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ETAPS Foreword

Welcome to the 23rd ETAPS! This is the first time that ETAPS took place in Ireland in
its beautiful capital Dublin.

ETAPS 2020 was the 23rd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations of programming language developments,
analysis tools, and formal approaches to software engineering. Organizing these
conferences in a coherent, highly synchronized conference program enables researchers
to participate in an exciting event, having the possibility to meet many colleagues
working in different directions in the field, and to easily attend talks of different
conferences. On the weekend before the main conference, numerous satellite
workshops took place that attracted many researchers from all over the globe. Also, for
the second time, an ETAPS Mentoring Workshop was organized. This workshop is
intended to help students early in the program with advice on research, career, and life
in the fields of computing that are covered by the ETAPS conference.

ETAPS 2020 received 424 submissions in total, 129 of which were accepted,
yielding an overall acceptance rate of 30.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2020 featured the unifying invited speakers Scott Smolka (Stony Brook
University) and Jane Hillston (University of Edinburgh) and the conference-specific
invited speakers (ESOP) Isil Dillig (University of Texas at Austin) and (FASE) Willem
Visser (Stellenbosch University). Invited tutorials were provided by Erika Abraham
(RWTH Aachen University) on the analysis of hybrid systems and Madhusudan
Parthasarathy (University of Illinois at Urbana-Champaign) on combining Machine
Learning and Formal Methods. On behalf of the ETAPS 2020 attendants, I thank all the
speakers for their inspiring and interesting talks!

ETAPS 2020 took place in Dublin, Ireland, and was organized by the University of
Limerick and Lero. ETAPS 2020 is further supported by the following associations and
societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Tiziana Margaria (general chair, UL and Lero),
Vasileios Koutavas (Lero@UCD), Anila Mjeda (Lero@UL), Anthony Ventresque
(Lero@UCD), and Petros Stratis (Easy Conferences).



vi ETAPS Foreword

The ETAPS Steering Committee (SC) consists of an Executive Board, and
representatives of the individual ETAPS conferences, as well as representatives of
EATCS, EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbriicken), Marieke Huisman (chair, Twente), Joost-Pieter Katoen (Aachen and
Twente), Jan Kofron (Prague), Gerald Liittgen (Bamberg), Tarmo Uustalu (Reykjavik
and Tallinn), Caterina Urban (Inria, Paris), and Lenore Zuck (Chicago).

Other members of the SC are: Armin Biere (Linz), Jordi Cabot (Barcelona), Jean
Goubault-Larrecq (Cachan), Jan-Friso Groote (Eindhoven), Esther Guerra (Madrid),
Jurriaan Hage (Utrecht), Reiko Heckel (Leicester), Panagiotis Katsaros (Thessaloniki),
Stefan Kiefer (Oxford), Barbara Konig (Duisburg), Fabrice Kordon (Paris), Jan
Kretinsky (Munich), Kim G. Larsen (Aalborg), Tiziana Margaria (Limerick), Peter
Miiller (Zurich), Catuscia Palamidessi (Palaiseau), Dave Parker (Birmingham),
Andrew M. Pitts (Cambridge), Peter Ryan (Luxembourg), Don Sannella (Edinburgh),
Bernhard Steffen (Dortmund), Mari€lle Stoelinga (Twente), Gabriele Taentzer
(Marburg), Christine Tasson (Paris), Peter Thiemann (Freiburg), Jan Vitek (Prague),
Heike Wehrheim (Paderborn), Anton Wijs (Eindhoven), and Nobuko Yoshida
(London).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoyed
ETAPS 2020. Finally, a big thanks to Tiziana and her local organization team for all
their enormous efforts enabling a fantastic ETAPS in Dublin!

February 2020 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President



Preface

This volume contains the papers presented at the 23rd International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS), which took
place in Dublin, Ireland, during April 27-30, 2020. The conference series is dedicated
to foundational research with a clear significance for software science. It brings
together research on theories and methods to support the analysis, integration, syn-
thesis, transformation, and verification of programs and software systems.

This volume contains 31 contributed papers selected from 98 full paper submis-
sions, and also a paper accompanying an invited talk by Scott Smolka (Stony Brook
University, USA). Each submission was reviewed by at least three Program Committee
members, with the help of external reviewers, and the final decisions took into account
the feedback from a rebuttal phase. The conference submissions were managed using
the EasyChair conference system, which was also used to assist with the compilation
of these proceedings.

We wish to thank all the authors who submitted papers to FoSSaCS 2020, the
Program Committee members, the Steering Committee members and the external
reviewers. In addition, we are grateful to the ETAPS 2020 Organization for providing
an excellent environment for FoSSaCS 2020 alongside the other ETAPS conferences
and workshops.

February 2020 Jean Goubault-Larrecq
Barbara Konig
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Neural Flocking: MPC-based Supervised
Learning of Flocking Controllers

(0)Usama Mehmood?, Shouvik Roy', Radu Grosu?, Scott A. Smolka®,
Scott D. Stoller!, and Ashish Tiwari3

1 Stony Brook University, Stony Brook NY, USA
umehmood@cs . stonybrook.edu
2 Technische Universitat Wien, Wien, Austria
3 Microsoft Research, San Francisco CA, USA

Abstract. We show how a symmetric and fully distributed flocking con-
troller can be synthesized using Deep Learning from a centralized flocking
controller. Our approach is based on Supervised Learning, with the cen-
tralized controller providing the training data, in the form of trajectories
of state-action pairs. We use Model Predictive Control (MPC) for the cen-
tralized controller, an approach that we have successfully demonstrated
on flocking problems. MPC-based flocking controllers are high-performing
but also computationally expensive. By learning a symmetric and dis-
tributed neural flocking controller from a centralized MPC-based one,
we achieve the best of both worlds: the neural controllers have high
performance (on par with the MPC controllers) and high efficiency. Our
experimental results demonstrate the sophisticated nature of the dis-
tributed controllers we learn. In particular, the neural controllers are
capable of achieving myriad flocking-oriented control objectives, includ-
ing flocking formation, collision avoidance, obstacle avoidance, predator
avoidance, and target seeking. Moreover, they generalize the behavior
seen in the training data to achieve these objectives in a significantly
broader range of scenarios. In terms of verification of our neural flock-
ing controller, we use a form of statistical model checking to compute
confidence intervals for its convergence rate and time to convergence.

Keywords: Flocking - Model Predictive Control - Distributed Neural Controller
- Deep Neural Network - Supervised Learning

1 Introduction

With the introduction of Reynolds rule-based model [16,17], it is now possible
to understand the flocking problem as one of distributed control. Specifically, in
this model, at each time-step, each agent executes a control law given in terms
of the weighted sum of three competing forces to determine its next acceleration.
Each of these forces has its own rule: separation (keep a safe distance away
from your neighbors), cohesion (move towards the centroid of your neighbors),
and alignment (steer toward the average heading of your neighbors). Reynolds

© The Author(s) 2020
J. Goubault-Larrecq and B. Koénig (Eds.): FOSSACS 2020, LNCS 12077, pp. 1-16, 2020.
https://doi.org/10.1007/978-3-030-45231-5_1
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Fig. 1: Neural Flocking Architecture

controller is distributed; i.e., it is executed separately by each agent, using
information about only itself and nearby agents, and without communication.
Furthermore, it is symmetric; i.e., every agent runs the same controller (same
code).

We subsequently showed that a simpler, more declarative approach to the
flocking problem is possible [11]. In this setting, flocking is achieved when the
agents combine to minimize a system-wide cost function. We presented centralized
and distributed solutions for achieving this form of “declarative flocking” (DF),
both of which were formulated in terms of Model-Predictive Control (MPC) [2].

Another advantage of DF over the ruled-based approach exemplified by
Reynolds model is that it allows one to consider additional control objectives
(e.g., obstacle and predator avoidance) simply by extending the cost function
with additional terms for these objectives. Moreover, these additional terms are
typically quite straightforward in nature. In contrast, deriving behavioral rules
that achieve the new control objectives can be a much more challenging task.

An issue with MPC is that computing the next control action can be compu-
tationally expensive, as MPC searches for an action sequence that minimizes the
cost function over a given prediction horizon. This renders MPC unsuitable for
real-time applications with short control periods, for which flocking is a prime
example. Another potential problem with MPC-based approaches to flocking is
its performance (in terms of achieving the desired flight formation), which may
suffer in a fully distributed setting.

In this paper, we present Neural Flocking (NF), a new approach to the
flocking problem that uses Supervised Learning to learn a symmetric and fully
distributed flocking controller from a centralized MPC-based controller. By doing
so, we achieve the best of both worlds: high performance (on par with the MPC
controllers) in terms of meeting flocking flight-formation objectives, and high
efficiency leading to real-time flight controllers. Moreover, our NF controllers can
easily be parallelized on hardware accelerators such as GPUs and TPUs.

Figure 1 gives an overview of the NF approach. A high-performing centralized
MPC controller provides the labeled training data to the learning agent: a
symmetric and distributed neural controller in the form of a deep neural network
(DNN). The training data consists of trajectories of state-action pairs, where a
state contains the information known to an agent at a time step (e.g., its own
position and velocity, and the position and velocity of its neighbors), and the
action (the label) is the acceleration assigned to that agent at that time step by
the centralized MPC controller.

