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ABSTRACT: The catalytic reduction of carbon dioxide is a process of growing interest for the use of this simple and abundant
molecule as a renewable building block in C1-chemical synthesis and for hydrogen storage. The well-defined, bench-stable
alkylcarbonyl Mn(I) bis(phosphine) complex fac-[Mn(CH2CH2CH3)(dippe)(CO)3] [dippe = 1,2-bis(diisopropylphosphino)-
ethane] was tested as an efficient and selective non-precious-metal precatalyst for the hydrogenation of CO2 to formate under mild
conditions (75 bar total pressure, 80 °C), in the presence of a Lewis acid co-catalyst (LiOTf) and a base (DBU). Mechanistic insight
into the catalytic reaction is provided by means of density functional theory (DFT) calculations.

■ INTRODUCTION

In recent years, the increasing concentration of CO2 in the
atmosphere and its contribution to climate change made
decision makers and society at large more aware of the need to
curb emissions of this greenhouse gas. As an alternative to
simple adsorption and storage, many scientists worldwide have
made a case for reuse of CO2, as it may represent an abundant,
renewable, and cheap feedstock for C1-chemical synthesis.1 In
brief, two CO2 utilization pathways are possible: a non-
reductive approach, involving the incorporation of CO2 in
reactive organic molecules such as epoxides, aziridines, alkenes,
etc., and a reductive approach, to obtain simple C1 molecules
such as formic acid (HCO2H), formaldehyde (HCHO),
methanol (CH3OH), dimethyl ether (CH3OCH3), methane
(CH4), or higher hydrocarbons.2 Among these products,
methanol and formic acid find large use as bulk chemicals in
industrial and laboratory applications and are receiving
attention as fuels (MeOH) and as highly promising liquid
organic hydrogen carriers (LOHC), to generate H2 on demand
by dehydrogenation reactions in the presence of suitable
homogeneous or heterogeneous catalysts.3 In this way, the use
of CO2 represents an opportunity for the realization of a
sustainable, zero-carbon-emission cycle for hydrogen storage
and delivery.4

Formic acid has a steadily growing market as a bulk
chemical, especially in the Asian basin, due to the increasing
need in agriculture for silage and as preservant in food. Other
traditional applications include its use as a strong acid in wood
pulping, leather, and textile industries. Formates have also
important applications, for example, as auxiliary agents in

leather treatment, for deicing at airports, in electroplating and
photographic fixing baths, and in constructions as an additive
to concrete.5 HCO2H is currently obtained industrially from
the hydrolysis of HCO2Me, in turn derived from fossil
feedstock as one of the products of methanol carbonylation.
A sustainable alternative using renewable, non-fossil-based
feedstocks is therefore highly desirable. HCO2H can indeed be
obtained from the 100% atom-efficient reaction between CO2
and H2 under different conditions of temperature and total
pressure, providing that key issues are solved. The first major
hurdle in CO2 hydrogenation is the endergonic character of
the reaction due to the large entropic contribution (ΔS0 =
−215 kJ mol−1); however, the reaction can be made
exoergonic in the presence of strong bases or using highly
polar solvents such as water.6 Second, CO2 is a rather
chemically inert molecule; thus, efficient catalysts are needed
to overcome activation barriers and operate the process under
mild conditions. Homogeneous catalysts, based on tailored
organometallic or coordination complexes, were studied over
the years by different research groups worldwide, showing that
by fine tuning of the ancillary ligands stabilizing the metal
center, high activities and selectivities could be achieved under
relatively mild reaction conditions.4,6
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Both noble- and base-metal complexes were shown to be
able to catalyze CO2 hydrogenation to formate. The state-of-
the-art for noble-metal-catalyzed processes is held by Nozaki
and co-workers with the use of the pincer-type tris(hydrido)
complex [Ir(H)3(PNP-iPr)] as a catalyst [PNP-iPr = 2,6-
bis((diisopropylphosphanyl)methyl)pyridine], reaching out-
standing TON = 3 500 000 and TOF = 73 000 h−1 with
KOH as a base in tetrahydrofuran (THF), 60 bar H2/CO2
(1:1), 120 °C, 48 h.7 In the case of earth-abundant metals, in
recent years, the attention has been focused principally on Fe,8

although interesting results were reported also with Co,9 Ni,10

and Cu.11 Very recently, Klankermayer and co-workers
established the new state-of-the-art for 3d metal-catalyzed
CO2 hydrogenation with the system obtained in situ by the
combination of Ni(BF4)2·6H2O (0.002 μmol) and the
tetradentate ligand tris-[2-(diphenylphosphino)ethyl]amine
(NP3, 1 equiv to Ni) in CH3CN.

