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Abstract

We consider the classical problem of allocating resources
among agents in an envy-free (and, where applicable, pro-
portional) way. Recently, the basic model was enriched by
introducing the concept of a social network which allows to
capture situations where agents might not have full infor-
mation about the allocation of all resources. We initiate the
study of the parameterized complexity of these resource al-
location problems by considering natural parameters which
capture structural properties of the network and similarities
between agents and items. In particular, we show that even
very general fragments of the considered problems become
tractable as long as the social network has bounded treewidth
or bounded clique-width. We complement our results with
matching lower bounds which show that our algorithms can-
not be substantially improved.

Introduction

Envy-freeness ranks among the most important fairness
requirements in the classical resource allocation prob-
lem of distributing indivisible items (resources) among
agents (Bouveret and Lang 2008; Bouveret, Chevaleyre,
and Maudet 2016). There has also been an extensive line
of works studying envy-freeness in a more general setting
where agents only directly compare themselves to a sub-
set of other agents (Beynier et al. 2019; Aziz et al. 2018;
Bredereck, Kaczmarczyk, and Niedermeier 2018). For in-
stance, employees in a company would only compare them-
selves and “envy” other employees that are at a compara-
ble level to them in the company’s hierarchy. Another exam-
ple is tied to the classical CAKE CUTTING problem (Abebe,
Kleinberg, and Parkes 2017; Bei, Qiao, and Zhang 2017),
where agents have preferences over different parts of a
“cake” (representing some desired goods)—in many cases,
agents may only have limited information about the pieces
of the cake distributed to other agents.

In line with the above, we consider the following problem:
given a set R of resources (or items), a set A of agents (each
with their own numerical valuation for each resource), and
a directed social network G representing “envy-relations”
between the agents, find an allocation of resources that is
considered “envy-free” by each agent. More specifically we
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study two well-established notions of envy and resulting
variants of the problem:

(1) in LOCALLY ENVY-FREE ALLOCATION (LEFA) each
agent a is satisfied if it does not envy any of its neighbors—
this models situations where agents do not know or care
about the total available amount of resources. This was stud-
ied, e.g., by Beynier et al. (2019) and Bredereck et al. (2018).

(2) in ENVY-FREE ALLOCATION (EFA) each agent must
not only be envy-free of its neighbors, but must also view its
allocated resources as being proportional to the total amount
of available resources. This variant is better suited to scenar-
ios where an agent might not have access to full information
about which agent receives which resources, but knows what
all the resources are and expects to receive a fair share. EFA
was proposed and studied by Aziz et al. (2018).

Contribution. Unsurprisingly, both LEFA and EFA are
NP-complete, and in fact remain NP-complete even on
severely restricted instances (Bredereck, Kaczmarczyk, and
Niedermeier 2018). For example, the well-known PARTI-
TION PROBLEM can be encoded by LEFA and EFA on
a complete bidirected social network with 2 agents using
the same valuation. LEFA and EFA generalize the classi-
cal envy-free resource allocation problems in the sense that
the envy-free resource allocation problem corresponds to the
setting in which the social network is complete. Similarly,
EFA on the social network with an empty edge set encodes
the problem of proportional resource allocation.

In this work, we employ the parameterized complexity
paradigm (Downey and Fellows 2013; Cygan et al. 2015;
Niedermeier 2006) to obtain new algorithms and lower
bounds for both of these problems. The core feature of the
parameterized paradigm is that instead of measuring the per-
formance of algorithms merely in terms of the size of the in-
put (n), one links this to certain properties of the input (cap-
tured by one or several numerical parameters, k). In turn,
this gives rise to two notions of tractability, both of which
correspond to polynomial-time tractability in the classical
setting:
• the class FPT contains all problems that can be solved in

time f(k)·nO(1) (for some computable function f ), while
• the (asymptotically less efficient) class XP contains all

problems that can be solved in time nf(k).
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The fundamental question one must ask at this point is
what a reasonable parameterization for LEFA and EFA
would be. First of all, since both problems remain NP-
complete even on very simple social networks (e.g., edge-
less graphs for EFA; see Theorem 9) and both problems
are well-known to be NP-complete on complete social net-
works, restricting the structure of G is not sufficient to obtain
tractability on its own. Second, we believe that in practical
settings, one often needs to deal with instances consisting of
many agents and resources, and so we would like to avoid
parameterizing by |A| or |R|.

A well-established and intuitive assumption about in-
stances of LEFA and EFA is that many resources or agents
behave “homogeneously” in terms of their valuations—
indeed, for resources homogeneity arises naturally when
dealing with copies of the same item, while for agents ho-
mogeneity may be caused by inherent limitations of how
preferences are collected. This homogeneity can be math-
ematically captured through the notion of item- and agent-
types, which contain items and agents that are indistinguish-
able from each other based on any valuation. Indeed, the
numbers of item- and agent-types (hereby denoted |TR|
and |TA|, respectively) have been studied and used as pa-
rameters in various settings across the whole field of com-
putational social choice (Brânzei, Lv, and Mehta 2016;
Ganian, Ordyniak, and Rahul 2019).

