
Applied Soft Computing Journal 95 (2020) 106499

Contents lists available at ScienceDirect

Applied Soft Computing Journal

journal homepage: www.elsevier.com/locate/asoc

Finding Longest Common Subsequences: New anytime A∗ search
results
Marko Djukanovic a,∗, Günther R. Raidl a, Christian Blum b

a Institute of Logic and Computation, TU Wien, Vienna, Austria
b Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, Bellaterra, Spain

a r t i c l e i n f o

Article history:
Received 27 November 2019
Received in revised form 28 April 2020
Accepted 19 June 2020
Available online 26 June 2020

Keywords:
Longest common subsequence problem
Hybrid metaheuristic
A∗ search
Beam search
Anytime column search

a b s t r a c t

The Longest Common Subsequence (LCS) problem aims at finding a longest string that is a subsequence
of each string from a given set of input strings. This problem has applications, in particular, in the
context of bioinformatics, where strings represent DNA or protein sequences. Existing approaches
include numerous heuristics, but only a few exact approaches, limited to rather small problem
instances. Adopting various aspects from leading heuristics for the LCS, we first propose an exact A∗
search approach, which performs well in comparison to earlier exact approaches in the context of small
instances. On the basis of A∗ search we then develop two hybrid A∗–based algorithms in which classical
A∗ iterations are alternated with beam search and anytime column search, respectively. A key feature
to guide the heuristic search in these approaches is the usage of an approximate expected length
calculation for the LCS of uniform random strings. Even for large problem instances these anytime A∗
variants yield reasonable solutions early during the search and improve on them over time. Moreover,
they terminate with proven optimality if enough time and memory is given. Furthermore, they yield
upper bounds and, thus, quality guarantees when terminated early. We comprehensively evaluate the
proposed methods using most of the available benchmark sets from the literature and compare to
the current state-of-the-art methods. In particular, our algorithms are able to obtain new best results
for 82 out of 117 instance groups. Moreover, in most cases they also provide significantly smaller
optimality gaps than other anytime algorithms.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In computer science strings are widely used for representing
sequence information. Words and longer texts are naturally rep-
resented by means of strings, and in the field of bioinformatics,
DNA, RNA and protein sequences, for example, play particularly
important roles. We formally define a string s as a finite sequence
of |s| characters from a finite alphabet Σ . A frequently occurring
necessity is to detect similarities between several strings in order
to derive relationships and possibly predict different aspects of
a set of strings. A subsequence of a string s is any sequence
obtained by removing arbitrary characters from s. A natural and
common way to compare two or more strings is studying their
common subsequences. More specifically, given a set of m input
strings S = {s1, . . . , sm}, the Longest Common Subsequence (LCS)
problem [1] aims at finding a subsequence of maximal length
which is common for all the strings in S.

∗ Corresponding author.
E-mail addresses: djukanovic@ac.tuwien.ac.at (M. Djukanovic),

raidl@ac.tuwien.ac.at (G.R. Raidl), christian.blum@iiia.csic.es (C. Blum).

As mentioned above, the length of the LCS of two or more
input strings is a popular similarity measure in computational bi-
ology. More generally, there is a large range of real-world applica-
tions in which it is necessary to compute a measure of similarity
between two or more sequences, and the requirements are some-
times different. Depending on the application, these sequences
may encode biological information (such as, for example, in DNA
or RNA strings), sentences, whole texts, or time series (includ-
ing video signals and speech sequences). Well-known similarity
measures in the context of computational biology include, besides
the LCS length, the Levenshtein distance which calculates the
minimum number of single-character edits (insertions, deletions
or substitutions) required to change one sequence into the other.
Another example is the Damerau–Levenshtein distance [2] which
adds transpositions to the three edit operations that are already
considered in the Levenshtein distance. Finally, it is also worth to
mention the Canberra distance (used, for example, to analyze the
gut microbiome in different disease states), and the Google dis-
tance [3]. Well-known similarity measures for sentences and/or
texts include metrics such as the Euclidean, theManhattan and the
Minkovski distance [4]. The soft cosine measure [5] considers sim-
ilarities between pairs of features, and the Jaccard similarity [6]

https://doi.org/10.1016/j.asoc.2020.106499
1568-4946/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2020.106499
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2020.106499&domain=pdf
mailto:djukanovic@ac.tuwien.ac.at
mailto:raidl@ac.tuwien.ac.at
mailto:christian.blum@iiia.csic.es
https://doi.org/10.1016/j.asoc.2020.106499

2 M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499

is defined as the size of the intersection divided by size of the
union of two sets. Finally, well-known measures of similarity for
time series include Dynamic Time Warping (DTW) [7], the matrix-
based Euclidean distance (GMED), and matrix-based dynamic time
warping (GMDTW) [8], among others. Recently, many approaches
from the field of deep learning and machine learning have been
developed to derive measures of similarities that take the se-
mantic meaning of the compared sentences into account. These
include deep architecture Match-SRNN [9] that utilizes a spatial
recurrent neural network to generate the global interaction be-
tween two sentences, the Word Order Similarity [10] which is
defined as the normalized difference of word order between two
sentences, and the Latent Semantic Analysis (LSA) [11]. However,
in this work we focus on the efficient calculation of the LCS
measure. Apart from applications in computational biology [12],
the necessity to calculate this measure arises, for example, in data
compression [13,14], text editing [15], the production of circuits
in field programmable gate arrays [16], and file comparison (used
in the Unix command diff) [17].

For fixed m polynomial algorithms based on dynamic pro-
gramming (DP) are known [18] to solve the LCS problem. Stan-
dard dynamic programming approaches run in O(nm) time, where
n denotes the length of the longest input string. These exact
methods become quickly impractical when m grows and n is not
small. For a general number of input strings m the LCS problem
is known to be NP-hard [1]. In practice, heuristic techniques are
typically used for larger m and n. The Expansion algorithm and
the Best-Next heuristic [19,20] are well known simple and fast
construction heuristics, respectively. Substantially better solu-
tions can usually be obtained by more advanced search strategies
and metaheuristics. Among these are in particular many ap-
proaches that are based on Beam Search (BS), see e.g., [21–25],
and they differ in various important details such as the heuristic
guidance, the branching mechanism, and the filtering.

In our recent work [26], we proposed a general BS frame-
work for the LCS that unifies all the heuristic state-of-the-art
approaches from the literature in the sense that each one can be
expressed by respective configuration settings. Moreover, a novel
heuristic guidance function was proposed, which approximates
the expected length of a LCS for random strings. In a compre-
hensive experimental comparison previous methods have been
compared and a new state-of-the-art BS variant was determined,
which dominates the other approaches on most of the avail-
able benchmark instances. The mentioned new heuristic guidance
function turned hereby out to play a crucial role.

Concerning exact approaches for the LCS problem, an integer
linear programming model has been considered in [27]. It is,
however, not competitive as it cannot be applied to any of the
commonly used benchmark instances due to too many variables
and constraints in the model. Dynamic programming approaches
are reasonable for small m and small n, but they also quickly run
out of memory for larger instances and then typically return only
weak solutions, if at all. Chen et al. [28] proposed the parallel
FAST_LCS search algorithm, which is based on producing a special
successors table to obtain all the identical pairs and their levels.
Successor nodes are derived in parallel. Pruning operations are
utilized to reduce the computational effort. While the algorithm
is effective for a small number of input strings, it also struggles
for larger m. Wang et al. [24] proposed another parallel algorithm
called QUICK-DP, which is based on the dominant point ap-
proach and employs a fast divide-and-conquer technique to com-
pute the dominant points. More recently, Li et al. [29] suggested
the Top_MLCS algorithm, which is based on a directed acyclic
layered-graph model (called irredundant common subsequence
graph) and parallel topological sorting strategies used to filter out
paths representing suboptimal solutions. Moreover, the authors

showed that the earlier dominant-point-based algorithms do not
scale well to larger LCS instances, and Top_MLCS significantly
outperforms them. In addition to the sequential Top_MLCS, also
a parallel variant was proposed. Another parallel space efficient
algorithm based on a graph model, called the Leveled-DAG, was
described by Peng and Wang [30]. It eliminates all the nodes in
the layered graph that do not contribute to the construction of
the LCS, and thus keeps only the nodes from the current level and
some previously generated ones. In the experimental comparison,
Leveled-DAG and Top_MLCS solved the same number of bench-
mark instances to proven optimality, but Leveled-DAG consumed
less memory.

Despite these recent advances, solving practically relevant
instances to proven optimality remains a substantial challenge
in terms of memory and computation time, even when utilizing
many parallel threads. The existing exact methods are therefore
frequently not applicable in practice. As a compromise between
classical exact techniques and pure heuristic approaches, anytime
algorithms have been proposed [31,32]. An anytime algorithm is
supposed to fulfill the following properties: (1) It is, in principle,
complete in the sense that it terminates with a proven optimal
solution when enough time and memory is provided; (2) it can
be terminated at almost any time and then returns a solution of
reasonable quality; and (3) the solution quality improves with the
given time.

Anytime algorithms thus offer to choose the trade-off between
solution quality and computational requirements. Concerning the
LCS problem, two anytime approaches have been proposed in
the literature so far: Pro-MLCS [33] and SA-MLCS [34]. Both
algorithms are based on the dominant point method [35], which
features a special distance measure dist for heuristic guidance
and a specific multi-dimensional data structure for checking the
dominance relation of already explored nodes during the search.
Algorithm Pro-MLCS iteratively extends a fixed number of nodes
at each level in a level-by-level manner and is similar to any-
time column search [36], which we will consider in more detail
in Section 4.2. On the other side, SA-MLCS applies an iterative
beam widening strategy in successive iterations to reduce space
requirements. It differs from Pro-MLCS in the data structures uti-
lized to maintain open nodes. A specific priority queue is realized
for SA-MLCS which stores those nodes whose children have not
all been expanded, further exploited in the algorithm to make use
of the search information from previous iterations to improve ef-
ficiency of the SA-MLCS. Last but not least, [34] describes another
memory bounded variant of SA-MLCS, called SLA-MLCS. A weak-
ness of all these approaches is that they are not able to provide
an upper bound on the solution quality and therefore no quality
guarantee in case of early termination. Moreover, neither in [33]
nor in [34] enough details are provided concerning the multi-
dimensional data structure for checking dominance. This made
it, unfortunately, impossible to re-implement the algorithms with
all their details, and source code is not provided by the authors.
However, in the experimental section of this work we consider
the distance measure dist as an alternative heuristic guidance
and we also build upon anytime column search.

Our contributions are as follows. We first propose an exact A∗
search for the LCS problem, which is derived from components
and settings that proved already useful in heuristic BS variants
as determined in our earlier studies [25,26]. This A∗ search is
shown to be effective for small instances, but as one may expect
it has serious scalability issues similar to other exact methods
in terms of time and memory requirements when considering
larger instances. We therefore extend this A∗ search by applying
two alternative hybrid search strategies from [25], turning the
original A∗ search into effective anytime algorithms for finding
an LCS. Both follow the idea of interleaving traditional A∗ search

M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499 3

iterations with heuristic search – either BS or anytime column
search [36] – and they are labeled A∗ + BS and A∗ + ACS, re-
spectively. The A∗ framework ensures completeness and provides
upper bounds at any time, while the embedded heuristic search
iterations rely on the heuristic guidance function from [26,37]
and are responsible for producing a first approximate solution
quickly and improving it over time. Most importantly, the heuris-
tic search iterations also operate on the list of open nodes of A∗

search in order to avoid redundant node expansions.
Although we employ, from a conceptual point of view, the

same hybrid search strategies as in [25], we want to emphasize
the significant differences between the adaptation to the longest
common palindromic subsequence (LCPS) problem in [25] and
the adaptation to the LCS problem presented in this paper. Note,
for example, that the best exact algorithms for the LCS problem
when considering two input strings (m = 2) require O(n2) of time,
while the best exact algorithm for the LCPS problem requires
O(n4) time. This already hints that both problems are structurally
quite different from each other. These differences lead to the fol-
lowing differences in the adaptation of the algorithmic concepts
to both problems:

• The search spaces of the two problems (in terms of the
definition of the A∗ nodes) differ. This is due to the fact
that in the LCS problem solutions are generated from left
to right, while in the LCPS problem a solution construction
starts from the left and from the right at the same time.
• The upper bounds utilized for the two problems are differ-

ent.
• The expected length calculation heuristics (EX) for guiding

the tree search techniques differ, even though similar ideas
are used for their derivation.
• Last but not least, the implementations differ in additional

details. For example, in this paper we make use of an effi-
cient way of filtering the dominated nodes in BS and ACS
iterations (i.e., the restricted filtering). This was not possible
in [25].

In the comprehensive experimental study of this paper we eval-
uate the proposed approaches on various LCS benchmark sets
from the literature and compare to the so far best methods’
results. Earlier computational studies always considered a subset
of the available benchmark sets. Concerning proven optimality,
our A∗ search is able to solve 106 instances from the literature,
which exceeds the number of solved instances by Top_MLCS
by six. Moreover, in most cases our A∗ search is faster than
Top_MLCS. For the remaining instances that cannot be solved
to optimality, A∗+ACS turns out to be the now leading method
for most benchmark sets in respect to final solution quality.
Moreover, optimality gaps are considered for larger LCS instances
for the first time, and those obtained by A∗ + ACS are shown
to be significantly better than the ones of the other considered
approaches on many occasions. Most remarkably, A∗ + ACS was
able to achieve new best known solutions for 82 different LCS
instance groups, which corresponds to≈70% of all the considered
instance groups.

The rest of this article is organized as follows. Section 2 gives
an overview on essential previous work and definitions required
for the A∗ search for the LCS problem and its anytime variants.
The A∗ search framework is then presented in Section 3, while
Section 4 provides the details of the A∗ + ACS and A∗ + BS
anytime algorithms. Section 5 comprises the whole computa-
tional study. Conclusions and ideas for future work are given in
Section 6.

2. Previous work

In this section we summarize those aspects of previous work
that are needed for understanding the anytime algorithms pro-
posed in this work. Most of this material was already covered in
a more detailed way in [26], where we introduced a general BS
framework for the LCS problem. Beam Search is a well known
incomplete tree search method that works in a limited Breadth-
First Search (BFS) manner. At each step, it maintains a set of nodes
– called the beam – from the same level of the search tree. Note, in
this context, that each node of the tree corresponds to a partial
solution and a respective remaining subproblem, while the leaf
nodes correspond to non-extensible solutions. The nodes of the
current beam are expanded at each step, generating a set of nodes
from the next level of the search tree. This set of extensions is
denoted by Vext. Among the nodes from Vext, the β > 0 most
promising nodes are selected and form the beam of the next step,
where β is a strategy parameter called beam width. Beam Search
keeps repeating these steps until the beam is empty, i.e., no
further expansions are possible. The initial beam consists just of
the root node of the search tree, which corresponds to the empty
partial solution. The result of BS is the best solution in the final
beam. The general BS framework from [26] covers all BS-based
approaches from the literature known to us. In the following,
after introducing some notations and additional concepts, two
important topics are addressed: (1) the state graph on which
both the BS approaches from the literature and the A∗ search
proposed in this work operate, and (2) upper bound functions and
a heuristic guidance function. Both upper bound functions and/or
heuristic guidance functions are used in BS approaches for the
selection of the nodes that are kept as the next iteration’s beam.