12 In the presence of DBU
as a base, 90 bar H2/CO2 (2:1), 120 °C, 72 h, unsurpassed
TON = 4 650 710 and TOF = 64 593 h−1 were achieved,
showing that earth-abundant metals can efficiently compete
with noble-metal counterparts.
Since 2016 manganese, the third most abundant metal in the

Earth’s crust after Fe and Ti has witnessed a true renaissance
for use in homogeneous catalysis, including dehydrogen-
ation,13 hydrogenation,14 alcohol β-methylation,15 amino-
methylation reactions,16 etc. These and other applications
have been highlighted in recent review articles.17 Only a few
examples of Mn-catalyzed CO2 hydrogenation have appeared
so far in the literature, mainly involving pincer-type complexes
(Chart 1, top). We jointly reported the first example of Mn(I)-
catalyzed hydrogenation of CO2 to formate in the presence of
the hydridocarbonyl complex [MnH(PNPNH-iPr)(CO)2]. At
catalyst loadings as low as 0.002 mol %, TONs up to 10 000
and quantitative yields of formate were obtained after 24 h
using DBU as a base, 80 bar H2/CO2 (1:1) at 80 °C.
Remarkably, TONs higher than 30 000 could be achieved
adding LiOTf as a co-catalyst.18 Prakash and co-workers
showed the use of complex [MnBr(RPNP)(CO)2] [RPNP =
bis(2-(dialkylphosphino)ethyl)amine; R = iPr, Cy] in the one-
pot CO2 hydrogenation to CH3OH in the presence of amines.
The first step of the sequential reaction was proposed to be the
two-electron reduction of CO2 to formate, which reacts with
the amine to give an intermediate formamide. This is in turn

reduced to CH3OH, giving back the initial amine.19 In the
same year, Pathak and co-workers highlighted mechanistic
details on base-free CO2 hydrogenation with similar PNP-type
Mn complexes by density functional theory (DFT) calcu-
lations.20 Milstein and co-workers reported the use of Mn(I)
complexes with PNN pincer ligands, able to activate CO2 in
different modes. Under catalytic conditions, namely, 10 mol %
of catalyst in THF, KOH as a base, 60 bar H2/CO2 (1:1), 110
°C, 60 h, up to 23% yield of HCO2K was obtained.21 Nervi,
Khusnutdinova, and co-workers published the so far only
example of non-pincer-type Mn(I) catalysts for CO2 hydro-
genation, stabilized by functionalized bipyridyl-type ligands
(Chart 1, bottom). It was shown that with o-OH-substituted
complexes (0.015 mol %) as catalysts in CH3CN, DBU as a
base, 60 bar H2/CO2 (1:1), 65 °C, formate was obtained in
98% yield after 24 h, reaching a maximum TON of 6250.22

Very recently, it was shown that long-known Mn(I)
complexes stabilized by chelating bis(phosphines) such as
1,2-bis(di-i-propylphosphino)ethane (dippe) could be used as
efficient catalysts for alkene,23 ketone, and nitrile hydro-
genation.24 Inspired by these results, we were interested to
study the properties of the bench-stable alkylcarbonyl Mn(I)
complex fac-[Mn(CH2CH2CH3)(dippe)(CO)3] (1) shown in
Chart 1 (bottom) as a precatalyst for the homogeneous CO2
hydrogenation to formate. The results of the catalytic tests,
including a screening of the reaction conditions and the effect
of a Lewis acid co-catalyst, are hereby presented.

■ RESULTS AND DISCUSSION

Initially, CO2 hydrogenation (Scheme 1) was tested using 1
under the conditions previously applied18 with [MnH(PNPNH-
iPr)(CO)2], i.e., in the presence of 1,8-diazabicycloundec-7-
ene (DBU) as a base, 80 °C, under H2/CO2 (1:1) 60 bar total
pressure, using either a THF/H2O (10/1) solvent mixture or

Chart 1. Mn(I) Pincer-Type (Top)18,19,21 and Non-Pincer-Type Complexes (Bottom)22 Used as Catalysts or Precatalysts for
CO2 Hydrogenation

Scheme 1. CO2 Hydrogenation to Formate in the Presence
of Precatalyst 1 and DBU, with Possible Addition of a Lewis
Acid (LA) Co-catalyst
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EtOH. After 24 h, no conversion was observed in either
solvents. The dark brown color of the solutions and the
presence of a dark precipitate at the end of the tests indicate
that the activated form of 1 (vide inf ra) decomposes in these
solvents under catalytic conditions.
By changing the solvent to dry THF, no catalyst

decomposition was observed and substrate conversion was
noted at the end of the reactions. The results of the first
screening on the effects of different catalyst-to-base ratios and
total gas pressure are reported in Table 1.