Results. Our first result focuses on tree-like social net-
works, specifically social networks of bounded treewidth
tw (Robertson and Seymour 1983; Downey and Fellows
2013). Specifically, we show that LEFA and EFA are in XP
parameterized by tw(G)+ |TR| (Theorem 1). As with virtu-
ally all such results using treewidth, the core of the algorithm
is a dynamic procedure—however, the edge orientations in
combination with the distinct valuations of agents required
the use of unusually involved records.

Next, we turn to the question whether the above result can
be improved to FPT. We provide a reduction (Theorem 7)
which not only answers this negatively, but also shows that
the problem does not become FPT even with additional
parameters (such as |TA|). Two additional hardness results
(Theorems 8 and 9) show that it is not possible to strengthen
Theorem 1 by dropping any of the two parameters either.

For our third result, we look at another way of extending
Theorem 1 towards a richer graph class. In particular, while
treewidth is an extremely well-motivated graph parameter
(see, for instance, the survey by Marx (2010) and the result
of Thorup linking treewidth and control flow graphs (1998)),
restricting the treewidth of instances means that our results
do not immediately generalize the original non-graph setting
and cannot be used for dense networks. To this end, we turn
to clique-width (cw)—a well-established generalization of
treewidth towards dense graphs—and show that LEFA and
EFA are both in XP parameterized by cw(G)+ |TA|+ |TR|
(Theorem 10). It is worth noting that this result immediately
implies that envy-free resource allocation (in the non-graph
setting) is in XP parameterized by |TA| + |TR|—a result
which, while forming a special case for us, is not trivial to
prove on its own.

For our fourth result, we tackle the question of whether
one can strengthen the polynomial-time result of Theorem 7
to fixed-parameter tractability for the problem by using a
stronger restriction on the structure of G. We answer this
positively, but with a caveat: we also need to restrict the
bundle-size (i.e., the maximum number of items assigned to
any agent). Specifically, we combine integer linear program-
ming with exhaustive branching to show that both LEFA
and EFA are FPT when parameterized by the size of a min-
imum vertex cover of G, |TR|, and the bundle-size (Theo-
rem 16).

Preliminaries

For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 = [i] ∪
{0}. We denote by N the set of natural numbers, by N0 the
set N ∪ {0}. For a set S, we denote by 2S the set of all
subsets of S. We refer to the handbook by Diestel (2012) for
standard graph terminology. For a directed graph G and a
vertex v, we denote by N+

G (v) the open out-neighborhood
of v in G.

Treewidth. A tree-decomposition T of a (directed or undi-
rected) graph G is a pair (T, χ), where T is a tree and χ is a
function that assigns each tree node t a set χ(t) ⊆ V (G) of
vertices such that the following conditions hold:
(P1) For every (directed) edge uv ∈ E(G) there is a tree

node t such that u, v ∈ χ(t).
(P2) For every vertex v ∈ V (G), the set of tree nodes t with

v ∈ χ(t) induces a non-empty subtree of T .
The sets χ(t) are called bags of the decomposition T and

χ(t) is the bag associated with the tree node t. The width
of a tree-decomposition (T, χ) is the size of a largest bag
minus 1. The treewidth of a graph G, denoted by tw(G), is
the minimum width over all tree-decompositions of G.

For presenting our dynamic programming algorithms, it is
convenient to consider tree-decompositions in the following
normal form (Kloks 1994): A tree-decomposition (T, χ) is a
nice tree-decomposition of a graph G if the tree T is rooted
at node r, and each node of T is of one of the following four
types: (1) a leaf node t without children and |χ(t)| = 1,
2) an introduce node t with exactly one child t′ and χ(t) =
χ(t′)∪{v} for a node v of G, 3) a forget node t with exactly
one child t′, and χ(t) = χ(t′) \ {v} for a node v of G,
and 4) a join node t with exactly two children t1, t2, and
χ(t) = χ(t1) = χ(t2).

For t ∈ V (T ) we denote by Tt the subtree of T rooted at
t and we write χ(Tt) for the set

⋃
t′∈V (Tt)

χ(t′).
Computing a nice tree-decomposition of a graph with

O(tw(G) · |V (G)|) many nodes and optimal width is fixed-
parameter tractable, and there are also even more efficient
approximation algorithms available (Kloks 1994; Bodlaen-
der 1996; Bodlaender et al. 2016).

Clique-width. To define clique-width, a prominent graph
parameter which will be relevant for our results, we first
need to introduce some basic terminology. For a positive
integer k, we let a k-graph be a graph whose vertices are
labeled by [k]. For convenience, we consider an arbitrary di-
rected graph to be a k-graph with all vertices labeled by 1.

7136



We call the k-graph consisting of exactly one vertex v (say,
labeled by i) an initial k-graph and denote it by i(v).

The (directed) clique-width of a graph G is the smallest
integer k such that G can be constructed from initial k-
graphs by means of repeated application of the following
three operations:

1. Disjoint union (denoted by ⊕);

2. Relabeling: changing all labels i to j (denoted by pi→j);

3. Edge insertion: adding an edge from each vertex labeled
by i to each vertex labeled by j (i �= j; denoted by ηi,j).

A k-expression tree (Courcelle, Makowsky, and Rotics
2000) is a rooted tree representation of how the three op-
erations are used to construct a given graph; specifically, the
k-expression tree represents each i(v) as a leaf, each ⊕ op-
erator as an ⊕ node with two children, and each pi→j or ηj,i
operator by a corresponding node with a single child.

