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Abstract
In this paper, we revisit the performance of the α-synchronizer in distributed systems with
probabilistic message loss as introduced in Függer et al. [Perf. Eval. 93(2015)]. In sharp
contrast to the infinite-state Markov chain resp. the exponential-size finite-state upper bound
presented in the original paper, we introduce a polynomial-size finite-state Markov chain
for a new synchronizer variant α′, which provides a new upper bound on the performance
of the α-synchronizer. Both analytic and simulation results show that our new upper bound
is strictly better than the existing one. Moreover, we show that a modified version of the α′-
synchronizer provides a lower bound on the performance of the α-synchronizer. By means
of elaborate simulation results, we show that our new lower bound is also strictly better than
the lower bound presented in the original paper.

Keywords Distributed systems · Synchronizer · Performance analysis ·
Probabilistic message loss · Markov chain

Mathematics Subject Classification (2010) 60J20 · 60J10 · 68Q87 · 68W15

1 Introduction

Simulating synchronous executions in a distributed message-passing system is a well-
known and powerful design approach. Synchronizers like the well-known α-synchronizer
by Awerbuch (Awerbuch 1985) allow to establish a virtual (lock-step) round structure,
which greatly simplifies the design of higher-level distributed algorithms. Moreover, it
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makes it easy to reason about the time complexity of an atop-running algorithm, which is
just the number of rounds needed until termination.

The underlying idea of the α-synchronizer is to let processes continuously exchange
round numbers and to allow a process to proceed to the next round only after it has witnessed
that all processes have already started the current round.

Given the exploding number of distributed systems that are interconnected by wire-
less networks, ranging from Bluetooth over WLANs to 4G/5G broadband communication,
the question of simulating synchronous executions in such systems arises. Unfortunately,
though, the communication properties of a wireless link are typically unstable and highly
time-variant (Cerpa et al. 2005b), due to limited transmission ranges, near-far problems
(Ware et al. 2000), fading (Schilcher et al. 2012), interference (Fussen et al. 2005) and
other phenomenons. There is hence no alternative to statistical modeling lossy links, which
has been done in various different models, for simple sensor networks (Cerpa et al. 2005a)
to elaborate signal-to-interference-plus-noise (SINR) ratio (Dousse et al. 2005) and even
fading models (Bettstetter and Hartmann 2005; Schilcher et al. 2016). Most of this work
focuses on individual links; some papers also deal with broadcasting protocols (Clementi
et al. 2007).

We use a very simple model based on these results, which just assumes independent
and identically distributed message loss per communication link. A similar assumption
also underlies the edge-Markovian model (Clementi et al. 2008). It is appealing because
of tractability and, despite its simplicity, not unreasonable in practice, at it provides (prob-
abilistic) lower bounds on the performance of real networks for suitably chosen message
loss probabilities. We note that, depending on the type of the underlying wireless network,
both a constant value of p and a value that decreases with the number N of participants
may make sense here: In wireless networks where a collision, i.e., a simultaneous attempt
of two senders to broadcast a message at the same time, may lead to the destruction of
both messages, some form of transmission scheduling needs to applied. Maximizing the
overall throughput or similar performance measures in such networks (Gupta and Kumar
2000) requires to reduce the sending probability, and hence also p, down to something like
1/ logN or even 1/N , see e.g. Moscibroda and Wattenhofer (2006) for more information.

In Függer et al. (2015), Függer et. al. analyzed the expected round duration of the α-
synchronizer in a synchronous distributed system of N processes that execute in lock-step
unit-time rounds in such a model. The model just assumes that every message sent from pro-
cess i to process j in a roundmaybe lostwith some fixed probability 1−p. The expected round
duration is crucial for determining the running time of a synchronous distributed algorithm
running atop of the α-synchronizer: its expected value is just the time complexity of the
algorithm (measured in rounds, as already mentioned) times the expected round duration.

It turned out that the operation of the α-synchronizer, and variants thereof that sometimes
forget part of their state, in such a system can be modeled by an infinite-state Markov chain.
Whereas (Függer et al. 2015) also provided a reduction to a finite-state Markov chain, it has
a state space that is exponential in the number of processes in the system, however. Owing
to the inherent complexity involved in the numerical or analytical solution of this chain,
the authors had to resort to coarse lower and upper bounds for analyzing the synchronizer
performance, in particular, the expected duration of a synchronized round.

Main results:

(1) We provide a synchronizer α′ and show that it provides an upper bound on the
performance of the α-synchronizer.
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(2) We prove analytically that the upper bound guaranteed by α′ is not worse than the
exponential-size upper bound presented in Függer et al. (2015), and strictly better
for p → 0. These results are backed-up by simulation results, which show that the
accuracy of the approximation of the expected round duration of α provided by our
new upper bound is considerably better than the original one.

(3) We model α′ by a finite-state Markov chain, which has only polynomial state space.
(4) We provide a variant of our α′-synchronizer, and prove that it provides a lower bound

for the performance of α. Albeit its complexity did not allow us to find an analytical
proof, we demonstrate by means of elaborate simulations that our new upper bound
better approximates the expected round duration of α than the existing lower bound
from Függer et al. (2015).

These results also contribute to a better understanding of the Markov chain underlying the
original problem, which may eventually pave the way to computationally more efficiently
computable bounds.

Related work Early work on synchronizer performance in probabilistic systems consid-
ered varying message delays and computation times: Bertsekas and Tsitsiklis (1989) proved
performance bounds for the case of constant processing times and exponentially distributed
message delays on communication links without message loss.

This model has been augmented by exponentially distributed processing times in Rajs-
baum (1994a). On the other hand, Rajsbaum and Sidi (1994b) analyzed synchronizer
performance in the case of exponentially distributed processing times and negligible
transmission delays.

