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Abstract— With increasing deployment of wireless devices also
localization gets a consequential boost in industrial and other IoT
environments. Localization so far in most cases assumes omni-
directional antennas. This paper investigates a generalized Re-
ceived Signal Strength (RSS) fingerprinting localization algorithm
for antennas with arbitrary radiation patterns in order to include
IoT devices with directional antennas in localization.

Focus is set on the recursive algorithm which improves perfor-
mance of the traditional fingerprinting methods. First a machine-
learning aided analysis of the overlapping reception areas of the
antennas is conducted for quickly determining possible initial
positions of the nodes to be localized. Then, for reaching higher
resolution, different up-scaling techniques and gradient search is
applied. In particular, the localization accuracy vs. computational
efficiency is investigated which is an important trade-off for many
applications.

Index Terms—RSS fingerprinting, position estimation, direc-
tional antenna, clustering

I. INTRODUCTION

Wireless communications are getting increasingly popular
not only in IoT applications but also in more conservative
industrial environments. This is owed to the advances in their
real-time capabilities and reliability by introducing redundant
wireless links and by careful antenna selection: For example,
in order to increase power efficiency and robustness against
disturbances (but also to spatially separate the wireless signals
of the increasing number of nodes) often directional antennas
are employed.

Although industrial wireless communications were at first
mainly seen as a point-to-point connection replacement, nowa-
days they are employed in a wide range of applications, espe-
cially in those involving mobile nodes. However, the freedom
of mobility often comes with the cost of localization. Current
localization schemes are mostly based on omni-directional
antennas and use trigonometric or hyperbolic mathematics to
calculate the position by using arrival angles, signal strength,
or propagation time, often in combination with post-processing
approaches such as fingerprinting [1], [2]. The rare approaches
using directional antennas solely pursue the goal of estimating
the Direction of Arrival (DoA).

The research presented in this paper aims at using nodes
deployed in the field (e.g., stations along a conveyor line) for
localization purposes fully supporting antennas with arbitrary
characteristics. This includes (highly) directional antennas, but
also antennas with limited omni-directional radiation patterns.
To improve the performance, our Received Signal Strength
(RSS) fingerprinting approach calculates the position in an

iterative manner refining it to the requested resolution. Several
position refinement algorithms were implemented applying
either different up-scaling techniques or a gradient search.
Common for all of them is that the RSS fingerprints at the
up-scaled sampling points are obtained by calculations, which
requires models of the angle dependent antenna gains. We
rely on a numerical modeling approach already discussed in
[3] based on actual, high-resolution antenna radiation patterns.
Furthermore, as the iterative position refinement introduces
additional computation costs, we mitigate this by a fast initial
position estimation algorithm. This initial step is based on
creating clusters over the RSS fingerprint map which represent
areas where certain signal conditions are met. A comparison
of clustering algorithms based on their suitability for the initial
position determination was already presented in [4].

In this article we present the first implementation of an
overall system and the evaluation of different scenarios typical
for industrial applications. Focus is set on the investigation of
accuracy vs. efficiency being an important trade-off for many
applications. Section III presents the clustering-based initial
position determination idea and multiple recursive position
refinement algorithms. Section IV describes the proof-of-
concept implementation and the results of an evaluation based
on simulations and first measurements including issues of
noise influence on the location accuracy.

II. RELATED WORK

The basic idea of localization is that the node to be localized
(the target node) needs to be within range of several receivers
(anchor nodes). The anchors observe distance-relevant param-
eters (field strength, propagation time or angle-of-arrival). In
the case of self-localization the target node observes these
parameters itself.

Although the RSS can be directly converted to the distance
(thus position) using radio propagation models, the simpler
way of determining a target’s position is based on finger-
printing techniques. The idea behind RSS fingerprinting is to
measure (or compute) the RSS at certain sampling points over
the area of interest and later compare the actual measured
RSS with the pre-measured (computed) RSS fingerprints. A
well-known example is the RADAR system [5]. However, con-
ducting actual measurements over a large localization area is a
time consuming and expensive process. Therefore, algorithms
to reduce the effort for fingerprinting have been researched
extensively. Reducing the number of measured fingerprints and



calculating the rest of them by interpolation has been proposed
in [6]. In [7] an automatic approach is proposed to both build
a radio map and to assess the best system calibration that
fits the required positioning quality. In summary, with these
fingerprinting approaches, for many cases sufficiently accurate
methods for indoor localization can be achieved.

