Far-from-equilibrium universality and spectral functions in the QGP

Kirill Boguslavski

Extreme Nonequilibrium QCD, ICTS Bangalore

Oct 06, 2020

Talk based on different publications in collaboration with

Berges, Kurkela, Lappi, Mace, Pawlowski, Peuron,

Piñeiro Orioli, Schlichting, Venugopalan

06.10.20 | TU Wien, Austria | Kirill Boguslavski | 1

Table of Contents

- **1.** Motivation
- 2. Universal classical attractors
- **3.** Spectral functions of pre-equilibrium QGP
- 4. Heavy-quark diffusion & gluonic IR excess
- 5. Conclusion

Literature

Universal classical attractors

Berges, KB, Schlichting, Venugopalan, PRD 89, 114007 (2014) ; PRD 89, 074011 (2014) ; JHEP 05, 054 (2014) ; PRL 114, 061601 (2015) ; PRD 92, 096006 (2015) KB, Kurkela, Lappi, Peuron, PRD 100, 094022 (2019)

Spectral functions of pre-equilibrium QGP

KB, Kurkela, Lappi, Peuron, *PRD* 98, 014006 (2018); KB, Pinerio Orioli, *PRD* 101, 091902 (2020)

Heavy-quark diffusion & gluonic IR excess

KB, Kurkela, Lappi, Peuron, JHEP 09, 077 (2020); Berges, KB, Mace, Pawlowski, PRD 102, 034014 (2020)

Motivation: Heavy-ion collisions (HIC)

- Main facilities:
 - → Large Hadron Collider (LHC) @ CERN
 - Relativistic Heavy Ion Collider (RHIC)
 @ BNL
- Some of the main objectives:
 - Quantum Chromodynamics (QCD) at high energies

LHC @ CERN (Photo: Maximilen Brice)

→ Quark-Gluon plasma (QGP)

(QGP thought to have existed in the Early Universe)

Motivation: Initial stages of HIC

- How does a pre-equilibrium QGP evolve?
- Here high energy (weak coupling) limit in HIC considered $g^2 \equiv 4\pi\alpha_s \ll 1$
- Initially (large) gauge fields $A \sim 1/g$
- Thus large occupation numbers $f \sim 1/g^2 \gg 1$

McLerran, Venugopalan (1999); Krasnitz, Venugopalan (1999, 2000, 2001); ...

Little Bang by P. Sorensen and C. Shen

Universal classical attractors in gluonic plasmas

Classical attractors can emerge in

Heavy-ion collisions

Early Universe

ALICE NASA/WMAP

Longitudinally expanding non-Abelian plasmas

Relativistic scalar systems (O(N), $\lambda(\phi_a\phi_a)^2$)

Non-relativistic scalar systems (GPE)

Ultracold atoms

- When couplings $g, \lambda \ll 1$ weak, closed system highly occupied $f \gg 1$
- Dual description: class.-stat. simulations for $f \gg 1$, kinetic theory for $f \ll 1/g^2$

"Non-perturbative" vs. "Perturbative"

Classical-statistical simulations

- At initial time t₀, choose quantum (Gaussian) initial conditions (IC): Choose ⟨AA⟩, ⟨EE⟩, with E^j_a(t, x) = ∂_tA^a_j(t, x) (formally, this defines a weight functional W [A(t₀), E(t₀)])
- Solve classical field equations in temporal gauge $A_0 = 0$ on a lattice

 $D_{\mu}F^{\mu\nu} = 0 \qquad (\text{with } D_{\mu} = \partial_{\mu} - igA_{\mu}, \quad F^{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig[A_{\mu}, A_{\nu}])$

- Use links $U_{\mu}(t, \mathbf{x}) \approx e^{iga_s A_{\mu}(t, \mathbf{x})}$ for a gauge covariant formulation
- Evolve fields, obtain observables at time t by averaging over IC $O(t) = \langle O_{cl}[A(t), E(t)] \rangle = \int DA(t_0) DE(t_0) W [A(t_0), E(t_0)] O_{cl} [A(t), E(t)]$
- Distinguish polarizations in Fourier space

$$E_L(t, \mathbf{p}) = \frac{p_j}{p} E^j(t, \mathbf{p}), \qquad E_T^j(t, \mathbf{p}) = \left(E^j(t, \mathbf{p}) - \frac{p^j}{p} E_L(t, \mathbf{p}) \right)$$