In contrast to the above work, we assume bounded message delays. Varying delays
between sending and successfully receiving a message are due to message loss and repeated
retransmission. The performance of the α-synchronizer in certain lossy environments has
been considered by Nowak et al. (2013). The authors calculated the expected round dura-
tion of a retransmission-based synchronizer in systems, where every message is successfully
transmitted with constant probability p, subject to the additional constraint that a mes-
sage that was retransmitted at least M times is guaranteed to arrive. Nowak et al. (2013)
assumed M to be finite, however, which Függer et al. (2015) (and we) do not.

The dominant computational complexity in solving Markov chains like the ones arising
in Függer et al. (2015) is due to calculating the steady states. Instead of exactly determin-
ing those, there exist also techniques that allow to just sample the steady state: However,
while standard simulation techniques allow to sample the Markov chain’s state at some
time t = T , there is no guarantee that these samples resemble the distribution of the
steady state for t → ∞. By contrast, Propp and Wilson (1996) proposed backward cou-
pling techniques to obtain exact steady state samples for Markov chains. In the case of
monotonic Markov chains, these techniques are computationally efficient. Unfortunately,
while our infinite state Markov chains are monotonic, our reduced finite chains are not.
Their method thus requires to explore the complete finite state space, rendering this method
computationally infeasible.

Paper organization Section 2 introduces our system model and the performance measure
of interest, as well as the α-synchronizer and its corresponding Markov chain. In Section 3,
we introduce our novel upper bound α′-synchronizer and its Markov chain; Section 3.3
shows that it indeed provides an upper bound for the α-synchronizer, Section 3.4 evaluates
the asymptotics for p → 0, and in Section 3.5 we compare this bound with the existing
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upper bound. Section 4 finally provides a modification of the α′-synchronizer and the proof
that it indeed provides a lower bound for the performance of the α-synchronizer. The paper
is rounded off in Section 5 by our simulation results, a discussion of our findings, and some
future work; a glossary of our notation is appended in Section 6.

2 Model of the Synchronizer

2.1 SystemModel and Algorithm

In this paper, we study the performance of the α-synchronizer (Awerbuch 1985) running
in a fully-connected message passing system with processes 1, 2, . . . , N . Processes take
steps simultaneously at all integral times t ≥ 0, but messages may be lost with some fixed
probability 1 − p. Messages that do arrive have a transmission delay of 1, i.e., a message
sent at time t arrives at time t + 1, or not at all. A step consists in (a) receiving messages
from other processes, (b) performing local computations, and (c) broadcasting a message to
the other processes.

The synchronizer has two local variables, specified for every process i at time t : The local
round number Ri(t) and the knowledge vector

(
Ki,1(t), Ki,2(t), . . . , Ki,N (t)

)
. Processes

broadcast their local round number Ri(t) in every step t . The knowledge vector contains
information on other processes’ local round numbers, accumulated via received messages.
A process increments its local round number, and thereby starts the next round in step (t+1),
after it has gained knowledge that all other processes have already started the current round
by step t . This round increment rule hence assures a precision of 1, i.e., |Ri(t)−Rj (t)| ≤ 1
for all t . We write R(t) = mini Ri(t) and call it the global round number at time t . When
R(t) increases, we say a global round switch occurs.

Formally, let (P(t))t∈N∗ be a sequence of (N × N )-matrices whose entries are pairwise
independent random variables with

P
(
Pi,j (t) = 1

) = p if i 	= j and P
(
Pi,i (t) = 1

) = 1 , (1)

where Pi,j (t + 1) = 0 means that process j ’s message to process i sent at time t via
channel (i, j) was lost, and Pi,j (t + 1) = 1 that it arrives (at time t + 1). Therefore we
call the parameter p the probability of successful transmission. Note that in our notation of
a channel, process j is the sender and process i is the receiver, i.e., the channel (i, j) leads
from j to i. Moreover, row i in P(t) corresponds to the point of view of the receiver i.

Initially, Ri(0) = 0 and Ki,j (0) = −1 (i.e., no messages are received at time 0).
At every time step t ≥ 1, process i’s computation consists of the following:

1. Update knowledge according to received messages:Ki,j (t) ← Rj (t−1) ifPi,j (t) = 1,
and Ki,j (t) ← Ki,j (t − 1) otherwise.

2. Increment round number if possible: Ri(t) ← Ri(t − 1) + 1 if Ki,j (t) ≥ Ri(t − 1) for
all j , and Ri(t) ← Ri(t − 1) otherwise.

In the remainder of this paper, when we refer to Ki,j (t) and Ri(t), we mean its value after
step (2).

Figure 1 shows part of an execution of the α-synchronizer. Times are labeled t0 to t10.
Processes 1 and 3 start their local round r at time t4 while process 2 has already started its
local round r at time t3. The arrows in the figure indicate the time until the first successful
reception of a message sent in round r: The tail of the arrow is located at time t a process i
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Fig. 1 An execution of the synchronizer

starts round r and thus broadcasts r for the first time. The head of the arrow marks the small-
est time after t at which a process j receives a message from i. Messages from processes to
themselves are always received at the next time step and thus are not explicitly shown in the
figure. For example, processes 1 and 3 start round r at time t4 sending r for the first time.
While process 2 receives the message from 3 in the next step, it needs an overall amount of
4 time steps and consecutive retransmissions to receive a message from process 1 at time t8.

2.2 PerformanceMeasure

For a system with N processes and probability p of successful transmission, we define the
expected round duration of process i by λi(N, p) = E limt→∞ t/Ri(t). Since our synchro-
nization algorithm guarantees precision 1, it directly follows that λi(N, p) = λj (N, p) for
any two processes i and j . We will henceforth refer to this common value as λ(N, p), or
simply λ if the choice of parameters N and p is clear from the context.