Most RSS-based systems use omni-directional antennas, due
to the fact that the assumption of a uniform antenna gain in
all directions allows (theoretically) simple algorithms [1]. Nev-
ertheless, this assumption is not always valid, especially for
cheap patch antennas in modern portable devices. The usage
of directional antennas for RSS-based localization has also
been discussed in several publications. In [8] the propagation
characteristics of such directional antennas are analytically
investigated for angle-of-arrival (AoA) applications. It also
covers the effects of multipath propagation and none-line-
of-sight (NLOS) situations, which are particularly important
for localization tasks. Nevertheless, most of the practical
approaches described in literature use directional antennas in a
sectoral manner only, either through rotating antenna platforms
or (switched) antenna arrays.

In [9] a rotating directional antenna is mounted on a moving
beacon. By adding a GPS receiver on the moving node it acts
as a reference that allows position estimation with a range-free
approach. This means that the signal strength is not used to
calculate the distance directly. Rather, the current position and
angle of the rotating antenna together with the AoA estimation
of the response signal from the static node can be used to
determine an absolute position. Instead of a rotating antenna,
the authors of [10] use a setup with two perpendicular antennas
per node. The position of the transmitter can be determined by
comparing the RSS values at the antennas and then calculating
the intersection. Similarly, in [11] several planar antennas are
combined into a three-dimensional unit so that direction and
position of a transmitter in the room can be estimated by
switching between the individual directional antennas. The
principle behind this method is, therefore, the combination
of multiple angular information similar to triangulation. An
interesting feature of this work is that it is possible to de-
termine the position with only one node by an appropriate
arrangement of the patch antennas. This approach can also
applied in combination with fingerprinting, which was shown
in [12], where a spherical setup of directional antennas was
used.

A general trend in the field of localization systems is also
the use of machine learning and neural networks. This is
for example shown in [13], where the K-Means clustering
algorithm is used to create a more accurate fingerprinting
map. In this paper, the clustering algorithm is used to mit-
igate environmental effects, such as multipath propagation
and shadowing, and basically acts as filter that performs
better than standard averaging operations. Similarly, in [14] a
convolutional neural network (CNN) is applied to first train a
model in the offline phase using the collected RSS data, which
is subsequently used for localization in the online phase. In
[15] this is further refined by combining multiple machine

learning algorithms which results in an increased robustness.
Generally, machine learning approaches and neural networks
can be rather processing time intensive, especially in the
online phase. Therefore, the authors in [16] investigated the
offloading of the localization system to a Field Programmable
Gate Array (FPGA).

III. PROPOSED CONCEPTS

RSS fingerprinting has been the most prevailing indoor lo-
calization method in the past and has been extensively studied.
The major drawback concerning manual RSS measurements is
tackled either by reducing the number of measured sampling
points and using interpolation (often combined with modern
machine learning algorithms) or entirely skipping them by
the usage of profound propagation models. Attempts to re-
calibrate the RSS map in the position determination phase are
also made, e.g., to mitigate disturbances. RSS is well known
to be prone to error caused by various environmental effects,
however, these can reduced by careful antenna selection and
RSS map planning. In one of our previous works [17] we
approached this issue for the first time by using directional
antennas for RSS fingerprinting.

A second drawback of basic RSS fingerprinting consist in
a balance between accuracy and performance. Low resolu-
tion RSS sampling points lead to low positioning accuracy,
while high resolution increase computational expenses. This
is especially evident in industrial applications, with potentially
a high number of target nodes. Instead of searching for
the best matching fingerprint over the entire RSS map, we
propose to first quickly identify a rough initial solution of
the target and then refine it, substantially reducing CPU time
without any degradation in accuracy. This concept has been
already adopted in some localization systems regardless of the
underlying radio technology employed (e.g. [18] where sensor
nodes are localized by a single drone), but we determine the
initial position by a novel RSS map analysis method: (1)
during initialization, the RSS map is created and analyzed
based on machine learning algorithms by clustering the finger-
prints resembling similar signal conditions; (2) in the position
determination phase, the RSS values that are measured can
be quickly assigned to best matching cluster; and (3) the
(iterative) position refinement is conducted from the cluster’s
midpoint by up-sampling of the RSS values within the selected
cluster.