Problem Statement. Let A be a set of agents, R be a set of
items (or resources), and G be a directed graph with vertex
set A. A preference function (or valuation function) for an
agent a ∈ A is a function τa : 2R → N. Throughout the
paper we will assume that preference functions are additive,
i.e., τa(R′) =

∑
r∈R′ τa(r) for every R′ ⊆ R.

An allocation is a mapping π : A → 2R such that π(a)
and π(a′) are disjoint for every two distinct agents a and a′
in A and

⋃
a∈A π(a) = R. With a slight abuse of notation,

we set π(A′) =
⋃

a∈A′ π(a) for a subset A′ of A. We say
that π(a), or more generally any set of items, is a bundle. An
allocation is:

• proportional if τa(π(a)) ≥ τa(π(A\N+
G (a)))

|A\N+
G (a)| for every a ∈

A.

• locally envy-free if τa(π(a)) ≥ τa(π(a
′)) for every

a, a′ ∈ A with a′ ∈ N+
G (a).

• envy-free if it is both proportional and locally envy-free.

We can now formalize our problems of interest:
ENVY-FREE ALLOCATION (EFA))

Input: A set A of agents, a set R of items, pref-
erence functions τa : 2R → N for every
agent a ∈ A, and a directed graph G
with vertex set A.

Question: Is there an envy-free allocation?
LOCALLY ENVY-FREE ALLOCATION (LEFA) is defined

analogously, with the sole distinction that we ask for a lo-
cally envy-free allocation. We note that while both problems
are stated as decision problems, all our algorithms are con-
structive and can also output an allocation with the desired
properties as a witness.

Parameterizations and Properties of Instances. We say
that two agents a and a′ have the same agent-type if their
preference functions τa and τa′ are identical. We say two
items r and r′ have the same item-type if they are equally
valued by any agent, i.e., if τa(r) = τa(r

′) for every a ∈ A.
Let I = (A,R, (τa)a∈A) be an instance of (LOCALLY)

ENVY-FREE ALLOCATION. We denote by TA and TR the

set of agent-types and item-types of I, respectively, and de-
fine the preference function τa in the natural manner for
agent-types and item-types, i.e., for an agent-type ta ∈ TA

and an item-type tr ∈ TR, we denote by τta(tr), the valua-
tion of any agent of type ta of any item of type tr.

We also call sets of items R′ ⊆ R bundles. In the con-
text of item-types, we will alternatively (and interchange-
ably) denote bundles as |TR|-dimensional vectors �b, where
�b[tr] is equal to the number of items of item-type tr in a
bundle, for every tr ∈ TR. We use �b(R′) to denote the vec-
tor representing the bundle R′ and conversely we denote by
BUN(�b) a bundle representing the vector �b. Moreover, we
denote by B = {�b(R′) | R′ ⊆ R }, the set of all possible
bundle vectors.

Our results will mainly be concerned with establishing
the tractability of EFA and LEFA under the combination of
(1) a graph parameter that restricts the structure of the net-
work and (2) the number of agent-types or item-types which,
in turn, restrict the complexity of the preference function.
Both types of restrictions are necessary in order to achieve
tractability. For (1), we will consider the treewidth, clique-
width, and vertex cover number (vcn(G)—the size of a min-
imum vertex cover) of the network G). Our last result uses
the maximum size of a bundle as an additional parameter.

Allocating Resources on Tree-Like Networks

As our first result, we show that instances with a bounded
number of item-types can be solved in polynomial time on
tree-like networks. We note that, as will be shown in the next
section, both conditions are necessary for tractability.

Theorem 1. (LOCALLY) ENVY-FREE ALLOCATION is in
XP parameterized by treewidth of the social network and
number of item-types.

For the remainder of this section, let I =
(A,R, (τa)a∈A, G) be an instance of (LOCALLY) ENVY-
FREE ALLOCATION. Since a nice tree-decomposition
of a graph can be computed efficiently (Kloks 1994;
Bodlaender 1996; Bodlaender et al. 2016), it suffices
to solve the problem when a minimum-width nice tree-
decomposition of G is provided as part of the input.

Theorem 2. (LOCALLY) ENVY-FREE ALLOCATION can
be solved in time |R|O(|TR|·tw(G))|A|, provided with a
minimum-width nice tree-decomposition of G in the input.

Informally, the algorithm behind the above theorem works
as follows. Let T = (T, χ) be a minimum-width nice tree-
decomposition of G. The algorithm uses a bottom-up dy-
namic programming approach on the nodes of T to compute
a compact representation, in the following represented by a
set of valid records, of all envy-free assignments of I re-
stricted to the agents in χ(Tt) for every node t ∈ V (T ).

A record for a node t ∈ V (T ) is a triple (α, �u, β), where:

• α : χ(t) → B is a function that provides an allocation for
every agent a ∈ χ(t),

• �u ∈ B is the bundle containing all items already assigned
to the agents in χ(Tt),
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• β : χ(t) → B is a function that provides the bundle
containing all items assigned to all out-neighbors of a in
χ(Tt). β is only required to ensure proportionality (i.e., it
can be omitted from the records when solving LEFA).