2.3 Markov Chain and Definitions

The α-synchronizer can easily be modeled as a Markov chain (see Függer et al. (2015)
for details): Let A(t) be the sequence of matrices with Ai,i(t) = Ri(t) and Ai,j (t) =
Ki,j (t) for i 	= j . It is easy to see that A(t) is a Markov chain, i.e., the distribution of
A(t +1) depends only on A(t). Since both Ri(t) and Ki,j (t) are unbounded, the state space
of Markov chain A(t) is infinite.

We therefore introduce the sequence of normalized states a(t), defined by a(t) = A(t)−
mink Ak,k(t).

Normalized states belong to the finite set {−1, 0, 1}N×N . This is still a Markov chain.
Clearly, the computation steps defined above can be translated directly in terms of A(t)

and a(t): For A(t) they read

1. Update knowledge according to received messages: For j 	= i: Ai,j (t) ← Aj,j (t − 1)
if Pi,j (t) = 1, and Ai,j (t) ← Ai,j (t − 1) otherwise.

2. Increment round number if possible: Ai,i(t) ← Ai,i(t − 1) + 1 if Ai,j (t) ≥ Ai,i(t − 1)
for all j 	= i, and Ai,i(t) ← Ai,i(t − 1) otherwise.

For a(t) we have the following:

1. Update knowledge according to received messages: For j 	= i: ai,j (t) ← aj,j (t − 1)
if Pi,j (t) = 1, and ai,j (t) ← ai,j (t − 1) otherwise.

2. Increment round number if possible: ai,i (t) ← ai,i (t − 1) + 1 if ai,j (t) ≥ ai,i(t − 1)
for all j 	= i, and ai,i (t) ← ai,i (t − 1) otherwise.

3. Normalizing: ai,j (t) ← ai,j (t) − 1 ∀i, j if min1≤k≤N ak,k(t) = 1.
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In the following, we will switch between these representations as needed. For simplic-
ity, when we extend the computation steps later on, we will do it for only one of these
representations since the adaptations are straightforward.

As before, A(t) resp. a(t) refer to the values at the end of time step t (here: after step (2)
resp. (3)). If we need to specifically refer to the values after step (i) (i ∈ {1, 2, 3}), we
denote this matrices by A(i)(t) and a(i)(t). Moreover, let md(i)(t) denote the minimum of
the diagonal of A(i)(t) and w(i)(t) the number of md(i)-entries in the diagonal of A(i)(t).

A channel is called relevant (in a(t) resp. A(t)) if a successfully transmitted message on
this channel in P(t + 1) would increase knowledge (in a(t + 1) resp. A(t + 1)). Similarly,
a message is called relevant if its arrival would increase knowledge.

We call a processes i an r-process in state a(t) (or A(t)) if ai,i (t) = r (or Ai,i(t) = r).

Example 1 To illustrate the two Markov chains defined above, we give the following
example:

t: 0 1 2 3 4

A(t):

⎛

⎜
⎜
⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

0 −1 0

−1 0 0

0 0 1

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 0 1

0 1 0

0 0 1

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

2 1 1

1 2 1

1 0 1

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

2 2 1

1 2 1

1 2 2

⎞

⎟
⎟
⎟
⎠

→ · · ·

P(t):

⎛

⎜⎜⎜
⎝

1 0 1

0 1 1

1 1 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 1 1

1 1 0

0 1 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 1 0

1 1 1

1 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 1 0

0 1 1

0 1 1

⎞

⎟⎟⎟
⎠

→ · · ·

a(t):

⎛

⎜⎜⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

0 −1 0

−1 0 0

0 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

0 −1 0

−1 0 −1

−1 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 0 0

0 1 0

0 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

0 0 −1

−1 0 −1

−1 0 0

⎞

⎟⎟⎟
⎠

→ · · ·

At time t = 0 all channels are relevant, at time t = 1 the relevant channels (messages)
are (1, 2), (1, 3), (2, 3) and (2, 1), whereas at t = 3 we have (1, 2), (2, 1), (3, 1), and (3, 2)
as relevant messages.

Global round switches occur at times t = 2 and t = 4.
In a(t), at times t ∈ {0, 2, 4}we have three 0-processes, at t = 1 we have two 0-processes

and one 1-process, and at time t = 3 we have one 0-process and two 1-processes.

Since it is very expensive to calculate the expected round duration based on this Markov
chain, Függer et al. (2015) presented easy computable but quite conservative upper and
lower bounds. The main purpose of this paper is to develop a new upper bound approxi-
mation, which will be shown both analytically and by means of simulations to improve the
known upper bound. It will also be stated as a Markov chain and therefore still expensive to
calculate, but reduces the state space from exponential to polynomial size in N .

3 New Upper Bound

3.1 Algorithm of our Upper Bound

We will now present the algorithm that generates our new upper bound, which will be called
the α′-synchronizer. The main idea is to insert a reordering step between steps (1) and (2) of
the computation, which reorders the entries in the matrix a(t) in such a way that generating
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1-entries in the diagonal is avoided as long as possible. Roughly speaking, we take all non-
diagonal entries of the matrix, sort them in descending order of their value, and fill them in
column by column.

Formally, we introduce a step (1a) after updating the knowledge:

(1a) Reordering of the knowledge: Let (ki)
n(n−1)
i=1 be a decreasing sorting of the multiset

{A(1)
i,j (t) : i 	= j}. Now fill in this sequence into the matrix column by column

(omitting the diagonal) until position (N − 2, N − 1) has been filled. Then go to
(1, N) and fill the last column. Finally, fill position (N,N − 1).