A. RSS Map Building for Directional Antennas

Our RSS map building concept was introduced in our
previous works [3], [4] and will be discussed here only
briefly. Unless intention is to obtain the entire RSS map by
means of measurements, profound models of the radio signal
propagation, the environment and antennas are a must. When it
comes to directional antennas, often simplified models are used
not representing the full characteristics of the radiation pattern.
In [3] we already discussed a numerical modeling approach
by storing the measured antenna gains within look-up tables
as (angle; gain) pairs. The look-up table can be created (based



TABLE I
DEFINED SIGNAL STRENGTH LEVELS [19]

RSS [dB] Expected quality Quality level

-30 Maximum signal strength Excellent (E)
-50 Excellent signal strength Excellent (E)
-60 Good and reliable signal strength Good (G)
-67 Reliable signal strength Medium (M)
-70 Weak signal strength Weak (W)
-80 Unreliable signal strength Weak (W)
-90 Connection loss Connection Loss (CL)

on specification or measurements) with any resolution, again
depending on the trade-off between the accuracy (of the
model) and the needed effort for creating the look-up table.
Since the angle between an anchor and sampling point can
be calculated by simple trigonometry, the directional antenna
gain can be easily included for generating the RSS values at
every sampling point in the map.

This approach has a second advantage: it enables us to
detect overlapping areas of practically any number of antennas
and with any types of patterns. When it comes to localization,
at least 3 anchors are needed. To detect the overlapping area,
it is sufficient to iterate through the RSS map and at each
sampling point analyze the RSS fingerprint. We have done this
by selecting the three highest RSS values and converting them
to the corresponding three RSS levels as defined in table I.

Then, the 3 RSS levels are converted to a class number
which represents a combined signal quality. With 3 RSS
values per sampling point, and with the 4 signal levels, we
end up having 20 classes (calculated using combinations with
repetition). The additional connection loss (CL) class contains
all the sampling points with insufficient number of anchors in
reach.

B. RSS map Clustering

Once the RSS fingerprints are all converted to a signal
quality class number, the ones belonging to the same class
are further processed. We run a clustering algorithm over the
them to divide the RSS map into smaller areas with known
signal quality classes, center points, and sizes. The resulting
clusters heavily depend on the chosen clustering algorithm. In
our previous work [4] we conducted a detailed analysis on K-
means and Mean-Shift with focus on the cluster quality and
suitability for our application. K-means is a well-documented
algorithm and widely used for clustering data. It excels by a
low computational time but has a crucial drawback: k, the
number of clusters to be formed, is unknown beforehand.
Since we want a highly automated system, we tried to find
the best number of clusters by iterative repetition until some
threshold is met. As shown in [4], a robust solution is an
iteration until all clusters fall under a specific size. Opposite
to this, the Mean-Shift algorithm finds the best number of
clusters itself, hence it does not require additional calculations.
Its drawback is that it is computationally expensive (O(n2))

and often produces larger clusters, hardly dividing the RSS
map, which is not optimal for our application.

While working with real antennas, arbitrarily shaped and
differently sized clusters could provide the best results. This
could lead to problems when working with a parametric
algorithm such as K-means. Therefore, with an eye on the
future use of hardware, we extended the work with Affinity
Propagation and HDB-Scan. Affinity Propagation is a high-
speed algorithm, especially when working with a large number
of clusters, which is feasible in large scale scenarios. HDB-
Scan is a popular algorithm, too, especially due to its noise-
canceling abilities.

C. Fast Initial Position Estimation

The signal quality class based clustering of the RSS map
provides several advantages for initial position estimation.
First, the computed cluster centers can be seen as a new RSS
map with a reduced number of carefully selected sampling
points. Second, during position calculation, the measured RSS
values can be converted to a class number using the same
principle. Hence, we can limit the initial position search within
that particular class. Finally, as a cluster identifies a small
area, the initial position is estimated with a (relatively) high
accuracy.

In the future we also intend to extend the computed clusters
with a additional information (as e.g. a list of the anchor nodes
in range) for furthermore optimizing the initial position search
algorithm.

