that F♦G for random variables F and G does not
necessarily belong to L2(μ), see Example 1.4.

1.5 Operators

We consider two classes of operators defined on sets of stochastic processes, coor-
dinatewise operators and convolution type operators. We follow the classification of
stochastic operators given in [17, 25].

Definition 1.19 We say that an operator A defined on X ⊗ (S)−ρ is:

1◦ a coordinatewise operator if it is composed of a family of operators {Aα}α∈I ,
Aα : X → X ,α ∈ I , such that for a process u = ∑

α∈I uα ⊗ Hα ∈ X ⊗(S)−ρ ,
uα ∈ X , α ∈ I it holds that

Au =
∑
α∈I

Aαuα ⊗ Hα . (1.60)

2◦ a simple coordinatewise operator if Aα = A for all α ∈ I , i.e., if it holds that
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36 1 White Noise Analysis and Chaos Expansions

Au =
∑
α∈I

A(uα) ⊗ Hα = A(u0) +
∑
|α|>0

A(uα) ⊗ Hα.

Definition 1.20 A fractional operator Ã : X ⊗ (S)
(H)
−ρ → X ⊗ (S)

(H)
−ρ is a coordi-

natewise operator if it is composed of a family of operators Ãα : X → X , α ∈ I ,
such that ũ = ∑

α∈I ũα ⊗ H̃α ∈ X ⊗ (S)
(H)
−ρ , ũα ∈ X , α ∈ I it holds

Ãu =
∑
α∈I

Ãα ũα ⊗ H̃α. (1.61)

If Ãα = Ã for all α ∈ I then A is a simple coordinatewise operator.

Remark 1.13 Definitions 1.19 and 1.20 can be modified for the operators acting on
the spaces of square integrable processes X ⊗ L2(μ) and X ⊗ L2(μH ) and spaces
of test processes X ⊗ (S)ρ and X ⊗ (S)(H)

ρ .

Example 1.19 The time differentiation can be carried out componentwise in the
chaos expansion, Example 1.11, and thus the differentiation operator is a simple
coordinatewise operator. In the following chapters we will work with generalized
operators of the Malliavin calculus. Particularly, the Ornstein-Uhlenbeck operator,
defined by (2.14), is an example of a coordinatewise operator, while the Malliavin
derivative, defined by (2.2), is not a coordinatewise operator. In [25] it was proven
that the Skorokhod integral, defined by (2.9), can be represented in the form of a
convolution type operator.

Lemma 1.4 Let A be a coordinatewise operator that corresponds to a family of
deterministic operators {Aα}α∈I . If the operators Aα : X → X, α ∈ I are uni-
formly bounded by c > 0 then A is also bounded.

Proof 1◦ Let first A : X ⊗ L2(μ) → X ⊗ L2(μ) and ‖Aα‖L(X) ≤ c for all
α ∈ I . Let v = ∑

α∈I vα Hα . Then, ‖Av‖2X⊗L2(μ)
≤ c2

∑
α∈I ‖vα‖2X α! =

c2‖v‖2X⊗L2(μ)
and the operator A is bounded with ‖A‖L(X)⊗L2(μ) ≤ c.

2◦ For A : X ⊗ (S)−ρ → X ⊗ (S)−ρ , such that ‖Aα‖L(X) ≤ c for all α ∈ I we
have ‖Av‖2X⊗(S)−ρ,−p

≤ c2
∑

α∈I ‖vα‖2Xα!1−ρ(2N)−pα = c2‖v‖2X⊗(S)−ρ,−p
and A

is bounded.
3◦ Similarly, for a coordinatewise operator A : X ⊗ (S)ρ → X ⊗ (S)ρ , such that

‖Aα‖L(X) ≤ c we have ‖Av‖2X⊗(S)ρ,p
≤ c2‖v‖2X⊗(S)ρ,p

and ‖A‖L(X)⊗(S)ρ ≤ c. ��
Lemma 1.5 ([25]) Let A be a coordinatewise operator for which all Aα , α ∈ I ,
are polynomially bounded, i.e., ‖Aα‖L(X) ≤ R(2N)rα for some r, R > 0. Then, A is
a bounded operator:

1◦ A : X ⊗ (S)−ρ,−p → X ⊗ (S)−ρ,−q for q ≥ p + 2r , and
2◦ A : X ⊗ (S)ρ,p → X ⊗ (S)ρ,q for q + 2r ≤ p.
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1.5 Operators 37

Proof 1◦ For q ≥ p + 2r we obtain ‖A‖L(X)⊗(S)−ρ
≤ R. Clearly, from (1.60) by

(1.34) we obtain the estimate

‖A(v)‖2X⊗(S)−ρ,−q
≤ R2

∑
α∈I

(2N)2rα‖vα‖2Xα!1−ρ(2N)−qα

≤ R2
∑
α∈I

‖vα‖2Xα!1−ρ(2N)−pα = R2‖v‖2X⊗(S)−ρ,−p
< ∞.

2◦ For q ≤ p − 2r we obtain the estimate

‖A(v)‖2X⊗(S)ρ,q
≤ R2

∑
α∈I

(2N)2rα‖vα‖2Xα!1+ρ(2N)qα

≤ R2
∑
α∈I

‖vα‖2Xα!1+ρ(2N)pα = R2‖v‖2X⊗(S)ρ,p
< ∞

and thus ‖A‖L(X)⊗(S)ρ,p ≤ R. ��
Remark 1.14 The condition stating that the deterministic operators Aα , α ∈ I are
polynomially bounded can be formulated as

∑
α∈I ‖Aα‖2L(X)(2N)−rα < ∞ for some

r > 0, see [25].

Definition 1.21 The Wick convolution type operator T♦ for y = ∑
α∈I yα Hα is

defined by

T♦(y) =
∑
α∈I

∑
β≤α

Tβ(yα−β) Hα =
∑
γ∈I

∑
α+β=γ

Tα(yβ)Hγ . (1.62)

If the operators Tα , α ∈ I are assumed to be polynomially bounded and linear
on X , then T♦ is well-defined operator on X ⊗ (S)−ρ and also on X ⊗ (S)ρ , see [25].

Lemma 1.6 ([25]) If Tα , α ∈ I , satisfy
∑

α∈I ‖Tα‖L(X)(2N)−
p
2 α < ∞ for some

p > 0, then T♦ is well-defined as a mapping T♦ : X ⊗ (S)−ρ,−p → X ⊗ (S)−ρ,−p.

Proof For v ∈ X ⊗ (S)−ρ,−p by the generalized Minkowski inequality we obtain

‖T♦(y)‖2X⊗(S)−ρ,−p
≤

∑
γ∈I

(
∑

α+β=γ

‖Tα‖L(X)‖yβ‖X )2γ !1−ρ(2N)−pγ

≤
∑
γ∈I

(
∑

α+β=γ

‖Tα‖L(X)(2N)−
p
2 α‖yβ‖X (2N)−

p
2 βγ ! 1−ρ

2 )2

≤ (
∑
α∈I

‖Tα‖L(X)(2N)−
p
2 α)2

∑
γ∈I

‖yγ ‖2X γ !1−ρ(2N)−pγ < ∞.

��
For more details about T♦ we refer to [21, 25, 38].
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38 1 White Noise Analysis and Chaos Expansions

In Chaps. 3 and 4 we deal with operators on X ⊗ L2(μH ) and X ⊗ L2(μ) for a
special choice X = L2([0, T ],H ). Therefore, here we state some properties of the
fractional mapping M that connects these particular spaces.

Theorem 1.11 ([17]) The fractional mapping M satisfies the following properties:

(1) Let the operators Õ : L2([0, T ],H ) ⊗ L2(μH ) → L2([0, T ],H ) ⊗ L2(μH )

and O : L2([0, T ],H ) ⊗ L2(μ) → L2([0, T ],H ) ⊗ L2(μ) be coordi-
natewise operators that correspond to the same family of operators Oα :
L2([0, T ],H ) → L2([0, T ],H ), α ∈ I . Then it holds M (Õ̃v) = O(M ṽ),

(2) M is linear and also M (̃u♦ỹ) = M (̃u)♦M (ỹ),
(3) M (EμH ṽ) = Eμ(M ṽ),

for ṽ ∈ L2([0, T ],H ) ⊗ L2(μH ) and ũ, ỹ ∈ L2([0, T ],H ) ⊗ (S)
(H)
−ρ .

Proof Since the action of M on a stochastic process given in the form (1.41) is
reflected as its action on the orthogonal basis of L2(μH ) ,the following are valid:
1◦ Let ṽ ∈ L2([0, T ],H ) ⊗ L2(μH ). From (1.60), (1.61) and (1.52) we obtain

M (Õ̃v) = M (
∑
α∈I

Oαvα H̃α) =
∑
α∈I

Oαvα Hα = O(
∑
α∈I

vα Hα) = O(M ṽ).

2◦ By definition, the fractional operator M is linear. It also holds

M (̃u♦ỹ) = M (
∑
α∈I

∑
β∈I

uα yβ H̃α+β) =
∑
α∈I

∑
β∈I

uα yβ Hα+β

= M (
∑
α∈I

uα H̃α)♦M (
∑
β∈I

yβ H̃β) = M (̃u)♦M (ỹ).

3◦ For ṽ ∈ L2([0, T ],H ) ⊗ L2(μH ) the element EμH ṽ is the zeroth coefficient of
fractional expansion of ṽ, i.e., EμH ṽ = v0. Thus, M (EμH ṽ) = v0. On the other
hand, Eμ(M ṽ) is the zeroth coefficient of the expansion ofM ṽ, which is also equal
to v0. Thus, M (EμH ṽ) = Eμ(M ṽ). ��
Theorem 1.12 ([17]) For a differentiable H -valued process z̃ from a fractional
space it holds

M
( d

dt
z̃
) = d

dt

(
M z̃

)
.

Proof Differentiation of a stochastic process is a simple coordinatewise opera-
tor, i.e., a process is considered to be differentiable if and only if its coordinates
are differentiable deterministic functions. The assertion follows by applying M to
d
dt z̃ = ∑

α∈I
d
dt zα(t) H̃α(ω) = ∑

α∈I z′
α(t) H̃α(ω). We obtain

M (
d

dt
z̃) = M (

∑
α∈I

z′
α(t) H̃α) =

∑
α∈I

z′
α(t) Hα = d

dt
(
∑
α∈I

zα(t) Hα) = d

dt

(
M z̃

)
.

��
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1.5 Operators 39

Following [19] we consider the extension of the fractional operator M (H) from
S′(R) → S′(R) onto spaces of generalized stochastic processes.

Definition 1.22 LetM = M (H) ⊗ I d : S′(R)⊗ (S)−ρ → S′(R)⊗ (S)−ρ , ρ ∈ [0, 1]
be given by

M

(∑
α∈I

aα(t) ⊗ Hα(ω)

)
=

∑
α∈I

M (H)aα(t) ⊗ Hα(ω). (1.63)

The restriction of M onto L2
H (R) ⊗ L2(μ) is an isometry mapping L2

H (R) ⊗
L2(μ) → L2(R) ⊗ L2(μ).
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Chapter 2
Generalized Operators of Malliavin Calculus

Abstract In this chapter we extend Malliavin calculus from the classical finite vari-
ance setting to generalized processes with infinite variance and their corresponding
test processes. The domain and range of the main operators of Malliavin calculuss
are characterized on spaces of test and generalized processes. Some properties, such
as integration by parts formula, the product rules with respect to ordinary and Wick
multiplication and the chain rule are proved.

2.1 Introduction

The Malliavin derivative D, the Skorokhod integral δ and the Ornstein-Uhlenbeck
operator R play a crucial role in the stochastic calculus of variations, an infinite-
dimensional differential calculus on white noise spaces, also called the Malliavin
calculus [2, 4, 18, 19, 21, 23]. In stochastic analysis, the Malliavin derivative chara-
cterizes densities of distributions, the Skorokhod integral is an extension of the Itô
integral to non-adapted processes, and the Ornstein-Uhlenbeck operator plays the
role of the stochastic Laplacian. Additionally, the Malliavin derivative appears as the
adjoint operator of the Skorokhod integral, while their composition, the Ornstein-
Uhlenbeck operator, is linear, unbounded and self-adjoint operator. These operators
are interpreted in quantum theory respectively as the annihilation, the creation and
the number operators.

Originally, the Malliavin derivative was introduced by Paul Malliavin in order to
provide a probabilistic proof of Hörmander’s sum of squares theorem for hypoelliptic
operators and to study the existence and regularity of a density for the solution of
stochastic differential equations [17]. Nowadays, besides applications concerning the
existence and smoothness of a density for the probability law of random variables,
it has found significant applications in stochastic control and mathematical finance,
particularly in option pricing and computing the Greeks (the Greeks measure the
stability of the option price under variations of the parameters) via the Clark-Ocone
formula [3, 18, 22]. Recently in [20] a novel connection between the Malliavin
calculus and Stein’s method was discovered, which can be used to estimate the

© The Author(s) 2017
T. Levajković and H. Mena, Equations Involving Malliavin Calculus Operators,
SpringerBriefs in Mathematics, DOI 10.1007/978-3-319-65678-6_2
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44 2 Generalized Operators of Malliavin Calculus

distance of a random variable from Gaussian variables. In [14] this relationship was
reviewed using the chaos expansion method.

In the classical setting [4, 16, 19], the domain of these operators is a strict subset
of the set of processes with finite second moments leading to Sobolev type normed
spaces. We recall these classical results and denote the corresponding domains with
a"zero"in order to retain a nice symmetry between test and generalized processes.
A more general characterization of the domain of these operators in Kondratiev
generalized function spaces has been derived in [10, 12, 13]. Surjectivity of the
operators for generalized processes for ρ = 1 has been developed in [14, 15], while
a setting for the domains of these operators for ρ ∈ [0, 1] and for test processes was
developed in [8, 11]. We summarize these recent results, construct the domain of
the operators and prove that they are linear and bounded within the corresponding
spaces.

We adopt the notation from [11, 14, 15] and denote the domains of all the operators
in the Kondratiev space of distributions by a"minus"sign to reflect the fact that they
correspond to generalized processes and the domains for test processes denote by
a"plus" sign.

TheMalliavin derivative of generalized stochastic processes has first been consid-
ered in [1] using the S -transform of stochastic exponentials and chaos expansions
with n-fold Itô integrals with some vague notion of the Itô integral of a generalized
function. Our approach is different, it relies on chaos expansions via Hermite poly-
nomials and it provides more precise results. A fine gradation of generalized and test
functions is followed where each level has a Hilbert structure and consequently each
level of singularity has its own domain, range, set of multipliers etc. We develop
the calculus including the integration by parts formula, product rules, the chain rule,
using the interplay of generalized processes with their test processes and different
types of dual pairings. We apply the chaos expansion method to illustrate several
known results in Malliavin calculus and thus provide a comprehensive insight into
its capabilities. For example, we prove somewell-known classical results, such as the
commutator relationship between D and δ and the relation between Itô integration
and Riemann integration. A further analysis including examples and applications can
be found in [14].

2.2 The Malliavin derivative

In this section, we define theMalliavin derivative operatorD on spaces of generalized
stochastic processes, test stochastic processes and classical stochastic processes. We
describe the domains in terms of chaos expansion representations.

Definition 2.1 Let ρ ∈ [0, 1] and let u ∈ X ⊗ (S)−ρ be a generalized stochastic
process given in the chaos expansion form u = ∑

α∈I uα ⊗ Hα , uα ∈ X , α ∈ I .
We say that u belongs to Dom−ρ,−p(D) if there exists p ∈ N0 such that
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2.2 The Malliavin derivative 45

∑

α∈I
|α|1+ρα!1−ρ‖uα‖2X (2N)−pα < ∞ (2.1)

and its Malliavin derivative is defined by

Du =
∑

|α|>0

∑

k∈N
αkuα ⊗ ξk ⊗ Hα−ε(k) =

∑

α∈I

∑

k∈N
(αk + 1)uα+ε(k) ⊗ ξk ⊗ Hα,

(2.2)
where by convention α − ε(k) does not exist if αk = 0, i.e., for a multi-index α =
(α1, α2, ..., αk−1, αk, αk+1, ..., αm, 0, 0, ...) ∈ I we have Hα−ε(k) = 0 if αk = 0 and
Hα−ε(k) = H(α1,α2,...,αk−1,αk−1,αk+1,...,αm ,0,0,...) if αk ≥ 1.

Thus, the domain of the Malliavin derivative in X ⊗ (S)−ρ is given by

Dom−ρ(D) =
⋃

p∈N0

Dom−ρ,−p(D)

=
⋃

p∈N0

{u ∈ X ⊗ (S)−ρ :
∑

α∈I
|α|1+ρα!1−ρ ‖uα‖2X (2N)−pα < ∞}.

(2.3)

All processes that belong to Dom−ρ(D) are called Malliavin differentiable. The
operator D is also called the stochastic gradient.

The following theorem characterizes the range of the Malliavin derivative opera-
tor.

Theorem 2.1 ([8]) The Malliavin derivative of a stochastic process u ∈ X ⊗ (S)−ρ

is a linear and continuous mapping

D : Dom−ρ,−p(D) → X ⊗ S−l(R) ⊗ (S)−ρ,−p,

for l > p + 1 and p ∈ N0.

Proof Let u, v ∈ Dom−ρ(D) such that u = ∑
α∈I uα ⊗ Hα , v = ∑

α∈I vα ⊗ Hα .
Then, au + bv ∈ Dom−ρ(D) for all a, b ∈ R. Clearly, from Definition 2.1 and

D(au + bv) = D(
∑

α∈I
(auα + bvα) ⊗ Hα) =

∑

α>0

∑

k∈N
αk(auα + bvα) ⊗ Hα−ε(k)

= a
∑

α>0

∑

k∈N
αkuα ⊗ Hα−ε(k) + b

∑

α>0

∑

k∈N
αkvα ⊗ Hα−ε(k)

= aD(u) + bD(v)

(2.4)

we conclude that D is a linear operator.
Note that the following (2N)ε

(k) = (2k), and ‖ξk‖2−l = (2k)−l , k ∈ N hold.
Assume that u satisfies (2.1) for some p ≥ 0. Thus, we have
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46 2 Generalized Operators of Malliavin Calculus

‖Du‖2X⊗S−l (R)⊗(S)−ρ,−p
= ‖

∑

α∈I

∑

k∈N
(αk + 1) uα+ε(k) ⊗ ξk ⊗ Hα‖2X⊗S−l (R)⊗(S)−ρ,−p

=
∑

α∈I
‖
∑

k∈N
(αk + 1) uα+ε(k) ⊗ ξk‖2X⊗S−l (R) α!1−ρ(2N)−pα

=
∑

α∈I

(∑

k∈N
(αk + 1)2 ‖uα+ε(k)‖2X (2k)−l

)
α!1−ρ(2N)−pα

=
∑

|β|≥1

(∑

k∈N
β2
k ‖uβ‖2X (2k)−l

(
β!
βk

)1−ρ

(2k)p
)

(2N)−pβ

=
∑

|β|≥1

(∑

k∈N
β
1+ρ

k (2k)−(l−p)
)

‖uβ‖2X β!1−ρ (2N)−pβ

≤
∑

β∈I

( ∞∑

k=1

βk

)1+ρ ( ∞∑

k=1

(2k)−(l−p)
)

‖uβ‖2X β!1−ρ(2N)−pβ

= c
∑

β∈I
|β|1+ρβ!1−ρ‖uβ‖2X (2N)−pβ = c ‖u‖2Dom−ρ,−p(D) < ∞,

where c = ∑
k∈N(2k)−(l−p) < ∞ for l > p+1.Weused the substitutionβ = α+ε(k),

i.e., βk = αk + 1 and β! = βk(β − ε(k))!, k ∈ N, the Cauchy-Schwarz inequality and
the estimate

∑
k∈N β

1+ρ

k ≤ (
∑

k∈N βk)
1+ρ = |β|1+ρ . �

For ρ = 1 the result of the previous theorem was proven in [13] and the case
ρ = 0 was studied in [11, 14].

Lemma 2.1 The following properties hold:

1◦ For p ≤ q it holds Dom(D)−ρ,−p ⊆ Dom(D)−ρ,−q .

2◦ The smallest domain is Dom−0(D) and the largest domain is Dom−1(D),
i.e., for ρ ∈ (0, 1), p ≥ 0 it holds Dom−0,−p(D) ⊂ Dom−ρ,−(p+ρ)(D) ⊂
Dom−1,−(p+1)(D).

Proof 1◦ The statement follows from the fact that for p ≤ q it holds

∑

α∈I
|α|1+ρα!1−ρ‖uα‖2X (2N)−qα ≤

∑

α∈I
|α|1+ρα!1−ρ‖uα‖2X (2N)−pα.

2◦ Since |α| ≤ (2N)α for α ∈ I we obtain

‖u‖2Dom−1,−(p+1)(D) =
∑

α∈I
|α|2‖uα‖2X (2N)−(p+1)α

≤
∑

α∈I
|α|1+ρα!1−ρ‖uα‖2X (2N)−(p+ρ)α

≤
∑

α∈I
|α| α! ‖uα‖2X (2N)−pα = ‖u‖2Dom−0,−p(D)
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2.2 The Malliavin derivative 47

�

Remark 2.1 Let u ∈ Dom−ρ(D). Then, u ∈ Dom−ρ(Da), for a given sequence
a = (ak)k∈N, ak ≥ 1, for all k ∈ N. Indeed, there exists p ≥ 0 such that

∑

α∈I
|α|1+ρα!1−ρ‖uα‖2X (2Na)−pα ≤ c

∑

α∈I
|α|1+ρα!1−ρ‖uα‖2X (2N)−pα < ∞.

Now we characterize the domain of the Malliavin derivative operator on a set of test
stochastic processes X ⊗ (S)ρ .

Definition 2.2 Let ρ ∈ [0, 1] and let v ∈ X ⊗ (S)ρ be given in the form v =∑
α∈I vα ⊗ Hα , vα ∈ X , α ∈ I . We say that u belongs to Domρ,p(D) if

∑

α∈I
|α|1−ρα!1+ρ‖uα‖2X (2N)pα < ∞, for all p ∈ N0.

Thus, the domain of theMalliavin derivative operator in X⊗(S)ρ is the projective
limit of the spaces Domρ,p(D), i.e.,

Domρ(D) =
⋂

p∈N0

Domρ,p(D)

=
⋂

p∈N0

{u ∈ X ⊗ (S)ρ,p :
∑

α∈I
|α|1−ρ α!1+ρ ‖uα‖2X (2N)pα < ∞}.

(2.5)

Theorem 2.2 ([11]) The Malliavin derivative of a test stochastic process v ∈ X ⊗
(S)ρ is a linear and continuous mapping

D : Domρ,p(D) → X ⊗ Sl(R) ⊗ (S)ρ, p, for p > l + 1.

Proof Let v = ∑
α∈I vα ⊗Hα ∈ Domρ,p(D). The assertion follows from (2.2) and
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48 2 Generalized Operators of Malliavin Calculus

‖Dv‖2X⊗Sl (R)⊗(S)ρ,p
= ‖

∑

α∈I

∑

k∈N
(αk + 1) vα+ε(k) ⊗ ξk ⊗ Hα‖2X⊗Sl (R)⊗(S)ρ,p

=
∑

α∈I
‖
∑

k∈N
(αk + 1) vα+ε(k) ⊗ ξk‖2X⊗Sl (R) α!1+ρ(2N)pα

=
∑

α∈I

( ∑

k∈N
(αk + 1)2 ‖vα+ε(k)‖2X (2k)l

)
α!1+ρ(2N)pα

=
∑

|β|≥1

( ∑

k∈N
β2
k ‖vβ‖2X (2k)l

(
β!
βk

)1+ρ

(2k)−p
)

(2N)pβ

=
∑

|β|≥1

( ∑

k∈N
β
1−ρ

k (2k)−(p−l)
)

‖vβ‖2X β!1+ρ (2N)pβ

≤ c1−ρ
∑

β∈I
|β|1−ρβ!1+ρ‖vβ‖2X (2N)pβ = c1−ρ ‖v‖2Domρ,p(D) < ∞,

where
∑

k∈N β
1−ρ

k (2k)l−p ≤ ( ∑
k∈N βk

)1−ρ( ∑
k∈N(2k)

l−p
1−ρ

)1−ρ ≤ |β|1−ρ ·c1−ρ , and

c = ∑
k∈N (2k)

l−p
1−ρ ≤ ∑

k∈N (2k)l−p < ∞, for p > l + 1. In the previous estimates
β = α + ε(k), α! = (β − ε(k))! = β!

βk
, k ∈ N and (2N)−pε(k) = (2k)−p, k ∈ N. The

linearity property of D on Domρ,p(D) follows from (2.4). �

Lemma 2.2 The following properties hold:

1◦ Domρ,q(D) ⊆ Domρ,p(D), for p ≤ q.
2◦ The smallest domain is Dom1(D) and the largest is Dom0(D), i.e., forρ ∈ (0, 1)
Dom1,p+1(D) ⊂ Domρ,p+ρ(D) ⊂ Dom0,p(D).

Proof The first statement follows from (2N)p ≤ (2N)q , which holds for all p ≤ q,
while the second is a consequence of |α| ≤ (2N)α , for all α ∈ I . �

Definition 2.3 For a square integrable stochastic process u ∈ X⊗L2(μ) the domain
of D is given by

Dom0(D) = {u ∈ X ⊗ L2(μ) :
∑

α∈I
|α| α! ‖uα‖2X < ∞}. (2.6)

Theorem 2.3 The Malliavin derivative of a process u ∈ Dom0(D) is a linear and
continuous mapping

D : Dom0(D) → X ⊗ L2(R) ⊗ L2(μ).

Proof Let u = ∑
α∈I uα ⊗ Hα ∈ Dom0(D). Then,
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2.2 The Malliavin derivative 49

‖Du‖2X⊗L2(R)⊗L2(μ) = ‖
∑

α∈I

∑

k∈N
(αk + 1) uα+ε(k) ⊗ ξk ⊗ Hα‖2X⊗L2(R)⊗L2(μ)

=
∑

α∈I
‖
∑

k∈N
(αk + 1) uα+ε(k) ⊗ ξk‖2X⊗L2(R) α!

=
∑

α∈I

( ∑

k∈N
(αk + 1)2 ‖uα+ε(k)‖2X

)
α!

=
∑

|β|≥1

( ∑

k∈N
β2
k ‖uβ‖2X

1

βk

)
β!

=
∑

|β|≥1

( ∑

k∈N
βk

)
‖uβ‖2X β! =

∑

|β|≥1

|β| β! ‖uβ‖2X < ∞.

The linearity property of the operator D on Dom0(D) follows from (2.4). �

For ρ ∈ [0, 1] and all p ∈ N we obtained Domρ,p(D) ⊆ Dom0(D) ⊆
Dom−ρ,−p(D), and therefore Domρ(D) ⊆ Dom0(D) ⊆ Dom−ρ(D). Moreover,
using the estimate |α| ≤ (2N)α it follows that

X ⊗ (S)−ρ,−(p−2) ⊆ Dom−ρ,−p(D) ⊆ X ⊗ (S)−ρ,−p, p > 3, and

X ⊗ (S)ρ,p+2 ⊆ Domρ,p(D) ⊆ X ⊗ (S)ρ,p, p > 0.
(2.7)

Remark 2.2 Let v ∈ Domρ(Da). Then, u ∈ Domρ(D), for a given sequence a =
(ak)k∈N, ak ≥ 1, for all k ∈ N. Indeed, for all p ∈ N0 we obtain

∑

α∈I
|α|1+ρα!1+ρ‖uα‖2X (2N)pα ≤

∑

α∈I
|α|1+ρα!1+ρ‖uα‖2X (2Na)pα < ∞.

Hence, Domρ(Da) ⊆ Domρ(D) ⊆ Dom0(D) ⊆ Dom−ρ(D) ⊆ Dom−ρ(Da).

Remark 2.3 For u ∈ Domρ(D) and u ∈ Dom0(D) it is usual to write

Dt u =
∑

α∈I

∑

k∈N
αk uα ⊗ ξk(t) ⊗ Hα−ε(k) ,

in order to emphasize that the Malliavin derivative takes a random variable into a
process, i.e., that Du is a function of t . Moreover, the formula

Dt F(ω) = lim
h→0

1

h

(
F(ω + h · χ[t,∞)) − F(ω)

)
, ω ∈ S′(R),

justifies the name stochastic derivative for the Malliavin operator. Since generalized
functions do not have point values, this notation would be somewhat misleading for
u ∈ Dom−ρ(D). Therefore we omit the index t in Dt that usually appears in the
literature and write D.
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50 2 Generalized Operators of Malliavin Calculus

Remark 2.4 Higher orders of the Malliavin derivative operator are defined recur-
sively, i.e., D

(k) = D ◦ D
(k−1), k ≥ 1 and D

0 = I d. For higher order derivatives
to be well-defined, it is necessary that each result of the application of the opera-
tor D remains in its domain. For this purpose we note that if u ∈ X ⊗ (S)−ρ,−q

for some q ≥ 0, then for p ≥ q + 2 it holds u ∈ Dom−ρ,−p(D), see (2.7).

