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Abstract— Traditional robotic control suits require profound
task-specific knowledge for designing, building and testing con-
trol software. The rise of Deep Learning has enabled end-to-end
solutions to be learned entirely from data, requiring minimal
knowledge about the application area. We design a learning
scheme to train end-to-end linear dynamical systems (LDS)s
by gradient descent in imitation learning robotic domains. We
introduce a new regularization loss component together with
a learning algorithm that improves the stability of the learned
autonomous system, by forcing the eigenvalues of the internal
state updates of an LDS to be negative reals. We evaluate
our approach on a series of real-life and simulated robotic
experiments, in comparison to linear and nonlinear Recurrent
Neural Network (RNN) architectures. Our results show that
our stabilizing method significantly improves test performance
of LDS, enabling such linear models to match the performance
of contemporary nonlinear RNN architectures. A video of the
obstacle avoidance performance of our method on a mobile
robot, in unseen environments, compared to other methods can
be viewed at https://youtu.be/mhEsCoNao5E.

I. INTRODUCTION

In order to process spatiotemporal data, a memory mech-
anism is required to take into account past-time depen-
dencies into an agent’s current decision. Recurrent neural
networks (RNN)s and their variants (e.g. long short-term
memory (LSTM) [1]) are of nonlinear sequential models
that have shown great success in modeling sequences in a
broad range of application domains, specifically in robotics
learning tasks such as maximum likelihood estimation of
dynamical systems [2], continuous control [3], [4], [5] and
simulation to real-world end-to-end reinforcement learning
[6], [7]. Despite their empirically represented effectiveness,
their nonlinear dynamical properties are yet to be discovered.
It has been recently shown that linear dynamical systems
can be learned through gradient descent with polynomial
sample complexity [8], in contrast to the prior works [9],
which suggested an exponential complexity. To take a step
forward towards the understanding of RNNs in continuous-
time spaces, in the present study, we remove the nonlinearity
of an RNN’s internal state and express its dynamics by the
state transition of a time-invariant linear dynamical system
(LDS).

The Backpropagation-Through-Time (BPTT) algorithm
[10] used for training RNNs does not scale well with
increasing sequence length, due to the sequential work-
load that cannot be parallelized [11]. In order to utilize
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Fig. 1: Top: Network architecture supplied with a linear
stable (through our Gershgorian regularization method) RNN
compartment to be trained end-to-end by gradient descent.
A video of the performance of our algorithm compared
to others in the obstacle avoidance experiment can be
viewed at https://youtu.be/mhEsCoNao5E and on
the Half-Cheetah experiment at https://youtu.be/
MIUGkGPxCdY.

parallel computing hardware effectively, training sequences
are usually split into fixed-length sub-sequences. Though
this technique significantly improves training efficiency, it
creates a training-testing discrepancy when learned RNNs are
deployed on arbitrary-length environments. An example of
such issue observed in practice is the explosion of the RNN’s
internal memory, caused by test episodes that are much
longer than the training sequences. Contemporary nonlinear
RNN architectures tackle this problem by contracting the
RNN state, e.g. the LSTM implementation of TensorFlow
has an optional clipping operation applied to the memory
variables1.

In the context of LDS, such nonlinear state-contractors
are inapplicable, as they would interfere with the linearity
of the system. In this work, we illustrate that careful sta-
bility considerations have to be taken into account when

1https://www.tensorflow.org/api_docs/python/tf/
nn/rnn_cell/LSTMCell
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an LDS model is learned over fixed-length sequences. For
instance, we show that an LDS trained to make a mobile
robot avoid obstacles from short episodes of imitation can
easily go unstable. To avoid such divergent behavior, we
equip a gradient descent-based learning platform with a new
regularization loss component-driven from the Gershgorin
circle theorm [12]. We prove that the resulting loss function
ensures the stability of the autonomous LDS by pushing all
its eigenvalues to be negative real numbers.