2.1. Notations and concepts

Let n be the maximum length of the m strings in S =
{s1, . . . , sm}, i.e., n = maxi=1,...,m |si|. Furthermore, let s[j], j =
1, . . . , |s|, be the jth letter of a string s, and let s1 · s2 denote
the concatenation obtained by appending string s2 to string s1.
Moreover, s[j, j′], j ≤ j′, denotes the continuous subsequence
of s starting at position j and ending at position j′; if j > j′,
s[j, j′] is the empty string denoted by ε. Finally, let |s|a be the
number of occurrences of letter a ∈ Σ in string s. Henceforth, a
string s is called a (valid) partial solution to S, if and only if s is a
subsequence of each string in S, that is, a common subsequence of
S.

Any subproblem of S is defined on the basis of a so-called
left position vector pL ∈ Nm, with 1 ≤ pLi ≤ |si| for i =
1, . . . ,m. In particular, for a given pL, subproblem S[pL] concerns
the substrings si[pL, |si|] for all i = 1, . . . ,m. In other words,
S[pL] contains the right part of each string from S starting from
the position indicated in the left position vector pL. Note that the
original problem S can be denoted by S[pL = (1, . . . , 1)]. Given
a (partial) solution s to S—that is, a string s that is a common
subsequence of S—a subproblem S[pL] is induced by defining pL
in the following way. For each i = 1, . . . ,m, pLi is determined such
that si[1, pLi −1] is the minimal-length string among all substrings
si[1, p], p = 1, . . . , |si|, that contain s as a subsequence. For
example, given S = {abcaac, acbaba} and the partial solution
s = aca, the induced subproblem S[pL] is defined by left position
vector pL = (5, 5). Note that there is potentially more than one
partial solution inducing the same subproblem, respectively, the
same left position vector. In the example above, partial solution
s′ = aba, for example, induces the same subproblem and the
same left position vector as partial solution s = aca. Moreover,
partial solutions inducing the same subproblem and the same
left position vector may have different lengths. Considering again
the example from above, substring s′′ = aa induces the same
subproblem and the same left position vector as s and s′.

4 M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499

2.2. State graph for the LCS problem

The state graph that is used by all BS variants known in the
literature so far, and which will also be used by the A∗ search
proposed in this paper, is a directed acyclic graph G = (V , A),
where a node v = (pL,v, lv) ∈ V represents the set of partial
solutions that (1) have the same length lv and that (2) induce the
same subproblem denoted by S[pL,v] and left partition vector pL,v .
An arc a = (v1, v2) ∈ A between two nodes v1 ̸= v2 ∈ V—carrying
label ℓ(a) ∈ Σ—exists, if and only if the following two conditions
are fulfilled:

1. lv2 = lv1 + 1
2. The partial solution inducing v2 is produced by appending

ℓ(a) to the partial solution inducing v1.

The root node r of G corresponds to the original problem S,
which is induced by the empty partial solution denoted by ε.
In technical terms, r = ((1, . . . , 1), 0). In order to derive the
successor nodes of a node v ∈ V , we first determine the subset
Σv ⊆ Σ of letters that can be used to feasibly extend the partial
solutions represented by v. Obviously, Σv consists of all letters
a ∈ Σ that appear at least once in each string of S[pL,v]. For
each letter a ∈ Σv , the position of the first occurrence of a in
si[p

L,v
i , |si|] is denoted by pL,vi,a , i = 1, . . . ,m. Set Σv may frequently

be reduced by identifying dominated letters: We say that letter
a ∈ Σv dominates letter b ∈ Σv if and only if pL,vi,a ≤ pL,vi,b for all
i = 1, . . . ,m. Dominated letters can safely be ignored since they
always lead to suboptimal solutions. Let Σnd

v ⊆ Σv be the subset
of those letters that are non-dominated. Graph G contains for
each letter a ∈ Σnd

v a successor node v′ = (pL,v
′

, lv+1) of v, where
pL,v

′

i = pL,v
′

i,a +1, i = 1, . . . ,m. A node v that has no successor node
– that is, when Σnd

v = ∅ – is called a non-extensible node. Now,
note that any path from the root node r to any node in v ∈ V
represents the feasible partial solution obtained by collecting and
concatenating the labels of the traversed arcs.1 Any path from r
to a non-extensible node represents a common subsequence of S
that cannot be further extended, and any longest path from r to
a non-extensible node represents an optimal solution to problem
instance S.

2.3. Upper bounds

The BS approaches from the literature make use of different
upper bounds for the lengths of LCS (sub-)problems in order to
select promising nodes for the beam of the next step. We consider
here the most successful bounds. The upper bound from Blum
et al. [21] was derived by tightening the bound from Fraiser [19].
Given a node v representing the left position vector pL,v and
the corresponding subproblem S[pL,v], this bound calculates the
minimal number of occurrences of each letter over all the strings
of subproblem S[pL,v] and returns the sum of these, i.e.,

UB1(v) = UB1(pL,v) =
∑
a∈Σ

min
i=1,...,m

|si[p
L,v
i , |si|] |a. (1)

This bound can be efficiently determined in O(m · |Σ |) time when
using a suitable data structure that is initialized in preprocessing
(for more details see [25]).

A DP-based upper bound was introduced by Wang et al. [24],
making use of the LCS calculation for two input strings. For each
pair {si, si+1} ⊆ S, i = 1, . . . ,m− 1, a so-called scoring matrix Mi

1 We emphasize that it is not necessary to store actual partial solutions s
in the nodes. A longest path to any node in the graph starting from the root
node and the respective partial solution can be efficiently derived in a backward
manner by iteratively identifying a predecessor in which the lv-value always
decreases by one.

is constructed in a pre-processing step, where an entry Mi[p, q],
with p = 1, . . . , |si| and q = 1, . . . , |si+1|, stores the length
of the LCS of strings si[p, |si|] and si+1[q, |si+1|]. Given a node v

representing the left position vector pL,v and the corresponding
subproblem S[pL,v], the upper bound is then calculated as

UB2(v) = UB2(pL,v) = min
i=1,...,m−1

Mi[p
L,v
i , pL,vi+1]. (2)

Not considering the pre-processing step, this bound can be cal-
culated in O(m) time. As in general neither UB1 dominates UB2
nor does UB2 dominate UB1, it makes sense to also consider the
combined bound UB(v) = min{UB1(v),UB2(v)}.

2.4. Approximate expected length calculation of an LCS

Some of the BS approaches make use of a heuristic guidance
function instead of an upper bound for the selection of the nodes
that form the beam of the next iteration. In the following we
briefly describe the one that we introduced in [26]. This heuristic
guidance function is based on a DP recursion by Mousavi and
Tabataba [22], which calculates the probability that any string of
length p is a subsequence of a uniform random string of length q,
for 0 ≤ p, q ≤ n. Let us assume that these probabilities are stored
in a matrix P with elements P[p, q] ∈ [0, 1], 0 ≤ p, q ≤ n.

The heuristic guidance function makes two strong assump-
tions: (1) the strings from S are all uniform random strings,
and (2) the input strings are independent from each other. For
each sequence x of length k over alphabet Σ we denote by Evx
the event that x is a common subsequence of the input strings
from S. For any two sequences x and y, x ̸= y, we additionally
make the simplifying assumption that the events Evx and Evy are
independent (which does not hold in reality). By applying some
basic laws from probability theory, the heuristic guidance func-
tion which—given a node v representing the left position vector
pL,v and the corresponding subproblem S[pL,v]—approximates the
expected length of a LCS in the corresponding subproblem can be
stated as

EX(v) = lmin −

lmin∑
k=1

(
1−

m∏
i=1

P(k, |si| − pL,vi + 1)

)|Σ |k
, (3)

where lmin = min{|si|−p
L,v
i +1 | i = 1, . . . ,m}. An extensive com-

putational study presented in [26] has shown that this heuristic
guidance function has a significant impact on finding high-quality
solutions for many instances. The general conclusion was that its
use in BS approaches is generally preferred over the use of upper
bound functions in the context of benchmark instances in which
the input strings are quasi-independent.

3. A∗ search framework

As mentioned before, our focus in this work is on the de-
velopment of A∗-based anytime algorithms for the LCS problem.
A∗ search [38] is a well-known exact technique widely used in
path-finding and planning. It belongs to the class of informed
search methods, employing a best-first search strategy. Our A∗
search for the LCS problem operates on the state graph G as
defined in Section 2.2. At each iteration the most promising not-
yet-processed/expanded (open) node is expanded. To this end,
each node v reached is evaluated by a priority function f (v) :=
g(v)+h(v), where g(v) denotes the cost of the best path from the
root node r to v and h(v) is a heuristic function that estimates the
cost-to-go, the cost of the best path from v to a goal node. In the
context of the LCS, the cost of a path refers to its length, and a
path is better the longer it is. Furthermore, any non-extensible
node of the state graph represents a goal node. Good candidates

M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499 5

for h(·) in the context of the LCS are upper bound functions, such
as the ones discussed in Section 2.3. They never underestimate
the length of the best/longest path to a goal node and are called
admissible in the terminology of A∗ search. Using an admissible
heuristic function guarantees that an optimal solution is found
when a goal node is finally selected for expansion and the search
terminates. Moreover, the proposed upper bounds are monotonic,
i.e., the upper bound of any extension of a node is always at most
as high as the upper bound of the original node. This property
guarantees that re-evaluations of already expanded nodes are
never necessary. To efficiently retrieve the node with highest
priority in each iteration, A∗ search maintains all open nodes
in a priority queue Q . Additionally, our A∗ search maintains a
hash map N with left position vectors pL,v as keys mapping to
the respective lv-values. By this data structure, we can efficiently
recognize already reached left position vectors.

A∗ search starts with the initialization of Q , that is, Q = {r}.
At each iteration, it expands the top node of Q by generating
the respective successor nodes. If its left position vector is not
already present in N , a successor node is added to N and to
Q . If, on the other side, the successor’s left position vector is
already in N , it is checked if the new path to v is longer than the
already known one. If this is the case, the lv-value of v is updated
correspondingly, and the priority of v (used for its ranking in Q)
is adapted accordingly. The algorithm keeps expanding the top
nodes of Q until optimality is reached by selecting a goal node or
either the memory limit or a time limit is exceeded. One potential
problem is that Q typically contains many nodes with the same
priority value. These ties are broken by prioritizing those nodes
which are farther away from the root node, i.e., the ones with
higher lv values. Remaining ties are broken with the help of a k-
norm of the remaining string lengths, i.e., each node is evaluated

by κ(v) =
(∑m

i=1(|si| − pL,vi + 1)k
) 1

k
. These κ(v)-values can be

seen as a rough heuristic indicator for the cost-to-go, nodes with
larger values are expected to be more promising. We used k = 0.5
in our implementation. A pseudo-code of our A∗ search for the
LCS problem is given in Algorithm 1. Note that an alternative A∗
algorithm was proposed in [24]. However, this simpler algorithm
uses just the weaker upper bound function UB2 to guide the
search, does not consider tie breaking, and has a larger memory
footprint.

4. Anytime algorithms for the LCS problem

When faced with large-size problem instances of hard op-
timization problems, pure exact approaches such as DP or A∗
search frequently reach their limits. Moreover, if not given
enough time (or space) to terminate, these algorithms are not
able to provide sub-optimal solutions of reasonable quality. There-
fore, the optimization community has, at some point, started to
improve such algorithms by adding mechanisms that allow them
to be terminated early and nevertheless provide feasible solutions
of reasonable quality. The phrase anytime algorithms was used for
the first time in the literature by Dean and Boddy [39,40] in the
middle of the 80’s, referring to a class of algorithms that is able
to find an initial approximate solution quickly and then improves
upon it over time, until optimality is finally guaranteed if enough
time is given. These algorithms are nowadays widely used in
planning and intelligent systems and domains such as real-time
diagnosis and repair, mobile robot control, and signal interpre-
tation. In these domains, solutions must frequently be obtained
rather quickly but sometimes more time can be spent [31,32].
Anytime algorithms are flexible in terms of time and resources
used. They are designed to offer a selectable trade-off between
solution quality and computational requirements.

Algorithm 1 A∗ for the LCS problem.
1: N: hash map for all reached left position vectors with the

lengths of the longest paths; Q : priority queue with all open
nodes

2: pL,r ← (1, . . . , 1)
3: r ← (pL,r , 0)
4: N[pL,r] = 0
5: Q = {r}
6: while time and memory limit not exceeded and Q is not empty

do
7: v← pop the top node from Q
8: Σnd

v ← non-dominated feasible letters concerning sub-
problem S[pL,v]

9: if Σnd
v = ∅ then // v is a goal node

10: return optimal solution slcs retrieved from v

11: else
12: for all a ∈ Σnd

v do // expand v

13: pL,v
′

i ← pL,v
′

i,a + 1, i = 1, . . . ,m
14: lv′ ← lv + 1
15: if pL,v′ ∈ N then
16: if N[pL,v

′

] < lv′ then // a better path to the
node was found

17: N[pL,v] ← lv′
18: update priority value of node v in Q
19: end if
20: else // a new node
21: fv′ ← lv′ + UB(v′)
22: add v′ of the priority fv′ to Q
23: add v′ to N
24: end if
25: end for
26: end if
27: end while
28: return empty solution ε

Two important groups of anytime algorithms are those based
on BS and on A∗ search, respectively. The BS-based anytime
algorithms are generally characterized by repeated applications
of BS (with a reduced beam width) in which the initial beam
of a subsequent iteration is, in some way, based on nodes that
were discovered but not processed in earlier iterations. One of
the first approaches of that kind was proposed by Zhang [41].
This algorithm was able to reach high-quality solutions earlier
than standard BS, in addition to being able to produce opti-
mal solutions if given enough computational resources. Another
example is beam stack search [42], which integrates systematic
backtracking within BS. On the other side, a lot of work has been
dedicated to the development of A∗-based anytime approaches.
Hansen and Zhou [43] presented anytime weighted A∗. The main
idea of this algorithm is to change the evaluation function to
f (v) = g(v) + w · h(v), where w ≥ 1 is a weight parameter.
In general, a larger weight will yield a shorter run and cruder so-
lution as the heuristic guidance is inflated, while smaller weights
will yield better solutions at the cost of longer runtimes. Thus, the
search is typically iteratively performed with decreasing weights.
Likhachev et al. [44] proposed the Anytime Repairing A∗ (ARA∗)
algorithm, which extends anytime weighted A∗ by reusing the
results of an iteration in the subsequent one; it is therefore signif-
icantly more efficient. In order to get rid of the sensitive weight
parameter, Anytime Non-parametric A∗ (ANA∗) was proposed by
Berg et al. [45]; here, the greediness of the search is adapted
as the quality of the solutions found improves. Aine et al. [46]
suggested Anytime Window A∗ (AWA∗), where they set a range

6 M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499

for the levels from which the nodes of the corresponding open
lists are only allowed to be expanded and by which they enforce
convergence to a sub-optimal solution at each iteration. This
range (i.e., window) is adapted at each iteration to produce an
improved solution. A memory bounded variant of AWA∗, called
MAWA∗, was proposed in [47].

Later, Vadlamundi et al. [36] described Anytime Column Search
(ACS). Here, the nodes of the state graph are organized into layers.
The algorithm maintains a separate priority queue for each of
these layers. At each iteration of ACS, which is performed in a
level-by-level manner, up to β of the best nodes of each level of
the state graph are expanded. An algorithm based on a similar
idea was presented by Kao et al. [48]. We will build upon ACS in
Section 4.2, where we will also introduce it in more detail. More
recently, Vadlamundi et al. [49] proposed Anytime Pack Search
(APS), which maintains a container of pack > 0 nodes – where
pack is a parameter of the algorithm – and a priority queue Q of
not-yet-expanded nodes. At each iteration, standalone BS runs are
successively performed for which the initial beam is composed
of the first pack nodes from the top of priority queue Q , until
Q becomes empty. The authors showed APS to be a state-of-the-
art approach for three different problem domains [49]. Therefore,
we decided to consider APS for comparison purposes also in the
current work for finding a LCS.