Thus, D
(2): Dom−ρ,−p(D)

D→ X ⊗ S−l1 ⊗ (S)−ρ,−p ⊆ S−l1 ⊗ Dom−ρ,−(p+2)(D)
D→ S−l1 ⊗ S−l2 ⊗ X ⊗ (S)−ρ,−(p+2), where l1 > p + 1 and l2 > p + 3. Simi-
larly, for any k ∈ N the operator D

(k) maps X ⊗ (S)−ρ,−(p−2) ⊂ Dom−ρ,−p(D) →
X⊗S−l1 ⊗S−l2 ⊗· · ·⊗S−lk ⊗(S)−ρ,−(p+2k) where l j > p+1+2( j−1), 1 ≤ j ≤ k.
More details can be found in [15].

2.3 The Skorokhod Integral

The Skorokhod integral, as an extension of the Itô integral for non-adapted processes,
can be regarded as the adjoint operator of the Malliavin derivative in L2(μ)-sense. In
[13] the authors extended the definition of the Skorokhod integral fromHilbert space
valued processes to the class of S′-valued generalized processes. Further development
in this direction was proposed in [8, 11, 13, 14]. Here we summarize these results.

Definition 2.4 Let ρ ∈ [0, 1]. Let F = ∑
α∈I fα ⊗ Hα ∈ X ⊗ S′(R) ⊗ (S)−ρ such

that fα ∈ X ⊗ S′(R) is given by fα = ∑
k∈N fα,k ⊗ ξk , fα,k ∈ X . Then, F belongs

to Dom−ρ,−l,−p(δ) if it holds

∑

α∈I
|α|1−ρ α!1−ρ ‖ fα‖2X⊗S−l (R) (2N)−pα < ∞. (2.8)

Thus, the chaos expansion of its Skorokhod integral is given by

δ(F) =
∑

α∈I

∑

k∈N
fα,k ⊗ Hα+ε(k) =

∑

α>0

∑

k∈N
fα−ε(k),k ⊗ Hα. (2.9)

Thedomainof theSkorokhod integral operator for generalized stochastic processes
in X = X ⊗ S′(R) ⊗ (S)−ρ is denoted by Dom−ρ(δ) and is given as the inductive
limit of the spaces Dom−ρ,−l,−p(δ), l, p ∈ N0, i.e.,

Dom−ρ(δ) =
⋃

p>l+1

Dom−ρ,−l,−p(δ) =
⋃

p>l+1

{F ∈ X : ‖F‖2Dom−ρ,−l,−p
< ∞},

where ‖F‖2Dom−ρ,−l,−p
is given by (2.8). Each stochastic process F ∈ Dom−ρ(δ) is

called integrable in the Skorokhod sense.

Theorem 2.4 Let ρ ∈ [0, 1]. The Skorokhod integral δ is a linear and continuous
mapping
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2.3 The Skorokhod Integral 51

δ : Dom−ρ,−l,−p(δ) → X ⊗ (S)−ρ,−p, p > l + 1.

Proof A linear combination of two Skorokhod integrable processes F,G is again a
Skorokhod integrable process aF + bG, a, b ∈ R. Namely, we have

δ(aF + bG) = δ(
∑

α∈I

∑

k∈N
(a fα,k + bgα,k) ⊗ ξk ⊗ Hα)

=
∑

α∈I

∑

k∈N
(a fα,k + bgα,k) ⊗ Hα+ε(k)

= a
∑

α∈I

∑

k∈N
fα,k ⊗ Hα+ε(k) + b

∑

α∈I

∑

k∈N
gα,k ⊗ Hα+ε(k)

= aδ(F) + bδ(G).

(2.10)

For the second part of the statement we use the Cauchy-Schwarz inequality and
the estimates βk + 1 ≤ |β + ε(k)| = |β| + 1 ≤ 2|β|, when β > 0, k ∈ N. Clearly,

‖δ(F)‖2X⊗(S)−ρ,−p
=

∑

α>0

‖
∑

k∈N
fα−ε(k),k‖2X α!1−ρ (2N)−pα

=
∑

β∈I
‖
∑

k∈N
fβ,k (βk + 1)

1−ρ

2 (2k)−
p
2 ‖2X β!1−ρ (2N)−pβ

=
∑

β∈I
‖
∑

k∈N
fβ,k (2k)−

l
2 (βk + 1)

1−ρ

2 (2k)−
p−l
2 ‖2X β!1−ρ (2N)−pβ

≤
∑

k∈N
‖ f0,k‖2X (2k)−l

∑

k∈N
(2k)p−l

+ 21−ρ
∑

β>0

( ∑

k∈N
‖ fβ,k‖2X (2k)−l

∑

k∈N
(2k)l−p

)
|β|1−ρ β!1−ρ (2N)−pβ

≤ m‖ f0‖2X⊗S−l (R) + 2m
∑

β>0

‖ fβ‖2X⊗S−l (R) |β|1−ρ β!1−ρ (2N)−pβ < ∞,

where fα ∈ X ⊗ S−l(R) for α ∈ I and m = ∑
k∈N(2k)l−p < ∞ for p > l + 1. �

Remark 2.5 In the previous theorem the range of the operator δ is the space X ⊗
(S)−ρ,−p with the same level of singularity p as in the domain of the operator δ, i.e.,
Dom−ρ,−l,−p(δ), where p > l + 1. On the other hand, the range of δ can be seen as
the space X ⊗ (S)−ρ,−q , with lower level of singularity q that depends on ρ. Clearly,
by applying the estimate |β| ≤ (2N)β , β ∈ I we obtain

‖δ(F)‖2X⊗(S)−ρ,−p
≤ m‖ f0‖2X⊗S−l (R) + 2m

∑

β>0

‖ fβ‖2X⊗S−l (R) |β|1−ρ β!1−ρ (2N)−pβ

≤ 2m
∑

β∈I
‖ fβ‖2X⊗S−l (R) β!1−ρ (2N)−(p−1+ρ)β
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52 2 Generalized Operators of Malliavin Calculus

≤ 2m
∑

β∈I
‖ fβ‖2X⊗S−l (R) β!1−ρ (2N)−qβ

= 2m‖F‖2X⊗S−l (R)⊗(S)−ρ,−q
< ∞,

for q ≤ p − 1 + ρ and p > l + 1. Since |α|1−ρ ≥ 1 for α > 0, then it also holds

‖u‖2X⊗S−l (R)⊗(S)−ρ,−p
=

∑

α∈I
‖uα‖2X⊗S−l (R) α!1−ρ(2N)−pα

≤
∑

α∈I
|α|1−ρ ‖uα‖2X⊗S−l (R) α!1−ρ(2N)−pα = ‖u‖2Dom−ρ,−l,−p(δ)

.

Thus, for p ∈ N we have

X ⊗ S−l(R) ⊗ (S)−ρ,−(p−1+ρ) ⊆ Dom−ρ,−l,−p(δ) ⊆ X ⊗ S−l(R) ⊗ (S)−ρ,−p.

Particularly, the domain Dom−1(δ) was characterized in [13, 15].
Next, we characterize the domains Domρ(δ) and Dom0(δ) of the Skorokhod

integral operator for test processes from X ⊗ S(R) ⊗ (S)ρ and square integrable
processes from X ⊗ L2(R) ⊗ L2(μ), as minor modifications of those presented in
[11, 14].

Definition 2.5 Let ρ ∈ [0, 1]. Let F = ∑
α∈I fα ⊗Hα ∈ X⊗ S(R)⊗(S)ρ be a test

S(R)-valued stochastic process and let fα ∈ X ⊗ S(R) be given by the expansion
fα = ∑

k∈N fα,k ⊗ ξk , fα,k ∈ X . We say that the process F belongs to Domρ,l,p(δ)

if ∑

α∈I
|α|1+ρ α!1+ρ ‖ fα‖2X⊗Sl (R) (2N)pα < ∞. (2.11)

Then, the chaos expansion form of the Skorokhod integral of F is given by (2.9).

The domain of the Skorokhod integral for test stochastic processes in X ⊗ S(R)⊗
(S)ρ is denoted by Domρ(δ) and is given as the projective limit of the spaces
Domρ,l,p(δ), l, p ∈ N0, i.e.,

Domρ(δ) =
⋂

l>p+1

Domρ,l,p(δ)

=
⋂

l>p+1

{F ∈ X ⊗ Sl(R) ⊗ (S)ρ,p : ‖F‖2Domρ,l,p(δ)
< ∞},

where ‖F‖2Domρ,l,p(δ)
is defined by (2.11). All test processes F that belong to Domρ(δ)

are called Skorokhod integrable.

Theorem 2.5 The Skorokhod integral δ of a Sl(R)-valued stochastic test process is
a linear and continuous mapping

δ : Domρ,l,p(δ) → X ⊗ (S)ρ, p, l > p + 1, p ∈ N.
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Proof Let U = ∑
α∈I uα ⊗ Hα ∈ X ⊗ Sl(R) ⊗ (S)ρ,p, uα = ∑∞

k=1 uα,k ⊗ ξk ∈
X ⊗ Sl(R), uα,k ∈ X , for p, l ≥ 1. Then, from (2.9) by the substitution α = β +ε(k),
α! = (βk + 1)β! and the Cauchy-Schwarz inequality we obtain

‖δ(U )‖2X⊗(S)ρ,p
=

∑

α>0

‖
∑

k∈N
uα−ε(k),k‖2X α!1+ρ (2N)pα

=
∑

β∈I
‖
∑

k∈N
uβ,k (βk + 1)

1+ρ

2 (2k)
p
2 ‖2X β!1+ρ (2N)pβ

=
∑

β∈I
‖
∑

k∈N
uβ,k (2k)

l
2 (βk + 1)

1+ρ

2 (2k)
p−l
2 ‖2X β!1+ρ (2N)pβ

≤
∑

k∈N
‖u0,k‖2X (2k)l

∑

k∈N
(2k)p−l

+ 4
∑

β>0

(∑

k∈N
‖uβ,k‖2X (2k)l

∑

k∈N
(2k)p−l

)
|β|1+ρ β!1+ρ (2N)pβ

≤ m‖u0‖2X⊗Sl (R) + 4m
∑

β>0

‖uβ‖2X⊗Sl (R) |β|1+ρ β!1+ρ (2N)pβ < ∞,

where m = ∑
k∈N(2k)p−l < ∞ for l > p + 1. Moreover, the linearity property of δ

on the set of test processes follows from (2.10). �

Remark 2.6 With the same arguments as in Remark 2.5 and by |α| ≤ (2N)α , α ∈ I
we obtain

‖δ(U )‖2X⊗(S)ρ,p
≤ m‖u0‖2X⊗Sl (R) + 4m

∑

β>0

‖uβ‖2X⊗Sl (R) |β|1+ρ β!1+ρ (2N)pβ

≤ m‖u0‖2X⊗Sl (R) + 4m
∑

β∈I
‖uβ‖2X⊗Sl (R) β!1+ρ (2N)(p+1+ρ)β

≤ m‖u0‖2X⊗Sl (R) + 4m‖U‖2X⊗Sl (R)⊗(S)ρ,q
< ∞,

for all q ≥ p + 1 + ρ. Since it holds |α|1+ρ ≥ 1 for α > 0, and from

‖u‖2X⊗Sl (R)⊗(S)ρ,p
≤

∑

α∈I
|α|1+ρ ‖uα‖2X⊗Sl (R) α!1+ρ(2N)pα = ‖u‖2Domρ,l,p(δ)

,

we obtain for l > p + 1 the inclusions

X ⊗ Sl(R) ⊗ (S)ρ,p+1+ρ ⊆ Domρ,l,p(δ) ⊆ X ⊗ Sl(R) ⊗ (S)ρ,p. (2.12)

Definition 2.6 Let a square integrable stochastic processes F ∈ X⊗L2(R)⊗L2(μ)

be of the form F = ∑
α∈I

∑
k∈N fα,k ⊗ ξk ⊗ Hα , fα,k ∈ X . The process F is

Skorokhod integrable if it belongs to the space Dom0(δ), i.e., if it holds
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54 2 Generalized Operators of Malliavin Calculus

Dom0(δ) = {F ∈ X ⊗ L2(R) ⊗ L2(μ) :
∑

α∈I
|α|α!‖ fα‖2X⊗L2(R) < ∞}. (2.13)

Theorem 2.6 The Skorokhod integral δ is a linear and continuous mapping

δ : Dom0(δ) → X ⊗ L2(μ).

Proof Let F = ∑
α∈I

∑
k∈N fα,k ⊗ ξk ⊗ Hα ∈ Dom0(δ). Then,

‖δ(F)‖2X⊗L2(μ) =
∑

α>0

‖
∑

k∈N
fα−ε(k),k‖2X α! =

∑

β∈I
‖
∑

k∈N
fβ,k

√
βk + 1 ‖2X β!

≤
∑

β∈I

( ∑

k∈N
‖ fβ,k‖X

√
βk + 1

)2
β! ≤

∑

k∈N
‖ f0,k‖2X + 2

∑

β>0

∑

k∈N
‖ fβ,k‖2X |β|β!

= ‖ f0‖2X⊗L2(R) + 2
∑

β>0

‖ fβ‖2X⊗L2(R) |β| β! < ∞.

�

Remark 2.7 Higher orders of the Skorokhod integral are considered in [15]. Let
δ0 = I d and kth order of the operator δ is defined recursively by δ(k) = δ ◦ δ(k−1),
k ∈ N. We proved in Theorem 2.4 that δ : X ⊗ S−l(R)⊗ (S)−ρ,−p → X ⊗ (S)−ρ,−p,
forp > l + 1. Thus, for any k ∈ N, the opertaor δ(k) maps X ⊗ S−l1 ⊗ S−l2 ⊗ · · · ⊗
S−lk ⊗ (S)−ρ,−p → X ⊗ (S)−ρ,−p for p > max{l1, l2, . . . , lk} + 1.

2.4 The Ornstein-Uhlenbeck Operator

The third main operator of the Malliavin calculus is the Ornstein-Uhlenbeck opera-
tor. We describe the domain and the range of the Ornstain-Uhlenbeck operator for
different classes of stochastic processes [8, 11, 14, 15].

Definition 2.7 The composition of the Malliavin derivative and the Skorokhod in-
tegral is denoted by R = δ ◦ D and is called the Ornstein-Uhlenbeck operator.

Since the estimate |α| ≤ (2N)α holds for all α ∈ I , the image of the Malliavin
derivative is included in the domain of the Skorokhod integral and thus we can define
their composition. For example, for v ∈ Dom−ρ,−l,−p(δ) and q + 1 − ρ ≤ p we
obtain

‖v‖2Dom−ρ,−l,−p(δ)
=

∑

α∈I
|α|1−ρα!1−ρ‖vα‖2X⊗S−l (R)(2N)−pα

≤
∑

α∈I
α!1−ρ‖vα‖2X⊗S−l (R)(2N)−qα = ‖v‖2X⊗S−l (R)⊗(S)−ρ,−q

,
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2.4 The Ornstein-Uhlenbeck Operator 55

i.e., X ⊗ S−l(R) ⊗ (S)−ρ,−q ⊆ Dom−ρ,−l,−p(D) for q + 1− ρ ≤ p. From Theorem
2.1 and Theorem 2.4 we obtain additional conditions l > q + 1 and p > l + 1 and
thus for p > q + 2 the operator R is well defined in X ⊗ (S)−ρ .

Theorem 2.7 For a Malliavin differentiable stochastic process u that is represented
in the form u = ∑

α∈I uα ⊗ Hα , the Ornstein-Uhlenbeck operator is given by

R(u) =
∑

α∈I
|α|uα ⊗ Hα. (2.14)

Proof Since the image of the Malliavin derivative of a process u is included in the
domain of the Skorokhod integral, the Ornstein-Uhlenbeck operator is well defined.
We combine (2.2) and (2.9) and obtain

R(u) = δ(Du) = δ(
∑

α>0

∑

k∈N
αk uα ⊗ ξk ⊗ Hα−ε(k) )

=
∑

α∈I
(
∑

k∈N
αk) uα ⊗ Hα =

∑

α∈I
|α| uα ⊗ Hα.

�

Remark 2.8 For a special choice of u = uα ⊗Hα , α ∈ I we obtain that the Fourier-
Hermite polynomials are eigenfunctions ofR and the corresponding eigenvalues are
|α|, α ∈ I , i.e.,

R(uα ⊗ Hα) = |α| uα ⊗ Hα. (2.15)

The domain of the Ornstein-Uhlenbeck operator in X ⊗ (S)−ρ is given as the
inductive limit Dom−ρ(R) = ⋃

p∈N0
Dom−ρ,−p(R) of the spaces

Dom−ρ,−p(R) = {u ∈ X ⊗ (S)−ρ,−p :
∑

α∈I
|α|2α!1−ρ‖uα‖2X (2N)−pα < ∞}.

(2.16)

Theorem 2.8 The operator R is a linear and continuous mapping

R : Dom−ρ,−p(R) → X ⊗ (S)−ρ,−p, p ∈ N0.

Moreover, Dom−ρ(R) ⊆ Dom−ρ(D), while for ρ = 1 they coincide.

Proof The Ornstein-Uhlenbeck operator is linear, i.e., by (2.14) for processes u, v ∈
Dom−ρ,−p(R) it holds that au + bv ∈ Dom−ρ,−p(R), a, b ∈ R and
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56 2 Generalized Operators of Malliavin Calculus

R(au + bv) = R(
∑

α∈I
(auα + bvα) ⊗ Hα) =

∑

α∈I
|α|(auα + bvα) ⊗ Hα

= a
∑

α∈I
|α|uα ⊗ Hα + b

∑

α∈I
|α|vα ⊗ Hα = aR(u) + bR(v).

(2.17)
For u = ∑

α∈I uα ⊗ Hα ∈ Dom−ρ,−p(R), p ∈ N we obtain

‖Ru‖2X⊗(S)−ρ,−p
=

∑

α∈I
‖uα‖2X |α|2 α!1−ρ (2N)−pα = ‖u‖2Dom−ρ,−p(R) < ∞ and

∑

α∈I
‖uα‖2X |α|1+ρ α!1−ρ (2N)−pα ≤

∑

α∈I
‖uα‖2X |α|2 α!1−ρ (2N)−pα.

Particularly, for ρ = 1 we have

‖Ru‖2X⊗(S)−1,−p
=

∑

α∈I
|α|2 ‖uα‖2X (2N)−pα = ‖u‖2Dom−1,−p(D) < ∞, p ∈ N0,

and thus Dom−1(R) = Dom−1(D). �

Particular case ρ = 1 was considered in [10].
In next chapter we will show that Gaussian processes with zero expectation are

the only fixed points of the Ornstein-Uhlenbeck operator, see Remark 3.2.
The domain of the Ornstein-Uhlenbeck operator in the space X ⊗ (S)ρ is defined

as the projective limit Domρ(R) = ⋂
p∈N0

Domρ,p(R) of the spaces

Domρ,p(R) = {v ∈ X ⊗ (S)ρ,p :
∑

α∈I
α!1+ρ |α|2‖vα‖2X (2N)pα < ∞}. (2.18)

Theorem 2.9 ([8, 11]) The operator R is a linear and continuous mapping

R : Domρ,p(R) → X ⊗ (S)ρ, p, p ∈ N0.

Moreover, it holds Domρ(D) � Domρ(R).

Proof Let v = ∑
α∈I vα ⊗ Hα ∈ Domρ,p(R), p ≥ 0. Then,

‖Rv‖2X⊗(S)ρ,p
=

∑

α∈I
‖vα‖2X |α|2 α!1+ρ (2N)pα = ‖v‖2Domp(R) < ∞

and the statement follows. The operatorR is linear as the composition of two linear
operators, thus (2.17) holds. �

From the following inequalities
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2.4 The Ornstein-Uhlenbeck Operator 57

∑

α∈I
α!1+ρ‖uα‖2X (2N)pα ≤

∑

α∈I
α!1+ρ |α|2‖uα‖2X (2N)pα ≤

∑

α∈I
α!1+ρ‖uα‖2X (2N)(p+2)α

we conclude the inclusions

X ⊗ (S)ρ,p+2 ⊆ Domρ,p(R) ⊆ X ⊗ (S)ρ,p, p ∈ N and thus,

X ⊗ (S)−ρ,−(p−2) ⊆ Dom−ρ,−p(R) ⊆ X ⊗ (S)−ρ,−p.

The definition of the domain of the Ornstein-Uhlenbeck operator in the space of
square integrable processes corresponds to the classical definition. Denote by

Dom0(R) = {u ∈ X ⊗ L2(μ) :
∑

α∈I
α! |α|2 ‖uα‖2X < ∞}. (2.19)

Theorem 2.10 The operator R is a linear and continuous mapping

R : Dom0(R) → X ⊗ L2(μ).

Moreover, it holds Dom0(D) � Dom0(R).

Proof Let u = ∑
α∈I uα ⊗ Hα ∈ Dom0(R). ThenR(u) = ∑

α∈I |α|uα ⊗ Hα and

‖R(u)‖2X⊗L2(μ) =
∑

α∈I
|α|2 ‖uα‖2X α! = ‖u‖2Dom0(R) < ∞.

From |α| ≤ |α|2, α ∈ I it follows that

‖u‖2Dom0(D) =
∑

α∈I
|α| ‖uα‖2X α! ≤

∑

α∈I
|α|2 ‖uα‖2X α! = ‖u‖2Dom0(R)

and we conclude Dom0(D) ⊃ Dom0(R). �

Characterization of the domain and range of the operator R and its properties on
X ⊗ (S)1 and X ⊗ L2(μ) were discussed in [10, 14]. Moreover, for this particular
cases the surjectivity of the mappings was proven in [11, 14, 15].

Remark 2.9 Note that D : Hk → Hk−1 reduces the Wiener chaos space order and
therefore Malliavin differentiation corresponds to the annihilation operator, while
δ : Hk → Hk+1 increases the chaos order and thus the Skorokhod integration
corresponds to the creation operator. Clearly, R : Hk → Hk and the Ornstein-
Uhlenbeck operator corresponds to the number operator in quantum theory.

Remark 2.10 The domain Dom−ρ(Ra), where a = (ak)k∈N, ak ≥ 1, is given by

∑

α∈I
|α|2α!1−ρ‖uα‖2X (2Na)−pα < ∞.
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58 2 Generalized Operators of Malliavin Calculus

Hence, for p > 1 from

∑

α∈I
|α|2α!1−ρ‖uα‖2X (2Na)−pα ≤ c

∑

α∈I
|α|2α!1−ρ‖uα‖2X (2N)−pα < ∞,

where c = ∑
α∈I a−pα < ∞, it follows if u ∈ Dom−ρ(R) then u ∈ Dom−ρ(Ra).

Remark 2.11 Let Pm(t) = ∑m
k=0 pk t

k , t ∈ R be a polynomial of degreem with real
coefficients and pm �= 0. Consider the operator P(R) = ∑m

k=0 pk R
k , whereR0 =

I d denotes the identity operator and the higher orders ofR are obtained recursively
Rk = R ◦ Rk−1, k > 0. The action of the operator Rk on u = ∑

α∈I uα ⊗ Hα is
given by

Rku =
∑

α∈I
|α|k uα ⊗ Hα.

The domain of Rk in X ⊗ (S)−ρ is Dom−ρ(Rk) = ⋃
p∈N0

Dom−ρ,−p(Rk), where
Dom−ρ,−p(Rk) = ⋃

p∈N0
{u ∈ X ⊗ (S)−ρ : ∑

α∈I |α|2kα!1−ρ‖uα‖2X (2N)−pα <

∞}. Moreover, using the estimate |α| ≤ (2N)α , α ∈ I we obtain for q ≤ p − 2k

∑

α∈I
|α|2kα!1−ρ‖uα‖2X (2N)−pα ≤

∑

α∈I
α!1−ρ‖uα‖2X (2N)−qα.

Similarly, in the space of test processes Domρ(Rk) = ⋂
p∈N0

Domρ,p(Rk), where
Domρ,p(Rk) = ⋃

p∈N0
{u ∈ X ⊗ (S)ρ : ∑

α∈I |α|2kα!1+ρ‖uα‖2X (2N)pα < ∞},
while in X⊗L2(μ) the domainDom0(Rk) = {u ∈ X⊗L2(μ) : ∑

α∈I |α|2kα!‖uα‖2X <

∞}.
The action of the polynomial of the Ornstein-Uhlenbeck operator is given by

Pm(R)u =
∑

α∈I
Pm(|α|) uα ⊗ Hα, (2.20)

for all u in the domain ofRm . From the estimate |Pm(|α|)| ≤ c |α|m , |α| > 0, where
c = max{p0, p1, ..., pm} and

‖Pm(R)u‖2X⊗(S)−ρ,−p
=

∑

α∈I
‖uα‖2X |Pm(|α|)|2 α!1−ρ(2N)−pα

≤ |Pm(0)|2 ‖u0‖2X + c2
∑

|α|>0

‖uα‖2X |α|2m α!1−ρ(2N)−pα

= p20 ‖u0‖2X + c2 ‖u‖2Dom−ρ,−p(Rm ) < ∞,

we conclude that Pm(R) maps continuously Dom−ρ,−p(Rm) → X ⊗ (S)−ρ,−p.
Similarly, on the spaces of test and square integrable processes, the operator Pm(R)

respectively maps continuously Domρ,p(Rm) → X ⊗ (S)ρ,p and Dom0(Rm) →
X ⊗ L2(μ), [13].
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2.5 Properties of the Operators of Malliavin Calculus 59

2.5 Properties of the Operators of Malliavin Calculus

In this section we prove the main properties and relations between the operators of
Malliavin calculus in terms of chaos expansions. We prove, for example the integra-
tion by parts formula, i.e., the duality relation between D and δ, product rules for D

and R and the chain rule.
In the classical L2 setting it is known that the Skorokhod integral is the adjoint

of the Malliavin derivative [19]. We extend this result in the next theorem and prove
their duality by pairing a generalized process with a test process (the classical result
is revisited in part 3◦ of the following theorem).

Theorem 2.11 ([11, 14]) (Duality) Assume that either of the following hold:

1◦ F ∈ Dom−ρ(D) and u ∈ Domρ(δ)

2◦ F ∈ Domρ(D) and u ∈ Dom−ρ(δ)

3◦ F ∈ Dom0(D) and u ∈ Dom0(δ).

Then, the following duality relationship between the operators D and δ holds

E (F · δ(u)) = E (〈DF, u〉) , (2.21)

where (2.21) denotes the equality of the generalized expectations of two objects in
X ⊗ (S)−ρ and 〈·, ·〉 denotes the dual paring of S′(R) and S(R).

Proof First we show that the relationship (2.21) between D and δ holds formally.
Let u = ∑

β∈I
∑

j∈N uβ, j ⊗ ξ j ⊗ Hβ be a Skorokhod integrable process. Thus, by
(2.9) it holds δ(u) = ∑

β∈I
∑

j∈N uβ, j ⊗ Hβ+ε( j) . Let F = ∑
α∈I fα ⊗ Hα be a

Malliavin differentiable process. Then, by (2.2) it holds D(F) = ∑
α∈I

∑
k∈N(αk +

1) fα+ε(k) ⊗ ξk ⊗ Hα . Therefore, by (1.57) we obtain

F · δ(u) =
∑

α∈I

∑

β∈I

∑

j∈N
fαuβ, j ⊗ Hα · Hβ+ε( j)

=
∑

α∈I

∑

β∈I

∑

j∈N
fαuβ, j ⊗

∑

γ≤min{α,β+ε( j)}
γ !

(
α

γ

) (
β + ε( j)

γ

)

Hα+β+ε( j)−2γ .

The generalized expectation of F · δ(u) is the zeroth coefficient in the previous
sum, which is obtained when α +β + ε( j) = 2γ and γ ≤ min{α, β + ε( j)}, i.e., only
for the choice β = α − ε( j) and γ = α, j ∈ N. Thus,

E (F · δ(u)) =
∑

α∈I ,|α|>0

∑

j∈N
fαuα−ε( j), j · α! =

∑

α∈I

∑

j∈N
fα+ε( j)uα, j · (α + ε( j))!.