Our learning scheme enables end-to-end training of
stacked convolutional neural networks (CNN)s or multi-
layer perceptron (MLP)s kernels, together with the LDS,
in simulated and real-life robotic control environments. Our
experimental evaluations demonstrate that an LDS learned
by our method can be effectively deployed on sequences
of arbitrary length. Additionally, we empirically show that
our LDS can match the performance of modern nonlinear
sequential models such as Continuous-time RNN and LSTM.

The main contributions of this paper can be summarized
as follows:

1) Introducing a novel regularization loss for learning
linear dynamical systems, that guarantees the stability
of the autonomous LDS.

2) Development of a new end-to-end learning algorithm
to train stable linear dynamical systems stacked with
additional Deep Learning layers.

3) Real-life robotics and simulated experiments demon-
strating that our approach improves stability, and en-
ables LDS to match the performance of modern non-
linear RNN architectures.

II. RELATED WORKS

Learning from Demonstration is a method in which
robots learn and generalize well from a set of observations
of represented tasks [13], [14]. Let f (x) : RN → RN , be
a mapping function from the observations to actions, and
ẋ = f (x) with x ∈ RN be the state variable of the robotic
system, f (x) can be estimated from data formulated as
a regression problem [15], [16]. Several machine learning
methods have been introduced for the approximation of
f (x) such as Gaussian Mixture Regression [17], Gaussian
Processes [18], Bayesian Non-Parametric Mixture Models
[15], and Neural Networks [19]. While these approaches,
employing Learning from Demonstrations, often learn only
a single component of the entire control stack, i.e. usually the
trajectory controller [20], [21], [22], the successes of Deep
Learning has made it possible to learn the complete control
suit in an end-to-end fashion [4], [23], [24], [8]. Here, we
extend the existing end-to-end imitation learning scheme to
the context of linear dynamical systems.

Learning stable Dynamical Systems - Learning a system
that is provable stable is a desired property for most control
environments. Naive approaches for learning a stable system
formulate the learning task as a Constrained Optimization
problem, where a stability condition is added as a constraint
to the main objective. For instance, [20], [21] proposed
to stabilize a trajectory controller realized by a Gaussian

mixture regression, by introducing a stability condition based
on a Lyapunov function. The concept of Lyapunov functions
was also employed by [19], [25] to learn stable dynamics
by Neural Network models. [26], [22] derived a stability
condition from contraction theory, which is then used as a
constraint.

In order for such approaches to work, the stability con-
straint must imply the stability of the system. However, this
implication does not necessarily hold in the other direction;
in order to employ a gradient-based optimization, the sta-
bility condition must be continuous and differentiable and
is therefore often a bound to the true stability condition of
the system. Our learning algorithm distinguishes between
the differentiable stability condition and the true stability
property of the autonomous LDS. The constraint is only
optimized when the system is non-stable.

An approach closely related to ours was introduced by
[27], which also leverages linear system theory to learn a
stable system. One key distinction to our approach is, that
[27] employs fixed nonlinear basis functions to enhance the
expressiveness of the learned controller, whereas we stack
our LDS with more flexible Deep Learning layers such as
convolutional and fully-connected layers.

Is the closed control-loop system stable? Note that, our
approach does not mathematically proof the stability of the
closed control-loop system. We aim to improve the stability
of a deployed LDS that is learned in an end-to-end fashion on
fixed-length sequences. Rigorously proofing the stability of
any closed control-loop system requires detailed knowledge
and strong assumptions about the dynamics of the control
environment. This prerequisite is antagonistic to the idea
of end-to-end learning, which demands only minimal prior
knowledge and assumptions.

Recurrent Neural Networks for Modeling Dynamical
Systems - RNNs presented great performance in robotic
control environments; examples include the maximum likeli-
hood estimation of a dynamical system [2], [28], continuous
control [3], [4] and simulation to real-world reinforcement
learning [6]. Fully-connected LSTM networks have been
used for learning of unsupervised video representations [29].
[30] proposed the combination of data-driven and model-
based learning to predict the behavior of dynamical systems;
Authors stacked a convolutional LSTM [31], an architecture
which performs the convolution operation as the input-to-
state transitions instead of dense connections, to a Cellu-
lar Neural Networks [32], an algorithm for solving partial
differential equations (PDE) computationally efficient, and
achieved state-of-the-art performance on two dynamical sys-
tems test-beds. Here, we propose a novel learning scheme to
learn structures by CNNs or MLPs and to learn the temporal
dependencies by continuous-time dynamical systems (RNNs)
in an end-to-end fashion.