D. Position Refinement Algorithm

Once a best matching cluster is found, the position needs
to be refined to increase the localization accuracy. With the
cluster center point taken as the initial position, the simplest
approach is to define the (refinement) search area as a square
with a side length equaling the cluster’s diameter. We consid-
ered multiple algorithms based on up-sampling the cluster and
one algorithm based on a gradient search.

1) Algorithms based on up-sampling: The up-sampling
algorithms are implemented in an iterative manner: the cluster
(search area) is first sampled with lower resolution, and the
best matching fingerprint is determined, e.g., using the Root
Mean Square Error (RMSE) measure. Then, a smaller sub-
area is defined around the selected fingerprint, which is then
sampled with higher resolution in order to find a better match.
This can be then repeated until the desired resolution is
achieved.

Beside this simple recursive algorithm (SREC), a couple
of variants of the algorithm have been implemented, both
using the same principle. The goal of the first variant is to
further increase accuracy by using the K-Nearest Neighbor
(KNN) classification method. Here several most best-matching
fingerprints are chosen instead of one, and the target po-
sition is calculated as a mean (simple or weighted) of the
selected fingerprints. In the second variant the sampling points
are generated using the Latin Hypercube Sampling (LHS)
method, which generates near-random sampling points. In a



two-dimensional case the result of the LHS algorithm is a
square grid, where in each row and column only one sample
position exists. The idea behind this is to reduce the number of
generated samples, hence improve computation time without
significant accuracy impairment.

Figure 1 shows the principle of the up-sampling algorithms:
On the left-hand side the simple recursive algorithm is depicted
with the sampling points driven all over the entire search area
around the initial position. By contrast, the right-hand side
of the figure shows a Latin Hypercube sampling-based (LHS)
algorithm with the decreased number of sampling points.

initial search area

refinement area 

initial position

actual position

estimated position

sampling point

Basic Recursive 
Algorithm

LHS Recursive 
Algorithm

Fig. 1. Principle of the basic recursive and recursive LHS algorithm

Figure 2 illustrates the resulting position refinement cycles
of a single position calculation. The triangles numbered from 1
to 4 are the anchor nodes, the green dot stands for the target’s
actual position, and the numbered red dots are as follows: (1)
is the initial position (in this case was simply selected as the
geometrical midpoint of the anchor node positions), (2) thew
intermediate refined position, and (3) the final refined position
after reaching the defined (in this case 0.25 m) sampling point
resolution.

1
2

3

Fig. 2. A single position calculation cycle of the SREC algorithm

2) Gradient search based algorithm: Beside the recursive
algorithms relying on the up-sampling principle, we have
also implemented a gradient search-based algorithm using this
well-known optimization technique. In our implementation the
algorithm computes 8 neighbor fingerprints around the initial
position and selects the best matching one. The procedure is
repeated with respect to best matching neighbor, until no better
match is found. The principle of our gradient search algorithm
is shown in figure 3. The weak point of the gradient search is
that it is a local optimization algorithm. If there are multiple

local minima on the RSS map, the gradient search can reach
a false local minimum and does not reach the position closest
to the actual position.

1st  iteration 2nd  iteration 3rd  iteration

initial position

actual position

estimated position

sampling point

1st iteration 2nd iteration 3rd iteraton

best matching point

Fig. 3. Gradient search of target position

IV. PROOF OF CONCEPT

In order to validate our concepts, all of the discussed
concepts have been implemented in Python. The section is
organized as follows: First, a comparison of our selected four
clustering algorithms is presented which was done based on
algorithm evaluation criteria recommended in the literature.
Second, the position determination algorithms are evaluated
based on a selected simulation setup with primary focus on
the computation time vs. localization accuracy.

A. Clustering algorithms evaluation

The requirements for cluster algorithms are different for
each application, and therefore the evaluation of the cluster
quality is a very individual task. To get some general direc-
tions we followed on the recommendations in [20] and used
three scoring algorithms: (I)Silhouette analysis, (II)Calinski
Habarasz score and (III)Davies Bouldin score. Each of them
is designed to determine the ideal number of clusters, but
focuses on a different aspect of clustering, allowing us to
view the issue from different perspectives. The silhouette
analysis evaluates for each data sample, how similar it is to
its own cluster compared to the other clusters, and provides a
score between [-1, 1]. A high value indicates a well-formed
cluster, i.e., that the samples were assigned to an appropriate
cluster. The Calinski Harabasz score is defined as the ratio
between the within-cluster dispersion and the between-cluster
dispersion. The higher the value, the better the formed clusters
are. Davis Bouldin score evaluates intra-cluster similarity and
inter-cluster differences and indicates well-formed clusters by
the lowest value converging to zero.