The two new anytime algorithms that we present in this work
for the LCS problem are based on the A∗ framework from Sec-
tion 3. Our main idea is to embed efficient heuristic approaches
into the A∗ framework which are repeatedly executed inbetween
regular A∗ iterations. Our A∗ anytime variants – apart from pro-
viding excellent solutions – are able to return proven gaps at
almost any time when terminated prematurely.

4.1. A∗ + BS approach

Since BS approaches are the state-of-the-art heuristic tech-
niques for the LCS problem but A∗ search is more promising
when it comes to solving smaller instances to proven optimality,
it seems sensible to combine A∗ search with BS into an anytime
search method denoted by A∗ + BS. We presented the basic
idea of such a hybrid search strategy originally in [25], where
it was applied to the longest common palindromic subsequence
problem. At the start of A∗ + BS, a run of BS with small width is
performed for which the beam is initialized with the root node r .
This initial BS run takes place to obtain a first reasonable approxi-
mate solution (and thus a primal bounds) rather quickly. Then the
algorithm proceeds by iteratively applying the following scheme.
First, δ traditional iterations of A∗ search are performed, with δ >
0 being a strategy parameter. Second, a BS run is applied in which
the first beam is initialized with the top node of Q . The algorithm
stops once optimality is proven or a memory limit, respectively
time limit, is exceeded. To avoid redundant recalculations, all the
embedded BS calls and the A∗ search act on the same search tree.
All non-expanded nodes encountered during a BS run are used to
update the hash map N and are inserted into the priority queue
Q (if not already there). Moreover, if a new best path to some
node is encountered within any BS iteration, an update of the
corresponding node in N is performed by changing the key to the
new lv-value, and the node is then added into the corresponding
beam, that is, the nodes which were already encountered during
the search are allowed to be added into Vext.

A pseudo-code for A∗ + BS is provided in Algorithm 2. Pa-
rameters β > 0 (beam width of BS) and δ > 0 (frequency of
BS applications) control the balance between BS and classical A∗
search iterations and thus the emphasis on improving the primal
bound versus the dual bound, respectively. Beam search makes
use of a function Filter(Vext, kfilter) for filtering dominated suc-
cessor nodes at each step. This procedure works as follows. Up

Algorithm 2 A∗ + BS for the LCS problem.
1: N: hash map for all reached left position vectors with the

lengths of the longest paths; Q : priority queue of not yet
expanded nodes; β > 0: beam width; δ > 0: number of
consecutive A∗ iterations; kfilter ≥ 0: extent of filtering

2: sbest ← ε

3: pL,r ← (1, . . . , 1)
4: r ← (pL,r , 0)
5: N[pL,r] = 0
6: Q ← {r}
7: opt ← false
8: while not opt and neither memory limit nor time limit

exceeded do
9: B← pop the β top nodes from Q

10: while B ̸= ∅ do
11: // perform BS:
12: for all v ∈ B do
13: ExpandNode(v) // see Algorithm 3
14: store respective children of v in Vext
15: end for
16: Filter(Vext, kfilter) // filter dominated nodes from Vext
17: B← Reduce(Vext, β)
18: end while
19: iter ← 0
20: while iter < δ and neither memory limit nor time limit

exceeded do
21: // perform A∗ iteration:
22: v← get top node from Q
23: remove v from Q
24: ExpandNode(v) // see Algorithm 3
25: iter ← iter + 1
26: end while
27: end while
28: return sbest

to kfilter of the most promising nodes are selected from Vext as a
reference set. Then, all other nodes from Vext that are dominated
by at least one of these reference solutions are removed from Vext.
If kfilter = 0, no filtering is applied. Moreover, the employed BS
uses the upper bound UB from Section 2.3 in order to choose up
to β nodes for the beam of the next step. Finally, note that the A∗
search framework ensures completeness of the A∗ + BS algorithm
and provides proven gaps at any time.

The procedure ExpandNode for the expansion of a node and
updating the respective data structures is provided in Algorithm 3
(for now, disregard the lines marked to be relevant only for
A∗ + ACS). If the node to be expanded is a goal node, it is checked
if it yields a new best solution. If this is the case, sbest is updated
accordingly. Moreover, if the length of the so-far best solution
sbest is greater or equal to the f –value of the top node in Q , the
flag opt is set to true, meaning that the search terminates with
proven optimality of sbest.

4.2. A∗ + ACS approach

As mentioned above, each BS run in A∗ + BS starts from
the current top node of Q . This means that each BS run only
deals with extensions of this single node, and consequently the
search space is rather restricted. In particular, many other highly
promising nodes at different levels of the state graph may have
already been identified, but they are ignored. In order to deal
with this potential short-coming, we developed an alternative
approach in the line of [25] in which BS runs are exchanged by

M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499 7

Algorithm 3 ExpandNode(v).

1: Input: a node v to be expanded; a flag parameter
2: Uses resp. updates: slcs, N,Q and if called from A∗ + ACS, Qj,

j = 0, . . . , jmax;
3: if Σnd

v = ∅ then // v is a complete node
4: s ← derive the non-extensible solution corresponding to

v

5: if |slcs|< |s| then // update best sol.
6: slcs ← s
7: end if
8: else
9: for all a ∈ Σnd

v do // expand v

10: pL,v
′

i ← pL,v
′

i,a + 1, i = 1, . . . ,m
11: lv′ ← lv + 1
12: if pL,v′ ∈ N then
13: if N[pL,v′] < lv′ then // a better path to the node

encountered
14: N[pL,v

′

] ← lv′
15: update priority of the corresponding node in Q ;
16: if called from A∗ + ACS then
17: move node v′ from Qlv to Qlv′
18: end if
19: end if
20: else // create new node
21: add v′ to N
22: fv′ ← lv′ + UB(v′)
23: add v′ with priority fv′ to Q
24: if called from A∗ + ACS then
25: ev′ ← EX(v′)
26: add v′ with priority ev′ to Qlv′
27: end if
28: end if
29: end for
30: end if
31: if |slcs|≥ maxv∈Q f (v) then
32: opt ← true
33: end if

major iterations of the above already mentioned Anytime Column
Search (ACS) [36]; this hybrid approach is henceforth labeled
A∗ + ACS.

Anytime column search is an iterative algorithm which main-
tains for each level j of the state graph a priority queue Qj that
stores – in the context of the LCS problem – all open nodes v
with lv = j, j = 0, . . . , jmax, jmax = UB(r). Initially, Q0 contains
the root node r and the other priority queues are empty. Each
major iteration of ACS considers all levels j = 0, . . . , jmax with
non-empty queues Qj in turn, and expands β nodes (or less if
Qj is shorter. The procedure terminates with an optimal solution
once all priority queues are empty. Note that ACS in general
finds heuristic solutions very quickly since each major iteration
identifies usually at least one non-extensible heuristic solution.

The main idea for combining A∗ with ACS consists again in
interleaving classical A∗ iterations with major ACS iterations.
Hereby, A∗ keeps working on the basis of priority list Q and the
priority function that utilizes the upper bound function UB(v). In
this way, the whole approach will maintain the completeness of
classical A∗ search and maxv∈Q f (v) always is a true upper bound
for the optimal solution value. In contrast to Q , the heuristic
guidance function EX from Section 2.4 is used as sorting criterion
for the nodes in the level-specific ACS-queues Qj. Remember that
EX is usually a more promising guidance to find good heuristic
solutions, but as it is no valid upper bound, it cannot be used
for proving optimality. Moreover, note that changes made in

Algorithm 4 A∗ + ACS for the LCS problem.
1: N: hash map for all reached left position vectors with the

lengths of the longest paths; Q : priority queue of not yet
expanded nodes; Qj: priority queues maintained for each level
j of the state graph; β > 0: a beam width; δ > 0: amount of
consecutive A∗ iterations; kfilter ≥ 0: extent of filtering

2: sbest ← ε

3: pL,r ← (1, . . . , 1)
4: r ← (pL,r , 0)
5: N[pL,r] = 0
6: Q ← {r}; Q0 ← {r}
7: opt ← false
8: while not opt and neither memory limit nor time limit

exceeded do
9: lev← 0

10: while lev < jmax do
11: // perform ACS iteration:
12: b← 0
13: Vext ← ∅

14: while Qlev ̸= ∅ and b < β do
15: v← get the top node from Qlev
16: remove v from Qlev and Q
17: ExpandNode(v) // see Algorithm 3
18: Store respective children of v in Vext // keep

track of nodes for filtering
19: b← b+ 1
20: end while
21: Filter(Vext, kfilter) // filter dominated nodes from Vext

22: lev← lev+ 1
23: end while
24: iter ← 0
25: while iter < δ and neither memory limit nor time limit

exceeded do
26: // perform A∗ iteration:
27: v← top node from Q
28: remove v from Q and Qlv
29: ExpandNode(v) // see Algorithm 3
30: iter ← iter + 1
31: end while
32: end while
33: return sbest

priority queue Q must be accompanied by corresponding changes
in priority queues Qj and vice versa. To enable a direct lookup
of priority queue entries for a given node, we make use of the
corresponding hash map N .

The pseudo-code of the A∗ + ACS is presented in Algorithm 4.
Note that at each entry of the main while loop (lines 8–32), the
algorithm first executes one major iteration of ACS (lines 10–
31) and afterwards δ classical A∗ iterations (lines 22–28). Note
that, just like A∗ + BS, the algorithm potentially makes use of
filtering when case kfilter > 0 during the major iterations of ACS
(line 21). The only difference is that nodes removed from Vext
due to filtering are not only removed from N and Q but also
from the corresponding queue Qj. Parameters β and δ play the
same role as in A∗ + BS, namely, controlling the balance between
finding good heuristic solutions and improving the dual bound
over time. Finally, A∗ + ACS terminates either with a proven
optimal solution, or once the memory limit or the time limit is
exceeded, returning the best non-extensible solution found up to
this point.

8 M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499

5. Experimental evaluation

In the following we first provide a summary of the algorithms
that are considered for the experimental evaluation. These are
our two anytime algorithms (1) A∗ + BS and (2) A∗ + ACS, (3)
the APS algorithm from [49], which is one of the state-of-the-art
anytime variants from literature that we implemented for com-
parison purposes, and (4) A∗ + ACS-distwhich is the variation of
A∗ + ACS in which the heuristic guidance function EX is replaced
by the dist(·) estimation from Pro-MLCS [33] and SA-MLCS [34].
Unfortunately, we were not able to do a full comparison to Pro-
MLCS and SA-MLCS as the codes could not be obtained from the
authors and the description of the special multi-dimensional tree
data structure for determining dominated solutions is insufficient
for a re-implementation. However, A∗ + ACS-dist without the
classical A∗ iterations in (i.e., when setting δ = 0) almost corre-
sponds to Pro-MLCS except that instead of the multi-dimensional
data structure from [33], Filter(·, ·) is used for filtering dominated
solutions.

All algorithms were implemented in C++ and the experi-
ments were conducted in single-threaded mode on a machine
with an Intel Xeon E5–2640 processor with 2.4 GHz allowing a
maximum of 32 GB of memory. The maximum computation time
for each run was limited to 900 s. The considered algorithms
were evaluated by the quality of the best solutions they provided
and by the percentage gaps, which are calculated at time t > 0
as gap(t) := ub(t)−|sbest(t)|

ub(t) · 100%, where sbest(t) denotes the best
solution found up to time t and ub(t) denotes the upper bound
on the length of an optimal solution obtained from the f -value of
the top node in Q at time t (or the optimal solution value when
already available).

5.1. Benchmark instances

The related literature on the LCS problem offers six public
benchmark sets for the LCS problem. We used all of them for the
experimental evaluation here. The BL benchmark [27] consists
of 450 problem instances grouped by different values for the
number of input strings (m), the maximum length of the input
strings (n), and the alphabet size (|Σ |). For each combination of
m, n, and |Σ | the set offers ten instances generated uniformly
at random. Furthermore, Rat and Virus are two benchmarks
with a biological background, consisting of 20 instances each.
Random is another rather small benchmark set consisting of 20
randomly generated instances. The latter three benchmark sets
were introduced in [50]. Moreover, benchmark set ES, which was
introduced in [51], is a large set with 600 instances grouped
by different combinations of values for m, n, and |Σ |, where
each group includes 50 instances. Last but not least, benchmark
set BB—introduced in [52]—consists of 800 artificially created
instances. These were generated in a way such that input strings
have a larger similarity to each other than to random strings:
Givenm, |Σ |, and an additional parameter l > 0, first a base string
of length l was generated uniformly at random over alphabet
Σ . Then, each of the m strings of the instance were derived by
passing over the base string and removing each character with
a probability of 10%. Thus, an input string of an instance with
l = 1000 is, on average, of length 900. We only considered the
80 largest instances from this set, based on m ∈ {10, 100} and
|Σ | ∈ {4, 8, 16, 32} and l = 1000. There are ten instances for
each combination of m and |Σ |. Note that the instances in this
last set are the only ones with a clear relation between the input
strings, that is, where input strings are not independent of each
other.

5.2. Tuning of the algorithms’ parameters

In order to ensure a fair comparison, the parameters of all con-
sidered algorithms were tuned by irace [53]. This tuning took
place under the same conditions (computation time limit: 900 s;
memory limit: 32 GB) as later the final experimental evaluation.
After conducting some preliminary experiments, we decided to
use the following domains for the values of the parameters for
the tuning:

• δ ∈ {0, 1, 10, 50, 100, 500, 1000, 5000, 10000, 20000,
50000},
• kfilter ∈ {0, 1, 10, 50, 100, 500, 1000, 5000, 10000,+∞},
• β ∈ {1, 50, 100, 500, 1000, 5000, 10000, 20000},

Since the parameter pack of APS refers to the beam width of
that algorithm, we chose the same domain for pack and β . As
we expected potentially stronger differences in suitable settings
for the dependent instances BB and the quasi-independent other
instances, we decided to apply tuning for these two instance
categories separately. We used 40 additional randomly generated
instances for the tuning process aimed for quasi-independent
instances. The budget of irace was set to 5000 optimization
runs in this case. On the other side, we generated 20 additional
dependent instances for tuning purposes, in the same way as re-
ported in [52]. The budget of irace was set to 1000 optimization
runs in this second case. In addition to the separation concerning
the instance type – quasi-independent versus dependent – we
applied for each instance type two tuning runs with different
aims. One of these tuning runs aimed for final solution quality,
and the other one for small dual gaps. The results of these four
tuning runs are reported in the four sub-tables of Table 1.

Concerning the tuning results for the quasi-independent in-
stances, note that a higher beam size β is necessary when aiming
for solution quality. On the other hand, when we focus on small
dual gaps, the amount of A∗ iterations (δ) has to be significantly
increased for all algorithms in comparison. This result appears
conclusive when considering that classical A∗ iterations are pri-
marily important for improving the dual bound. Concerning the
tuning results for the dependent instances, we can also notice the
requirement of a higher value for δ when aiming for small gaps.
Rather interesting is the large value required for β in the case of
A∗ + BS and APSwhen aiming for solution quality. In contrast, the
tuning procedure has yielded a lower beam size for algorithms
A∗ + ACS and A∗ + ACS-dist.

