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Abstract—Automated safety proofs of parameterized software
are hard: State-of-the-art methods rely on intricate abstractions
and complicated proof techniques that often impede automation.
We replace this heavy machinery with a clean abstraction
framework built from a novel combination of counter abstraction,
thread-modular reasoning, and predicate abstraction. Our fully
automated method proves parameterized safety for a wide range
of classically challenging examples in a straight-forward manner.
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I. INTRODUCTION

In this paper, we present a novel method for automatically
proving safety of programs that are executed by an unbounded
number of concurrent threads.

Running example. Consider the program template T [N ] over
global variables s and t and parameter N shown in Fig. 1a1.
Assume that T is executed by an arbitrary number of n threads,
where each thread runs the program P = T [N/n] obtained by
replacing N by n in T (Fig. 1b). We write P (n) = P1 ∥
· · · ∥ Pn for this parameterized program. In this paper, we
show how to automatically prove that the error location ℓerr
is unreachable from an initial state of s = t = 0 for all n > 0.

Despite the seemingly simple structure of the program,
automatically constructing such a safety proof is hard: Note
that the value of global variable t equals the number of threads
at either control location ℓ1, ℓ2, or ℓerr . Similarly, the value
of s equals the number of threads at control location ℓ2. In
addition, the assertion not only refers to variables, but also to
the parameter n. Thus, a safety proof for this program needs
to relate the unboundedly many local states of all threads, the
arbitrary number of threads n, and the global variables s and
t in a meaningful way.

A. Tackling dimensions of infinity

A parameterized program – like the one above – induces an
infinite family of concurrent programs, one for each instanti-
ation of the parameter n. Together, this family of concurrent
programs exhibits the following dimensions of infinity that any
automated procedure has to deal with:

1This slightly abstracted version of a ticket lock is adapted from the
introductory example in [1]. We extend their version with an upper bounds
check s− t ≤ N . This allows us to bound s− t by the number of threads n.

(I) Unbounded replication of local state. The program tem-
plate’s control structure and local variables are replicated
for each of the unboundedly many threads.

(II) Infinite data domain. As for sequential software, the
program variables range over an infinite data domain.

State-of-the-art methods rely on heavy proof machinery
to tackle these dimensions (cf. Section III). In contrast, our
method is a novel combination of well-known techniques.
Significantly improving the start of the art, we build a powerful
and cleanly structured two-step abstraction framework. Our
method is fully automated and treats the infinity dimensions
in dedicated abstraction layers:

The first step of our method, thread-modular counter ab-
straction (TMCA), deals with dimension (I) and is inspired by
the well-known techniques counter abstraction [2] and thread-
modular reasoning [3], [4]. TMCA uses symmetry reduction
to track the number of threads in a specific local state, encodes
this information in the (already infinite) data domain, and
abstracts the unbounded local state into a stateless thread-
modular summary. TMCA models are sequential programs that
can be checked using off-the-shelf software verifiers. However,
our experiments show that state-of-the-art techniques diverge
on them. We thus tackle infinity dimension (II) by presenting
a novel predicate refinement heuristic for predicate abstrac-
tion [5], [6].

II. MOTIVATING EXAMPLE

Fig. 2 gives an overview of our approach. We briefly discuss
its structure and demonstrate it on our introductory example.

A. Counter instrumentation

Our method keeps one thread concrete and computes an
abstraction of the n − 1 other threads. We call these n − 1
threads the environment. Our method starts by instrumenting
the program P = T [N/n] from Fig. 1b to track the local state
of the n− 1 environment threads in additional global counter
variables. This introduction of auxiliary state serves to retain
some information about the local state of all threads in the
subsequent abstraction step.
Running example. In our motivating example (Fig. 1b), each
thread’s local state is given entirely by the valuation of its
program counter, which ranges over the finite domain of
program locations {ℓ0, ℓ1, ℓ2}. Our method introduces fresh
global variables {c0, c1, c2} and instruments the program such
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(a) Program template T [N ].
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(b) Program P = T [N/n].
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ℓerr

{s = t = 0 ∧ c0 = n− 1 ∧
c1 = c2 = 0 ∧ n− 1 ≥ 0}

[c0 > 0]; t++; c0--; c1++;

[c1 > 0]; s++; c1--; c2++;

[¬(0 < t− s ≤ n)]

(c) Counter-instrumented program CCA(P, n− 1).

ℓ

{s = t = 0 ∧ c0 = n− 1 ∧
c1 = c2 = 0 ∧ n− 1 ≥ 0}

IncS:
[c1 > 0]; s++;
c1--; c2++;

IncT:
[c0 > 0]; t++;
c0--; c1++;

(d) Thread-modular summary P̂ = TMS(CCA(P, n− 1)).

ℓ0

ℓ1

ℓ2

ℓerr

{s = t = 0 ∧ c0 = n− 1 ∧
c1 = c2 = 0 ∧ n− 1 ≥ 0}

t++;

s++;
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(e) Abstracted program TMCA(T, n, 1) = P1 ∥ TMS(CCA(P, n− 1)).

