Linear Model Predictive Control of Small-Scale Furnaces

M. Fallmann, L. Béhler & M. Kozek
TU Wien, Vienna, Austria

ABSTRACT: A comprehensive linear model predictive control framework for small-scale furnaces is in-
troduced. Its formulation allows to meet restrictive legal emission regulations by utilizing a carbon mon-
oxide formation model and provides a simple model-based approach to handle fuel switches efficiently.
Experimental results confirm emission limiting behavior and robustness in the presence of fuel switches
as well as changes of the operating point. Proposed methods stand out by their simplicity allowing for
its use even in small and cost-driven applications. This paper covers topics published in (Bohler et al.
2020b) and extends them with additional measurement results and suggestions for a control redesign
from scratch.

1. INTRODUCTION

Especially in the face of climate change, sustainability of biomass combustion motivates its ongoing research
and development. Although highly sophisticated methods dictate hardware design, combustion control
largely remains on the level of standard PID approaches (Kaltschmidt et al. 2016).

However, current and in particular upcoming legal emission regulations call for control algorithms
being able to increase efficiency while maintaining robustness and simplicity of current methods. Model
predictive controllers (MPCs) satisfy these requirements and have already been used for combustion con-
trol. Despite some successful implementations in large furnaces, see e.g. Kortela & Jimsi-Jounela (2014),
their complexity inhibited broad application for small-scale units up to now. Therefore, this paper suggests
a simple and purely linear model predictive control approach. Besides its overall simplicity, the ability to
handle fuel switches in a highly efficient way stands out and has not been covered in related works.

In terms of emission limiting control, published approaches either lack of appropriate formation mod-
els, see e.g. Korpela et al. (2009), or utilize highly complex emission models needing time-consuming iden-
tification procedures (Peng et al. 2004). By contrast, this work relies on a static nonlinear formation model,
proposed in literature (Bohler et al. 2019), and interlaces its findings into furnace control by methodically
chosen reference values. The resulting emission limiting controller is characterized by its efficiency and flex-
ibility and can be easily adapted to other furnaces.

2. FURNACE MODEL

The investigated small-scale biomass grate furnace, see a schematic drawing in Fig. 1, is mainly designed
for the combustion of wooden pellets and thereby possesses a nominal heat output of 100 kW. While the
fuel mass flow 72, is fed onto the grate, the primary and secondary air mass flows, 7, and 7, allow for
its oxidation. Secondary air supply carried out in a spatially partitioned manner (12, = m,, ; + m,, ,) facili-
tates mixing of inlet air and partially oxidized gases, therefore increasing combustion quality. Subsequently,
the flue gas mass flow 72, leaves the combustion chamber with the freeboard temperature 7}, and passes
through the gas/water heat exchanger before it is finally released into the atmosphere with the reduced flue
gas temperature 75. Without loss of general applicability of the concept presented hereinafter, the return
temperature 7,,, and water mass flow 7, are kept constant in the experimental setup. Since relevant heat
output is therefore directly proportional to the supply temperature 7;,,, major importance of this physical
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quantity in the given investigation is further emphasized.
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‘The lumped model utilized within this work is based on simple analytic approaches, discussed in Golles
et al. (2014) and Seeber et al. (2019), and extended by appropriate terms to fulfill specific process behavior
apparent from open-loop experiments. For the sake of brevity, the state space representation of the result-
ing grey-box model is abbreviated by the nonlinear vector-valued state function fand output function g
see Eq. (1), where x is the state vector, u,, "= [m’ 4,/ m" ,,m" , ;m’ 2] the input vector, 0 the vector of
identified but a priori unknown model parameters, p the vector of fuel parameters, and y' = [7,,, O,, 73]
the output vector.

x = f(x,u,,,0,p) o
y=gx)

For a comprehensive insight into the equations, please see Bohler et al. (2020b). Since p comprises all
fuel-related parameters, i.e. the upper calorific value A, the water content
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Fig. 1: Schematic illustration of the furnace with physical quantities essential for modelling.

Wi 00 and ash content 4, the furnace model can be adapted to the combustion of other fuels in a simple
and fast manner by updating related parameter values. Thus, the proposed modelling approach enables an
advanced model-based control design inherently capable of handling fuel switches without extensive ad-
ditional system identification.