On the other hand,
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60 2 Generalized Operators of Malliavin Calculus

〈D(F), u〉 =
∑

α∈I

∑

β∈I

∑

k∈N

∑

j∈N
(αk + 1) fα+ε(k) uβ, j 〈ξk, ξ j 〉Hα · Hβ

=
∑

α∈I

∑

β∈I

∑

j∈N
(α j + 1) fα+ε( j) uβ, j

∑

γ≤min{α,β}
γ !

(
α

γ

)(
β

γ

)

Hα+β−2γ

and its generalized expectation is obtained for α = β = γ . Thus,

E (〈D(F), u〉) =
∑

α∈I

∑

j∈N
(α j + 1) fα+ε( j)uα, j · α!

=
∑

α∈I

∑

j∈N
fα+ε( j)uα, j · (α + ε( j))! = E (F · δ(u)) .

1◦ Let ρ ∈ [0, 1] be fixed. Let F ∈ Dom−ρ,−p(D) and u ∈ Domρ,r,s(δ), for some
p ∈ N and all r, s ∈ N, r > s + 1. Then, DF ∈ X ⊗ S−l(R) ⊗ (S)−ρ,−p for
l > p + 1. Since r is arbitrary, we may assume that r = l and denote by 〈·, ·〉
the dual pairing between S−l(R) and Sl(R). Moreover, 〈DF, u〉 is well defined in
X ⊗ (S)−ρ,−p. On the other hand, δ(u) ∈ X ⊗ (S)ρ,s and thus by Theorem 1.10,
F · δ(u) is also defined as an element in X ⊗ (S)−ρ,−k , for k ≥ p + 7 − ρ. Since
s is arbitrary, one can take any k ≥ p + 7 − ρ. This means that both objects,
F · δ(u) and 〈DF, u〉 exist in X ⊗ (S)−ρ,−k , for k ≥ p+7−ρ. Taking generalized
expectations of 〈DF, u〉 and F · δ(u) we showed that the zeroth coefficients of the
formal expansions are equal. Therefore, the duality formula (2.21) is valid.
2◦ Let F ∈ Domρ,p(D) and u ∈ Dom−ρ,−r,−s(δ), for some r, s ∈ N, s > r + 1
and all p ∈ N. Then, DF ∈ X ⊗ Sl(R) ⊗ (S)ρ,p, l < p − 1 and 〈DF, u〉 is a
well defined object in X ⊗ (S)−ρ,−s . On the other hand, δ(u) ∈ X ⊗ (S)−ρ,−s and
thus by Theorem 1.10, F · δ(u) is also well defined and belongs to X ⊗ (S)−ρ,−k ,
for k ≥ s + 7 − ρ. Thus, both F · δ(u) and 〈DF, u〉 belong to X ⊗ (S)−ρ,−k for
k ≥ s + 7 − ρ.
3◦ For F ∈ Dom0(D) and u ∈ Dom0(δ) the dual pairing 〈DF, u〉 represents the
inner product in L2(R) and the product Fδ(u) is an element in X ⊗ L2(μ). Thus,
the classical duality formula is valid. �

The higher order duality formula,which connects the kth order iterated Skorokhod
integral and the Malliavin derivative operator of kth order, k ∈ N is stated in the
following theorem. Recall, in Remark 2.4 and Remark 2.7 we introduced the higher
order operators D

(k) and δ(k).

Theorem 2.12 ([14]) Let f ∈ Domρ(D
(k)) and u ∈ Dom−ρ(δ

(k)), k ∈ N. Then,
the higher order duality formula

E
(
f · δ(k)(u)

) = E
(〈D(k) ( f ), u〉)

holds, where 〈·, ·〉 denotes the duality pairing of S′(R)⊗k and S(R)⊗k .
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Proof The assertion follows by induction and applying Theorem 2.11 successively
k times. �

Remark 2.12 Note that Theorem 2.11 and Theorem 2.12 are special cases of a more
general identity. It can be proven, under suitable assumptions that make all the prod-
ucts well defined, that the following holds

F δ(u) = δ(Fu) + 〈D(F), u〉, (2.22)

By taking the expectation in (2.22) and using the fact that E(δ(Fu)) = 0, we
obtain the duality relation (2.21).

A weaker type of duality then (2.21), which holds in Hida spaces of generalized
processes was proven in [11]. Here we formulate the weak duality and omit its proof.
A similar result is obtained in [14] for the Kondratiev type spaces when ρ = 1.

Theorem 2.13 ([11]) (Weak duality) Consider ρ = 0. Let F ∈ Dom−0,−p(D) and
u ∈ Dom−0,−q(D), for p, q ∈ N. For any ϕ ∈ S−n(R), n < q − 1, it holds that

� 〈DF, ϕ〉−r , u �−r = � F, δ(ϕu) �−r ,

for r > max{q, p + 1}.
The following theorem states that the Malliavin derivative indicates the speed of

change in time between the ordinary product and the Wick product.

Theorem 2.14 ([15]) Let h ∈ X ⊗ (S)−ρ and let wt denote white noise. Then,

h · wt − h♦wt = D(h). (2.23)

Proof Let h be of the form h = ∑
α∈I hαHα and wt = ∑∞

n=1 ξn(t)Hε(n) . Then,

h♦wt =
∑

γ∈I

∑

α+ε(n)=γ

hαξn(t)Hγ =
∑

γ∈I

∞∑

n=1

hγ−ε(n) ξn(t)Hγ and

h · wt =
∑

α∈I

∞∑

n=1

hα−ε(n) ξn(t)Hα−ε(n) Hε(n) .

Now by applying the formula (1.14) we obtain

Hα−ε(n) · Hε(n) = Hα + (α − ε(n))n Hα−2ε(n) ,

where we used
(

α

ε(k)

) = αk , k ∈ N. Hence,

h · wt =
∑

α∈I

∞∑

n=1

hα−ε(n) ξn(t)
(
Hα + (αn − 1)Hα−2ε(n)

)
,
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62 2 Generalized Operators of Malliavin Calculus

which implies

h · wt − h♦wt =
∑

α∈I

∞∑

n=1

hα−ε(n) ξn(t)(αn − 1)Hα−2ε(n)

=
∑

α∈I

∞∑

n=1

hα+ε(n) ξn(t)(αn + 1)Hα = D(h).

�

The Malliavin derivative D is not the inverse operator of the Skorokhod integral
δ and also they do not commute. However, the relation (2.24) holds.

Example 2.1 For Z = ∑
k∈N H2ε(k) we haveD( 12 Z) = wt , δ(wt) = Z andR( 12 Z) =

δ(D( 12 Z)) = δ(wt ) = Z , where wt is singular white noise and dt the Dirac delta
function. Moreover, D(δ(wt )) = D(Z) = 2wt while δ(D(wt )) = δ(dt ) = wt and
thus D and δ do not commute.

Theorem 2.15 If u ∈ Dom−ρ(δ) then Du ∈ Dom−ρ(δ) and it holds

D(δu) = u + δ(Du). (2.24)

Proof Let u be of the form u = ∑
α∈I

∑∞
k=1 uα,k ⊗ ξk ⊗ Hα . Then, δ(u) is of the

form (2.9) and consequently

D(δ(u)) =
∑

α∈I

∞∑

k=1

uα,k ⊗
∞∑

i=1

(α + ε(k))iξi ⊗ Hα+ε(k)−ε(i)

=
∑

α∈I

∞∑

k=1

uα,k ⊗
⎛

⎝(αk + 1) ξk ⊗ Hα +
∑

i �=k

αi ξi ⊗ Hα+ε(k)−ε(i)

⎞

⎠

=
∑

α∈I

∞∑

k=1

uα,k ⊗ ξk ⊗ Hα +
∑

α∈I

∞∑

k=1

∞∑

i=1

αi uα,k ⊗ ξi ⊗ Hα+ε(k)−ε(i)

= u + δ(D(u)).

The latter equality follows from

D(u) =
∑

α∈I

∞∑

i=1

αi

( ∞∑

k=1

uα,k ⊗ ξk

)

⊗ ξi ⊗ Hα−ε(i) ∈ X ⊗ S′(R) ⊗ S′(R) ⊗ (S)−ρ

which implies δ(D(u)) = ∑
α∈I

∑∞
i=1

∑∞
k=1 αi uα,k ⊗ ξi ⊗ Hα−ε(i)+ε(k) .

Since u ∈ Dom−ρ,−l,−s(δ), from Theorem 2.4 it follows that δu ∈ X ⊗ (S)−ρ,−s ,
s > l + 1, which by (2.7) belongs to Dom−ρ,−s(D). Then, D(δu) is a well defined
element in X ⊗ S−l1(R)⊗ (S)−ρ,−s , l1 > s + 1, where s is arbitrary. This means that
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2.5 Properties of the Operators of Malliavin Calculus 63

the left hand of (2.24) is also an element in X ⊗ S−l1(R) ⊗ (S)−ρ,−s , thus Du must
be in the domain of δ. �

The commutation relation (2.24) holds for processes u ∈ Domρ(δ) and also for
u ∈ Dom0(δ). The proofs follow similarly.

Remark 2.13 Note that if u ∈ X ⊗ L2(R) ⊗ (S)−ρ , then

δ(u) =
∫

R

u♦wt dt,

where the right hand side is interpreted as the X -valued Bochner integral in the
Riemann sense. This is in accordance with the known fact that Itô-Skorokhod inte-
gration with the rules of the Itô’s calculus generates the same results as integration
interpreted in the classical Riemann sense following the rules of ordinary calculus,
if the integrand is interpreted as the Wick product with white noise [6]. For example,

∫ t0

0
btdbt = δ(χ[0,t0](t)bt ) =

∫ t0

0
bt♦wt dt =

∫ t0

0
bt♦b′

t dt = 1

2
b♦2
t0 = 1

2
(b2t0 − t0).

The general case follows easily from the definition of the Skorokhod integral. If
u = ∑

α∈I uα ⊗ Hα = ∑
α∈I

∑∞
k=1 uα,k ⊗ ξk ⊗ Hα is in X ⊗ L2(R) ⊗ (S)−ρ then

uα,k = (uα, ξk)L2(R) = ∫
R
uα(t)ξk(t)dt for all α ∈ I , k ∈ N. Thus,

δ(u) =
∑

α∈I

∞∑

k=1

uα,k ⊗ Hα+ε(k) =
∑

α∈I

∞∑

k=1

∫

R

uα(t)ξk(t)dt ⊗ Hα+ε(k)

=
∫

R

(
∑

α∈I

∞∑

k=1

uα(t)ξk(t) ⊗ Hα+ε(k)

)

dt

=
∫

R

(
∑

α∈I
uα(t) ⊗ Hα

)

♦
( ∞∑

k=1

ξk(t) ⊗ Hε(k)

)

dt =
∫

R

u♦wt dt.

The following theorem states the product rule for the Ornstein-Uhlenbeck opera-
tor. Its special case for F,G ∈ Dom0(R) states that F · G is also in Dom0(R) and
(2.25) holds. The proof can be found for example in [7].

Theorem 2.16 ([14]) (Product rule for R)

1◦ Let F ∈ Domρ(R) and G ∈ Dom−ρ(R). Then F · G ∈ Dom−ρ(R) and

R(F · G) = F · R(G) + G · R(F) − 2 · 〈DF, DG〉, (2.25)

holds, where 〈·, ·〉 is the dual paring between S′(R) and S(R).
2◦ Let F,G ∈ Dom−ρ(R). Then F · G ∈ Dom−ρ(R) and

R(F♦G) = F♦R(G) + R(F)♦G. (2.26)
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64 2 Generalized Operators of Malliavin Calculus

Proof 1◦ Assume F ∈ Domρ,q(R) and G ∈ Dom−ρ,−p(R). Then R(F) ∈
X⊗(S)ρ,q andR(G) ∈ X⊗(S)−ρ,−p. FromTheorem1.10 it follows that F ·R(G)

andG ·R(F) are both well defined and belong to X ⊗(S)−ρ,−s , for s ≥ p+7−ρ.
Similarly, 〈D(F), D(G)〉 belongs to X ⊗ (S)−ρ,−p, since D(F) ∈ X ⊗ Sl1(R) ⊗
(S)ρ,q , where l1 < q − 1 and D(G) ∈ X ⊗ S−l2(R) ⊗ (S)−ρ,−p, where l2 > p+ 1
and the dual pairing is obtained for any l ∈ [l1, l2]. Thus, the right hand side of
(2.25) is in X ⊗ (S)−ρ,−s , s ≥ p + 7 − ρ. Hence, F · G ∈ Dom−ρ,−s(R).
Let F = ∑

α∈I fα ⊗ Hα ∈ Domρ(R) and G = ∑
β∈I gβ ⊗ Hβ ∈ Dom−ρ(R).

Then, R(F) = ∑
α∈I |α| fα ⊗ Hα and R(G) = ∑

β∈I |β|gβ ⊗ Hβ .
The left hand side of (2.25) can be written in the form

R(F · G) = R

⎛

⎝
∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
γ !

(
α

γ

) (
β

γ

)

Hα+β−2γ

⎞

⎠

=
∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
γ !

(
α

γ

) (
β

γ

)

|α + β − 2γ | Hα+β−2γ

=
∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
γ !

(
α

γ

) (
β

γ

)

(|α| + |β| − 2|γ |) Hα+β−2γ .

On the other hand, the first two terms on the right hand side of (2.25) are

R(F) · G =
∑

α∈I

∑

β∈I
fα gβ ⊗

∑

γ≤min{α,β}
γ !

(
α

γ

) (
β

γ

)

|α| Hα+β−2γ and (2.27)

F · R(G) =
∑

α∈I

∑

β∈I
fα gβ ⊗

∑

γ≤min{α,β}
γ !

(
α

γ

)(
β

γ

)

|β|Hα+β−2γ . (2.28)

Since F ∈ Domρ(R) ⊂ Domρ(D) and G ∈ Dom−ρ(R) ⊆ Dom−ρ(D) we have
D(F) = ∑

α∈I
∑

k∈N αk fα ⊗ ξk ⊗ Hα−ε(k) and D(G) = ∑
β∈I

∑
j∈N β j gβ ⊗

ξ j ⊗ Hβ−ε(k) . Thus, the third term on the right hand side of (2.25) is

〈D(F), D(G)〉 = 〈
∑

|α|>0

∑

k∈N
αk fα ⊗ ξk ⊗ Hα−ε(k) ,

∑

|β|>0

∑

j∈N
β j gβ ⊗ ξ j ⊗ Hβ−ε( j)〉

=
∑

|α|>0

∑

|β|>0

∑

k∈N

∑

j∈N
αk β j fα gβ 〈ξk, ξ j 〉 ⊗ Hα−ε(k) · Hβ−ε( j)

=
∑

|α|>0

∑

|β|>0

∑

k∈N
αkβk fαgβ ⊗

∑

γ≤min{α−ε(k),β−ε(k)}
γ !

(
α − ε(k)

γ

)(
β − ε(k)

γ

)

Hα+β−2ε(k)−2γ ,

where we used the fact that 〈ξk, ξ j 〉 = 0 for k �= j and 〈ξk, ξ j 〉 = 1 for k = j .
Now we put θ = γ + ε(k) and use the identities
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2.5 Properties of the Operators of Malliavin Calculus 65

αk ·
(

α − ε(k)

γ

)

= αk ·
(

α − ε(k)

θ − ε(k)

)

= θk ·
(

α

θ

)

, k ∈ N,

and θk · (θ − ε(k))! = θ !. Thus, we obtain

〈D(F), D(G)〉 =
∑

α∈I

∑

β∈I

∑

k∈N
fαgβ

∑

θ≤min{α,β}
θ2
k (θ − ε(k))!

(
α

θ

)(
β

θ

)

Hα+β−2θ

=
∑

α∈I

∑

β∈I

∑

k∈N
fα gβ

∑

θ≤min{α,β}
θkθ !

(
α

θ

) (
β

θ

)

Hα+β−2θ

=
∑

α∈I

∑

β∈I
fα gβ

∑

θ≤min{α,β}

(
∑

k∈N
θk

)

θ !
(

α

θ

)(
β

θ

)

Hα+β−2θ

=
∑

α∈I

∑

β∈I
fα gβ

∑

θ≤min{α,β}
|θ | θ !

(
α

θ

) (
β

θ

)

Hα+β−2θ .

Combining all previous results, we obtain

R(F · G) =
∑

α∈I

∑

β∈I
fαgβ

∑

γ≤min{α,β}
γ !

(
α

γ

)(
β

γ

)

(|α| + |β| − 2|γ |) Hα+β−2γ

=
∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
γ !

(
α

γ

)(
β

γ

)

|α| Hα+β−2γ

+
∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
γ !

(
α

γ

)(
β

γ

)

|β| Hα+β−2γ

− 2
∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
|γ | γ !

(
α

γ

)(
β

γ

)

Hα+β−2γ

= R(F) · G + F · R(G) − 2 · 〈D(F), D(G)〉

and thus (2.25) holds.
2◦ If F ∈ Dom−ρ,−p(R) and G ∈ Dom−ρ,−q(R), then R(F) ∈ X ⊗ (S)−ρ,−p

and R(G) ∈ X ⊗ (S)−ρ,−q . From Theorem 1.9 it follows that R(F)♦G and
R(G)♦F belong to X ⊗ (S)−ρ,−(p+q+3−ρ). Thus, the right hand side of (2.26) is
in X ⊗ (S)−ρ,−(p+q+3−ρ), i.e., F♦G ∈ Dom−ρ,−r (R) for r ≥ p + q + 3 − ρ.
From

G♦R(F) =
∑

γ∈I

∑

α+β=γ

|α| fαgβ Hγ and F♦R(G) =
∑

γ∈I

∑

α+β=γ

fα|β|gβ Hγ ,

it follows that
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66 2 Generalized Operators of Malliavin Calculus

G♦R(F) + F♦R(G) =
∑

γ∈I
|γ |

∑

α+β=γ

fαgβ Hγ = R(F♦G).

�

Corollary 2.1 Let F ∈ Domρ(R) and G ∈ Dom−ρ(R). Then,

E(F · R(G)) = E (〈DF, DG〉) . (2.29)

The property (2.29) holds also for F,G ∈ Dom0(R).

Proof From the chaos expansion form of R(F · G) it follows that ER(F · G) =
0 and by taking the expectations on both sides of (2.27) and (2.28) the equality
E (R(F) · G) = E (F · R(G)) follows. Then, from Theorem 2.16 we obtain that
0 = 2E (F · R(G)) − 2E(〈DF, DG〉), which leads to the assertion (2.29). �

In the classical literature [18, 19] it is proven that theMalliavin derivative satisfies
the product rule (with respect to ordinary multiplication), i.e., if F,G ∈ Dom0(D),
then F · G ∈ Dom0(D) and (2.30) holds. The following theorem recapitulates
this result and extends it for generalized and test processes, and also for the Wick
multiplication [1, 14].

Theorem 2.17 (Product rule for D)

1◦ Let F ∈ Dom−ρ(D) and G ∈ Domρ(D). Then F · G ∈ Dom−ρ(D) and it
holds

D(F · G) = F · DG + DF · G. (2.30)

2◦ Let F,G ∈ Dom−ρ(D). Then F♦G ∈ Dom−ρ(D) and

D(F♦G) = F♦DG + DF♦G.

Proof 1◦ Assume that F ∈ Dom−ρ,−p(D), G ∈ Domρ,q(D). Then D(F) ∈
X⊗S−l(R)⊗(S)−ρ,−p, l > p+1, andD(G) ∈ X⊗Sk(R)⊗(S)ρ,q , k < q−1. From
Theorem 1.10 it follows that all products on the right hand side of (2.30) are well
defined and F ·D(G) ∈ X⊗Sk(R)⊗(S)−ρ,−r ,D(F)·G ∈ X⊗S−l(R)⊗(S)−ρ,−r ,
for r ≥ p + 7 − ρ. Thus, the right hand side of (2.30) can be embedded into
X ⊗ S−l(R) ⊗ (S)−ρ,−r , r ≥ p+ 7− ρ. Then, F ·G ∈ Dom−ρ,−r (D). Moreover,

D(F · G) = D(
∑

α∈I
fαHα ·

∑

β∈I
gβHβ) =

D

⎛

⎝
∑

α∈I

∑

β∈I
fα gβ

∑

γ≤min{α,β}
γ !

(
α

γ

) (
β

γ

)

Hα+β−2γ

⎞

⎠ =

∑

α∈I

∑

β∈I

∑

k∈N
fαgβ

∑

γ≤min{α,β}
γ !

(
α

γ

)(
β

γ

)

(αk + βk − 2γk) ξk Hα+β−2γ−ε(k) .
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2.5 Properties of the Operators of Malliavin Calculus 67

On the other hand,

F · D(G) =
∑

α∈I
fαHα ·

∑

β∈I

∑

k∈N
βk gβξk Hβ−ε(k) =

∑

α∈I

∑

β∈I

∑

k∈N
fαgβ

∑

γ≤min{α,β−ε(k)}
γ !

(
α

γ

)(
β − ε(k)

γ

)

βk ξk Hα+β−2γ−ε(k)

and

G · D(F) =
∑

α∈I

∑

β∈I

∑

k∈N
fαgβ

∑

γ≤min{α−ε(k),β}
γ !

(
α − ε(k)

γ

)(
β

γ

)

αk ξk Hα+β−2γ−ε(k) .

Summing up chaos expansions for F · D(G) and G · D(F) and applying the
identities

αk

(
α − ε(k)

γ

)

= αk · (α − ε(k))!
γ ! (α − ε(k) − γ )! = α!

γ ! (α − γ )! · (αk − γk) =
(

α

γ

)

(αk − γk)

and

βk

(
β − ε(k)

γ

)

=
(

β

γ

)

(βk − γk),

for all α, β ∈ I , k ∈ N and γ ∈ I such that γ ≤ min{α, β} and the expression
(αk − γk) + (βk − γk) = αk + βk − 2γk we obtain (2.30).
2◦ If F ∈ Dom−ρ,−p(D) and G ∈ Dom−ρ,−q(D), then D(F) ∈ X ⊗ S−l(R) ⊗
(S)−ρ,−p, l > p + 1, and D(G) ∈ X ⊗ S−k(R) ⊗ (S)−ρ,−q , k > q + 1. From
Theorem 1.9 it follows that D(F)♦G and F♦D(G) both belong to X ⊗ S−m(R)⊗
(S)−ρ,−(p+q+3−ρ), m = max{l, k}. Thus, F♦G ∈ Dom−ρ,−r (D) for r ≥ p + q +
3 − ρ. It also holds

D(F)♦G + F♦D(G) =
∑

γ∈I

∞∑

k=1

∑

α+β−ε(k)=γ

αk fαgβHγ +
∑

γ∈I

∞∑

k=1

∑

α+β−ε(k)=γ

βk fαgβHγ

=
∑

γ∈I

∞∑

k=1

∑

α+β=γ

γk fαgβHγ−ε(k) = D(F♦G).

�

Theorem 2.18 Assume that either of the following hold:

1◦ F ∈ Dom−ρ(D), G ∈ Domρ(D) and u ∈ Domρ(δ),
2◦ F,G ∈ Domρ(D) and u ∈ Dom−ρ(δ),
3◦ F,G ∈ Dom0(D) and u ∈ Dom0(δ).
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68 2 Generalized Operators of Malliavin Calculus

Then, the second integration by parts formula holds

E(F〈DG, u〉) + E(G〈DF, u〉) = E(F G δ(u)). (2.31)

Proof The equation (2.31) follows directly from the duality formula (2.21) and
the product rule (2.30). Assume the first case holds when F ∈ Dom−ρ(D), G ∈
Domρ(D) and u ∈ Domρ(δ). Then F · G ∈ Dom−ρ(D) and we have

E(F G δ(u)) = E(〈D(F · G), u〉) = E(〈F · D(G) + G · D(F), u〉)
= E(F 〈D(G), u〉) + E(G 〈D(F), u〉).

The second and third case can be proven in an analogous way. �

A generalization of Theorem 2.17 for higher order derivatives, i.e., the Leibnitz
formula is given in the next theorem.

Theorem 2.19 Let F,G ∈ Dom−ρ(D
(k)), k ∈ N, then F♦G ∈ Dom−ρ(D

(k)) and
the Leibnitz rule holds

D
(k) (F♦G) =

k∑

i=0

(
k

i

)

D
(i)(F)♦D

(k−i)(G),

such that D
(0)(F) = F and D

(0)(G) = G.
Moreover, if G ∈ Domρ(D

(k)), then the ordinary product F · G ∈ Dom−ρ(D
(k))

and

D
(k) (F · G) =

k∑

i=0

(
k

i

)

D
(i)(F) · D

(k−i)(G). (2.32)

Proof The Leibnitz rule (2.32) follows by induction and applying Theorem 2.17.
Clearly, (2.32) holds also if F,G ∈ Dom0(D

(k)) and F · G ∈ Dom0(D
(k)). �

The chain rule for the Malliavin derivative is stated in the following theorem. The
case with square integrable processes has been known throughout the literature as a
direct consequence of the definition of Malliavin derivatives as Fréchet derivatives
[1]. Here we provide an alternative proof suited to the setting of chaos expansions.

Theorem 2.20 ([11, 14]) (The chain rule) Let φ be a twice continuously differen-
tiable function with bounded derivatives.

1◦ If F ∈ Domρ(D) (or F ∈ Dom0(D)) then φ(F) ∈ Domρ(D) (respectively
φ(F) ∈ Dom0(D)) and the chain rule holds

D (φ(F)) = φ′(F) · D(F). (2.33)

2◦ If F ∈ Dom−ρ(D) and φ is analytic then φ♦(F) ∈ Dom−ρ(D) and
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2.5 Properties of the Operators of Malliavin Calculus 69

D (φ♦(F)) = φ′♦(F)♦ D(F). (2.34)

Proof 1◦ First we prove that (2.33) holds when φ is a polynomial of degree n, n ∈
N. Then, we use the Stone-Weierstrass theorem and approximate a continuously
differentiable function φ by a polynomial p̃n of degree n, and since we assumed
that φ is regular enough, the derivative p̃′

n will also approximate φ′.
Denote by qn(x) = xn , n ∈ N and let p(x) = ∑n

k=0 akqk(x) = ∑n
k=0 ak xk be

a polynomial of degree n with real coefficients a0, a1, ... , an , and an �= 0. By
induction on n, we prove the chain rule for qn , i.e., we prove

D (2n(F)) = 2′
n(F) · D(F), n ∈ N. (2.35)

For n = 1, q1(x) = x and (2.35) holds since

D(q1(F)) = D(F) = 1 · D(F) = q ′
1(F) · D(F).

Assume (2.35) holds for k ∈ N. Then, for qk+1 = xk+1 by Theorem 2.17 we have

D(qk+1(F)) = D(Fk+1) = D(F · Fk) = D(F) · Fk + F · D(Fk)

= D(F) · Fk + F · kFk−1 · D(F) = (k + 1)Fk · D(F) = q ′
k+1(F) · D(F).

Thus, (2.35) holds for every n ∈ N. Since D is a linear operator, (2.35) also holds
for any polynomial pn , i.e.,

D(pn(F)) =
n∑

k=0

akD(qk(F)) =
n∑

k=0

akq
′
k(F) · D(F) = p′

n(F) · D(F).

