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Abstract. Explicit theory axioms are added by a saturation-based the-
orem prover as one of the techniques for supporting theory reasoning.
While simple and effective, adding theory axioms can also pollute the
search space with many irrelevant consequences. As a result, the prover
often gets lost in parts of the search space where the chance to find a
proof is low. In this paper, we describe a new strategy for controlling the
amount of reasoning with explicit theory axioms. The strategy refines a
recently proposed two-layer-queue clause selection and combines it with
a heuristic measure of the amount of theory reasoning in the derivation
of a clause. We implemented the new strategy in the automatic theorem
prover Vampire and present an evaluation showing that our work dra-
matically improves the state-of-the-art clause-selection strategy in the
presence of theory axioms.

1 Introduction

Thanks to recent advances, saturation-based theorem provers are increasingly
used to reason about problems requiring quantified theory-reasoning [4,6]. One
of the standard techniques to enable such reasoning is to automatically add
first-order axiomatisations of theories detected in the input [14,18]. For exam-
ple, (incomplete) axiomatisations of integer and real arithmetic or McCarthy’s
axioms of the theory of arrays [15] are routinely used. While this simple tech-
nique is often effective, we observed (see also [21]) two problems inherent to
the solution: First, explicit axioms blow up the search space in the sense that a
huge amount of consequences can additionally be generated. This happens since
theory axioms are often repeatedly combined with certain clauses or among
themselves, effectively creating cyclic patterns in the derivation. Most of these
consequences would immediately be classified as practically useless by humans.
Second, many of the resulting consequences have small weight. This has the
unfortunate effect that the age-weight clause selection heuristic [16], predomi-
nantly used by saturation-based theorem provers for guiding the exploration of
the search-space, often selects these theory-focused consequences. This way the
prover is getting lost in parts of the search space where the chance of finding a
proof is low.
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In this paper, we propose to limit the exploration of theory-focused conse-
quences by extending clause selection to take into account the amount of the-
ory reasoning in the derivation of a clause. Our solution consists of two parts.
First, we propose an efficiently computable feature of clauses, which we call th-
distance, that measures the amount of theory reasoning in the derivation of a
clause (Sect. 3). Second, we turn to the general problem of incorporating a feature
to a clause selection strategy. There has been an ongoing interest in this prob-
lem [24,25,28]. We take inspiration from the layered clause selection approach
presented in [28] and introduce the refined notion of multi-split queues, which
present a principled solution to the incorporation problem (Sect. 2). We finally
obtain a clause selection strategy for theory reasoning by instantiating multi-
split queues with the feature th-distance. We implemented the resulting clause
selection in the state-of-the-art saturation-based theorem prover Vampire [14],
and evaluate its benefits on a relevant subset of the smt-lib benchmark (Sect. 4).

Related Work. There are different approaches to adding support for theory
reasoning to saturation-based theorem provers, either by extending the prover’s
inference system with dedicated inference rules [2,10,12,13] or using even more
fundamental design changes [1,7,20,22]. While such solutions can result in very
efficient reasoning procedures, their development is incredibly challenging and
their implementation is a huge effort. As a result, only a few theories are covered
by such approaches, in contrast to our technique, which applies to arbitrary the-
ories. In particular, our technique can be used by non-experts on custom theory-
domains coming from applications for which no dedicated solution exists. Our
work has similar motivation to [21], where the authors use the set-of-support
strategy [30] to limit the amount of reasoning performed with pure theory conse-
quences. However, unlike our technique, they do not impose any limit on clauses
whose derivation contains at least one non-theory-axiom.

Contributions. The summarized contributions of this paper are:

– A new approach for building clause selection strategies from clause features,
based on multi-split queues.

– A new clause selection strategy for theory reasoning based on the instantiation
of multi-split queues with the th-distance-feature measuring the amount of
theory reasoning in the derivation of a clause. Our solution applies to arbitrary
theories and does not require fundamental changes to the implementation of
clause selection.

– An implementation of the introduced clause selection strategy in the state-
of-the-art theorem prover Vampire.

– An experimental evaluation confirming the effectiveness of the technique, by
improving on the existing heuristics by up to 37 % on a relevant set of bench-
marks.
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2 Layered Clause Selection

We assume the reader to be familiar with the saturation-based theorem proving
technology (see, e.g. [3,17]) and, in particular, with clause selection, the pro-
cedure for deciding, at each iteration of a saturation algorithm, which of the
currently passive clauses to next select for activation, i.e. for participation in
inferences with the previously activated clauses. To agree on terminology, we
start this section by recalling clause selection by age and weight. We then move
on to explaining layered clause selection.

The two most important features of a clause for clause selection are 1) its
age, typically implemented using an ever-increasing “date of birth” timestamp,
and 2) weight, which refers to the number of symbols occurring in the clause. A
theorem prover prefers to select clauses that are old, which implicitly corresponds
to a breadth-first search strategy, and clauses that are light, which is a form of
best-first search (clauses with few symbols are cheaper to process, tend to be
stronger simplifiers, and are intuitively closer to the ultimate target, the empty
clause). In practice, the best performance is achieved by combining these two
criteria [16,25]. This is achieved by storing the passive clauses in two queues,
one sorted by age and the other by weight, and setting a ratio to specify how
the selection alternates between picking from these two queues.