The semantics of a record are as follows. We say that a
record (α, �u, β) for a node t ∈ V (T ) is valid if there is
an allocation π : χ(Tt) → 2R satisfying:

(R1) α(a) = �b(π(a)) for every a ∈ χ(t),

(R2) �u = �b(π(χ(Tt))),

(R3) β(a) = �b(π(N+
G (a) ∩ χ(Tt))) for every a ∈ χ(t),

(R4) π is locally envy-free on the instance induced by the
agents in [χ(Tt)], i.e., for all a ∈ χ(Tt), it holds that
τa(π(a)) ≥ τa(π(a

′)) for every a′ ∈ N+
G (a) ∩ χ(Tt)

(R5) (Only for EFA) π is proportional for all a ∈ χ(Tt) \
χ(t), i.e., for every a ∈ χ(Tt) \ χ(t), it holds that

τa(π(a)) ≥ τa(π(A\N+
G (a)))

|A\N+
G (a)| for every a ∈ A.

For a node t ∈ V (T ) we denote by R(t) the set of all valid
records for t. Note that I has a envy-free allocation if and
only if R(r), for the root r of T , contains a record (α, �u, β)

such that �u = �b(R). Moreover, once we have computed
the set of records for all nodes, a straightforward applica-
tion of standard techniques (Downey and Fellows 2013) can
be used to obtain an envy-free allocation using a second top-
to-bottom run through the tree-decomposition.

We will show next that R(t) can be computed via a dy-
namic programming algorithm on T in a bottom-up man-
ner. The algorithm starts by computing the set of all valid
records for the leaves of T and then proceeds by comput-
ing the set of all valid records for the other three types of
nodes of a nice tree-decomposition (always selecting nodes
all of whose children have been processed). The following
four lemmas show how this is achieved.

Lemma 3. Let l ∈ V (T ) be a leaf node. Then R(l) can be
computed in time O(|B|), and |R(l)| ∈ O(|B|).

Sketch of Proof. Let χ(t) = {a}. R(l) contains all records
(α, �u, β) such that α(a) ∈ B, �u = α(a), and β(a) = �b(∅).

Lemma 4. Let t ∈ V (T ) be an introduce node with
child t′. Then R(t) can be computed from R(t′) in time
O(|R(t′)||B||TR|tw(G)).

Sketch of Proof. Let a be the unique agent in χ(t) \ χ(t′).
Informally, the records in R(t) are obtained by extending a
record in R(t′) with an allocation αa ∈ B for a: For every
record (α′, �u′, β′) ∈ R(t′) and every allocation αa ∈ B
for a for which there are sufficient items available and no
agent in χ(t′) envies a and vice versa, R(t) contains a record
(α, �u, β), where α is the extension of α′ by αa, �u = �u′+αa,
and β is updated for a as well as all in-neighbors of a in χ(t).

Lemma 5. Let t ∈ V (T ) be a forget node with child t′. Then
R(t) can be computed from R(t′) in time O(|R(t′)||R|).

Sketch of Proof. Let a be the unique agent in χ(t′) \ χ(t).
Informally, every record in R(t) is obtained from the re-
striction of a record in R(t′) to χ(t). In the case of EFA one
additionally needs to check that a satisfies proportionality.

Lemma 6. Let t ∈ V (T ) be a join node with children t1
and t2. Then R(t) can be computed from R(t1) and R(t2)
in time O(|R(t1)||R(t2)||TR|tw(G)).

Sketch of Proof. Informally, every record in R(t) is ob-
tained as the combination of two records (α1, �u1, β1) ∈
R(t1) and (α2, �u2, β2) ∈ R(t2) such that α1 = α2 and
�u1 + �u2 −

∑
a∈χ(t) α1(a) ≤ �b(R).

We are now ready to establish our main theorem.

Proof of Theorem 2. The algorithm computes the set of all
valid records R(t) for every node t of T using a bottom-
up dynamic programming algorithm starting in the leaves of
T . It then solves I by checking whether R(r) contains a
record (α, �u, β) such that �u = �b(R). Note that the correct-
ness of the algorithm follows from the correctness of Lem-
mas 3, 4, 5, and 6. The running-time of the algorithm is at
most the number of nodes of T , which can be assumed to be
upper-bounded by tw(G) · |A| (Cygan et al. 2015, Lemma
7.4), times the maximum time required to compute R(t) for
any of the four node types of a nice tree-decomposition,
which because of lemmas 3, 4, 5, and 6 is at most
O(|R(t)|2|TR|tw(G)). Because |R(t)| ≤ |R||TR|(2tw(G)+1),
we obtain O(|R|2|TR|(2tw(G)+1)(tw(G))2|TR||A|) as the to-
tal running-time of the algorithm.

Algorithmic Lower Bounds

The aim of this section is to show that Theorem 1 is es-
sentially tight—i.e., one can strengthen it neither by drop-
ping one of the two parameters, nor by obtaining a fixed-
parameter algorithm for the same parameterization. To ob-
tain the latter result, we give a parameterized reduction
which establishes that both LEFA and EFA are “W[1]-
hard” (Downey and Fellows 2013; Cygan et al. 2015) under
this parameterization.

The problem we reduce from is called EQUITABLE COL-
ORING, and is the same as the classical COLORING prob-
lem but with the added requirement that each of the q colors
occurs precisely the same number of times (w.l.o.g. one as-
sumes that the number of vertices in the input graph G is di-
visible by q). EQUITABLE COLORING is known to be W[1]-
hard parameterized by tw(G) + q (Fellows et al. 2011).