However, in order to be able to prove that this indeed results in an upper bound, we slightly
need to modify the above simple strategy of updating the knowledge to slow down the
synchronizer even further: If we are in a state with exactly one r-process i [and (N − 1)
(r + 1)-processes], then some of i’s (r − 1)-knowledge will be updated to an r-knowledge,
rather than to the (r +1)-knowledge sent [by one of the other (r +1) processes] if i switches
to an (r +1)-process in step (2). This can be implemented into our algorithm by introducing
an additional step (3):

(3) If w(2)(t) − w(2)(t − 1) = N − 1, then replace the last non-diagonal md(2)(t)-entry
(according to our filling rule) by md(2)(t) − 1.

Step (1a) means one fills in the 1s first, then the 0s, and finally the (−1)s. For example if
we have a (4 × 4)-matrix then the matrix is filled up in the following order as stated in the
matrix S below. On the right-hand side we give an example of reordering a matrix resulting
from computation step (1) and incrementing round numbers afterwards. Note that due to
the reordering 1-processes will be on the top of the matrix and 0-processes on the bottom.

S =
4 7 9

1 8 10
2 5 11
3 6 12

⎛

⎜⎜
⎝

0 −1 0 0
−1 0 0 −1
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠

(1a)→

⎛

⎜⎜
⎝

0 0 0 0
0 0 0 −1
0 0 0 −1
0 0 −1 0

⎞

⎟⎟
⎠

(2)→

⎛

⎜⎜
⎝

1 0 0 0
0 0 0 −1
0 0 0 −1
0 0 −1 0

⎞

⎟⎟
⎠

Note that in this example reordering indeed has an effect: Without reordering processes 3
and 4 would become 1-processes whereas now only process 1 is a 1-process.

Example 2 This example illustrates the α′-synchronizer and compares it to the α-
synchronizer:

t: 0 1 2 3 4

a(t):

⎛

⎜⎜
⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

0 −1 0

−1 0 0

0 0 1

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

0 −1 0

−1 0 −1

−1 −1 0

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

1 0 0

0 1 0

0 −1 0

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

0 0 −1

−1 0 −1

−1 0 0

⎞

⎟⎟
⎟
⎠

→ · · ·

P(t):

⎛

⎜⎜
⎜
⎝

1 0 1

0 1 1

1 1 1

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

1 1 1

1 1 0

0 1 1

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

1 1 0

1 1 1

1 0 1

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

1 1 0

0 1 1

0 1 1

⎞

⎟⎟
⎟
⎠

→ · · ·

a′(t):

⎛

⎜
⎜
⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 0 0

0 0 −1

0 −1 0

⎞

⎟⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 0 0

1 1 0

0 −1 0

⎞

⎟⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 1 0

1 1 0

1 −1 0

⎞

⎟⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

0 0 −1

0 0 −1

0 −1 0

⎞

⎟⎟
⎟
⎠

→ · · ·

Here the α-synchronizer does two global round steps (at times t = 2 and t = 4), but the
α′-synchronizer only does one (at t = 4). So the α′-synchronizer is indeed slower than the
original α-synchronizer. We will see later on, however, that—when provided with the same
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sequence of matrices P(t)—this slowdown is not always the case. Note that at time t = 4
we applied step (3). Otherwise the rightmost entry in the first row would be 0.

Observe that several different sequences of matrices P(t) can lead to the same a′(t) (but
different a(t)):

t: 0 1 2 3 4

a(t):

⎛

⎜⎜⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 0 0

−1 0 0

−1 0 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 0 0

−1 0 0

1 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

0 −1 −1

0 0 −1

0 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

0 0 −1

0 1 0

0 0 1

⎞

⎟⎟⎟
⎠

→ · · ·

P(t):

⎛

⎜
⎜
⎜
⎝

1 1 1

0 1 1

0 1 1

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 0 1

0 1 0

1 1 1

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 1 0

1 1 0

1 0 1

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 1 0

0 1 1

0 1 1

⎞

⎟
⎟
⎟
⎠

→ · · ·

a′(t):

⎛

⎜
⎜
⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 0 0

0 0 −1

0 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 0 0

1 1 0

0 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 1 0

1 1 0

1 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

0 0 −1

0 0 −1

0 −1 0

⎞

⎟
⎟
⎟
⎠

→ · · ·

Note that, without the additional modification (step (3)) of the primary reordering of
knowledge step (1a) needed to make our proofs working, one can achieve a(t) = a′(t) if
the matrices P(t) are properly chosen, as the following example shows:

Example 3

t: 0 1 2 3 4

a(t) = a′(t):

⎛

⎜⎜⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 0 0

0 0 −1

0 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 0 0

1 1 0

0 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 1 0

1 1 0

1 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

0 0 0

0 0 −1

0 −1 0

⎞

⎟⎟⎟
⎠
→ · · ·

P(t):

⎛

⎜⎜⎜
⎝

1 1 1

1 1 0

1 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 0 1

1 1 1

0 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 1 0

1 1 0

1 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 1 0

0 1 1

0 1 1

⎞

⎟⎟⎟
⎠

→ · · ·

In this case, another view of the basic upper bound construction is not to employ the
reordering step (1a), but to choose specific matrices P(t + 1) depending on the state a(t).
Unfortunately, though, this does not work if the additional modification is employed.

The proof that this algorithm leads indeed to an upper bound is given in Section 3.3.
However, first we give a detailed description of the corresponding Markov chain.

