

Applied Energy Symposium MIT A+B 2020

Co-organized with Harvard AUG 13 - 14, 2020 · MIT, Boston, USA

		_
1 mar 1		1. A .
1 A		
100		1.0

BUSINESS CASES OF FLEXIBILITY PROVISION OF ENERGY AGGREGATORS OPERATING IN MULTIPLE ENERGY MARKETS (EUROPEAN MARKET DESIGN)

Daniel Schwabeneder, Carlo Corinaldesi, Georg Lettner, Hans Auer Energy Economics Group (EEG) TU Wien

> 2020 MITAB Applied Energy Symposium Virtual Conference August 13-14, 2020

Motivation

- Electricity systems require flexibility for the integration of variable RES.
- The lack of market access and price signals leaves flexibility potential of residential technologies unused.
- Aggregators can provide market access by optimizing residential flexibility potential on different electricity markets.

European short-term electricity markets

United States	Europe
 Centralized unit commitment model by ISO Complex bids Co-optimization of balancing reserve and energy Locational marginal prices 	 Internal unit commitment by generators Simple bids Sequential balancing reserve markets (TSO) and energy markets (power exchanges) Zonal pricing

(Source: A. Botterud, H. Auer, Resource Adequacy with Increasing Shares of Wind and Solar Power: A Comparison of European and U.S. Electricity Market Designs, Economics of Energy & Environmental Policy 9 (2) (Apr. 2020), doi:10.5547/2160-5890.9.1.abot, http://www.iaee.org/en/publications/eeeparticle.aspx?id=329)

7/15/20

Markets considered in this work

Pay-as-bid pricing

Simulation strategy:

- 1) Daily day-ahead co-optimization of aFRR and day-ahead market bids based on expected prices and balancing activation probabilities (MILP)
- 2) Quarter-hourly simulation of balancing activations (e.g. historic, random or extreme cases)
- 3) Quarter-hourly simulation of intraday market trades to react on unexpected balancing activations (respecting the intraday market lead time)

Day-ahead optimization

JUMP julia

Daily rolling optimization minimizing expected cost on markets including other end user cost components:

$$min c_{dayahead} + c_{balancing} + c_{grid} + c_{fees} + c_{component}$$

subject to

- Balancing bid constraints
- Energy balance between technology operation and market bids
- Component-specific technical constraints
- Component-specific state-of-charge and power reserves for balancing market activations
- Component-specific Power reserves for potential intraday market reactions

Programmatically build optimization models for different technology portfolios:

- 1) Initialize model and expressions for aggregated market bids and total cost for the considered time frame.
- 2) For each component
 - 1) Initialize variables for technical operation, stateof-charge and market schedules.
 - 2) Add component-specific variables and cost to global model expressions.
 - 3) Add component-specific constraints.
- 3) Formulate objective from global model expressions and solve model. (Gurobi)
- 4) Update schedules for each component

Abstract Component Interface

- All component-specific steps and constraints are implemented generically in terms of 20 functions forming the Abstract Component Interface.
- They define default methods that can be overloaded for specific component types for the implementation of different technologies.

Function	D	Unit	Description
$s_{\max}^{in}(t)$	0	MW	Maximal consumption power
$s_{\min}^{\max}(t)$	0	MW	Minimal consumption power
$s_{\max}^{\text{out}}(t)$	0	MW	Maximal production power
$s_{\min}^{\text{out}}(t)$	0	MW	Minimal production power
$\eta^{\mathrm{in}}(t)$	1		Charging efficiency
$\eta^{\mathrm{out}}\left(t ight)$	1		Discharging efficiency
$\phi\left(t ight)$	1	MWh Unit	Conversion factor between MWh of electric energy and the
		Onit	energy unit in the storage
$\alpha\left(t ight)$	1	Bool	Availability
$\operatorname{soc}_{\max}(t)$	0	Unit	Maximal state-of-charge
$\operatorname{soc}_{\min}\left(t\right)$	0	Unit	Minimal state-of-charge
$\operatorname{soc}_{\operatorname{base}}(t)$	0	Unit	Base state-of-charge
$\operatorname{soc}_{\operatorname{start}}\left(ec{t} ight)$	0	Unit	Starting state-of-charge before the time steps in \vec{t}
$\operatorname{soc}_{\operatorname{stop}}(\vec{t})$	0	Unit	Minimal state-of-charge at the end of \vec{t}
$q_{\mathrm{ext}}\left(t ight)$	0	Unit	External storage input or output
$\lambda_{\mathrm{const}}\left(t ight)$	0	Unit h	Constant storage loss factor
$\lambda_{\mathrm{lin}}\left(t ight)$	0	$\frac{1}{h}$	Linear storage loss factor
$c^{\mathrm{in}}\left(t ight)$	0	$\frac{\mathrm{EUR}}{\mathrm{MWh}}$	Cost associated with consumption excluding market cost and tariffs
$c^{\mathrm{out}}\left(t\right)$	0	$\frac{\mathrm{EUR}}{\mathrm{MWh}}$	Cost associated with production excluding market cost and tariffs
$c_{\rm charge}^{\rm in}(t)$	0	EUR	Cost associated with charging
$c_{\text{charge}}^{\text{out}}\left(t\right)$	0	$\frac{EUR}{Unit}$	Cost associated with discharging

