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Abstract

Lazy grounding is a technique for avoiding the so-called
grounding bottleneck in Answer Set Programming (ASP).
The core principle of lazy grounding is to only add parts of
the grounding when they are needed to guarantee correctness
of the underlying ASP solver. One of the main drawbacks of
this approach is that a lot of (valuable) propagation is missed.
In this work, we take a first step towards solving this prob-
lem by developing a theoretical framework for investigating
completion formulas in the context of lazy grounding.

1 Introduction
Answer set programming (ASP) (Marek and Truszczyński
1999) is a well-known knowledge representation paradigm
in which logic programs under the stable semantics (Gel-
fond and Lifschitz 1988) are used to encode problems in the
complexity class NP and beyond. From a practical perspec-
tive, ASP offers users a rich first-order language, ASP-Core2
(Calimeri et al. 2013), to express knowledge in, and many
efficient ASP solvers (Gebser, Maratea, and Ricca 2017) can
subsequently be used to solve problems related to knowl-
edge expressed in ASP-Core2.

Traditional ASP systems work in two phases. First, the
input program is grounded (variables are eliminated). Sec-
ond, a solver is used to find the stable models of the resulting
ground theory. For a long time, the ASP community has fo-
cused strongly on developing efficient solvers, while only a
few grounders were developed. Most modern ASP solvers
are in essence extensions of satisfiability (SAT) (Marques
Silva, Lynce, and Malik 2009) solvers, building on conflict-
driven clause learning (CDCL) (Marques-Silva and Sakallah
1999). In recent years, in many formalisms that build on
top of SAT, we have seen a move towards only generating
parts of the SAT encoding on-the-fly, on moments when it is
deemed useful for the solver. This idea lies at the heart of
the CDCL(T) algorithm for SAT modulo theories (Barrett et
al. 2009) and is embraced under the name lazy clause gener-
ation (Stuckey 2010) in constraint programming (Rossi, van
Beek, and Walsh 2006). Answer set programming is no ex-
ception: the so-called unfounded set propagator and aggre-
gate propagator are implemented using the same principles;
when needed, they generate clauses for the underlying SAT
algorithm. Additionally, lazy clause generation forms the
basis of recent constraint ASP solvers (Banbara et al. 2017).

Lazy grounding takes the idea of lazily generating the
SAT encoding one step further by also lazily performing
the grounding process. That is, ASP rules are only instan-
tiated when some algorithm detects that they are useful for
the solver in its current state. The most prominent class of
lazy grounding systems for ASP is based on computation
sequences (Liu et al. 2007) and includes systems such as
Omiga (Dao-Tran et al. 2012), GASP (Dal Palù et al. 2009),
ASPeRiX (Lefèvre and Nicolas 2009) and the recently intro-
duced ALPHA (Weinzierl 2017). The latter is the youngest
and most modern of the family and the only one that inte-
grates lazy grounding with a CDCL solver, resulting in su-
perior search performance over its predecessors. Our work
extends the ALPHA algorithm.

Contrary to more traditional ASP systems, lazy grounding
systems aim more at applications in which the full ground-
ing is so large that simply creating it would pose issues (e.g.,
if it does not fit in your main memory). This phenomenon
is known as the grounding bottleneck (Balduccini, Lierler,
and Schüller 2013). Examples of such problems include
queries over a large graph; planning problems, with a very
large number of potential time steps, or problems where the
full grounding contains a lot of unnecessary information and
the actual search problem is not very hard.

The essential idea underlying lazy grounding is that all
parts of the grounding that do not help the solver in its quest
to find a satisfying assignment (a stable model) or prove
unsatisfiability are better not given to the solver since they
only consume precious time and memory. Unfortunately,
it is not easy to detect which parts that are and a trade-off
shows up (Taupe, Weinzierl, and Friedrich 2019): produc-
ing larger parts of the grounding will improve search perfor-
mance (e.g., propagation can prune larger parts of the search
space) but grounding too much will — on the type of in-
stances lazy grounding is built for — result in an unmanage-
able explosion of the ground theory. Lazy grounding sys-
tems and ground-and-solve systems reside on two extremes
of this trade-off: the former produce a minimal required part
of the theory to ensure correctness while the latter produce
the entire bottom-up grounding.

Our work moves lazy grounding a bit more to eager side
of this trade-off. Specifically, we focus on completion for-
mulas (Clark 1978) that essentially express that when an
atom is true, there must be a rule that supports it (a rule with
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true body and that atom in the head). While ground-and-
solve systems add these formulas (in the form of clauses)
to their ground theory, lazy grounders cannot do this easily;
the reason is that the set of ground rules that could derive
a certain atom is not known (more instantiations could be
found later on). Consider, for example the atom p(a) and
a rule p(X) ← q(X,Y ). where the set of ground instan-
tiations of this rule with p(a) in the head depends on the
set of atoms over the binary predicate q. Unless those in-
stances over q are fully grounded, a lazy grounder cannot
add the corresponding completion formula. In this paper,
we develop lightweight algorithms to detect when that set of
rules is complete and hence, when completion formulas are
added. Our hypothesis is that doing this will improve search
performance without blowing up the grounding and as such
result in overall improved performance of lazy-grounding
ASP systems, and specifically the ALPHA system.