Fig. 1: Running example illustrating the thread-modular abstraction TMCA. Adapted from the introductory example in [1] by
extending the assertion with an upper bounds check s− t ≤ N on the parameter.
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Fig. 2: Overall structure of our method. Dashed parts are beyond the scope of this work and sketched in Section IX.
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that variable ci tracks the number of threads at location ℓi.
The resulting instrumented program CCA(P, n− 1) is shown
in Fig. 1c.

B. Thread-modular summary generation

In this step, our method uses thread-modular reasoning to
project away the unboundedly many local variables of the n−1
environment threads. Our method generates a thread-modular
summary P̂ of the instrumented program CCA(P, n−1), such
that P̂ over-approximates the reachable global state space of
the environment threads for all n > 0.
Running example. In our example, the only local variable
of CCA(P, n − 1) (Fig. 1c) is the program counter. By
projecting it away, we obtain P̂ = TMS(CCA(P, n−1)) as the
thread-modular summary in Fig. 1d: Abstract transition IncT
corresponds to transition ℓ0 → ℓ1, while IncS corresponds to
transition ℓ1 → ℓ2. It is easy to see that from its initial state

{s = t = 0 ∧ c0 = n− 1 ∧ c1 = c2 = 0 ∧ n− 1 ≥ 0},

P̂ over-approximates the globally visible behavior of n − 1
environment threads for all n > 0. Thus, instead of analyzing
the parameterized program P (n), we instead consider its over-
approximation TMCA(T, n, 1) = P1 ∥ P̂ (shown in Fig. 1e),
where P̂ over-approximates the behavior of P2 ∥ · · · ∥ Pn.

C. Invariant generation (predicate abstraction + CEGAR)

The abstracted program TMCA(T, n, 1) from above is just
a sequential program that could be checked by off-the-shelf
software verifiers, e.g., based on predicate abstraction. Our
experiments (Section VIII) show that our abstraction already
allows state-of-the-art methods to prove safety for some exam-
ples. However, due to the uncommon structure of our abstract
models, standard predicate discovery heuristics often diverge.
Again improving the state of the art, we thus introduce a novel
predicate selection heuristic in Section VII.
Running example. For our abstracted example TMCA(T, n, 1)
in Fig. 1e, this predicate selection procedure finds the follow-
ing invariant at control location ℓ1:

c1 < t− s ∧ t− s ≤ n− c0 ∧
c0 ≥ 0 ∧ c1 ≥ 0 ∧ c2 ≥ 0 ∧ n > 0 ∧ s ≥ 0 ∧ t > 0

Obviously, this implies that 0 < t− s ≤ n and thus proves
the error location ℓerr unreachable.

III. RELATED WORK

There exists extensive research on the automated verification
of parameterized systems, i.e., the unbounded replication of
finite-state components. The survey in [7] gives an overview.
In contrast, we are interested in the safety verification of
parameterized programs, where already the individual compo-
nents are infinite-state. Several works discuss their verification,
among them approaches orthogonal to ours such as cutoff
detection [8], [9], semi-automatic deductive techniques [10],
or those based on small model properties [11], [12]. In the
following, we discuss the works most closely related to ours.

Ganjei et al. [13], [14] prove parameterized program safety
by combining two nested CEGAR loops: Their method ap-
plies symmetric predicate abstraction [15], a specialization
of predicate abstraction for symmetric concurrent programs,
to obtain a program template’s finite-state abstraction as a
boolean program. The method then uses counter abstraction
to encode the parallel composition of n copies of the boolean
program into a monotonic counter machine (essentially a vec-
tor addition system, i.e., more threads lead to more behavior).
Since some wide-spread synchronization constructs have non-
monotonic behavior, these tests are lost in the monotonic
abstraction2. The authors strengthen their abstraction using
a thread-modular analysis and check the resulting, now non-
monotonic counter machine with the inner CEGAR loop run-
ning constrained monotonic abstraction [16], again abstracting
the non-monotonic system into a monotonic one for which
state reachability is decidable.

Kaiser et al. [17] present another combination of monotonic
abstraction nested inside a specialized predicate abstraction.
They introduce a symbolic representation for tracking inter-
thread predicates, extending those of [15]. The resulting sys-
tem is again non-monotonic and the authors force monotonic-
ity as above. It is however unclear how to construct these inter-
thread predicates or how to refine the monotonic abstraction.

Following a different approach, Farzan et al. [1] introduce
control flow nets, a hybrid of Petri nets and control flow
graphs, as their program model. The proof procedure alternates
between synthesizing a candidate counting automaton (a kind
of restricted counter machine) and checking language inclu-
sion with the underlying control flow net. While the method is
explained in theory, no implementation is given. In addition,
the Petri net program model has several shortcomings. First, it
is unclear how to encode a given parameterized program: even
the authors present a program where “it does not seem possible
to encode the verification problem for mutual exclusion by a
control flow net” [1]. Second, it is unclear how to express
the additional upper-bounds check on N added to our running
example (Fig. 1b) given that the parameter is not symbolically
represented in the control flow net.

In summary, state-of-the-art methods rely on tightly cou-
pled, specialized abstractions and heavy, non-standard proof
machinery. Many times, implementation questions are unclear
and the possibility of automation is questionable. However,
our experiments show that many practical examples can be
proven in a more straight-forward way: We replace the heavy
machinery of previous work with a clean, two-step abstraction
framework built from a novel combination of well-known
techniques, thus significantly improving the state of the art.