5.3. Experimental evaluation: Exact Solving with classical A∗ search

Initial tests indicated that our classical A∗ search is only mean-
ingfully applicable to the smallest instances of the benchmark
sets, that is, the instances with string length n = 100 from
set BL. The corresponding results can be found in Table 2, in
which we compare the proposed A∗ approach to the exact solver
Top_MLCS [29]. In our comparison we made use of the original
implementation of Top_MLCS provided by the authors.2 We re-
mark that Top_MLCS can effectively exploit a parallel hardware
architecture, but we performed it in single threaded mode in
order to ensure a fair comparison with our A∗ approach. Besides
the instance characteristics, Table 2 lists average solution lengths
|s|, average times t in seconds until proven optimality has been
reached, and the number of instances that could be solved to
optimality #opt (out of ten per line) for both approaches.

From Table 2 it can be observed that all problem instances
with |Σ | ≥ 12 are solved – by both algorithms – to proven

2 The source code of Top_MLCS can be found at https://github.com/dxslin/
mlcs.

https://github.com/dxslin/mlcs
https://github.com/dxslin/mlcs

M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499 9

Table 1
Tuning results.
(a) Tuning for solution quality on quasi-independent instances.

Algorithm

Parameter A∗ + BS A∗ + ACS A∗ + ACS-dist APS

δ 50 1 100 –
β 500 500 100 –
kfilter 1 1 0 0
pack – – – 500

(b) Tuning for small gaps on quasi-independent instances.

Algorithm

Parameter A∗ + BS A∗ + ACS A∗ + ACS-dist APS

δ 10000 1000 500 –
β 500 1 1 –
kfilter 100 0 0 100
pack – – – 500

(c) Tuning for solution quality on dependent instances.

Algorithm

Parameter A∗ + BS A∗ + ACS A∗ + ACS-dist APS

δ 500 500 100 –
β 1000 1 1 –
kfilter 1000 1 0 1000
pack – – – 1000

(d) Tuning for small gaps on non-independent instances.

Algorithm

Parameter A∗ + BS A∗ + ACS A∗ + ACS-dist APS

δ 5000 20000 20000 –
β 1000 50 100 –
kfilter 1000 100 100 5000
pack – – – 1000

optimality, and runtimes are typically only a fraction of a sec-
ond. However, A∗ needs significantly less time especially for the
instances with |Σ | = 12. Additionally, our A∗ approach solved
six (out of ten) instances with |Σ | = 4 and m = 10 to proven
optimality,3 while Top_MLCSwas not able to do so due to running
out of memory. None of the instances with |Σ | = 4 and m ≥ 50
could be solved to optimality by the two algorithms due to the
memory limit.

In summary, A∗ is able to solve 106 instances from the lit-
erature to proven optimality. At this point we would like to
stress that the mixed integer linear programming solver CPLEX in
version 12.9 applied to the LCS model from [27] could not solve
any of these instances due to a too large number of variables and
constraints.

5.4. Experimental evaluation: Anytime algorithms

In contrast to the classical A∗ search, the anytime algorithms
studied in this work are able to yield meaningful results on all
problem instances. Remember that we aim to compare A∗ + BS
and A∗ + ACS with APS and A∗ + ACS-dist. Additional reason
why the Pro-MLCS [33] and SA-MLCS [34] are not considered in
this comparison is because they are not designed for providing
gaps upon premature termination. Moreover, we would like to
emphasize that – as observed in [26] – the main factor for obtain-
ing high quality solutions is the heuristic guidance function. For
this reason we study algorithm A∗ + ACS-dist which makes use
of the heuristic guidance function dist(v) =

∑m
i=1 p

L,v
i from Pro-

MLCS and SA-MLCS. As already mentioned, when setting δ = 0 in
A∗ + ACS-dist, we get reasonably close to the original Pro-MLCS
algorithm.

3 All ten instances with m = 10, n = 100, |Σ | = 4, could be solved by A∗
when increasing the memory limit to 40 GB.

Table 2
Classical A∗ search: average results for benchmark BL, n = 100.

A∗ Top_MLCS

m |Σ | |s| t[s] #opt |s| t[s] #opt

4 20.5 428.33 6 0.0 – 0
10 12 12.7 1.73 10 12.7 5.2 10

20 7.9 0.08 10 7.9 0.28 10

4 0.0 – 0 0.0 – 0
50 12 6.9 0.17 10 6.9 0.46 10

20 3.0 0.06 10 3.0 0.08 10

4 0.0 – 0 0.0 – 0
100 12 5.2 0.08 10 5.2 0.23 10

20 2.1 0.07 10 2.1 0.08 10

4 0.0 – 0 0.0 – 0
150 12 4.7 0.07 10 4.7 0.16 10

20 1.9 0.08 10 1.9 0.08 10

4 0.0 – 0 0.0 – 0
200 12 4.1 0.07 10 4.1 0.18 10

20 1.1 0.06 10 1.1 0.11 10

In the following we report on results both concerning the
obtained (average) solution quality and (average) gaps. For im-
proving the readability result tables for benchmark sets Rat,
Virus, ES, and BB are given in the main text, whereas the
tables for Random and BL are provided in Appendix A. More
specifically, the results concerning solution quality of the first
four data sets can be found in Tables 3–6, while the correspond-
ing results concerning the gaps are presented in Tables 7–10.
The first three table columns indicate the characteristics of the
considered sub-groups of the benchmark sets in terms of |Σ |,
m, and n. Subsequently, the results of the four algorithms are
presented. Each of these four blocks consists of four columns
listing the following information: the average solution quality
(|s|), the average gaps (gap [%]), the average time at which the
best solution was found (tbest [s]), and the average total runtime
(t [s]). The tables showing the results with the parameter settings
aiming for solution quality have an additional column labeled lit.
best that reports the best-known result from the literature for the
respective instance, or instance group (without considering the
results from the current work). Asterisks in the solution quality
column indicate that the best-known result from the literature
was beaten. The best result concerning the comparison of the
four algorithms considered in this work is always indicated in
boldface. Note that in tables presenting results obtained with
parameter settings aiming for solution quality, this concerns the
columns on the average solution quality. While in tables pre-
senting results obtained with parameter settings aiming for small
gaps, this concerns the columns listing the average gaps.

A study of the numerical results allows to draw the following
conclusions:

• A∗ + ACS generally outperforms the three competitors in
terms of solution quality in the context of instances with
quasi-independent input strings (that is, benchmark sets
Rat, Virus, Es, Random and BL). The only exception is
benchmark set BB, in which instances consist of dependent
input strings. The reason for this behavior is clearly that the
heuristic guidance function EX() works in general very well
for instances with quasi-independent input strings, while it
tends to mislead for instances with related input strings.
Observe in Table 6 that the performance of A∗ + ACS and
of A∗ + ACS-dist strongly decreases, especially when the
instances consist of many input strings (m = 100). A more
visual presentation of the results is provided in Figs. 5–8 in
Appendix B, where the improvement of A∗ + ACS over the
three competitors is shows in percent.

10 M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499

Table 3
Rat benchmark. Results when aiming for solution quality.

A∗ + BS A∗ + ACS APS A∗ + ACS-dist lit. best

|Σ | m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

4 10 600 197 41.7 2.15 685.6 *206 39.4 130.6 900.0 197 41.0 866.9 900.0 204 39.5 98.2 731.2 205
4 15 600 180 47.8 11.6 735.3 *189 45.5 740.1 900.0 181 47.5 130.3 900.0 186 45.6 75.4 603.1 185
4 20 600 166 43.3 29.5 900.0 *174 41.2 12.3 900.0 167 42.2 420.9 900.0 171 41.0 71.7 776.0 172
4 25 600 166 51.3 74.4 684.2 *173 49.4 38.3 900.0 166 50.4 212.3 900.0 170 49.4 57.6 642.5 170
4 40 600 152 50.0 570.7 900.0 *154 49.7 32.8 900.0 151 49.8 183.0 900.0 150 50.3 6.5 755.4 153
4 60 600 148 55.6 186.4 900.0 *154 54.0 510.3 900.0 148 55.3 129.1 900.0 151 54.4 384.7 893.9 152
4 80 600 136 52.3 190.8 900.0 *144 49.8 427.9 900.0 137 50.9 308.0 900.0 126 55.0 0.6 754.5 142
4 100 600 134 52.0 180.9 900.0 *139 50.7 458.7 900.0 134 51.6 31.9 900.0 132 52.5 421.7 809.7 137
4 150 600 123 44.3 29.9 900.0 *131 41.0 39.2 900.0 124 43.6 89.8 900.0 110 50.2 848.4 900.0 129
4 200 600 121 46.9 20.8 900.0 *126 45.0 288.0 900.0 121 46.8 23.8 900.0 105 53.7 821.4 900.0 123

20 10 600 69 63.1 5.4 900.0 *72 61.3 136.7 900.0 69 61.9 5.0 900.0 *72 59.8 172.7 900.0 71
20 15 600 61 66.8 5.8 900.0 63 65.9 3.8 900.0 61 65.5 44.3 900.1 63 64.2 536.0 900.0 63
20 20 600 52 68.9 6.4 900.0 *55 68.2 7.1 900.0 53 67.5 66.8 900.0 52 68.3 11.2 900.0 54
20 25 600 50 71.4 7.5 900.0 52 70.6 3.4 900.0 51 70.0 34.1 900.0 52 69.4 53.9 900.0 52
20 40 600 49 72.6 185.3 900.1 *50 72.1 138.6 900.0 49 71.7 11.8 900.0 47 72.5 685.8 900.0 49
20 60 600 46 73.7 138.6 900.0 47 73.0 11.5 900.0 46 72.8 15.6 900.0 46 72.3 690.3 900.2 47
20 80 600 44 71.6 367.0 900.1 44 70.5 132.5 900.0 44 70.1 145.4 900.3 42 71.4 638.4 900.0 44
20 100 600 39 75.8 280.6 900.2 40 75.3 6.5 900.0 39 74.5 254.7 900.2 38 74.8 141.9 905.8 40
20 150 600 37 76.0 30.3 900.3 *38 75.5 21.4 900.0 37 74.8 30.8 900.0 37 74.4 844.5 900.0 37
20 200 600 33 75.7 137.1 900.2 *35 74.6 144.7 900.0 34 73.0 499.2 900.2 33 73.6 104.0 900.0 34

Table 4
Virus benchmark. Results when aiming for solution quality.

A∗ + BS A∗ + ACS APS A∗ + ACS-dist lit. best

|Σ | m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

4 10 600 223 39.9 879.4 900.4 *228 38.2 80.8 900.0 222 39.3 19.2 826.6 221 39.6 394.2 900.0 227
4 15 600 200 45.2 3.7 900.0 *206 43.7 92.5 900.0 200 44.6 527.2 900.0 201 44.5 578.8 629.3 205
4 20 600 185 45.4 276.2 900.0 *194 42.9 327.6 900.0 185 45.1 61.0 900.0 183 45.9 190.8 609.0 192
4 25 600 190 46.8 185.8 900.0 *196 45.3 128.2 900.0 190 46.3 13.3 856.9 190 46.3 341.5 697.2 194
4 40 600 167 51.3 265.6 900.2 *174 49.6 264.0 900.0 167 50.7 191.4 900.0 152 55.2 246.4 678.0 170
4 60 600 162 52.9 185.0 900.0 *168 51.3 49.8 900.0 162 52.4 74.5 900.0 152 55.3 342.0 729.2 166
4 80 600 156 54.1 9.9 900.1 163 52.3 61.2 900.0 157 53.4 39.6 900.0 137 59.2 407.3 793.4 163
4 100 600 153 55.0 74.7 900.0 *160 53.1 71.5 900.0 153 54.5 79.7 900.0 136 59.5 636.2 872.6 158
4 150 600 152 54.9 19.7 900.0 *157 53.7 40.3 900.0 152 54.6 20.9 900.0 137 59.0 238.9 790.7 156
4 200 600 149 55.5 26.4 900.1 *156 53.6 582.5 900.0 150 54.8 602.6 900.0 133 59.9 310.3 897.3 154

20 10 600 74 60.8 132.2 900.0 77 59.3 14.6 900.0 75 59.0 189.1 900.0 76 58.2 26.7 900.0 77
20 15 600 62 66.7 7.4 900.0 64 65.8 4.0 900.0 63 65.0 32.4 900.0 64 64.2 127.7 900.0 64
20 20 600 58 69.1 7.7 900.1 *61 67.6 28.9 900.0 59 67.8 258.7 900.0 *61 66.5 852.6 900.0 60
20 25 600 53 70.4 7.4 900.1 *56 68.9 82.8 900.0 54 68.8 119.9 900.0 55 68.0 37.0 900.0 55
20 40 600 49 72.9 40.0 900.0 *51 71.8 110.4 902.3 49 71.7 5.1 900.0 49 71.8 118.1 900.0 50
20 60 600 47 73.4 312.9 900.0 48 73.0 6.1 900.0 47 72.2 7.0 900.0 47 72.4 837.4 900.0 48
20 80 600 45 74.6 744.7 900.2 46 74.0 7.1 900.0 45 73.4 8.8 900.1 45 73.4 683.6 900.0 46
20 100 600 44 75.0 97.2 900.1 45 74.6 8.9 900.0 44 74.3 134.1 900.1 44 74.0 880.7 900.0 45
20 150 600 45 75.1 42.6 900.6 *46 74.6 27.7 900.0 45 74.4 48.8 900.3 44 74.7 257.4 900.1 45
20 200 600 43 76.0 60.3 900.2 44 75.1 44.8 900.0 43 75.1 65.0 900.5 43 74.7 110.7 900.1 44

Table 5
ES benchmark. Results when aiming for solution quality (averaged over 50 instances per row).

A∗ + BS A∗ + ACS APS A∗ + ACS-dist lit. best

m n |Σ | |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

10 1000 2 604.7 23.5 350.8 866.7 *618.9 21.7 323.2 900.4 603.6 23.3 254.7 873.3 615.4 21.8 234.7 760.8 615.1
10 1000 10 195.7 57.9 285.9 891.0 *205.0 55.9 251.3 900.7 195.5 57.5 294.8 888.8 204.1 55.6 230.7 771.9 203.1
50 1000 2 526.6 33.0 287.3 897.5 *540.9 31.2 302.2 900.0 526.9 32.6 264.1 887.4 532.8 31.9 301.2 696.2 538.2

50 1000 10 131.0 71.3 219.88 900.2 *137.5 69.9 158.1 900.0 131.2 71.0 137.5 900.2 134.5 70.2 321.1 867.3 136.3
100 1000 2 509.1 35.1 250.8 900.1 *522.1 33.4 324.6 900.0 509.4 34.8 283.8 900.0 512.5 34.4 274.5 781.6 519.8
100 1000 10 118.8 73.9 217.7 900.2 *124.1 72.7 121.0 900.0 118.9 73.6 175.9 900.1 120.5 73.1 356.0 900.0 123.3

10 2500 25 224.5 72.1 276.4 900.0 235.0 70.7 419.5 900.4 223.9 72.0 263.5 900.0 *236.6 70.4 374.8 897.3 235.2
50 2500 25 132.1 83.3 217.1 900.1 *140.4 82.3 239.8 900.0 132.6 83.1 212.8 900.3 136.5 82.6 368.1 900.0 139.5

100 2500 25 116.8 85.2 268.2 900.6 *123.4 88.1 223.6 900.0 117.0 85.1 350.8 900.7 118.6 84.8 352.7 900.1 122.9

10 5000 100 137.5 84.0 338.2s 900.4 *145.7 84.7 434.3 900.2 136.8 84.1 392.8 901.1 144.6 83.1 340.6 900.1 144.9
50 5000 100 67.4 92.0 355.8 902.8 *72.0 97.6 286.1 900.1 67.6 91.9 432.1 902.7 69.6 91.9 330.6 900.7 71.9

100 5000 100 57.1 93.1 584.4 906.6 *60.8 97.4 515.7 900.1 57.1 93.1 601.9 905.8 57.9 93.6 382.3 901.5 60.7

• In order to check the statistical significance of differences,
Friedman’s test was performed simultaneously for all four
anytime approaches. Given that in all cases the test re-
jected the hypothesis that the algorithms perform equally,

pairwise comparisons were performed using the Nemenyi

post-hoc test [54]. The outcome is shown in Fig. 1 by means

of so-called critical difference plots, one for each benchmark

M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499 11

Table 6
BB benchmark. Results when aiming for solution quality (averages over ten instances per row).