Using a 1/DBU ratio of 1:1000, formate was obtained in
37.5% yield with respect to DBU, with TON = 377 (entry 1).
The total pressure was then decreased to 40 bar, but as
expected, this caused a drop in yield and TON (entry 2).
Under the standard 60 bar total pressure, an increase in
productivity was achieved by running the tests for longer times,
namely, 48 and 72 h (entries 3 and 4, respectively), reaching
the highest yield (56.5%) and TON of 568 under these
conditions (entry 4). Next, the amount of catalyst was
decreased to 1/DBU ratios of 1:5000, 1:10 000, and
1:50 000 (entries 5, 6, and 7, respectively), running the tests
at 60 bar, 80 °C, 24 h. At an optimal 1:5000 ratio, TON
increased to 1077; however, yield decreased to 21.4%. Lower
1/DBU ratios led to poor results. A slight improvement was
possible at 1/DBU = 1:10 000 by increasing the total gas
pressure to 80 bar (entry 8).
The next optimization step was to study the effect of higher

H2/CO2 ratios on the catalytic activity. Indeed, in the case of
alkene hydrogenation with 1, it was previously demonstrated
that catalyst activation occurred under a H2 pressure of 50
bar.22 The results are summarized in Table 2.
To our delight, the change of gas mixture ratio improved the

catalytic performance, and both 2:1 and 3:1 H2/CO2 ratios
gave quantitative yields in formate using a 1/DBU ratio of
1:1000 (entries 1 and 2). In an attempt to increase further the
TON values, lower catalyst loadings were used (entries 3−5)
using a H2/CO2 = 2:1 ratio, but in this case, a notable drop in
activity was observed.
Next, the effect of a Lewis acid (LA) addition as a co-catalyst

was tested. The effect of LAs in favoring accessible transition
states in CO2 hydrogenation reaction pathways has been
demonstrated in detail, especially in combination with pincer-

type complexes of base metals.25 In keeping with our
previously published results obtained with Mn(I) pincer-type
catalysts,18 LiOTf was chosen as a suitable LA to promote CO2
hydrogenation to formate, using 75 bar total pressure at a 2:1
H2/CO2 gas mixture and a 1:2000 ratio of 1/DBU. The results
are reported in Table 3.

In the presence of added LiOTf (0.5 mmol, 1/LiOTf =
1:100), formate was obtained in a 54.8% yield (TON = 1104,
entry 1) after 24 h. At a longer reaction time (48 h, entry 2),
yields up to 98.7% were observed, corresponding to a TON of
1988. The effect of the temperature was tested by increasing it
from 80 to 100 °C on a 24 h run, but this resulted in a drop of
activity (4.2% yield, entry 3), likely due to the poor catalyst
stability at this temperature. Increasing the LiOTf amount to
1.0 mmol (1/LiOTf = 1:200), at 80 °C for 24 h, caused a
decrease in TON (entry 4). As previously suggested, such an
effect may be attributed to the limited LiOTf solubility in such
a solvent mixture.8c On the other hand, using 0.25 mmol of
LiOTf (1/LiOTf = 1:50) gave a slightly decreased TON = 678
(entry 5) after 24 h compared to the results obtained with 0.5
mmol (entry 1). Based on the results of the catalytic tests and
previous studies on 1 as an alkene hydrogenation catalyst,23 a
simplified mechanism based on DFT calculations is proposed
and shown in Scheme 2.
The κ1-O-CO2 hydride complex cis-[MnH(dippe)(CO)2(κ

1-
O-CO2)] (A) has been chosen as a reference point. The free

Table 1. Catalytic CO2 Hydrogenation with 1 Using a H2/
CO2 = 1:1 Gas Mixturea

entry 1/DBU pH2/pCO2 (bar) time (h) TONb yield (%)c

1 1/1000 30/30 24 377 37.5
2 1/1000 20/20 24 198 19.7
3 1/1000 30/30 48 425 42.3
4 1/1000 30/30 72 568 56.5
5 1/5000 30/30 24 1077 21.4
6 1/10 000 30/30 24 156 1.5
7 1/50 000 30/30 24 235 0.5
8 1/10 000 40/40 24 404 4.0

aReaction conditions: catalyst 1, 0.2−10 μmol; DBU, 10 mmol; THF,
5.5 mL; H2/CO2 (1:1) pressure; 80 °C. bTON = (mmol formate)/
(mmol catalyst). cYield = [(mmol formate)/(mmol DBU)] × 100.
The amount of formate was calculated from the integration of the
corresponding 1H NMR signal in D2O against an internal standard
(DMF). All experiments were repeated at least twice to check for
reproducibility; average error, ca. 6%.