Layered Selection. In the system description of GKC [28], Tammet describes
an idea of using two layers of queues to organise clause selection. The first layer
relies on the just-described combination of selection by age and weight. In the
second layer, clauses are split into disjoint groups using a certain property (e.g.,
“being derived from the goal or not” could define two groups), each group is rep-
resented by two sub-queues of the first layer, and the decision from which group
to select the next clause is dictated by a new second-layer ratio. Although Tam-
met does not expand much on the insights behind using the layered approach,
he reports it highly beneficial for the performance of GKC. In our understand-
ing, the additional layer (in principle, there could be more than two) provides a
clean way of incorporating into clause selection a new notion of what a preferred
clause should be, without a priori disturbing the already established and tuned
primary approach, such as selection by age and weight.1

Our preliminary experiments with the idea (instantiated with the derived-
from-the-goal property) found it useful, but not as powerful as other goal-
directed heuristics in Vampire. In particular, finding a universally good ratio
between the “good” clauses and the “bad” ones seemed hard. What we propose
here instead (and what also led in our experiment to a greater performance gain)
is to instead organise the clauses into groups with “good” ones and “all”. Here
the second group contains all the passive clauses and essentially represents a
fallback to the original single-layer strategy. The advantage of this new take on
layered selection is that a bad clause is only selected if 1) it is time to try a bad

1 A known alternative [25] is to adapt the formula for computing weight to include a
term for penalising bad clauses and still rely on selection by age and this new refined
notion of weight. (See also the non-goal weight coefficient in [27].).
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clause according to the second-layer ratio and 2) the best bad clause is also the
current overall best according to the age-weight perspective. This makes picking
a good second-layer ratio much easier. In particular, one can “smoothly” move
(by changing the second-layer ratio) from a high preference for the “all” second-
layer queue towards selecting more “good” clauses without necessarily having to
select any “bad” ones.

Multi-split Queues. We propose multi-split queues to realize layered selection
with second layer groups defined by a real-valued clause feature.

Definition 1. Let μ be a real-valued clause evaluation feature such that prefer-
able clauses have low value of μ(C). Let the cutoffs c1, . . . , ck be monotonically
increasing real numbers with ck = ∞, and let the ratio r1 : . . . : rk be a list of
positive integer values. These together determine a layered selection scheme with
k groups Ci = {C|μ(C) ≤ ci} for i = 1, . . . , k, such that we select from the i-th
group with a frequency ri/(Σk

j=1rj).

It is easy to see that multi-split queues generalise the binary “good” vs “all”
arrangement, since, thanks to monotonicity of the cutoffs, we have Ci ⊆ Ci+1.
Moreover, since ck = ∞, Ck will contain all the passive clauses.

3 Theory Part

In this section, we instantiate the idea of multi-split queues from Sect. 2 with a
concrete clause evaluation feature, which measures the amount of theory reason-
ing in the derivation of a clause. We assume that the initial clauses given to the
saturation algorithm, which we simply refer to as axioms, consists of non-theory
axioms obtained by classifying the input problem and theory axioms added to
facilitate theory reasoning.

We start by defining the fraction of theory reasoning in the derivation of a
general clause. This relies on counting the number of theory axioms, resp. the
number of all axioms, in the derivation-tree using running sums.

Definition 2. For a theory axiom C, define both thAx (C) and allAx (C) as
1. For a non-theory axiom C, define thAx (C) as 0 and allAx (C) as 1. For a
derived clause C with parent clauses C1, . . . , Cn, define thAx (C) as

∑
i thAx (Ci)

and allAx (C) as
∑

i allAx (Ci). Finally, we set frac(C) := thAx (C)/allAx (C).

Assume now that for a given problem we expect (based on domain knowledge
and experience) the fraction of theory reasoning in the final refutation frac(⊥) to
be at most 1/d, for a positive integer d. Our clause evaluation feature th-distance
measures how much frac(C) exceeds the expected “maximally allowed” fraction
1/d. More precisely, th-distance counts the number of non-theory axioms which
the derivation of C would additionally need to contain to achieve a ratio 1/d.

Definition 3. The th-distance : Clauses → N is defined as

th − distance(C) := max(thAx (C) · d − allAx (C), 0).
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Our heuristic is based on the idea that a clause with small th-distance is
more likely to contribute to the refutation than a clause with high th-distance.
We therefore want to ensure that clause selection focuses on selecting clauses C
with a low value th-distance(C). We realize this with the multi-split queues (see
Sect. 2), instantiating the clause evaluation feature μ by th-distance, resulting
in a second layer clause selection strategy with parameters d, c1, . . . , ck and
r1 : . . . : rk.