To evaluate the quality of the clusters, we used the same
method as previously in [4]. Fifty localization scenarios were
generated, and the three scores were calculated. The result are
listed in table II.

Our analysis lead us to the following conclusions:
Even though each of the algorithms has a different compu-

tational complexity, all of them had similar process times. This



TABLE II
CLUSTER ALGORITHM COMPARISON

K-means MS HDB-Scan AP

Time [ms] 3.903 4.071 3.808 3.716
Silhouette-Analysis 0.395 0.555 0.449 0.475

Calinski-Harabasz score 231.1 161.4 155.3 193.0
Davies–Bouldin score 0.640 0.532 2.180 0.617

leads us to the conclusion that for small data-sets like ours,
the choice of cluster algorithm does not affect the processing
time a lot. The Silhouette-score of all 4 algorithms were close
to 0.5 which is a rather good score. Our cluster size-dependent
version of K-Means was preferred by the Calinski-Harabasz-
algorithm. The clustering done with HDB-Scan is rated poorly
overall, especially by the Davies-Bouldin method leading us to
the assumption that HDB-Scan creates many densely packed
clusters.

Moreover, since the idea is to use the center of the clusters
as an initial starting point for the localization, the actual
form of the clusters is important. Both Affinity Propagation
and HDB-Scan do not create spherical clusters predominantly,
which means that the centers of these clusters could be located
outside the clusters. This would automatically lead to a wrong
initial position since the cluster defines the high probabil-
ity area of the target’s location. Based on the evaluation,
it was decided to restrict further research to the K-means
and Mean-Shift algorithms and test first our clustering-based
initial position estimation aided RSS fingerpinting concept.
Nevertheless, in the future we will consider to use HDB-Scan
for post-processing the computed positions, as its excellent
noise handling could indeed bring advantages.

B. Position determination algorithms estimation

The aim of the section is to compare the different lo-
calization algorithms in combination with several possible
initial position determination algorithms. Figure 4 depicts the
simulation use-case. It is a 54 meter times 29 meter area,
which is a realistic size for an industrial environment. We have
placed 16 anchors with 15 dBi 60 degrees sector antennas.
As our intention is to illustrate the algorithms and compare
the accuracy vs. computation time, the simulations have been
based on free space propagation with a path-loss model for
the 2.4 GHz carrier frequency. In order to include noise
and interference from reflections or multipath propagation we
added noise to these simulated RSS values as described in
section IV-D4.

The 16 anchors have been placed such as to represent
different actual installation situations on factory floors and
allow us to evaluate situations with different requirements.
It should be noted that our antenna placement is in some
cases deliberately not optimized for localization performance
to show the effects of such existing situations. Optimal (ad-
ditional) anchor placement for localization is not within the
scope of this paper. The area with trajectory T1 and anchors
A10 to A14 is an area where precise position estimation is

required, e.g., due to safety issues, hence, the area of interest
is covered by all four main lobes. The area with trajectory T2
and anchors A1 to A10 could be used for localizing targets
moving along, e.g., a conveyor belt, with different wireless
stations positioned only according to the production tasks
having antenna orientations not optimized for localization.
Finally, anchors A15 and A16 are envisioned as point-to-point
wireless communication replacement, but are able to take part
in the position determination along trajectory T3.