Theorem 7. (LOCALLY) ENVY-FREE ALLOCATION is
W[1]-hard parameterized by treewidth, number of item-
types, and number of agent-types, and bundle-size.

Sketch of Proof. Given an instance (G, q) or EQUITABLE
COLORING, we will construct an instance of I =
(A,R, (τa)a∈A, G

′) of (LOCALLY) ENVY-FREE ALLOCA-
TION as follows:
Agents. The set A is the union of the following sets:
• a set AV containing an agent av for every v ∈ V (G),

7138



• For every edge e = {u, v} ∈ E(G): Sets Au
e =

{ aie,u | i ∈ [q] }, Av
e = { aie,v | i ∈ [q] }, and

Ae = { ai,je | i, j ∈ [q], i �= j }.
• A set Ad of 10q2(|V (G)|+ |E(G)|) agents.
• A single agent ad.

G

u
v

e �

AV

au

av

⋃f∈E(G)
f={x,y} A

x
f

•
a1
e,u

. . . •
aq
e,u

Au
e

•
a1
e,v

. . . •
aq
e,v

Av
e

⋃
f∈E(G) Af

•
a1,2
e

. . . •
a1,q
e...

. . .
...

•
aq,1
e

. . . •
aq,q−1
e

Ae

ad

Ad

Figure 1: Social network in proof of Theorem 7; specifically
for an edge e = {u, v}. Double lines denote compete con-
nectivity and edges exist between vertices of the middle and
right rectangle if they share a same-color (upper) index.

Graph. The graph G′ is bidirectional, and whenever we say
that G′ contains edge {a1, a2} we mean that it contains both
arcs (a1, a2) and (a2, a1). The graph G′ contains the follow-
ing edges:
• For every i �= j ∈ [q], v ∈ V (G), and e = {u, v} ∈ E(G)

edges: {av, aie,v}, {aie,v, ai,je }, and {aie,v, aj,ie }.
• An edge between ad and every other agent.
An illustration of the graph is given in Figure 1.
Items. The set R is the union of the following sets.

• For each color c ∈ [q] a set Rc of |V (G)|
q items.

• A set R� of 2 · |E(G)| items.
• A set RE of 2(q − 1) · |E(G)| items.
• A set D of (q2 − q − 1) · |E(G)| items.
• A set U of ·|E(G)| items.
• A set Rd of 10q2(|V (G)|+ |E(G)|) items.
• A single item rd.
Preferences. If we do not explicitly specify the value of an
item r ∈ R for an agent a ∈ A, we assume τa(r) = 0. We
have the following types of agents:
1. For a ∈ AV :

• If r ∈ {rd} ∪
⋃

c∈[q] Rc, we let τa(r) = 1.

2. For each c ∈ [q], v ∈ V (G), e = {u, v} ∈ E(G) and
a = ace,v:
• If r ∈ R�, we let τa(r) = 3. If r ∈ Rc, we let τa(r) =

2. If r ∈ {rd} ∪RE , we let τa(r) = 1.
3. For a ∈ Ae for some e ∈ E(G):

• If r ∈ D, we let τa((r)) = 3. If r ∈ RE , we let τa(r) =
2. If r ∈ {rd} ∪ U , we let τa(r) = 1.

4. for a ∈ Ad:
• If r ∈ {rd} ∪Rd, we let τa((r)) = 1.

5. for a = ad:
• If r = rd, we let τa((r)) = 1.

This concludes the construction. It is not difficult to verify
that parameters are bounded by function of tw(G) + q. We
will now show that (G, q) is a YES-instance of EQUITABLE
COLORING if and only if I = (A,R, (τa)a∈A, G

′) is a YES-
instance of (LOCALLY) ENVY-FREE ALLOCATION.

For simplicity, in the rest of the proof we will use π(a) ∈
S as a shorthand for π(a) = {r} for an arbitrary item r ∈ S.
Now, let χ : V (G) → [q] be an equitable coloring of G. We
define an envy-free allocation π : A → 2R as follow:
• For v ∈ V (G), we let π(av) ∈ Rχ(v).
• For v ∈ V (G), e = {u, v} ∈ E(G), i ∈ [q] we let
π(aie,v) ∈ RE if i �= χ(v) and π(aie,v) ∈ R� otherwise.

• For e = {u, v} ∈ E(G), i, j ∈ [q], i �= j, we let π(ai,je ) ∈
U if i = χ(u) and j = χ(v) and we let π(ai,je ) ∈ D
otherwise.

• For a ∈ Ad, we let π(a) ∈ Rd.
• We let π(ad) = {rd}.

For the backward direction, let π be a locally envy-free
allocation. First, it is easy to observe that ad has to be as-
signed the item rd, which forces to assign agents in AV pre-
cisely the items in

⋃
c∈[q] Rc and agents in Ad the items in

Rd. This clearly induces coloring with same number of ver-
tices per color. To show that this assignment gives a proper
coloring, we show that items in R� have to be assigned to
agents aie,v such that π(av) ∈ Ri and we have to assign pre-
cisely one item in U to agents Ae for each edge e = {u, v};
both neighbors (not counting ad) of these agents have to be
assigned an item in R�.