In particular, we start from a standard program model by
encoding our program templates as transition systems. To
these, our method first applies a novel thread-modular counter
abstraction adapted to infinite-state systems that tracks and

2Synchronization mechanisms such as the dynamic barriers considered by
Ganjei et al. [13], [14] test the number of threads in a specific state. In essence,
their counter abstraction would then have to encode a counter machine with
zero tests, making state reachability checking undecidable.
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projects away the unboundedly replicated local state. In the
subsequent step, we apply standard predicate abstraction to
deal with the infinite data domain. The discovery of counting
arguments is left entirely to the predicate refinement phase.
We show in Section VIII that this straight-forward method
is powerful enough for many examples from the literature.
In addition, our two-step abstraction follows a clean design
by applying the separation of concerns design principle: each
dimension of infinity is dealt with in a dedicated component.
While our upfront thread-modular abstraction may be too
coarse in some cases, it could be strengthened by an outer
refinement loop, again running predicate abstraction. This
additional refinement step is beyond the scope of this work;
we sketch it in Section IX and leave its detailed investigation
for future work.

IV. CONTRIBUTIONS

We introduce a novel framework for parameterized software
verification. Its advantages over state-of-the-art methods lie in
its clean design and simplicity, while being powerful enough
to tackle a superset of benchmarks compared to previous work.
In particular, we make the following contributions:

1) Our framework is presented as a novel layered proof sys-
tem of well-understood and pluggable components. The
power of our method stems from adapting, combining,
and extending established methods without introducing
complicated new proof machinery or non-standard con-
cepts (Sections VI and VII). To our knowledge, we are
the first to suggest this combination of techniques for
safety proofs of parameterized programs. In particular,
we contribute the following technical advancements:

a) We adapt counter abstraction to infinite-state systems
by introducing auxiliary state to track the number of
threads in a specific local state (Section VI). To our
knowledge we are the first to propose such a counter
abstraction and to apply it to parameterized programs.

b) Predicate abstraction with standard predicate selec-
tion heuristics diverges on our abstract models (Sec-
tion VIII). We present novel predicate selection heuris-
tics to guide a CEGAR loop in the presence of these
counter-abstracted summaries (Section VII).

2) We implement our method based on constrained Horn
clauses (CHCs) and demonstrate its efficacy on a com-
bined benchmark set from various sources (Section VIII).

3) The individual components of our framework lend them-
selves to tweaking and adaptation, both on the theoretical
side (e.g., by providing new heuristics or refinement
methods) and on the practical side (e.g., through new and
improved backend solvers) (Section IX).

V. PROGRAM MODEL AND PROBLEM STATEMENT

In this section, we start to formally develop the technique
illustrated above by formalizing our program model and prob-
lem statement.

Definition 1 (Program model). Let g = (g1, . . . , gk) and
l = (l1, . . . , lj) be disjoint tuples of global and local pro-
gram variables. Let N be a symbolic parameter. A guarded
command gc ∈ GC over l, g, N has the form

gc : [cond ] | v := e | gc1; gc2

where [cond ] is an assume statement over l, g, N , and v := e
is an assignment of expression e over l, g, N to a local or
global variable v. We write ν(g, l) for the valuation of global
and local variables and omit its arguments wherever clear from
the context. We denote by JgcK(ν) = ν′ the effect of a guarded
command gc and write φ(g,g′, l, l′) for its standard encoding
as a formula over primed and unprimed variables.

A program template T [N ] over global and local variables g
and l and a parameter N is a directed labeled graph T [N ] =
(Loc, δ, ℓ0, Init) where Loc is a finite set of control locations,
ℓ0 ∈ Loc is the initial location, δ ⊆ Loc × GC × Loc is a
finite set of transitions, and Init is a predicate over g, l, N
describing the initial valuations of variables. From template
T [N ], we obtain program P = T [N/n] = (Loc, δ′, ℓ0, Init

′)
by replacing each occurrence of N in T (i.e., in δ and Init)
with the expression n. We call a pair (ℓ, ν) of a control location
ℓ ∈ Loc and a valuation ν(g, l) a program state. We represent
runs of P as interleaved sequences of states and transitions
and write (ℓ0, ν0)

gc0−−→ (ℓ1, ν1)
gc1−−→ . . . such that ν0 satisfies

Init ′, and for all i ≥ 0 we have that (ℓi, gci, ℓi+1) ∈ δ′ and
νi+1 = JgciK(νi).