Let φ ∈ C2(R) and F ∈ Domρ,p(D), p ∈ N. Then, by the Stone–Weierstrass
theorem, there exists a polynomial p̃n such that

‖φ(F) − p̃n(F)‖X⊗(S)ρ,p = ‖φ(F) −
n∑

k=0

ak F
k‖X⊗(S)ρ,p → 0 and

‖φ′(F) − p̃n
′(F)‖X⊗(S)ρ,p = ‖φ′(F) −

n∑

k=1

akkF
k−1‖X⊗(S)ρ,p → 0

as n → ∞. We denote by Xlp = X ⊗ Sl(R) ⊗ (S)ρ,p. From (2.35) and the fact
that D is a bounded operator, Theorem 2.1, we obtain for l < p − 1
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70 2 Generalized Operators of Malliavin Calculus

‖D(φ(F)) − φ′(F) · D(F)‖X⊗Sl (R)⊗(S)ρ,p = ‖D(φ(F)) − φ′(F) · D(F)‖Xlp

= ‖D(φ(F)) − D( p̃n(F)) + D( p̃n(F)) − φ′(F) · D(F)‖Xlp

≤ ‖D(φ(F)) − D( p̃n(F))‖Xlp + ‖D( p̃n(F)) − φ′(F)D(F)‖Xlp

= ‖D(φ(F) − p̃n(F))‖Xlp + ‖ p̃n ′(F)D(F) − φ′(F)D(F)‖Xlp

≤ ‖D‖ · ‖(φ(F) − p̃n(F))‖X⊗(S)ρ,p + ‖ p̃n ′(F) − φ′(F)‖ · ‖D(F)‖X⊗(S)ρ,p → 0,

as n → ∞. From this also (2.33) follows together with the estimate

‖D(φ(F))‖X⊗Sl (R)⊗(S)ρ,p ≤ ‖φ′(F)‖X⊗(S)ρ,p · ‖D(F)‖X⊗Sl (R)⊗(S)ρ,p < ∞,

and thus φ(F) ∈ Domρ,p(D).
2◦ The proof of (2.34) for the Wick version can be conducted in a similar manner.
According to Theorem 2.17 we have D(F♦k) = k F♦(k−1)♦D(F). If φ is an
analytic function given by φ(x) = ∑∞

k=0 akx
k , then φ′(x) = ∑∞

k=1 akkx
k−1 and

consequently φ♦(F) = ∑∞
k=0 ak F

♦k and φ′♦(F) = ∑∞
k=1 akkF

♦(k−1). Thus,
(2.34) follows from

D(φ♦(F)) =
∞∑

k=0

akD(F♦k) =
∞∑

k=0

akkF
♦(k−1)♦D(F) = φ′♦(F)♦D(F).

�

Example 2.2 Let bt be Brownian motion, wt white noise and dt0 the Dirac delta
function concentrated at t0. Then, by the previous theorems we obtain D(b2t0) =
2bt0 ·D(bt0) = 2bt0 ·χ[0,t0](t),D(b♦2

t0 ) = 2bt0 ·χ[0,t0](t) andD(w
♦2
t0 ) = 2wt0♦D(wt0) =

2wt0 · dt0(t), since the Wick product reduces to the ordinary product if one of the
multiplicands is deterministic. Also, D(exp♦(wt0)) = exp♦(wt0) · dt0(t), or more
general D(exp♦ δ(h)) = exp♦ δ(h) · h, for any h ∈ S′(R), which verifies that the
stochastic exponentials are eigenvectors of the Malliavin derivative. More examples
can be found in [14].

2.6 Fractional Operators of the Malliavin Calculus

Following [5, 10], in Sect. 1.3.6 we introduced the fractional transform M (H) and in
Sect. 1.4.3 the isometry mapping M on spaces of random variables and stochastic
processes. Now we define fractional operators of the Malliavin calculus.

Denote by D the Malliavin derivative and D
(H) the fractional Malliavin derivative

on X ⊗ (S)−ρ (respectively on X ⊗ (S)ρ and X ⊗ L2(μ)). We say that a process
F = ∑

α∈I fα ⊗ Hα , fα ∈ X is differentiable in Malliavin sense if its coefficients
satisfy (2.3) (respectively (2.5) and (2.6)). Then, the chaos expansion form of its
Malliavin derivative is given by (2.2), while the chaos expansion form of its fractional
Malliavin derivative is given by
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2.6 Fractional Operators of the Malliavin Calculus 71

D
(H)F =

∑

α∈I

∑

k∈N
αk fα ⊗ e(H)

k ⊗ Hα−ε(k) , (2.36)

where e(H)
k = M (1−H)ξk , k ∈ N. Denote by D̃ the Malliavin derivative and by D̃

(H)

the fractional Malliavin derivative on X ⊗ (S)
(H)
−ρ (respectively on X ⊗ (S)(H)

ρ and
X ⊗ L2(μH )). If the coefficients of F̃ = ∑

α∈I fα ⊗ H̃α , fα ∈ X , α ∈ I satisfy
(2.3) (respectively (2.5) and (2.6)), then chaos expansion forms of these operators
are

D̃F =
∑

α∈I

∑

k∈N
αk fα ⊗ e(H)

k ⊗ H̃α−ε(k)

D̃
(H)F =

∑

α∈I

∑

k∈N
αk fα ⊗ M (1−H)e(H)

k ⊗ H̃α−ε(k) .
(2.37)

Note that both Dom(D) = Dom(D(H)) and Dom(D̃) = Dom(D̃(H)) are determined
by the condition (2.3) (respectively by (2.5) and (2.6)). The connection between
D

(H) and D on a classical space and also between D̃
(H) and D̃ on a fractional space

is given through the mapping M = M (H) ⊗ I d, defined by (1.63). In particular, let
D

(H) : X ⊗ (S)−ρ → X ⊗ S′(R) ⊗ (S)−ρ and F = ∑
α∈I fα ⊗ Hα ∈ Dom(D(H)).

Then,

D
(H)F = M−1

(
∑

α∈I

∑

k∈N
αk fα ⊗ ξk ⊗ Hα−ε(k)

)

= M−1 ◦ D F. (2.38)

Similarly, D̃
(H) : X ⊗ (S)

(H)
−ρ → X ⊗ S′(R) ⊗ (S)

(H)
−ρ and for F̃ ∈ Dom(D̃(H)) it

holds D̃
(H) F̃ = M−1 ◦ D̃ F̃ .

Theorem 2.21 ([10]) For F ∈ Dom(D) it holds

D
(H)F = M−1 ◦ D F = M ◦ D̃ ◦ M−1 F. (2.39)

Proof From (1.63), (2.2), (2.36) and (2.37) we obtain for all F ∈ Dom(D)

M ◦ D̃ ◦ M−1
( ∑

α∈I
fα ⊗ Hα

) = M ◦ D̃
( ∑

α∈I
fα ⊗ H̃α

)

= M
( ∑

α∈I

∑

k∈N
αk fα ⊗ e(H)

k ⊗ H̃α−ε(k)

) =
∑

α∈I

∑

k∈N
αk fα ⊗ e(H)

k ⊗ Hα−ε(k) ,

which by (2.38) equals D
(H)F and the assertion (2.39) follows. �

Denote by δ(H) the fractional Skorokhod integral on X ⊗ S′(R) ⊗ (S)−ρ (respec-
tively on X ⊗ S′(R) ⊗ (S)−ρ and X ⊗ L2(R) ⊗ L2(μ)) and by δ̃ the Skorokhod
integral on the corresponding fractional space X ⊗ S′(R) ⊗ (S)

(H)
−ρ (respectively on

X ⊗ S′(R)⊗ (S)(H)
ρ and X ⊗ L2(R)⊗ L2(μH )). In particular, u ∈ Dom(δ) if its co-
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72 2 Generalized Operators of Malliavin Calculus

efficients satisfy (2.8) (respectively (2.11) and (2.13)) and the fractional Skorokhod
integral is defined by

δ(H)(u) =
∑

α∈I

∑

k∈N
uH

α,k ⊗ Hα+ε(k) , (2.40)

where uH
α,k = (uα, e(H)

k ), α ∈ I and k ∈ N. Let ũ = ∑
α∈I uα ⊗Hα ∈ X ⊗ S′(R)⊗

(S)
(H)
−ρ (respectively on X ⊗ S′(R) ⊗ (S)(H)

ρ and X ⊗ L2(R) ⊗ L2(μH )), such that
the coefficients uα = ∑

k∈N uα,k ⊗ ξk with uα,k ∈ X satisfy (2.8) (respectively (2.11)
and (2.13)). Then, the Skorokhod integral δ̃ is of the form

δ̃(̃u) =
∑

α∈I

∑

k∈N
uα,k ⊗ H̃α+ε(k) . (2.41)

Theorem 2.22 ([9]) For ũ ∈ Dom0(̃δ) it holds M (̃δ(̃u)) = δ(M (̃u)).

Proof From (2.41) and the definition of M it holds M (̃δ(̃u)) = δ(u) = δ(M (̃u))

for all associated pairs of processes ũ and u = M ũ. Since M is an isometry we
have ‖δ(u)‖2X⊗L2(μ)

= ‖M (̃δ(̃u))‖2X⊗L2(μ)
= ‖̃δ(̃u)‖2X⊗L2(μH )

. �

The fractional Ornstein-Uhlenbeck operatorR(H) on the classical space is defined
as the composition R(H) = δ(H) ◦ D

(H) and can be represented in the form

R(H)u = R(H)(
∑

α∈I
uα ⊗ Hα) =

∑

α∈I
|α| uα ⊗ Hα = Ru.

Similarly, the Ornstein-Uhlenbeck operator R̃ = δ̃ ◦ D̃ and the fractional Ornstein-
Uhlenbeck operators R̃(H) = δ̃(H) ◦ D̃

(H) in fractional spaces are also equal

R̃(H)ũ = R̃(H)(
∑

α∈I
ũα ⊗ H̃α) =

∑

α∈I
|α| ũα ⊗ H̃α = R̃ũ.

The corresponding domains remain the same and, depending on a set of processes,
are determined by (2.16), (2.18) or (2.19), see Sect. 2.4.
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8. Levajković, T., Mena, H.: Equations involving Malliavin derivative: a chaos expansion ap-

proach. Pseudo-differential operators and generalized functions. Operator Theory: Advances
and Applications, vol. 245, pp. 199–216. Birkhäuser/Springer, Cham (2015)
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Chapter 3
Equations Involving Mallivin Calculus
Operators

Abstract This chapter is devoted to the study of several classes of stochastic equa-
tions involving generalized operators of the Malliavin calculus. In particular, we
prove the surjectivity of the main operators of the Malliavin calculus. We also con-
sider equations involving theMalliavin derivative operator and theWick productwith
a Gaussian process. Applying the chaos expansion method in white noise spaces, we
solve these equations and obtain explicit forms of the solutions in appropriate spaces
of stochastic processes.

3.1 Introduction

It is of great importance to solve explicitly stochastic differential equations (SDEs)
involving operators of Malliavin calculus, since explicit expansions of solutions can
be used in numerical simulations [2, 18, 24]. Particularly, we consider the follow-
ing fundamental equations with the Ornstein-Uhlenbeck opertaor R, the Malliavin
operator D and the Skorokhod integral δ

Pm(R) u = g, D u = h, δ u = f, (3.1)

where Pm is a polynomial of order m and Pm(R) is of the form (2.20). We also
considerWick-type equations involvingMalliavin derivative and a nonhomogeneous
linear equation with D, i.e.,

Du = G♦(Au) + h, and Du = c ⊗ u + h, (3.2)

satisfying the initial condition Eu = ũ0, whereG is a Gaussian process, A a coordi-
natewise operator, c ∈ S′(R) and h is a Schwartz space valued generalized stochastic
process. The three Equations. (3.1) have been considered in [12, 13]. They provide a
full characterization of the range of all three operators. The study of the Wick-type
equation in (3.2) was motivated by [13], where it was shown that Malliavin deriv-
ative indicates the rate of change in time between ordinary product and the Wick
product, see Theorem 2.14 and (2.23). We also point out that the Wick product and
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76 3 Equations Involving Mallivin Calculus Operators

the Malliavin derivative play an important role in the analysis of nonlinear problems.
For instance, in [23] the authors proved that in random fields, random polynomial
nonlinearity can be expanded in a Taylor series involving Wick products and Malli-
avin derivatives, the so-calledWick-Malliavin series expansion. Since the Malliavin
derivative represents a stochastic gradient in the direction of white noise, one can
consider similar equations that include a stochastic gradient in the direction of more
general stochastic process, like the ones studied in [17].

In order to solve these stochastic equations explicitly we apply the method of
chaos expansions also called the propagator method. The initial SDE is thus reduced
to an infinite triangular system of deterministic equations which can be solved by
applying techniques from the deterministic theory of algebraic or (ordinary and
partial) differential equations. Summing up all coefficients of the expansion, i.e., the
solutions of the deterministic system, and proving its convergence in an appropriate
space of stochastic processes, one obtains the solution of the initial equation.

Propagator method has been used for solving singular SDEs. It has been success-
fully applied to several classes of SPDEs. In [11, 21] the Dirichlet problem of elliptic
stochastic equations was solved and in [14] parabolic equations with the Wick-type
convolution operatorswere studied.Another type of equations have been investigated
in [5, 15–17, 19]. Besides the fact that the chaos expansion method is easy to apply
(since it uses orthogonal bases and series expansions), the advantage of the method
is that it provides an explicit form of the solution. We avoid using the Hermite trans-
form [4] or theS -transform [3], since these methods depend on the ability to apply
their inverse transforms. Our method requires only to find an appropriate weight
factor to make the resulting series convergent. Moreover, polynomial chaos expan-
sion approximations are known for being more efficient than Monte Carlo methods.
Moreover, for non-Gaussian processes, convergence can be improved by changing
the Hermite basis to another family of orthogonal polynomials (Charlier, Laguerre,
Meixner, etc.) [25].

3.2 Equations with the Ornstein-Uhlenbeck Operator

We consider stochastic equations involving polynomials of the Ornstein-Uhlenbeck
operator. We generalize results from [9, 10, 12, 13].

Theorem 3.1 Let ρ ∈ [0, 1] and let Pm(t) = ∑m
k=0 pkt

k , t ∈ R be a polynomial of
degree m with real coefficients.

(a) If Pm(k) �= 0, for k ∈ N0, then the equation Pm(R)u = g has a unique solution
represented in the form

u =
∑

α∈I

gα

Pm(|α|) ⊗ Hα. (3.3)
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3.2 Equations with the Ornstein-Uhlenbeck Operator 77

(b) If Pm(k) = 0 for k ∈ M, where M is a finite subset ofN0 and gα = 0 for |α| =
i ∈ M then the equation Pm(R)u = g with the conditions uα = ci for |α| = i ∈ M
has a unique solution given by

u =
∑

|α|/∈M

gα

Pm(|α|) ⊗ Hα +
∑

|α|=i∈M
ci ⊗ Hα. (3.4)

Moreover, the following hold:

1◦ If g ∈ X ⊗ (S)−ρ,−p, p ∈ N then u ∈ Dom−ρ,−p(Rm).

2◦ If g ∈ X ⊗ (S)ρ,p, p ∈ N then u ∈ Domρ,p(Rm).

3◦ If g ∈ X ⊗ L2(μ) then u ∈ Dom0(Rm).

Proof Let g be of the form g = ∑

α∈I gα ⊗ Hα . We seek for a solution in the form

u =
∑

α∈I
uα ⊗ Hα, uα ∈ X. (3.5)

Applying (2.20), the equation Pm(R)u = g transforms to

∑

α∈I
Pm(|α|) uα ⊗ Hα =

∑

α∈I
gα ⊗ Hα,

which due to the uniqueness of theWiener-Itô chaos expansion, reduces to the system
of deterministic equations Pm(|α|)uα = gα for all α ∈ I . If Pm(|α|) �= 0 for all
α ∈ I , then uα = gα

Pm (|α|) and the initial equation has a solution of the form (3.3).
If Pm(|α|) = 0 for |α| ∈ M and gα = 0 for |α| ∈ M , then uα = ci for |α| = i ∈ M
and uα = gα

P(|α|) for |α| /∈ M . Thus, in this case the solution is of the form (3.4).

1◦ Assume that g ∈ X ⊗ (S)−ρ,−p such that g = ∑

|α|/∈M gα ⊗ Hα , i.e., it satisfies
the condition (1.34). We can also assume that

∑

|α|=i∈M ‖ci‖2Xα!1−ρ(2N)−qα < ∞
for q ≤ p − 2m, because M is a finite set. Then, u ∈ Dom−ρ,−p(Rm) since

‖u‖2Dom−ρ,−p(Rm ) = A +
∑

|α|/∈M
|α|2m ‖gα‖2X

Pm(|α|)2 α!1−ρ(2N)−pα

≤ A +
∑

|α|/∈M
‖gα‖2Xα!1−ρ(2N)−pα = A + ‖g‖2X⊗(S)−ρ,−p

< ∞,

where A = ∑

|α|=i∈M |α|2m‖ci‖2Xα!1−ρ(2N)−pα .
2◦ Let g ∈ X ⊗ (S)ρ,p such that g = ∑

|α|/∈M gα ⊗ Hα satisfying the condition
(1.32). We additionally assume

∑

|α|=i∈M ‖ci‖2Xα!1+ρ(2N)qα < ∞ for q ≥ p +
2m. Then, u ∈ Domρ,p(R) because we have
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78 3 Equations Involving Mallivin Calculus Operators

‖u‖2Domρ,p(Rm ) = B +
∑

|α|/∈M
|α|2m ‖uα‖2X

Pm(|α|)2 α!1+ρ (2N)pα

= B +
∑

|α|/∈M
‖gα‖2X α!1+ρ (2N)pα = B + ‖g‖2X⊗(S)ρ,p

< ∞,

where B = ∑

|α|=i∈M |α|2m ‖ci‖2Xα!1+ρ(2N)pα .
3◦ If g is square integrable and

∑

|α|=i∈M |α|2m ‖ci‖2Xα! < ∞, then the solution
u ∈ Dom0(Rm) since

‖u‖2Dom0(Rm ) =
∑

|α|=i∈M
|α|2m ‖ci‖2X α! +

∑

|α|/∈M
|α|2m α! ‖gα‖2X

Pm(|α|)2 < ∞.

�

Remark 3.1 For Pm(t) = tm , t ∈ R the equation Pm(R)u = g reduces to

Rmu = g, Eu = ũ0 ∈ X. (3.6)

This case was considered in [13]. Assuming that g has zero generalized expectation,
from Theorem 3.1 it follows that the Eq. (3.6) has a unique solution of the form

u = ũ0 +
∑

|α|>0

gα

|α|m ⊗ Hα.

Remark 3.2 Note thatRu = u if and only if u ∈ H1, i.e., Gaussian processes with
zero expectation and first order chaos are the only fixed points for the Ornstein-
Uhlenbeck operator. For example,R(bt ) = bt andR(wt ) = wt .Moreover,Hm is the
eigenspace corresponding to the eigenvalue m of the Ornstein-Uhlenbeck operator,
for m ∈ N. This is in compliance with (2.15).

Remark 3.3 If Eu = 0 following [20], one can define the pseudo-inverseR−1. Par-
ticularly, the operatorR−1 : X ⊗ (S)−ρ → X ⊗ (S)−ρ and for u ∈ X ⊗ (S)−ρ such
that Eu = 0 is given in the form

R−1u = R−1

⎛

⎝

∑

α∈I ,|α|>0

uα ⊗ Hα

⎞

⎠ =
∑

α∈I ,|α|>0

uα

|α| ⊗ Hα.

Thus,
RR−1(u) = u and R−1R(u) = u.

In general, for Eu �= 0, we have RR−1(u − Eu) = u and R−1R(u) = u.
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3.2 Equations with the Ornstein-Uhlenbeck Operator 79

Corollary 3.1 Each stochastic process g can be represented as g = Eg + R(u), for
some u ∈ Dom(R), where Dom(R) denotes the domain of R in one of the spaces
X ⊗ (S)ρ , X ⊗ (S)−ρ or X ⊗ L2(μ).

Proof If Eg �= 0 then g − Eg has zero expectation. Thus the assertion follows for
u = R−1(g − Eg). �

Remark 3.4 If a stochastic process f belongs to the Wiener chaos space
⊕m

i=0 Hi

for somem ∈ N, then the solution u of the Eq. (3.6) belongs also to theWiener chaos
space

⊕m
i=0 Hi .

Another types of equations, for example equations with the exponential of the
Ornstein-Uhlenbeck operator eRu = g, were solved in [7].

3.3 First Order Equation with the Malliavin Derivative
Operator

We consider a first order equation involving the Malliavin derivative operator. The
following result characterizes the family of stochastic processes that can be written
as theMalliavin derivative of some stochastic process (for all cases square integrable,
test and generalized stochastic processes).We generalize the results from [9, 12, 13].

Theorem 3.2 Let ρ ∈ [0, 1]. Let a process h be given in the chaos expansion rep-
resentation form h = ∑

α∈I
∑

k∈N hα,k ⊗ ξk ⊗ Hα such that the coefficients hα,k

satisfy the condition
1

αk
hα−ε(k),k = 1

β j
hβ−ε( j), j , (3.7)

for all α + ε(k) = β + ε( j). Then, for each ũ0 ∈ X the equation

Du = h, Eu = ũ0 (3.8)

has a unique solution u represented in the form

u = ũ0 +
∑

α∈I ,|α|>0

1

|α|
∑

k∈N
hα−ε(k),k ⊗ Hα. (3.9)

Moreover, the following holds:

1◦ If h ∈ X ⊗ S−p(R) ⊗ (S)−ρ,−q , q > p + 1 then u ∈ Dom−ρ,−q(D).
2◦ If h ∈ X ⊗ Sp(R) ⊗ (S)ρ,q , p > q + 1, then u ∈ Domρ,q(D).
3◦ If h ∈ Dom0(δ) then u ∈ Dom0(D).
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80 3 Equations Involving Mallivin Calculus Operators

Proof 1◦ Applying the Skorokhod integral on both sides of (3.8) one obtains

Ru = δ(h),

for a given h ∈ Dom−ρ,−l,−p(δ), for some l, p ∈ N. From the initial condition it
follows that the solution u is given in the form u = ũ0 + ∑

|α|>0 uα ⊗ Hα and its
coefficients are obtained from the system

|α| uα =
∑

k∈N
hα−ε(k),k, |α| > 0, (3.10)

where by convention α − ε(k) does not exist if αk = 0. Hence, the solution u is
given in the form (3.9). Now, we prove that the solution u belongs to the space
Dom−ρ,−p(D). Clearly,

‖u − ũ0‖2Dom−ρ,−p(D) =
∑

|α|>0

|α|1+ρ ‖uα‖2X α!1−ρ(2N)−pα

=
∑

|α|>0

|α|1+ρ

|α|2 ‖
∑

k∈N
hα−ε(k),k‖2Xα!1−ρ (2N)−pα

=
∑

β∈I
‖
∑

k∈N
hβ,k

( βk + 1

|β + ε(k)|
)

1−ρ

2
(2k)−

p
2 ‖2X β!1−ρ(2N)−pβ

≤
∑

β∈I
|β|1−ρ‖

∑

k∈N
hβ,k (2k)−

l
2 (2k)−

p−l
2 ‖2X β!1−ρ(2N)−pβ

≤
∑

β∈I
|β|1−ρ

(
∑

k∈N
‖hβ,k‖2X (2k)−l

∑

k∈N
(2k)p−l

)

β!1−ρ(2N)−pβ

≤ c
∑

β∈I
|β|1−ρ‖hβ,k‖2X⊗S−l (R) β!1−ρ(2N)−pβ

= c‖h‖2Dom−ρ,−l,−p(δ)
< ∞,

since c = ∑

k∈N(2k)−(p−l) < ∞, for p > l + 1. In the calculations we used the
estimate βk+1

|βk+1| = βk+1
|β|+1 ≤ 1 ≤ |β|, for β ∈ I , k ∈ N and the Cauchy-Schwarz

inequality. Thus,

‖u‖2Dom−ρ,−p(D) ≤ 2
(

‖ũ0‖2X + c ‖h‖2Dom−ρ,−l,−p(δ)

)

< ∞.

2◦ Let nowh ∈ X ⊗ S(R) ⊗ (S)ρ . Theoperator δ can againbe appliedontoh, since
from (2.12) we have h ∈ X ⊗ Sl(R) ⊗ (S)ρ,p ⊆ Domρ,l,p−1−ρ(δ). It remains to
prove that the solution u given in the form (3.9) belongs to Domρ,q(D). Indeed,
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3.3 First Order Equation with the Malliavin Derivative Operator 81

‖u − ũ0‖2Domρ,p(D) =
∑

α∈I
|α|1−ρ ‖uα‖2X α!1+ρ(2N)pα

=
∑

|α|>0

|α|1−ρ

|α|2 ‖
∑

k∈N
hα−ε(k),k‖2X α!1+ρ (2N)pα

=
∑

β∈I
‖
∑

k∈N
hβ,k

( βk + 1

|β + ε(k)|
)

1+ρ

2
(2k)

p
2 ‖2X β!1+ρ (2N)pβ

≤
∑

β∈I

(
∑

k∈N
‖hβ,k‖2X (2k)l

∑

k∈N
(2k)p−l

)

β!1+ρ (2N)pβ

≤ c
∑

β∈I

(
∑

k∈N
‖hβ,k‖2X (2k)l

)

β!1+ρ (2N)pβ

= c
∑

β∈I
‖hβ‖2X⊗Sl (R) β!1+ρ (2N)pβ = c‖h‖2X⊗Sl (R)⊗(S)ρ,p

< ∞,

since c = ∑

k∈N(2k)p−l < ∞, for l > p + 1. We used the estimate βk+1
|β+ε(k)| ≤ 1,

for β ∈ I , k ∈ N and the Cauchy-Schwarz inequality. Thus,

‖u‖2Domρ,p(D) ≤ 2
(

‖ũ0‖2X + c ‖h‖2X⊗Sp(R)⊗(S)ρ,q

)

< ∞.

3◦ Let h ∈ L2(R) ⊗ L2(μ). Then,

‖u − ũ0‖2Dom0(D) =
∑

α∈I
|α| α! ‖uα‖2X =

∑

|α|>0

α!
|α| ‖

∑

k∈N
hα−ε(k),k‖2X

=
∑

β∈I
‖
∑

k∈N
hβ,k

( βk + 1

|β| + 1

) 1
2 ‖2Xβ! ≤

∑

β∈I

∑

k∈N
‖hβ,k‖2Xβ!

=
∑

α∈I
β!‖hβ‖2X⊗L2(R) = ‖h‖2X⊗L2(R)⊗L2(μ) < ∞.

�

In [10] for ρ = 1 we provided another way for solving Eq. (3.8). Applying the
chaos expansion method directly, we transformed Eq. (3.8) into a system of infinitely
many equations of the form

uα+ε(k) = 1

αk + 1
hα,k, for all α ∈ I , k ∈ N, (3.11)

from which we calculated uα , by induction on the length of α.
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82 3 Equations Involving Mallivin Calculus Operators

Denote by r = r(α) = min{k ∈ N : αk �= 0}, for a nonzero multi-index α ∈ I ,
i.e., let r be the position of the first nonzero component of α. Then, the first nonzero
component of α is the r th component αr , i.e., α = (0, ..., 0, αr , ..., αm, 0, ...). Denote
by αε(r) the multi-index with all components equal to the corresponding components
of α, except the r th, which is αr − 1. With the given notation we call αε(r) the
representative of α and write α = αε(r) + ε(r). For α ∈ I , |α| > 0 the set

Kα = {β ∈ I : α = β + ε( j), for those j ∈ N such that α j > 0}

is a nonempty set, because it contains at least the representative of α, i.e., αε(r) ∈ Kα .
Note that, ifα = nε(r), n ∈ N thenCard(Kα) = 1 and in all other casesCard(Kα) >

1. Further, for |α| > 0, Kα is a finite set because α has finitely many nonzero com-
ponents and Card(Kα) is equal to the number of nonzero components of α. For
example, the first nonzero component of α = (0, 3, 1, 0, 5, 0, 0, ...) is the second
one and it has three nonzero components. It follows that r = 2, αr = 3, the represen-
tative ofα isαε(r) = α − ε(2) = (0, 2, 1, 0, 5, 0, 0, ...) and the setKα consists of three
elements Kα = {(0, 2, 1, 0, 5, 0, ...), (0, 3, 0, 0, 5, 0, ...), (0, 3, 1, 0, 4, 0, ...)}.

In [10] the coefficients uα of the solution of (3.11) are obtained as functions of
the representative αε(r) of a nonzero multi-index α ∈ I in the form

uα = 1

αr
hα

ε(r) , r , for |α| �= 0, α = αε(r) + ε(r).