Note that in the proof of Theorem 7, the number of item-
types and number of agent-types is bounded by a function
of the number of colors q and is independent of treewidth
of G. Moreover, the bundle-size is 1. Furthermore, EQUI-
TABLE COLORING is NP-hard already for 3 colors. There-
fore, starting from an instance of EQUITABLE COLORING
with 3 colors and using the reduction given in the proof of
Theorem 7, we get the following theorem:

Theorem 8. (LOCALLY) ENVY-FREE ALLOCATION is
NP-hard even when restricted to instances with a bounded
number of item-types, number of agent-types, and bundle-
size.

Our last lower-bound result is a counterpart to Theorem 8
showing that Theorem 1 cannot be strengthened by omitting
the number of item-types from the parameterization.

Theorem 9. (LOCALLY) ENVY-FREE ALLOCATION is
NP-hard even for treewidth 0 (resp. 1 for LEFA) and one
agent-type.

Sketch of Proof. The reduction is nearly identical to the one
given in a previous work by Bliem, Bredereck and Nieder-
meier (2016, Theorem 3). Their result showed that a modifi-
cation of EFA on complete graphs is W[1]-hard parameter-
ized by the number of agents, even when there is only one
agent-type. The only difference in the reduction is that the
graph G is either empty (EFA) or a star whose center is the
first agent (LEFA).
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Dealing with Dense Networks

A limitation of Theorem 1 is that it requires the social
network to be sparse. In this section, we will show that
the graph parameter clique-width can be used instead of
treewidth as long as the number of agent-types is also
bounded. Since complete bidirected graphs have a clique-
width of 2, this setting also generalizes the (well-studied)
problem of allocating resources to agents without a network.

Theorem 10. (LOCALLY) ENVY-FREE ALLOCATION is in
XP parameterized by clique-width of the social network,
number of item-types, and number of agent-types.

For the remainder of this subsection, let I =
(A,R, (τa)a∈A, G) be the given instance of (LOCALLY)
ENVY-FREE ALLOCATION. It is known that an approximate
k-expression tree can be computed in fixed-parameter time
even for digraphs (Oum and Seymour 2006; Kanté and Rao
2013; Ganian, Hlinený, and Obdrzálek 2013), and so it suf-
fices to solve the problem when a k-expression tree for G is
provided in the input.

Theorem 11. (LOCALLY) ENVY-FREE ALLOCATION can
be solved in time O(|R||TR|(2k|TA|+1)k2|A|) when a k-
expression tree T of G is provided as part of the input.

Let t be a node of T , and recall that t could be one of the
following four types of nodes: i(v), ⊕, ηi,j or pi→j . Let Tt

be the subtree of T rooted at t, and let Gt be the k-graph de-
fined by the k-expression tree Tt; furthermore, let Ωt denote
the set of labels used in Gt, At denote the set of agents in
Gt, and let Aω

t denote the set of all agents in Gt with label ω.
For instance, if r is the root of T then Gr = G, and for each
leaf t in T it holds that Gt is a graph with a single labeled
agent.

The high-level idea of the algorithm is similar to the idea
behind our algorithm for treewidth, i.e., the aim is to com-
pute a set of records for every node t ∈ V (T ) (in a leaf-to-
root fashion), where each record represents a set of partial
solutions for Gt. However, the records and computations re-
quired here are significantly more complex than those used
for treewidth—and this is especially the case for EFA.

A record for a node t ∈ V (T ) is a tuple
(αmin, αmax, �u, β), where:

• αmin : Ωt × TA → B is a function that for every ω ∈ Ωt

and every ta ∈ TA provides the bundle with minimum
value w.r.t. τta allocated to any agent of type ta and label
ω in Gt.

• αmax : Ωt × TA → B is a function that for every ω ∈ Ωt

and every ta ∈ TA provides the bundle with maximum
value w.r.t. τta allocated to any agent with label ω in Gt.

• �u : Ωt → B is a function that for every label ω ∈ Ωt pro-
vides the bundle containing all items already assigned to
all agents with label ω in Gt. Note that the distinction be-
tween different labels is only necessary when considering
proportionality—for LEFA, it suffices to merely remem-
ber the bundle of all items assigned so far.

• (can be omitted for LEFA) β is a function that maps every
tuple (ω ∈ Ωt, ta ∈ TA) to (a,�b,�b+), where (informally)

a is an agent that maximizes the distance to satisfying pro-
portionality, �b is the bundle assigned to a, and �b+ is the
bundle containing all items assigned to all out-neighbors
of a in At.

The semantics of a record are as follows. We say that a
record (αmin, αmax, �u, β) for a node t ∈ V (T ) is valid if
there is an allocation π : At → 2R satisfying:
(R1) For every ω ∈ Ωt and ta ∈ TA, it holds that

αmin(ω, ta) = �b(π(a)), where a is an agent of type
ta with label ω minimizing τa(π(a)) among all agents
in Gt of type ta and label ω.

(R2) For every ω ∈ Ωt, ta ∈ TA, it holds that
αmax(ω, ta) = �b(π(a)), where a is an agent with label
ω in Gt maximizing τa(π(a)) among all agents with
label ω in Gt.

(R3) For every ω ∈ Ωt, it holds that �u(ω) = �b(π(Aω
t )).