A1 A2 A3 A4

A6

A7

A8 A9 A10

A14

A13 A12

A10

A16A15A5

T1

T2

T3

Fig. 4. Scenario setup with simplified drawing of main antenna lobes

The first step in the simulation is to create the RSS map and
convert the RSS fingerprints to the signal quality classes as
explained in section III-A. Figure 5 shows the quality classes
of the simulation scenario. The points in the heat map resemble
the combined signal quality value of the three strongest RSS
fingerprints measured by the anchors in reach. As the figure
suggests, the trajectory T1 resides in an area which is well
suited for localization with strong combined signal quality in
most of the points. Trajectory T2 passes through areas with
diverse combined signal quality with sharp transitions. Finally,
at trajectory T3 the combined signal quality is more uniform.
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Fig. 5. Signal quality class-based RSS map of the test simulation setup

C. Basic RSS fingerprinting algorithm

As the goal was to reduce computation time by reducing
the number of sampling points, we first tested how the
resolution of the sampling points affects the accuracy and the



computation time which was measured by using the default
timer from the timeit library. In the first run, the resolution
was set to 1 m, which equals 1650 sampling points in total. In
the second run it was set to 2 m (420 points) and finally to 3 m
(190 sampling points). Table III lists the simulation results of
the basic RSS fingerprinting algorithm as reference. Although
there is no linear dependency, we could very roughly say, that
by lowering the resolution of the sampling points by a meter,
the accuracy dropped at least half a meter. Concerning the
CPU time, there is a clear relationship between the number
of sampling points and the measured run times: The 1 m
resolution means 8.68 times more sampling points compared
to the 3 m resolution. Accordingly, the average CPU time is as
well approximately 8.5 times higher. Finally, the 2 m resolution
has 2.2 more sampling points and twice the execution time.

TABLE III
BASIC ALGORITHM RESULTS

Trajectory Resolution Mean Variance Runtime
[m] [m] [m] [ms]

I
1 0.345 0.023 93
2 1.039 0.07 22
3 1.39 0.78 11

II
1 0.92 1.41 95
2 1.47 1.16 22
3 1.93 2.12 9

III
1 0.73 0.32 95
2 1.36 1.2 21
3 2.27 2.36 9

D. Fast initial position computation algorithms comparison

To validate our clustering-based initial position estimation
scheme, we ran several tests with different possible initial
position estimation options. The up-sampling algorithms were
configured to a highest resolution of 0.25 m, which equaled
the step size in the gradient search.

1) Simple initial position estimation algorithm: In this sce-
nario the basic RSS fingerprinting algorithm with the low, 3 m
resolution was used for computing the initial position, and then
the 3 types of up-sampling and the gradient search algorithms
were applied. Table IV shows the corresponding results. The
initial position run time (CPUinit−pos) is the average CPU
time needed for the initial position determination, whereas
the (CPUrefine) is the CPU time needed for the position
refinement in ms. Compared to the basic algorithm with 3 m
resolution, an improvement of the accuracy can be noticed
with just a few ms overhead. At the same time, the accuracy
is higher compared to the 1 m resolution basic algorithm.

2) Signal Quality Class-based simple initial position esti-
mation: In this second run we created a 1 m resolution RSS
map and converted the RSS fingerprints to the signal quality
class numbers. However, we did not apply any clustering algo-
rithms, hence each of the 20 classes contained a relatively long
list of sampling points. The results of the simulation run are
listed in table V. In general, there is a significant improvement
of the accuracy while having just a minor overhead in CPU

TABLE IV
SIMPLE INITIAL POSITION ESTIMATION ALGORITHM

Trajectory Alg. Mean Var CPUinit-pos CPUrefine
[m] [m] [ms] [ms]

I

GRAD 1.00 0.31 12 1.3
SREC 0.61 0.24 14 3.8
LHS 0.63 0.27 12 3.5
KNN 0.41 0.05 13 3.1

II

GRAD 1.32 2.4 12 1.5
SREC 1.26 2.29 14 3.8
LHS 1.34 2.39 12 4.7
KNN 1.36 2.9 13 3.1

III

GRAD 1.35 2.73 12 1.3
SREC 1.66 3.21 14 3.8
LHS 1.74 3.69 12 3.3
KNN 1.78 3.64 13 3.3

time (up to 3.5 ms, which is lower than 4 % or 30 % of the CPU
time of the high- or low resolution algorithms, respectively).