Theorem 3.3 ([10]) Let h = ∑

α∈I
∑

k∈N hα,k ⊗ ξk ⊗ Hα ∈ X ⊗ S−p(R) ⊗
(S)−ρ,−p, for some p ∈ N0 with hα,k ∈ X such that

1

αr
hα

ε(r) ,r = 1

α j
hβ, j , (3.12)

for the representativeαε(r) ofα ∈ I , |α| > 0 and allβ ∈ Kα , such thatα = β + ε( j),
for j ≥ r , r ∈ N. Then, (3.8)has aunique solution in X ⊗ (S)−ρ,−p given in the chaos
expansion form

u = ũ0 +
∑

α=α
ε(r) +ε(r)∈I

1

αr
hα

ε(r) ,r ⊗ Hα. (3.13)

Remark 3.5 Under the assumption (3.12), the obtained form of the solution (3.13)
transforms to the form (3.9) obtained in [10]. This was provided in [7]. First
we express all hβ,k in condition (3.12) in terms of hα

ε(r) , r , i.e., hβ,k = α j

αr
hα

ε(r) , r ,
where β ∈ Kα correspond to the nonzero components of α in the following way:
β = α − ε(k), k ∈ N, and r ∈ N is the first nonzero component of α. Therefore, from
the form of the coefficients (3.10) obtained in Theorem 3.2 we have
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3.3 First Order Equation with the Malliavin Derivative Operator 83

1

|α|
∑

β∈Kα

hβ,k = 1

|α|
∑

j∈N, α j �=0

α j

αr
hα

ε(r) , r = 1

|α|

∑

j∈N
α j

αr
hα

ε(r) , r = 1

αr
hα

ε(r) , r .

Thus, the forms (3.9) and (3.13) are equivalent.

Later we will present the direct approach for solving Wick-type equations with
the Malliavin derivative operator.

Corollary 3.2 It holds that D(u) = 0 if and only if u = Eu.

In other words the kernel of the operator D isH0.

Theorem 3.4 ([1]) Let h be a given stochastic process satisfying (3.7) and let
ũ0 ∈ X. The initial value problem (3.8) is equivalent to the system of two initial
values problems

D u1 = 0, Eu1 = ũ0 and D u2 = h, Eu2 = 0, (3.14)

where u = u1 + u2.

Proof Let u1 and u2 be the solutions of the system (3.14). From the linearity of the
operatorD and the linearity ofE it followsDu = D(u1 + u2) = Du1 + Du2 = h and
Eu = E(u1 + u2) = Eu1 + Eu2 = ũ0. Thus the superposition of u1 and u2 solves
the Eq. (3.8).

Let now u be the solution of (3.8). By Theorem 3.2 it has chaos expansion rep-
resentation form (3.9). By Corollary 3.2 it follows Ker(D) = H0 and therefore u
can be expressed in the form u = u1 + u2, where u1 ∈ Ker(D) and u2 ∈ Image(D).
Then, we conclude that Du1 = 0 and Eu1 = u0 as well as Du2 = h and Eu2 = 0. �

Corollary 3.3 For every Skorokhod integrable process h there exists a unique
u ∈ Dom(D) such that Eu = 0 and h = D(u) holds. (The statement holds for test,
square integrable and generalized stochastic processes.)

Proof The assertion follows for u = R−1(δ(h)). �

Remark 3.6 If a stochastic process h belongs to the Wiener chaos space
⊕m

i=0 Hi

for some m ∈ N, then the unique solution u of the Eq. (3.8) belongs to the Wiener
chaos space

⊕m+1
i=0 Hi . Particularly, if the input function h is a constant random

variable i.e., an element of H0, then the solution u of (3.8) is a Gaussian process.
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3.4 Nonhomogeneous Equation with the Malliavin
Derivative Operator

We consider now a nonhomogeneous linear Malliavin differential type equation

Du = c ⊗ u + h, Eu = ũ0 (3.15)

where c ∈ S′(R), h is a Schwartz space valued generalized stochastic process and
ũ0 ∈ X . Especially, for h = 0 the Eq. (3.15) reduces to the corresponding homoge-
neous equation Du = c ⊗ u satisfying Eu = ũ0. In this case we obtain the gene-
ralized eigenvalue problem for the Malliavin derivative operator, which was solved
in [10]. Moreover, it was proved that in a special case, obtained solution coincide
with the stochastic exponential, see also Example 2.2. Additionally, putting c = 0,
the initial equation (3.15) transforms to (3.8).

Let αε(r) be the representative of a nonzero multi-index α, i.e., α = αε(r) + ε(r),
|αε(r) | = |α| − 1 and let Card(Kα) > 1. Then, we denote by r1 the first nonzero
component of αε(r) and by αε(r1) its representative, i.e., αε(r) = ε(r1) + αε(r1) and
|αε(r1) | = |α| − 2. If Card(Kα

ε(r1)
) > 1, then we denote by r2 the first nonzero com-

ponent of αε(r1) and with αε(r2) its representative, i.e., αε(r1) = ε(r2) + αε(r2) and so
on. With such a procedure we decompose α ∈ I recursively by new representa-
tives of the previous representatives and we obtain a sequence ofK -sets. Thus, for
α = (α1, α2, ..., αm, 0, 0, ...) ∈ I , |α| = s + 1 there exists an increasing family of
integers 1 ≤ r ≤ r1 ≤ r2 ≤ ... ≤ rs ≤ m, s ∈ N such that αε(rs ) = 0 and every α is
decomposed by the recurrent sum

α = ε(r) + αε(r) = ε(r) + ε(r1) + αε(r1) = . . . = ε(r) + ε(r1) + ... + ε(rs ) + αε(rs ) .

(3.16)

Theorem 3.5 ([8]) Let ρ ∈ [0, 1]. Let c = ∑∞
k=1 ck ξk ∈ S′(R) and let h ∈ X ⊗

S′(R) ⊗ (S)−ρ with coefficients hα,k ∈ X such that the following conditions (C)

1
αr
hα

ε(r) ,r = 1
βk
hβ,k, β ∈ Kα, |α| = 1

1
αrαr1

crhα
ε(r1) ,r1 = 1

βkβk1
ckhβ1,k1 , β ∈ Kα, β1 ∈ Kα

ε(r)
, |α| = 2

. . .

hold for all possible decompositions of α of the form (3.16). If ck ≥ 2k for all k ∈ N,
then (3.15) has a unique solution in X ⊗ (Sc)−ρ given by
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3.4 Nonhomogeneous Equation with the Malliavin Derivative Operator 85

u = uhom + unhom =
∑

α∈I
uhomα ⊗ Hα +

∑

|α|>0

unhomα ⊗ Hα

= ũ0 ⊗
∑

α∈I

cα

α! Hα +
∑

|α|>0

( 1

αr
hα

ε(r) ,r + 1

αrαr1

crhα
ε(r1) ,r1

+ 1

αrαr1αr2

cr cr1hα
ε(r2) ,r2 + ... + 1

α!cr cr1 ...crs−1h0,rs
)

⊗ Hα,

(3.17)

where uhom is the solution of the corresponding homogeneous equationDu = c ⊗ u.
The nonhomogeneous part unhom of the solution u is given by the the second sum in
(3.17), which runs through nonzero α represented in the recursive form (3.16).

Here we omit the proof as it follows similarly to the one given in [8] for ρ = 1. Note
that the first subcondition in (C) corresponds to (3.7) and equals (3.12).

3.5 Wick-Type Equations Involving the Malliavin
Derivative

We consider a nonhomogeneous first order equation involving the Malliavin deriva-
tive operator and the Wick product with a Gaussian process G

Du = G♦Au + h, Eu = ũ0, ũ0 ∈ X, (3.18)

where h is a S′(R)-valued generalized stochastic process and A is a coordinatewise
operator on the space X ⊗ (S)−ρ . We assume that a Gaussian process G belongs to
S−l(R) ⊗ (S)−ρ,−p, for some l, p > 0, i.e., it can be represented in the form

G =
∑

k∈N
gk ⊗ Hε(k) =

∑

k∈N

∑

n∈N
gkn ξn ⊗ Hε(k) , gkn ∈ R, (3.19)

such that
∑

k∈N
∑

n∈N g2kn (2n)−l (2k)−p < ∞. We also assume A : X ⊗ (S)−ρ →
X ⊗ (S)−ρ to be a coordinatewise operator, i.e., a linear operator defined byA( f ) =
∑

α∈I Aα( fα) ⊗ Hα , for f = ∑

α∈I fα ⊗ Hα ∈ X ⊗ (S)−ρ , where Aα : X → X ,
α ∈ I are polynomially bounded for all α, i.e., there exists r > 0 such that
∑

α∈I ‖Aα‖2(2N)−rα < ∞. If Aα = A for all α ∈ I then according to Definition
1.19, the operator A is a simple coordinatewise operator. Especially, for an operator
A such that Aα = 0, the Eq. (3.18) reduces to the initial value problem (3.8).

As a case of study, here we will prove existence and uniqueness of a solution for a
special form of the Eq. (3.18) and represent its solution in explicit form. Particularly,
we assume Aα = I d, α ∈ I being the identity operator and a Gaussian process G ∈
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S−l(R) ⊗ (S)−ρ,−q obtained from G by choosing gkn = gk , for k = n and gkn = 0
for k �= n. Clearly, we consider G to be of the form

G =
∑

k∈N
gk ξk ⊗ Hε(k) , (3.20)

which for some l, q > 0 satisfies the condition

∑

k∈N
g2k (2k)−q−l < ∞. (3.21)

For p ≥ l + q the condition (3.21) reduces to the condition (1.50).
First we solve the homogeneous version of (3.18), i.e., we find a Malliavin dif-

ferentiable process whose derivative coincides with its Wick product with a certain
Gaussian process G of the form (3.20). We state a theorem and present a detailed
proof. Then, we analyze the nonhomogeneous equation (3.18). Due to complicate
notation we skip some technical details in solving (3.18), withG of the form (3.19).

Theorem 3.6 ([6]) Let ρ ∈ [0, 1] and let G ∈ S−l(R) ⊗ (S)−ρ,−q , q, l > 0 be a
Gaussian process of the form (3.20)whose coefficients gk, k ∈ N satisfy the condition
(3.21). If gk ≥ 2k for all k ∈ N then the initial value problem

Du = G♦u, Eu = ũ0, ũ0 ∈ X, (3.22)

has a unique solution in Dom(Dg)−ρ,−p represented in the form

u = ũ0 ⊗
∑

α=2β∈I

Cα

|α|!! (

∞
∏

k=1

gβk
k ) Hα = ũ0 ⊗

∑

2β∈I
C2β

gβ

|2β|!! H2β, (3.23)

where Cα represents the number of all possible decomposition chains connecting
multi-indices α and α̃, such that α̃ is the first successor of α having only one nonzero
component that is obtained by the subtractions α − 2ε(p1) − ... − 2ε(ps ) = α̃, for
p1, ..., ps ∈ N, s ≥ 0.

Proof We are looking for a solution of (3.22) in the chaos expansion form (3.5),
which is Malliavin differentiable and which admits the Wick multiplication with a
Gaussian process of the form (3.20). This means that we are seeking for uα ∈ X
such that

∑

α∈I |α|1+ρα!1−ρ‖uα‖2X (2Ng)−pα < ∞ for some p > 0. Wick product
of a process u and a Gaussian process G, represented respectively in their chaos
expansion forms (3.5) and (3.20), is a well defined element G♦u given by

G♦u =
∑

k∈N
gk ξk ⊗ Hε(k)♦

∑

α∈I
uα ⊗ Hα =

∑

α∈I

∑

k∈N
gk ξk ⊗ uα ⊗ Hα+ε(k) .
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Clearly, for G ∈ S−l(R) ⊗ (S)−ρ,−q and u ∈ X ⊗ (S)−ρ,−p the Wick product G♦u
belongs to X ⊗ S−l(R) ⊗ (S)−ρ,−s , s ≥ p + q + 1 − ρ, because

‖G♦u‖2X⊗S−l (R)⊗(S)−ρ,−s
=

∑

α>0

∑

k∈N
α!1−ρ g2k (2k)−l ‖uα−εk‖2X (2N)−sα

=
∑

β∈I

∑

k∈N
(βk + 1)1−ρβ!1−ρg2k (2k)−l−s ‖uβ‖2X (2N)−sβ

≤
∑

β∈I

∑

k∈N
(2N)(1−ρ)β(2k)1−ρβ!1−ρg2k (2k)−l−s ‖uβ‖2X (2N)−sβ

≤
∑

β∈I

(
∑

k∈N
g2k (2k)−l−q

)

β!1−ρ ‖uβ‖2X (2N)−pα

= ‖u‖2X⊗(S)−ρ,−p
· ‖G‖2S−l (R)⊗(S)−ρ,−q

< ∞,

where we used βk + 1 ≤ (2N)β+ε(k) = (2N)β(2k), β ∈ I , k ∈ N. The estimates
are also valid for processes in the Kondratiev space modified with a sequence
g = (gk)k∈N, for gk ≥ 2k, k ∈ N since it holds (2Ng)−sα ≤ (2N)−2sα for s > 0.

Both, the Wick product G♦u and the action of the Malliavin derivative on u,
belong to the domain of the Skorokhod integral and therefore we can apply the ope-
rator δ on both sides of (3.22). Thus, we obtain the equation δ(Du) = δ(G♦u),
which reduces to the equation written in terms of the Skorokhod integral δ and the
Ornstein-Uhlenbeck operator R

Ru = δ(G♦u). (3.24)

We replace all the processes in (3.24) with their chaos expansion expressions, apply
operators R and δ and obtain unknown coefficients of a process u.

R

(

∑

α∈I
uα ⊗ Hα

)

= δ

(

∑

α∈I

∑

k∈N
gk uα ⊗ ξk ⊗ Hα+ε(k)

)

∑

α∈I
|α| uα ⊗ Hα =

∑

α∈I

∑

k∈N
gk uα ⊗ Hα+2ε(k)

We select terms which correspond to multi-indices of length zero and one and
obtain

∑

k∈N
uε(k) ⊗ Hε(k) +

∑

|α|≥2

|α| uα ⊗ Hα =
∑

|α|≥2

∑

k∈N
gk uα−2ε(k) ⊗ Hα. (3.25)

Due to the uniqueness of chaos expansion representations in the orthogonal
Fourier-Hermite basis, we equalize corresponding coefficients on both sides of (3.25)
and obtain the triangular system of deterministic equations
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uε(k) = 0, k ∈ N (3.26)

|α|uα =
∑

k∈N
gk uα−2ε(k) , |α| ≥ 2, (3.27)

where by convention α − 2ε(k) does not exist if αk = 0 or αk = 1, thus uα−2ε(k) = 0
for αk ≤ 1. We solve the system of Eqs. (3.26) and (3.27) by induction with respect
to the length of multi-indices α and thus obtain the coefficients uα , |α| ≥ 1.

First, from (3.27) it follows that uα are represented in terms of uβ such that |β| =
|α| − 2, where uβ are obtained in the previous step of the induction procedure. From
the initial condition Eu = ũ0 it follows that u(0,0,0,...) = u0 = ũ0 and from (3.26) we
obtain coefficients uα = 0 for all |α| = 1. For |α| = 2 there are two possibilities:
α = 2ε(k), k ∈ N and α = ε(k) + ε( j), k �= j , k, j ∈ N. From (3.27) it follows that

uα =
{

1
2 gk ũ0, α = 2ε(k)

0, α = ε(k) + ε( j), k �= j
.

Note that α = 2ε(k), k ∈ N has only one nonzero component, so α = α1, thus only
one term appears in the sum (3.27) and Cα = 1.

For |α| = 3 the coefficients uα = 0 because they are represented through the
coefficients of the length one, which are zero. Moreover, for all α ∈ I of odd length,
i.e., for all α ∈ I such that |α| = 2n + 1, n ∈ N the coefficients uα = 0.

Our goal is to obtain a general form of the coefficients uα for α ∈ I of even
length, i.e., for |α| = 2n, n ∈ N. Now, for |α| = 4 there are five different types of α.
Without loss of generality we consider

α ∈ {(4, 0, 0, ...), (3, 1, 0, 0...), (2, 1, 1, 0, ..), (1, 1, 1, 1, 0, 0, ...), (2, 2, 0, 0, ...)}.

From (3.27) it follows u(4,0,0,..) = 1
4 g1 u(2,0,0,0,...). Using the forms of uα obtained in

the previous steps we get u(4,0,0,..) = 1
4

1
2g

2
1 ũ0. We also obtain u(3,1,0,...) =

u(2,1,1,0,..) = u(1,1,1,1,0,0,...) = 0 and u(2,2,0,0..) = 1
4 (g1u(0,2,0,...) + g2u(2,0,0,...)) =

1
4
1
2g1g2 · ũ0 · 2. It follows that only nonzero coefficients are obtained for multi-

indices of forms
α = 4ε(k), k ∈ N and α = 2ε(k) + 2ε( j), k �= j , k, j ∈ N. Thus, for |α| = 4

uα =
⎧

⎨

⎩

1
4!! g

2
k ũ0, α = 4ε(k)

2 · 1
4!! gk g j ũ0, α = 2ε(k) + 2ε( j), k �= j

0, otherwise
.
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3.5 Wick-Type Equations Involving the Malliavin Derivative 89

(4,2,0, · · ·)

(4,0,0, · · ·)

(2,2,0, · · ·)

(2,0,0, · · ·)

(0,2,0, · · ·)

(a) α = (4,2,0, ...)

(2,2,2,0, · · ·)

(2,2,0,0, · · ·)

(2,0,0, · · ·)

(0,2,0, · · ·)

(2,0,2,0, · · ·)

(0,0,2, · · ·)

(2,0,0, · · ·)

(0,2,2,0, · · ·)

(0,2,0, · · ·)

(0,0,2, · · ·)

(b) α = (2,2,2,0, ...)

Fig. 3.1 α values

Since α = 2ε(k) + 2ε( j), for k �= j has two nonzero components, there are two terms
in the sum (3.27) andCα = 2. For example,α = (2, 2, 0, 0, ...) can be decomposed in
one of two following ways α = 2ε(1) + (0, 2, 0, 0, ..) or α = 2ε(2) + (2, 0, 0, 0, ..),
therefore C(2,2,0,0,...) = 2.

For |α| = 6 we consider only multi-indices which have all their components even.
For the rest uα = 0. For example, from (3.27) and from the forms of the coefficients
obtained in the previous steps it follows u(6,0,0,...) = 1

6g1u(4,0,0...) = 1
6
1
4
1
2 g

3
1 ũ0. Next,

u(4,2,0,0,...) = 1
6 (g1u(2,2,0,0...) + g2u(4,0,0,...)) = 3 · 1

6
1
4
1
2 g

2
1 g2 ũ0. Finally,u(2,2,2,0,...) =

g1u(0,2,2,0,...) + g2u(2,0,2,0,...) + g3u(2,2,0,0,...) = 6 · 1
6
1
4
1
2 g1 g2 g3 ũ0. The later coeffi-

cient is Cα = 6, meaning that there are six chain decompositions of α =
(2, 2, 2, 0, 0, ...) of the form α = 2ε(p1) + 2ε(p2) + ... + 2ε(ps ) + α1, with α1 hav-
ing only one nonzero component. This case is illustrated in Fig. 3.1b. For α =
(4, 2, 0, 0, ...) we have Cα = 3, where all decomposing possibilities are described
in Fig. 3.1a. Thus,

uα =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
6!! g

3
k ũ0, α = 6ε(k)

3 · 1
6!!g

2
k g j ũ0, α = 4ε(k) + 2ε( j), k �= j

6 · 1
6!! gk g j gi ũ0, α = 2ε(k) + 2ε( j) + 2ε(i), k �= i, j, i �= j

0, otherwise

.

We proceed by the same procedure for all even multi-index lengths to obtain uα

in the form

uα =
{ Cα

|α|!! · gβ1
1 gβ2

2 · · · gβm
m ũ0, α = 2β, |α| = 2n, n ∈ N,

0, |α| = 2n − 1, n ∈ N
, (3.28)

where β = (β1, β2, ..., βm, 0, 0, ...) ∈ I , β1, ..., βm ∈ N0 and Cα represents the
number of decompositions of α in the way α = 2ε(p1) + ... + 2ε(ps ) + α1, for all pos-
sible p1,..., ps , i.e., all branches paths that connect α and α̃ = (0, 0, ..., α̃i , 0, 0, ..),
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90 3 Equations Involving Mallivin Calculus Operators

for some α̃i �= 0. Note, for α = 2β = (2β1, 2β2, ..., 2βm, 0, ..) ∈ I the coefficient
1 ≤ Cα ≤ m!, i.e., Cα is maximal when all nonzero components of α are equal two.

Summing up all the coefficients in (3.28) we obtain the form of solution (3.23).
It remains to prove the convergence of the solution u in Dom(Dg)−ρ , i.e., to prove
that the sum

∑

α∈I |α|1+ρα!1−ρ‖uα‖2X (2Ng)−pα is finite.
Since gk ≥ 2k for all k ∈ N it holds (2Ng)−pα ≤ (2N)−2pα , for p > 0. Then, from

the estimates |α| ≤ (2N)α and Cα ≤ (2N)α , α ∈ I by Theorem 1.1 for p ≥ 5 + ρ

it follows

‖u‖2Dom−ρ,−p(Dg) =
∑

α=2β∈I
|α|1+ρ C2

α ‖ũ0‖2X α!1−ρ gα

|α|!!2 (2Ng)−pα

≤ ‖ũ0‖2X
∑

α=2β∈I

α!1−ρ

|α|!!2 (2N)(3+ρ)α gα (2Ng)−pα

≤ ‖ũ0‖2X
∑

α∈I
(2N)(2+ρ)α (2Ng)−(p−1)α

≤ ‖ũ0‖2X
∑

α∈I
(2N)−(p−3−ρ)α ≤ ‖ũ0‖2X

∑

α∈I
(2N)−2α < ∞.

We also used α!1−ρ

|α|!!2 = (2β)!1−ρ

|2β|!!2 = (2|β| β!)2(1−ρ)

(2|β| |β|!)2 ≤ (2|β| β!)2(1−ρ)

(2|β| β!)2 = 1
(2|β| β!)2ρ ≤ 1,

because from Lemma 1.1 it holds |β|! ≥ β!. �

Remark 3.7 The same procedure, described in the proof of Theorem 3.6 can be
applied for solving equations with Gaussian processes given in a more general form
(3.19). By applying the chaos expansionmethod, the problem of solvingDu = G♦u,
Eu = ũ0 reduces to the problem of solving the system of deterministic equations

uε(k) = 0, for k ∈ N and |α|uα =
∑

k∈N

∑

n∈N
gkn uα−ε(k)−ε(n) , |α| ≥ 2,

which corresponds to the system (3.26) and (3.27). Once we obtain the coefficients
uα , α ∈ I we have the chaos expansion representation of the solution in the form
(3.5). Under the assumptions of Theorem 3.6 it can be proven that the obtained
solution belongs to Dom(Dg)−ρ .

Theorem 3.7 Letρ ∈ [0, 1] and let G ∈ S−l(R) ⊗ (S)−ρ,−q , q, l > 0 be aGaussian
process of the form (3.20) whose coefficients gk, k ∈ N satisfy (3.21). If gk ≥ 2k for
all k ∈ N and if the coefficients of h ∈ X ⊗ S−l ⊗ (S)−ρ,−p, l, p > 0 satisfy (C)

for all possible decompositions of α of the form (3.16), then the nonhomogeneous
equation

Du = G♦u + h, Eu = ũ0, (3.29)
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3.5 Wick-Type Equations Involving the Malliavin Derivative 91

for each ũ0 ∈ X has a unique solution in Dom(Dg)−ρ,−p represented in the form
u = uhom + unhom, where uhom is the solution of the corresponding homogeneous
equation (3.22) and is of the form (3.23) and unhom is the nonhomogeneous part.

Since the proof is rather technical, we omit it here. We note that after applying the
chaos expansion method to (3.29) we obtain the system

uε(k) = h0,k, for k ∈ N and |α|uα =
∑

k∈N
gk uα−ε(k)−ε(n) +

∑

k∈N
hα−ε(k),k, |α| ≥ 2.

Further analysis follows similarly as the analysis provided in the proof of Theorem
3.6, with additional difficulty arising from the fact that the coefficients uα , for α of
odd lenght not necessarily vanishing.

Remark 3.8 If we consider the equation Du = G♦u + h, Eu = ũ0 with a Gaussian
process G of the form (3.19) and h ∈ X ⊗ S′(R) ⊗ (S)−ρ under the assumptions of
Theorem3.7, then the unknown coefficients uα ,α ∈ I of a solution u are determined
from the system of deterministic equations

uε(k) = h0,k, for k ∈ N and |α|uα =
∑

k∈N

∑

n∈N
gkn uα−2ε(k) +

∑

k∈N
hα−ε(k),k, |α| ≥ 2.

The solution u belongs to the Kondratiev space of distributions modified by a
sequence g and it can be represented as a sum of the solution uhom that corresponds
to the homogeneous part of equation and the nonhomogeneous part unhom represented
as a convolution of the coefficients hα and gkn .

Consider now a more general form of the nonhomogeneous problem

Du = B(G♦u) + h, Eu = ũ0, ũ0 ∈ X, (3.30)

whereB is a coordinatewise operator, i.e.,B : X ⊗ S′(R) ⊗ (S)−ρ → X ⊗ S′(R) ⊗
(S)−ρ is a linear operator defined by B( f ) = ∑

α∈I Bα( fα) ⊗ Hα , for
f = ∑

α∈I fα ⊗ Hα ∈ X ⊗ S′(R) ⊗ (S)−ρ , where Bα : X ⊗ S′(R) → X ⊗ S′(R),
α ∈ I are linear and of the form Bα = ∑

k∈N fα,k ⊗ Bα,k(ξk), α ∈ I , such that
Bα,k : S′(R) → S′(R), k ∈ N.Wealso assume

∑

α∈I
∑

k∈N ‖Bα,k‖2(2k)−l (2N)−pα <

∞, for some p, l > 0. Especially, if operatorB is a simple coordinatewise operator
of the form Bα,k = B = −� + x2 + 1, α ∈ I , k ∈ N then, in order to solve (3.30)
we can apply the same procedure explained in Theorem 3.6. Recall, the domain of
B contains S′(R) and the Hermite functions are eigenvectors of B with Bξk = 2k ξk ,
k ∈ N. We set h = 0. Clearly,

B(G♦u) = B
(

∑

α∈I

∑

k∈N
gkξk ⊗ uα ⊗ Hα+ε(k)

)

=
∑

α∈I

∑

k∈N
gk Bα,k(ξk) ⊗ uα ⊗ Hα+ε(k)

=
∑

α∈I

∑

k∈N
gk Bξk ⊗ uα ⊗ Hα+ε(k) =

∑

α∈I

∑

k∈N
gk 2k ξk ⊗ uα ⊗ Hα+ε(k)
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92 3 Equations Involving Mallivin Calculus Operators

Therefore, after applying the operator δ we obtain

∑

α∈I
|α| uα ⊗ Hα =

∑

α∈I

∑

k∈N
2k gk uα ⊗ Hα+2ε(k) .

The coefficients of the solution are obtained by induction from the system

uε(k) = 0, for all k ∈ N, and |α|uα =
∑

k∈N
2k gk uα−2ε(k) , |α| ≥ 2.

Under the assumptions of Theorem 3.6 it can be proven that there exists a unique
solution of equation in the space Dom(Dg)−ρ , for p > 5 + ρ given in the form

u = ũ0 ⊗
∑

2β∈I

C2β

|2β|!! (

∞
∏

k=1

(2k gk)
βk ) H2β.

3.6 Integral Equation

We consider an integral type equation involving the Skorokhod integral operator. In
the following theorem we generalize results from [12, 13] for Schwartz valued test
processes in X ⊗ S(R) ⊗ (S)ρ and generalized processes from X ⊗ S′(R) ⊗ (S)−ρ ,
ρ ∈ [0, 1].
Theorem 3.8 Let ρ ∈ [0, 1]. Let f be a stochastic process with zero expectation
and chaos expansion representation form f = ∑

|α|≥1 fα ⊗ Hα, fα ∈ X. Then, the
integral equation

δ(u) = f, (3.31)

has a unique solution u given by

u =
∑

α∈I

∑

k∈N
(αk + 1)

fα+ε(k)

|α + ε(k)| ⊗ ξk ⊗ Hα. (3.32)

Moreover, the following hold:

1◦ If f ∈ Dom−ρ,−p(D), p ∈ N then u ∈ Dom−ρ,−l,−p(δ) for l > p + 1.
2◦ If f ∈ Domρ,p(D), p ∈ N then u ∈ Domρ,l,p(δ) for l < p − 1.
3◦ If f ∈ Dom0(D), then u ∈ Dom0(δ).
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3.6 Integral Equation 93

Proof 1◦ Weseek for the solution in Range−ρ(D). It is clear that u ∈ Range−ρ(D)

is equivalent to u = D(̃u), for some ũ. This approach is general enough, since
according to Theorem 3.2, for all u ∈ X ⊗ S−l(R) ⊗ (S)−ρ,−p, l > p + 1 there
exists ũ ∈ Dom−ρ,−p(D) such that u = D(̃u) holds. Thus, the integral equation
(3.31) is equivalent to the system of equations

u = D(̃u), R (̃u) = f.