III. LEARNING STABLE LINEAR DYNAMICAL SYSTEMS

The hidden state transition x(t), and the output dynamics
y(t) of a time-invariant linear dynamical system (LDS) can
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be determined as follows:

ẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t),

x(0) = x0,

(1)

where u(t) is the input, A ∈ Rn×n, B ∈ Rn×k and C ∈ Rm×n

are linear transformation matrices which are denoted as the
parameters of the LDS to be learned.

Properties of LDS systems of the form Eq. (1), specifically
their stability, have been studied for decades within the
Control Theory community [8]. For instance, the closed form
solution of the autonomous sub-system ẋ(t) = Ax(t) is a
linear combination of complex exponential functions [33].
The stability of such autonomous sub-system, i.e. lim

x→∞
x(t)<

∞, can be identified by computing the eigenvalues of A.
The system is considered stable if all eigenvalues of A are
negative [33].

In this section, we aim at modeling the input and output of
a recurrent neural network with standard nonlinear functions,
but simplifying the state-transition representation (sequential
dependencies as a result of the recurrent connections), as
a linear dynamical system. The motivation is to discover
unknown dynamical system properties of recurrent neural
networks which might be identifiable by the simplification.

In order to efficiently apply gradient-descent to the ordi-
nary differential equation (ODE) solution, we discretize the
ODE using Euler’s explicit method [34]:

x(t +∆) = x(t)+∆ẋ(t), (2)

which essentially translates the LDS into a recurrent neural
network (RNN).

Many RNN architecture suffer from the vanishing and
exploding gradient problems [35], [36], [37]. Learning long-
term dependencies becomes challenging with the vanishing
gradient effect. In this case, the RNN can solely learn to
correlate events that happen close in time. On the other hand,
the explosion of the gradient results in an unstable learning
process. Truncated back-propagation through time [38], [37]
is a commonly used method to ease the exploding gradient
problem. Despite the choice of the ODE solver, in case of the
Euler discretization of the LDS, the described challenges of
the gradient computations become a stability issue of the lin-
ear dynamical system. The learned dynamical system, post-
training, operates in a continuous loop, therefore assuring its
stability is vital. Accordingly, we introduce the Gershgorin
circle loss as follows [12]:

Lgc(A) :=
n

∑
i=1

max{0,Ai,i +∑
j 6=i

∣∣Ai, j
∣∣+ ε}, ε > 0 (3)

Where A is the state transition matrix of the LDS. In the
following, we prove that by minimizing the Gershgorin circle
loss, eigenvalues of the matrix A are forced to be negative
real numbers, Therefore, if the Gershgorin circle loss is zero,
all eigenvalues must have a negative real part.

Lemma 1 (Gershgorin circle theorem). Every eigenvalue of
A lies within at least one of the Gershgorin discs D(Aii,Ri),
with Ri = ∑ j 6=i

∣∣Ai, j
∣∣ and D(a,b) := {x ∈ C

∣∣ |x−a| ≤ b}

Proof: See [39].

Theorem 1 (Gershgorin circle loss ensures stability). Let
A ∈ Rn×n and

Lgc(A) :=
n

∑
i=1

max{0,Ai,i +Ri + ε}, (4)

with Ri = ∑ j 6=i
∣∣Ai, j

∣∣ and ε > 0. If Lgc(A) ≤ 0 then all
eigenvalues of A have negative real part.