4 Experiments

We implemented the heuristic described in Sect. 3 in Vampire (version 4.4).
Our newly added implementation consists of about 900 lines of C++ code and
is compatible with both the LRS saturation algorithm [23] and Avatar [29].

For evaluation, we used the following subset of the most recent version (as of
January 2020) of SMTLIB [5]: We took all the problems from the sub-logics that
contain quantification and theories, such as LIA, LRA, NRA, ALIA, UFDT, . . .
except for those requiring bit-vector (BV) or floating-point (FP) reasoning, cur-
rently not supported by Vampire. Subsequently, we excluded problems known
to be satisfiable and those that were provable using Vampire’s default strategy
in 10 s either without adding theory axioms or while performing clause selection
by age only. This way, we obtained 20 795 problems.2

Table 1. Comparing clause selection strategies on Vampire’s default configuration.

Strategy d-value Cutoffs Ratio Refuted Δbase Δbase%

default – – – 886 0 0.0

layered2 10 23, ∞ 33:8 1112 226 25.5

layered3 7 0, 30, ∞ 16:8:1 1170 284 32.1

layered4 8 16, 41, 59, ∞ 84:9:2:2 1176 290 32.7

As a first experiment, we compared the number of problems solved in 10 s
by the default strategy3 and its various extensions by multi-split queues defined
in Sect. 3.4 The d-value, cutoffs and ratio values for the heuristic were selected
by educated guessing and randomised hill-climbing. Table 1 lists results of the
best obtained configurations. It can be seen that already with two second layer
queues a substantial improvement of 25.5% over the default is achieved. More-
over, while it is increasingly more difficult to choose good values for the many
parameters defining a configuration with multiple queues, their use further sig-
nificantly improves the number of problems solved.
2 A list of the selected problems along with other information needed to reproduce

our experiments can be found at https://git.io/JvqhP.
3 The default strategy uses Avatar [29], the LRS saturation algorithm [23] and an

age-weight ratio of 1:1.
4 The experiment was run on our local server with Intel Xeon 2.3 GHz processors.

https://git.io/JvqhP
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Table 2. Comparing clause selection strategies on Vampire’s portfolio configuration.

Strategy d-value Cutoffs Ratio Refuted Uniques

SMTCOMP2019 – – – 5479 194

SMTCOMP2019+layered4 8 16, 41, 59, ∞ 84:9:2:2 5629 344

In a second experiment,5 we ran Vampire’s strategy schedule for SMTCOMP
2019 [11] on our problems and also the same schedule additionally imposing the
most successful second-layer clause selection scheme layered4 from the first
experiment. The time limit was 500 s per problem. Table 2 shows the results.

We can see that the version with second-layer queues improved over the
standard schedule by 150 solved problems. This is a very significant result, sug-
gesting the achieved control of theory reasoning is incredibly helpful. Moreover,
one should keep in mind that strategies in a schedule are carefully selected to
complement each other and even locally good changes in the strategies often
destroy this complementarity (cf., e.g., [19,21]). In our case, however, we achieve
an improvement despite this looming negative effect. Finally, it is very likely
that a new schedule, constructed while taking our new technique into account,
will be able to additionally cover some of the 194 problems currently only solved
by the unaltered schedule.

5 Conclusion

We introduced a new clause selection heuristic for reasoning in the presence of
explicit theory axioms. The heuristic is based on the combination of multi-split
queues and a new clause-feature measuring the amount of theory reasoning in the
derivation of a clause. Our experiments show that the new heuristic significantly
improves the existing state-of-the-art clause selection strategy. As future work,
we want to extend layered clause selection with new clause-features and combine
it with the machine-learning-based approach in the style of ENIGMA [8].
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25. Schulz, S., Möhrmann, M.: Performance of clause selection heuristics for saturation-
based theorem proving. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS
(LNAI), vol. 9706, pp. 330–345. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40229-1 23

26. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec, a cross community logic solving
service (2012). https://www.starexec.org

27. Suda, M.: Aiming for the goal with SInE. In: Kovacs, L., Voronkov, A. (eds.)
Vampire 2018 and Vampire 2019. The 5th and 6th Vampire Workshops. EPiC
Series in Computing, vol. 71, pp. 38–44. EasyChair (2020)

28. Tammet, T.: GKC: a reasoning system for large knowledge bases. In: Fontaine [9],
pp. 538–549

29. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9 46

30. Wos, L., Robinson, G.A., Carson, D.F.: Efficiency and completeness of the set of
support strategy in theorem proving. J. ACM 12(4), 536–541 (1965)

https://doi.org/10.1007/978-3-319-89960-2_1
https://doi.org/10.1007/978-3-319-89960-2_1
https://doi.org/10.1007/978-3-319-40229-1_23
https://doi.org/10.1007/978-3-319-40229-1_23
https://www.starexec.org
https://doi.org/10.1007/978-3-319-08867-9_46

	Layered Clause Selection for Theory Reasoning
	1 Introduction
	2 Layered Clause Selection
	3 Theory Part
	4 Experiments
	5 Conclusion
	References