Julia's type system, multiple dispatch and generic programming provide a convenient and powerful toolbox to implement such modular generic interfaces.

More information: Stefan Karpinski, The Unreasonable Effectiveness of Multiple Dispatch, JuliaCon 2019, https://www.voutube.com/workb2v=kc0HwsvE1OV

https://www.youtube.com/watch?v=kc9HwsxE1OY

Use case description

Household configuration

Optimization strategies

- *Baseline* No price signals, technical optimization
- *Day-Ahead* Optimize for day-ahead market prices only

Balancing

Co-optimization of day-ahead and balancing market

Time periods (market prices)

- *Period 1* Oct 1, 2017 Sep 30, 2018
- *Period 2* Nov 1, 2018 Jun 30, 2018

Data for

- market prices,
- balancing market bids and activation probabilities,
- and measured data to calibrate the heat pump parameters

were kindly provided by project partners

- TIWAG (https://www.tiwag.at/en/)
- IDM (https://www.idm-energie.at/en/)

from the Flex+ project (https://www.flexplus.at/) funded by the Austrian Research Promotion Agency (FFG) and the Climate Energy Fund (grant No. 864996)

Single Household Results

Total cost components

- Significant cost reduction with Balancing optimization strategy
- Period 1 provided more economic potential on balancing markets.

Quantities traded on different markets

- Increase in net consumption with market
 optimization
- Mostly negative balancing market products with are chosen.

7/15/20

Contribution of different technologies

Simulate all 32 combinations of individual technologies either participating in market optimization or operating in Baseline mode and calculate the Shapley value.

Contribution to consumption increase

Highest contribution by battery in Balancing optimization strategy

Highest contribution to consumption increase by electric boiler in the Day-Ahead optimization strategy

Level of aggregation in the optimization

Single	Optimization on component level
Technical	Aggregation to component-specific pools
Local	Optimization in local energy management system
Global	Co-optimzation of all technologies

12

10

[kEUR]

cost

Total .

2

0

Day-ahead optimization strategy

Conclusions

- Market access (especially balancing market and day-ahead market co-optimization) can provide significant benefits for end users and aggregators.
- On balancing markets batteries provide the highest economic potential. Heat pumps and electric vehicles contribute the most to load-shifting on the day-ahead market.
- It is important to consider the total electricity bill including grid tariff cost, fees and surcharges in the market optimization to ensure economic benefits.
- Considering the intraday to balance unexpected balancing activations significantly increases the potential size of balancing market bids.

Future research:

- Analysis of tariff design options for flexibility bonus considering different end user supplier aggregator constellations.
- Consider forecast errors and use intraday market to balance them.
- Price-based optimization of intraday market balancing.

Icons from the Noun Project https://thenounproject.com/ were used.

Icon	Creator
Air Heat Pump	Saeful Muslim
Battery	maspao
Boiler	Adib Muhammad
Cloud	Storm Icons
Electric Car	Stanislav Levin
Electricity Bill	Silviu Ojog
Smart Home	Berkah Icon
Solar Panel	Luis Prado
Supply and Demand Graph	Alicia Kranjc

Daniel Schwabeneder

TU Wien Institute of Energy Systems and Electrical Drives Energy Economics Group

> Gußhausstraße 25-29 / E370-3 1040 Vienna, Austria

+43 1 58801 370 375 schwabeneder@eeg.tuwien.ac.at https://www.eeg.tuwien.ac.at