The main contribution of our paper is the development of
a novel method to discover completion formulas during lazy
grounding. Our method starts from a static analysis of the
input program in which we discover functional dependen-
cies between variable occurrences. During the search, this
static analysis is then used to figure out the right moment to
add the completion formulas in a manner that is inspired by
the two-watched literal scheme from SAT to avoid adding
the completion constraints on moments they have no chance
of propagating anyway. We do not have an implementation
of this idea available yet, but instead focus on the theoretical
principles.

The rest of this paper is structured as follows. In Sec-
tion 2 we recall some preliminaries. Section 3 contains the
different methods for discovering completion formulas. In
Section 4, we discuss extensions of our work that could be
used to find even more completion formulas. We conclude
in Section 5.

2 Preliminaries
We now introduce some preliminaries related to answer set
programming in general and the ALPHA algorithm specifi-
cally. This section is based on the preliminaries of (Bogaerts
and Weinzierl 2018).

Answer set programming. Let C be a set of constants, V
be a set of variables, andQ be a set of predicates, each with
an associated arity, i.e., elements of Q are of the form p/k
where p is the predicate name and k its arity. We assume
the existence of built-in predicates, such as equality, with a
fixed interpretation. A (non-ground) term is an element of
C ∪ V.1 The set of all terms is denoted T . Our definition of
a term does not allow for nesting. This eases our exposition,
but is not essential for our results. For instance, it allows us
to view + as a ternary predicate +/3, i.e. +(X,Y, Z) means
that X + Y = Z. A (non-ground) atom is an expression of
the form p(t1, . . . , tk) where p/k ∈ Q and ti ∈ T for each i.

1Following Weinzierl (2017), we omit function symbols to sim-
plify the presentation. All our results still hold in the presence
of function symbols, except for termination, for which additional
(syntactic) restrictions must be imposed.

The set of all atoms is denoted by A. If a ∈ A, then var(a)
denotes the set of variables occurring in a. We say that a is
ground if var(a) = ∅. The set of all ground atoms is denoted
Agr. A literal is an atom p or its negation ¬p. The former is
called a positive literal, the latter a negative literal. Slightly
abusing notation, if l is a literal, we use ¬l to denote the
literal that is the negation of l, i.e., we use ¬(¬p) to denote
p. The set of all literals is denoted L and the set of ground
literals Lgr. A clause is a disjunction of literals. A (normal)
rule is an expression of the form

p← L

where p is an atom and L a set of literals. If r is such
a rule, its head, positive body, negative body and body are
defined as H(r) = p, B+(r) = A ∩ L, B−(r) = {q ∈ A |
¬q ∈ L} and B(r) = L respectively. We call r a fact if
B(r) = ∅ and ground if p and all literals in L are ground.
We use var(r) to denote the set of variables occurring in r,
i.e.,

var(r) = var(p) ∪
⋃

q∈L
var(q).

A rule r is safe if all variables in r occur in its positive body,
i.e., if var(r) ⊆ var(B+(r)). A logic program P is a finite
set of safe rules. P is ground if each r ∈ P is. In our exam-
ples, logic programs are presented in a more general format,
using, e.g., choice rules (see (Calimeri et al. 2020)). These
can easily be translated into the format considered here.

If X is a set of variables, a grounding substitution of X is
a mapping σ : X → C. The set of all substitutions of X is
denoted sub(X) If e is an expression, a grounding substitu-
tion for e is a grounding subtitution of its variables. We write
[c1/X1, . . . , cn/Xn] for the substitution that maps each Xi

to ci and each other variable to itself. The result of applying
a substitution σ to an expression e is the expression obtained
by replacing all variables X by σ(X) and is denoted σ(e).
The most general unifier of two substitutions is defined as
usual (Martelli and Montanari 1982). A substitution σ ex-
tends a substitution τ if σ is equal to τ in the domain of τ .
The grounding of a rule is given by

gr(r) = {σ(r) | σ is a grounding substitution}
and the (full) grounding of a program P is defined as
gr(P) =

⋃
r∈P gr(r).

A (Herbrand) interpretation I is a finite set of ground
atoms. The satisfaction relation between interpretations and
literals is given by

I |= p if p ∈ I, and
I |= ¬p if p 6∈ I.

An interpretation satisfies a setL of literals if it satisfies each
literal in L. A partial (Herbrand) interpretation I is a con-
sistent set of ground literals (consistent here means that it
does not contain both an atom and its negation). The value
of a literal l in a partial interpretation I is lI = t if l ∈ I, f
if ¬l ∈ I and u otherwise.

Given a (partial) interpretation I and a ground programP ,
we inductively define when an atom is justified (Denecker,
Brewka, and Strass 2015) as follows. An atom p is justified
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in I by P if there is a rule r ∈ P with H(r) = p such
that each q+ ∈ B+(r) is justified in I by P and each q− ∈
B−(r) is false in I. A built-in atom is justified in I by P if
it is true in I.