Distribution function:
$$2(N_c^2 - 1)f(t, p) \approx \langle |A_T(t, \mathbf{p})|^2 \rangle \,\omega(t, p) \approx \frac{\langle |E_T(t, \mathbf{p})|^2 \rangle}{\omega(t, p)}$$

Classical attractors far from equilibrium (for $q^2 \ll 1$) Distribution f Nonthermal Highly occupied: fixed point p $f(t_0, p \lesssim Q) \sim \frac{1}{q^2}$ Far from equilibrium Universality Initial Nonthermal fixed point (NTFP) conditions Thermal Partial memory loss equilibrium Time scale independence Close to equilibrium Self-similar dynamics

Distribution function (occupation numbers):	$f(t,p) = t^{\alpha} f_s(t^{\beta} p)$
---	--

First experimental observations:	NTFP:	Micha, Tkachev (2004); Berges, Rothkopf, Schmid (2008)
Prüfer et al., <i>Nature 563, 217 (2018)</i>	Universality far	Berges, KB, Schlichting, Venugopalan (2015);
Erne et al., <i>Nature 563, 225 (2018)</i>	from equilibrium:	Piñeiro Orioli, KB, Berges (2015)

Classical attractors: direct energy cascade

in isotropic 3+1D gluonic plasmas

Classical attractor in gluonic 2+1D and Glasma-like theories

But no expansion, over-occupied initial conditions

KB, Kurkela, Lappi, Peuron, PRD 100, 094022 (2019)

 Although for 2+1D, HTL framework breaks down at soft scale m, kinetic arguments lead to observed exponents, quasiparticles exist!)

Classical attractors: heavy-ion collisions (shortly after collision)

Berges, KB, Schlichting, Venugopalan, PRD 89, 114007 (2014) ; PRD 89, 074011 (2014)

Classical attractors: Distinguishing kinetic descriptions

Real-time lattice simulations

Berges, KB, Schlichting, Venugopalan, PRD 89, 114007 (2014), PRD 89, 074011 (2014)

Kinetic descriptions

- Baier, Mueller, Schiff, Son (BMSS), (2001)
- Bodeker (BD), (2005)
- Kurkela, Moore (KM), (2011)
- Blaizot, Gelis, Liao, McLerran, Venugopalan (BGLMV), (2012)
- Numerics consistent with 1st stage of BMSS scenario

Baier, Mueller, Schiff, Son, PLB 502, 51 (2001)

Effective kinetic theory (EKT)

Arnold, Moore, Yaffe, JHEP 0301, 030 (2003)

$$\frac{\mathrm{d}f}{\mathrm{d}\tau} - \frac{p_z}{\tau} \frac{\partial f}{\partial p_z} = \int_{1}^{2} \frac{\partial p^{3^{3}}}{\partial p_z} = \int_{1}^{2} \frac{\partial p^{3^{3}}}{\partial p_z} + \int_{1}^{2} \frac{\partial p^{3^{3}}}{\partial p$$

Used as standard description now

Classical attractors: Universality class far from equilibrium

Universality with scalar $\lambda \phi^4$ field theory in suitable p region

Berges, KB, Schlichting, Venugopalan, PRL 114, 061601 (2015), Editors' Suggestion PRD 92, 096006 (2015)

Classical attractors in expanding scalar system Link between the world's hottest and coldest matter

Berges, KB, Schlichting, Venugopalan, PRD 92, 096006 (2015)

 Classical attractor in heavy-ion collisions emerges in p region ii)

- For classical infrared attractor i) in scalar systems, ultra-cold atoms:
 - ⇒ See Backup

Spectral functions ρ

Spectral functions: some hard problems

- Initial stages in heavy-ion collisions :
 - Kinetic theory requires dominance of quasiparticles
 - What excitations are there? When is kinetic theory valid?

• Excitations spectrum of QCD, scalars out of equilibrium?

- ⇒ Knowledge of spectral functions or unequal time correlators needed!
- Perturbatively, hard loop (HTL) framework can be used to compute ho~ if $~m/\Lambda \ll 1$

(For thermal case, HTL works for $g \sim m/T \ll 1$)

Spectral functions: hard-thermal loop (HTL) theory

Braaten, Pisarski (1990); Blaizot, Iancu (2002); ...