The solution of R (̃u) = f , by Theorem 3.1 for m = 1, is given by

ũ = ũ0 +
∑

α∈I , |α|≥1

fα
|α| ⊗ Hα,

where ũ0 = ũ0 can be chosen arbitrarily. Finally, the solution of the initial equation
(3.31) is obtained after applying the operator D, i.e.,

u = D (̃u) =
∑

α∈I , |α|≥1

∑

k∈N
αk

fα
|α| ⊗ ξk ⊗ Hα−ε(k)

=
∑

α∈I

∑

k∈N
(αk + 1)

fα+ε(k)

|α + ε(k)| ⊗ ξk ⊗ Hα.

It remains to prove the convergence of the solution (3.32) in Dom−ρ(δ).
We assume f ∈ Dom−ρ,−p(D), for some p > 0. First we prove that
ũ ∈ Dom−ρ,−p(D). Indeed,

‖ũ‖2Dom−ρ,−p(D) = ‖ũ0‖2X +
∑

|α|>0

|α|1+ρα!1−ρ‖ũα‖2X (2N)−pα

= ‖ũ0‖2X +
∑

|α|>0

|α|1+ρ

|α|2 α!1−ρ‖ fα‖2X (2N)−pα

≤ ‖ũ0‖2X + ‖ f ‖2Dom−ρ,−p(D) < ∞.

Finally, the solution u ∈ Dom−ρ,−l,−p(δ) for l > p + 1 since it holds

‖u‖2Dom−ρ,−l,−p(δ)
=

∑

α∈I
|α|1−ρα!1−ρ

(
∑

k∈N
(αk + 1)2

‖ fα+ε(k)‖2X
|α + ε(k)|2 (2k)−l

)

(2N)−pα

=
∑

|β|>0

(
∑

k∈N

|β − ε(k)|1−ρ

|β|2 ‖ fβ‖2X (2k)−l+p β2
k

β
1−ρ

k

)

β!1−ρ(2N)−pβ

≤ c
∑

|β|>0

|β|1+ρ‖ fβ‖2Xβ!1−ρ(2N)−pβ = c‖ f ‖2Dom−ρ,−l,−p(D) < ∞.
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94 3 Equations Involving Mallivin Calculus Operators

We used the substitution α = β − ε(k), |β| > 0 and thus α! = (β − ε(k))! = β!
βk
,

k ∈ N and (2N)−pα = (2N)−pβ(2N)−pε(k) = (2N)−pβ(2k)−p. We also applied the
estimates |β−ε(k)|1−ρ

|β|2 = (|β|−1)1−ρ

|β|2 ≤ 1 and
∑

k∈N β
1+ρ

k ≤ (
∑

k∈N βk)
1+ρ = |β|1+ρ ,

|β| > 0 and the Cauchy-Schwarz inequality. Moreover, c = ∑

k∈N(2k)p−l < ∞
for l > p + 1. Note also that the coefficients uα satisfy the conditions (C).
2◦ The form of the solution (3.32) is obtained in a similar way as in the previous
case. We prove that ũ ∈ Domρ,p(D) and u ∈ Domρ,l,p(δ). We obtain

‖ũ‖2Domρ,p(D) =
∑

α∈I
|α|1−ρα!1+ρ‖uα‖2X (2N)pα =

∑

|α|>0

|α|1−ρα!1+ρ ‖ fα‖2X
|α|2 (2N)pα

≤
∑

|α|>0

|α|1+ρ α!1+ρ ‖ fα‖2X (2N)pα = ‖ f ‖2Domρ,p(D) < ∞

and thus ũ ∈ Domρ,p(D). Now, for p > l + 1 it holds c = ∑

k∈N(2k)l−p < ∞
and

‖u − ũ0‖2Domρ,l,p(δ)
=

∑

|α|>0

|α|1+ρ α!1+ρ
(

∑

k∈N
(αk + 1)2

‖ fα+ε(k)‖2X
|α + ε(k)|2 (2k)−l

)

(2N)pα

=
∑

|β|>0

(
∑

k∈N

|β − ε(k)|1+ρ

|β|2 · β2
k

β
1+ρ
k

(2k)l−p
)

‖ fβ‖2X β!1+ρ(2N)pβ

≤
∑

|β|>0

(|β| − 1)1+ρ

|β|2 ·
(

∑

k∈N
β
1−ρ
k (2k)l−p

)

‖ fβ‖2X β!1+ρ(2N)pβ

≤ c
∑

β∈I
|β|1−ρβ!1+ρ‖ fβ‖2X (2N)pβ = c‖ f ‖2Domρ,l,p(D) < ∞.

3◦ Let f ∈ Dom0(D). In this case we have

‖ũ‖2Dom0(D) − ‖ũ0‖2X =
∑

|α|>0

|α|α! ‖uα‖2X =
∑

|α|>0

|α|α! ‖ fα‖2X
|α|2 ≤ ‖ f ‖2X⊗L2(μ)

< ∞

and thus ũ ∈ Dom0(D). Also, by |β|−1
|β|2 ≤ 1, β ∈ I we obtain

‖u − ũ0‖2Dom0(δ)
=

∑

|α|>0

|α| α!
(

∑

k∈N
(αk + 1)2

‖ fα+ε(k)‖2X
|α + ε(k)|2

)

=
∑

|β|>0

∑

k∈N
β2
k

‖ fβ‖2X
|β|2 · β!

βk
|β − ε(k)| =

∑

|β|>0

(
∑

k∈N
βk

) |β| − 1

|β|2 ‖ fβ‖2X β!

≤
∑

β∈I
|β| β! ‖ fβ‖2X = ‖ f ‖2Dom0(D) < ∞.

The obtained solution has symmetric kernel, i.e., it satisfies condition (C). �

Remark 3.9 If a stochastic process f belongs to the Wiener chaos space
⊕m

i=1 Hi

for some m ∈ N, then the solution u of the Eq. (3.31) belongs to the Wiener chaos
space

⊕m−1
i=0 Hi . Particularly, if f is a quadratic Gaussian random process, i.e., an

element of H2, then the solution u to (3.31) is a Gaussian process.
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3.6 Integral Equation 95

Corollary 3.4 Each stochastic process f can be represented as f = E f + δ(u) for
some Schwartz valued process u. The same holds for square integrable processes.

Proof The assertion follows for u = D(R−1( f − E f )). This result reduces to the
celebrated Itô representation theorem, i.e., the chaos expansion representation form
(1.13), in case when f is a square integrable adapted process [4, 22]. �

Remark 3.10 Applying the same techniques as in Theorems 3.2 and 3.8, by Remarks
2.4 and 2.7, one can solve the fundamental equations with higher order operators

D
(k)u = h, Eu = ũ0, E (Du) = ũ1, ... E (D(k−1)u) = ũk−1 and δ(k) u = f.

For more details we refer to [13].

Remark 3.11 All stochastic equations solved in this chapter can be interpreted, by
the use of the isometric transformations M and M defined by (1.52) and (1.63)
in Sects. 1.4.3 and 1.5 respectively, in fractional white noise space. Also, due to
Theorems 2.21 and 2.22 the Malliavin derivative and the Skorokhod integral can
be interpreted as their fractional counterparts in the corresponding fractional white
noise space. For example, one can solve all versions of the initial value problem
(3.8), i.e., to solve

˜Dũ = f, EμH ũ = ũ0 D
(H)u = f, Eμu = u0 ˜D

(H)ũ = f, EμH ũ = ũ0.

Moreover, the following fractional versions of the integral equation (3.31) can be
solved

˜δũ = f and δ(H)u = f.
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6. Levajković, T., Mena, H.: Equations involving Malliavin derivative: a chaos expansion
approach. In: Pseudo-differential Operators and Generalized Functions. Operator Theory:
Advances and Applications, vol. 245, pp. 199–216, 245. Birkhäuser/Springer, Cham (2015)
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Chapter 4
Applications and Numerical Approximation

Abstract In this chapter we present applications of the chaos expansion method in
optimal control and stochastic partial differential equations. In particular, we con-
sider the stochastic linear quadratic optimal control problemwhere the state equation
is given by a stochastic differential equation of the Itô-Skorokhod type with differ-
ent forms of noise disturbances, operator differential algebraic equations arising in
fluid dynamics, stationary equations and fractional versions of the studied equa-
tions. Moreover, we provide a numerical framework based on chaos expansions and
perform numerical simulations.

4.1 Introduction

Numerical methods for stochastic differential equations (SDEs) and uncertainty
quantification based on the polynomial chaos approach becamevery popular in recent
years [39, 44, 46]. They are highly efficient in practical computations providing fast
convergence and high accuracy. We point out that, in order to apply the so-called
stochastic Galerkin method, the derivation of explicit equations for the polynomial
chaos coefficients is required. This is, as in the general chaos expansion, highly
nontrivial and sometimes impossible. On the other hand, having an analytical repre-
sentation of the solution all statistical information can be retrieved directly, e.g.mean,
covariance function, variance and even sensitivity coefficients [39, 46]. The major
challenge in stochastic simulations is the high dimensionality, which is even higher
solving stochastic control problems, the same occur in the deterministic case [2]. In
this chapter we provide an unified framework based on chaos expansions and deter-
ministic theory of numerical analysis for solving stochastic optimal control problems
and operator differential algebraic equations involving the operators of theMalliavin
calculus. Moreover, we solve numerically the stationary form of nonhomogeneous
equation corresponding to the Wick-type equations with the Laplace operator.

The linear quadratic Gaussian control problem for the control of finite-dimen-
sional linear stochastic systems with Brownian motion is well understood [17]. The
casewith fractional Brownianmotion [12–14] aswell as the infinite dimensional case
[15] have been studied recently. Amore general problem arise if the noise depends on
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the state variable, this is the so-called stochastic linear quadratic regulator (SLQR)
problem. The SLQR problem in infinite dimensions was solved by Ichikawa in
[23] using a dynamic programming approach. Da Prato [9] and Flandoli [16] later
considered the SLQR for systems driven by analytic semigroups with Dirichlet or
Neumann boundary controls and with disturbance in the state only. The infinite
dimensional SLQR with random coefficients has been investigated in [19, 20] along
with the associated backward stochastic Riccati equation. Recently, a theoretical
framework for the SLQR has been laid for singular estimates control systems in the
presence of noise in the control and in the case of finite time penalization in the
performance index [21]. Considering the general setting described in [21, 28], an
approximation scheme for solving the control problem and the associated Riccati
equation has been proposed in [31]. In [30], a novel approach for solving the SLQR
based on the concept of chaos expansion in the framework of white noise analysis
was proposed. In [32] the results were extended to the SLQR problem with frac-
tional Brownian motion. We consider the SLQR problem for state equations of the
Itô-Skorokhod type, where the dynamics are driven by strongly continuous semi-
groups, and provide a numerical framework for solving the control problem using
the chaos expansion approach. After applying the chaos expansion method to the
state equation, we obtain a system of infinitely many deterministic partial differen-
tial equations in terms of the coefficients of the state and the control variables. For
each equation we set up a control problem, which then results in a set of deterministic
linear quadratic regulator problems. Solving these control problems, we find optimal
coefficients for the state and the control. We prove the optimality of the solution
expressed in terms of obtained coefficients compared to a direct approach. More-
over, we apply our result to a fully stochastic problem, in which the state, control
and observation operators can be random. Finally, we consider problems involving
state equations in more general form

ẏ = Ay + T♦y + Bu, y(0) = y0, (4.1)

where A is an operator which generates a strongly continuous semigroup, and
T is a linear bounded operator which combined with Wick product ♦ intro-
duces convolution-type perturbations into the equation. Equation (4.1) is related
to Gaussian colored noise and it has been studied in [37], where the existence
and uniqueness of its generalized solution was proven. Examples of this type of
equations are the heat equation with random potential, the heat equation in ran-
dom (inhomogeneous and anisotropic) media, the Langevin equation, etc. [37]. The
related control problem for (4.1) leads to an optimal control defined in a space of
generalized processes. A particular case of (4.1) together with an algebraic constraint
arise in fluid dynamics, e.g. Stokes equations [1]. The resulting system is known as
a semi-explicit operator differential algebraic equation (ODAE) and it has the form

ẏ = Ay + B�u + T♦y + f, B y = g.
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As an example, we present an ODAE involving generalized operators of Malliavin
calculus. We particularly choose B to be the Skorohod integral δ and B� the Malli-
avin derivativeD and then apply the results fromChap.3. Finally, we solve fractional
versions of the considered optimal control problems and OADEs. By using the frac-
tional isometries M and M, the fractional problems are transfered to the problems
on classical space, i.e., the ones we have already solved.

4.2 A Stochastic Optimal Control Problem in Infinite
Dimensions

Weconsider the infinite dimensional stochastic linear quadratic optimal control prob-
lem on finite horizon. It consists of the linear state equation

dy(t) = (A y(t) + B u(t)) dt + C y(t) dBt , y(0) = y0, t ∈ [0, T ], (4.2)

with respect toH -valued Brownian motion Bt in the classical Gaussian white noise
space, and the quadratic cost functional. The operators A and C are operators on
H and B acts from the control space U to the state space H and y0 is a random
variable. SpacesH andU are Hilbert spaces. The operatorsB andC are considered
to be linear and bounded, whileA could be unbounded. The objective is to minimize
the quadratic functional

J(u) = E

[∫ T

0

(‖R y‖2W + ‖u‖2U
)
dt + ‖G yT ‖2Z

]
, (4.3)

over all admissible controls u and subject to the condition that y satisfies the state
Eq. (4.2). The operators R and G are bounded observation operators taking values
in Hilbert spaces W and Z respectively, E denotes the expectation with respect to
the Gaussian measure μ and yT = y(T ). For the class of admissible controls we
consider square integrable U -valued adapted controls. The stochastic integration
is taken with respect to H -valued Brownian motion and the integral is considered
as a Bochner-Pettis type integral [10, 45]. For C = 0 the Eq. (4.2) arises in the
deterministic regulator problem and has been well understood in the literature [25,
26, 38]. A control process u∗ is called optimal if it minimizes the cost functional
over all admissible control processes, i.e.,

min
u

J(u) = J (u∗).

The corresponding optimal trajectory is denoted by y∗. Thus, the pair (y∗, u∗) is the
optimal solution of the considered optimal control problem and is called the optimal
pair. For simplicity, we take W = Z = H .
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Due to the fundamental theorem of stochastic calculus, for admissible square
integrable processes, we consider an equivalent form of the state Eq. (4.2), i.e., its
Wick version

ẏ(t) = Ay(t) + Bu(t) + Cy(t)♦Wt , y(0) = y0, t ∈ [0, T ]. (4.4)

We solve the optimal control problem (4.2)–(4.3) by combining the chaos expan-
sion method with the deterministic optimal control theory. The following theorem
gives the conditions for the existence of the optimal control in the feedback form
using the associated Riccati equation. For more details on existence of mild solutions
of (4.2) we refer the reader to [10] and for the optimal control and Riccati feedback
synthesis we refer to [23].

Theorem 4.1 ([10, 23]) Let the following assumptions hold:

(a1) The linear operatorA is an infinitesimal generator of a C0-semigroup (eAt )t≥0

on the space H .
(a2) The linear control operator B is bounded U → H .
(a3) The operators R, G, C are bounded linear operators.

Then, the optimal control u∗ of the linear quadratic problem (4.2)–(4.3) satisfies the
feedback characterization in terms of the optimal state y∗

u∗(t) = −B�P(t) y∗(t),

where P(t) is a positive self-adjoint operator solving the Riccati equation

Ṗ(t) + P(t)A + A�P(t) + C�P(t)C + R�R − P(t)BB�P(t) = 0,
P(T ) = G�G.

(4.5)

Here we also invoke the solution of the inhomogeneous deterministic control
problem of minimizing the performance index

J (u) =
∫ T

0
(‖Rx‖2H + ‖u‖2U ) dt + ‖Gx(T )‖2H (4.6)

subject to the inhomogeneous differential equation

x ′(t) = Ax(t) + Bu(t) + f (t), x(0) = x0. (4.7)

Besides the assumptions (a1) and (a2), it is enough to assume that f ∈ L2((0, T ),H ),
to obtain the optimal solution for the state and control (x∗, u∗). The feedback form
of the optimal control for the inhomogeneous problem (4.6)–(4.7) is given by

u∗(t) = −B�Pd(t)x
∗(t) − B�k(t), (4.8)

where Pd(t) solves the Riccati equation

tijana.levajkovic@uibk.ac.at

568 Book



4.2 A Stochastic Optimal Control Problem in Infinite Dimensions 101

〈(Ṗd + Pd A + A�Pd + R�R − Pd BB
�Pd) v, w 〉 = 0, Pd(T )v = G�Gv (4.9)

for all v,w in D(A), while k(t) is a solution of the auxiliary differential equation

k ′(t) + (A� − Pd(t)BB
�)k(t) + Pd(t) f (t) = 0

with the boundary conditions Pd(T ) = G�G and k(T ) = 0. For the homogeneous
problemwe refer to [25]. We also refer to [6, 7, 47] for better insight into the optimal
control theory.

Let g(t) be a FT -predictable Bochner integrable H -valued function. An H -
valued adapted process y(t) is a strong solution of the state Eq. (4.2) over [0, T ]
if y(t) takes values in D(A) ∩ D(C) for almost all t and ω, P(

∫ T
0 ‖y(s)‖H +

‖Ay(s)‖H ds < ∞) = 1 and P(
∫ T
0 ‖Cy(s)‖2H ds < ∞) = 1, and for arbitrary

t ∈ [0, T ] and P-almost surely it satisfies the integral equation

y(t) = y0 +
∫ t

0
Ay(s) ds +

∫ t

0
g(s)ds +

∫ t

0
Cy(s) dBs .

An H -valued adapted process y(t) is a mild solution of the state equation

dy(t) = (Ay(t) + g(t)) dt + Cy(t) dBt , y(0) = y0,

over [0, T ] if the process y(t) takes values in D(C), P(
∫ T
0 ‖y(s)‖H ds < ∞) = 1

and P(
∫ T
0 ‖Cy(s)‖2H ds < ∞) = 1 and for arbitrary t ∈ [0, T ] and P-almost

surely it satisfies the integral equation

y(t) = eAt y0 +
∫ t

0
eA(t−s)g(s) ds +

∫ t

0
eA(t−s) Cy(s) dBs .

Note that, under the assumptions of Theorem4.1, and given a control process
u ∈ L2([0, T ],U ) ⊗ L2(μ), i.e., g(t) = Bu(t), and deterministic initial data, there
exits a unique mild solution y ∈ L2([0, T ],H ) ⊗ L2(μ) of the controlled state
Eq. (4.2), see [10].

Theorem 4.2 ([32]) Let the following assumptions hold:

(A1) The operator A : L2([0, T ],D) ⊗ L2(μ) → L2([0, T ],H ) ⊗ L2(μ) is a
coordinatewise linear operator that corresponds to the family of deterministic
operators Aα : L2([0, T ],D) → L2([0, T ],H ), α ∈ I , where Aα are
infinitesimal generators of strongly continuous semigroups (eAα t )α∈I , t ≥ 0,
defined on a commondomainD that is dense inH , such that for somem, θ > 0
and all α ∈ I

‖(eAα t )α‖L(H ) ≤ m eθ t , t ≥ 0.
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(A2) The operator C : L2([0, T ],H ) ⊗ L2(μ) → L2([0, T ],H ) ⊗ L2(μ) is
a coordinatewise operator corresponding to a family of uniformly bounded
deterministic operators Cα : L2([0, T ],H ) → L2([0, T ],H ), α ∈ I .

(A3) The control operatorB is a simple coordinatewise operatorB : L2([0, T ],U )⊗
L2(μ) → L2([0, T ],H ) ⊗ L2(μ) that is defined by a family of uniformly
bounded deterministic operators Bα : L2([0, T ],U ) → L2([0, T ],H ),
α ∈ I .

(A4) OpertorsR andG are bounded coordinatewise operators corresponding to the
families of deterministic operators {Rα}α∈I and {G}α∈I respectively.

(A5) E‖y0‖2H < ∞, such that Ay0 ∈ Dom(A).

Then, the optimal control problem (4.3)–(4.4) has a unique optimal control u∗ given
in the chaos expansion form

u∗ = −
∑
α∈I

B�
α Pd,α(t) y∗

α(t) Hα −
∑
|α|>0

B�
α kα(t) Hα, (4.10)

where Pd,α(t) for every α ∈ I solves the Riccati equation

Ṗd,α(t) + Pd,α(t)Aα + A�
αPd,α(t) + RαR

�
α − Pd,α(t)BαB

�
αPd,α(t) = 0

Pd,α(T ) = G�
αGα

(4.11)
and kα(t) for each α ∈ I solve the auxiliary differential equation

k ′
α(t) + (A�

α − Pd,α(t)BαB
�
α) kα(t) + Pd,α(t)

(∑
i∈N

Cα−ε(i) yα−ε(i) (t) · ei (t)
)

= 0,

(4.12)
with the terminal condition kα(T ) = 0 and y∗ = ∑

α∈I y∗
α Hα is the optimal state.

Proof Since the operatorsA, B andC are coordinatewise, by (1.60) their actions are
given by Ay(t, ω) = ∑

α∈I Aα yα(t) Hα(ω), Bu(t) = ∑
α∈I Bαuα(t) Hα(ω) and

Cy(t, ω) = ∑
α∈I Cα yα(t) Hα(ω), for

y(t, ω) =
∑
α∈I

yα(t)Hα(ω), u(t, ω) =
∑
α∈I

uα(t)Hα(ω) (4.13)

such that for allα ∈ I the coefficients yα ∈ L2([0, T ],H ) anduα ∈ L2([0, T ],U ).
From (A2) and (A3) we conclude that operators C and B are bounded. Namely,
by Lemma1.4 we obtain that ‖Bu‖2L2([0,T ],H )⊗L2(μ)

≤ c2‖u‖2L2([0,T ],U )⊗L2(μ)
and

‖Cu‖2L2([0,T ],H )⊗L2(μ)
≤ c21‖y‖2L2([0,T ],H )⊗L2(μ)

, where ‖Bα‖ ≤ c and ‖Cα‖ ≤ c1
for all α ∈ I .

We divide the proof in several steps. First, we consider the Wick version (4.4)
of the state Eq. (4.2), we apply the chaos expansion method and obtain a system of
deterministic equations. By representing y and y0 in their chaos expansion forms,
the initial condition y(0) = y0, for a givenH -valued random variable y0, is reduced
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4.2 A Stochastic Optimal Control Problem in Infinite Dimensions 103

to a family of initial conditions for the coefficients of the state

yα(0) = y0α, for all α ∈ I , where y0α ∈ H , α ∈ I .

With the chaos expansion method the state Eq. (4.4) transforms to the system of
infinitely many deterministic initial value problems:

1◦ for α = 0:
y′
0(t) = A0y0(t) + B0u0(t), y0(0) = y00 , (4.14)

2◦ for |α| > 0:

y′
α(t) = Aα yα(t)+Bαuα(t)+

∑
i∈N

Cα−ε(i) yα−ε(i) (t) ·ei (t), yα(0) = y0α, (4.15)

where the unknowns correspond to the coefficients of the control and the state vari-
ables. It describes how the stochastic state equation propagates chaos through diffe-
rent levels. Note that for |α| = 0, the Eq. (4.14) corresponds to the deterministic
version of the problem (the state y0 is the expected value of y). The terms yα−ε(i) (t)
are obtained recursively with respect to the length of α. The sum in (4.15) goes
through all possible decompositions of α, i.e., for all i for which α − ε(i) is defined.
Therefore, the sum has as many terms as multi-index α has nonzero components.
Hence, the solutions yα to (4.15) are fully determined by the knowledge of yβ ,
|β| < |α|. The existence and uniqueness of solutions of (4.14), (4.15) follow from
the assumptions (A1), (A2) and (A3).

In the second step, we set up optimal control problems for each α-level. We seek
for the optimal control u and the corresponding optimal state y in the chaos expansion
representation form (4.13), i.e., the goal is to obtain the unknown coefficients uα and
yα for all α ∈ I . The problems are defined in the following way:

1◦ for α = 0 the control problem (4.14) subject to

J (u0) =
∫ T

0
(‖R0y0(t)‖2H + ‖u0(t)‖2U ) dt + ‖G0y0(T )‖2H , (4.16)

2◦ for |α| > 0 the control problem (4.15) subject to

J (uα) =
∫ T

0
(‖Rα yα(t)‖2H + ‖uα(t)‖2U ) dt + ‖Gα yα(T )‖2H , (4.17)

and can be solved by the induction on the length of α ∈ I .
Next, we solve the family of deterministic control problems, i.e., we discuss the
solution of the deterministic system of control problems (4.16) and (4.17):

1◦ For α = 0 the state Eq. (4.14) is homogeneous, thus the optimal control for
(4.14)–(4.16) is given in the feedback form
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u∗
0(t) = −B�

0 Pd,0(t) y
∗
0 (t), (4.18)

where Pd,0(t) solves the Riccati equation (4.9).
2◦ For each |α| > 0 the state Eq. (4.15) is inhomogeneous and the optimal control

for (4.17) is given by

u∗
α(t) = −B�

α Pd,α(t) y∗
α(t) − B�

αkα(t), (4.19)

where Pd,α(t) solves the Riccati equation (4.11), while kα(t) is a solution of the
auxiliary differential equation (4.12) with the terminal condition kα(T ) = 0.

Summing up all the coefficients we obtain the optimal solution (u∗, y∗) represented
in terms of chaos expansions. Thus, the optimal state is given in the form y∗ =∑

α∈I y∗
α(t)Hα = y∗

0 + ∑
|α|>0 y

∗
α(t)Hα and the corresponding optimal control

u∗ =
∑
α∈I

u∗
α(t) Hα = u∗

0 +
∑
|α|>0

u∗
α(t) Hα

= −B�
0 Pd,0(t) y

∗
0 −

∑
|α|>0

B�
α Pd,α(t) y∗

α(t) Hα −
∑
|α|>0

B�
αkα(t) Hα

= −
∑
α∈I

B�
α Pd,α(t) y∗

α(t) Hα −
∑
α∈I

B�
αkα(t) Hα

= −B� Pd(t) y∗(t) − B� K ,

(4.20)

where Pd(t) is a coordinatewise operator corresponding to the deterministic family
of operators {Pd,α}α∈I and K is a stochastic process with coefficients kα(t), i.e., a
process of the formK = ∑

α∈I kα(t) Hα , with k0 = 0.
In the following step we prove the optimality of the obtained solution. Assuming

(A1)–(A4) it follows that the assumptions of Theorem4.1 are fulfilled and thus the
optimal control problem (4.2)–(4.3) is given in feedback form by

u∗(t) = −B�P(t) y∗(t), (4.21)

with a positive self-adjoint operator P(t) solving the stochastic Riccati equation
(4.5). Since the state Eqs. (4.2) and (4.4) are equivalent, we are going to interpret
the optimal solution (4.21), involving the Riccati operator P(t) in terms of chaos
expansions. It holds J(u∗) = min

u
J(u), for u∗ of the form (4.21).

On the other hand, the stochastic cost function J is related with the deterministic
cost function J by
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4.2 A Stochastic Optimal Control Problem in Infinite Dimensions 105

J(u) = E

[∫ T

0

(‖Ry‖2H + ‖u‖2U
)
dt + ‖GyT ‖2H

]

= E(

∫ T

0
‖Ry‖2H dt) + E(

∫ T

0
‖u‖2U dt) dt + E (‖GyT ‖2H )

=
∑
α∈I

α!‖Rα yα‖2L2([0,T ],H )+
∑
α∈I

α!‖uα‖2L2([0,T ],U )+
∑
α∈I

α!‖Gα yα(T )‖2H

=
∑
α∈I

α!
(
‖Rα yα‖2L2([0,T ],H ) + ‖uα‖2L2([0,T ],U ) + ‖Gα yα(T )‖2H

)

=
∑
α∈I

α! J (uα).

Thus,

J(u∗) = min
u

J(u) = min
u

∑
α∈I

α! J (uα) =
∑
α∈I

α! min
uα

J (uα) =
∑
α∈I

α! J (u∗
α)

and therefore
u∗(t, ω) =

∑
α∈I

u∗
α(t) Hα(ω), (4.22)

i.e., the optimal control obtained via direct Riccati approach u∗ coincides with
the optimal control obtained via the chaos expansion approach

∑
α∈I u∗

α(t)Hα(ω).
Moreover, the optimal states are the same and the existence and uniqueness of the
solution of the optimal state equation via the chaos expansion approach follows from
the direct Riccati approach.