We define the interleaving of two programs P1 =
(Loc1, δ1, ℓ1,0, Init1) and P2 = (Loc2, δ2, ℓ2,0, Init2) over
joint global variables g and disjoint local variables l1 and l2 as
the program P1 ∥ P2 = (Loc1 × Loc2, ρ, (ℓ1,0, ℓ2,0), Init1 ∧
Init2) over global and local variables g and l1 ∪ l2 where
((ℓ1, ℓ2), gc, (ℓ

′
1, ℓ

′
2)) ∈ ρ iff either (ℓ1, gc, ℓ

′
1) ∈ δ1 and ℓ′2 =

ℓ2, or (ℓ2, gc, ℓ′2) ∈ δ2 and ℓ′1 = ℓ1. Let P = (Loc, δ, ℓ0, Init)
be a program. For thread identifiers i = 1, . . . , k we obtain
the instantiation Pi of P by replacing each local variable lj
with its i-th copy lj,i. We define the k-times interleaving of
P as P k = P1 ∥ · · · ∥ Pk. Finally, a program template T [N ]
induces a parameterized program P (n) = (T [N/n])n.

Following [18], [19], we define safety of a parameterized
program in the style of coverability:

Definition 2 (Safety). Let T [N ] be program template, and let
P (n) be its induced parameterized program over vectors of
global and local variables (g, l1, . . . , ln). Recall that a state of
P (n) has the form ((ℓ1, . . . , ℓn), ν). We define safety relative
to a generator set of error states Errm of (T [N/n])m for a
fixed m > 0. P (n) is safe iff for all n > 0, no run of P (n)
reaches an error state from the system error states Err, where

Err
def
= {((ℓ1, . . . , ℓn), ν) | ((ℓi1 , . . . , ℓim), ν′) ∈ Errm s.t.
ν′(g) = ν(g), ν′(lj) = ν(lij ) for 1 ≤ j ≤ m

and some i1, . . . , im s.t. 1 ≤ i1 < · · · < im ≤ n}. (1)

Intuitively, P (n) is unsafe if it contains m pairwise distinct
threads that reach an error state from Errm while the remaining
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n−m symmetric threads may take arbitrary control locations
and local states. Note that for a concrete parameterized ver-
ification problem, m is a scalar value but n is universally
quantified: Given a program template T [N ] and a generator set
Errm, our goal is to prove safety of the induced parameterized
program P (n), i.e., to show that reaching an error state from
Err is infeasible for all parameter instantiations n > 0. Our
method follows a two-step process that we explain in the next
two sections.

VI. TACKLING INFINITY DIMENSION I:
THREAD-MODULAR COUNTER ABSTRACTION (TMCA)
As outlined in Section I, there are two main challenges in

proving safety of a parameterized program P (n): its unbound-
edly replicated local state, and the infinite data domain. The
first step of our method, thread-modular counter abstraction
(TMCA), tackles the first aspect. We deal with the second
dimension, infinite data, in Section VII.

TMCA is inspired both by the work on counter abstrac-
tion [2] and thread-modular reasoning [3], [4]. Starting from
a program template T [N ], its induced parameterized program
P (n) = T [N/n]1 ∥ · · · ∥ T [N/n]n, and a generator set of
error states Errm, our goal is to construct an abstraction P̂ such
that TMCA(T, n,m) = T [N/n]1 ∥ · · · ∥ T [N/n]m ∥ P̂ over-
approximates the reachable state space of P (n), but has only
finitely many control locations and variables. In the following,
we explain both aspects of TMCA in further detail.

A. Control counter abstraction (CCA)

Counter abstraction [2] was introduced to abstract the paral-
lel execution of an unbounded number of finite-state processes:
For each state, a counter is introduced to track how many
processes reside in their respective copy of the state. Counter
values are then projected onto a finite domain to obtain a
finite-state system that is model-checked. This idea has been
adapted to parameterized software [13], [17] by first predicate-
abstracting the program template into a boolean program, and
then counting the number of threads residing in one of the
finitely many abstract states.

In contrast, our method instruments counters as auxiliary
variables [20], [21] into an infinite-state system: It is well-
known that thread-modular reasoning is incomplete [22], but
can be made more expressive by adding auxiliary state [10],
[20]. Thus, in contrast to earlier work on counter abstraction,
our goal is not to finitize the entire parameterized system, but
to express the unboundedly replicated local state of a param-
eterized program P (n) in the already infinite data domain. To
this end, we first instrument the corresponding program P with
fresh counter variables, one for each program location, that
count the number of threads in (their copy of) the respective
control state. We formalize this idea:

Definition 3 (Auxiliary variable instrumentation). Let P =
(Loc, δ, ℓ0, Init) be a program over global and local variables
g and l. We extend the set of global variables with a set
of fresh auxiliary variables, one for each program location:
for global variables g = (g1, . . . , gi) and control locations

Loc = {ℓ0, ℓ1, . . . , ℓj}, let g′ = (g1, . . . , gi, c0, c1, . . . , cj).
The instrumented program CCA(P, k) = (Loc, δ′, ℓ0, Init

′)
is defined over the extended global variables g′ and local
variables l where the instrumented transition relation δ′ is

ℓsrc
gc′

−−→ ℓtgt ∈ δ′ iff ℓsrc
gc−→ ℓtgt ∈ δ where

gc′
def
= [csrc > 0]; gc; csrc := csrc − 1; ctgt := ctgt + 1;

and Init ′
def
= Init ∧ c0 = k ∧ c1 = · · · = cj = 0 ∧ k ≥ 0.

Proposition 1. Let P be a program and let P k be its k-
times interleaving. Up to the instrumented counter variables,
CCA(P, k)k has the same reachable states as P k for all k > 0.