Perturbative formalism, usually applied to thermal equilibrium, high $T \gg T_c$ for $\omega, p \ll T$

Applicable out of equilibrium when:

- Hard scale Λ, soft modes m (mass), scale separation m/Λ ≪ 1
 ⇒ HTL can be applied to attractor in non-Abelian plasmas!
- Details of f(t, p) "hidden" in few parameters

$$m^2 \approx 2N_c \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \, \frac{g^2 f(t,p)}{p}$$

Our strategy:

- Compute spectral function non-perturbatively using lattice simulations
- Use over-occupied systems, compare to HTL expressions

Spectral functions: HTL self-energies at LO

Polarization tensor: $(x = \omega/p)$

$$\Pi_T(x) = m^2 x \left(x + (1 - x^2) \frac{1}{2} \ln \frac{x + 1}{x - 1} \right)$$
$$\Pi_L(x) = -2m^2 \left(1 - x \frac{1}{2} \ln \frac{x + 1}{x - 1} \right)$$

Self-energies obtain imaginary part for $|x| < 1 \quad \Leftrightarrow \quad |\omega| < p$

⇒ Landau cut / damping!

Retarded propagator: (for $A_0 = 0$ gauge)

$$G_T(\omega, p) = \frac{-1}{\omega^2 - p^2 - \Pi_T(\omega/p)}$$
$$G_L(\omega, p) = \frac{p^2}{\omega^2} \frac{-1}{p^2 - \Pi_L(\omega/p)}$$

Spectral function: $\rho_{T/L}(\omega, p) = 2 \operatorname{Im} G_{T/L}(\omega, p)$

The mass computed within HTL; no "free" parameters left!

Spectral functions: non-perturbative computation Classical-statistical SU(N) simulations + linear response

Similar methods for scalars:

Aarts (2001); Pineiro Orioli, Berges (2019); Schlichting, Smith, von Smekal (2020); KB, Pineiro Orioli (2020) KB, Kurkela, Lappi, Peuron, PRD 98, 014006 (2018), Editors' Suggestion

- Perturb (classical) field $A_j(t, \mathbf{x}), E^j(t, \mathbf{x})$
- Follow linearized EOM:

Kurkela, Lappi, Peuron, *EUJC 76 (2016) 688*

• Response: $G_R(t,t',p) = \theta(t-t')\rho(t,t',p)$

Applied here to classical attractor in 3+1D gluon plasmas

 $(m/\Lambda \ll 1)$

Spectral functions: highly occupied gluons

KB, Kurkela, Lappi, Peuron, *PRD 98, 014006 (2018)* Transverse spectral function ρ_T (here for *SU(2*))

 $\rho(t, t', \mathbf{x} - \mathbf{x}') \sim \langle [A(t, \mathbf{x}), A(t', \mathbf{x}')] \rangle$

 ρ_T as function of $\Delta t = t - t'$ (left) or frequency ω (right) at late time $t, t' \gg \Delta t$

- Lorentzian peaks: *existence of quasi-particles* –
- for $|\omega| \le p$: Landau damping
- black dashed lines:
 Perturbative expectation (HTL at LO)
- ✓ Good agreement with HTL at LO!
- System dominated by quasiparticles with narrow width (beyond HTL at LO)!

Spectral functions: dispersion relations

KB, Kurkela, Lappi, Peuron, PRD 98, 014006 (2018)

- Extracted from peak position (for ω_L after subtracting HTL Landau cut)
- Similar to HTL predictions: $\omega_{T,L}^{\text{HTL}}(p)$
- Deviations at small p, for finite m/Λ ?
- " $\omega_L(p)$ " deviates at $p \sim m$ because peak is smaller than Landau cut, harder to measure

$\omega_{T,L}$ / $m_{ m HTL}$

Spectral functions: extracted damping rates

KB, Kurkela, Lappi, Peuron, *PRD 98, 014006 (2018)*

0.02

 $\gamma_{T,L}(p)$ is $\mathcal{O}(g^2 Q)$ and beyond HTL at LO, it Q 0.015 Damping rate: $\gamma_{T,L}$ / may contain non-perturbative contributions trans., 192³, $Qa_s = 0.47$ \mapsto trans., 256³, Qa_s = 0.7 (magnetic scale) long., 192^3 , $Qa_s = 0.47$ long., 256^3 , $Qa_s = 0.7$ 0.01 Here *first determination* of $\gamma_{T,L}(p)$! γ_{нті} (р=0) ⊢ ー 0.005 Extracted by fitting to a damped oscillator 0 Braaten, Pisarski, HTL prediction: $\gamma_{\text{HTL}}(p=0)$ 0.2 0.4 0.6 0.8 PRD 42, 2156 (1990) Momentum: p/Q $\gamma_{\rm HTL}(p \rightarrow \infty)$: not included here, too large uncertainties Pisarski. 0.016 long., 192³, Qa_e = 0.47 PRD 47, 5589 (1992) due to necessary estimation of magnetic scale 0.014 long., 256³, Qa, = 0.7 trans., 192³, Qa_s = 0.47 0.012 A standard stand standard stand standard stand trans 256^3 Qa. = 0.7 rate: γ/ 0.01 0.008 Damping "Isotropic" $\gamma_T \approx \gamma_L$ for $p \leq m$ while 0.006 0.004 0.002 dispersions different $\omega_T > \omega_L$ 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 Momentum: p/Q