We formulate and evaluate NF in a number of essential flocking scenarios:
basic flocking with inter-agent collision avoidance, as in [11], and more advanced
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scenarios with additional objectives, including obstacle avoidance, predator avoid-
ance, and target seeking by the flock. We conduct an extensive performance
evaluation of NF. Our experimental results demonstrate the sophisticated nature
of NF controllers. In particular, they are capable of achieving all of the stated
control objectives. Moreover, they generalize the behavior seen in the training
data in order to achieve these objectives in a significantly broader range of scenar-
ios. In terms of verification of our neural controller, we use a form of statistical
model checking [5,10] to compute confidence intervals for its rate of convergence
to a flock and for its time to convergence.

2 Background

We consider a set of n dynamic agents A = {1,...,n} that move according to
the following discrete-time equations of motion:

where p;(k) € R?, v;(k) € R?, a;(k) € R? are the position, velocity and accelera-
tion of agent i € A respectively at time step k, and dt € RT is the time step. The
magnitudes of velocities and accelerations are bounded by ¢ and a, respectively.
Acceleration a; (k) is the control input for agent ¢ at time step k. The acceleration
is updated after every n time steps i.e., n - dt is the control period. The flock
configuration at time step k is thus given by the following vectors (in boldface):

p(k) = [pi (k) -~ py (k)] (2)
v(k) = [v] (k) - vy (B)]T (3)
a(k) = [af (k) - ay (k)]" (4)

The configuration vectors are referred to without the time indexing as p,
v, and a. The neighborhood of agent i at time step k, denoted by N;(k) C A,
contains its A-nearest neighbors, i.e., the A other agents closest to it. We use
this definition (in Section 2.2 to define a distributed-flocking cost function) for
simplicity, and expect that a radius-based definition of neighborhood would lead
to similar results for our distributed flocking controllers.

2.1 Model-Predictive Control

Model-Predictive control (MPC) [2] is a well-known control technique that has
recently been applied to the flocking problem [11,19,20]. At each control step,
an optimization problem is solved to find the optimal sequence of control actions
(agent accelerations in our case) that minimizes a given cost function with respect
to a predictive model of the system. The first control action of the optimal control
sequence is then applied to the system; the rest is discarded. In the computation
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of the cost function, the predictive model is evaluated for a finite prediction
horizon of T' control steps.

MPC-based flocking models can be categorized as centralized or distributed. A
centralized model assumes that complete information about the flock is available
to a single “global” controller, which uses the states of all agents to compute
their next optimal accelerations. The following optimization problem is solved by
a centralized MPC controller at each control step k:

T—1
i J(k A kE+t|k)|? 5
a(k\k)v-u,aI(I;TT—l\k)<a ( )+ ; ”a( + | )H ( )

The first term J(k) is the centralized model-specific cost, evaluated for T control
steps (this embodies the predictive aspect of MPC), starting at time step k. It
encodes the control objective of minimizing the cost function J(k). The second
term, scaled by a weight A\ > 0, penalizes large control inputs: a(k 4+t | k) are
the predictions made at time step k for the accelerations at time step k + .

In distributed MPC, each agent computes its acceleration based only on its
own state and its local knowledge, e.g., information about its neighbors:

T—1
i Ji(k) + \- RS ANIE 6
I < (k) + ;Ila( +t k)| (6)

Ji(k) is the distributed, model-specific cost function for agent ¢, analogous to J (k).
In a distributed setting where an agent’s knowledge of its neighbors’ behavior
is limited, an agent cannot calculate the exact future behavior of its neighbors.
Hence, the predictive aspect of J;(k) must rely on some assumption about
that behavior during the prediction horizon. Our distributed cost functions are
based on the assumption that the neighbors have zero accelerations during the
prediction horizon. While this simple design is clearly not completely accurate,
our experiments show that it still achieves good results.

2.2 Declarative Flocking

Declarative flocking (DF) is a high-level approach to designing flocking algorithms
based on defining a suitable cost function for MPC [11]. This is in contrast to the
operational approach, where a set of rules are used to capture flocking behavior,
as in Reynolds model. For basic flocking, the DF cost function contains two terms:
(1) a cohesion term based on the squared distance between each pair of agents in
the flock; and (2) a separation term based on the inverse of the squared distance
between each pair of agents. The flock evolves toward a configuration in which
these two opposing forces are balanced. The cost function J¢ for centralized DF,
i.e., centralized MPC (CMPC), is as follows:

| | |A| Z Z ”pu” + ws - W (7)

€A jeA <)

J (p) =
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where w; is the weight of the separation term and controls the density of the flock.
The cost function is normalized by the number of pairs of agents, w;
as such, the cost does not depend on the size of the flock. The control law for
CMPC is given by Eq. (5), with J(k) = 3/_, JC (p(k +t | k).

The basic flocking cost function for distributed DF is similar to that for
CMPC, except that the cost function JP for agent i is computed over its set of

neighbors N;(k) at time k:

W) = g 3 Il e Y 0

2
JEN(K) JEN(K) [lpi1I?

The control law for agent i is given by Eq. (6), with J; (k) = Y., JP (p(k +t | k)).

3 Additional Control Objectives

The cost functions for basic flocking given in Egs. (7) and (8) are designed to
ensure that in the steady state, the agents are well-separated. Additional goals
such as obstacle avoidance, predator avoidance, and target seeking are added
to the MPC formulation as weighted cost-function terms. Different objectives
can be combined by including the corresponding terms in the cost function as a
weighted sum.

Cost-Function Term for Obstacle Avoidance. We consider multiple rectangular
obstacles which are distributed randomly in the field. For a set of m rectangular
obstacles O = {01, s, ..., Oy, }, we define the cost function term for obstacle

avoidance as:
JOA(p70 ZZ (9)
IAIIOI ‘15T Hp <>H

where o is the set of points on the obstacle boundaries and o;i) is the point on
the obstacle boundary of the j* obstacle O; that is closest to the i‘" agent.

Cost-Function Term for Target Seeking. This term is the average of the squared
distance between the agents and the target. Let g denote the position of the fixed
target. Then the target-seeking term is as defined as

Jrs(p Z Ipi = glI® (10)
|A| €A

Cost-Function Term for Predator Avoidance. We introduce a single predator,
which is more agile than the flocking agents: its maximum speed and acceleration
are a factor of f, greater than ¥ and a, respectively, with f, > 1. Apart from
being more agile, the predator has the same dynamics as the agents, given by



6 U. Mehmood et al.

Eq. (1). The control law for the predator consists of a single term that causes it
to move toward the centroid of the flock with maximum acceleration.

For a flock of n agents and one predator, the cost-function term for predator
avoidance is the average of the inverse of the cube of the distances between the
predator and the agents. It is given by:

Jpa (Pvp red (11)
v |A| ; ||pz ppred”

where ppreq is the position of the predator. In contrast to the separation term
in Egs. (5)-(6), which we designed to ensure inter-agent collision avoidance, the
predator-avoidance term has a cube instead of a square in the denominator. This
is to reduce the influence of the predator on the flock when the predator is far
away from the flock.

NF Cost-Function Terms. The MPC cost functions used in our examination of
Neural Flocking are weighted sums of the cost function terms introduced above.
We refer to the first term of our centralized DF cost function J¢(p) (see Eq. (7))
as Jeones(P) and the second as Jgep,(p). We use the following cost functions Jq,
Js, and J3 for basic flocking with collision avoidance, obstacle avoidance with
target seeking, and predator avoidance, respectively.

Jl (P) = Jcohes(p) + wg - Jsep(p) (12&)
JQ(pao) = Jcohes(p) + Wsg * Jsep(p) +Wo : JOA(pu O) +Wt : JTS(p) (12b)
JB(puppred) = Jcohes(p) + ws - Jsep(p) + Wp * JPA(puppred) (12C)

where w; is the weight of the separation term, w, is the weight of the obstacle
avoidance term, w; is the weight of the target-seeking term, and w), is the weight
of the predator-avoidance term. Note that J; is equivalent to J¢ (Eq. (7)). The
weight ws of the separation term is experimentally chosen to ensure that the
distance between agents, throughout the simulation, is at least d,;;;,, the minimum
inter-agent distance representing collision avoidance. Similar considerations were
given to the choice of values for w, and w,. The specific values we used for the
weights are: w, = 2000, w, = 1500, w; = 10, and w,, = 500.

We experimented with an alternative strategy for introducing inter-agent
collision avoidance, obstacle avoidance, and predator avoidance into the MPC
problem, namely, as constraints of the form dpin — pij < 0, dpmin — llp: —
ogl)|| < 0, and dmin — ||pi — Ppreal| < 0, respectively. Using the theory of exact
penalty functions [12], we recast the constrained MPC problem as an equivalent
unconstrained MPC problem by converting the constraints into a weighted
penalty term, which is then added to the MPC cost function. This approach
rendered the optimization problem difficult to solve due to the non-smoothness
of the penalty term. As a result, constraint violations in the form of collisions
were observed during simulation.
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4 Neural Flocking

We learn a distributed neural controller (DNC) for the flocking problem using
training data in the form of trajectories of state-action pairs produced by a CMPC
controller. In addition to basic flocking with inter-agent collision avoidance, the
DNC exhibits a number of other flocking-related behaviors, including obstacle
avoidance, target seeking, and predator avoidance. We also show how the learned
behavior exhibited by the DNC generalizes over a larger number of agents than
what was used during training to achieve successful collision-free flocking in
significantly larger flocks.