Note that CCA’s second argument k can be symbolic. We
use this below to obtain a summary for an arbitrary number
of threads.

B. Thread-modular summary generation (TMS)

The parameterized program instrumented as outlined above
still contains unboundedly many local variables. To tackle
this second aspect of unboundedly replicated local state,
our method computes a thread-modular summary. Originally
conceived as an extension of Hoare logic to concurrency,
thread-modular reasoning [3], [4] picks one reference thread
and models the interleaved steps of all other threads (the
environment) in an environment assumption. This environment
assumption is a binary relation over global program states and
over-approximates the environment’s transition relation.

We compute thread-modular summaries by projecting away
all local state (i.e., the control locations and valuations of local
variables) from the program’s transition relation3:

Definition 4 (Thread-modular summary). Let P =
(Loc, δ, ℓ0, Init) be a program over global and local variables
g and l. We define the thread-modular summary TMS(P ) =
({ℓ}, δ′, ℓ, Init ′) for a fresh program location ℓ /∈ Loc where
Init ′

def
= ∃l. Init and δ′ is defined as

ℓ
∃l,l′.φ(g,g′,l,l′)−−−−−−−−−−→ ℓ ∈ δ′ iff ℓsrc

φ(g,g′,l,l′)−−−−−−−→ ℓtgt ∈ δ.

Proposition 2. Let P be a program. TMS(P ) over-
approximates the reachable global states of P ’s k-times in-
terleaving P k for all k > 0.

C. Putting it together: Thread-modular counter abstr. (TMCA)

The combination of control counter abstraction (Sec-
tion VI-A) and thread-modular reasoning (Section VI-B)
yields a control- and local-stateless thread-modular summary
that over-approximates the reachable states of the original
program. In addition, it retains the number of threads in a
specific control location in the instrumented counter variables.

3We choose this definition because it is sufficiently fine-grained for our
benchmarks. In general, stronger notions of a thread-modular summary (e.g.,
restricting the transition relation to reachable states) can be adopted [23].
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As we motivated in Section I, this is essential for construct-
ing counting proofs. Observe the following property of the
combination of CCA and TMS:

Proposition 3. Let P be a program. Up to instrumentation
variables, TMS(CCA(P, k)) over-approximates the reachable
global states of P k for all k > 0.

Recall from Definition 2 that safety of a parameterized
program P (n) is defined with respect to a generator set of
error states Errm. For deciding if a program state belongs to
Errm, the control locations and valuations of local variables
of the n−m other symmetric threads are irrelevant. We thus
use the following generalization of thread-modular reasoning:
We pick a finite set of m reference threads (recall that
the parallel composition of finitely many threads is again
a sequential program) and apply a combination of control
counter abstraction and thread-modular summary generation
to abstract all n−m other threads.

Definition 5 (Thread-modular counter abstraction). Let T [N ]
be a program template and let P (n) be the induced parameter-
ized program. Let Errm be a generator set of error states. We
define the thread-modular control abstraction TMCA(T, n,m)
as the program

TMCA(T [N ], n,m)
def
= let P = T [N/n] in

P1 ∥ · · · ∥ Pm ∥ TMS(CCA(P, n−m)). (2)

Proposition 4. Let T [N ] be a program template, let P (n)
be its induced parameterized program, and let Errm be a
generator set of error states. We define R to be the set of
reachable states of P (n) projected to its first m components,
i.e., let

R = {((ℓ1, . . . , ℓm), ν(g, l1, . . . , lm)) | s.t.

((ℓ1, . . . , ℓn), ν(g, l1, . . . , ln)) is reachable in P (n)}. (3)

Then, the states reachable by TMCA(T, n,m) are a superset
of R.

Note that by symmetry of Err, R contains an error state if
and only if an error state is reachable by P (n).

Theorem 1. Let T [N ] be a program template, let P (n) be its
induced parameterized program, and let Errm be a generator
set of error states. If TMCA(T, n,m) is safe with respect to
Errm, then so is P (n) for all n > 0.

VII. TACKLING INFINITY DIMENSION II:
PREDICATE ABSTRACTION (PA)

The parameterized program P (n) induced by a program
template T [N ] refers to an infinite family of programs.
In contrast, consider its thread-modular counter abstraction
TMCA(T, n,m): if its parameter n remains symbolic, we ob-
tain an abstraction of the parameterized program in the form of
a sequential program with finitely many control locations and
local variables, while over-approximating the infinite family
of programs induced by P (n). Standard software verification

methods could be applied to prove safety, thus tackling infinity
dimension (II) from Section I: the infinite data domain.

However, our experiments show that standard methods often
fail on our models: We encode the TMCA abstraction of our
benchmarks as a set of constrained Horn clauses (CHCs) [24].
Both state-of-the-art solvers ELDARICA [25] and Z3 [26]
diverge on many of our examples (Table I, columns 1c and 1d;
cf. Section VIII for details). We speculate that this is due to
the uncommon structure of our TMCA models. In this section,
we discuss how to guide a predicate abstraction-based solver
to converge on TMCA models.