Proof: Given the definition of D, for every x ∈
D(Aii,Ri)⊆ C it holds that
Re(x) < Ai,i +Ri + ε for arbitrary i = 1, . . .n. We assumed
Lgc(A) ≤ 0, ergo Ai,i + Ri + ε ≤ 0 for every i = 1, . . .n.
Using the triangular inequality, it follows that for every x ∈
D(Aii,Ri) Re(x) ≤ −ε for every Gershgorin disc D(Aii,Ri).
According to Lemma 1, every eigenvalue of A must lie within
at least one Gershgorin disc; therefore, every eigenvalue must
have a negative real part.

Note that a learned linear dynamical system can be stable
even if the Gershgorin circle loss is greater than zero.
Consequently, it does not make sense to use the Gershgorin
circle loss as regularizer during every optimization step.
Therefore, we introduce Algorithm 1, which checks if at least
one eigenvalue has a non-negative real part and only then
perform a gradient update step with respect to the Gershgorin
circle loss. Algorithm 1 declares a stable learning process for
LDS equipped with the Gershgorin loss.

Algorithm 1 Training algorithm for linear dynamical sys-
tems where all eigenvalues are guaranteed to be negative

Input Maximum number of training epochs N, Training
loss Ltrain, Validation loss Lvalid , Gershgorin circle loss
Lgc, parameter θ with A ∈ θ , learning rate α

while at least one eigenvalue of A has non-negative real
part do

θ ← θ −α
∂Lgc(A)

∂A
end while
θbest ← θ

vbest ←Lvalid(θ)
for 1. . . N do

θ ← θ −α
∂Ltrain(θ)

∂θ

while at least one eigenvalue of A has positive real part
do

θ ← θ −α
∂Lgc(A)

∂A
end while
v←Lvalid(θ)
if v < vbest then

vbest ← v
θbest ← θ

end if
end for
return θbest
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Fig. 2: Network architecture used for the ”HalfCheetah-v2” imitation learning task, RNN state size is 32 for all models

Fig. 3: Learning curves on the ”HalfCheetah-v2” imitation learning task. Left: Training loss. Right: validation loss. Mean
(thick) and standard deviation (semi-transparent), N=5.

A. LDS as a Continuous-Time Recurrent Neural Networks

The representation of the described discretization of ODEs
as recurrent neural networks highly resembles the state-space
dynamics of continuous-time recurrent neural networks (CT-
RNN)s [40], [41], [42]. More specifically, a CT-RNN can be
formulated as the Euler simulation of an ODE of the form

ẋ = fθ (x,u)− x (5)

where f : Rn ×Rk → Rn is a neural net parametrized by
θ . The major difference between the state-space variable
dynamics of a linear dynamical system and a CT-RNN’s state
representation is in the nonlinearity introduced by the neural
network f in equation (5). This difference makes CT-RNNs
arguably more expressive, but simultaneously increases the
complexity of the system and correspondingly reduces prov-
ability of a system’s characteristics such as stability and the
closed-form solution.

Note that the transition state-stability of any recurrent
model can be feasibly enforced by clipping the RNN state
to a bounded range (e.g. between -10 and 10), after every
update. However, this approach introduces nonlinearity into
the feedback operation, which is non-permissible for linear
dynamical systems. By proposing the Gershgorin circle regu-
larization, we aim at exploring the performance of the stable
LDS compared to that of nonlinear RNN architectures. In
particular, in the next section, we perform robotic control
experiments to observe how LDS with and without Gersh-
gorin circle regularization compare to LSTM and CT-RNNs
with the clipped state.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the capabilities of our pro-
posed learning approach on two imitation learning task, as
illustrated in Figure 1. The first task is to clone the behavior
of an existing recurrent neural network controller for the
”HalfCheetah-v2” OpenAI Gym [43] environment.

In the second experiment, we perform real-world learning
from demonstrations of a small set of obstacle avoidance
scenarios performed by a mobile robot (Pioneer 3-AT). The
objective is to detect obstacles using LIDAR input data and
execute avoidance motions. To compare performance with
existing RNN models, we carry out the same experiments
with Long short-term memory networks (LSTM), standard
continuous-time RNN, an unconstrained LDS and our pro-
posed LDS with Gershgorin circle loss regularization. The
code and training data are provided in the supplementary
materials.