An interpretation I is a model of a ground program P if
for each rule r ∈ P with I |= B(r), also I |= H(r). An
interpretation I is a stable model (or answer set) of a ground
program P (Gelfond and Lifschitz 1988) if it is a model of
P and each true atom in I is justified in I by P . This non-
standard characterization of stable models coincides with
the original reduct-based characterization, as shown by De-
necker, Brewka, and Strass (2015) but simplifies the rest of
our presentation. If P is non-ground, we say that I is an an-
swer set of P if it is an answer set of gr(P). The set of all
answer sets of P is denoted AS(P).

The ALPHA algorithm. We now recall the formalization
of ALPHA of Bogaerts and Weinzierl (2018). This differs
from the original presentation of Weinzierl (2017) in that it
does not use the truth value MUST-BE-TRUE, but instead
makes the justifiedness of atoms explicit. The state of AL-
PHA is a tuple 〈P,Pg, C, α, SJ〉, where
• P is a logic program,
• Pg ⊆ gr(P) is the so-far grounded program; we use Σg ⊆
Agr to denote the set of ground atoms that occur in Pg ,

• C is a set of (learned) clauses,
• α is the trail; this is a sequence of tuples (l, c) with l

a literal and c either the symbol δ, a rule in Pg or a
clause in C. α is restricted to not containing two tu-
ples (l, c) and (¬l, c′); in a tuple (l, c) ∈ α, c repre-
sents the reason for making l true: either decision (de-
noted δ) or propagation because of some rule or clause;
α implicitly determines a partial interpretation denoted
Iα = {l | (l, c) ∈ α for some c}.

• SJ ⊆ A is the set of atoms that are justified by Pg in Iα.
For clause learning and propagation, a rule p ← L is

treated as the clause p ∨∨l∈L ¬l. Hence, whenever we re-
fer to “a clause” in the following, we mean any rule in Pg
(viewed as a clause) or any clause in C. We refer to rules
whenever the rule structure is needed (for determining justi-
fied atoms).

ALPHA interleaves CDCL and grounding. It performs (it-
eratively) the following steps (listed by priority).
conflict If a clause in C ∪ Pg is violated, analyze the con-

flict, learn a new clause (add to C) and back-jump (undo
changes to α and SJ that happened since a certain point)
following the so-called 1UIP schema (Zhang et al. 2001).

(unit) propagate If all literals of a clause c ∈ C∪Pg except
for l are false in Iα, add (l, c) to α.

justify If there is a rule r such that B+(r) ⊆ SJ and
¬B−(r) ⊆ Iα, add H(r) to SJ .

ground If, for some grounding substitution σ and r ∈ P ,
B+(σ(r)) ⊆ Iα, add σ(r) to Pg . In practice, when
adding this rule, ALPHA makes a new – intermediate –
propositional variable β(σ(r)) to represent the body of
the rule, similar to (Anger et al. 2006).

decide Pick (using some heuristics (Taupe, Weinzierl, and
Schenner 2017)) one atom p, occurring in Pg that is un-
known in Iα and add (p, δ) or (¬p, δ) to α.2

justification-conflict If all atoms in Pg are assigned while
some atom is true but not justified, learn a new clause
that avoids visiting this assignment again. Worst-case
the learned clause contains the negation of all decisions,
but Bogaerts and Weinzierl (2018) developed more opti-
mized analysis methods. After learning this clause, AL-
PHA backjumps.

3 Deriving Completion Formulas
We now discuss our modifications to the ALPHA algorithm
that allow us to add completion formulas. There are two
main problems to be tackled here: the first, and most funda-
mental is Question 1: how to generate completion clauses,
or stated differently, how to find all the rules that can derive
a certain atom, without creating the full grounding, and the
second is, Question 2: when to add completion formulas to
the solver. The general idea for the generation is that we
will develop approximation methods that overapproximate
the set of instantiations of rules that can derive a given atom
based on a static analysis of the program. The reason why
we look for an overapproximation is since in general finding
the exact set of such instantiations would require a seman-
tical analysis. Our methods below are designed based on
the principle that such an overapproximation should be as
tight as possible. Specifically, our methods will be based on
functional dependencies and determined predicates.

This section starts by proving definitions for bounds. Af-
ter that we explain how bounds can be used in ALPHA. The
last subsection describes the different type of bounds and
how they can be detected and combined.

3.1 Bounds
The core concept of our detection mechanism is the notion
of bounds. We have already stated that we want to find over-
approximations of grounding substitutions. We now formal-
ize this.

Definition 3.1. Given a rule r in a program P . A grounding
substitution σ is relevant in r with respect to P if B+(σ(r))
is justified in some partial interpretation of P .

The following lemma follows immediately from the char-
acterization of stable models in terms of justifications (De-
necker, Brewka, and Strass 2015).

Lemma 3.2. Let I be an answer set of P . If I |= p, then
there is a rule r in P and a relevant substitution σ in r such
that σ(H(r)) = p.

Proof. Since the justification characterization of answer
sets, we know that p is justified in I . Then by the defini-
tion of justified, the proof follows.

Definition 3.3. Given a rule r and two sets X and Y of
variables in r. A function f : sub(X) → 2sub(Y ) is called

2ALPHA actually only allows deciding on certain atoms (those
of the form β(r)), hence our presentation is slightly more general.
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a bound in r if for all σ ∈ sub(X) it holds that f(σ) is a
superset of the elements τ ∈ sub(Y ) for which there is a
relevant substitution in r that extends both σ and τ .