A. Predicate selection for TMCA models

A standard method for building predicate abstractions is to
iteratively use an interpolating theorem prover to find new
predicates that rule out spurious counter-examples [27]: We
encode the error path in a logical formula in the usual way
and split it into partitions A∧B. If the formula is unsatisfiable,
the solver returns an interpolant I over the common symbols
of A and B such that A → I and I → ¬B. Intuitively, the
interpolant I gives a reason why the path A∧B is infeasible,
and can thus be used as a predicate to refine the abstraction.

The key to converging predicate abstraction CEGAR loops
is to chose the “right” interpolants. Conventional wisdom
holds that referring to loop counters, which frequently appear
on infeasible error paths, is best avoided in abstract models:
tracking their values leads to loop unrolling and divergence
of the CEGAR loop [28], [29]. This poses a challenge for
thread-modular summaries:

Running example. Recall the TMCA abstraction of our exam-
ple in Fig. 1e: Due to product construction with the thread-
modular summary TMS(CCA(P, n − 1)), all variables are
loop counters: the self-loops IncS and IncT at each program
location increment or decrement c0, c1, c2, s, and t. Tracking
the value of either one leads to useless loop unrollings.

Even more elaborate predicates, e.g., tracking the difference
expression in the assertion do not lead to convergence: Assume
that we already applied predicate abstraction and the model
checker returned the following spurious counter-example4

(starting in an initial state where s = t = 0):

t++; IncT; IncS; [0 >= t-s];

The formula representing this error path is shown in Fig. 3a.
If we partition the formula between IncT and IncS, an inter-
polating theorem prover is likely to find the new predicate
2 ≤ t− s. This rules out the spurious counter-example above,
but leads to another, longer one:

t++; IncT; IncT; IncS; IncS; [0 >= t-s];

This again can be ruled out by the additional predicate 3 ≤
t−s but only leads to further unrollings of IncS and IncT and
to further invariants of this shape; the CEGAR loop diverges.

4One can reproduce the behavior of this running example in the model
checker ELDARICA (v2.0.2) [25] and the interpolating theorem prover
PRINCESS (v2020-03-12) [30].
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s = 0 ∧ t = 0 ∧ c0 = n− 1 ∧ c1 = 0 ∧ c2 = 0 ∧ n > 0 ∧ (initial state)
s′ = s ∧ t′ = t+ 1 ∧ c′0 = c0 ∧ c′1 = c1 ∧ c′2 = c2 ∧ (ℓ0 → ℓ1: t++)

c′0 > 0 ∧ s′′ = s′ ∧ t′′ = t′ + 1 ∧ c′′0 = c′0 − 1 ∧ c′′1 = c′1 + 1 ∧ c′′2 = c′2 ∧ (ℓ1 → ℓ1: IncT)
c′′1 > 0 ∧ s′′′ = s′′ + 1 ∧ t′′′ = t′′ ∧ c′′′0 = c′′0 ∧ c′′′1 = c′′1 − 1 ∧ c′′′2 = c′′2 + 1 ∧ (ℓ1 → ℓ1: IncS)

0 < t′′′ − s′′′ (assertion)

(a) Concrete interpolation query.
s = 0 ∧ t = 0 ∧ c0 = n− 1 ∧ c1 = 0 ∧ c2 = 0 ∧ n > 0 (initial state)
s′ = s ∧ t′ = t+ 1 ∧ c′0 = c0 ∧ c′1 = c1 ∧ c′2 = c2 ∧ (ℓ0 → ℓ1: t++)

c′0 > 0 ∧ sA = s′ ∧ tA = t′ + 1 ∧ cA0 = c′0 − 1 ∧ cA1 = c′1 + 1 ∧ cA2 = c′2 ∧ (sA = ṡ ∧ tA − cA1 = ṫ− ċ1) ∧ (ℓ1 → ℓ1: IncT)

cB1 > 0 ∧ s′′′ = sB + 1 ∧ t′′′ = tB ∧ c′′′0 = cB0 ∧ c′′′1 = cB1 − 1 ∧ c′′′2 = cB2 + 1 ∧ (sB = ṡ ∧ tB − cB1 = ṫ− ċ1) ∧ (ℓ1 → ℓ1: IncS)

0 < t′′′ − s′′′ (assertion)

(b) Abstract interpolation query.

Fig. 3: Interpolation queries for our running example.

Instead, we want to find an invariant that relates the location
counters c0, c1, c2 to the values of the global variables s and
t. The next section explains how to achieve this.

B. An interpolation abstraction heuristic for TMCA models

As we argued above, interpolating predicate abstraction is
always driven by heuristics to prevent divergence. We now
present a heuristic that we find useful for the considered
problem domain and later show that it outperforms several
existing ones. Interpolation abstraction [31] is a state-of-
the-art method to implement predicate selection. Indeed, EL-
DARICA with its default interpolation abstraction heuristic
(Table I, column 1b) fares better than without (column 1c) but
still diverges on some benchmarks. We introduce a dedicated
heuristic for TMCA models to remedy this shortcoming.