Table 2. Catalytic CO2 Hydrogenation with 1 Using
Different H2/CO2 Partial Pressure Ratiosa

entry 1/DBU pH2/pCO2 (bar) TONb yield (%)c

1 1/1000 50/25 1000 100
2 1/1000 60/20 1000 100
3 1/2000 50/25 540 26.8
4 1/5000 50/25 98 1.9
5 1/10 000 50/25 109 1.1

aReaction conditions: catalyst 1, 1−10 μmol; DBU, 10 mmol; THF,
5.5 mL; H2/CO2 (2:1 or 3:1) pressure; 80 °C, 24 h. bTON = (mmol
formate)/(mmol catalyst). cYield = [(mmol formate)/(mmol DBU)]
× 100. The amount of formate was calculated from the integration of
the corresponding 1H NMR signal in D2O against an internal
standard (DMF). All experiments were repeated at least twice to
check for reproducibility; average error, ca. 6%.

Table 3. Catalytic CO2 Hydrogenation with 1, Screening of
the Effect of Lewis Acid (LA) Co-catalyst under Various
Conditionsa

entry 1/DBU 1/LA LA/DBU TONb yield (%)c

1 1/2000 1/100 0.05 1104 54.8
2d 1/2000 1/100 0.05 1988 98.7
3e 1/2000 1/100 0.05 85 4.2
4 1/2000 1/200 0.1 135 6.4
5 1/2000 1/50 0.025 678 33.7
6 1/5000 1/250 0.05 238 4.7

aReaction conditions: catalyst 1, 2−5 μmol; DBU, 10 mmol; LA =
LiOTf, 0.25−1.0 mmol; THF, 5.5 mL; H2/CO2 (2:1), 75 bar total
pressure; 80 °C, 24 h. bTON = (mmol formate)/(mmol catalyst).
cYield = [(mmol formate)/(mmol DBU)] × 100. The amount of
formate was calculated from the integration of the corresponding 1H
NMR signal in D2O against an internal standard (DMF). dAs above,
48 h. eAs above, 100 °C, 24 h. All experiments were repeated at least
twice to check for reproducibility; average error, ca. 6%.
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energy profile calculated for the catalytic reaction is depicted in
Figures 1 and S20 (Supporting Information). As already
reported recently,23,24 precatalyst 1 is initially activated under a
pressure of H2 to form the highly reactive 16e− hydride
intermediate [MnH(dippe)(CO)2] by migratory insertion of

the CH2CH2CH3 ligand in the Mn−CO bond as shown in
Scheme 3. This step is accompanied by the release of 1-
butanal, which under these conditions is hydrogenated to
butanol as detected by 1H NMR spectroscopy. This key
activation step is a long-known textbook reaction, demon-

Scheme 2. Proposed Catalytic Cycle for the Hydrogenation of CO2 to Formate Starting from 1 in the Presence of DBUa

aDFT calculated free energy values (kcal/mol) in parentheses.

Figure 1. Free energy profile for the formation of formic acid. Free energies (kcal/mol) are referred to [MnH(dippe)(κ1-O-CO2)] (A in the
Calculations).
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strated for this class of complexes as early as in the 1950s and
studied further by different authors in following years, and it
makes this class of alkyl complexes attractive as bench-stable
precursors to sensitive metal hydrido catalysts for hydro-
genation reactions.26

In the presence of CO2, [MnH(dippe)(CO)2] is converted
into cis-[MnH(dippe)(CO)2(κ