A. OpenAI Gym HalfCheetah-v2

The objective of this task is to imitate the behavior of a
reference RNN policy trained on the ”HalfCheetah-v2” Ope-
nAI Gym [43] environment. The reference policy achieves

TABLE I: Loss on the imitation learning task and final
performance on the gym ”HalfCheetah-v2” environment.
Mean and standard deviation, N=10

Model Train Validation Return
LSTM 0.005 0.007 2706.32±82.97
CT-RNN 0.008 0.010 2473.15±242.67
LDS (ours) 0.015 0.017 2721.03±94.51
LDS (unconstrained) 0.015 0.017 2636.52±201.14
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Fig. 4: Network architecture used for the robot navigation task, K indicates kernel size, S indicates size of stride, RNN state
size is 32 for all models

a return value of 2635.11 with a standard deviation of
416.28 estimated in 30 episodes. The training set consists
of recordings of 25 full episodes and the validation set of 5
episodes of length 1000 time step each, i.e. 25000 time-steps
training and 5000 time steps validation samples.

Each tested model consists of an RNN preceded by a fully-
connected ReLU and a linear layer, as illustrated in Figure
2 a). We train all models with truncated back-propagation
through time [38] by splitting each sequence into multiple
sub-sequences of length 32. The continuous-time models, i.e.
CT-RNN and both LDS, are simulated using Euler’s explicit
method in equation (2) with ∆ = 0.166 timesteps. As the
final evaluation metric, we execute the imitated policy on
the gym environment ten times and report the mean return.
For each model, we repeat this experiment 5 times and report
the mean and standard deviation in Table I.

1) Discussions on the performance of the HalfCeetah
experiments: When we evaluate the networks trained over
the sequences of length 32 time-steps and impose no en-
vironmental feedback during training, the performance of
the LDS with and without Gershgorin circle regularizer is
almost identical as shown in the learning curves in Figure 3.
The learning curves depict the superior performance of the
nonlinear models (LSTM and the standard CT-RNN) over the
linearized models. This result is intuitive, and roots for the
existing trade-off between a model’s expressivity and having
stability guarantees.

When executing the model in a closed feedback loop
on the gym environment with sequences up to full episode
length, i.e. 1000 time steps, LDS supplied with the Ger-
shgorin circle regularizer significantly outperforms the LDS
without the regularizer as depicted in Table I. The regularized
LDS surpasses the performance of the CT-RNN and matches
that of LSTM policy (see Table I).

B. Obstacle detection and avoidance

The objective of this task is to navigate a Pioneer 3-
AT mobile robot safely through a course of obstacles. In
particular, the agent is provided with the input stream from
a 270 degree 2D LiDAR scanner that is mounted on the rover.

The robot estimates pose (angle and lateral displacement
from initial pose) as a time series sampled at 10Hz. The
agent is expected to output a decision in the form of a target
angular velocity, which should maneuver the robot safely
around the obstacles.

We collected 20 training, five validation, and five test
traces by navigating the robot around the obstacles via
joystick teleoperation. Each evaluated model consists of an
RNN preceded by a set of convolutional layers, as illustrated
in Figure 4 b). We train all models with end-to-end truncated
back-propagation through time [38] by splitting each train-
ing and validation sequence into multiple sub-sequences of
length 32, i.e. corresponding to 3.2 real-time seconds. The
continuous-time models, i.e. CT-RNN and both LDS, are
simulated using Euler’s explicit method in equation (2) with
∆ = 16.6 milliseconds.

To evaluate the models, we perform two-fold testing, I:
a simulated test loop and II: deploying the agent on the
real robot. Our simulated test loop evaluates the model’s
mean-square error on the five full-length test sequences.
This process can be done computationally fast; therefore,
we repeat the simulated experiment for each model 10 times
with different weight initialization for the networks. Though
this way, we can draw a significant number of samples, no
feedback from the environment would affect the model’s
ability to maneuver the robot safely around the obstacles.