Interpolation abstraction uses a set of template terms to
abstract the interpolation query and thus guide the theorem
prover in its search for an interpolant. We briefly introduce
the method on our running example and refer the interested
reader to the canonical description [31] for further reading.
Running example. As explained in Section I, the valuations of
s and t correspond to the number of threads in specific control
locations, and thus to sums over the instrumented location
counters. In particular, at ℓ1 we have that

t = c1 + c2 + 1 and s = c2 and thus (6)
t− s = (c1 + c2 + 1)− (c2) = c1 + 1 (7)

Assume that we choose template terms {t − c1, s}. The
abstracted query is shown in Fig. 3b: Common symbols
have been renamed and limited knowledge about them is
reintroduced via equalities over the template terms in the
shaded subformulae: in particular, the concrete values of t′′

and c′′1 are lost, and only relational knowledge about their
difference is reintroduced. Thus, 2 ≤ ṫ − ṡ is no longer an
interpolant. Instead, our interpolation procedure finds the new
predicate c1 < t − s, which is inductive at ℓ1 and rules
out further unrollings of the thread-modular summary. Note
that this predicate c1 < t − s is implied by the invariant in

Equation (7) and, together with 0 ≤ c1, implies the assertion
0 < t− s.

It remains to define how our method computes the set of
template terms for interpolation abstraction.

Definition 6 (Interpolation abstraction template terms). Let
T [N ] be a program template over global and local variables g
and l, let P = T [N/n] be the program obtained by replacing
N with n in T , and let P (n) be the induced parameterized
program. We start by computing a set of template terms for the
thread-modular abstraction TMS(CCA(P, n − m)). For each
variable x, we compute a stride set

S(x) = {α | x is incremented by α on some transition
of TMS(CCA(P, n−m))}.

We then define difference terms

TTMS = {αx− βc | x is a global program variable,
c is a location counter introduced by CCA,

α ∈ S(c) and β ∈ S(x)}

We define the set of interpolation abstraction template terms
Templ as the union of the following:

1) all global variables g,
2) the parameter n,
3) the set of difference terms TTMS.

We replace the template term heuristics of [31] with our
set Templ but still use their search algorithm: It explores the
powerset lattice ⟨P(Templ),⊆⟩ to find the largest subsets of
Templ for which the abstracted interpolation query is still
unsat. Of these, it picks the smallest ones and computes
interpolants to refine the predicate abstraction.

Intuitively, this search behavior explores relational abstrac-
tions, such as t− c1, early while still allowing us to track the
value of global variables and to introduce the parameter n if
necessary. In cases where there is no relationship between the
global variables and location counters as captured by TTMS,
our templates may still be useful by ruling out interpolants
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that track concrete variable values and would lead to loop un-
winding. Finally, it is worth pointing out that even though our
template terms are linear relations, interpolation abstraction is
semantic in nature and does not restrict the prover to only find
such interpolants [31].

VIII. EXPERIMENTS

We implement our TMCA abstraction and predicate dis-
covery engine [32] inside the ELDARICA Horn solver [25],
[31]. It takes as input a program template T [N ] and the error
states Errm in a C-like language and outputs the abstracted
program TMCA(T, n,m) as a set of constrained Horn clauses
(CHCs) [24] in the standard SMT-LIB format.

Our benchmarks and results are shown in Table I. The
first group of benchmarks consists of program templates that
sequentially increment and decrement a global variable. At
each program location we assert the tightest possible lower
and upper bounds; given that the number of increments and
decrements depends on the number of concurrent threads n,
these assertions are parameterized by the number of concurrent
threads. The second group of benchmarks is a set of programs
using unbounded thread creation taken from the software
verification competition SV-COMP [33]. In its latest three
editions (2018–2020), no sound verification tool proved these
benchmarks safe. In addition, fkp2014 and the bluetooth
driver qw2004 are the introductory and running example
of [1]. The third group of benchmarks from [14] includes non-
monotonic synchronization barriers (cf. Section III).

The columns of Table I compare the two main contributions
of this work:

1) TMCA (Section VI), compared in sub-columns (1a)–(1d)
to other approaches in columns (2) and (3), and

2) our predicate selection heuristic (Section VII) applied to
TMCA models, compared in sub-column (1a) to other
predicate selection heuristics in sub-columns (1b)–(1d).

In particular, we first compare TMCA abstraction with
different backend solvers (column 1) to PACMAN [14] (col. 2)
and ELDARICA’s unbounded thread encoding5 [18] (col. 3).
The last two benchmarks, parent-child and as-many,
use dynamic thread creation which is currently not supported
by ELDARICA. ELDARICA times out on the remaining ones.
Unfortunately, we were unable to compile PACMAN (even with
the authors’ help), due to outdated and commercial software
dependencies. We are thus limited to citing previous results
from [14] (recall from Section III that our main objective is to
replace their dedicated abstraction techniques with a cleaner
framework of well-established ones).