(R4) π is locally envy-free on the instance induced by
the agents in At, i.e., for all a ∈ At, it holds that
τa(π(a)) ≥ τa(π(a

′)) for every a′ ∈ N+
G (a) ∩At,

(R5) This condition only applies for EFA, and is also the
most involved. For every ω ∈ Ωt, ta ∈ TA, it holds
that β(ω, ta) = (a,�ba,�b

+
a ), where a is an agent of type

ta with label ω in Gt that maximizes:

τta(R)− τta((π(a)))|A \N+
G (a)| − τta(π(N

+
Gt

(a)))

Note that in R5, the value of the equation equals the value
that is still required, i.e., still needs to be distributed among
the out-neighbors of a in Gt \At, for agent a to satisfy pro-
portionality. Since a maximizes the required value (among
all agents with label ω and type ta), this implies that once we
added sufficient value among the out-neighbors of a to sat-
isfy proportionality for a, all agents with label ω and type ta
satisfy proportionality. Also note that it would be sufficient
to only store the required value for a (instead of the triple
(a,�ba,�b

+
a )), however, then our algorithm would only be effi-

cient for instances with a unary encoding of the valuations.
For a node t ∈ V (T ) we denote by R(t) the set of all valid

records for t. Then I is a YES-instance if and only if R(r),
for the root r of T , contains a record (αmin, αmax, �u, β) such
that

∑
ω∈Ωr

�u(ω) = �b(R) and, for the case of EFA, addi-
tionally τta(R) − τta(

�ba)|A \ N+
G (a)| ≤ τta(

�b+a ), where
β(ω, ta) = (a,�ba,�b

+
a ) for every ω ∈ Ωt and every ta ∈ TA.

To conclude the proof, it now suffices to show how to com-
pute our records R(t) in a leaf-to-root fashion.
Lemma 12. Let 
 ∈ V (T ) be a leaf node of the form ω(a).
Then R(
) can be computed in time O(|B|).
Sketch of Proof. Let ta be the agent-type of a. Then, for ev-
ery αa ∈ B, R(t) contains the record (αmin, αmax, �u, β)
such that αmin(ω, ta) = αa, αmax(ω, ta) = αa, �u(ω) = αa,
and β(ω, ta) = (a, αa,�b(∅)).
Lemma 13. Let t ∈ V (T ) be a disjoint union node with
children t1 and t2. Then R(t) can be computed from R(t1)
and R(t2) in time O(|R(t1)||R(t2)|k|TA||TR|).
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Sketch of Proof. Informally, for every two records
(α1

min, α
1
max, �u

1, β1) ∈ R(t1) and (α2
min, α

2
max, �u

2, β2) ∈
R(t2), R(t) contains the record (αmin, αmax, �u, β)
such that (1) αmin(ω, ta) is equal to α1

min(ω, ta) if
α1
min(ω, ta) ≤ α2

min(ω, ta) or equal to α2
min(ω, ta), other-

wise, (2) the case for αmax(ω, ta) is similar to (1) only that
we now take the maximum, (3) �u(ω) = �u1(ω)+ �u2(ω), and
(4) β(ω, ta) is either equal to either β1(ω, ta) or β2(ω, ta)
depending on which of the associated agents requires more
to satisfy proportionality.

Lemma 14. Let t ∈ V (T ) be a relabeling node of the form
pi→j with child t′. Then R(t) can be computed from R(t′)
in time O(|R(t′)|k|TA||TR|).

Sketch of Proof. Informally, relabeling label i to label j can
be seen as taking the disjoint union of Gi

t and Gj
t and

leaving everything else untouched. Consequently, the main
complications for this case have already been addressed in
Lemma 13.

Lemma 15. Let t ∈ V (T ) be an add-edge node with child
t′ of the form ηi,j . Then R(t) can be computed from R(t′)
in time O(|R(t′)|k|TA||TR|).

Sketch of Proof. For every record (α′
min, α

′
max, �u

′, β′) ∈
R(t′) that for every ta ∈ TA satisfies τta(α

′
min(i, ta)) ≥

τta(α
′
max(j, ta)) (ensuring that no agent of label i en-

vies an agent of label j), R(t) contains the record
(αmin, αmax, �u, β) such that: αmin = α′

min, αmax = α′
max,

�u = �u′, and for every ω ∈ Ωt and ta ∈ TA, either:
β(ω, ta) = β′(ω, ta), if ω �= i, or β(ω, ta) = (a,�ba,�b

+
a +

�u(ω)), where β′(ω, ta) = (a,�ba,�b
+
a ), otherwise.

The proof of Theorem 11 now follows in a similar fashion
as the proof of Theorem 2 for treewidth.

Towards Fixed Parameter Tractability. Theorem 7
excludes the existence of a fixed-parameter algorithm for
(LOCALLY) ENVY-FREE ALLOCATION parameterized by
the treewidth and a number of additional parameters of the
instance under standard complexity assumptions. Hence it is
natural to consider more restrictive parameterizations of the
social network. Here we consider, as has been done for other
difficult problems (Fellows et al. 2008), the vertex cover
number as a stronger structural restriction.

By using the vertex cover number as our network (graph)
parameter, we obtain a fixed-parameter algorithm for (LO-
CALLY) ENVY-FREE ALLOCATION. Recall that, based on
Theorem 9, it is not possible to achieve tractability by re-
stricting the structure of the graph alone—and to achieve our
result, we parameterize by the number of item-types (analo-
gously as in Theorem 1) and additionally by the bundle-size;
here, the use of a stronger structural restriction allows us to
circumvent the lower bound given by Theorem 7.