We use Supervised Learning to train the DNC. Supervised Learning learns a
function that maps an input to an output based on example sequences of input-
output pairs. In our case, the trajectory data obtained from CMPC contains both
the training inputs and corresponding labels (outputs): the state of an agent in
the flock (and that of its nearest neighbors) at a particular time step is the input,
and that agent’s acceleration at the same time step is the label.

4.1 Training Distributed Flocking Controllers

We use Deep Learning to synthesize a distributed and symmetric neural controller
from the training data provided by the CMPC controller. Our objective is to learn
basic flocking, obstacle avoidance with target seeking, and predator avoidance.
Their respective CMPC-based cost functions are given in Sections 2.2 and 3. All
of these control objectives implicitly also include inter-agent collision avoidance
by virtue of the separation term in Eq. 7.

For each of these control objectives, DNC training data is obtained from
CMPC trajectory data generated for n = 15 agents, starting from initial con-
figurations in which agent positions and velocities are uniformly sampled from
[—15,15)% and [0, 1], respectively. All training trajectories are 1,000 time steps
in duration.

We further ensure that the initial configurations are recoverable; i.e., no two
agents are so close to each other that they cannot avoid a collision by resorting
to maximal accelerations. We learn a single DNC from the state-action pairs of
all n agents. This yields a symmetric distributed controller, which we use for
each agent in the flock during evaluation.

Basic Flocking. Trajectory data for basic flocking is generated using the cost
function given in Eq. (7). We generate 200 trajectories, each of which (as noted
above) is 1,000 time steps long. The input to the NN is the position and velocity
of each agent along with the positions and velocities of its A/-nearest neighbors.
This yields 200 - 1,000 - 15 = 3M total training samples.

Let us refer to the agent (the DNC) being learned as Ay. Since we use
neighborhood size A = 14, the input to the NN is of the form [p§ p§ v§ vf pt pY
of oY L..pty pYy vi,v],], where pf, pf are the position coordinates and v, v
velocity coordinates for agent Ag, and pj 14, p! ,, and o] 14, v{ ,, are the
position and velocity vectors of its neighbors. Since this input vector has 60
components, the input to the NN consists of 60 features.
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(a) Basic flocking  (b) Obstacle avoid. (c) Predator avoid.  (d) Target seeking

Fig. 2: Snapshots of DNC flocking behaviors for 30 agents

Obstacle Avoidance with Target Seeking. For obstacle avoidance with target
seeking, we use CMPC with the cost function given in Eq. (12b). The target is
located beyond the obstacles, forcing the agents to move through the obstacle
field. For the training data, we generate 100 trajectories over 4 different obstacle
fields (25 trajectories per obstacle field). The input to the NN consists of the 92
features [p§ pf v& vy of of ... piy ply viy Vi, 0F4 oYy g% ¢Y], where of, of is the
closest point on any obstacle to agent Ag; o 14, 0y ,, give the closest point on
any obstacle for the 14 neighboring agents, and g*, ¢g¥ is the target location.

Predator Avoidance. The CMPC cost function for predator avoidance is given in
Eq. (12¢). The position, velocity, and the acceleration of the predator are denoted
by Ppred, Upred, Gpred, respectively. We take f, = 1.40; hence ¥preq = 1.400 and
Gpreq = 1.40a. The input features to the NN are the positions and velocities
of agent Ay and its A/-nearest neighbors, and the position and velocity of the
predator. The input with 64 features thus has the form [p§ p§ v§ vf ... piy P4

x Y T Y x Yy
Uiq V14 ppred ppred Upred vpred]'

5 Experimental Evaluation

This section contains the results of our extensive performance analysis of the
distributed neural flocking controller (DNC), taking into account various control
objectives: basic flocking with collision avoidance, obstacle avoidance with target
seeking, and predator avoidance. As illustrated in Fig. 1, this involves running
CMPC to generate the training data for the DNCs, whose performance we then
compare to that of the DMPC and CMPC controllers. We also show that the
DNC flocking controllers generalize the behavior seen in the training data to
achieve successful collision-free flocking in flocks significantly larger in size than
those used during training. Finally, we use Statistical Model Checking to obtain
confidence intervals for DNC’s correctness/performance.

5.1 Preliminaries

The CMPC and DMPC control problems defined in Section 2.1 are solved using
MATLAB fmincon optimizer. In the training phase, the size of the flock is
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n = 15. For obstacle-avoidance with target-seeking, we use 5 obstacles with the
target located at [60,50]. The simulation time is 100, dt =0.1 time units, and
n = 3, where (recall) 7 - dt is the control period. Further, the agent velocity and
acceleration bounds are v =2.0 and a = 1.5.

We use d,,;, = 1.5 as the minimum inter-agent distance for collision avoidance,

d°%s =1 as the minimum agent-obstacle distance for obstacle avoidance, and

dﬁ:frfl = 1.5 as the minimum agent-predator distance for predator avoidance. For
initial configurations, recall that agent positions and velocities are uniformly
sampled from [—15,15]? and [0, 1]2, respectively, and we ensure that they are
recoverable; i.e., no two agents are so close to each other that they cannot avoid
a collision when resorting to maximal accelerations. The predator starts at rest
from a fixed location at a distance of 40 from the flock center.

For training, we considered 15 agents and 200 trajectories per agent, each
trajectory 1,000 time steps in length. This yielded a total of 3,000,000 training
samples. Our neural controller is a fully connected feed-forward Deep Neural
Network (DNN), with 5 hidden layers, 84 neurons per hidden layer, and with a
ReLU activation function. We use an iterative approach for choosing the DNN
hyperparameters and architecture where we continuously improve our NN, until
we observe satisfactory performance by the DNC.

For training the DNNs, we use Keras [3], which is a high-level neural network
API written in Python and capable of running on top of TensorFlow. To generate
the NN model, Keras uses the Adam optimizer [8] with the following settings:
Ir=10"2, 31 =0.9, 32=0.999, e=10"8. The batch size (number of samples
processed before the model is updated) is 2,000, and the number of epochs
(number of complete passes through the training dataset) used for training is
1,000. For measuring training loss, we use the mean-squared error metric.

For basic flocking, DNN input vectors have 60 features and the number
of trainable DNN parameters is 33,854. For flocking with obstacle-avoidance
and target-seeking, input vectors have 92 features and the number of trainable
parameters is 36,542. Finally, for flocking with predator-avoidance, input vectors
have 64 features and the resulting number of trainable DNN parameters is 34,190.

To test the trained DNC, we generated 100 simulations (runs) for each of the
desired control objectives: basic flocking with collision avoidance, flocking with
obstacle avoidance and target seeking, and flocking with predator avoidance. The
results presented in Tables 1, were obtained using the same number of agents and
obstacles and the same predator as in the training phase. We also ran tests that
show DNC controllers can achieve collision-free flocking with obstacle avoidance
where the numbers of agents and obstacles are greater than those used during
training.

5.2 Results for Basic Flocking

We use flock diameter, inter-agent collision count and velocity convergence [20] as
performance metrics for flocking behavior. At any time step, the flock diameter
D(p) = max(; jiea [|pij]| is the largest distance between any two agents in the
flock. We calculate the average converged diameter by averaging the flock diameter
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Fig. 3: Performance comparison for basic flocking with collision avoidance, aver-
aged over 100 test runs.

in the final time step of the simulation over the 100 runs. An inter-agent collision
(IC) occurs when the distance between two agents at any point in time is less than
dpmin- The IC rate (ICR) is the average number of ICs per test-trajectory time-
step. The velocity convergence VC(v) = (1/n) (ZieA [lv; — (Z?Zl Uj)/nHQ) is
the average of the squared magnitude of the discrepancy between the velocities of
agents and the flock’s average velocity. For all the metrics, lower values are better,
indicating a denser and more coherent flock with fewer collisions. A successful
flocking controller should also ensure that values of D(p) and VC(v) eventually
stabilize.

Fig. 3 and Table 1 compare the performance of the DNC on the basic-flocking
problem for 15 agents to that of the MPC controllers. Although the DMPC and
CMPC outperform the DNC, the difference is marginal. An important advantage
of the DNC over DMPC is that they are much faster. Executing a DNC controller
requires a modest number of arithmetic operations, whereas executing an MPC
controller requires simulation of a model and controller over the prediction horizon.
In our experiments, on average, the CMPC takes 1209 msec of CPU time for the
entire flock and DMPC takes 58 msec of CPU time per agent, whereas the DNC
takes only 1.6 msec.