Spectral functions in gluonic 3+1D and 2+1D plasmas

KB, Kurkela, Lappi, Peuron, in preparation

Transverse

Spectral functions in scalar systems:

• But here: over-occupied initial conditions, $P_L \ge 0$

KB, Pinerio Orioli, *PRD 101, 091902 (2020)* (as Rapid Communication)

⇒ Backup

Heavy-quark diffusion & gluonic IR excess

Heavy-quark diffusion: far from equilibrium

KB, Kurkela, Lappi, Peuron, JHEP 09, 077 (2020)

Heavy quark in QGP

experiences "kicks" from the medium

Observed features

- i. rapid initial growth with $\Delta t \approx 2\pi/\Lambda$
- ii. damped oscillations with period $\Delta t \approx 2\pi/\omega_{\rm pl}$

iii. overall approx. linear growth for $1/\Lambda \ll \Delta t \ll t$

Momentum broadening

from chromo-electric force, gauge-invariant observable

$$\langle p^{2}(t,\Delta t) \rangle = \frac{g^{2}}{N_{c}} \int_{t}^{t+\Delta t} dt' \int_{t}^{t+\Delta t} dt'' \operatorname{Tr} \langle E_{i}(t')U_{0}(t',t'')E_{i}(t'')U_{0}(t'',t') \rangle$$

Heavy-quark diffusion coefficient far from equilibrium

KB, Kurkela, Lappi, Peuron, JHEP 09, 077 (2020)

Self-similarity in t

$$3\kappa(t,\Delta t) = \frac{\mathrm{d}}{\mathrm{d}\Delta t} \langle p^2(t,\Delta t) \rangle$$

Evolution of heavy-quark diff. coeff.

$$\kappa(t,\Delta t) \to \kappa_{\infty}(t)$$

- Far-from-equilibrium transport coefficient larger than thermal value $\kappa_{\infty}(t) \gg \kappa_{\text{therm}}$
- SR: "Spectral reconstruction", use spectral function in analytical computation
- KT: "Kinetic theory", use known expressions for analyt. comp.

Moore, Teaney (2005); Caron-Huot, Moore (2008)

Excess of gluons at low p: IR enhancement

KB, Kurkela, Lappi, Peuron, JHEP 09, 077 (2020)

- Excess of gluons for $p \lesssim m \sim \omega_{
 m pl}$ compared to HTL predictions
- Similarly in Glasma-like systems (for scalar contribution) KB, Kurkela, Lappi, Peuron, PRD 100, 094022 (2019)
- This correlator gauge-fixed, is excess visible in gauge-invariant observables?
- Yes, open symbols for κ_{∞} on prev. page: there $\langle EE \rangle$ without IR enhancement used

Heavy-quark diffusion: IR enhancement is observable

KB, Kurkela, Lappi, Peuron, JHEP 09, 077 (2020)

Diffusion coefficient $3\kappa(t,\Delta t) = \frac{\mathrm{d}}{\mathrm{d}\Delta t} \langle p^2(t,\Delta t) \rangle$

- Oscillations with plasmon freq. due to QP excitations, sign of IR enhancement
- Heavy quarks, quarkonia, jets may reveal IR dynamics of non-equilibrium QGP

Bose-Einstein condensation in scalars: an IR process

Non-relativistic, O(N) relativistic show this

Pinerio Orioli, KB, Berges, PRD 92, 025041 (2015)

• $\frac{N_0^{\phi}(t)}{N_{\text{total}}^{\phi}} = \frac{1}{V} \int_0^L d^d x \, \frac{\langle \{\phi(t,x), \phi^{\dagger}(t,0)\} \rangle}{\langle \{\phi(t,0), \phi^{\dagger}(t,0)\} \rangle} \text{ depends on condensation time } t_c \sim L^{1/\beta}$