A∗ + BS A∗ + ACS APS A∗ + ACS-dist lit. best

|Σ | m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

2 10 1000 675.1 16.4 64.9 900.0 676.6 16.5 347.1 900.0 675.7 15.6 57.1 900.0 *676.7 16.4 152.0 885.4 676.5
2 100 1000 561.3 31.2 260.3 900.0 547.1 32.6 497.6 900.0 *563.6 30.6 264.3 900.0 486.7 40.0 464.9 870.0 560.7

4 10 1000 545.2 30.3 13.0 900.0 *545.5 30.7 204.9 900.0 545.2 29.4 13.4 900.0 *545.5 30.5 85.6 798.4 545.4
4 100 1000 389.4 51.1 209.8 900.4 344.3 56.4 503.4 900.0 *390.2 50.9 362.7 900.0 273.6 65.4 291.2 881.0 388.8

8 10 1000 462.7 39.0 17.0 900.0 462.7 39.9 68.4 900.0 462.7 38.0 19.2 900.0 462.7 39.7 16.9 827.2 462.7
8 100 1000 273.1 65.1 143.7 900.1 223.7 71.1 631.7 900.1 *273.4 65.0 179.8 900.1 164.7 78.7 408.7 900.0 272.1

24 10 1000 385.6 42.0 43.8 900.0 385.6 47.0 33.8 900.0 385.6 40.5 35.5 900.0 385.6 46.8 8.5 900.0 385.6
24 100 1000 149.4 79.5 138.0 900.4 117.0 83.5 636.9 900.3 149.4 79.5 145.2 900.4 83.8 88.2 550.2 900.0 149.5

Table 7
Rat benchmark. Results when aiming for small gaps.

A∗ + BS A∗ + ACS APS A∗ + ACS-dist

|Σ | m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]

4 10 600 198 40.5 354.2 741.0 206 38.0 468.2 900.0 198 40.7 454.1 900.0 204 38.6 315.1 683.5
4 15 600 180 46.9 3.3 900.0 187 44.5 211.8 900.0 181 46.9 7.3 908.2 186 44.6 419.7 713.7
4 20 600 166 42.2 13.9 900.0 173 39.5 384.1 900.0 167 42.2 123.9 902.4 170 40.6 176.4 716.3
4 25 600 165 50.5 116.8 900.0 173 47.4 430.3 900.0 166 50.4 336.5 900.0 170 48.3 393.9 769.8
4 40 600 150 50.0 121.3 900.0 154 48.1 258.3 900.0 151 49.8 18.5 900.0 151 49.2 11.8 771.6
4 60 600 149 54.6 8.1 900.0 153 53.1 215.1 900.0 149 55.0 7.5 900.1 149 54.3 217.8 748.4
4 80 600 136 50.7 205.8 900.0 143 47.6 33.8 900.0 137 50.9 359.9 900.0 127 53.5 11.9 755.2
4 100 600 133 51.6 144.6 900.0 138 49.6 11.8 900.0 134 51.6 37.5 900.0 127 53.6 332.5 900.0
4 150 600 123 44.1 250.9 900.1 131 40.2 519.7 900.0 124 43.6 104.4 900.0 105 52.1 826.2 900.0
4 200 600 121 46.5 22.8 900.0 124 44.9 17.2 900.1 121 46.7 24.4 900.2 102 54.7 124.8 900.0

20 10 600 70 59.8 7.0 900.0 71 59.0 20.9 900.1 70 60.5 7.2 900.0 71 58.7 234.4 900.0
20 15 600 60 65.1 7.8 900.0 63 62.9 5.9 900.1 61 65.3 23.1 900.1 62 63.3 84.6 884.8
20 20 600 53 66.9 358.5 900.1 55 65.2 196.4 900.1 54 67.1 48.4 900.1 52 66.9 114.8 900.0
20 25 600 50 69.7 8.2 900.0 52 68.3 15.0 911.1 51 70.0 42.9 900.2 52 68.1 583.1 900.1
20 40 600 48 71.6 12.6 900.3 49 70.3 137.1 900.0 49 71.8 567.4 900.2 45 72.6 75.4 900.0
20 60 600 45 72.7 18.9 900.4 47 70.3 346.6 900.4 47 72.2 652.4 900.2 45 71.5 509.9 900.1
20 80 600 44 69.4 642.3 900.4 43 69.1 63.4 900.3 44 70.5 65.4 900.2 40 71.2 243.8 900.1
20 100 600 38 74.3 24.1 900.0 40 71.8 175.4 900.3 39 74.5 216.8 900.6 37 73.8 431.1 900.0
20 150 600 37 73.2 31.1 900.7 37 71.5 89.5 900.3 37 74.8 31.3 900.5 34 74.0 612.1 900.2
20 200 600 32 77.1 37.6 900.0 34 70.2 28.1 900.6 35 72.0 433.3 900.1 31 72.8 152.6 900.2

Table 8
Virus benchmark. Results when aiming for small gaps.

A∗ + BS A∗ + ACS APS A∗ + ACS-dist

|Σ | m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]

4 10 600 222 38.7 3.0 910.7 228 36.8 637.5 900.0 224 38.1 20.7 826.2 221 38.4 550.5 649.1
4 15 600 200 44.4 48.3 900.0 206 42.5 21.9 900.0 201 44.2 702.0 746.8 200 44.1 333.0 579.2
4 20 600 185 44.9 406.2 900.0 192 42.7 246.2 900.0 186 44.8 139.6 900.0 183 45.4 583.8 592.5
4 25 600 189 46.3 4.8 903.8 196 44.2 850.5 900.0 190 46.3 21.5 900.0 188 46.3 263.9 575.7
4 40 600 166 50.7 13.5 900.0 173 48.4 866.7 900.0 167 50.9 846.3 900.0 152 54.6 338.5 609.3
4 60 600 162 51.9 42.7 900.0 168 49.9 645.2 900.0 162 52.4 85.5 900.0 150 55.2 472.9 757.9
4 80 600 157 53.1 12.3 900.0 163 50.8 114.6 900.0 157 53.4 11.1 900.0 134 59.5 327.0 861.3
4 100 600 153 54.2 14.0 900.0 160 51.5 806.0 900.0 153 54.5 14.5 900.1 133 59.7 715.9 900.0
4 150 600 152 54.4 143.6 900.0 157 52.6 415.1 900.1 152 54.6 802.9 900.1 136 58.9 725.0 900.1
4 200 600 150 54.7 645.8 900.0 155 52.7 415.1 900.2 150 54.8 729.9 900.0 132 59.8 151.7 900.0

20 10 600 74 58.4 27.7 900.0 77 56.5 320.2 900.0 75 58.8 111.8 900.1 76 56.8 255.7 900.0
20 15 600 62 64.8 8.2 900.1 64 62.6 3.1 900.0 63 65.0 30.6 900.1 64 62.6 851.2 900.0
20 20 600 58 67.6 9.0 900.0 60 65.9 33.8 900.0 59 67.8 19.0 900.1 60 65.7 57.5 900.0
20 25 600 53 68.5 9.7 900.0 55 66.7 26.1 901.4 53 69.4 9.6 900.0 55 66.5 690.9 900.1
20 40 600 49 71.3 579.5 900.0 50 70.1 52.2 900.3 49 72.0 25.7 900.2 48 71.1 162.7 900.1
20 60 600 47 72.0 18.5 900.0 48 70.4 107.1 900.2 47 72.5 18.1 900.4 45 72.2 316.6 900.1
20 80 600 45 73.1 283.9 900.0 46 71.4 22.2 900.3 45 73.7 67.1 900.2 44 72.7 736.1 900.0
20 100 600 43 74.1 27.3 900.0 45 72.0 190.9 900.4 44 74.3 113.1 900.2 43 73.3 653.6 900.2
20 150 600 44 76.0 49.4 900.0 45 72.7 48.8 900.0 45 74.6 185.4 900.4 43 73.9 229.3 900.3
20 200 600 43 75.8 65.0 900.0 43 73.3 105.9 900.4 43 75.0 64.9 900.3 42 73.8 236.9 900.1

set. In short, each algorithm is positioned in the horizon-
tal segment according to its average ranking concerning
the considered set of instances. Then, the critical differ-
ence (CD) is computed for a significance level of 0.05 and
the performance of those algorithms that have a differ-
ence lower than CD are considered as equal—that is, no
difference of statistical significance can be detected. This

is indicated in the graphics by horizontal bars joining the
respective algorithms. Fig. 1 shows that A∗ + ACS produces
significantly better results concerning solution quality for
benchmark sets Rat, Virus, and BL. The differences ob-
served for benchmark sets Random and ES are statistically
not significant (despite the fact that A∗ + ACS produces new

12 M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499

Table 9
ES benchmark. Results when aiming for small gaps (averages over 50 instances per row).

A∗ + BS A∗ + ACS APS A∗ + ACS-dist

n m |Σ | |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]

1000 10 2 606.4 22.8 177.3 881.0 618.1 21.2 427.4 900.0 607.5 22.7 165.9 881.7 614.9 21.6 269.3 818.2
1000 10 10 196.9 56.8 205.9 900.0 204.2 54.9 283.2 900.1 198.0 56.9 205.9 900.0 203.5 55.0 284.6 707.5
1000 50 2 526.4 32.6 300.6 892.9 540.3 30.6 377.0 900.0 526.6 32.7 267.5 900.0 532.6 31.6 349.2 799.5

1000 50 10 130.6 70.9 160.1 900.0 137.1 69.1 294.6 900.3 131.3 71.0 206.1 900.1 133.7 69.8 293.7 836.6
1000 100 2 508.9 34.8 265.1 900.0 521.6 32.9 336.9 900.1 509.4 34.8 297.5 900.0 512.0 34.1 440.7 875.2
1000 100 10 118.6 73.4 112.4 900.1 123.7 71.9 287.4 900.2 119.0 73.6 191.8 900.1 119.6 72.8 378.4 900.0

2500 10 25 226.6 71.5 179.5 900.6 231.5 70.6 576.4 900.1 227.5 71.5 244.3 900.1 235.2 70.1 443.9 900.0
2500 50 25 131.9 83.3 181.1 900.4 139.5 81.9 388.9 900.3 132.4 83.2 261.9 900.4 135.3 82.5 424.6 900.3
2500 100 25 116.5 85.2 221.0 900.6 122.7 84.0 360.3 900.5 117.0 85.1 362.6 900.7 117.6 84.7 405.0 900.2

5000 10 100 138.9 83.8 327.7 901.0 143.4 82.9 643.8 900.8 139.3 83.8 414.2 900.9 143.0 83.0 466.8 900.3
5000 50 100 67.3 92.0 337.6 902.4 71.0 91.3 470.8 903.5 67.5 92.0 411.2 902.6 68.3 91.6 536.0 902.0
5000 100 100 57.0 93.1 575.9 900.0 59.6 92.6 488.6 907.3 57.0 93.1 626.2 905.7 56.2 93.0 518.6 903.4

Table 10
BB benchmark. Results when aiming for small gaps (averaged over ten instances per row).

A∗ + BS A∗ + ACS APS A∗ + ACS-dist

|Σ | m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]

2 10 1000 676.7 16.6 155.8 900.3 675.4 16.2 18.1 900.0 674.6 16.2 115.0 900.0 676.7 16.5 63.9 884.6
2 100 1000 547.4 32.6 428.3 900.5 561.8 31.0 357.3 900.0 563.2 30.9 557.2 900.0 486.5 40.1 398.6 864.0

4 10 1000 545.5 30.7 98.4 901.0 545.2 30.0 14.4 900.0 545.2 30.0 60.4 900.0 545.5 30.6 42.1 853.6
4 100 1000 346.5 56.1 507.0 901.0 389.2 50.9 186.7 900.0 389.4 51.1 400.2 900.0 270.2 65.8 487.3 859.6

8 10 1000 462.7 39.8 15.6 900.5 462.7 38.7 18.8 900.0 462.7 38.6 89.6 900.0 462.7 39.6 7.5 900.2
8 100 1000 224.1 71.0 524.3 901.9 273.0 65.1 106.8 900.1 272.9 65.1 388.1 900.1 160.9 79.1 575.0 901.4

24 10 1000 385.6 46.3 1.5 901.1 385.6 41.6 34.1 900.0 385.6 41.2 122.8 900.0 385.6 46.0 1.7 900.8
24 100 1000 120.9 82.9 657.5 908.4 149.4 79.5 138.6 900.4 149.3 79.5 580.9 900.6 80.6 88.6 606.8 910.1

Fig. 1. Critical difference plots concerning solution quality.

Fig. 2. Critical difference plots concerning the obtained gaps.

M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499 13

state-of-the-art results in 13 out of 20, and in 10 out of 12
cases, respectively).
• Just like classical A∗, both A∗ + ACS-dist and A∗ + ACS

are able to prove optimality for the instances of benchmark
set BL with n = 100 and |Σ | ≥ 12. This is indicated by
entries with value 0.0 in columns with heading gap [%] (see
Table 12). However, as expected, more computation time is
needed than by A∗.
• A∗ + ACS does not only beat the competitors we consid-

ered here. It performs also very favorably in comparison to
purely heuristic state-of-the-art approaches from the liter-
ature. This can be observed by comparing the performance
of A∗ + ACS with the last columns in Tables 3–6 and Ta-
bles 11–12 which contain the so far best known results from
the literature.4 Overall A∗ + ACS was able to obtain new
best-known results in 82 out of 117 cases (table rows).
• For what concerns the performance of the four algorithms

with respect to the produced gaps – see Tables 7–10 and
Tables 13–14 (from Appendix A) – it can be observed that
– also in this case – A∗ + ACS generally outperforms the
competing algorithms. This is with the exception of bench-
mark set BB, where no clear tendency can be identified.
The statistical significance of this conclusion is tested in
the same way as done for the case of aiming for solu-
tion quality. The corresponding critical difference plots are
shown in Fig. 2. Moreover, the improvements of A∗ + ACS
over the competitors are graphically shown in Figs. 9–12
(Appendix B).
• Nevertheless, observe that A∗ + ACS-dist often produces

better final gaps than A∗ + ACS for instances with a low
number of input string. This is the case, for example, for
instances with n = 10 from benchmark set BL; see Table 14
and Fig. 9. A possible explanation for this behavior is as
follows. On the one hand, the heuristic guidance function
dist(·) performs rather well for instances with a low num-
ber of input strings (that is, a low m-value), which means
that A∗ + ACS-dist will not have a major disadvantage
with respect to A∗ + ACS in those cases. On the other hand,
dist(·) requires less computation time than the EX function
used by A∗ + ACS. This implies that A∗ + ACS-dist is able
to perform more node expansions than A∗ + ACS within
the allowed computation time, which leads to better upper
bounds.