Table 1: Performance comparison for BF with 15 agents on 100 test runs
Avg. Conv. Diameter ICR  Velocity Convergence

DNC 14.13 0 0.15
DMPC 13.67 0 0.11
CMPC 13.84 0 0.10
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Table 2: DNC Performance Generalization for BF
Agents Avg. Conv. Conv. Avg. Conv. ICR

Diameter  Rate (%) Time
15 14.13 100 52.15 0
20 16.45 97 58.76 0
25 19.81 94 64.11 0
30 23.24 92 72.08 0
35 30.57 86 83.84 0.008
40 38.66 81 95.32 0.019

5.3 Results for Obstacle and Predator Avoidance

For obstacle and predator avoidance, collision rates are used as a performance
metric. An obstacle-agent collision (OC) occurs when the distance between an
agent and the closest point on any obstacle is less than dffl’fn. A predator-agent
collision (PC) occurs when the distance between an agent and the predator is less
than d”7¢. The OC rate (OCR) is the average number of OCs per test-trajectory
time-step, and the PC rate (PCR) is defined similarly. Our test results show
that the DNC, along with the DMPC and CMPC, is collision-free (i.e., each
of ICR, OCR, and PCR is zero) for 15 agents, with the exception of DMPC
for predator avoidance where PCR = 0.013. We also observed that the flock
successfully reaches the target location in all 100 test runs.

5.4 DNC Generalization Results

Tables 2-3 present DNC generalization results for basic flocking (BF), obstacle
avoidance (OA), and predator avoidance (PA), with the number of agents ranging
from 15 (the flock size during training) to 40. In all of these experiments, we use
a neighborhood size of N' = 14, the same as during training. Each controller was
evaluated with 100 test runs. The performance metrics in Table 2 are the average
converged diameter, convergence rate, average convergence time, and ICR.

The convergence rate is the fraction of successful flocks over 100 runs. The
collection of agents is said to have converged to a flock (with collision avoidance)
if the value of the global cost function is less than the convergence threshold.
We use a convergence threshold of J;(p) < 150, which was chosen based on its
proximity to the value achieved by CMPC. We use the cost function from Eq. 12a
to calculate our success rate because we are showing convergence rate for basic
flocking. The average convergence time is the time when the global cost function
first drops below the success threshold and remains below it for the rest of the
run, averaged over all 100 runs. Even with a local neighborhood of size 14, the
results demonstrate that the DNC can successfully generalize to a large number
of agents for all of our control objectives.
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Table 3: DNC Generalization Performance for OA and PA

OA PA
Agents ICR OCR ICR PCR
15 0 0 0 0
20 0 0 0 0
25 0 0 0 0
30 0 0 0 0

35 0.011 0.009 0.013 0.010
40 0.021 0.018 0.029 0.023

5.5 Statistical Model Checking Results

We use Monte Carlo (MC) approximation as a form of Statistical Model Check-
ing [5,10] to compute confidence intervals for the DNC’s convergence rate to a
flock with collision avoidance and for the (normalized) convergence time. The
convergence rate is the fraction of successful flocks over N runs. The collection
of agent is said to have converged to a successful flock with collision avoidance
if the global cost function Ji(p) < 150, where J;(p) is cost function for basic
flocking defined in Eq. 12a.

The main idea of MC is to use N random variables, Z1, ..., Zy, also called
samples, ITID distributed according to a random variable Z with mean pz, and to
take the sum fiz = (Z1 + ...+ Zn)/N as the value approximating the mean p .
Since an exact computation of uz is almost always intractable, an MC approach
is used to compute an (€, d)-approximation of this quantity.

Additive Approzimation [6] is an (e, §)-approximation scheme where the mean
1z of an RV Z is approximated with absolute error € and probability 1 — §:

Pripz —e<pz<puz+e>1-9§ (13)

where [iz is an approximation of uz. An important issue is to determine the
number of samples N needed to ensure that fiz is an (¢, §)-approximation of pz. If
Z is a Bernoulli variable expected to be large, one can use the Chernoff-Hoeffding
instantiation of the Bernstein inequality and take N to be N = 41In(2/§)/€?,
as in [6]. This results in the additive approxzimation algorithm [5], defined in
Algorithm 1.

We use this algorithm to obtain a joint (e, d)-approximation of the mean
convergence rate and mean normalized convergence time for the DNC. Each
sample Z; is based on the result of an execution obtained by simulating the
system starting from a random initial state, and we take Z = (B, R), where B
is a Boolean variable indicating whether the agents converged to a flock during
the execution, and R is a real value denoting the normalized convergence time.
The normalized convergence time is the time when the global cost function first
drops below the convergence threshold and remains below it for the rest of the
run, measured as a fraction of the total duration of the run. The assumptions
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Algorithm 1: Additive Approximation Algorithm
Input: (¢, §) with0<e<land0< 0 <1
Input: Random variables Z;, IID
Output: jiz approximation of uz
N = 41n(2/4) /%
for (i=0; i < N; i++) do
L S=85+27;
tiz = S/N; return [iz;

Table 4: SMC results for DNC convergence rate and normalized convergence
time; € = 0.01, § = 0.0001

Agents [ACR per

15 0.99 0.53
20 0.97 0.58
25 0.94 0.65
30 0.91 0.71
35 0.86 0.84
40 0.80 0.95

about Z required for validity of the additive approximation hold, because RV B
is a Bernoulli variable, the convergence rate is expected to be large (i.e., closer
to 1 than to 0), and the proportionality constraint of the Bernstein inequality is
also satisfied for RV R.

In these experiments, the initial configurations are sampled from the same
distributions as in Section 5.1, and we set ¢ = 0.01 and § = 0.0001, to obtain N =
396,140. We perform the required set of N simulations for 15, 20, 25, 30, 35 and
40 agents. Table 4 presents the results, specifically, the (e, d)-approximations ficr
and fic of the mean convergence rate and the mean normalized convergence
time, respectively. While the results for the convergence rate are (as expected) nu-
merically similar to the results in Table 2, the results in Table 4 are much stronger,
because they come with the guarantee that they are (e, §)-approximations of the
actual mean values.

6 Related Work

In [18], a flocking controller is synthesized using multi-agent reinforcement learning
(MARL) and natural evolution strategies (NES). The target model from which
the system learns is Reynolds flocking model [16]. For training purposes, a list
of metrics called entropy are chosen, which provide a measure of the collective
behavior displayed by the target model. As the authors of [18] observe, this
technique does not quite work: although it consistently leads to agents forming
recognizable patterns during simulation, agents self-organized into a cluster
instead of flowing like a flock.
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In [9], reinforcement learning and flocking control are combined for the
purpose of predator avoidance, where the learning module determines safe spaces
in which the flock can navigate to avoid predators. Their approach to predator
avoidance, however, isn’t distributed as it requires a majority consensus by the
flock to determine its action to avoid predators. They also impose an a-lattice
structure [13] on the flock. In contrast, our approach is geometry-agnostic and
achieves predator avoidance in a distributed manner.

In [7], an uncertainty-aware reinforcement learning algorithm is developed
to estimate the probability of a mobile robot colliding with an obstacle in an
unknown environment. Their approach is based on bootstrap neural networks
using dropouts, allowing it to process raw sensory inputs. Similarly, a learning-
based approach to robot navigation and obstacle avoidance is presented in [14].
They train a model that maps sensor inputs and the target position to motion
commands generated by the ROS [15] navigation package. Our work in contrast
considers obstacle avoidance (and other control objectives) in a multi-agent
flocking scenario under the simplifying assumption of full state observation.

In [4], an approach based on Bayesian inference is proposed that allows an
agent in a heterogeneous multi-agent environment to estimate the navigation
model and goal of each of its neighbors. It then uses this information to compute
a plan that minimizes inter-agent collisions while allowing the agent to reach its
goal. Flocking formation is not considered.

7 Conclusions

With the introduction of Neural Flocking (NF), we have shown how machine
learning in the form of Supervised Learning can bring many benefits to the
flocking problem. As our experimental evaluation confirms, the symmetric and
fully distributed neural controllers we derive in this manner are capable of
achieving a multitude of flocking-oriented objectives, including flocking formation,
inter-agent collision avoidance, obstacle avoidance, predator avoidance, and target
seeking. Moreover, NF controllers exhibit real-time performance and generalize
the behavior seen in the training data to achieve these objectives in a significantly
broader range of scenarios.

Ongoing work aims to determine whether a DNC can perform as well as
the centralized MPC controller for agent models that are significantly more
realistic than our current point-based model. For this purpose, we are using
transfer learning to train a DNC that can achieve acceptable performance on
realistic quadrotor dynamics [1], starting from our current point-model-based
DNC. This effort also involves extending our current DNC from 2-dimensional
to 3-dimensional spatial coordinates. If successful, and preliminary results are
encouraging, this line of research will demonstrate that DNCs are capable of
achieving flocking with complex realistic dynamics.