Finally, we prove the convergence of the obtained chaos expansion of the optimal
state. We include the feedback forms (4.18) and (4.19) of the optimal controls u∗

α ,
α ∈ I in the state Eqs. (4.14) and (4.15) and obtain the system

y′
0(t) = (A0 − B0B

�
0 Pd,0(t)) y0(t), for |α| = 0 and

y′
α(t) = (Aα − BαB

�
αPd,α (t)) yα(t) − BαB

�
αkα(t) +

∑
i∈N

Cyα−ε(i) (t) ei (t), (4.23)

for |α| ≥ 1, with the initial conditions yα(0) = y0α , α ∈ I .

From the assumption (A1) it follows that Aα , α ∈ I are infinitesimal generators
of strongly continuous semigroups (Tt )α = (eAα t )α , t ≥ 0 which are uniformly
bounded, i.e., ‖eAα t‖L (H ) ≤ meθ t , α ∈ I holds for some positive constants m
and θ , whereL (H ) denotes the set of linear bounded mappings on L2([0, T ],H ).
Moreover, the family (T �

t )α = (eA
�
α t )α , t ≥ 0 is a family of strongly continuous

semigroups whose infinitesimal generators are A�
α , α ∈ I , the adjoint operators of

Aα , α ∈ I . This follows from the fact that each Hilbert space is a reflexive Banach
space, see [43]. We denote by Sα(t) = Aα − BαB�

αPd,α(t), α ∈ I and rewrite (4.23)
in a simpler form
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y′
0(t) = S0(t) y0(t) , y0(0) = y00

y′
α(t) = Sα(t) yα(t) + fα(t) , yα(0) = y0α, |α| > 1

(4.24)

where fα(t) = − BαB�
αkα(t)+∑

i∈N Cyα−ε(i) (t) ei (t), α ∈ I . The operators Sα(t),
α ∈ I can be understood as time dependent continuous perturbations of the opera-
tors Aα . From Theorem4.1 it follows that Pd,α(t), α ∈ I are self adjoint and
uniformly bounded operators, i.e., ‖Pd,α(t)‖ ≤ p, α ∈ I , t ∈ [0, T ]. The operators
Bα and thus B�

α are uniformly bounded, i.e., for all α ∈ I we have ‖Bα‖ ≤ b and
‖B∗

α‖ ≤ b, b > 0. Therefore, BαB�
αPd,α(t), α ∈ I are uniformly bounded. Hence,

we can associate a family of evolution systems Uα(t, s), α ∈ I , 0 ≤ s ≤ t ≤ T to
the initial value problems (4.24) such that

‖Uα(t, s)‖L(H ) ≤ eθ1 t , for all 0 ≤ s ≤ t ≤ T .

Recall, for all α ∈ I we have that Uα(s, s) = I d, Uα(t, s) = Uα(t, r)Uα(r, s) for
0 ≤ t ≤ r ≤ s ≤ T and (t, s) → Uα(t, s) is continuous for 0 ≤ s ≤ t ≤ T .
Moreover, ∂

∂t Uα(t, s) = Sα(t)Uα(t, s) and ∂
∂sUα(t, s) = −Uα(t, s) Sα(s), for 0 ≤

t ≤ s ≤ T .
The family of solution maps Uα(t, s)y0α , α ∈ I to the non-autonomous system

(4.24) is a family of evolutions which are in C([0, T ],H ) since BαB�
αPd,α , α ∈ I

are bounded for every t , and are for all α ∈ I continuous in time, i.e., elements of
C([0, T ],L (H )), [43]. The adjoint operators (Sα(t))� = A�

α + Pd,α(t) B�
αBα , α ∈

I are associated to the corresponding adjoint evolution systems U �
α(t, s), α ∈ I ,

0 ≤ s ≤ t ≤ T , [43]. The operators Cα , α ∈ I are uniformly bounded and for all
α ∈ I it holds ‖Cα‖ ≤ d, d > 0. For a fixed control u it also holds Cy ∈ Dom0(δ),
i.e., (2.13) holds for Cy.

Consider a small interval [0, T0], for fixed T0 ∈ (0, T ]. Denote by M1(t) = eθ1t

and M2(t) = 1
2θ1

(e2θ1t − 1)2 for t ∈ (0, T0].
For every y0α ∈ Dom(Sα(t)) the mild solution of (4.24) is given in the form

y0(t) = U0(t, 0) y
0
0 and

yα(t) = Uα(t, 0) y0α +
∫ t

0
Uα(t, s)

(∑
i∈N

Cα−ε(i) yα−ε(i) (s) ei (s) − BαB
�
αkα(s)

)
ds,

for |α| ≥ 1 and 0 ≤ s ≤ t ≤ T and yα are continuous functions for all α ∈ I .
The operators Cα , Bα and B�

α , α ∈ I are uniformly bounded and therefore the inho-
mogeneity part of (4.23) belongs to the space L2([0, T0],H ), where functions kα ,
α ∈ I are given in (4.12). Denote by X0 = L2([0, T0],H ), X1 = L2([T0, T ],H ),
X = X0 ⊗ L2(μ) and X1 = X1 ⊗ L2(μ). Thus, it holds
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‖y‖2X =
∑
α∈I

α! ‖yα‖2X0
= ‖y0‖2X0

+
∑
|α|≥1

α! ‖yα‖2X0
≤ 2

∑
α∈I

α!‖Uα(t, 0) y0α‖2X0

+ 2
∑
|α|≥1

α!‖
∫ t

0
(Uα(t, s)

( ∑
i∈N

Cα−ε(i) yα−ε(i) (s)ei (s) − BαB
�
αkα(s)

)
ds‖2X0

≤ 2M2
1 (T0)

∑
α∈I

α!‖y0α‖2X0
(4.25)

+ 8M2(T0)d
2

∑
|α|≥1

α! |α| ‖yα‖2X0
+ 4M2(T0) b

4
∑
|α|≥1

α!‖kα(s)‖2X0

≤ 2M2
1 (T0)‖y0‖2X + 4M2(T0) d

2 ‖y‖2Dom0(δ)
+ 4M2(T0) b

4 ‖K ‖2X ,

where ‖K ‖2X = ∑
α∈I ‖kα‖2X0

α!. The coefficients kα are the solutions of (4.12)
and are expressed in terms of the adjoint evolution systemU �

α(t, s), α ∈ I . Clearly,
the coefficients are of the form

kα(t) = U �
α(T, t)kα(T ) +

∫ T

t
U �

α(s, t)Pd,α(s)

(∑
i∈N

Cα−ε(i) yα−ε(i)ei (s)

)
ds, t < T

for α ∈ I . We denote by ‖U �
α(T, t)‖ ≤ eθ̃ t = M3(t), for θ̃ > 0, α ∈ I and

M4(t) = 1
2θ̃

(e2θ̃ (T−t) − 1)2. Since kα(T ) = 0 we obtain

‖K ‖2X1
=

∑
α∈I

α! ‖
∫ T

t
U �

α(s, t) Pd,α(t)

(∑
i∈N

Cα−ε(i) yα−ε(i) ei (s)

)
ds‖2X1

≤ 2M4(T0) p
2 d2

∑
α∈I

α! |α| ‖yα‖2X ≤ M4(T0) p2 d2 ‖y‖2Dom0(δ)
< ∞.

Thus, ‖K ‖2X < ∞. With this bound we return to (4.25) and conclude that ‖y‖2X <

∞. The interval (0, T ] can be covered by the intervals of the form [kT0, (k + 1)T0]
in finitely many steps. Thus, y ∈ X ⊗ L2(μ). ��

Theorem4.2 is an extension of the one from [30], where the case with simple
coordinatewise operators was considered. This convergence result plays a major role
in the error analysis for truncating the chaos expansion in numerical simulations.

Remark 4.1 The previous results can be extended for optimal control problems with
state equations of the form (4.1), in spaces of stochastic distributions.By replacing the
uniformly boundedness conditions on the operators Bα and Cα , α ∈ I in (A2) and
(A3)with the polynomial growth conditions of the type

∑
α∈I ‖Cα‖2 (2N)−sα < ∞,

for some s > 0, it can be proven that for fixed admissible control, the state equation
has a unique solution in the space L2([0, T ],H ) ⊗ (S)−ρ , ρ ∈ [0, 1]. A similar
theorem to Theorem4.2 for the optimal control can be proven.
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108 4 Applications and Numerical Approximation

Remark 4.2 The SLQR problem (4.2)–(4.3) reduces to the one with the state equa-
tion considered as stochastic equation with respect to standard Brownian motion bt
when H -valued process Bt is replaced by R-valued process Bt , see Example1.13.

The following theorem gives the characterization of the optimal solution (4.22)
in terms of the solution of the stochastic Riccati equation (4.5).

Theorem 4.3 Let the conditions (A1)–(A5) from Theorem4.2 hold and let P be a
coordinatewise operator that corresponds to the family of operators {Pα}α∈I . Then,
the solution of the optimal control problem (4.2)–(4.3) obtained via chaos expansion
(4.20) is equal to the one obtained via Riccati approach (4.21) if and only if

C�
αPα(t)Cα y∗

α(t) = Pα(t)(
∑
i∈N

Cα−ε(i) y∗
α−ε(i) (t) · ei (t)), |α| > 0, k ∈ N (4.26)

hold for all t ∈ [0, T ].
Proof Let us assume first that (4.20) is equal to (4.21). Then,

−B� P(t) y∗(t) = −B� Pd(t) y∗(t) − B� K

and we obtain
(P(t) − Pd(t)) y∗(t) = K .

The difference between P(t) and Pd(t) is expressed through the stochastic process
K , which comes from the influence of inhomogeneities. Assuming that P is a
coordinatewise operator that corresponds to the family of operators {P}α∈I , we
will be able to see the action of stochastic operator P on the deterministic level,
i.e., level of coefficients. Thus, for y given in the chaos expansion form (4.13) and
P(t) y∗ = ∑

α∈I Pα(t) y∗
α(t) Hα it holds

∑
α∈I

(Pα(t) − Pd,α(t)) y∗
α(t) Hα =

∑
α∈I ,|α|>0

kα(t) Hα. (4.27)

Since k0(t) = 0 it follows P0(t) = Pd,0(t), for t ∈ [0, T ] and for |α| > 0

(Pα(t) − Pd,α(t)) y∗
α(t) = kα(t),

such that (4.12) with the condition kα(T ) = 0 holds. We differentiate (4.27) and
substitute (4.12), together with (4.5), (4.9) and (4.15). Thus, after all calculations we
obtain for |α| = 0 the equation (P0(t) − Pd,0(t)) y∗

0 (t) = 0 and for |α| > 0

C�
αPα(t)Cα y∗

α(t) = Pα(t)
(∑

i∈N
Cα−ε(i) y∗

α−ε(i) (t) · ei (t)
)
, k ∈ N.
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4.2 A Stochastic Optimal Control Problem in Infinite Dimensions 109

Note that assuming (4.26) and P is a coordinatewise operator that corresponds to
operators Pα , α ∈ I we go backwards in the analysis and prove that the optimal
controls (4.21) and (4.20) are the same. ��
Remark 4.3 The condition (4.26) that characterizes the optimality represent the
action of the stochastic Riccati operator in each level of the representation of the
noise. Note that the stochastic Riccati equation (4.5) and the deterministic one (4.9)
differ only in the term C�

αPα(t)Cα , i.e., the operator C�
αPα(t)Cα , α ∈ I captures

the stochasticity of the equation. Polynomial chaos projects the stochastic part in
different levels of singularity, the way that Riccati operator acts in each level is given
by (4.26).

Remark 4.4 Following our approach the numerical treatment of the SLQR problem
relies on solving efficiently Riccati equations arising in the associated determin-
istic problems. In recent years, numerical methods for solving differential Riccati
equations have been proposed [2–5, 27].

4.2.1 State Equation with a Delta-Noise

Weapply the chaos expansionmethod to optimal control problems governing by state
equations involving so-called delta noise. Particularly, we study the state equation
of the form

ẏ(t) = Ay(t) + Bu(t) + δ(Cy(t)), y(0) = y0, t ∈ [0, T ], (4.28)

where δ denotes the Itô-Skorokhod integral, an integral of Bochner-Pettis type [45].
In the same setting we can also consider the state equation of the form

ẏ(t) = Ay(t) + Bu(t) + δt (Cy(t)), y(0) = y0, t ∈ [0, T ],

where δt ( f ) = ∫ t
0 f (s) dBs , t ∈ [0, T ] is the integral process. Note that it holds

δt ( f ) = δ( f χ[0,t]), and for t ∈ [0, T ] we have

δt (Cy) =
∫ t

0
Cy(s) dBs =

∫ T

0
Cy(s)χ[0,t](s) dBs = δ(Cy(s)χ[0,t](s)).

The fact that y appears in the stochastic integral implies that the noise contains
a memory property [8]. The disturbance δ is a zero mean random variable for all
t ∈ [0, T ], while δt is a zero mean stochastic process.

In [37] it was proven that for a coordinatewise operator on X ⊗ (S)−ρ there
exists a coordinatewise operator C̃ such that there exists a one-to-one correspondence
between C̃♦ and δ ◦ C, i.e., C̃♦ y = δ(Cy). Therefore, (4.28) can be written as

ẏ(t) = Ay(t) + Bu(t) + C̃♦ y, y(0) = y0.
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Hence, there exists a correspondence between the Wick form perturbation and the
stochastic integral representation.

In the following we apply the chaos expansion method for solving the SLQR
problem related to (4.28). Since there is no explicit form of C̃, the suggested poly-
nomial chaos approach for solving the problem is quite promising. By applying the
chaos expansion method to (4.28) and setting up optimal control problems for the
coefficients uα and yα , α ∈ I , we obtain the following system of deterministic
optimal control problems:

1◦ for α = 0: the control problem (4.16) subject to

y′
0(t) = Ay0(t) + Bu0(t), y0(0) = y00 (4.29)

2◦ for |α| > 0 the control problem (4.17) subject to

y′
α(t) = Ayα(t) + Buα(t) +

∑
i∈N

(Cyα−ε(i) (t))i , yα(0) = y0α, (4.30)

where (Cyα−ε(i) (t))i denotes the i th component of Cyα−ε(i) , i.e., a real number,
obtained in the previous inductive step.

As in the previous section, for |α| = 0 the state Eq. (4.29) is homogeneous and
the optimal control is given in the feedback form by the solution of the deterministic
Riccati equation (4.9). On the other hand, for each |α| > 0 the state Eq. (4.30) is
inhomogeneous with the inhomogeneity term

∑
i∈N (Cyα−ε(i) )i , i.e., equation of the

form (4.7). Thus, the optimal control is of the form (4.8) and is determined by the
solutions of the auxiliary differential equations

k ′
α(t) + (A� − Pd(t)BB

�) kα(t) + Pd(t) (
∑
i∈N

(Cyα−ε(i) )i = 0, (4.31)

for |α| > 0 with the terminal condition kα(T ) = 0. Summing up all the coefficients
obtained as optimal on each level α, the optimal state is then given in the form
y∗ = ∑

α∈I y∗
α(t)Hα = y∗

0 +∑
|α|>0 y

∗
α(t)Hα and the corresponding optimal control

u∗ = ∑
α∈I u∗

α(t)Hα = u∗
0 + ∑

|α|>0 u
∗
α(t)Hα . Thus, the optimal state for |α| = 0

is given by y′
0(t) = (A − BB� Pd(t)) y0(t), y0(0) = y00 and for the levels |α| > 0

by y′
α(t) = (A − BB�Pd(t)) yα(t) − BB�kα(t) + ∑

i∈N (Cyα−ε(i) (t))i , yα(0) = y0α ,
where kα are solutions of (4.31). Finally, we point out that the convergence of the
chaos expansions follows similarly to the one described in [30].
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4.2.2 Random Coefficients

Let us consider a SLQR problem of the form

dy(t) = [(Ā + A�)y(t) + Bu(t)] dt + Cy(t) dBt y(0) = y0, (4.32)

subject to the performance index

J(u) = E

[∫ T

0
(‖Ry‖2H + ‖u‖2U ) dt + ‖GyT ‖2Z

]
, (4.33)

where Ā is a deterministic operator and is the infinitesimal generator of a C0-
semigroup, while A�, B, C, R and G are allowed to be random. This problem was
studied in [19, 20], where the authors proved that the optimal control is given in the
feedback form in terms of P(t) that solves the backward stochastic Riccati equation

−dP =
(
R�R + Ā�P + PĀ − PBB�P + A�

�P + PA�

)
dt

+ Tr
(
C�PC + C�Q + QC

)
dt + Q dBt ,

with P0(T ) = G� G. The two operators P and Q are unknown and Q is sometimes
referred as a martingale term [19, 20].

In case when the operators involved have chaos expansion representations, we
can extend our approach also to solving the problem (4.32)–(4.33). Let Ā be a coor-
dinatewise operator composed of the family { Āα}α∈I , where Āα are infinitesimal
generators of C0-semigroups defined on a common domain that is dense in H and
Ā(F) = ∑

α∈I Āα( fα) Hα.The operatorsA�,B,C,R andG are also coordinatewise
operators composed of the families of deterministic operators {A�

α}α∈I , {Bα}α∈I ,
{Cα}α∈I , {Rα}α∈I and {Gα}α∈I respectively, and A�(F) = ∑

α∈I A�
α( fα)Hα ,

B(U ) = ∑
α∈I Bα(uα)Hα , C(F) = ∑

α∈I Cα( fα)Hα , R(F) = ∑
α∈I Rα( fα)Hα

and G(F) = ∑
α∈I Gα( fα)Hα for F = ∑

α∈I fαHα , fα ∈ H and U =∑
α∈I uαHα , uα ∈ U .
After applying the chaos expansion method to (4.32), we obtain the system

(a) for |α| = 0:

y′
0(t) = ( Ā0 + A�

0) y0(t) + B0 u0(t), y0(0) = y00 , (4.34)

(b) for |α| > 0:

y′
α(t) = ( Āα + A�

α)yα(t) + Bαuα(t) +
∑
i∈N

(Cα yα−ε(i) )i , yα(0) = y0α.

(4.35)
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112 4 Applications and Numerical Approximation

Setting up control problems at each level, i.e., for (4.34)–(4.35),we obtain the optimal
state in the form

dy(t) = (
(Ā + A� − BB�P̄)y(t)

)
dt + Cy(t)♦Wt − BB� K̄ , y(0) = y0,

where P̄ is a coordinatewise operator composed by the family {Pα}α∈I . The opera-
tors Pα correspond to the solution of the Riccati equation for the coefficients Āα , A�

α ,
Bα , Cα , Rα and Gα . For α ∈ I it holds

Ṗα + Pα(Aα + A�
α) + (Aα + A�

α)�Pα + R�
αRα − (PαBαB

�
αPα) = 0, (4.36)

with Pα(T ) = G�
αGα . Note that (4.36) is a deterministic Riccati equation for each

α. Also ¯K = ∑
α∈I kα Hα = kε(i) Hε(i) + ∑

|α|>1 kαHα is a H -valued stochastic
process, where k0 = 0 and kα , for |α| ≥ 1 are given by

k ′
α(t) + (A�

α − Pα(t)BαB
�
α) kα(t) + Pα(t)

( ∑
i∈N

Cα−ε(i) yα−ε(i) ei
)

= 0.

with final zero condition. Therefore, in order to control the system (4.32)–(4.33) we
control each level through the chaos expansions. This implies solving deterministic
control problems at each level. Although theoretically we have to solve infinitely
many control problems, numerically, when approximating the solution by the pth
order chaos, we have to solve (m+p)!

m!p! problems in order to achieve the convergence.
The value of p is in general equal to the number of uncorrelated random variables
in the system and m is typically chosen by some heuristic method [24, 46]. More
details will be given in Sect. 4.6.

4.2.3 Further Extensions

Weconsider nowmore general form of the state Eq. (4.1) for bounded coordinatewise
operators A and B and T♦, where the operator T♦ is defined by (1.62). For more
details about T♦ we refer to [37]. We point out that in [37] the authors proved that
(4.1), for fixed u, has a unique solution in a space of stochastic generalized processes.
Here, we show that the optimal control problem (4.1)–(4.3) for a specific choice of
operatorT can be reduced to the problem (4.4)–(4.3), and thus its optimal control can
be obtained by Theorem4.2. Moreover, the corresponding fractional optimal control
problem is considered in see Sect. 4.5. This extension is connected to a Gaussian
colored noise (1.49) with the condition (1.50).

We denote by X = L2([0, T ],H ).

Theorem 4.4 ([32]) Let Lt be of the form (1.49) such that (1.50) holds. Let N be
a coordinatewise operator which corresponds to a family of uniformly bounded (or
polynomially bounded) operators {Nα}α∈I and letA,BandC satisfy the assumptions
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4.2 A Stochastic Optimal Control Problem in Infinite Dimensions 113

(A1)–(A4) of Theorem4.2. Let T be a coordinatewise operator defined by a family
of operators {Tα}α∈I , Tα : X → X, α ∈ I , such that for |β| ≤ |α|

Tβ(yα−β) =
⎧⎨
⎩

Nα(yα) , |β| = 0
lk Nα−ε(k) (yα−ε(k) ) , |β| = 1, i.e., β = ε(k), k ∈ N

0 , |β| > 1
, (4.37)

for yα ∈ X. Then, the state Eq. (4.1) can be reduced to the state Eq. (4.4). Moreover,
the optimal control problem (4.1)–(4.3) has a unique solution in X ⊗ (S)−ρ .

Proof By the definition (1.62) and the chaos expansion method, the state Eq. (4.1)
reduces to the system

1◦ for |α| = 0
ẏ0 = (A0 + T0) y0 + B0 u0, y0(0) = y00 , (4.38)

2◦ for |α| ≥ 1

ẏα = (Aα + T0) yα + Bαuα +
∑

0<β≤α

Tβ(yα−β), yα(0) = y0α. (4.39)

From (4.37) it follows that T0(yα) = Nα(yα), α ∈ I and also Tε(k) (yα−ε(k) ) =
lk Nα−ε(k) (yα−ε(k) ). We define Âα = Aα + Nα , α ∈ I . Since the family {Nα}α∈I is
uniformly bounded and {Aα}α∈I are infinitesimal generatorsC0-semigroups then the
operators Âα are also infinitesimal generators of C0-semigroups and satisfy the con-
dition (A1) of Theorem4.2, see [43]. Thus, the system (4.38)–(4.39) transforms to

1◦ for |α| = 0
ẏ0 = Â0 y0 + B0 u0, y0(0) = y00 (4.40)

2◦ for |α| ≥ 1

ẏα = Âα yα + Bαuα +
∑
k∈N

lk Nα−ε(k) (yα−ε(k) ), yα(0) = y0α, (4.41)

Define the operators Ĉ0 = N0 and Ĉα−ε(k) = lk Nα−ε(k) , for |α| ≥ 1, k ∈ N.
Therefore, the obtained system (4.40)–(4.41) corresponds to the state equation of
the form

ẏ = Â y + B u + Ĉ♦Wt , (4.42)

where Â and Ĉ are coordinatewise operators corresponding to the families { Âα}α∈I
and {Ĉα}α∈I , respectively. Moreover, B, Ĉ satisfy the assumptions (A2)–(A4) of
Theorem4.2. Hence, it can be applied to the control problem (4.3)–(4.42). ��
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4.3 Operator Differential Algebraic Equations

In this section we focus on semi-explicit operator differential algebraic equations
(ODAEs). The abstract formulation of constraint partial differential equations (PDEs)
of semi-explicit form has the structure of a ODAE, i.e., a differential equation subject
to an algebraic constraint. These systems of equations are motivated by applications,
for example by Stokes equations and linearized Navier-Stokes equations, and they
are in most cases deterministic and finite-dimensional. However, recently ODAEs
with additive noise have been studied in [1], where the chaos expansion method
was combined with the deterministic regularization techniques. Here we study a
stochastic version of this problem, i.e., a system of a linear semi-explicit stochastic
equation subject to an algebraic constraint. We present an example of a stochastic
system involving operators of Malliavin calculus which has the same structure as the
deterministic ODAE

ẏ + Ky + B∗ u = f, B y = g. (4.43)

Assume that the stochastic operatorK is a coordinatewise operator such that the cor-
responding deterministic operators {Kα}α∈I are densely defined on a given Hilbert
space X . Particularly, we are interested in the case when B = D and B∗ = δ. Thus
the system (4.43) transforms to

ẏ + K y + δ u = f, Dy = g

with the initial condition Ey = y0 and given stochastic processes f and g. Although
this example does not arise in fluid dynamics it is related with the extension of our
results to nonlinear equations, in particular Navier-Stokes equation. Thus, we con-
sider a semi-explicit systems including the stochastic operators from the Malliavin
calculus and use the duality (2.21). We also consider a more general case

ẏ = Ay + T♦y + δu + f, D y = g, (4.44)

that was studied for ρ = 1 in [32]. The chaos expansion method combined with the
regularization techniques can be applied also in this case. Here we present the direct
chaos expansion approach and prove the convergence of the obtained solution.

Recall, theMalliavin derivativeD, as a stochastic gradient in the direction of white
noise, is a linear and continuous mapping D : Dom−ρ(D) → X ⊗ S′(R) ⊗ (S)−ρ

given by (2.2). It reduces the order of theWiener chaos space and the kernel Ker(D)

consists of constant random variables, Corollary3.2. The Itô-Skorokhod integral δ

is a linear and continuous mapping δ : X ⊗ S′(R) ⊗ (S)−ρ → X ⊗ (S)−ρ defined
by (2.9). It is the adjoint operator of the Malliavin derivative, i.e., the duality (2.21)
holds. It increases the order of the Wiener chaos space. The Ornstein-Uhlenbeck
operatorR, defined as the composition δ ◦D, is a self adjoint linear and continuous
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mapping R : X ⊗ (S)−ρ → X ⊗ (S)−ρ . It is a coordinatewise operator given by
(2.14).

We reduce the system (4.44) to the following two problems: Dy = g, Ey = y0

and δ(u) = v and then apply Theorems3.2 and 3.8, where we take X to be the Hilbert
space L2([0, T ],H ).

Theorem 4.5 Let ρ ∈ [0, 1]. Let A : X ⊗ (S)−ρ → X ⊗ (S)−ρ be a coordinatewise
operator corresponding to a uniformly bounded family of deterministic operators
Aα : X → X, α ∈ I and T be a coordinatewise operator that corresponds
to a polynomially bounded family of operators Tα : X → X, α ∈ I . Let g =∑

α∈I
∑

k∈N gα,kξk Hα ∈ X ⊗ S′(R)⊗ (S)−ρ such that its coefficients gαk satisfy the
condition (3.7) and f ∈ X ⊗ (S)−ρ . Let y0 ∈ X, y1 ∈ X be given and the actions
A0y0 and T0y0 defined such that E f = A0y0 + T0y0. Then, the system (4.44) with
the initial conditionsEy = y0 andEẏ = y1, has unique solution pair y ∈ X⊗(S)−ρ

and u ∈ X ⊗ S′(R) ⊗ (S)−ρ given respectively by

y = y0 +
∑
|α|>0

1

|α|
∑
k∈N

gα−ε(k),k ⊗ Hα and (4.45)

u =
∑
α∈I

∑
k∈N

(αk + 1)
vα+ε(k)

|α + ε(k)| ⊗ ξk ⊗ Hα, (4.46)

where v = ẏ − Ay − T♦y − f .

Proof By Theorem3.2, the initial value problem

Dy = g, Ey = y0 (4.47)

for a process g ∈ X⊗S−p(R)⊗(S)−ρ,−q , p ∈ N0, q > p+1, represented in its chaos
expansion form g = ∑

α∈I
∑

k∈N gα,k ξk Hα , such that the condition (3.7) holds, has
a unique solution y ∈ Dom−ρ(D) represented in the form (4.45). Additionally, it
holds

‖y‖2X⊗(S)−ρ,−q
≤ ‖u0‖2X + c ‖g‖2X⊗S−l (R)⊗(S)−ρ,−q

< ∞.