5.5. Comparison of the algorithms’ anytime behavior

So far we have only studied the final results of the algorithms
for what concerns solution quality and gaps. However, in the
context of anytime algorithms, another important aspect to take
into account is their anytime behavior. In order to visualize the
anytime behavior of the algorithms, we plot the evolution of the
solution quality, respectively the gaps, over time (either averaged
over all problem instances of the same specifications, or averaged
over multiple runs for single problem instances, depending on the
benchmark set). The plots concerning solution quality are shown,
for seven representative cases, in Fig. 3, while the ones concerning
the gaps are shown, for the same seven cases, in Fig. 4. In addition
to the curves showing the average behavior, these graphics also
contain boxplots – shown every 200 seconds – indicating the
variability of the algorithm performance.

The following observations can be made concerning the any-
time plots on solution quality:

4 As the best result for a specific group of instances from the literature we
took the maximum average solution quality among the reported averages (if
any) from [21–23,26,27]. Most of best results so far are from BS-EX [26].

• A∗ + ACS generally finds solutions of higher quality than
the other algorithms in early stages of the search process.
The main reason for this is clearly the heuristic guidance
function EX() which is utilized in A∗ + ACS.
• Notice also that A∗ + ACS is able to find improving solutions

more frequently than A∗ + BS or APS. For these latter algo-
rithms it seems much harder to find improving solutions at
later stages of the search process. Even though A∗ + ACS-
dist can be said to generally outperform APS and A∗ + BS,
it cannot match the performance of A∗ + ACS. It can also
be observed that the compared algorithms find improving
solutions in general more frequently when the alphabet size
is rather small.
• APS and A∗ + BS, which make both use of an embedded

BS to find heuristic solutions, show a similar evolution of
solution quality over time. It is noticeable that a rather large
beam size β is required to achieve the best possible anytime
performance within the given computation time.

Concerning the anytime performance of the algorithms with re-
spect to the gaps we can make the following observations:

• For the smallest ones of the considered instances—that is,
the instances from benchmark set BL with n = 100—
A∗ + BS shows the best evolution of the obtained gaps
(see Fig. 4(a)). This is for the following two reasons: (1)
the parameter values identified by our tuning process allow
a significant amount of A∗ iterations, which is crucial for
obtaining a favorable evolution of the gaps, and (2) near-
optimal solutions are easily obtained for these instances by
any of the algorithms.
• Concerning the remaining medium-size and large-size in-

stances, A∗ + ACS shows a better anytime performance
concerning the gaps for the Virus, Rat, Random, and ES
benchmarks; see Figs. 4(b)–4(f). This is because the ACS-
iterations, even with a rather low value of β , are still able
to find rather high-quality primal solutions, while a signif-
icantly increased number of A∗-iterations (in comparison
to the parameter setting used when aiming for solution
quality) provides improved upper bounds. In this sense,
A∗ + ACS is an algorithm that is much better balanced than
the competitors.
• In the case of small alphabet sizes, A∗ + ACS-dist is not

able to keep up with the performances of the other algo-
rithms (see Figs. 4(c) and 4(d)). Mainly responsible for this
is the heuristic function dist(·), which provides a weaker
guidance than in particular EX for finding good primal
bounds, especially in the case of small alphabet sizes.
• APS and A∗ + BS show a similar behavior concerning the

evolution of the average gaps over time. The necessity of
working with a large beam width (β) hinders the evolution
of the gap since the search is mainly focused on improving
solution quality and less on improving the upper bound.

6. Conclusions and future work

We presented an exact A∗ algorithm for the LCS problem based
on the general search framework for the problem proposed in our
earlier study, which combines features of various other heuristic
techniques. This A∗ search makes use of the combination of two
previously known upper bound functions for the length of the LCS
and is able to solve instances of up to n = 100 and |Σ | ≥ 12 to
proven optimality (106 instances from the literature are solved to
optimality), most of them in a fraction of a second. For larger or
more complex instances, however, the exact A∗ search soon either
runs out of memory or requires substantially more time. There-
fore, we combined A∗ search with either BS or ACS by interleaving

14 M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499

Fig. 3. Comparison of the algorithms’ anytime behavior concerning solution quality.

traditional A∗ iterations with BS runs of small width or single
iterations of ACS, respectively. Note that we did this combination
in a way that avoids redundant expansions of the same nodes,
i.e., the methods act on a shared list of open nodes. These anytime
algorithms, denoted by A∗ + ACS and A∗ + BS either run until
optimality is proven or they are terminated prematurely, in which
case a solution of promising quality is returned in combination
with an upper bound. To the best of our knowledge, we report

proven optimality gaps for larger LCS instances for the first time
ever in the literature. Our two anytime algorithms were com-
pared to the well known Anytime Pack Search (APS) and a variant
of A∗ + ACS employing the dist heuristic as guidance. All the
parameters of the algorithms were tuned w.r.t. both, solution
quality and small gaps by using irace. Our computational study
showed that A∗ + ACS performs in most cases significantly better
than the other algorithms concerning solution quality. New best

M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499 15

Fig. 4. Comparison of the algorithms’ anytime behavior concerning gaps.

solutions where found by A∗ + ACS for 82 different LCS instance
groups from the literature (≈ 70% of all instance groups from the
literature), and for the remaining groups, the so far best known
results were matched by A∗ + ACS in most cases. Also concerning
optimality gaps, A∗ + ACS outperforms the other approaches in
most cases or is on par with them. Last but not least, A∗ + ACS
usually provides a better anytime behavior in the sense that it
earlier produces better results, and more frequently improves on

them over time. Responsible for the success of A∗ + ACS is the
careful selection and combination of strategies and components
that proved already successful or promising in earlier works such
as pure heuristic beam searches. The most important aspect is
that we use, on the one hand, the upper bound UB for steering the
classical A∗ search iterations and, on the other hand, the separate
heuristic function EX for guiding the ACS iterations. While UB
is required to obtain upper bounds and finally prove optimality,

16 M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499

Fig. 5. Improvement of A∗ + ACS over the competitors in terms of solution quality (in %) for benchmark set BL. First row: instances with n = 500. Second row:
instances with n = 1000.

Fig. 6. Improvement of A∗ + ACS over the competitors in terms of solution quality (in %) for benchmark sets Rat (first column of graphs), Virus (second column
of graphics) and Random (last column of graphics).

Fig. 7. Improvement of A∗ + ACS over the competitors in terms of solution quality (in %) for benchmark set ES.

Fig. 8. Improvement of A∗ + ACS over the competitors in terms of solution quality (in %) for benchmark set BB.

M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499 17

Fig. 9. Improvement of A∗ + ACS over the competitors in terms of gaps (in %) for benchmark set BL. First row: instances with n = 500. Second row: instances with
n = 1000.

Fig. 10. Improvement of A∗ + ACS over the competitors in terms of gaps (in %) for benchmark sets Rat (first column of graphs), Virus (second column of graphics)
and Random (last column of graphics).

Fig. 11. Improvement of A∗ + ACS over the competitors in terms of gaps (in %) for benchmark set ES.

18 M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499

Table 11
Random benchmark. Results when aiming for solution quality.

A∗ + BS A∗ + ACS APS A∗ + ACS-dist lit. best

|Σ | m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

4 10 600 214 41.8 2.52 900.0 *223 39.2 548.2 900.0 214 41.0 2.2 900.0 *223 38.6 173.6 681.1 221
4 15 600 198 46.5 35.8 624.91 *206 44.5 16.0 900.0 199 45.6 892.9 900.0 205 44.1 140.4 596.2 204
4 20 600 189 48.4 687.7 900.0 *195 46.7 130.0 900.0 188 48.1 245.0 900.0 194 46.6 158.7 686.9 193
4 25 600 183 49.9 357.7 900.0 *189 48.2 26.7 900.0 182 49.4 7.7 900.0 187 48.2 110.4 627.1 187
4 40 600 170 53.4 234.6 796.0 *177 51.5 457.5 900.0 170 52.9 110.3 900.0 174 51.7 585.8 718.9 175
4 60 600 162 55.2 8.6 900.0 *169 53.3 275.9 900.0 162 54.7 7.9 900.0 166 53.6 448.3 705.0 168
4 80 600 158 56.5 112.4 900.0 *164 54.8 337.6 900.0 158 56.1 67.3 900.0 159 55.7 9.1 765.3 163
4 100 600 155 57.4 170.6 900.0 *161 55.6 735.4 900.0 155 56.8 70.9 900.0 157 56.3 24.1 832.1 159
4 150 600 149 58.9 19.7 900.0 *155 57.2 487.5 900.0 150 58.0 71.8 900.0 149 58.4 20.1 900.1 153
4 200 600 147 59.1 135.3 900.0 *152 57.8 130.5 900.0 147 58.8 54.0 900.0 147 58.7 430.0 900.0 151

20 10 600 61 66.9 62.6 900.0 63 65.4 8.1 900.0 61 65.7 38.7 900.0 63 64.2 315.5 900.0 63
20 15 600 51 72.3 347.2 900.0 53 71.0 4.4 900.0 51 71.3 5.8 900.0 53 70.1 201.5 900.0 53
20 20 600 46 74.6 57.0 900.0 48 73.5 3.6 900.0 47 73.1 804.5 900.0 48 72.4 160.4 900.0 48
20 25 600 43 76.0 7.8 900.1 *45 74.7 7.1 900.0 44 74.6 187.0 900.1 *45 73.7 342.2 900.0 44
20 40 600 38 78.5 9.8 900.1 39 77.8 4.3 900.0 38 77.8 11.4 900.1 39 76.9 778.8 900.6 39
20 60 600 34 80.6 23.0 900.1 *36 79.2 14.5 900.0 35 79.2 283.5 900.0 35 78.9 10.2 900.0 35
20 80 600 33 80.8 15.7 900.3 33 80.7 5.9 900.0 33 80.1 20.0 900.1 33 79.9 495.3 900.0 33
20 100 600 31 82.0 23.8 900.0 32 81.4 7.6 900.0 31 81.3 21.3 900.1 32 80.4 237.4 900.3 32
20 150 600 29 83.0 413.5 900.6 *30 82.4 733.9 900.0 29 82.4 817.7 900.2 29 82.1 817.7 900.1 29
20 200 600 27 84.0 37.7 901.2 28 83.3 14.1 900.0 27 83.1 19.7 900.1 27 83.1 19.7 900.1 28

Table 12
BL benchmark. Results when aiming for solution quality (averages over ten instances per row).

A∗ + BS A∗ + ACS APS A∗ + ACS-dist lit. best

m n |Σ | |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

10 100 4 34.1 51.4 20.1 882.1 34.1 15.1 0.3 900.2 34.1 10.9 4.0 900.0 34.1 9.9 0.1 800.7 34.1
10 100 12 12.7 0.0 0.2 5.2 12.7 0.0 0.2 5.2 12.7 0.0 0.7 7.1 12.7 0.0 0.0 4.2 12.7
10 100 20 7.9 0.0 0.1 0.1 7.9 0.0 0.1 0.1 7.9 0.0 0.1 0.1 7.9 0.0 0.0 0.1 7.9
10 500 4 179.9 40.9 312.0 900.0 *186.0 38.8 109.5 900.0 179.6 40.2 221.6 792.7 179.6 38.2 52.8 736.9 184.1
10 500 12 76.4 60.2 134.8 900.0 *79.3 58.5 19.4 900.0 76.4 59.1 123.5 900.0 76.4 57.3 57.2 795.6 78.7
10 500 20 49.7 66.7 87.4 900.0 *51.3 65.2 48.2 900.0 49.8 65.2 104.8 900.0 49.8 63.7 4.2 900.0 51.1
10 1000 4 362.6 42.4 209.7 900.0 *378.0 40.0 369.7 901.1 362.1 42.1 200.9 900.0 362.1 40.0 288.7 686.6 374.6
10 1000 12 156.2 62.2 214.4 900.4 *163.7 60.4 143.4 900.0 156.2 61.7 229.8 885.6 156.2 60.0 226.5 818.5 162.0
10 1000 20 102.4 68.9 120.8 900.0 *107.4 67.3 134.1 900.0 102.6 68.3 238.0 900.2 102.6 66.7 294.8 891.2 106.5

50 100 4 24.2 32.9 18.7 884.1 24.2 29.2 0.3 893.3 24.2 24.3 2.3 900.0 24.2 23.6 61.3 754.5 24.2
50 100 12 6.9 0.0 0.1 0.3 6.9 0.0 0.1 0.2 6.9 0.0 0.2 0.2 6.9 0.0 0.1 0.2 6.9
50 100 20 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0
50 500 4 136.9 54.1 63.6 892.8 *142.0 52.4 238.3 897.3 137.2 53.3 137.0 877.7 137.2 52.5 301.7 703.0 141.0
50 500 12 47.8 74.0 190.0 900.0 *49.7 72.8 152.6 900.0 48.1 73.0 92.5 900.1 48.1 72.2 172.2 893.6 49.2
50 500 20 28.2 79.3 54.3 900.1 29.3 78.3 3.6 900.0 28.3 78.3 31.0 900.1 28.3 77.2 133.7 901.0 29.3
50 1000 4 278.6 55.3 162.5 900.0 *291.0 53.4 348.6 900.0 279.0 55.0 190.2 900.0 279.0 54.0 271.7 713.3 288.6
50 1000 12 99.1 75.4 79.0 900.3 *104.2 74.2 72.8 900.0 99.6 75.0 157.8 900.1 99.6 74.1 358.2 896.1 103.5
50 1000 20 60.5 81.0 114.5 900.1 *63.2 80.1 52.6 900.0 60.8 80.4 190.2 900.2 60.8 79.9 307.1 901.7 62.5

100 100 4 21.9 37.3 226.2 900.0 *22.1 32.5 1.1 895.5 *22.1 28.1 12.2 900.0 *22.1 24.9 63.1 815.0 22.0
100 100 12 5.2 0.0 0.1 0.1 5.2 0.0 0.1 0.1 5.2 0.0 0.1 0.1 5.2 0.0 0.0 0.1 5.2
100 100 20 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1
100 500 4 127.6 57.9 135.2 900.0 *131.9 55.6 74.6 900.0 127.7 56.5 86.0 900.0 127.7 56.1 358.6 868.4 130.8
100 500 12 41.8 76.8 41.0 900.1 *43.4 75.9 52.0 900.2 42.0 75.8 17.8 900.2 42.0 75.4 136.2 900.1 43.1
100 500 20 24.2 81.6 16.1 900.4 *25.0 80.9 7.1 900.0 24.2 80.8 17.3 900.4 24.2 80.1 107.9 900.0 24.9
100 1000 4 261.8 57.9 135.3 900.0 *272.4 56.2 291.9 900.0 262.6 57.5 317.2 900.1 262.6 57.1 257.0 817.3 270.6
100 1000 12 89.2 77.8 106.3 900.2 *93.1 76.8 67.3 900.0 89.0 77.6 93.3 900.2 89.0 77.0 295.2 900.0 92.4
100 1000 20 52.8 83.2 50.4 900.2 *55.1 82.5 61.1 900.6 53.0 82.9 124.1 900.5 53.0 82.5 216.9 901.6 54.7