For future work, we plan to investigate a distance-based notion of agent neigh-
borhood as opposed to our current nearest-neighbors formulation. Furthermore,
motivated by the quadrotor study of [21], we will seek to combine MPC with
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reinforcement learning in the framework of guided policy search as an alternative
solution technique for the NF problem.
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Abstract This paper studies fundamental questions concerning category-
theoretic models of induction and recursion. We are concerned with
the relationship between well-founded and recursive coalgebras for an
endofunctor. For monomorphism preserving endofunctors on complete
and well-powered categories every coalgebra has a well-founded part,
and we provide a new, shorter proof that this is the coreflection in
the category of all well-founded coalgebras. We present a new more
general proof of Taylor’s General Recursion Theorem that every well-
founded coalgebra is recursive, and we study conditions which imply the
converse. In addition, we present a new equivalent characterization of
well-foundedness: a coalgebra is well-founded iff it admits a coalgebra-to-
algebra morphism to the initial algebra.
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1 Introduction

What is induction? What is recursion? In areas of theoretical computer science,
the most common answers are related to initial algebras. Indeed, the dominant
trend in abstract data types is initial algebra semantics (see e.g. [19]), and this
approach has spread to other semantically-inclined areas of the subject. The
approach in broad slogans is that, for an endofunctor F' describing the type of
algebraic operations of interest, the initial algebra pF has the property that
for every F-algebra A, there is a unique homomorphism pF — A, and this is
recursion. Perhaps the primary example is recursion on IN, the natural numbers.
Recall that IN is the initial algebra for the set functor FX = X 4+ 1. If A is any
set, and a € A and a: A — A+ 1 are given, then initiality tells us that there is
a unique f: IN — A such that for all n € N,

f0)=a  fln+1)=a(f(n) (L1)
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Then the first additional problem coming with this approach is that of how to
“recognize” initial algebras: Given an algebra, how do we really know if it is
initial? The answer — again in slogans — is that initial algebras are the ones with
“no junk and no confusion.”

Although initiality captures some important aspects of recursion, it cannot be
a fully satisfactory approach. One big missing piece concerns recursive definitions
based on well-founded relations. For example, the whole study of termination
of rewriting systems depends on well-orders, the primary example of recursion
on a well-founded order. Let (X, R) be a well-founded relation, i.e. one with no
infinite sequences - - - z9 R x1 R xo. Let A be any set, and let o: ZA — A. (Here
and below, £ is the power set functor, taking a set to the set of its subsets.)
Then there is a unique f: X — A such that for all x € X,

f(@) =a{f(y) : y R x}). (1.2)

The main goal of this paper is the study of concepts that allow one to extend
the algebraic spirit behind initiality in (1.1) to the setting of recursion arising
from well-foundedness as we find it in (1.2). The corresponding concepts are
those of well-founded and recursive coalgebras for an endofunctor, which first
appear in work by Osius [22] and Taylor [23,24], respectively. In his work on
categorical set theory, Osius [22] first studied the notions of well-founded and
recursive coalgebras (for the power-set functor on sets and, more generally, the
power-object functor on an elementary topos). He defined recursive coalgebras
as those coalgebras a: A — ZA which have a unique coalgebra-to-algebra
homomorphism into every algebra (see Definition 3.2).

Taylor [23,24] took Osius’ ideas much further. He introduced well-founded
coalgebras for a general endofunctor, capturing the notion of a well-founded rela-
tion categorically, and considered recursive coalgebras under the name ‘coalgebras
obeying the recursion scheme’. He then proved the General Recursion Theorem
that all well-founded coalgebras are recursive, for every endofunctor on sets (and
on more general categories) preserving inverse images. Recursive coalgebras were
also investigated by Eppendahl [12], who called them algebra-initial coalgebras.
Capretta, Uustalu, and Vene [10] further studied recursive coalgebras, and they
showed how to construct new ones from given ones by using comonads. They
also explained nicely how recursive coalgebras allow for the semantic treatment
of (functional) divide-and-conquer programs. More recently, Jeannin et al. [15]
proved the General Recursion Theorem for polynomial functors on the category
of many-sorted sets; they also provide many interesting examples of recursive
coalgebras arising in programming.

Our contributions in this paper are as follows. We start by recalling some pre-
liminaries in Section 2 and the definition of (parametrically) recursive coalgebras
in Section 3 and of well-founded coalgebras in Section 4 (using a formulation
based on Jacobs’ next time operator [14], which we extend from Kripke poly-
nomial set functors to arbitrary functors). We show that every coalgebra for a
monomorphism preserving functor on a complete and well-powered category has
a well-founded part, and provide a new proof that this is the coreflection in the
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category of well-founded coalgebras (Proposition 4.19), shortening our previous
proof [6]. Next we provide a new proof of Taylor’s General Recursion Theorem
(Theorem 5.1), generalizing this to endofunctors preserving monomorphisms on a
complete and well-powered category having smooth monomorphisms (see Defini-
tion 2.8). For the category of sets, this implies that “well-founded = recursive”
holds for all endofunctors, strengthening Taylor’s result. We then discuss the
converse: is every recursive coalgebra well-founded? Here the assumption that F
preserves inverse images cannot be lifted, and one needs additional assumptions.
In fact, we present two results: one assumes universally smooth monomorph-
isms and that the functor has a pre-fixed point (see Theorem 5.5). Under these
assumptions we also give a new equivalent characterization of recursiveness
and well-foundedness: a coalgebra is recursive if it has a coalgebra-to-algebra
morphism into the initial algebra (which exists under our assumptions), see Co-
rollary 5.6. This characterization was previously established for finitary functors
on sets [3]. The other converse of the above implication is due to Taylor using
the concept of a subobject classifier (Theorem 5.8). It implies that ‘recursive’
and ‘well-founded’ are equivalent concepts for all set functors preserving inverse
images. We also prove that a similar result holds for the category of vector spaces
over a fixed field (Theorem 5.12).

Finally, we show in Section 6 that well-founded coalgebras are closed under
coproducts, quotients and, assuming mild assumptions, under subcoalgebras.

2 Preliminaries

We start by recalling some background material. Except for the definitions of
algebra and coalgebra in Subsection 2.1, the subsections below may be read as
needed. We assume that readers are familiar with notions of basic category theory;
see e.g. [2] for everything which we do not detail. We indicate monomorphisms
by writing — and strong epimorphisms by —».

2.1 Algebras and Coalgebras. We are concerned throughout this paper
with algebras and coalgebras for an endofunctor. This means that we have an
underlying category, usually written o; frequently it is the category of sets or
of vector spaces over a fixed field, and that a functor F': &/ — & is given. An
F-algebra is a pair (A, «), where a: FA — A. An F-coalgebra is a pair (A, o),
where a: A — FA. We usually drop the functor F. Given two algebras (4, «)
and (B, ), an algebra homomorphism from the first to the second is h: A — B
in o7 such that h -« = - Fh. Similarly, a coalgebra homomorphism satisfies
B +h = Fh-a. We denote by Coalg F' the category of all coalgebras for F'.

Example 2.1. (1) The power set functor &2: Set — Set takes a set X to the set
P X of all subsets of it; for a morphism f: X =Y K Zf: X — LPY takes a
subset S C X to its direct image f[S]. Coalgebras a: X — X may be identified
with directed graphs on the set X of vertices, and the coalgebra structure «
describes the edges: b € a(a) means that there is an edge a — b in the graph.



20 J. Addmek et al.

(2) Let X be a signature, i.e. a set of operation symbols, each with a finite arity.
The polynomial functor Hy; associated to X assigns to a set X the set

HeX =[] ¥ x X7,
nelN

where X, is the set of operation symbols of arity n. This may be identified with
the set of all terms o(x1,...,x,), for 0 € X, and z1,...,z, € X. Algebras for
Hy; are the usual Y-algebras.

(3) Deterministic automata over an input alphabet X are coalgebras for the
functor FX = {0,1} x X*. Indeed, given a set S of states, a next-state map
S x X — S may be curried to 6: S — S*. The set of final states yields the
acceptance predicate a: S — {0,1}. So an automaton may be regarded as a
coalgebra (a,d): S — {0,1} x S¥.

(4) Labelled transitions systems are coalgebras for FX = 2(X x X).

(5) To describe linear weighted automata, i.e. weighted automata over the input
alphabet X with weights in a field K, as coalgebras, one works with the category
Vecy of vector spaces over K. A linear weighted automaton is then a coal-
gebra for FX = K x X~

2.2 Preservation Properties. Recall that an intersection of two subobjects
s;: S;— A (i=1,2) of a given object A is given by their pullback. Analogously,
(general) intersections are given by wide pullbacks. Furthermore, the inverse
image of a subobject s: S — B under a morphism f: A — B is the subobject
t: T — A obtained by a pullback of s along f.

All of the ‘usual’ set functors preserve intersections and inverse images:

Example 2.2. (1) Every polynomial functor preserves intersections and inverse
images.
(2) The power-set functor & preserves intersections and inverse images.

(3) Intersection-preserving set functors are closed under taking coproducts,
products and composition. Similarly, for inverse images.

(4) Consider next the set functor R defined by RX = {(z,y) € X x X: z #
y} + {d} for sets X. For a function f: X — Y put Rf(x,y) = (f(x), f(y)) if
f(x) # f(y), and d otherwise. R preserves intersections but not inverse images.

Proposition 2.3 [27]. For every set functor F there exists an essentially unique
set functor F which coincides with F' on nonempty sets and functions and
preserves finite intersections (whence monomorphisms).

Remark 2.4. (1) In fact, Trnkova gave a construction of F: she defined F) as
the set of all natural transformations Cy; — F', where Cp; is the set functor with
Co10) = 0 and Cy; X =1 for all nonempty sets X. For the empty map e: ) — X
with X # (), Fe maps a natural transformation 7: Co; — F to the element given
by 7x: 1 — FX.