To denote that f is a bound, we write f : X y Y . If
X = ∅, then we say Y is bounded by f in r. If f(σ) contains
at most one element for each σ ∈ sub(X), then f is called
a functional bound.

3.2 How to use bounds
Bounds can be used to calculate overapproximations of com-
pletion formulas. To start, assume that a predicate p is
defined only in a single rule r. Assume there is a bound
f : var(H(r)) y var(r), and let σ ∈ sub(var(H(r))). Then
with σ, we can determine an overapproximation of the com-
pletion formula of h = σ(H(r)) as follows:

¬h ∨
∨

τ∈f(σ)
β(τ(r)).

The case when p has multiple rules is similar and is formal-
ized in the following proposition.
Proposition 3.4. Let h be a ground atom. Let r1, . . . , rn
be the rules in P whose head unifies with h. Let σi denote
the most general unifier of h and H(ri). If there is a bound
fi : var(H(ri)) y var(ri) for all i, then

¬h ∨
∨

1≤i≤n

∨

τ∈fi(σi)

β(τ(ri))

holds in all answer sets of P .

Proof. For all answer sets I of P for which I |= ¬h, the
clause trivially holds in I . So assume an answer set I for
which I |= h. This means there is a rule ri in P that derives
h. Hence by Lemma 3.2, there is a relevant substitution ρ
in r that extends σi. This means that I |= β(ρ(r)). By the
definition of a bound, it holds that ρ ∈ f(σ). Therefore I
satisfies the clause, which we needed to show.

Remark 3.5. By Lemma 3.11 and Lemma 3.12, it is suffi-
cient to have a bound var(H(r)) y var(B(r)) for each rule
r.

For both the multiple and the single rule case, the gener-
ated clause might be unwieldy, in particular if the bounds are
bad overapproximations. Therefore, it is crucial that good
bounds are detected, which is discussed in the next subsec-
tion.

Of course, a question that remains unanswered is when
such bounds should be added to the solver. We see two ways
to do this.

The first way is a very lightweight mechanism that hap-
pens during the ground reasoning step. The idea is that as
soon as all rules that can derive a specific head h have been
grounded, then we add the completion formula for h. Keep-
ing track of this can be done very cheaply: the bounds pro-
vide us with an upper bound on the number of rules that
can derive a given atom; it suffices to keep track of a sim-
ple counter for each atom to know when the criterion is sat-
isfied. As soon as this is the case, all the atoms β(τ(ri))
mentioned in Proposition 3.4 are defined in the solver and it

makes sense to add the completion constraint. This method
is very lightweight: it does not trigger additional grounding,
does not change the fundamental algorithm underlying AL-
PHA, and only adds very few additional constraints. It does
enable better pruning of the search space.

The second way is more proactive, but also more invasive.
It happens during the justification-conflict reasoning step.
If an atom h is true, but not justified, instead of triggering the
justification analysis to resolve why this situation happens,
we add the completion formula for h, thereby also avoid-
ing the justification-conflict. However, since certain atoms
β(τ(ri)) from Proposition 3.4 are not yet known to the
solver, also these corresponding rules need to be grounded.
For this reason the second way is more intrusive into the
grounding algorithm.

3.3 How to find bounds
In the previous subsection, we showed how bounds can be
used to improve the lazy grounding algorithm. We now turn
our attention to the question of how to find bounds. In par-
ticular, the various types of bounds we define in this sec-
tion can all be found using a static analysis of the program.
We illustrate our methods in increasing difficulty, illustrat-
ing each of them with examples of rules we encountered in
practice, in encodings of the 5th ASP competition (Calimeri
et al. 2016).

Case 1: Non-projective rules The first case is very sim-
ple: in case all variables occurring in a rule also occur in the
head, then we know that for each atom, there is at most one
variable substitution that turns the head of the rule into the
specified atom. We call such a rule non-projective since no
body variables are projected out.
Proposition 3.6. If r is a non-projective rule, i.e., if
var(H(r)) = var(r), then the following is a bound:

id : sub(var(H(r)))→ sub(var(r)) : σ 7→ {σ}.
Proof. Take σ ∈ sub(var(H(r))). Let τ ∈ sub(var(r)) for
which there is a relevant substitution ρ in r that extends both
σ and τ . Then τ = ρ = σ. Therefore τ ∈ id(σ), which
proves that id is a bound.

In case a predicate has a single non-projective rule, for
each ground instance of the rule, the head is in fact equiva-
lent to the body. This is a very specific and restricted case.
We mention it here for two reasons. First of all, this is the
only case for which ALPHA, without our extensions already
adds completion constraints. Secondly, this (restricted) sit-
uation does show up in practical problems. For instance
the following rule was taken from the new Knight Tour with
Holes encoding used in the 5th ASP competition (Calimeri
et al. 2016).

move(X,Y,XX, Y Y )

← valid(X,Y,XX, Y Y ),¬other(X,Y,XX, Y Y ).