- A far-from-equilibrium mechanism for condensation of particles
- Universal exponent $\beta = 0.55 \pm 0.03$

Berges, Sexty, PRL 108, 161601 (2012)

(Origin for scalars is a classical IR attractor, see **Backup**)

Gauge-invariant condensation: a similar IR phenomenon

Berges, KB, Mace, Pawlowski, PRD 102, 034014 (2020)

Condensation time: $t_c \sim L^{2/\zeta}$ Exponent: $\zeta = 0.54 \pm 0.04 \text{ (stat.)} \pm 0.05 \text{ (sys.)}$

Self-similar evolution of Wilson loops:

Mace, Schlichting, Venugopalan, PRD 93, 074036 (2016); Berges, Mace Schlichting, PRL 118, 192005 (2017)

• Relation to IR excess? $\langle W \rangle$ related to correlator of scalar fields?

Conclusion

Over-occupied gluonic plasmas at initial stages in heavy-ion collisions:

- ✓ Classical attractor can emerges at initial stages, universality class with scalars
- Spectral functions disclose relevant dynamical and quasiparticle properties
- Transport coefficients can be large, can display non-pert. properties
- ✓ Fascinating IR phenomena can arise

Outlook

- What are the spectral functions of (expanding) fermions and gluons at initial stages?
 Could kinetic description of initial stages be already valid early on?
- Can transport coefficients act as probes of initial stages by encoding specific preequilibrium signatures?
- What is the origin for IR phenomena of gluons, how do they affect the dynamics?

Thank you for your attention!

BACKUP SLIDES

Classical attractors: independence of initial conditions

(at the example of 2+1D Glasma-like systems)

KB, Kurkela, Lappi, Peuron, PRD 100, 094022 (2019)

Similarly for scalars: Berges, KB, Schlichting, Venugopalan, JHEP 05, 054 (2014)

Classical attractors: comparison to phase transitions (PT)

Scaling region (of a nonthermal fixed point)

Self-similar evolution of distribution function f

$$f(t,p) = t^{\alpha} f_s(t^{\beta} p)$$

with scaling behavior of typical scales $\langle p \rangle \sim t^{-\beta}, \ f(\langle p \rangle) \sim \frac{1}{a^2} t^{\alpha}$

Classification: universality classes far from equilibrium

Via scaling exponents α , β and the scaling function $f_{S}(x)$

NTFP	Close to 2nd order PT
Time scale t	Inverse reduced temp. T_c / (T- T_c)
Self-similar evolution	Critical slowing down, power laws
Scaling exponents & function	Critical exponents & surface

Universality in scalar systems and condensation

- **Relativistic** O(N)-symmetric scalars: *(inflaton, axions, dark matter, ...)*
- **Nonrelativistic** scalars *(for ultra-cold atom experiments, ...)*
- Experimental observation (cold atoms)

Prüfer et al., *Nature* 563, 217 (2018); Erne et al., *Nature* 563, 225 (2018); *Glidden et al., arXiv:200601118*

Momentum: $\log(p)$

$$S_{O(N)} = \int d^4x \left[\frac{1}{2} \left(\partial_t \phi_a \right)^2 - \frac{1}{2} \left(\nabla \phi_a \right)^2 - \frac{1}{2} m^2 \phi_a \phi_a - \frac{\lambda}{24N} \left(\phi_a \phi_a \right)^2 \right]$$
$$S_{\text{nonrel}} = \int d^4x \left[\frac{i}{2} \left(\psi^* \partial_t \psi - \psi \partial_t \psi^* \right) - \frac{1}{2m} \left| \nabla \psi \right|^2 - \frac{g}{2} \left| \psi \right|^4 \right]$$

Classical IR attractor in scalar systems

Berges, Rothkopf, Schmidt (2008); Piñeiro Orioli, KB, Berges (2015); Berges, KB, Schlichting, Venugopalan (2015); Moore (2016); Karl, Gasenzer (2016); Walz, KB, Berges (2017); Berges, KB, Chatrchyan, Jäckel (2017); Chantesana, Piñeiro Orioli, Gasenzer (2018); Schmied, Mikheev, Gasenzer (2018) ...

Universality far from equilibrium

A single broad far-from-equilibrium universality class?

Pinerio Orioli, KB, Berges, *PRD 92, 025041 (2015)* Berges, KB, Schlichting, Venugopalan, *PRD 92, 096006 (2015)*

Later more!