Second, we compare different backend solvers on our
TMCA-abstracted models in column (1): our predicate se-
lection heuristic from Section VII (1a), ELDARICA’s default
heuristic [31] (1b), ELDARICA without interpolation abstrac-
tion (1c) and the CHC solver in Z3 [26] (1d). Of the

5This encoding is usually unaware of the parameter n. We therefore slightly
modify our benchmarks such that the encoding’s implicitly introduced local
thread id variable is bounded by n.

benchmarks, only maximum does not have a thread-modular
proof and thus cannot be proved safe by our method. On
the remaining benchmarks, our predicate selection heuristic
is the only one to solve all tasks and does so well below
the timeout limit of 15 minutes. Meanwhile, ELDARICA with
default heuristics encounters 5 timeouts, ELDARICA without
interpolation abstraction 10, and Z3 even 11. This shows how
important an appropriate predicate discovery algorithm is for
our thread-modular abstractions.

In summary, a combination of both contributions (TMCA
abstraction and our predicate selection heuristic) is necessary
to tackle all benchmarks.

IX. FUTURE WORK

Our framework for parameterized program safety is de-
signed to be modular and pluggable. As such, there are many
directions for future work. We discuss several promising ones
in this section and invite further ideas and suggestions from
the community.

a) Thread-modular reasoning: [19] investigates k-thread
modular proofs, a method orthogonal to auxiliary state intro-
duction, to make thread-modular proofs more expressive. An-
other new approach to thread-modular verification is presented
in [34], where a reflective abstraction is computed iteratively
in a fixed point process. Integrating these approaches with our
method makes an interesting area for future work.

In addition, we sketch how to further refine our thread-
modular abstraction by closing the outer CEGAR loop. This
corresponds to the dashed parts of Fig. 2. If the model checker
reports a genuine counter-example, this may mean that the
parameterized program is in fact unsafe, or that our upfront
thread-modular abstraction was too coarse. If simulation on the
original program finds the counter-example to be spurious, one
can use predicate abstraction to refine the program’s original
control structure. This results in additional counters in our
thread-modular abstraction. These counters are then not only
capable of tracking control state, but also arbitrary predicates.

b) Predicate selection: The interpolation abstraction ap-
proach to predicate selection is highly semantic, in that the
interpolant search is left to the underlying theorem prover.
While this provides a lot of freedom, it would be interesting
to see how a more syntactic approach – e.g., based on syntax-
guided synthesis [35] – performs.

c) Solving: While currently limited to CHC solvers, we
plan to evaluate our abstraction with further sound software
verification tools as backend solvers.

X. CONCLUSION

In this work, we present a method for proving parame-
terized safety of infinite-state programs. Our method cleanly
separates different abstraction concerns and, in contrast to
related work, is built from well-established methods. Finally,
we demonstrated its efficacy on a number of benchmarks from
the literature.
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TABLE I: Benchmark results: Time to solve the respective encoding. �w10 indicates a timeout after 15 minutes, the fastest tool
for our TMCA encoding is highlighted in bold.

(1) TMCA abstraction (Section VI)
(a) our heuristic (b) ELDARICA (c) ELDARICA (d) Z3 (2) PACMAN (3) ELDARICA

Benchmark (Section VII) -abstract:relIneqs -abstract:off [26] [14] [18]
pp 1.5s 1.5s 1.4s 0.1s �w10

mm 1.5s 1.7s 1.4s 0.1s �w10

ppmm 2.5s 2.3s �w10 �w10 �w10

mmpp 2.6s 2.3s �w10 �w10 �w10

ppmmpp 95.5s 179.1s �w10 �w10 �w10

fkp2014 [1] 2.0s �w10 �w10 �w10 �w10

fkp2014 extd. (Fig. 1b) 2.0s �w10 �w10 �w10 �w10

qw2004 [1] 2.7s 5.5s �w10 �w10 �w10

locals [14] 124.6s �w10 �w10 �w10 16s �w10

shareds [14] 23.8s 10.9s �w10 �w10 160s �w10

readflag [14] 25.5s �w10 �w10 �w10 34s �w10

semaphore [14] 36.4s �w10 �w10 �w10 68s �w10

cyclic [14] 7.3s 4.5s 4.9s �w10 30s �w10

maximum [14] no thread-modular proof 489s �w10

parent-child [14] dynamic thread creation 76s dyn.thr.c.
as-many [14] dynamic thread creation 68s dyn.thr.c.
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[18] H. Hojjat, P. Rümmer, P. Subotic, and W. Yi, “Horn clauses for
communicating timed systems,” in HCVS, ser. EPTCS, vol. 169, 2014,
pp. 39–52.

[19] J. Hoenicke, R. Majumdar, and A. Podelski, “Thread modularity at many
levels: a pearl in compositional verification,” in POPL. ACM, 2017,
pp. 473–485.

[20] S. S. Owicki, “Axiomatic proof techniques for parallel programs,” Ph.D.
dissertation, Cornell University, 1975.

[21] S. S. Owicki and D. Gries, “An axiomatic proof technique for parallel
programs I,” Acta Inf., vol. 6, pp. 319–340, 1976.

[22] K. R. Apt, F. S. de Boer, and E. Olderog, Verification of Sequential and
Concurrent Programs, ser. Texts in Computer Science. Springer, 2009.

[23] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer, “Thread-
modular abstraction refinement,” in CAV, ser. Lecture Notes in Computer
Science, vol. 2725. Springer, 2003, pp. 262–274.

[24] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko,
“Synthesizing software verifiers from proof rules,” in PLDI. ACM,
2012, pp. 405–416.
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