Of course, if all the rules for a predicate are non-projective,
then we can combine the trivial bounds on each rule to find
a completion formula; however, this is is not yet detected in
the existing ALPHA algorithm.
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Case 2: Direct functional dependencies In certain cases,
the body of a rule can contain variables the head does not,
yet without increasing the number of instantiations that can
derive the same head. This happens especially if some arith-
metic operations are present. To illustrate this, consider the
rule
{gt(A,X,U)} ←elem(A,X), comUnit(U),

comUnit(U1), U1 = U + 1, rule(A),

U < X.

taken from the new Partner Units encoding used in the 5th
ASP competition (Calimeri et al. 2016). This type of pat-
tern occurs quite often, also for instance in Tower of Hanoi
and in many temporal problems in which a time parameter
is incremented by one or in problems over a grid in which
coordinates are incremented by one. We can see that even
though the variable U1 occurs only in the body of the rule,
for each instantation of the head there can be at most one
grounding substitution of the rule that derives it. Hence, if
all rules for gt have this structure, the completion can also
be detected here. We now formalize this idea.

If p is a predicate with arity n, by pj (with 1 ≤ j ≤ n)
we denote the jth argument position of p. For any set J
of argument positions, denote by sub(J) the set of assign-
ments of constants to the positions in J . A tuple of constants
c1, . . . , cn, is succinctly denoted by c. If p(c) is an atom and
J a set of argument positions in p, we write c|J to denote the
element in sub(J) that maps each pj ∈ J to cj .
Definition 3.7. A ground atom h is relevant in P if there is
a rule r in P and a relevant grounding substitution σ in r
such that σ(H(r)) = h. A ground built-in atom is relevant
in P if it is true.
Definition 3.8. Let J and K be sets of argument positions
of a predicate p in P . We say that J → K is a functional
dependency if for all σ ∈ sub(J), there exists at most one
τ ∈ sub(K) and relevant atom p(c) in P such that c|J = σ
and c|K = τ .

For instance, if p is equality, the following are some
functional dependencies: {=1} → {=2}, {=2} → {=1},
{=1,=2} → {=1}. Of the ones mentioned here, the last
one is the least interesting. Another example is the pred-
icate +/3. It has among others the following functional
dependencies: {+1,+2} → {+3}, {+1,+3} → {+2},
{+3,+2} → {+1}.

If a built-in predicate p with arity n occurs in the positive
body of a rule r, then a functional dependency of p deter-
mines a bound in r.
Proposition 3.9. Assume p is a built-in predicate and p(t) ∈
B+(r). A functional dependency J → K of p induces a
functional bound (denoted p(t)J→K) in r:

var({ti | pi ∈ J}) y var({ti | pi ∈ K}).
Proof. Let X = var({ti | pi ∈ J}) and Y = var({ti |
pi ∈ K}). Let σ ∈ sub(X). Since J → K is a functional
dependency, there exists at most one τσ ∈ sub(Y ) such that
the atom p(t) is satisfied under some extension of both σ and
τσ . Define

f : sub(X)→ 2sub(Y )

mapping a σ to {τσ} if τσ exists and ∅ otherwise. We prove
that f is a bound; hence take any σ ∈ sub(X). If there is
no τ ∈ sub(Y ) for which there is a relevant substitution in
r that extends both σ and τ , then we are done. So suppose,
there is such a τ . We prove that τ = τσ . Any relevant
extension in r of both τ and σ justifies p(X); hence satisfies
p(X). By definition of τσ we have that τ = τσ . Therefore,
τ ∈ f(σ). This proves that f is a bound. That f is functional
follows directly from its definition.

As we will see later, bounds originating from functional
dependencies of built-in predicates will act as a base case for
further functional bounds.

Case 3: Determined predicates Given a program P we
call a predicate determined if its defined only by facts. The
interpretation of determined predicates can be computed ef-
ficiently prior to the solving process, and their value can be
used to find bounds on the instantiations of other rules. An
example can be found in graph coloring, in which a rule

colored(N)← assign(N,C), color(C) (1)

expresses that a node is colored if it is assigned a color. The
predicate color here is determined since it is given by facts.
Thus, we know that for each node n, there are at most as
many instances of the rule that derive colored(n) as there
are colors. Notably, the completion contraint that would be
added by taking this into account, is exactly the redundant
constraint that was added manually in the graph coloring
experiments of Leutgeb and Weinzierl (2017) to help lazy
grounding, i.e.

¬colored(n) ∨ assign(n, col1) ∨ · · · ∨ assign(n, colk)

Our new methods obtain this constraint automatically,
thereby easing the life of the modeler.
Proposition 3.10. Let r be a rule with d(t) ∈ B+(r) and
d a determined predicate. In that case there exists a bound
∅y X , where X is the set of variables in t.

Proof. Every fact d(c) for a tuple of constants c corresponds
to at most one element σc in sub(X). Since d is given by
facts, we can enumerate its interpretation Id. Let

f : sub(∅)→ 2sub(X) : σ 7→ {σc | c ∈ Id}
We prove that f is a bound. Take σ ∈ sub(∅). Note that σ
is necessarily the trivial substitution. Take τ ∈ sub(X) for
which there is a relevant substitution in r that extends both σ
and τ . We prove that τ ∈ f(σ), i.e. τ = σc for some c ∈ Id.
By the existence of that relevant substitution in r, we have
that d(t) is satisfied under τ ; hence τ is equal to some σc for
some c ∈ Id. This proves that f is a bound.