In view of high combustion efficiency and emission reduction, formation of carbon monoxide (CO)
is of particular interest. Bhler et al. (2019) developed a CO formation model, based on a neural network,
for the combustion of wooden pellets using the very same furnace investigated here and thereby found a
static dependency of CO on O, and 7}, to be appropriate, see Fig. 2a. Due to its highly nonlinear nature,
a linear control approach with direct incorporation of the formation process lacks of desired performance.
However, a closer analysis of the CO map unveils a simple emission limiting operating strategy to improve
performance and simultaneously keep complexity
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Fig. 2: In (a) a graphical representation of the utilized CO emission model for the combustion of wooden pellets
is depicted. Besides the dependency of CO emissions on the oxygen concentration O, and freeboard temperature
Ty, a suboptimal but simple O, reference value for low CO emissions, indicated by the dashed line at 7 Vol.-%,
is shown. Please note that the sharp limit at 3500 ppm indicates sensor saturation. The general training proce-
dure (b) for the CO estimation model essentially consists of training, validation, and update in a loop until a
performance criterion is met, e.g. mean squared error MSE falls below a certain value .

at bay. A constant oxygen concentration of 7 Vol.-% within the whole operating range fulfills these require-
ments for the combustion of wooden pellets, see line in the CO map (Fig. 2a) and results based on this
strategy presented in Section 4. As measurements of O,, 7}, and CO are available in most furnaces, similar
formation maps could be generated for other furnaces as well as fuels. The general training procedure, see
Fig. 2b, comprises data preparation and identification in the loop until a predefined performance criterion
is fulfilled. Detailed information is presented in Bohler et al. (2019).

3. CONTROLLER DESIGN

The conceptual architecture of the overall control structure (Fig. 3) is reasonably divided into the extended
furnace, comprising immutable units established by the furnace manufacturer, and the extended controller,
for which its design is discussed within this section.

Since application of simple PI control loops is common for control of small-scale biomass furnaces
(Kaltschmidt et al. 2016), satistying performance, related to such an approach, calls for decoupling and
linear input-output behavior of the process under consideration. Therefore, the manufacturer intended
the input interface to bridge the gap between these generally not compatible demands. Its implementation
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together with the actuator dynamics is described by the mapping /T, .c (k),u” (k)] ul. Based on empiri-
cally evolved knowledge in the form of static look-up tables, the feedforward controller determines input

values #gsubject to the supply temperature reference T}, -
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Fig. 3: Conceptual architecture of the overall control structure. While the presented furnace, its input interface,
and feedforward controller together constitute the extended furnace, the extended controller comprises an MPC,
a state observer, and an interface calculating necessary reference values.

and the currently used fuel in order to allow for high combustion quality during undisturbed steady-state
operation. However, not only missing disturbance rejection but also the solely static implementation calls
for a feedback-based and deviation-related control action du yielding total control input # = #;+ du.

In this work a linear MPC is established to fulfill this requirement. Therefore, a linearized model of the
furnace together with the input interface is needed. Out of the large set of steady state operating points the,
v-gap metric, introduced by Vinnicombe (2001) and utilized by Bohler et al. (2020a) for a similar purpose,
provides a useful framework to determine a linearization point in a methodically correct manner. Compari-
son of different linear models concerning their ability to be controlled by a single linear controller reveals
an optimal linearization point robust in the face of changing the operating point. Based on the so defined
linearized model, the basic MPC formulation (Wang 2009) is appropriately adapted to fit the specific needs.
The conclusive optimization problem is given by Eq. (2) subject to the dynamics of the linearized system
and constraints according to Egs. (3), whereby /is the cost function, A Uis the vector of stacked incremental
inputs within the horizon, ¥'and Y, are the vector of stacked outputs and output references, respectively,
and R and Q are weighting matrices.