Consequently, we deploy the best performing model out
of the ten initializations on the real robot to navigate five
real-world obstacle course scenarios. As for the performance
metric, we count the number of avoided obstacles in each of
these five real-world scenarios.

These real-world scenarios differ from the training, val-
idation, and test-set as they include more obstacles with
different shapes (i.e. the training, validation, and test-set
contain recordings of only up to 2 obstacles during an
episode, whereas in the real-life testing scenarios there are
more obstacles configured in various settings).

1) Discussions on the performance of the Obstacle avoid-
ance experiments: Similar to the HalfCheetah-v2 experi-
ment, the performance of the LDS with and without Gersh-
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Fig. 5: Learning curves on the robot navigation task imitation learning task. Left: Training loss. Right: validation loss.

TABLE II: Training results on the robotic imitation task. N=10.

RNN Scheme Model Train loss Validation loss Test loss
Nonlinear LSTM 0.057 ± 0.007 0.065 ± 0.006 0.125 ± 0.014

CT-RNN 0.070 ± 0.008 0.074 ± 0.010 0.119 ± 0.010
Linear LDS (ours) 0.089 ± 0.007 0.095 ± 0.007 0.388 ± 0.431

LDS (unconstrained) 0.090 ± 0.010 0.094 ± 0.003 3.005e6 ± 5.958e6

gorin circle regularization are almost identical on the training
and validation sub-sequences as shown in the learning curves
in Figure 5 and Table II.

When testing the models on longer sequences the internal
state of the unconstrained LDS explodes at some point
resulting in an unstable behavior and extremely high mean-
squared error. Note that all of the trained unconstrained LDS
for the HalfCheetah-v2 as well as the obstacle avoidance task
had at least one eigenvalue with a positive real part. However,
no catastrophic state explosion of the unconstrained LDS
occurred in the HalfCheetah-v2 task, suggesting that model
stability also depends on the data-set dependent properties.

As discussed previously about the trade-off between a
model’s expressiveness vs. its auditability, in terms of vali-
dation and simulated test performance, both linear RNNs are
outperformed by the nonlinear RNNs, as shown in Table II.

However, when deploying the models in a feedback loop
on the real robot, the gap in the performance decreases and
even in some scenarios the regularized LDS outperforms the
other models as it can be viewed at https://youtu.
be/mhEsCoNao5E, and is shown in Table III, Scenario
5. The LDS with Gershgorin circle regularization matches

TABLE III: Results of our live experiment consisting of 5
test scenarios which the agent has to navigate. The number
of obstacles passed by each agent. A video recording of
all experiments performed on the robot can be viewed at
https://youtu.be/mhEsCoNao5E.

Scenario LSTM CT-RNN LDS LDS
(ours) (uncontrained)

#1 (2 obstacles) 2 2 2 0
#2 (3 obstacles) 2 3 2 0
#3 (4 obstacles) 4 4 4 0
#4 (4 obstacles) 4 4 3 0
#5 (4 obstacles) 3 3 4 0

Total (17 obstacles) 15 16 15 0

the performance of the LSTM model but marginally falls
behind the CT-RNN. As expected, the unconstrained LDS
also suffers from instability on all tested real scenarios. A
video recording of all experiments performed on the robot
can be viewed at https://youtu.be/mhEsCoNao5E.

V. CONCLUSION

We introduced a learning scheme for training stable linear
dynamical systems (LDS)s by gradient descent. We leveraged
the Gershgorin circle theorem to define a regularization loss,
which ensures the stability of the learned autonomous LDS.

This work builds on the recently proposed idea by [8],
to study the learning characteristics of a linear dynamical
system to take a step forward towards better understanding
the dynamics of recurrent neural networks.

We showed on two real-life and simulated imitation learn-
ing robotic problems that our approach enables LDS to gen-
eralize well from fixed-length training sequences to arbitrary
length sequences which occur naturally when deploying the
agent in a continuous control loop.

We illustrated that our approach could be stacked with
complex architectures such as multilayer perceptrons and
convolutional neural networks. We showed that LDS could
match and even surpass the generalization ability of the
existing nonlinear RNN models.
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