Typical ASP encodings of graph coloring do not contain
the rule (1) but instead use the rule

colored(N)← assign(N,C).

Even in this case, it is possible to determine that C is
bounded by a determined predicate by inspecting the defin-
ing rules of assign . This is formalized in the remainder of
this section.
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Case 4: Combining bounds Bounds can be obtained
from other bounds in several ways. We already found three
base cases of bounds, given in Propositions 3.6, 3.9, and
3.10:

1. If Y ⊆ X ⊆ var(r), then id : X y Y is a bound, where
id is the function mapping σ to {σ}.

2. The bound p(t)J→K induced by a built-in atom p(t) ∈
B+(r) with functional dependency J → K.

3. The bound induced by an atom d(t) ∈ B+(r) for a deter-
mined predicate d.

Additionally, bounds of different types can be altered or
combined to get new bounds, as shown in the following lem-
mas.
Lemma 3.11. Let f : X y Y be a bound in r. Then for any
X ⊆ X ′ and Y ′ ⊆ Y ′, the function

f ′ : sub(X ′)→ 2sub(Y
′) : σ 7→ {τ |Y ′ | τ ∈ f(σ|X)}

is also a bound. (σ|X denotes σ restricted to the variables
in X)

Proof. Take σ ∈ sub(X ′). Let τ ′ ∈ sub(Y ′) for which
there exists a relevant substitution ρ in r that extends both
σ and τ ′. We prove that τ ′ ∈ f(σ), i.e. there exist a
τ ∈ f(σ|X) such that τ ′ = τ |Y ′ . Take τ = ρ|Y . By def-
inition, τ |Y ′ = τ ′. We know that ρ extends both σ|X and
τ . Therefore, since f is a bound, it holds that τ ∈ f(σ|X).
This proves that f ′ is a bound.

Lemma 3.12. Let f : X y Y be a bound in r and let U ⊆
var(r). Let h denote the function

h : sub(X ∪ U)→ 2sub(Y ∪U)

where
h(σ) = {τ · σ|U\Y | τ ∈ f(σ|X)}

and · is used to denote the combination of two disjoint pro-
jected substitutions. The function h is a bound from X ∪ U
to Y ∪ U .

Proof. Take σ ∈ sub(X∪U). Let τ ∈ sub(Y ∪U) for which
there is a relevant substitution ρ in r that extends both σ and
τ . We prove that τ ∈ h(σ). We know that ρ also extends
both σ|X and τ |Y . Now, since f is a bound, τ |Y ∈ f(σ|X).
Since ρ extends both σ and τ , it holds that σ|U\Y = τ |U\Y
because U \ Y is contained in the domains of both σ and
τ . Therefore τ = τ |Y · τ |U\Y = τ ′ · σ|U\Y for some τ ′ ∈
f(σ|X). This proves that τ ∈ h(σ); hence h is a bound.

Lemma 3.13. If f : X y Y and g : Y y Z are bounds in
r, then the following function is a bound:

h : sub(X)→ 2sub(Z) : σ 7→
⋃

τ∈f(σ)
g(τ)

Proof. Take σ ∈ sub(X). Let υ ∈ sub(Z) for which there
is a relevant substitution ρ in r that extends both σ and υ.
As usual we prove that υ ∈ h(σ). Take τ = ρ|Y . Then ρ is
a relevant substitution that extends both τ and υ. Therefore,
since g is a bound, υ ∈ g(τ). Likewise, ρ is a relevant

substitution that extends both σ and τ . Hence, τ ∈ f(σ)
since f is a bound. Combining this proves that υ ∈ h(σ);
hence proving that h is a bound.

If only functional bounds are considered, then Lemma
3.12 and Lemma 3.13, together with our first base case
forms the axiomatic system for functional dependencies de-
veloped by Armstrong (1974). To illustrate the combination
of bounds, consider a rule

h(X)← +(X, 1, Z),= (Z,U).

In this case, X y U is a functional bound in r: by using
the functional dependency of + we see that X y Z is a
functional bound; by using the dependencies of =, we see
that Z y U is functional bound, hence we can combine
them, by using Lemma 3.13, to get the desired dependency.

Even more is possible. If f : X y Y and g : X y Y are
bounds, then the pointwise union and intersection are also
bounds. While the union will not be of much benefit for
finding good overapproximations of completion formulas,
the intersection of two bounds can be useful since it allows
for more precise approximations.

Case 5: Bounds on argument positions We have shown
that if d is a determined predicate, then it induces a bound.
However, sometimes bounds by determined predicates are
not explicit. For instance, in the graph coloring example it
would make perfect sense to drop color(C) from the body of
the rule since the fact that C is a color should follow already
from its occurrence in assign(N,C), resulting in the rule

colored(N)← assign(N,C).

However, from the definition of assign , one can see that
thatC is bound by the determined predicate color and hence
the completion constraint could, in principle, still be derived.
We now formally show how to do this.
Definition 3.14. Let p be a predicate with arity n in a pro-
gram P and J and K be sets of argument positions in p. If
f is a function from sub(J) to 2sub(K) such that for every
relevant atom p(c) in P it holds that c|K ∈ f(c|J), then f is
said to be a bound in p, which we denote by f : J y K. If
J = ∅, then we say K is bounded by f .