TABLE V
RSS CLASS-BASED INITIAL POSITION ESTIMATION

Trajectory Alg. Mean Var CPUinit-pos CPUrefine
[m] [m] [ms] [ms]

I

GRAD 0.18. 0.04 12.5 1.3
SREC 0.25 0.03 12.5 3.0
LHS 0.18 0.02 13 3.5
KNN 0.14 0.02 13 3.1

II

GRAD 0.61 2.3 12 1.5
SREC 0.62 1.53 12 3.1
LHS 1.68 1.55 13 3.5
KNN 0.62 1.72 12 3.2

III

GRAD 0.52 0.37 12.5 1.3
SREC 0.39 0.19 12.5 3.2
LHS 0.53 0.37 12.5 3.3
KNN 0.46 0.31 12.5 3.3

3) Clustering-based initial position estimation: In this sim-
ulation run we applied the clustering algorithms as suggested
on our high (1 m) resolution RSS map. In the first case we
selected K-means. The algorithm parameters were configured
in such a manner to obtain a higher number of smaller clusters
(up to 2 m in diameter). Table VI shows the simulated results.
Compared to the 1 m resolution basic algorithm, there is
a major improvement in the measured times and a further
improvement in the localization accuracy. Finally, we tested
the Mean-Shift clustering algorithm. For our particular sce-
nario the algorithm yielded a rather low number of larger
clusters. The results are shown in table VII. Compared to the
basic algorithm with high resolution, there is a degradation in
accuracy (roughly 0.5 m), but at the same time a substantial
improvement of the computation time.

4) Preliminary measurement results: At the current stage
of the project the simulation setup from the previous section
has not yet been verified by actual measurements. So far first
steps toward setting up the system and antenna model gain
measurements have been made. The measurements were done
to verify the specified radiation pattern and (if necessary)
calibrate our models. Three simple 60 degrees horn antennas
were tested. The antennas were placed in a straight line, with



TABLE VI
K-MEANS WITH HIGH NUMBER OF CLUSTERS CLASS-BASED INITIAL

POSITION ESTIMATION

Trajectory Alg. Mean Var CPUinit-pos CPUrefine
[m] [m] [ms] [ms]

I

GRAD 0.53 0.19 4 1.6
SREC 0.30 0.03 5 3.1
LHS 0.28 0.04 4 3.8
KNN 0.22 0.02 5 3.3

II

GRAD 0.75 1.3 4 1.6
SREC 0.77 1.67 5 3.2
LHS 0.73 1.51 4 3.8
KNN 0.69 1.54 5 3.5

III

GRAD 0.74 0.4 4 1.8
SREC 0.61 0.4 4 3.2
LHS 0.61 0.29 5 3.6
KNN 0.62 0.37 4 3.2

TABLE VII
MEAN-SHIFT ALGORITHM WITH LOW NUMBER OF CLUSTERS

Trajectory Alg. Mean Var CPUinit-pos CPUrefine
[m] [m] [ms] [ms]

I
GRAD 0.78 0.42 1.8 2.5
SREC 0.53 0.17 1.7 3.6
LHS 0.52 0.13 1.7 4.6
KNN 0.51 0.14 1.6 3.6

II
GRAD 1.55 6.02 1.8 2.5
SREC 1.48 5.55 1.6 3.6
LHS 1.41 5.32 1.7 4.5
KNN 1.45 5.33 1.6 3.6

III
GRAD 1.07 1.03 2 2.6
SREC 1.09 0.91 1.7 3.6
LHS 1.13 1.11 1.7 4.6
KNN 1.12 1.03 1.6 3.6

0.4 m distance between them. The RSS(i) was measured for
around 80 s at 1 m distance from the middle antenna. Based
on the mean value of the measured RSS and the path loss
propagation equation the actual antenna gains were computed.

Besides calculating the actual antenna gains, we used the
data to test our refinement algorithms. We defined a 12 m x
12 m search area around the anchors and computed the RSS
map using the path-loss propagation model. The mean value
and variance of the estimated position error were calculated
based on the unfiltered values. The measured RSS values
were filtered by a median filter. The results are listed in table
VIII. As expected, the KNN refinement algorithm reached the
highest accuracy (with just 0.21 m)

TABLE VIII
LOCALIZATION ERROR BASED ON THE MEASURED RSS DURING ANTENNA

CALIBRATION

Name Mean [m] Var. [m] CPU total [ms]
Basic (1 m) 0.49 0.10 12.7

SREC 0.39 0.07 4.0
KNN 0.21 0.14 4.1
LHS 0.43 0.12 3.8
Grad 0.36 0.11 3.2

In order to evaluate the simulation use-case in the presence
of noise, but due to the lack of measurements at the current

state, we decided to extract the measured noise from the
antenna calibrations and feed it to the simulated RSS values.
The mean value of the noise at the anchors were 0.1 dB, 0.2 dB
and 0.65 dB, respectively, the variance 0.7 dB, 0.65 dB and
1.11 dB. We tested our most successful algorithm (the KNN
up-sampling in combination with the K-means) against the
basic 1 m and 3 m resolution algorithms. The results are listed
in table IX.