The operator A is a coordinatewise operator and it corresponds to an uniformly
bounded family of operators {Aα}α∈I , i.e., it holds ‖Aα‖L(X) ≤ M , α ∈ I . More-
over, for y ∈ Dom−ρ,−q(D) it holds

‖Ay‖2X⊗(S)−ρ,−q
=

∑
α∈I

α!1−ρ ‖Aα yα‖2X (2N)−qα ≤ M2‖y‖2X⊗(S)−ρ,−q
< ∞

and thusAy ∈ X ⊗ (S)−ρ,−q . The operators {Tα}α∈I are polynomially bounded and
by Lemma1.6 it holds T♦ : X ⊗ (S)−ρ,−q → X ⊗ (S)−ρ,−q . Since gα ∈ X ⊗ S−l(R)

we can use the formula (1.2) for derivatives of the Hermite functions and obtain
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ġα =
∑
k∈N

gα,k ⊗ d

dt
ξk =

∑
k∈N

gα,k ⊗ (

√
k

2
ξk−1 −

√
k + 1

2
ξk+1),

where ġα ∈ X ⊗ S−l−1(R). We note that the problem Du̇ = ẏ with the initial
condition Eẏ = y1 ∈ X can be solved as (4.47), again by applying Theorem3.2.
Moreover,

‖ẏ‖2X⊗(S)−ρ,−q
≤ ‖y1‖2X + c ‖ġ‖2X⊗S−l−1(R)⊗(S)−ρ,−q

< ∞.

Let f ∈ X ⊗ (S)−ρ,−q and denote by v = ẏ − Ay − T♦y − f . From the given
assumptions it follows v ∈ X ⊗ (S)−ρ,−q and it has zero expectation. Then, by
Theorem3.8, for v = ∑

α∈I ,|α|≥1 vα ⊗ Hα the integral equation δ(u) = v has a
unique solution u in X ⊗ S−l−1(R) ⊗ (S)−ρ,−q , for l > q, given in the form (4.46),
Clearly, the estimate

‖u‖2X⊗(S)−ρ,−q
≤ c (‖y‖2X⊗(S)−ρ,−q

+ ‖ f ‖2X⊗(S)−ρ,−q
+ ‖ẏ‖2X⊗(S)−ρ,−q

)

also holds. ��
Remark 4.5 If the coefficients are not differentiable, then certain regularization tech-
niques have to be applied [1].

4.3.1 Extension to Nonlinear Equations

In [42] the authors showed that a random polynomial nonlinearity can be expanded in
a Taylor alike series involving Wick products and Malliavin derivatives. This result
has been applied to the nonlinear advection term in the Navier-Stokes equations [44].
There a detailed study of the accuracy and computational efficiency of these Wick-
type approximations has been shown.We point out that following the same approach
the regularization techniques combinedwith chaos expansions [1] can be extended to
Navier-Stokes equations. Specifically, by the product formula uv = ∑P

i=0
D

(i)u♦D
(i)v

i ! ,
of two square-integrable stochastic processes u and v, whereD(i) is the i th order of the
Malliavin derivative operator, one can construct approximations of finite stochastic
order. Particularly, the nonlinear advection term in the Navier-Stokes equations can
be approximated by

(u · ∇)u �
Q∑
i=0

(D(i)♦∇)D(i)u

i ! , (4.48)

where Q denotes the highest stochastic order in the Wick-Malliavin expansion. The
zero-order approximation (u · ∇)u � (u♦∇)u is known as the Wick approximation,
while (u · ∇)u � (u♦∇)u + (Du♦∇)Du is the first-order Wick-Malliavin approxi-
mation [44]. As theMalliavin derivate has an explicit chaos expansion representation
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4.3 Operator Differential Algebraic Equations 117

form (2.2), the formula (4.48) allows us to express the nonlinear advection term in
terms of chaos expansions. Therefore, the ideas presented in [1] for the linear semi-
explicit stochastic ODAEs (4.43) can be extended to Navier-Stokes equations and in
general to equations with nonlinearities of the type (4.48). Moreover, by applying
the multiplication formula (1.57) one can generalize (2.23) and obtain

v G = v♦G +
∑
α∈I

∑
k∈N

(αk + 1) vα+ε(k) gk Hα (4.49)

for a Gaussian process of the form G = g0 + ∑
k∈N gk Hε(k) ∈ X ⊗ (S)−ρ and a

process v = ∑
α∈I vαHα ∈ X ⊗ (S)−ρ , [36]. Thus, the results proved in [1] and the

ones in [42, 44] can be generalized for this type of processes (not necessary square
integrable).

Remark 4.6 In [34] the authors defined a type of scalarizedWick product containing
in itself an integral operator, i.e., the scalar product in L2(R) or the dual pairing 〈·, ·〉
of a distribution in S′(R) and a test function in S(R). Let ρ ∈ [0, 1]. Then, for
a = ∑

α∈I aαHα ∈ L2(R) ⊗ (S)−ρ and b = ∑
β∈I bβHβ ∈ L2(R) ⊗ (S)−ρ the

element a�b ∈ (S)−ρ is defined by

a�b =
∑
γ∈I

∑
α+β=γ

〈aα, bβ〉Hγ .

Similarly, if a ∈ S′(R) ⊗ (S)−ρ , b ∈ S(R) ⊗ (S)−ρ , the result will be a�b ∈ (S)−ρ .
The expression (4.49) can be rewritten as v · G = v♦G + D(v)�D(G).

4.4 Stationary Equations

In this section we consider stationary equations of the form

Ay + T♦y + f = 0, (4.50)

whereA : X⊗(S)−ρ → X⊗(S)−ρ ,ρ ∈ [0, 1] andT♦ : X⊗(S)−ρ → X⊗(S)−ρ are
the operators of the forms (1.60) and (1.62) respectively. We assume that {Aα}α∈I
and {Tα}α∈I are bounded operators such that Aα = Ãα + Cα , α ∈ I . We also
assume that T0 and Ãα , α ∈ I are compact operators and Cα are self adjoint for
all α ∈ I such that Cα(Hα) = rαHα , α ∈ I . By combining the chaos expansion
method with classical results of elliptic PDEs and the Fredholm alternative [18], we
prove existence and uniqueness of the solution of (4.50).

Theorem 4.6 ([37]) Let ρ ∈ [0, 1]. Let A : X ⊗ (S)−ρ → X ⊗ (S)−ρ and T♦ :
X ⊗ (S)−ρ → X ⊗ (S)−ρ be the operators, for which the following is satisfied:
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118 4 Applications and Numerical Approximation

1◦ A is of the form A = B+C, where By = ∑
α∈I Bα yα ⊗ Hα and Bα : X → X

are compact operators for all α ∈ I ,Cy = ∑
α∈I rα yα ⊗ Hα , rα ∈ R, α ∈ I ,

and T is of the form (1.62), where T0 : X → X is a compact operator. Assume
that there exists K > 0 such that for all α ∈ I

−rα − ‖Bα‖ − ‖T0‖ ≥ 0 and sup
α∈I

( 1

−rα − ‖Bα‖ − ‖T0‖
)

< K .

2◦ T is of the form (1.62), where Tβ : X → X, β > 0 are bounded operators and
there exists p > 0 such that

K
√
2

∑
β>0

‖Tβ‖ (2N)
−pβ
2 < 1. (4.51)

3◦ For every α ∈ I
Ker (Bα + (1 + rα)Id + T0) = {0}. (4.52)

Then, for every f ∈ X ⊗ (S)−ρ,−p there exists a unique solution y ∈ X ⊗ (S)−ρ,−p

of the Eq. (4.50).

Proof Equation (4.50) is equivalent to the equation y− (By+Cy+ y+T♦y) = f ,
which transforms to

∑
γ∈I

(
yγ − Bγ yγ − (1 + rγ ) yγ −

∑
α+β=γ

Tα(yβ)
) ⊗ Hγ =

∑
γ∈I

fγ ⊗ Hγ .

Due to uniqueness of the Wiener-Itô chaos expansion this is equivalent to

yγ − (
Bγ + (1 + rγ )I d + T0

)
yγ = fγ +

∑
0<β≤γ

Tβ(yγ−β), γ ∈ I . (4.53)

By the condition (4.52) it follows that for each γ ∈ I the homogeneous equation
yγ − (

Bγ + (1+ rγ )I d + T0
)
yγ = 0 has only trivial solution yγ = 0, see [18]. Since

the operator Bγ + (1 + rγ )I d + T0 is compact, the classical Fredholm alternative
implies that for each γ ∈ I there exists a unique yγ that solves (4.53) and it is of
the form

yγ = (I d − ((rγ + 1) I d + Bγ + T0))
−1

(
fγ +

∑
β>0

Tβ(yγ−β)
)
, γ ∈ I ,

so that

‖yγ ‖X ≤ 1

−rγ − ‖Bγ ‖ − ‖T0‖ ·
(
‖ fγ ‖X +

∑
β>0

‖Tβ‖‖yγ−β‖X

)
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4.4 Stationary Equations 119

for γ ∈ I . It is left to prove that the obtained solution y = ∑
γ∈I yγ ⊗Hγ converges

in X ⊗ (S)−ρ . Indeed, for p ≥ 0 we obtain the estimate

‖y‖2X⊗(S)−ρ,−p
=

∑
γ∈I

γ !1−ρ ‖yγ ‖2X (2N)−pγ

≤ K 2
∑

γ∈I

(‖ fγ ‖X +
∑

γ=α+β,α>0

‖Tα‖‖yβ‖X
)2

γ !1−ρ(2N)−pγ

≤ 2K 2( ∑
γ∈I

‖ fγ ‖2Xγ !1−ρ(2N)−pγ +
∑

γ∈I
(

∑
γ=α+β,α>0

‖Tα‖‖yβ‖X )2γ !1−ρ(2N)−pγ )

≤ 2K 2( ∑
γ∈I

‖ fγ ‖2Xγ !1−ρ(2N)−pγ + (
∑
α>0

‖Tα‖(2N)−
pα
2 )2

∑
β∈I

‖yβ‖2Xβ!1−ρ(2N)−pβ)

≤ 2K 2(‖ f ‖2X⊗(S)−ρ,−p
+ (

∑
α>0

‖Tα‖(2N)−
pα
2 )2 ‖y‖2X⊗(S)−ρ,−p

)
,

which leads to

(1 − 2K 2(
∑
α>0

‖Tα‖(2N)−
pα
2 )2) · ‖y‖2X⊗(S)−ρ,−p

≤ 2K 2 ‖ f ‖2X⊗(S)−ρ,−p
.

By the assumption (4.51) we have that M = 1 − 2K 2(
∑

α>0 ‖Tα‖(2N)−
pα
2 )2 > 0.

This implies

‖y‖2X⊗(S)−ρ,−p
≤ 2K 2

M
‖ f ‖2X⊗(S)−ρ,−p

< ∞.

��
Remark 4.7 Let Bα = 0 for all α ∈ I and let Tα , α ∈ I , be second order strictly
elliptic partial differential operator. Let C = c P(R), for some c ∈ R, where R
is the Ornstein-Uhlenbeck operator and Pm(t) = ∑m

k=0 pk t
k , pk ∈ R, pm �= 0.

Then, the corresponding eigenvalues of C are rα = cP(|α|), α ∈ I . Hence, (4.50)
transforms to the elliptic equation with a perturbation term driven by the polynomial
of the Ornstein-Uhlenbeck operator T♦y + cP(R)y = f that was solved in [33].
Moreover, for Tα = 0, α ∈ I the Eq. (4.50) reduces to P(R)y = g that we solved
in Theorem3.1. In addition, Theorem4.6 can be applied to all elliptic problems of
the form Au = h and A♦y = h.

4.5 A Fractional Optimal Control Problem

We consider a fractional version of the stochastic optimal control problem (4.2)–
(4.3). The state equation is linear stochastic differential equation

d ỹ (t) = (Ã ỹ(t) + B̃ ũ(t)) dt + C̃ ỹ(t) dB(H)
t ỹ (0) = ỹ0, t ∈ [0, T ], (4.54)
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120 4 Applications and Numerical Approximation

with respect to a H -valued fractional Brownian motion in the fractional Gaussian
white noise space. The objective is to minimize the quadratic cost functional

J(H)(̃u) = EμH

[∫ T

0

(‖R̃ ỹ‖2H + ‖ũ‖2U
)
dt + ‖G̃ ỹT ‖2H

]
(4.55)

over all possible controls ũ and subject to the condition that ỹ satisfies (4.54). A
control process ũ∗ is called optimal if min

u
J(H)(̃u) = J(H) (̃u∗). The corresponding

trajectory is denoted by ỹ∗ and is called optimal. Thus, the pair (ỹ∗, ũ∗) is the optimal
solution of the problem (4.54)–(4.55). The operators Ã and C̃ are defined onH and
B̃ acts from the control space U to the state space H and ỹ0 is a random variable.
The operators B̃ and C̃ are considered to be linear and bounded, R̃ and G̃ are bounded
observation operators taking values inH . Instead of the state Eq. (4.54), we consider
its Wick version

˙̃y(t) = Ãỹ(t) + B̃ũ(t) + C̃ỹ(t)♦W (H)
t , ỹ(0) = y0, t ∈ [0, T ]. (4.56)

In Sect. 4.2 in Theorem4.2we stated conditions underwhich the stochastic control
problem (4.2)–(4.3) has an optimal control given in the feedback form (4.10). In order
to apply this result to the corresponding fractional control problem (4.54)–(4.55),
we use the isometry mapping M , defined in Sect. 1.4.3. We apply M to (4.55)–
(4.56) and transform it to (4.2)–(4.3). The solution of the fractional problem is thus
obtained from the solution of the corresponding classical problem through the inverse
fractional map.

Theorem 4.7 ([32]) Let the fractional operators Ã, B̃, C̃, R̃ and G̃ defined on
fractional space be coorinatewise operators that correspond to the families {Aα}α∈I ,
{Bα}α∈I , {Cα}α∈I , {Rα}α∈I and {Gα}α∈I respectively. Let the pair (̃u∗, ỹ∗) be
the optimal solution of the fractional stochastic optimal control problem (4.54)–
(4.55). Then, the pair (M ũ∗,M ỹ∗) is the optimal solution (u∗, y∗) of the associated
optimal control problem (4.2)–(4.3), where A, B, C, R and G defined on classical
space, are coorinatewise operators that correspond respectively to the same families
of deterministic operators {Aα}α∈I , {Bα}α∈I , {Cα}α∈I , {Rα}α∈I and {Gα}α∈I .

Moreover, if (u∗, y∗) is the optimal solution of the stochastic optimal control
problem (4.2)–(4.3), then the pair (M−1u∗,M−1y∗) is the optimal solution (̃u∗, ỹ∗)
of the corresponding fractional optimal control problem (4.54)–(4.55).

Proof Let (̃u∗, ỹ∗)be the optimal pair of the problem (4.54)–(4.55), i.e., its equivalent
problem (4.55)–(4.56). Then minu J(u) = J (u∗), while y∗ solves (4.54) and also
(4.56). After applying the chaos expansionmethod and the properties of the fractional
operatorM stated in Theorems1.11 and 1.12 we transform (4.56) in fractional space
to the corresponding state equation in the classical space, i.e.,
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4.5 A Fractional Optimal Control Problem 121

ẏ(t) = M (Ãỹ(t) + B̃ũ(t) + C̃ỹ(t)♦W (H)(t))

= M (Ãỹ) + M (B̃ũ) + M (C̃ỹ)♦M (W (H)
t ) = Ay + Bu + Cy ♦Wt ,

where y and u are the associated processes to ỹ and ũ. Moreover, by Theorem1.11
part 3◦ and (1.55) the operator M transforms the cost functional J(H) to

M (J(H)(̃u)) = M (EμH (̃v)) = Eμ(M ṽ) = Eμ(v) = J(u),

where ṽ and v are associated elements ṽ = ∫ T
0

(‖R̃ ỹ‖2H + ‖ũ‖2U
)
dt + ‖G̃ ỹT ‖2H

and v = ∫ T
0

(‖Ry‖2H + ‖u‖2U
)
dt + ‖GyT ‖2H . ��

Therefore, the fractional optimal control (4.54)–(4.55) has an optimal control
represented in the feedback form.Theoptimal solution is obtained fromTheorems4.2
and 4.7 via the inverse fractional mapping M−1.

Remark 4.8 We note that in a similar way one can also solve fractional problem in
the classical Gaussian white noise space by using the isometry mapping M from
Definition1.22.

4.6 Numerical Approximation

In this section we provide numerical approximations of two types of stochastic
equations, elliptic and parabolic. Particularly, we study a stationary version of the
Eq. (3.18) and a form of the initial value problem (4.1) with delta noise. By employ-
ing the method of chaos expansions the initial equation is transformed to a system
of infinitely many deterministic equations, which is then truncated to a finite system
of equations, solvable by standard numerical techniques. With this approach, the
moments of the solution can be computed. Parts of this section appeared in [29].

4.6.1 Elliptic Equation

We consider the stationary equation with random coefficients

G♦Au = h, Eu = ũ0. (4.57)

Assume that A is a simple coordinatewise operator that corresponds to Aα = Δ,
α ∈ I , the Laplace operator in two spatial dimensions and G is a Gaussian random
variable. LetD = {(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1} be the spatial domain and let
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122 4 Applications and Numerical Approximation

G = g0 + ∑
k∈N gk Hε(k) such that EG = g0 = 10 and VarG = ∑

k∈N g2k − g20 =
3.32.

We seek for u(x, y, ω) = ∑
α∈I uα(x, y)Hα(ω) which solves

G(ω)♦
∑
α∈I

Δu(x, y) Hα(ω) = h(x, y, ω), (x, y) ∈ D, ω ∈ �. (4.58)

In order to solve (4.58) numerically, we use finite dimensional approximations
of u in the Fourier-Hermite orthogonal polynomial basis. Similar techniques can
be found in [22, 24, 46]. The main steps of the unified approach, based on chaos
expansions and numerical scheme we are using, are sketched in Algorithm 4.6.1.

Algorithm 4.6.1Main steps of the numerical scheme
1: Choose finite set of polynomials Hα and truncate the random series to a finite random sum.
2: Solve numerically the deterministic triangular system of equations by a suitable method.
3: Compute the approximate statistics of the solutions from obtained coefficients.
4: Generate Hα and compute the approximate solution of the initial equation.

We denote byIm,p the set of multi-indices of the form α = (α1, ..., αm, 0, ...) ∈ I
with m = max{i ∈ N : αi �= 0} such that |α| ≤ p. As first step, we represent
the solution u in its truncated chaos expansion form um,p, i.e., we approximate the
solution by the chaos expansion in ⊕p

k=0Hk with m random variables

um,p(x, y, ω) =
∑

α∈Im,p

um,p
α (x, y) Hα(ω). (4.59)

The finite dimensional approximation (4.59) has exactly P = (m+p)!
m!p! summands. The

choice ofm and p influences the accuracy of the approximation. They can be chosen
so that the norm of the difference u − um,p = ∑

α∈I \Im,p
uα Hα is smaller then a

prespecified error [24]. Knowing m and p, the finite dimesional approximation of
(4.58) leads to

g0
∑

α∈Im,p

Δum,p
α (x, y)Hα(ω)+

∑
α∈Im,p

m∑
k=1

gkΔum,p
α (x, y)Hα+ε(k) (ω) =

∑
α∈Im,p

hαHα(ω).

The unknown coefficients um,p
α , α ∈ Im,p are obtained by the projection onto each

element of the Fourier-Hermite basis {Hγ }, γ ∈ Im,p, i.e., by taking the expectations
for all γ ∈ Im,p. Then, we obtain a triangular system of P deterministic equations

g0 Δ um,p
0 = h0, for |α| = 0, (4.60)

g0 Δ um,p
α +

m∑
k=1

Δ um,p
α−ε(k) gk = hα, 0 < |α| ≤ p, (4.61)
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that can be solved by induction on |α|. The system (4.61) can be rewritten by recursive
replacements of Δum,p

α−ε(k) from lower order equations. Hence, we obtain

Δ um,p
ε(k) = 1

g20
(g0 hε(k) − h0gk), for α = ε(k)

Δ um,p
2ε(k) = 1

g30
(g20 h2ε(k) − g0 gkhε(k) + h0g

2
k ), for α = 2ε(k)

Δ um,p
ε(k)+ε( j) = 1

g30
(g20 hε(k)+ε( j) − g0 gkhε( j) − g0 g jhε(k) + h0gkg j ), for α = 2ε(k)

· · ·

Thus, all P equations in the obtained system are Poisson equations

Δ um,p
α = 1

g|α|+1
0

S(g, h), α ∈ Im,p,

where S(g, h) is the convolution sum with terms of the form gs1k1g
s2
k2

. . . gsnkn hβ , for
α = β + s1ε(k1) + s2ε(k2) + · · · + snε(kn). Next, we apply an appropriate numerical
method to solve the obtained system (usually finite differencemethod, finite elements
methodor a combination of these twomethods).As outcomeweobtain the discretized
approximation solution um,p,d

α , α ∈ Im,p of the system and therefore, by recovering
the random field, the calculated approximated solution

um,p,d =
∑

α∈Im,p

um,p,d
α Hα

of (4.58). The global error of the proposed numerical scheme depends on the error
E1 generated by the truncation of theWiener-Itô chaos expansion (4.59) and the error
E2 influenced by the discretisation method, i.e.,

u − um,p,d =
∑

α∈I \Im,n

uα Hα +
∑

α∈Im,n

(um,p
α − um,p,d

α ) Hα.

We underline that the chaos expansion converges quite fast, i.e., even small values
of p may lead to very accurate approximation [24, 46]. The error E1 generated by
the truncation of the Wiener-Itô chaos expansion, in C2(D) ⊗ L2(μ) is

E 2
1 =

∑
α∈I \Im,n

‖um,p
α (x, y)‖2C2(D) α! =

∑
α∈I \Im,n

α!
∫∫

D
um,p

α (x, y)2 dx dy ,

while the error coming from discretization
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Fig. 4.1 Expected value (a) and variance (b) of the solution

E 2
2 =

∑
α∈Im,n

‖um,p
α (x, y) − um,p,d

α (x, y)‖2C2(D) α!

depends on the numerical method performed.
For illustration, we take m = 15, p = 3 and then obtain P = 816 deterministic

equations in the system. We assume hα = 1 for |α| ≤ 3 and hα = 0 for |α| > 3. We
use central differencing to discretize in the spatial dimensions and 170 grid cells in
each spacial direction.Then,we solve numerically the resulting system (4.60)–(4.61).
Once the coefficients of the expansion um,p,d are obtained, we are able to compute all
the moments of the random field. Particularly, the expectation Eu = Eum,p,d = u0
and the variance Var um,p,d = ∑

α∈Im,p
α! (um,p,d

α )2 are plotted in Fig. 4.1, on z-
axes over the domainD . We can observe that the variance of the solution is relatively
high. In general, this behavior is related to singularities.

4.6.1.1 3D Simulation

We perform a three dimensional simulation of (4.57), following the steps in Algo-
rithm 4.6.1. The additional dimension increase the computational cost significantly,
thus we perform the simulations on a coarser spatial grid. In Figs. 4.2 and 4.3 we
plotted level sets (LS) at t = 0.808 and t = 0.408 of the expected value and variance
of the solution by the polynomial chaos expansion approach (left) and Monte Carlo
(MC) simulations (right). The error is plotted on the bottom.

tijana.levajkovic@uibk.ac.at

592 Book



4.6 Numerical Approximation 125

0
1

0.002
0.004
0.006

1

0.008

Expected value of the solution LS

0.5

0.01

0

0.012

0
-0.5

-1 -1

0
1

0.002
0.004
0.006

1

0.008

Expected value of the solution LS MC

0.5

0.01

0

0.012

0
-0.5

-1 -1

0
1

1

2

1

10-3

3

Variance of the solution LS

0.50

4

0
-0.5

-1 -1

0
1

1

2

1

10-3

3

Variance of the solution LS MC

0.50

4

0
-0.5

-1 -1

0

1

1

2

3

0.5 1

10-5

4

Error of the expepected value of the solution LS

0.5

5

0

6

0
-0.5

-0.5

-1 -1

0

1

1

2

3

0.5 1

4

10-5

5

Error of the variance of the solution LS

0.50

6

7

0
-0.5

-0.5

-1 -1

Fig. 4.2 Level sets (LS) at t = 0.408 of the expected value and variance of the solution by
polynomial chaos (left) and Monte Carlo (MC) simulations (right). The error is plot it on the
bottom
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Fig. 4.3 Level sets (LS) at t = 0.808 of the expected value and variance of the solution by
polynomial chaos (left) and Monte Carlo (MC) simulations (right). The error is plot it on the
bottom
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Fig. 4.4 Expected values of the solution, at t = 0.088 and t = 0.408, of the equation with additive
noise and Delta noise by polynomial chaos (left) and Monte Carlo (MC) simulations (right)
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Fig. 4.5 Variance of the solution, at t = 0.088 and t = 0.408, of the equation with additive noise
and Delta noise by polynomial chaos (left) and Monte Carlo (MC) simulations (right)
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Fig. 4.6 Error of expected values and variance of the solution at t = 0.408 of the equation with
additive noise and Delta noise with respect to Monte Carlo simulations

4.6.2 Parabolic Equation

Let us consider a general stochastic Cauchy problem

u̇(t, x, ω) = Lu(t, x, ω) + T♦u(t, x, ω) + δ(u(t, x, ω)), in (0, T ]
u(0, x, ω) = u0(x, ω),

(4.62)

whereL generates aC0−semigroup,T is a linear bounded operator defined by (1.62)
and δ denotes the stochastic integral of Itô-Skorokhod type. In [37] the authors proved
that (4.62) has a solution that can be represented in the chaos expansion form and
stated its explicit form. Therefore, we can assume that the solution of (4.62) has a
chaos expansion representation form and we perform the steps of Algorithm 4.6.1,
as in Sect. 4.6.1.

In order to simplify the computations we consider T = 0, a two dimensional
domain � = (−1, 1)2 and t ∈ (0, 1), and L to be a simple coordinatewise operator
that corresponds to L(∂x , ∂y) = ∂x (a(x, y)∂x ) + ∂y(b(x, y)∂y), where a(x, y) =
b(x, y) = 1. In addition, we compute Monte Carlo simulations to estimate the error.
In the sake of comparison we also consider the case with Gaussian additive noise.
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For all plots we consider the time instances t = 0.088 and t = 0.408. In Fig. 4.4,
we plot expected values of the solution of the equation with additive noise and Delta
noise by the polynomial chaos (left) and Monte Carlo (MC) simulations (right). In
the same setting in Fig. 4.5, we plot Variance of the solution. In both cases, expected
values and variances, we can observe that the results computed by the polynomial
chaos and Monte Carlo simulations have the same behavior. Finally, using Monte
Carlo simulations as true solution we compute the errors in Fig. 4.6.

In this section we consider linear elliptic and parabolic stochastic partial differ-
ential equations. Recently, a new approach to approximate numerically certain types
of these classes of equations have been proposed. This approach relies on a solving
large-scale differential Lyapunov equation for the covariance [41]. As differential
Lyapunov equations can be solved efficiently [2, 11, 40], this approach seems to
have a great potential in applications, e.g. approximating the quasi-periodic climate
pattern in the tropical Pacific Ocean known as El Niño phenomenon [41].

References
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28. Levajković, T., Mena, H.: On Deterministic and Stochastic Linear Quadratic Control Problem,
Current Trends inAnalysis and ItsApplications, Trends inMathematics, ResearchPerspectives,
pp. 315–322. Springer International Publishing Switzerland (2015)
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30. Levajković, T., Mena, H., Tuffaha, A.: The stochastic linear quadratic control problem: a chaos
expansion approach. Evol. Equ. Control Theory 5(1), 105–134 (2016)
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[47] K. Itô, Stationary random distributions. Mem. Coll. Sci. Univ. Kyoto.
Ser. A. Math. 28, 209–223, 1954. 11



Bibliography 605

[48] S. Janson, Gaussian Hilbert spaces. Cambridge Tracts in Mathematics
129, Cambridge University Press, Cambridge, 1997. 23

[49] S. Kaligotla, S. V. Lototsky, Wick product in the stochastic Burgers
equation: a curse or a cure? Asymptot. Anal. 75(3-4), 145–168, 2011.
39

[50] E. Kalpinelli, N. Frangos, A. Yannacopoulos, A Wiener chaos approach
to hyperbolic SPDEs. Stoch. Anal. Appl. 29(2), 237–258, 2011. 13, 247

[51] M. Kroller, K. Kunisch, Convergence rates for the feedback operators
arising in the linear quadratic regulator problem governed by parabolic
equations. SIAM J. Numer. Anal. 28(5), 1350–1385, 1991. 256
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[71] T. Levajković, D. Seleši, Malliavin calculus for generalized and test
stochastic processes. Filomat 31(13), 4231–4259, 2017. 12, 13, 17, 18,
19, 20, 21, 22, 23, 24, 28, 29
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