Bounds in rules and predicates are not independent:
bounds in rules determine bounds on argument positions and
vice versa. This is formalized in the following two proposi-
tions.
Proposition 3.15. Let p be a predicate symbol and J andK
sets of argument positions in p. Assume that for each rule r
of the form p(t) ← ϕ in P , fr : var(t|J) y var(t|K) is a
bound in r, then the union of these fr induces a bound in p.

Proof. Let A be any set of argument positions in p. Then
A corresponds uniquely to a set Vr ⊆ var(H(r)) for each
rule r of p, and Vr is the same for each rule r of p. There-
fore, this set is denoted V . It is straightforward that sub(A)
is in a one-to-one relation with sub(V ). Misusing nota-
tion, we assume sub(A) = sub(V ). Then, we can define
f : sub(J) → 2sub(K) mapping σ to ∪rfr(σ). We now
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prove that f is a bound in p. Hence, take a relevant atom p(c)
in P . It sufficies to prove that c|K ∈ f(c|J). Since p(c) is
relevant, there is a rule r of p and a relevant grounding sub-
stitution ρ such that ρ(H(r)) = p(c). By the one-to-one cor-
respondence between sub(J) and sub(VJ) and sub(K) and
sub(VK), we know that c|J ∈ sub(VJ) and c|K ∈ sub(VK).
Therefore, since fr is a bound, we know that c|K ∈ fr(c|J).
Hence, c|K ∈ f(c|J), which proves that f is a bound in
p.

A simple example illustrating this proposition is as fol-
lows: Suppose we have the following rules for p:

p(X,Y )← X = Y + 1.

p(X,Y )← X = Y − 1.

Both rules have functional bounds from X to Y and vice
versa. By taking the union of these two bounds, we get the
bound p1 y p2 where X is mapped to {X − 1, X + 1}.
This shows that functional bounds on rules do not necessar-
ily give rise to functional bounds on argument positions.

If new bounds in predicates are detected, then these can
be used to find new bounds in rules analogous to Proposition
3.9.
Proposition 3.16. Let p be a predicate with a bound
f : J y K in p. If p(t) ∈ B+(r), then there is a bound

var
(
t|J
)
y var

(
t|K
)

in r. This bound is functional, if f is functional.

Proof. LetX = var
(
t|J
)

and Y = var
(
t|K
)
. Any element

τ ′ ∈ sub(K) corresponds to a unique element τ ∈ sub(Y ).
Similarly, any σ ∈ sub(X) corresponds to a unique element
σ ∈ sub(J). Define

g : sub(X)→ 2sub(Y ) : σ 7→ {τ | τ ′ ∈ f(σ′)}
Take σ ∈ sub(X). Let τ ∈ sub(Y ) and let ρ be a relevant
substitution in r that extends both σ and τ . We prove that
τ ∈ f(σ). Since f is a bound in p, for each relevant atom
p(c) it holds that c|K ∈ f(c|J). Since ρ is relevant, we
know that p(t) is justified; hence p(ρ(t)) is a relevant atom.
Therefore, ρ(t)|K ∈ f(ρ(t)|J) because f is a bound. We
can see that ρ(t)|J corresponds to σ and ρ(t)|K corresponds
to τ , which completes the proof.

The interaction between Proposition 3.15 and Proposition
3.16 is shown in the following example program:

u(1..3). w(3..5).

p(A,B)← u(A), w(B).

q(B)← p(C,B).

r(X,Y )← q(Y ), X = Y.

r(X,Y )← p(X,Y ).

o(a)← r(X, a).

We know that both u and w are determined predicates.
Therefore, in the rule of p, A is bounded by u and B
bounded by w. This indicates that p1 is bounded by u and
p2 is bounded by w. Similarly, q1 is bounded by w. In the

first rule of r, Y is bounded by w, and by transitivity X is
bounded by w as well. In the second rule of r, X is bounded
by u and Y bounded by w. Therefore, r1 is bounded by the
union of u and w, while r2 is bounded by w. Finally, we
obtain the following completion formula for o:

¬o(a) ∨ r(1, a) ∨ r(2, a) ∨ r(3, a) ∨ r(4, a) ∨ r(5, a)

In theory, to find bounds we repeat the two steps below
until a fixpoint is reached:

1. find all bounds on variables in rules (using a fixpoint pro-
cedure, using the base cases and lemmas in Case 4 and
Proposition 3.16)

2. find all bounds on argument positions of predicates (us-
ing a fixpoint procedure, using Proposition 3.15) (we can
restrict ourselves to the predicates occurring in positive
bodies, since that are the only predicates useful for gener-
ating completion formulas)

4 Future work
To tackle this problem in its most general form, one could
develop methods similar to grounding with bounds (Wittocx,
Mariën, and Denecker 2010) that were developed in the con-
text of model expansion (Mitchell and Ternovska 2005) for
an extensions of first-order logic (Denecker and Ternovska
2008) that closely relates to answer set programming (De-
necker et al. 2019).