AU* = argmin{J} = argmin {AUTRAU + (Vyop = ¥) ' Q (Yrep = V) +16(®)] (@)

Upin S ulk) € up,, Yk € horizon (3a)

O3 min — 5 < 0,(k) Yk € horizon (3b)

While real actuator limits (lower bound #,,;,, upper bound #,,,,) require input constraints, see Eq. (3a),
to be incorporated as hard limits, hard output constraints could drive the problem infeasible. To over-
come this issue, relevant lower oxygen limit O,,,,, is softened by introducing a so-called slack variable s,
see Eq. (3b). Related cost term /(s)=c, s+c,s? enables tuning of soft constraint’s strength by appropriately
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adapting positive real-valued constants ¢; and ¢,. According to the receding horizon principle, only the first
element of AU, the solution found by optimization, is utilized to form the actual control input.

To overcome lack of full state measurability, an extended Kalman filter, see e.g. Haykin (2004), provides
estimates of the model states £ and outputs j. Due to the separation principle, the observer is designed
independently of the controller, based on actual open-loop plant behavior.

Since the desired supply temperature represents the primary objective, the reference interface addition-
ally provides reference values for O, and 7}, To account for the deviation-related controller setup, absolute
reference values y,,, are related to output values y; gained by only applying feedforward control action,

therefore providing 8y,.,= y,.,— ¥ to the MPC.

4. RESULTS AND DISCUSSION

Experimental results of the closed-loop introduced in Section 3 are presented in Fig. 4 for the combustion
of different solid biofuels. While all MPC configurations rely on a prediction horizon of 30 min and a
control horizon of 15 min, weighting matrices are slightly adapted from experiment to experiment to serve
specific fuel characteristics (Bohler et al. 2020b). Although the supply temperature reference profile - as
the fundamental user input - covers the whole operating range in all experiments, strategies differ in the
applied oxygen reference related thereto. While combustion control of wooden pellets (Fig. 4a) and olive
stones (Fig. 4b) consider introduced emission limiting control strategy, combustion of wood chips (Figs. 4c
and 4d) is carried out based on (slightly adapted) oxygen references provided by the feedforward controller.

In view of wooden pellets, comparison of CO emissions (subplot indicated by % in Fig. 4a) associated
with proposed operating strategy (solid line) and averaged emissions related to conventional mode (dashed
line) clearly underpins the beneficial use of oxygen references based on emission models. Overall improve-
ment is additionally apparent by a decrease of the total average value from 99 to 24 ppm.

Besides emission reduction, fuel flexibility as wells as a simple way of handling fuel switches is highly
valuable as not considered in any previous work on biomass furnaces. Fuel analysis supplies sufficiently ac-
curate parameter values to appropriately adapt the furnace model and, based on that, the MPC matrices.
Fig. 4b-d depict experimental results for combustion of olive stones and wood chips with two different
water contents, for which fuel switches were handled with the MPC approach. Measurement data clearly
indicate high robustness in the presence of fuel-related modifications.

Even though the proposed MPC scheme provides comprehensive advantages, its performance is mainly
limited by given add-ons kept very simple in their design. Therefore, a complete model-based redesign of
the overall control setup seems to enable extensive improvements. Substantial enhancement would come
along with replacing the static feedforward controller by a dynamic (and nonlinear) one. Since then the
feedback control law only has to cover perturbation rejection. With this in mind, a standard state feedback
control is likely to perform as well as the proposed sophisticated model predictive approach. Associated
simplicity of the overall control architecture would immensely decrease application barriers.

5. CONCLUSIONS

Presented control strategy for small-scale biomass furnaces enhances basic advantages of a model predictive
approach by emission limiting oxygen references and a model-based framework to handle fuel switches in
an efficient way. Maintaining overall performance while simplifying system complexity could be achieved
by comprehensive redesign of the feedforward path, driving it a promising concept for broader application.
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Fig. 4: Experimental closed-loop output results obtained by utilizing introduced controller design for combustion
of different solid biofuels. Output results and measured CO emissions for the combustion of (a) wooden pellets
and (b) olive stones are obtained by introducing emission limiting control settings. While results for the combus-
tion of wood chips with a water content of (c) 20wt.-% are based on slightly adapted O, references, those for
wood chips with a water content of (d) 35wt.-% rely on references supplied by the feedforward controller only.
Shaded background highlights O, value ranges that cause additional costs due to violation of the implemented
soft constraint. Vertical areas in (d) indicate interruption due to automatic furnace cleaning.
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