150 100 4 20.3 37.4 23.4 900.0 *20.8 30.6 2.9 899.1 20.7 26.3 117.9 900.0 20.7 22.4 38.5 826.7 20.5
150 100 12 4.7 0.0 0.0 0.1 4.7 0.0 0.0 0.0 4.7 0.0 0.1 0.1 4.7 0.0 0.0 0.0 4.7
150 100 20 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9
150 500 4 123.5 58.4 180.3 900.0 *127.5 56.9 150.9 899.7 124.0 57.7 313.6 900.0 124.0 57.6 314.1 884.5 126.4
150 500 12 39.5 77.9 113.9 900.2 *40.9 77.1 24.1 900.0 39.8 77.1 184.7 900.3 39.8 76.9 141.0 900.0 40.4
150 500 20 22.5 82.8 31.4 900.5 23.0 82.3 7.4 900.0 22.5 81.7 27.9 900.8 22.5 81.5 73.3 900.1 23.0
150 1000 4 254.6 59.0 365.0 900.1 *264.0 57.5 245.6 900.0 254.5 58.8 311.1 900.1 254.5 58.6 295.5 864.8 262.8
150 1000 12 84.5 79.0 105.5 900.3 *88.1 78.0 44.4 900.0 84.6 78.6 101.7 900.3 84.6 78.3 296.4 900.0 87.7
150 1000 20 49.7 84.2 98.6 900.4 *51.6 83.5 86.8 900.0 49.8 83.8 114.8 900.9 49.8 83.6 280.8 900.1 51.2

200 100 4 19.9 37.9 5.7 900.0 *20.1 32.8 9.0 898.2 *20.1 28.2 58.8 900.1 *20.1 24.6 17.0 861.6 19.9
200 100 12 4.1 0.0 0.0 0.0 4.1 0.0 0.0 0.0 4.1 0.0 0.1 0.1 4.1 0.0 0.0 0.0 4.1
200 100 20 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1
200 500 4 121.0 59.3 93.0 900.0 *124.8 57.9 188.1 900.0 121.3 58.6 126.0 900.1 121.3 58.6 258.6 880.1 123.7
200 500 12 38.0 78.7 41.0 900.4 *39.1 77.9 57.1 900.0 38.0 78.0 31.2 900.3 38.0 77.7 82.9 900.0 39.0
200 500 20 21.0 83.7 28.0 900.5 *22.0 82.9 41.4 900.2 21.1 82.9 107.5 901.0 21.1 82.3 116.4 900.1 21.8
200 1000 4 249.6 59.8 283.5 900.1 *258.8 58.3 170.0 900.0 249.8 59.6 235.8 900.1 249.8 59.4 448.5 893.6 257.6
200 1000 12 81.8 79.5 244.9 900.2 *85.2 78.6 59.5 900.0 81.9 79.2 205.1 900.4 81.9 79.1 205.4 900.0 84.8
200 1000 20 47.8 84.6 305.7 900.4 *49.4 84.1 93.4 900.0 47.9 84.5 190.7 900.6 47.9 84.2 309.5 900.1 49.1

M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499 19

Table 13
Random benchmark. Results when aiming for small gaps.

A∗ + BS A∗ + ACS APS A∗ + ACS-dist

|Σ | m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]

4 10 600 215 40.4 3.4 900.0 222 38.3 100.0 900.0 219 39.5 568.6 900.0 223 37.9 236.1 633.2
4 15 600 200 45.2 146.8 900.0 206 43.3 167.7 900.0 200 45.4 74.6 900.0 204 43.8 64.4 586.4
4 20 600 188 47.6 209.3 749.4 194 45.8 158.7 900.0 189 47.8 731.3 917.0 194 45.8 75.0 887.5
4 25 600 182 49.3 397.2 900.0 189 46.9 235.2 900.0 183 49.3 189.7 900.0 186 47.8 7.3 578.1
4 40 600 171 52.1 57.8 812.6 176 50.4 42.8 900.0 169 53.2 34.9 900.0 173 51.3 627.6 640.6
4 60 600 162 54.5 167.6 900.0 168 52.4 471.3 900.1 163 54.6 462.0 900.0 164 53.5 56.2 628.7
4 80 600 157 56.0 108.8 900.1 163 54.0 115.6 900.1 159 55.8 115.6 900.0 159 55.1 65.0 725.5
4 100 600 155 56.6 170.2 900.0 160 54.7 168.1 900.0 155 56.9 84.4 900.0 157 55.5 118.0 900.0
4 150 600 149 58.1 20.5 900.1 154 56.2 301.2 900.0 149 58.4 20.1 900.0 150 57.4 173.2 790.8
4 200 600 147 58.5 115.3 900.1 151 56.7 37.8 900.0 147 58.8 54.8 900.0 146 58.2 221.0 900.0

20 10 600 61 64.3 2.8 900.0 63 62.9 162.8 900.1 62 65.0 29.2 900.1 62 63.1 59.3 890.1
20 15 600 51 70.5 7.7 900.1 53 68.8 86.5 900.0 52 70.8 63.9 900.0 52 69.2 47.9 814.7
20 20 600 46 73.1 7.3 900.1 48 71.3 79.9 900.0 46 73.9 8.5 900.1 47 71.9 8.0 855.2
20 25 600 43 74.6 9.1 900.0 45 72.7 47.0 900.0 44 74.6 440.7 900.2 44 73.2 7.4 868.9
20 40 600 38 77.2 9.9 900.0 39 75.9 29.4 900.0 38 77.8 12.4 900.3 38 76.5 142.2 900.0
20 60 600 34 79.4 434.1 900.2 36 77.4 592.2 900.2 35 79.2 293.9 900.3 35 78.0 179.8 900.0
20 80 600 32 80.2 15.8 900.4 33 78.8 27.9 900.2 32 80.7 21.4 900.2 32 79.5 88.7 900.2
20 100 600 31 80.7 24.9 900.5 32 79.5 56.2 900.2 31 81.0 10.2 900.2 31 80.1 37.5 900.1
20 150 600 28 83.9 36.3 900.0 29 81.2 41.1 900.0 29 82.4 74.3 900.9 28 81.8 26.2 900.2
20 200 600 27 84.3 43.2 900.5 28 81.6 20.9 900.0 28 82.9 856.6 900.7 27 82.2 387.0 900.3

Table 14
BL benchmark. Results when aiming for small gaps (averages over ten instances per row).

A∗ + BS A∗ + ACS APS A∗ + ACS-dist

m n |Σ | |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]

10 100 4 34.0 4.2 0.3 797.6 34.1 10.8 1.8 900.0 34.1 8.4 0.6 898.9 34.1 6.7 1.4 645.0
10 100 12 12.7 0.0 0.3 2.7 12.7 0.0 1.6 8.2 12.7 0.0 0.5 4.1 12.7 0.0 0.3 2.4
10 100 20 7.9 0.0 0.1 0.1 7.9 0.0 0.1 0.1 7.9 0.0 0.1 0.1 7.9 0.0 0.0 0.0
10 500 4 180.7 39.3 113.1 901.3 185.4 37.7 337.6 900.0 181.2 39.5 28.2 900.0 185.3 37.3 160.8 656.6
10 500 12 76.7 57.9 24.1 900.0 79.0 56.6 216.1 900.1 77.2 58.3 180.3 900.0 79.1 55.8 163.0 795.5
10 500 20 49.6 64.1 5.9 900.0 51.2 62.7 205.8 900.1 50.1 64.8 16.1 900.1 51.3 61.7 72.4 900.0
10 1000 4 365.5 41.4 168.4 900.0 376.2 39.6 385.8 900.0 366.5 41.4 77.4 900.0 375.6 39.5 229.3 700.6
10 1000 12 157.1 61.1 113.5 900.0 162.7 59.6 273.3 900.1 158.2 61.2 135.2 900.0 162.1 59.5 111.2 742.0
10 1000 20 103.4 67.5 38.4 900.0 106.6 66.3 265.9 900.2 104.1 67.7 83.7 900.1 106.4 66.0 240.6 890.9

50 100 4 23.9 21.1 0.8 900.0 24.2 18.7 9.6 900.0 24.2 25.3 2.6 900.0 24.1 18.0 106.5 748.2
50 100 12 6.9 0.0 0.2 0.3 6.9 0.0 0.3 0.5 6.9 0.0 0.3 0.4 6.9 0.0 0.1 0.1
50 100 20 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0
50 500 4 136.5 53.3 110.9 900.0 141.3 51.3 142.3 901.0 137.2 53.4 101.3 900.0 138.8 52.0 256.1 712.6
50 500 12 47.4 72.8 8.3 900.1 49.2 71.3 152.7 900.2 48.1 73.0 137.3 900.0 48.4 71.5 130.8 808.5
50 500 20 28.1 77.7 20.2 900.1 29.3 76.2 121.1 900.3 28.4 78.2 33.8 900.3 28.7 76.2 94.7 900.5
50 1000 4 278.3 55.0 157.3 900.0 289.8 52.9 410.9 900.0 278.9 55.0 96.1 900.0 284.2 53.7 332.7 756.7
50 1000 12 99.0 74.8 104.1 900.1 103.7 73.4 288.9 900.2 99.6 75.0 205.8 900.1 101.7 73.8 378.8 874.5
50 1000 20 60.0 80.4 98.4 900.2 62.6 79.3 134.3 900.4 60.7 80.6 132.0 900.3 61.3 79.6 320.7 901.0

100 100 4 21.6 24.6 1.3 900.0 22.0 20.4 16.1 900.1 22.1 28.1 12.9 900.0 22.0 17.4 80.6 813.9
100 100 12 5.2 0.0 0.1 0.1 5.2 0.0 0.0 0.1 5.2 0.0 0.2 0.2 5.2 0.0 0.0 0.0
100 100 20 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0
100 500 4 127.3 56.3 96.3 900.0 131.4 54.4 250.1 900.0 127.7 56.5 91.2 900.0 128.0 55.4 242.5 857.0
100 500 12 41.8 75.4 88.1 900.1 43.2 74.2 185.7 900.2 42.0 76.0 30.5 900.2 42.0 74.6 131.8 900.0
100 500 20 24.2 80.1 17.0 900.2 24.8 79.0 156.8 900.6 24.2 80.7 14.8 900.4 24.0 79.3 152.9 900.1
100 1000 4 261.9 57.5 206.9 900.0 271.4 55.7 312.8 900.1 262.6 57.5 354.9 900.0 264.7 56.7 521.1 890.2
100 1000 12 88.9 77.3 53.2 900.1 92.7 76.1 363.4 900.3 89.1 77.5 186.5 900.2 89.7 76.7 368.2 900.0
100 1000 20 52.8 83.0 103.0 900.2 54.8 81.6 310.1 900.6 53.0 82.9 126.8 900.2 52.9 82.1 309.9 900.1

150 100 4 20.0 22.0 1.6 900.1 20.6 18.1 17.9 900.0 20.7 26.8 123.5 900.1 20.6 15.1 182.6 834.9
150 100 12 4.7 0.0 0.1 0.1 4.7 0.0 0.0 0.0 4.7 0.0 0.1 0.1 4.7 0.0 0.0 0.0
150 100 20 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0
150 500 4 123.4 57.5 254.8 900.0 127.0 55.8 229.7 900.1 123.9 57.7 251.4 900.0 123.2 57.0 364.8 848.4
150 500 12 39.3 76.8 21.3 900.2 40.5 75.6 95.5 900.4 39.8 77.1 205.9 900.3 39.3 76.1 124.2 900.1
150 500 20 22.4 82.5 25.8 900.2 22.9 80.3 324.6 901.0 22.5 82.0 36.4 900.9 22.1 80.6 142.3 900.2
150 1000 4 254.1 58.7 141.1 900.0 263.3 57.0 340.2 900.1 254.6 58.8 293.6 900.1 255.0 58.2 284.5 872.9
150 1000 12 84.4 78.8 159.2 900.7 87.7 77.2 294.5 900.4 84.6 78.6 106.5 900.3 84.5 78.0 204.9 900.1
150 1000 20 49.7 84.1 101.7 900.6 51.0 82.8 155.6 901.0 49.8 83.8 117.6 900.6 49.0 83.3 309.8 900.3

200 100 4 19.7 23.9 2.3 900.0 20.0 20.2 47.5 900.1 20.1 26.8 56.4 900.1 19.8 17.8 134.5 878.7
200 100 12 4.1 0.0 0.1 0.1 4.1 0.0 0.0 0.1 4.1 0.0 0.1 0.1 4.1 0.0 0.0 0.0
200 100 20 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0
200 500 4 121.0 58.4 190.1 900.1 124.0 56.9 187.4 900.1 121.3 58.6 133.5 900.1 120.3 58.0 186.4 880.4
200 500 12 38.0 77.4 50.6 900.2 38.9 76.3 84.2 900.4 38.0 78.0 31.9 900.5 37.5 77.0 214.4 900.1
200 500 20 21.0 83.5 28.0 900.1 21.7 81.1 256.0 901.3 21.1 83.0 111.8 901.1 20.9 81.4 288.6 900.2
200 1000 4 249.3 59.6 124.0 900.0 258.1 57.7 431.9 900.2 249.8 59.6 242.5 900.1 249.0 59.2 436.3 899.3
200 1000 12 81.7 79.5 130.9 900.2 84.6 78.0 311.7 900.7 81.9 79.2 187.4 900.4 81.1 78.8 332.9 900.1
200 1000 20 47.5 84.7 106.7 900.5 49.0 83.3 221.1 900.8 47.9 84.5 203.9 900.7 46.9 83.9 298.5 900.3

20 M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499

Fig. 12. Improvement of A∗ + ACS over the competitors in terms of gaps (in %) for benchmark set BB.

EX approximates the expected LCS length for unrelated random
strings and is, for most of the considered benchmark instances,
very well suited to lead ACS to promising heuristic solutions. The
benefits of EX diminish, however, when instances with strongly
related strings are considered, as for example in benchmark set
BB. There, EX tends to become a disadvantage.

In future work it may be interesting to consider an approach
that analyzes instances in a pre-processing phase in order to
determine the most promising strategies and parameters to ac-
tually use. For example, one may roughly check the relatedness
of the strings in order to decide whether or not EX shall be
applied. Moreover, it would be good to find a more efficient way
of filtering dominated solutions; this may make filtering actually
beneficial also in those cases in which it did not pay off so far,
especially within A∗ + ACS. Last but not least, coming up with
an effective parallel implementation of our algorithms would be
of high practical interest. Finally, note that A∗ + ACS is also a
promising starting point for algorithms to solve other variants of
the LCS problem such as the constrained LCS problem [55], the
repetition-free LCS [56], the doubly-constrained LCS [57], and the
restricted LCS [58].

CRediT authorship contribution statement

Marko Djukanovic: Methodology, Software, Writing - original
draft. Günther R. Raidl: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We gratefully acknowledge the financial support of this
project by the Doctoral Program ‘‘Vienna Graduate School on
Computational Optimization’’ funded by the Austrian Science
Foundation (FWF) under contract no. W1260-N35.

Appendix A. Additional numerical results

See Tables 12–14.

Appendix B. Improvements of A∗ + ACS over other approaches

See Figs. 5–12.

References

[1] D. Maier, The complexity of some problems on subsequences and
supersequences, J. ACM 25 (2) (1978) 322–336.