1-O-CO2)] (A). The C···H
separation is 3.52 Å. Upon rotation of the CO2 ligand by ca.
20° around the Mn−O bond, insertion into the Mn−H bond
affords the κ2-CH,O-formato complex B through an early
transition state (TSAB, ΔG‡ = 2 kcal/mol) with a long C···H
separation (3.27 Å). B reacts through a barrierless step to the
coordinatively unsaturated species cis-[Mn(κ1-O-OCOH)-
(dippe)(CO)2] (C), more stable than B by 5 kcal/mol.
From C, formate rearrangement yields the κ2-O,O-formate
species cis-[Mn(κ2-O,O-OCHO) (dippe)(CO)2] (C′) that is a
dead end in the path and can be viewed as a resting state of the
catalyst. This is a very easy process with a barrier of merely 3
kcal/mol and ΔG = −5 kcal/mol. The catalytic cycle proceeds
from C through a parallel path, with addition of a H2 molecule
to give the dihydrogen complex E, which is formed through a 9
kcal/mol barrier. Coordinated H2 in intermediate E is activated
by the base (DBU), giving a formate complex H-bonded to the
protonated base (DBUH+) in species G. The corresponding
transition state (TSFG) is a less stable one of the entire path,
generating an overall barrier of ΔG‡ = 22 kcal/mol for the
catalytic reaction, measured from the most stable intermediate,
the resting state C′. The catalytic cycle closes, from G back to
A, with release of the pair [DBUH][HCO2] and coordination
of a fresh CO2 molecule with an associated balance of ΔG = 10
kcal/mol. For this system, the LA effect should be to disfavor
the isomerization of B to C′ formed as off-cycle species and
stabilized by chelate effect. This in turn makes the following
hydrogen activation step less energetically demanding,
involving the more loosely κ2-CH,O-bound formate rather
than the κ2-O,O-bound isomer C′. Alternatively, in the
presence of H2, the 16e− active species [MnH(dippe)(CO)2]
can readily be converted into the dihydrogen hydride species
cis-[MnH(η2-H2)(dippe)(CO)2] (H). In fact, such a complex
is more stable than A by 12 kcal/mol. On the other hand, this
renders the hydride ligand less basic than in A and, overall,
makes CO2 insertion via an outer-sphere pathway less
favorable. The energy profile for a possible outer-sphere
pathway involving H is provided in the Supporting Information
(Figure S21).

■ CONCLUSIONS

In summary, we have hereby reported the first example of use
of a non-pincer, bis(phosphine)-Mn(I) chelate alkylcarbonyl
complex as a precatalyst for CO2 hydrogenation to formate

under mild reaction conditions (80 °C, 75 bar H2/CO2) in the
presence of an added base (DBU) and a Lewis acid (LiOTf).
Although the highest TON was lower than that obtained with
our previous system based on the 2,6-bis(aminopyridinyl)-
diphosphine scaffold, the present study shows that even this
class of textbook Mn(I) organometallic complexes can find
application in this challenging reaction. The main advantage is
the possibility to use a bench-stable alkyl precatalyst to
generate in situ the active hydrido species under a pressure of
hydrogen, and to use a widely available chelating bis-
(phosphine) ligand to stabilize the metal center. DFT
calculations showed that the highest barrier in the reaction
pathway (ΔG‡ = 22 kcal/mol) belongs to the activation of
coordinated H2 by means of base (DBU), relative to the κ2-
O,O-formate intermediate, the most stable species along the
path and a catalyst resting state. A further interesting aspect of
this study is the fact that this reaction apparently proceeds via
an inner-sphere mechanism with the coordinatively unsatu-
rated hydride complex [MnH(dippe)(CO)2] as a key
intermediate. This species is able to coordinate and insert
CO2 into the Mn−H bond, thereby initiating the catalytic
cycle. It has to be noted that all Mn(I)-catalyzed hydro-
genation reactions utilizing dihydrogen as a reducing agent
described so far in the literature proceed via an outer-sphere
pathway where metal−ligand cooperation is essential for
dihydrogen activation and cleavage.17c−f,20

■ EXPERIMENTAL SECTION

General Procedure for Carbon Dioxide Catalytic Hydro-
genation. In a typical experiment, the catalytic mixture containing
solvent, catalyst, base, and additive (if any) was prepared in a Schlenk
tube under nitrogen and subsequently injected into a 40 mL
magnetically stirred Teflon-lined stainless steel autoclave built at
CNR-ICCOM, kept under a nitrogen atmosphere. Then, the
autoclave was pressurized with a H2/CO2 gas mixture at the desired
pressure and placed in an oil bath preheated to the desired
temperature under stirring at 500 rpm for the set reaction time.
After the run, the autoclave was cooled to <10 °C using an ice bath,
the pressure was gently released, and the reaction mixture was
transferred to a round-bottom flask. The autoclave beaker was
thoroughly rinsed with H2O, and the washings were added to the rest
of the mixture. The volume of the mixture was then gently reduced
using a rotary evaporator at room temperature until a homogeneous
mixture was obtained. DMF (300 μL) was added to the mixture as
internal standard, and the formate content was determined by
integration of the corresponding 1H NMR signal vs DMF. D2O (ca.
0.7 mL) was added as a deuterated solvent. All tests were repeated at
least twice to check for reproducibility.

Scheme 3. Formation of the 16e− Hydride Intermediate [MnH(dippe)(CO)2] upon Reaction of 1 with H2
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