While the cases studied in the previous section allow for
adding completion constraints in a wide variety of applica-
tions, we see the current work as a stepping stone towards a
more extensive theory of approximations that enable adding
completion constraints. In this section, we provide several
directions in which the current work can be extended.

Dynamic overapproximations The approximations de-
veloped and described in the previous section can all be
determined statically. However, during solving sometimes
more consequences at decision level zero are derived. Tak-
ing these also into account (instead of just the determined
predicates) can result in better approximations and hence
more completion constraints.

More bounds in predicates For finding new opportunities
to add completion formulas, it is necessary that (especially
functional) bounds between argument positions are detected,
eventhough they are not directly used in generating the com-
pletion formulas. This detection can be done by syntactic
means, such as inspecting their defining rules, or by seman-
tic means (De Cat and Bruynooghe 2013). We already sup-
plied Proposition 3.15, however this is not sufficient to find
all useful bounds.

For example, in each rule below we have functional
bounds {2, 3} y {4, 5} and {4, 5} y {2, 3}, but the com-
plete predicate has the following fundamental functional
bounds {1, 2, 3} y {4, 5} and {1, 4, 5} y {2, 3}. This
is because if you know the first argument position, then
you know the rule that is used. If for example you have
neighbor(n,X, Y,XX, Y Y ) in the positive body of a rule,
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then you know the first rule is applicable: X = XX and
Y = Y Y − 1.
neighbor(D,X, Y,X, Y Y )← D = n, Y = Y Y − 1.

neighbor(D,X, Y,X, Y Y )← D = s, Y = Y Y + 1.

neighbor(D,X, Y,XX, Y )← D = w,X = XX − 1.

neighbor(D,X, Y,XX, Y )← D = e,X = XX + 1.

These dependencies are not detected by the double fixpoint
procedure. Intuitively, what is going on here is that the first
argument of neighbor is inherently linked to which rule is
applicable. Depending on that first argument, we can de-
cide which functional dependency can be generalized to the
predicate level (but it is not always the same).

5 Conclusion
In this paper, we highlighted the issue of missing comple-
tion formulas in lazy grounding and provided lightweight
solutions for this issue based on static program analysis. In
our theoretical analysis, we found that the completion for-
mulas that can now be added are in some cases identical to
redundant constraints added to improve search performance;
hence, usage of our techniques eliminates this burden for the
programmer.

Our next step in this research will be implementing the
presented ideas and experimenting to find out what their im-
pact is on the runtime of lazy grounders.

In Section 4, we identified several directions in which this
work can continue that would allow for the detection of even
more completion constraints. We intend to evaluate these as
well in follow-up research.

References
Anger, C.; Gebser, M.; Janhunen, T.; and Schaub, T. 2006.
What’s a head without a body? In Brewka, G.; Coradeschi,
S.; Perini, A.; and Traverso, P., eds., ECAI, 769–770. IOS
Press.
Armstrong, W. W. 1974. Dependency structures of data base
relationships. IFIP Congress 580–583.
Balduccini, M.; Lierler, Y.; and Schüller, P. 2013. Prolog
and ASP inference under one roof. In Cabalar, P., and Son,
T. C., eds., Logic Programming and Nonmonotonic Reason-
ing, 12th International Conference, LPNMR 2013, Corunna,
Spain, September 15-19, 2013. Proceedings, volume 8148
of LNCS, 148–160. Springer.
Banbara, M.; Kaufmann, B.; Ostrowski, M.; and Schaub, T.
2017. Clingcon: The next generation. TPLP 17(4):408–461.
Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
2009. Satisfiability modulo theories. In Biere et al. (2009).
825–885.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications. IOS Press.
Bogaerts, B., and Weinzierl, A. 2018. Exploiting justifica-
tions for lazy grounding of answer set programs. In Lang, J.,
ed., Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-
19, 2018, Stockholm, Sweden., 1737–1745. ijcai.org.

Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Ricca, F.; and Schaub, T.
2013. ASP-Core-2 input language format. Technical report,
ASP Standardization Working Group.
Calimeri, F.; Gebser, M.; Maratea, M.; and Ricca, F. 2016.
Design and results of the fifth answer set programming com-
petition. Artif. Intell. 231:151–181.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.; and
Schaub, T. 2020. ASP-Core-2 input language format. TPLP
20(2):294–309.
Clark, K. L. 1978. Negation as failure. In Logic and Data
Bases, 293–322. Plenum Press.
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Lefèvre, C., and Nicolas, P. 2009. The first version of a new
ASP solver: ASPeRiX. In Erdem, E.; Lin, F.; and Schaub,
T., eds., LPNMR, volume 5753 of LNCS, 522–527. Springer.
Leutgeb, L., and Weinzierl, A. 2017. Techniques for effi-
cient lazy-grounding ASP solving. In Seipel, D.; Hanus, M.;
and Abreu, S., eds., Declare 2017 – Conference on Declar-
ative Programming, proceedings, number 499 in Institut für
Informatik technical report, 123–138.
Liu, L.; Pontelli, E.; Son, T. C.; and Truszczynski, M. 2007.
Logic programs with abstract constraint atoms: The role
of computations. In Dahl, V., and Niemelä, I., eds., Logic
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