[2] A.S. Lhoussain, G. Hicham, Y. Abdellah, Adaptating the Levenshtein distance
to contextual spelling correction, Int. J. Adv. Comput. Sci. Appl. 12 (1)
(2015) 127–133.

[3] A. Zielezinski, S. Vinga, J. Almeida, W.M. Karlowski, Alignment-free se-
quence comparison: benefits, applications, and tools, Genome Biol. 18 (1)
(2017) 186.

[4] K. Rieck, P. Laskov, K.-R. Müller, Efficient algorithms for similarity measures
over sequential data: A look beyond kernels, in: Proccedings of DAGM
2006 – The 28th Joint Pattern Recognition Symposium, Springer, 2006, pp.
374–383.

[5] G. Sidorov, A. Gelbukh, H. Gómez-Adorno, D. Pinto, Soft similarity and soft
cosine measure: Similarity of features in vector space model, Comput. Sist.
18 (3) (2014) 491–504.

[6] S. Kosub, A note on the triangle inequality for the jaccard distance, Pattern
Recognit. Lett. 120 (2019) 36–38.

[7] L. Rabiner, A. Rosenberg, S. Levinson, Considerations in dynamic time
warping algorithms for discrete word recognition, IEEE Trans. Acoust.
Speech Signal Process. 26 (6) (1978) 575–582.

[8] Y. Ye, J. Jiang, B. Ge, Y. Dou, K. Yang, Similarity measures for time series
data classification using grid representation and matrix distance, Knowl.
Inf. Syst. 60 (2) (2019) 1105–1134.

[9] S. Wan, Y. Lan, J. Xu, J. Guo, L. Pang, X. Cheng, Match-SRNN: Modeling the
recursive matching structure with spatial RNN, in: Proceedings of IJCAI’16
– The 25th International Joint Conference on Artificial Intelligence, AAAI
Press, 2016, pp. 2922–2928.

[10] A. Islam, D. Inkpen, Semantic text similarity using corpus-based word
similarity and string similarity, ACM Trans. Knowl. Discov. Data 2 (2)
(2008) 1–25.

[11] T.K. Landauer, P.W. Foltz, D. Laham, An introduction to latent semantic
analysis, Discourse Process. 25 (2–3) (1998) 259–284.

[12] T. Jiang, G. Lin, B. Ma, K. Zhang, A general edit distance between RNA
structures, J. Comput. Biol. 9 (2) (2002) 371–388.

[13] J. Storer, Data Compression: Methods and Theory, Computer Science Press,
MD, USA, 1988.

[14] R. Beal, T. Afrin, A. Farheen, D. Adjeroh, A new algorithm for ‘‘the LCS
problem’’ with application in compressing genome resequencing data, BMC
Genomics 17 (4) (2016) 544.

[15] J.B. Kruskal, An overview of sequence comparison: Time warps, string edits,
and macromolecules, SIAM Rev. 25 (2) (1983) 201–237.

[16] P. Brisk, A. Kaplan, M. Sarrafzadeh, Area-efficient instruction set synthesis
for reconfigurable system-on-chip design, in: Proceedings of DAC 2004 –
The 41st Design Automation Conference, IEEE press, 2004, pp. 395–400.

[17] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence
algorithms, in: Proceedings of SPIRE 2000 – The 7th International Sym-
posium on String Processing and Information Retrieval, IEEE, 2000, pp.
39–48.

[18] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Computer Science
and Computational Biology, Cambridge University Press, 1997.

[19] C.B. Fraser, Subsequences and Supersequences of Strings (Ph.D. thesis),
University of Glasgow, Glasgow, UK, 1995.

[20] K. Huang, C. Yang, K. Tseng, Fast algorithms for finding the common
subsequences of multiple sequences, in: Proceedings of ICS 2004 – The
9th International Computer Symposium, IEEE Press, 2004.

[21] C. Blum, M.J. Blesa, M. López-Ibáñez, Beam search for the longest common
subsequence problem, Comput. Oper. Res. 36 (12) (2009) 3178–3186.

[22] S.R. Mousavi, F. Tabataba, An improved algorithm for the longest common
subsequence problem, Comput. Oper. Res. 39 (3) (2012) 512–520.

[23] F.S. Tabataba, S.R. Mousavi, A hyper-heuristic for the longest common
subsequence problem, Comput. Biol. Chem. 36 (2012) 42–54.

[24] Q. Wang, D. Korkin, Y. Shang, A fast multiple longest common subsequence
(MLCS) algorithm, IEEE Trans. Knowl. Data Eng. 23 (3) (2011) 321–334.

http://refhub.elsevier.com/S1568-4946(20)30438-5/sb1
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb1
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb1
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb2
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb2
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb2
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb2
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb2
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb3
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb3
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb3
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb3
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb3
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb4
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb4
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb4
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb4
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb4
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb4
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb4
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb5
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb5
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb5
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb5
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb5
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb6
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb6
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb6
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb7
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb7
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb7
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb7
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb7
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb8
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb8
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb8
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb8
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb8
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb9
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb9
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb9
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb9
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb9
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb9
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb9
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb10
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb10
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb10
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb10
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb10
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb11
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb11
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb11
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb12
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb12
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb12
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb13
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb13
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb13
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb14
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb14
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb14
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb14
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb14
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb15
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb15
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb15
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb16
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb16
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb16
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb16
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb16
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb17
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb17
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb17
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb17
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb17
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb17
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb17
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb18
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb18
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb18
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb19
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb19
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb19
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb20
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb20
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb20
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb20
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb20
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb21
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb21
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb21
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb22
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb22
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb22
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb23
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb23
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb23
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb24
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb24
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb24

M. Djukanovic, G.R. Raidl and C. Blum / Applied Soft Computing Journal 95 (2020) 106499 21

[25] M. Djukanovic, G.R. Raidl, C. Blum, Anytime algorithms for the longest
common palindromic subsequence problem, Comput. Oper. Res. 114 (2020)
104827.

[26] M. Djukanovic, G. Raidl, C. Blum, A beam search for the longest common
subsequence problem guided by a novel approximate expected length cal-
culation, in: Proceedings of LOD 2019 – The 5th International Conference
on Machine Learning, Optimization, and Data Science, in: LNCS, Springer,
2019, in press.

[27] C. Blum, P. Festa, Longest common subsequence problems, in: Metaheuris-
tics for String Problems in Bioinformatics, Wiley, 2016, pp. 45–60, chapter
3.

[28] H.-T. Chan, C.-B. Yang, Y.-H. Peng, The generalized definitions of the two-
dimensional largest common substructure problems, in: Proceedings of the
33rd Workshop on Combinatorial Mathematics and Computation Theory,
National Taiwan University, Department of Mathematics, 2016, pp. 1–12.

[29] Y. Li, Y. Wang, Z. Zhang, Y. Wang, D. Ma, J. Huang, A novel fast and mem-
ory efficient parallel MLCS algorithm for long and large-scale sequences
alignments, in: IEEE 32nd International Conference on Data Engineering,
2016, pp. 1170–1181.

[30] Z. Peng, Y. Wang, A novel efficient graph model for the multiple longest
common subsequences (MLCS) problem, Front. Genet. 8 (2017) 104.

[31] S. Zilberstein, Using anytime algorithms in intelligent systems, AI Mag. 17
(3) (1996) 73.

[32] S. Zilberstein, Operational rationality through compilation of anytime
algorithms, AI Mag. 16 (2) (1995) 79.

[33] J. Yang, Y. Xu, G. Sun, Y. Shang, A new progressive algorithm for a multiple
longest common subsequences problem and its efficient parallelization,
IEEE Trans. Parallel Distrib. Syst. 24 (5) (2013) 862–870.

[34] J. Yang, Y. Xu, Y. Shang, G. Chen, A space-bounded anytime algorithm for
the multiple longest common subsequence problem, IEEE Trans. Knowl.
Data Eng. 26 (11) (2014) 2599–2609.

[35] Q. Wang, D. Korkin, Y. Shang, Efficient dominant point algorithms for the
multiple longest common subsequence, MLCS problem, in: Proceedings of
IJCAI’09 – The 25th International Joint Conference on Artificial Intelligence,
2009, pp. 1494–1499.

[36] S.G. Vadlamudi, P. Gaurav, S. Aine, P.P. Chakrabarti, Anytime column
search, in: Proceedings of AI’12 – The 25th Australasian Joint Conference
on Artificial Intelligence, Springer, 2012, pp. 254–265.

[37] M. Djukanovic, G. Raidl, C. Blum, Heuristic approaches for solving the
longest common squared subsequence problem, in: Proceedings of EU-
ROCAST 2019 – The 17th International Conference on Computer Aided
Systems Theory, in: LNCS, Springer, 2019, in press.

[38] P. Hart, N. Nilsson, B. Raphael, A formal basis for the heuristic determi-
nation of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (2) (1968)
100–107.

[39] T.L. Dean, Intractability and time-dependent planning, in: Proceedings
of the 1986 Workshop on Reasoning About Actions & Plans, 1986, pp.
245–266.

[40] T.L. Dean, M.S. Boddy, An analysis of time-dependent planning, in: AAAI,
vol. 88, 1988, pp. 49–54.

[41] W. Zhang, Complete anytime beam search, in: Proceedings of IAAI ’98
– The 20th Conference on Artificial Intelligence/Innovative Applications
of Artificial Intelligence, American Association for Artificial Intelligence,
Menlo Park, CA, USA, 1998, pp. 425–430.

[42] R. Zhou, E.A. Hansen, Beam-stack search: Integrating backtracking with
beam search, in: Proceedings of ICAPS 2005 – The 15th International
Conference on Automated Planning and Scheduling, AAAI Press, 2005, pp.
90–98.

[43] E.A. Hansen, R. Zhou, Anytime heuristic search, J. Artificial Intelligence Res.
28 (2007) 267–297.

[44] M. Likhachev, G.J. Gordon, S. Thrun, ARA*: Anytime A* with provable
bounds on sub-optimality, in: Advances in Neural Information Processing
Systems, 2004, pp. 767–774.

[45] J. Van Den Berg, R. Shah, A. Huang, K. Goldberg, Anytime nonparametric A∗ ,
in: Proceedings of AAAI’11 – The 25th Conference on Artificial Intelligence,
2011.

[46] S. Aine, P. Chakrabarti, R. Kumar, AWA* – A window constrained
anytime heuristic search algorithm, in: Proceedings of IJCAI’07 – The
12th International Joint Conference on Artificial Intelligence, 2007, pp.
2250–2255.

[47] S.G. Vadlamudi, S. Aine, P.P. Chakrabarti, MAWA∗ – A memory-bounded
anytime heuristic-search algorithm, IEEE Trans. Syst. Man Cybern. B 41 (3)
(2010) 725–735.

[48] G.K. Kao, E.C. Sewell, S.H. Jacobson, A branch, bound, and remember
algorithm for the 1|ri|

∑
ti scheduling problem, J. Sched. 12 (2) (2009)

163–175.
[49] S.G. Vadlamudi, S. Aine, P.P. Chakrabarti, Anytime pack search, Nat.

Comput. 15 (3) (2016) 395–414.
[50] S.J. Shyu, C.-Y. Tsai, Finding the longest common subsequence for multiple

biological sequences by ant colony optimization, Comput. Oper. Res. 36 (1)
(2009) 73–91.

[51] T. Easton, A. Singireddy, A large neighborhood search heuristic for
the longest common subsequence problem, J. Heuristics 14 (3) (2008)
271–283.

[52] C. Blum, M.J. Blesa, Probabilistic beam search for the longest common sub-
sequence problem, in: T. Stützle, M. Birratari, H.H. Hoos (Eds.), Proceedings
of SLS 2007 – The 1st International on Engineering Stochastic Local Search
Algorithms, in: LNCS, vol. 4638, Springer, 2007, pp. 150–161.

[53] M. López-Ibáñez, J. Dubois-Lacoste, L.P. Cáceres, T. Stützle, M. Birattari, The
irace package: Iterated racing for automatic algorithm configuration, Oper.
Res. Perspect. 3 (2016) 43–58.

[54] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J.
Mach. Learn. Res. 7 (2006) 1–30.

[55] Z. Gotthilf, D. Hermelin, M. Lewenstein, Constrained LCS: Hardness and ap-
proximation, in: Proceedings of CPM 2008 – The 19th Annual Symposium
on Combinatorial Pattern Matching, in: LNCS, vol. 5029, Springer, 2008,
pp. 255–262.

[56] S.S. Adi, M. lia D.V. Braga, C.G. Fernandes, C.E. Ferreira, F.V. Martinez,
M.-F. Sagot, M.A. Stefanes, C. Tjandraatmadja, Y. Wakabayashi, Repetition-
free longest common subsequence, Discrete Appl. Math. 158 (12) (2010)
1315–1324.

[57] P. Bonizzoni, G. Della Vedova, R. Dondi, Y. Pirola, Variants of constrained
longest common subsequence, Inform. Process. Lett. 110 (20) (2010)
877–881.

[58] Z. Gotthilf, D. Hermelin, G.M. Landau, M. Lewenstein, Restricted LCS, in:
Proceedings of SPIRE 2010 – The 17th International Symposium on String
Processing and Information Retrieval, in: LNCS, vol. 6394, Springer, 2010,
pp. 250–257.

http://refhub.elsevier.com/S1568-4946(20)30438-5/sb25
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb25
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb25
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb25
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb25
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb26
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb26
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb26
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb26
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb26
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb26
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb26
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb26
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb26
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb27
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb27
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb27
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb27
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb27
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb28
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb28
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb28
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb28
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb28
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb28
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb28
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb30
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb30
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb30
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb31
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb31
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb31
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb32
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb32
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb32
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb33
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb33
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb33
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb33
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb33
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb34
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb34
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb34
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb34
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb34
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb36
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb36
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb36
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb36
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb36
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb37
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb37
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb37
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb37
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb37
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb37
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb37
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb38
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb38
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb38
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb38
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb38
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb40
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb40
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb40
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb41
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb41
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb41
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb41
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb41
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb41
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb41
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb42
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb42
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb42
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb42
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb42
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb42
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb42
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb43
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb43
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb43
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb44
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb44
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb44
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb44
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb44
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb47
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb47
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb47
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb47
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb47
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb48
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb48
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb48
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb48
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb48
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb49
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb49
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb49
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb50
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb50
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb50
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb50
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb50
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb51
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb51
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb51
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb51
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb51
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb52
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb52
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb52
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb52
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb52
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb52
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb52
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb53
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb53
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb53
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb53
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb53
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb54
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb54
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb54
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb55
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb55
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb55
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb55
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb55
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb55
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb55
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb56
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb56
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb56
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb56
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb56
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb56
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb56
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb57
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb57
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb57
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb57
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb57
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb58
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb58
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb58
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb58
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb58
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb58
http://refhub.elsevier.com/S1568-4946(20)30438-5/sb58

	Finding Longest Common Subsequences: New anytime A* search results
	Introduction
	Previous work
	Notations and concepts
	State graph for the LCS problem
	Upper bounds
	Approximate expected length calculation of an LCS

	A*A* search framework
	Anytime algorithms for the LCS problem
	A* BS A*+BS approach
	A* ACS A*+ACS approach

	Experimental evaluation
	Benchmark instances
	Tuning of the algorithms' parameters
	Experimental evaluation: Exact Solving with classical A* A* search
	Experimental evaluation: Anytime algorithms
	Comparison of the algorithms' anytime behavior

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Additional Numerical Results
	Appendix B. Improvements of A*+ACS over other approaches
	References