(2) The above functor F is called the Trnkovd hull of F. It allows us to achieve
preservation of intersections for all finitary set functors. Intuitively, a functor on
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sets is finitary if its behavior is completely determined by its action on finite sets
and functions. For a general functor, this intuition is captured by requiring that
the functor preserves filtered colimits [8]. For a set functor F' this is equivalent to
being finitely bounded, which is the following condition: for each element z € F' X
there exists a finite subset M C X such that x € Fi[FFM], where i: M — X is
the inclusion map [7, Rem. 3.14].

Proposition 2.5 [4, p. 66]. The Trnkovd hull of a finitary set functor preserves
all intersections.

2.3 Factorizations. Recall that an epimorphism e: A — B is called strong
if it satisfies the following diagonal fill-in property: given a monomorphism
m: C — D and morphisms f: A = C and g: B — D suchthat m-f=g-e
then there exists a unique d: B — C such that f =d-eand g =m - d.

Every complete and well-powered category has factorizations of morphisms:
every morphism f may be written as f = m - e, where e is a strong epimorphism
and m is a monomorphism [9, Prop. 4.4.3]. We call the subobject m the image
of f. It follows from a result in Kurz’ thesis [16, Prop. 1.3.6] that factorizations
of morphisms lift to coalgebras:

Proposition 2.6 (Coalg F' inherits factorizations from ). Suppose that
F' preserves monomorphisms. Then the category Coalg F' has factorizations of
homomorphisms f as f =m - e, where e is carried by a strong epimorphism and
m by a monomorphism in <. The diagonal fill-in property holds in Coalg F'.

Remark 2.7. By a subcoalgebra of a coalgebra (A, «) we mean a subobject
in Coalg F' represented by a homomorphism m: (B, ) — (A, «), where m is
monic in «7. Similarly, by a strong quotient of a coalgebra (A, a) we mean one
represented by a homomorphism e: (4, «a) — (C,v) with e strongly epic in <.

2.4 Chains. By a transfinite chain in a category & we understand a functor
from the ordered class Ord of all ordinals into .«Z. Moreover, for an ordinal A\, a
A-chain in o7 is a functor from A to 7. A category has colimits of chains if for
every ordinal A it has a colimit of every A-chain. This includes the initial object
0 (the case A = 0).

Definition 2.8. (1) A category &/ has smooth monomorphisms if for every
A-chain C' of monomorphisms a colimit exists, its colimit cocone is formed
by monomorphisms, and for every cone of C formed by monomorphisms, the
factorizing morphism from colim C' is monic. In particuar, every morphism from
0 is monic.

(2) o has universally smooth monomorphisms if <7 also has pullbacks, and
for every morphism f: X — colim C, the functor 7/ colim C' — &/ /X forming
pullbacks along f preserves the colimit of C. This implies that initial object 0
is strict, i.e. every morphism f: X — 0 is an isomorphism. Indeed, consider the
empty chain (A = 0).

Example 2.9. (1) Set has universally smooth monomorphisms.
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(2) Veck has smooth monomorphisms, but not universally so because the initial
object is not strict.

(3) Categories in which colimits of chains and pullbacks are formed “set-like”
have universally smooth monomorphisms. These include the categories of posets,
graphs, topological spaces, presheaf categories, and many varieties, such as
monoids, groups, and unary algebras.

(4) Every locally finitely presentable category &/ with a strict initial object (see
Remark 2.12(1)) has smooth monomorphisms. This follows from [8, Prop. 1.62].
Moreover, since pullbacks commute with colimits of chains, it is easy to prove
that colimits of chains are universal using the strictness of 0.

(5) The category CPO of complete partial orders does not have smooth mono-
morphisms. Indeed, consider the w-chain of linearly ordered sets A,, = {0,...,n}+
{T} (T a top element) with inclusion maps A,, — A, ;1. Its colimit is the linearly
ordered set N+ {T, T’} of natural numbers with two added top elements T’ < T.
For the sub-cpo IN 4 {T}, the inclusions of A,, are monic and form a cocone. But
the unique factorizing morphism from the colimit is not monic.

Notation 2.10. For every object A we denote by Sub(A) the poset of all subob-
jects of A (represented by monomorphisms s: S — A), where s < s’ if there exists
1 with s = s’ - i. If & has pullbacks we have, for every morphism f: A — B, the
inverse image operator, viz. the monotone map f : Sub(B) — Sub(A) assigning
to a subobject s: S — A the subobject of B obtained by forming the inverse
image of s under f, i.e. the pullback of s along f.

Lemma 2.11. If o/ is complete and well-powered, then 7 has a left adjoint
given by the (direct) image operator ?: Sub(A) — Sub(B). It maps a subobject
t: T — B to the subobject of A given by the image of [ -t; in symbols we have
Fw<sife<fis).

Remark 2.12. If &7 is a complete and well-powered category, then Sub(A) is a
complete lattice. Now suppose that 7 has smooth monomorphisms.

(1) In this setting, the unique morphism L 4: 0 — A is a monomorphism and
therefore is the bottom element of the poset Sub(A).

(2) Furthermore, a join of a chain in Sub(A) is obtained by forming a colimit, in
the obvious way.

(3) If o has universallye smooth monomorphisms, then for every morphism
f: A — B, the operator f: Sub(B) — Sub(A) preserves unions of chains.

Remark 2.13. Recall [1] that every endofunctor F yields the initial-algebra
chain, viz. a transfinite chain formed by the objects F°0 of o7, as follows: F°0 = 0,
the initial object; F'T'0 = F(F"0), and for a limit ordinal i we take the colimit
of the chain (F70);<;. The connecting morphisms w; ;: F'0 — F70 are defined
by a similar transfinite recursion.
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3 Recursive Coalgebras

Assumption 3.1. We work with a standard set theory (e.g. Zermelo-Fraenkel),
assuming the Axiom of Choice. In particular, we use transfinite induction on
several occasions. (We are not concerned with constructive foundations in this
paper.)

Throughout this paper we assume that &/ is a complete and well-powered
category &7 and that F': &/ — o/ preserves monomorphisms.

For &/ = Set the condition that F' preserves monomorphisms may be dropped.
In fact, preservation of non-empty monomorphism is sufficient in general (for a
suitable notion of non-empty monomorphism) [21, Lemma 2.5], and this holds
for every set functor.

The following definition of recursive coalgebras was first given by Osius [22].
Taylor [24] speaks of coalgebras obeying the recursion scheme. Capretta et al. [10]
extended the concept to parametrically recursive coalgebra by dualizing completely
iterative algebras [20].

Definition 3.2. A coalgebra a: A — F'A is called recursive if for every algebra
e: FX — X there exists a unique coalgebra-to-algebra morphism ef: A — X,
i.e. a unique morphism such that the square on the left below commutes:

T 1
A—— X _

al Te (a,A)T

FA £y px FAx A

X
o
Fe'xA FX x A
(A, a) is called parametrically recursive if for every morphism e: FX x A — X

there is a unique morphism ef: A — X such that the square on the right above
commutes.

Example 3.3. (1) A graph regarded as a coalgebra for & is recursive iff it has
no infinite path. This is an immediate consequence of the General Recursion
Theorem (see Corollary 5.6 and Example 4.5(2)).

(2) Let v: F(uF) — pF be an initial algebra. By Lambek’s Lemma, ¢ is an
isomorphism. So we have a coalgebra (=1: uF — F(uF). This algebra is (para-
metrically) recursive. By [20, Thm. 2.8], in dual form, this is precisely the same
as the terminal parametrically recursive coalgebra (see also [10, Prop. 7]).

(3) The initial coalgebra 0 — FO0 is recursive.

(4) If (C,~) is recursive so is (F'C, Fy), see [10, Prop. 6].

(5) Colimits of recursive coalgebras in Coalg F' are recursive. This is easy to
prove, using that colimits of coalgebras are formed on the level of the underlying
category.

(6) It follows from items (3)—(5) that in the initial-algebra chain from Re-
mark 2.13 all coalgebras w; ;4+1: F'0 — FF10, i € Ord, are recursive.
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(7) Every parametrically recursive coalgebra is recursive. (To see this, form for
a given e: FX — X the morphism e = e¢- 7, where 7: X x A — FX is the
projection.) In Corollaries 5.6 and 5.9 we will see that the converse often holds.

Here is an example where the converse fails [3]. Let R: Set — Set be the
functor defined in Example 2.2(4). Also, let C = {0,1}, and define v: C — RC
by v(0) = (1) = (0,1). Then (C,~) is a recursive coalgebra. Indeed, for every
algebra av: RA — A the constant map h: C' — A with h(0) = h(1) = a(d) is the
unique coalgebra-to-algebra morphism.

However, (C,~) is not parametrically recursive. To see this, consider any
morphism e: RX x {0,1} — X such that RX contains more than one pair
(zo,21), ®o # x1 with e((zo, 21),1) = x; for i = 0, 1. Then each such pair yields
h: C — X with h(i) = z; making the appropriate square commutative. Thus,
(C,7) is not parametrically recursive.