TABLE IX
LOCALIZATION ERROR IN PRESENCE OF NOISE

Trajectory Alg. Mean [m] Var [m] CPU time [ms]

I
Basic 1 m 0.57 0.06 90
Basic 3 m 1.44 0.27 11

KNN 0.37 0.02 7

II
Basic 1 m 1.33 3.31 91
Basic 3 m 2.12 2.63 11

KNN 1.19 1.56 7

III
Basic 1 m 2.01 1.59 90
Basic 3 m 2.72 3.73 11

KNN 1.54 1.69 7

As expected, the accuracy dropped, but again the KNN
algorithm outperformed the basic algorithm, both in terms
of accuracy and CPU time. For a final visualization figure
6 shows the simulation setup. The green line denotes the
actual trajectory of the targets, the blue line the trajectory
calculated by the 1 m resolution basic algorithm and finally,
the orange line marks the trajectory obtained by KNN up-
sampling algorithm. Both algorithms performed well in terms
of accuracy for trajectory T1. The calculated T2 and T3
trajectories show some major deviations from the actual ones.
However, as the intention was to compare the localization
algorithms solely, we deliberately show “raw”, unprocessed
calculated positions. Typically such outliers are easily detected
and removed by means of filtering.
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Fig. 6. Target trajectory results: basic low resolution vs. the KNN up-sampling

V. CONCLUSION AND OUTLOOK

This paper introduces a localization approach based on opti-
mizing the search through the RSS fingerprint map for anchors
using antennas with any type of radiation patters. We proposed
a clustering-based algorithm for efficiently finding a suitable
initial solution which is then refined to the desired resolution
in an iterative manner. Several initial position estimation
algorithms in combination with the refinement algorithms were
compared against the traditional (basic) fingerprinting method.



Using the basic algorithm there is a clear trade-off between
accuracy and CPU time: higher resolution RSS maps lead
to higher accuracy, but are computationally expensive and
vice versa. Our proposed algorithms allow us to reach higher
resolution (thus achieving potentially higher accuracy) and
at the same time significantly shorten the execution times.
Based on simulation and first measurement results, we showed
that the clustering-based initial position estimation algorithm
provides good estimates. The size of the clusters plays a
significant role: a higher number of small clusters means a
more accurate initial position estimate, hence, choosing the
right clustering algorithm was essential.

Concerning the position refinement, the results show that the
up-sampling algorithms perform better in terms of accuracy
over the gradient search algorithm. In particular, the K-Nearest
Neighbor based algorithm achieves the highest accuracy. Op-
posite to our expectations, the Latin Hypercube Sampling
(LHS) based algorithm brought no further improvement of
the run time. On the one hand, the algorithm does reduce the
number of sampling points, but in the other hand, introduces
overhead due to generating the pseudo-random distribution.

Further midterm activities are focused on the influence of
noise on the localization accuracy which we want to assess
both by means of simulation and measurements. Simulation
will focus on the comparison of omni-directional vs. direc-
tional antennas for optimal anchor placement and experiments
will be conducted to extract statistical parameters for calibrat-
ing the simulation models. We also intend to investigate the
best number of anchors taken for position estimation in over-
determined systems. Although taking the minimal required 3
(for two-dimensional) or 4 (for three-dimensional localization)
anchors which measured the highest RSS values seems a
logical choice (which is at the same time computationally the
least expensive), parameters such as raw RSS- and estimated
distance variance, the quality of the antennas, etc. can be used
to weight the anchors to further improve accuracy. Moreover,
the position of anchors relative to each other (and the targets)
could significantly influence the accuracy (due to geometrical
dilution of position and the environment itself). All these facts
ask for a more profound anchor selection algorithm. Finally,
post-processing of the calculated positions is required, hence
different approaches based on filtering and weight adding to
the coordinate calculation of the target nodes (as for example
proposed in [21] for WSNs) will be investigated.
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