3.2 Markov Chain of our Upper Bound

We now describe the Markov chain that models our upper bound. For this purpose, note
that, due to our reordering step (1a), it is not necessary anymore to store the whole matrix:
It would be sufficient to know the number of 1s and 0s we have to fill in. However, we will
use another representation, which is even more appropriate for our purposes: We represent
a matrix by a pair (x, a), where x denotes the number of 0-entries in the diagonal (i.e.,
0-processes) and a is the number y of non-diagonal 0-entries if x = N , whereas a is the
number z of non-diagonal 1-entries if 1 ≤ x ≤ N − 1.
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Note that these pairs contain all the information we need: Firstly, there can be only 0- or
1-entries in the diagonal — so it is sufficient to know the number of one of them. Secondly,
if x = N , then the only non-diagonal elements are (−1) or 0 – so again one of its numbers
is sufficient. Thirdly, if 1 ≤ x ≤ N − 1 we can have 1s, 0, and (−1)s outside the diagonal.
But, due to our filling rule, x 0-processes imply that we have exactly x (−1)-entries! Hence
knowing the number either of 1s or 0s is sufficient again.

For simplicity, we introduce the following abbreviations:

�(x) = x1 − x2, ν = N(N − 1), and ν(y) = (N − 1)(N − y).

Our Markov chain can now be described as follows: The state space is given by pairs (x, a),
where

(x, a) =
{

(N, y) 0 ≤ y ≤ N(N − 2)

(x, z) 0 ≤ z ≤ (N − 1)(N − x) − δ1x for 1 ≤ x ≤ N − 1,
(2)

where δij is the Kronecker delta, i.e., δij = 1 if i = j and 0 otherwise. Clearly, we can
have 1 ≤ x ≤ N 0-processes. For y, observe that with N 0-processes there can be up to
N(N − 2) non-diagonal 0-entries (since there must be one remaining (−1) in each row).
For the number of possible 1s we have to be a little bit more careful: If x ≥ 2, then for each
1-process there can be up to (N − 1) 1-entries in the corresponding columns. On the other
hand, if x = 1, we have to subtract one because the last process still needs a (−1)-entry. So
the number of states of the Markov chain equals N(N2 − 1)/2.

Let s1 = (x1, y1, z1) and s2 = (x2, y2, z2) be the uniform representation of the states
s1 and s2, where, depending on e.g. x1, either y1 or z1 is not used. Then, the transition
probabilities ps1s2 from state s1 to s2 are given by ps1s2 = p̃s1s2 + p̂s1s2 , where p̃s1s2 is the
probability of a transition without making a global round switch and p̂s1s2 is the probability
of a transition with a global round switch, with

p̃s1s2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ν − y1

−�(y)

)
p−�(y)(1 − p)ν−y2

if x1 = x2 = N, y1 ≤ y2 ≤ N(N − 2) (3a)
(

ν(x1) − δ1x1 − z1

−�(z)

)
p−�(z)(1 − p)ν(x1)−δ1x1−z2+x1

if x1 = x2 < N, z1 ≤ z2 (3b)
(

ν − y1

x2

)
pν−y1−x2(1 − p)x2

if N = x1 > x2, z2 = 0 (3c)
(

ν(x1) − z1

−�(z)

)(
x1

�(x)

)
p�(x−z)(1 − p)ν(x1)−z2+x2

if N > x1 > x2, z1 ≤ z2, z2 ≤ (N − 1)(N − x1) (3d)

0 ow. (3e)

In case (3a), clearly the number of non-diagonal 0-entries can only increase and is bounded
by N(N −2) (as mentioned above). Hence, to do the state transition, exactly (y2 −y1) from
the (ν−y1) relevant 0-messages must arrive in order to replace (y2−y1) of the (−1)-entries
in s1.

1031Methodology and Computing in Applied Probability (2021) 23:1023–1056



If x1 = x2 < N (case (3b)), the number of 1-entries cannot decrease. Since the number
of 0-processes remains the same, none of the x (−1)-entries is allowed to be overwritten by
a 0 or 1. This gives the factor (1− p)x1 . Moreover, the number of 1s increases by (z2 − z1),
hence, for x1 > 1, we can choose them among the (ν(x1)−z1) relevant channels. If x1 = 1,
we have to subtract the one (−1)-entry of the last process (otherwise we would do a global
round switch).

In case (3c), where we have a transition from a state with N 0-processes to a state with
x2 < N 0-processes, we must have z2 = 0 since in s1 there are only 0-processes and so no
1-messages can be sent. Due to the fact that having x2 0-processes is equivalent to have x2
(−1)-entries, all but x2 of the (ν − y1) (−1)-entries must be replaced by 0.

In case (3d), we do a transition with decreasing number of 0-processes again. To ensure
that exactly (x2 − x1) 0-processes become 1-processes, exactly (x2 − x1) of the x1 (−1)-
entries in s1 must be replaced with 0s. This leads to the term

(
x1

�(x)

)
p�(x)(1− p)x2 . Clearly,

the number of 1-entries cannot decrease. So we have to choose exactly (z2 − z1) mes-
sages from the (ν(x1) − z1) relevant channels outgoing from 1-processes for a successful
transmission.