(8) Capretta et al. [11] showed that recursivity semantically models divide-and-
conquer programs, as demonstrated by the example of Quicksort. For every
linearly ordered set A (of data elements), Quicksort is usually defined as the
recursive function ¢g: A* — A* given by

qge)=¢e and  g(aw) = q(w<a) * (ag(w>a)),

where A* is the set of all lists on A, ¢ is the empty list, % is the concatenation of
lists and w<, denotes the list of those elements of w which are less than or equal
than a; analogously for w~,.

Now consider the functor FX =14+ A x X x X on Set, where 1 = {e}, and
form the coalgebra s: A* — 14+ A x A* x A* given by

s(e)=-e and s(aw) = (@, W<g, Wsq) fora € Aand w e A",

We shall see that this coalgebra is recursive in Example 5.3. Thus, for the
F-algebram: 1+ A x A* x A* — A* given by

m(e) =¢ and m(a,w,v) = w* (av)

there exists a unique function ¢ on A* such that ¢ = m - Fq - s. Notice that the
last equation reflects the idea that Quicksort is a divide-and-conquer algorithm.
The coalgebra structure s divides a list into two parts w<, and ws,. Then Fq
sorts these two smaller lists, and finally in the combine- (or conquer-) step, the
algebra structure m merges the two sorted parts to obtain the desired whole
sorted list.

Jeannin et al. [15, Sec. 4] provide a number of recursive functions arising in
programming that are determined by recursivity of a coalgebra, e.g. the ged of
integers, the Ackermann function, and the Towers of Hanoi.

4 The Next Time Operator and Well-Founded Coalgebras

As we have mentioned in the Introduction, the main issue of this paper is the
relationship between two concepts pertaining to coalgebras: recursiveness and
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well-foundedness. The concept of well-foundedness is well-known for directed
graphs (G, —): it means that there are no infinite directed paths gg — g1 — - - -.
For a set X with a relation R, well-foundedness means that there are no backwards
sequences - - - Rxo Rx1 Rxg, i.e. the converse of the relation is well-founded as a
graph. Taylor [24, Def. 6.2.3] gave a more general category theoretic formulation
of well-foundedness. We observe here that his definition can be presented in a
compact way, by using an operator that generalizes the way one thinks of the
semantics of the ‘next time’ operator of temporal logics for non-deterministic (or
even probabilistic) automata and transitions systems. It is also strongly related
to the algebraic semantics of modal logic, where one passes from a graph G
to a function on ZG. Jacobs [14] defined and studied the ‘next time’ operator
on coalgebras for Kripke polynomial set functors. This can be generalized to
arbitrary functors as follows.
Recall that Sub(A) denotes the complete lattice of subobjects of A.

Definition 4.1 [4, Def. 8.9]. Every coalgebra a: A — FA induces an endo-
function on Sub(A), called the next time operator

O: Sub(A) — Sub(4),  O(s) = W (Fs) for s € Sub(A).

In more detail: we define Os and «(s) by the pullback in (4.1). (Being a pullback
is indicated by the “corner” symbol.) In words, O o(s)

assigns to each subobject s: S »— A the inverse image OS —— FS§

of F's under a. Since F's is a monomorphism, (s is a OSI —, ]:FS (4.1)
monomorphism and «(s) is (for every representation o
(Os of that subobject of A) uniquely determined. A—— FA
Example 4.2. (1) Let A be a graph, considered as a coalgebra for &: Set — Set.
If S C A is a set of vertices, then (0.5 is the set of vertices all of whose successors
belong to S.

(2) For the set functor FX = Z(X x X) expressing labelled transition systems
the operator O for a coalgebra a: A — Z(X x A) is the semantic counterpart
of the next time operator of classical linear temporal logic, see e.g. Manna and
Pntieli [18]. In fact, for a subset S < A we have that (S consists of those states
all of whose next states lie in .S, in symbols:

OS={z €Al (s,y) € a(z) implies y € S, for all s € L'}.
The next time operator allows a compact definition of well-foundedness as
characterized by Taylor [24, Exercise VI.17] (see also [6, Corollary 2.19]):

Definition 4.3. A coalgebra is well-founded if id 4 is the only fixed point of its
next time operator.

Remark 4.4. (1) Let us call a subcoalgebra m: (B, ) — (A,«a) cartesian
provided that the square (4.2) is a pullback. Then

(4, a) is well-founded iff it has no proper cartesian B2 . FB
subcoalgebra. That is, if m: (B,8) — (4,a) is a _ (4.2)
cartesian subcoalgebra, then m is an isomorphism. mI IFW

Indeed, the fixed points of next time are precisely the A—25 FA
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cartesian subcoalgebras.

(2) A coalgebra is well-founded iff () has a unique pre-fixed point Om < m.
Indeed, since Sub(A) is a complete lattice, the least fixed point of a monotone
map is its least pre-fixed point. Taylor’s definition [24, Def. 6.3.2] uses that
property: he calls a coalgebra well-founded iff () has no proper subobject as a
pre-fixed point.

Example 4.5. (1) Consider a graph as a coalgebra a: A — Z A for the power-
set functor (see Example 2.1). A subcoalgebra is a subset m: B < A such
that with every vertex v it contains all neighbors of v. The coalgebra structure
B: B — ZB is then the domain-codomain restriction of «. To say that B is a
cartesian subcoalgebra means that whenever a vertex of A has all neighbors in
B, it also lies in B. It follows that (A, «) is well-founded iff it has no infinite
directed path, see [24, Example 6.3.3].

(2) If uF exists, then as a coalgebra it is well-founded. Indeed, in every pull-
back (4.2), since 1 =1 (as «) is invertible, so is 3. The unique algebra homomorph-
ism from puF to the algebra f~': FB — B is clearly inverse to m.

(3) If a set functor F fulfils F() = (), then the only well-founded coalgebra is the
empty one. Indeed, this follows from the fact that the empty coalgebra is a fixed
point of (). For example, a deterministic automaton over the input alphabet X,
as a coalgebra for FX = {0,1} x X*| is well-founded iff it is empty.

(4) A non-deterministic automaton may be considered as a coalgebra for the set
functor FX = {0,1} x (£X)*. It is well-founded iff the state transition graph
is well-founded (i.e. has no infinite path). This follows from Corollary 4.10 below.
(5) A linear weighted automaton, i.e. a coalgebra for FX = K x X* on Vecy,
is well-founded iff every path in its state transition graph eventually leads to O.
This means that every path starting in a given state leads to the state 0 after
finitely many steps (where it stays).

Notation 4.6. Given a set functor F, we define for every set X the map
Tx: FX — 22X assigning to every element © € FX the intersection of all
subsets m: M < X such that x lies in the image of F'm:

7x(z) = [{m|m: M = X satisfies z € Fm[FM]}. (4.3)

Recall that a functor preserves intersections if it preserves (wide) pullbacks
of families of monomorphisms.

Gumm [13, Thm. 7.3] observed that for a set functor preserving intersections,
the maps 7x: FX — ZX in (4.3) form a “subnatural” transformation from F
to the power-set functor 2. Subnaturality means that (although these maps do
not form a natural transformation in general) for every monomorphismi: X — Y
we have a commutative square:

FX 25 72X
| [ (1.4
FYy 5 Y
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Remark 4.7. As shown in [13, Thm. 7.4] and [23, Prop. 7.5], a set functor F'
preserves intersections iff the squares in (4.4) above are pullbacks. Moreover,
loc. cit. and [13, Thm. 8.1] prove that 7: F — & is a natural transformation,
provided F preserves inverse images and intersections.

Definition 4.8. Let F' be a set functor. For every coalgebra a: A — F'A its
canonical graph is the following coalgebra for 22: A & FA ™2 P A.

Thanks to the subnaturality of 7 one obtains the following results.

Proposition 4.9. For every set functor F preserving intersections, the next
time operator of a coalgebra (A, a) coincides with that of its canonical graph.

Corollary 4.10 [24, Rem. 6.3.4]. A coalgebra for a set functor preserving
intersections is well-founded iff its canonical graph is well-founded.

Example 4.11. (1) For a (deterministic or non-deterministic) automaton, the
canonical graph has an edge from s to ¢ iff there is a transition from s to t for
some input letter. Thus, we obtain the characterization of well-foundedness as
stated in Example 4.5(3) and (4).

(2) Every polynomial functor Hy: Set — Set preserves intersections. Thus, a
coalgebra (A, «) is well-founded if there are no infinite paths in its canonical
graph. The canonical graph of A has an edge from a to b if a(a) is of the form
o(ci,...,cpn) for some o € X, and if b is one of the ¢;’s.

(3) Thus, for the functor FX = 1+ A x X x X, the coalgebra (A*,s) of
Example 3.3(8) is easily seen to be well-founded via its canonical graph. Indeed,
this graph has for every list w one outgoing edge to the list w<, and one to ws,
for every a € A. Hence, this is a well-founded graph.

Lemma 4.12. The next time operator is monotone: if m < n, then Om < On.

Lemma 4.13. Let a: A — FA be a coalgebra and m: B »— A a subobject.
(1) There is a coalgebra structure B: B — FB for which m gives a subcoalgebra

of (A,a) iff m < Om.
(2) There is a coalgebra structure 5: B — FB for which m gives a cartesian
subcoalgebra of (A, ) iff m = Om.