Self-similar evolution $f(t,p) = t^{\alpha} f_s(t^{\beta} p)$

Application: Nonthermal fixed points

Self-similar attractor

• Same α , β and scaling function

 $\lambda f_S \simeq \frac{a}{(|\boldsymbol{p}|/b)^{\kappa_<} + (|\boldsymbol{p}|/b)^{\kappa_>}}$

with $\kappa_{<} \simeq 0 - 0.5$ and $\kappa_{>} \simeq 4 - 4.5$

Across relativistic (different N), nonrelativistic

• New *large-N kinetic theory* describes it quantitatively, shows that $\kappa_{<} \rightarrow 0, \kappa_{>} \rightarrow 4$

Piñeiro Orioli, KB, Berges (2015); Walz, KB, Berges (2017); Chantesana, Piñeiro Orioli, Gasenzer (2018)

• (Systematically derived in 1/*N*, resums vertex)

Application: Nonthermal fixed points

Experimental observation in a spinor gas (ultra-cold atoms)

Prüfer et al., Nature 563, 217 (2018)

Same scaling exponents as found in:

Piñeiro Orioli, KB, Berges, PRD 92, 025041 (2015)

Classical attractors in other experiments:

Erne et al., *Nature 563, 225 (2018); Glidden et al., arXiv:200601118*

Spectral functions in scalar $\lambda(\phi_a \phi_a)^2$ theories: IR Classification of *O(N)* symmetric theories using *F*, ρ

KB, Pinerio Orioli, PRD 101, 091902 (2020) (as Rapid Communication)

Problem: $f(t,p) = t^{\alpha} f_s(t^{\beta}p)$ universal for all N $_{PRD 92, 025041 (2015)}^{Piñeiro Orioli, KB, Berges,}$; check with F, ρ

Spectral functions: method in more detail <u>Combine</u>: Classical simulations, Linear response

KB, Kurkela, Lappi, Peuron, *PRD 98, 014006 (2018)*

- Simulations for $SU(N_c)$ fields $E_i(t_0, \mathbf{x})$, $U_i(t_0, \mathbf{x}) \simeq e^{iga_s A_i(t_0, \mathbf{x})}$ on N_s^3 lattice $(A_0 = 0)$
- Instant *j* at time *t*', Coulomb gauge $\partial_j A_j = 0$
- Split $A_j(t, \mathbf{x}) \mapsto A_j(t, \mathbf{x}) + a_j(t, \mathbf{x})$
- Response in linear fluctuations a_j for t > t': Solve (linear) EOM for a_j EUJC 76 (2016) 688
- $\langle a_j(t, \mathbf{p}) \rangle = G_{R,jk}(t, t', \mathbf{p}) j^k(t', \mathbf{p})$, obtain ret. propagator $G_{R,jk}$ from response
- Spectral function: $G_{R,jk} = \theta(t t') \rho_{jk}$
- Distinguish polarizations (trans., long.)

Spectral functions – fluctuation dissipation relation

Statistical correlation function F

100 p = 0.09 Qp = 0.55 Q80 60 40 20 0 **Correlation functions** 100 p = 0.15 Qp = 0.70 Q80 60 40 20 0 p = 0.30 Q100 p = 0.90 Q80 60 40 20 0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 Frequency: ω / Q

KB, Kurkela, Lappi, Peuron,

PRD 98, 014006 (2018)

(Classical) definition:

$$\ddot{F}^{jk}(t,\Delta t,p) = \frac{1}{(N_c^2 - 1)V} \left\langle E^j(t,p) E^{*,k}(t,p) \right\rangle$$

(As always: $\Delta t = t - t'$ Fourier transform to ω)

(Thermal) fluctuation-dissipation relation: $\ddot{F}_T(t,\omega,p)/T = \dot{\rho}_T(t,\omega,p)$

Used to estimate thermal spectral function

Example: G. Aarts, PLB 518, 315 (2001)

We **extract** \ddot{F} , $\dot{\rho}$ **independently** and observe a generalized fluctuation-dissipation relation:

$$\frac{\ddot{F}_{T,L}(t,\omega,p)}{\ddot{F}_{T,L}(t,\Delta t=0,p)} = \frac{\dot{\rho}_{T,L}(t,\omega,p)}{\dot{\rho}_{T,L}(t,\Delta t=0,p)}$$

<u>**Remarks**</u>: $\dot{\rho}_T = \partial_t \rho_T$, $E = \partial_t A$