The second part of the transition probabilities is given by

p̂s1s2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

pν−y1

if x1 = x2 = N, y2 = z2 = 0 (4a)
(

ν(x1) − δ1x1 − z1

y2 − z1

)
py2−z1+x1(1 − p)ν(x1)−y2−δ1x1

if x1 < x2 = N , z1 ≤ y2, y2 ≤ (N − 1)(N − x1) − δ1x1 (4b)

0 ow. (4c)

Clearly, if a global round switch occured we have only 0-processes in the matrix. Hence,
a positive transition probability is only possible if x2 = N and z2 = 0. In case (4a), we
also have N 0-processes in state s1. Thus, only 0-messages can be sent and so we have only
(−1)s after the round switch in the non-diagonal entries of the matrix. This is why y2 has
to be 0. To do the round switch, all of the remaining (ν − y1) (−1)-entries in s1 have to be
overwritten by 0. This immediately gives the transition probability in this case. [(1a)] Let us
turn to case (4b): We start with x1 > 1: If we have (N−x1) 1-processes and z1 non-diagonal
1-entries in s1, then the number y2 of non-diagonal 0-entries in s2 is at least z1 (since the
existing 1s convert to 0s in a global round switch) and at most ν(x1) = (N −1)(N −x1) (the
maximum number of 1s generated by (N − x1) 1-processes). To make this state-transition,
we have to take two things into account: Firstly, all x1 (−1)-entries in s1 must be overwritten
– this gives the term px1 . Secondly, we have to produce exactly (y2 − z1) new 1-entries
(before doing the reduction due to the global round switch). These 1s overwrite existing
0s. Thus, we can choose them from the (ν(x1) − z1) relevant channels outgoing from 1-
processes. Finally, note that in case x1 = 1 the last (−1)-entry is overwritten by 0 although
the correspoding messages was sent from a 1-process! This is why we have to add the
correction term −δ1x1 .

3.3 Proof Upper Bound

Now we want to show that our previously defined process is indeed an upper bound. First
of all, it is worthwile to mention that this can’t be done execution-wise, since there exist
schedules such that the α′-synchronizer is faster than the α-synchronizer.
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Example 4 We give an example of a schedule such that the α′-synchronizer is faster than
the α-synchronizer. Here A′(t) and A(t) denote the matrices as defined in Section 2.3.

A′(t):

⎛

⎜⎜⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

0 −1 −1

0 0 −1

0 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 0 0

0 0 −1

0 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 0 0

0 1 0

0 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟⎟
⎠

→ · · ·

P(t):

⎛

⎜⎜⎜
⎝

1 0 0

0 1 1

0 1 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 0 0

0 1 1

0 1 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 1 0

0 1 1

0 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 1 0

0 1 1

0 1 1

⎞

⎟⎟⎟
⎠

→ · · ·

A(t):

⎛

⎜
⎜
⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

0 −1 −1

−1 0 0

−1 0 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

0 −1 −1

−1 0 0

−1 0 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

0 0 −1

−1 0 0

−1 0 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

0 0 −1

−1 0 0

−1 0 0

⎞

⎟
⎟
⎟
⎠

→ · · ·

To handle this problem we will construct a measure-preserving bijection f on the sets
of schedules (i.e., a bijection that preserves the number of ones in the message patterns at
each time step) such that the α-synchronizer under a schedule E is always faster than the α′-
synchronizer given the schedule f (E). The basic idea behind our construction is to map the
relevant messages of the α-synchronizer on the relevant messages of the α′-synchronizer in
such a way that the α-synchronizer is always in front.

Let
M := set of messagepatterns ∼= {0, 1}N2−N

and
E = MN = set of schedules,

and
En = Mn

the set of sequences of messagepatters of length n (i.e., prefixes of schedules). For E ∈ E or
Em let En denote the nth element of E. Moreover, let |En| = ∑

i,j En,i,j denote the number
of ones in En. With E≤n we denote the prefix of length n of E, i.e., the tuple (E1, . . . , En).

Then we have the following theorem:

Theorem 1 There exists a bijection f : E → E with

– |En| = |f (E)n| ∀ E ∈ E, ∀n and
– R(E, n) ≥ R′(f (E), n) ∀ E ∈ E, ∀n.

Here, R(E, n) denotes the global round number of the α-synchronizer at time n given the
schedule E and R′(E′, n) the global round number of the α′-synchronizer at time n given
the schedule E′.

Proof Let A(n) = A(E, n) and A′(n) = A′(f (E), n) denote the matrices of the α- and
the α′-synchronizer under the schedule E and f (E), respectively. Moreover, define mn =
mini,j A(n)i,j (i 	= j ) as the minimum of A(n), and an(mn) as the number of non-diagonal
entries of A(n) that equal the minimum mn. With b′

n(mn) we denote the number of non-
diagonal entries in A′(n) less than or equal to mn. Similarly, R(n) = R(E, n) and R′(n) =
R′(f (E), n) are the global round numbers of A(n) and A′(n), respectively.
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To simplify notation, we define for a matrix A(n) the submatrix A(n, u, v) as the sub-
matrix consisting of the intersection of rows of u-processes and columns of v-processes. To
illustrate this definition look at the following example.

Example 5 Let

A(n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

5 5 4 4 4 4
4 5 4 4 4 4
5 4 5 4 4 4
4 5 4 4 3 3
4 4 3 3 4 4
5 3 4 4 3 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then

A(n, 5, 5) =
⎛

⎝
5 5 4
4 5 4
5 4 5

⎞

⎠ , A(n, 4, 4) =
⎛

⎝
4 3 3
3 4 4
4 3 4

⎞

⎠ ,

A(n, 5, 4) =
⎛

⎝
4 4 4
4 4 4
4 4 4

⎞

⎠ , A(n, 4, 5) =
⎛

⎝
4 5 4
4 4 3
5 3 4

⎞

⎠ .

Now we will inductively construct functions fn : En → En (n ≥ 1), the limit of which
gives f , with the following properties:

(i) fn bijective on En,
(ii) |En| = |(fn(E))n| ∀ E ∈ En,
(iii) R(E, n) ≥ R′(fn(E), n) ∀ E ∈ En,
(iv) an(mn) ≤ b′

n(mn) and
(v) if R(n) = R′(n): |An| + |Gn| ≥ |A′

n|, where (for matrices A(n) and A′(n) with
r = R(n) = R′(n))

An,A′
n = {positions of non-diagonal (r + 1)-entries in A(n) resp. A′(n)},

Gn,G ′
n = {positions of (r − 1)-entries in A(n, r, r + 1) resp. A′(n, r, r + 1)}.