Lemma 4.14. For every coalgebra homomorphism f: (B, ) — (A, a) we have
VR

where Oq and Op denote the next time operators of the coalgebras (A, «) and
(B, B), respectively, and < is the pointwise order.

Corollary 4.15. For every coalgebra homomorphism f: (B,3) — (A,«) we
A < 3 .
have Qg - f = f - Qa, provided that either
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(1) f is a monomorphism in &/ and F preserves finite intersections, or

(2) F preserves inverse images.

Definition 4.16 [4]. The well-founded part of a coalgebra is its largest well-
founded subcoalgebra.

The well-founded part of a coalgebra always exists and is the coreflection
in the category of well-founded coalgebras [6, Prop. 2.27]. We provide a new,
shorter proof of this fact. The well-founded part is obtained by the following:

Construction 4.17 [6, Not. 2.22]. Let a.: A — F'A be a coalgebra. We know
that Sub(A) is a complete lattice and that the next time operator () is monotone
(see Lemma 4.12). Hence, by the Knaster-Tarski fixed point theorem, ) has a
least fixed point, which we denote by a*: A* — A.

By Lemma 4.13(2), we know that there is a coalgebra structure a*: A* — FA*
so that a*: (A*,a*) (A, a) is the smallest cartesian subcoalgebra of (A, a).

Proposition 4.18. For every coalgebra (A, ), the coalgebra (A*, *) is well-
founded.

Proof. Let m: (B, ) — (A*,a*) be a cartesian subcoalgebra. By Lemma 4.13,
a*-m: B — A is a fixed point of (). Since a* is the least fixed point, we have
a* <a*-m,ie a* =a*-m-x for some r: A* — B. Since a* is monic, we thus
have m - x = id g4~. So m is a monomorphism and a split epimorphism, whence
an isomorphism. 0

Proposition 4.19. The full subcategory of Coalg F' given by well-founded coal-
gebras is coreflective. In fact, the well-founded coreflection of a coalgebra (A, «)
is its well-founded part a*: (A*, a*) — (A4, ).

Proof. We are to prove that for every coalgebra homomorphism f: (B, 5) —
(A, a), where (B, [3) is well-founded, there exists a coalgebra homomorphism
f%: (B, B) — (A*,a*) such that a* - f* = f. The uniqueness is easy.

For the existence of f¥, we first observe that f (a*) is a pre-fixed point of
Op: indeed, using Lemma 4.14 we have Og( f (a*)) < f(Oala*)) = <?(UL*).
By Remark 4.4(2), we therefore have idg = b* < 7(@*) in Sub(B). Using the
adjunction of Lemma 2.11, we have f (idp) < a* in Sub(A4). Now factorize f as
B 5 C 5 A, We have (idp) = m, and we then obtain m = f (idg) < a*,
i.e. there exists a morphism h: C ~— A* such that a* - h = m. Thus, ff =
h-e: B — A* is a morphism satisfying a* - f# =a*-h-e =m-e = f. It follows
that f* is a coalgebra homomorphism from (B, ) to (A*,a*) since f and a* are
and F' preserves monomorphisms. O

Construction 4.20 [6, Not. 2.22]. Let (A,a) be a coalgebra. We obtain
a*, the least fixed point of (), as the join of the following transfinite chain of
subobjects a;: A; — A, i € Ord. First, put ag = 1 4, the least subobject of A.
Given a;: A; — A, put a;11 = Qa;: Aj1 = OA; — A. For every limit ordinal
Jjs put a; = \/,_; a;. Since Sub(A) is a set, there exists an ordinal i such that

a; =a*: A" —
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Remark 4.21. Note that, whenever monomorphisms are smooth, we have Ay =
0 and the above join a; is obtained as the colimit of the chain of the subobject
a;: A; — A, i < j (see Remark 2.12).

If F' is a finitary functor on a locally finitely presentable category, then the
least ordinal ¢ with a* = a; is at most w, but in general one needs transfinite
iteration to reach a fixed point.

Example 4.22. Let (A,a) be a graph regarded as a coalgebra for & (see
Example 2.1). Then Ay = ), A; is formed by all leaves; i.e. those nodes with no
neighbors, A, by all leaves and all nodes such that every neighbor is a leaf, etc.
We see that a node x lies in A, iff every path starting in x has length at most
1. Hence A* = A, is the set of all nodes from which no infinite paths start.

We close with a general fact on well-founded parts of fized points (i.e. (co)alge-
bras whose structure is invertible). The following result generalizes [15, Cor. 3.4],
and it also appeared before for functors preserving finite intersections [4, The-
orem 8.16 and Remark 8.18]. Here we lift the latter assumption (see [5, The-
orem 7.6] for the new proof):

Theorem 4.23. Let &/ be a complete and well-powered category with smooth
monomorphisms. For F preserving monomorphisms, the well-founded part of
every fized point is an initial algebra. In particular, the only well-founded fixed
point is the initial algebra.

Example 4.24. We illustrate that for a set functor F' preserving monomorph-
isms, the well-founded part of the terminal coalgebra is the initial algebra.
Consider FFX = A x X + 1. The terminal coalgebra is the set A> U A* of finite
and infinite sequences from the set A. The initial algebra is A*. It is easy to
check that A* is the well-founded part of A% U A*.

5 The General Recursion Theorem and its Converse

The main consequence of well-foundedness is parametric recursivity. This is
Taylor’s General Recursion Theorem [24, Theorem 6.3.13]. Taylor assumed that
F preserves inverse images. We present a new proof for which it is sufficient that
F' preserves monomorphisms, assuming those are smooth.

Theorem 5.1 (General Recursion Theorem). Let &7 be a complete and
wellpowered category with smooth monomorphisms. For F': of — o/ preserving
monomorphisms, every well-founded coalgebra is parametrically recursive.

Proof sketch. (1) Let (A, ) be well-founded. We first prove that it is recursive.
We use the subobjects a;: A; — A of Construction 4.20*, the corresponding

4 One might object to this use of transfinite recursion, since Theorem 5.1 itself could
be used as a justification for transfinite recursion. Let us emphasize that we are
not presenting Theorem 5.1 as a foundational contribution. We are building on the
classical theory of transfinite recursion.
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morphisms «(a;): Aiy1 = OA; — FA; (cf. Definition 4.3), and the recursive
coalgebras (F'0,w; ;11) of Example 3.3(6). We obtain a natural transformation
h from the chain (A;) in Construction 4.20 to the initial-algebra chain (F*0) (see
Remark 2.13) by transfinite recursion.

Now for every algebra e: FF.X — X, we obtain a unique coalgebra-to-algebra
morphism f;: F'0 — X, i.e. we have that f; = e Ff; - w; ;1. Since (A, a) is
well-founded, we know that @ = a* = «a(a;) for some i. From this it is not difficult
to prove that f; - h; is a coalgebra-to-algebra morphism from (A4, «) to (X, e).

In order to prove uniqueness, we prove by transfinite induction that for any
given coalgebra-to-algebra homomorphism ef, one has ef - a; = f; - h; - a; for
every ordinal number j. Then for the above ordinal number ¢ with a; = id 4, we
have ef = f; - h;, as desired. This shows that (A, «) is recursive.

(2) We prove that (A, «) is parametrically recursive. Consider the coalgebra
(a,ida): A — FA x A for F(—) x A. This functor preserves monomorphisms
since F' does and monomorphisms are closed under products. The next time
operator () on Sub(A) is the same for both coalgebras since the square (4.1) is a
pullback if and only if the square on the right below is one.

Since id 4 is the unique fixed point of ()

w.r.t. F' (see Definition 4.3), it is also the (a(m),Om)
unique fixed point of () w.r.t. F(—) x A. OSJ FSx A
Thus, (A,{a,ida)) is a well-founded coal- OWI ImeA

gebra for F(—) x A. By the previous ar-
gument, this coalgebra is thus recursive for
F(—) x A; equivalently, (A, ) is parametrically recursive for F. O

A2 paxaA

Theorem 5.2. For every endofunctor on Set or Veck (vector spaces and linear
maps), every well-founded coalgebra is parametrically recursive.

Proof sketch. For Set, we apply Theorem 5.1 to the Trnkovéa hull F' (see Proposi-
tion 2.3), noting that F and F have the same (non-empty) coalgebras. Moreover,
one can show that every well-founded (or recursive) F-coalgebra is a well-founded
(recursive, resp.) F-coalgebra. For Vecg, observe that monomorphisms split and
are therefore preserved by every endofunctor F. a

Example 5.3. We saw in Example 4.11(3) that for F X = 14+ A x X x X
the coalgebra (A4, s) from Example 3.3(8) is well-founded, and therefore it is
(parametrically) recursive.

Example 5.4. Well-founded coalgebras need not be recursive when F' does
not preserve monomorphisms. We take &/ to be the category of sets with a
predicate, i.e. pairs (X, A), where A C X. Morphisms f: (X, A) — (Y, B) satisfy
f[A4] € B. Denote by 1 the terminal object (1,1). We define an endofunctor
F by F(X,0) = (X +1,0), and for A # 0, F(X,A) = 1. For a morphism
f:(X,A) = (Y,B), put Ff = f+id if A= 0;if A # (), then also B # () and
Ffisid: 1 1.