Theorem 16. (LOCALLY) ENVY-FREE ALLOCATION is in
FPT parameterized by vertex cover number of the social net-
work, number of item-types, and bundle-size.

Proof. Let I = (A,R, (τa)a∈A, G) be an instance of (LO-
CALLY) ENVY-FREE ALLOCATION. It is well known that
we can compute a minimum-size vertex cover X ⊆ A of G
in FPT time w.r.t. the size of the vertex cover (Cygan et al.
2015). Note that because X is a vertex cover of G, for any
a ∈ A \X , N+

G (a) ⊆ X and N−
G (a) ⊆ X .

Obviously we can branch on disjoint assignments (up to
item-types) of at most k items to agents in X in time at most
|TR|k·vcn(G). Denote this partial assignment by π. In every
branch we attempt to extend π to A \X and make sure π is
a solution to (LOCALLY) ENVY-FREE ALLOCATION for I.

For each a ∈ X we can check local envy-freeness of π in
the current branch w.r.t to some other a′ ∈ X explicitly in
time |X|. (If it is violated, we abandon the current branch.)

Because for any a ∈ A \X , N+
G (a) ⊆ X , envy-freeness

at a only speaks about a and its preference of items assigned
to vertices in X . These are already fixed by π. We compute
(up to item-type) for each a ∈ A \ X all bundles Ra of at
most k elements such that τa(Ra) ≥ τa(π(x)) for all x ∈
N+

G (a) and τa(Ra) ≥ τa(R\π(N+
G (a)))

|A\N+
G (a)| in time |TR|k · |X|.

Denote these bundles by Ba. By construction, the conditions
for envy-freeness will be satisfied by π for a ∈ A\X , if and
only if π(a) ∈ Ba. Note that proportionality for agents in X
is not ensured by this.

It remains to find assignments for each a ∈ A \X to bun-
dles R′ ∈ Ba in a way that they are pairwise disjoint and
also disjoint to the fixed assignment of π on X , as well as
guaranteeing proportionality for X under this assignment,
in the case we are considering (non-locally) ENVY-FREE
ALLOCATION. We do so by considering an integer linear
program with a number of variables that we can bound in
terms of vcn(G), |TR| and k. For this we group the agents
a ∈ A \X according to their respective Ba. That is, we say
a, a′ ∈ A \ X are in the same group if Ba = Ba′ . Because
there are (up to item-type) at most |TR|k bundles of k items
and each Ba is a set of such bundles, the number of groups
can be bounded by 2|TR|·k. Let G1, . . .Gz with z ≤ 2|TR|·k
be an enumeration of all the groups of agents in A\X . By BG
we denote Ba for the agents a ∈ G in group G. Now for each
group G, each of its bundles RG ∈ BG and each X ′ ⊆ X ,
we introduce an integer variable xG,RG ,X′ that will encode
how many agents a ∈ G in group G with N−

G (a) = X ′ will
be assigned bundle RG up to item-types. We now solve the
integer linear program with the following constraints:

Integrality constraints: For G ∈ {G1, . . . ,Gz}, RG ∈ BG
and X ′ ⊆ X ,xG,R,X′ ∈ N0;

Network conformity constraints: For X ′ ⊆ X and G ∈
{G1, . . . ,Gz},

∑
RG∈BG xG,RG ,X′ = |(N+

G (X ′) \X) ∩ G|;

Resource constraints: For tr ∈ TR,∑

X′⊆X

∑

G∈{G1,...,Gz}

∑

RG∈BG

�b(RG)[tr] · xG,RG ,X′ +

�b(π(X))[tr] = �b(R)[tr];

Proportionality constraints: For a ∈ X ,∑

G∈{G1,...,Gz}

∑

RG∈BG

∑

X′⊆X\{a}
τa(RG) · xG,RG ,X′ ≤
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|A \N+
G (a)| · τa(π(a))−

∑

a′∈X\N+
G (a)

τa(π(a
′)).

One can easily see that a solution to (LOCALLY) ENVY-
FREE ALLOCATION for I infers a solution to the ILP and
conversely construct from a solution to the ILP an exten-
sion of π to A \ X such that π is a solution to (LOCALLY)
ENVY-FREE ALLOCATION for I. Lenstra’s celebrated re-
sult (1983) states that an ILP can be solved in FPT time
parameterized by the number of its variables which is in our
case 2|TR|·k|TR|k · 2vcn(G). This concludes the proof.

Concluding Remarks

We initiated the study of resource allocation problems with
social networks under natural restrictions to the networks
and valuation functions. Our main results are polynomial-
time algorithms for instances whose social networks have
bounded treewidth or clique-width.

For future work, it would be interesting to study resource
allocation problems without social networks parameterized
by the number of item-types and agent-types. For instance,
it is an interesting open question (which is also closely con-
nected to similar questions about BIN PACKING), whether
the envy-free versions of resource allocation are FPT when
parameterized by the number of item-types.
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gorithms for satisfiability problems for formulas of bounded
rank-width. Fundam. Inform. 123(1):59–76.
Ganian, R.; Ordyniak, S.; and Rahul, C. S. 2019. Group
activity selection with few agent types. In Proceedings of
ESA 2019. To appear.
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