(vi) The function fn is an extension of fn−1, i.e., if fn((x1, . . . , xn−1, xn)) =
(y1, . . . , yn−1, yn) then fn−1((x1, . . . , xn−1)) = (y1, . . . , yn−1) for n ≥ 2.

Then the function f defined by f (E) = limn→∞ fn(E≤n) has the stated properties.

Remark 1 It is worthwile to mention that conditions (iv) and (v) imply
∑

i 	=j A(E, n)i,j +
|Gn| ≥ ∑

i 	=j A′(fn(E), n)i,j .

We start with f1 := idM. Then f1 fulfils obviously (i) − (v). Let fn with (i) − (vi)

be already defined. We will first construct – in dependence on E≤n (and consequently on
A(n)) – the function fE≤n : M → M. Then, the function fn+1 : En+1 → En+1 is defined
as follows:

fn+1(E) = fn+1(E≤n, En+1) = (fn(E≤n), fE≤n(En+1)). (5)

For our construction, we have to do a case distinction:
Case A R(n) = R′(n) = r:
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Fig. 2 The partioning of matrix A into the setsA,B,C,D,F ,G

Given the matrices A(n) and A′(n), we also define the following sets:

Bn,B′
n = {positions of r-entries in A(n, r + 1, r + 1) and A(n, r, r + 1)

resp. A′(n, r + 1, r + 1) and A′(n, r, r + 1)},
Fn,F ′

n = {positions of r-entries in A(n, r + 1, r) resp. A′(n, r + 1, r)},
Cn, C ′

n = {positions of non-diagonal r-entries in A(n, r, r) resp. A′(n, r, r)},
Dn,D′

n = {positions of (r − 1)-entries in A(n, r, r) resp. A′(n, r, r)}.
For a graphical interpretation of these sets see Fig. 2a: The sets A and B contain (the posi-
tions of) the (r+1) resp. r-entries in regions 1 and 3, region 2 is exactlyF , the (r−1)-entries
in region 3 correspond to G, and the sets C andD contain the r resp. (r−1)-entries in region
4.

Example 6 Continuing Example 5 we have r = 4 and

An = {(1, 2), (3, 1), (4, 2), (6, 1)},
Bn = {(1, 3), (2, 1), (2, 3), (3, 2), (4, 1), (4, 3), (5, 1), (5, 2), (6, 3)},
Fn = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)},
Cn = {(5, 6), (6, 4)},
Dn = {(4, 5), (4, 6), (5, 4), (6, 5)},
Gn = {(5, 3), (6, 2)}.

A visualisation of these sets is given in Fig. 2b.

For simplicity, we will drop the index n in the following. Note that

|A| + |B| + |F | + |C| + |D| + |G| = N(N − 1). (6)

Moreover, B, D, and G correspond to relevant channels M = B ∪ D ∪ G in A(n) (and
analogous for A′(n)).

Our assumptions imply |A| + |G| ≥ |A′| (due to (v)) and |D| + |G| ≤ |D′| + |G ′| (see
(iv): we have mn = r − 1). The next property is a little bit more involved: Note that in
Case A we have mn = r − 1. Moreover, due to (iv) we have at least as many non-diagonal
(r − 1)-elements in A′(n) than in A(n); recall that because of computation step (1a) (where
messages are inserted column by column) we generate with b′

n (r − 1)-elements as many
r-processes in A′(n) as possible. Hence the number of r-processes in An (i.e., the number
of diagonal elements equal r) is less than or equal to the number of r-processes in A′

n;
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equivalently |C| + |D| ≤ |C ′| + |D′| (the sizes of the submatrices A(n, r, r) and A′(n, r, r))
or equivalently

|A| + |B| + |G| ≥ |A′| + |B′| + |G ′| (7)

(the total number of entries in the columns with (r + 1) in the diagonal).
Note that G ′ is either empty or contains just one element, namely (N,N − 1). This is

the special case in which we interpret the 1-message transmitted on this channel only as
0-message (i.e., applying step (3)).

Let h be any bijection from [N ]2 to [N ]2 keeping the diagonal fixed with

a) h(D ∪ G) ⊆ D′ ∪ G ′ and
b) {

B′ ⊆ h(B) if |B′| ≤ |B|
h(B) ⊆ B′ if |B′| > |B|.

Now define fE≤n onM as the function induced by h. We have to check properties (i) – (v)
for fn+1.

Conditions (i) and (ii) are obviously fulfilled. Property a) implies immediately (iii).
To verify condition (iv) we distinguish two cases: In case mn+1 = r − 1 (i.e, no global

round switch occured in A(n)) we have

b′
n+1(mn+1) − an+1(mn+1) ≥ b′

n(mn) − an(mn) − (|D′| + |G ′| − |D| − |G|) = 0,

since due to condition a) at most (|D′|+ |G ′|− |D|− |G|) more (r −1)-entries in A′(n) can
be overwritten by r- or (r + 1)-entries than in A(n).

In case mn+1 = r (i.e., in A(n) a global round switch occured, this means all (r −
1)-entries in A(n) were overwritten by r or (r + 1)) let B− resp. B′−

denote the number of succesfully transmitted messages in the sets B resp. B′. Hence,
b′
n+1(mn+1) = |F ′

n| + |C ′
n| + |D′

n| + |B′
n| − B′− + |G ′

n|
(6)= N(N − 1) − |A′

n| − B′−,

an+1(mn+1) = |Fn| + |Cn| + |Dn| + |Bn| − B−
(6)= N(N − 1) − |An| − |Gn| − B−

and consequently,

b′
n+1(mn+1) − an+1(mn+1) = |An| − |A′

n| + |G| + B− − B′−
≥ |An| − |A′

n| + |G| + min(0, |B| − |B|′) ≥ 0.

The last inequality holds in case of min(|B|, |B′|) = |B′| due to condition (v), in case of
min(|B|, |B′|) = |B| due to Eq. 7. Thus also (iv) is valid.

If R(n + 1) = R′(n + 1), we also have to verify condition (v). In case R(n + 1) = r + 1
there are no (r + 2)-processes and the condition is fulfilled trivially. On the other hand, i.e,
in case R(n + 1) = r , firstly observe that the difference of (r + 1)-entries can decrease by
up to max(0, |B′| − |B|) (due to b)). Secondly, use the following partioning of Gn+1: We
can write

Gn+1 = (Gn ∪ N ) \ G−
withN = Gn+1\Gn the set of ‘new’ (r−1)-positions inA(n+1, r, r+1) (i.e., those (r−1)-
entries which are in columns of processes which switched from r- to (r +1)-processes from
A(n) to A(n + 1)) and G− the set of arriving (!) messages related to positions in Gn.

Hence,
|Gn+1| = |Gn| + |N | − |G−| ≥ |Gn| + 0 − |G−|.
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Moreover, note that every message in G− increases the number of (r + 1)-entries. Hence,

|An+1| = |An| + |B−| + |G−|,
|A′

n+1| = |A′
n| + |B′−|.

Note that we do not need the term |G ′−| in the second equation since in the only case G ′ is
nonempty the transmitted message is treated as 0 due to computation step (3) of our bound.
This yields

|An+1| + |Gn+1| − |A′
n+1| ≥ |An| + |G−| + |B| + |Gn| − |G−| − |A′

n| − |B′|
≥ |An| + |Gn| − |A′

n| − max(0, |B′| − |B|) ≥ 0.

Note that the second inequality uses property b) of the bijection and the last inequality is
again valid due to (v) or Eq. 7. So the proof is finished in Case A.

Case B R(n) − 1 = R′(n) = r: Given the matrices A(n) and A′(n) we define the
following sets (in addition to the setsA′,B′,F ′, C ′,D′,G ′,A,B defined above):

Hn = {positions of non-diagonal (r + 2)-entries in A(n)},
In = {positions of (r + 1)-entries in A(n, r + 2, r + 2) and A(n, r + 1, r + 2)},
Kn = {positions of (r + 1)-entries in A(n, r + 2, r + 1)},
Jn = {positions of r-entries in A(n, r + 1, r + 2)}.

A visualisation of the partioning of A(n) and A′(n) into these sets is given in Fig. 3.
Again, denote with M = I ∪B∪J and M ′ = B′ ∪D′ ∪G ′ the sets of relevant channels.

Choose any bijection h: [N ]2 → [N ]2, that keeps the diagonal fixed, with
{

M ′ ⊆ h(M) if |M| ≥ |M ′|
h(M) ⊆ M ′ if |M ′| ≥ |M| (8)

and {
B′ ⊆ h(B ∪ J ) if |B′| ≤ |B| + |J |
h(B ∪ J ) ⊆ B′ if |B′| > |B| + |J |. (9)

Define fE≤n as the bijection on M induced by h. Then conditions (i) and (ii) for fn+1
defined in Eq. 5 are obviously fulfilled. The fact R′(n+1) ≤ R′(n)+1 immediately implies
(iii).

Let us we verify (iv). If mn+1 = r + 1 (i.e., a global round switch in A(n) occured), then
mn+1 ≥ maxA′(n+1) and we are done. Otherwise, if mn+1 = r , observe that mn = r , that
B and J contain all relevant r-entries of A(n) and B′ contain all those relevant entries in
A′(n) which can be overwritten by (r + 1). Hence the change in an and b′

n can be bounded,

Fig. 3 The partioning of matrices A(n) and A′(n)
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due to property (9), by

b′
n+1 (mn+1) − an+1(mn+1)

≥ b′
n(mn) − an(mn) − max(|B′| − |B| − |J |, 0)

= |B′| + |C ′| + |D′| + |F ′| + |G ′| − |B| − |J | − max(|B′| − |B| − |J |, 0)

=
{

|B′| + |C ′| + |D′| + |F ′| + |G ′| − |B| − |J | ≥ 0 if |B′| ≤ |B| + |J |
|C ′| + |D′| + |F ′| + |G ′| ≥ 0 if |B′| > |B| + |J |,

and so (iv) is proven.
To finish the proof in Case B, it remains to check condition (v) in case of R(n + 1) =

R′(n + 1) = r + 1, i.e., a global round switch occured also in A′(n), but then there are no
(r + 2)-processes in A′(n + 1) and so (v) is trivially fulfilled.

Case C R(n) > R′(n) + 1: Here we define fE≤n := idM. The conditions (i) and (ii) are
clear, and we can ignore (v). From R(n) > R′(n) + 1 we obtain R(n + 1) > R(n + 1)′ and
thus (iii). Moreover, we have minA(n) ≥ maxA′(n) and hence A(n + 1)i,j ≥ A′(n + 1)i,j
for all 1 ≤ i, j ≤ N ; this implies (iv).

3.4 Asymptotics for p → 0

In this section, we give the asymptotics of the behavior of the α′-synchronizer for p → 0,
which we argued in Section 1 to be the appropriate regime for p for wireless networks with
destructive collisions (Moscibroda and Wattenhofer 2006).

For M ≥ 1, let

�(M, p) = E max
1≤i≤M

Gi,

where the Gi are pairwise independent geometrically distributed random variables with
parameter p. For �(M, p), the asymptotics for p → 0 is an immediate consequence
of Füger et al. (2015, Proof of Theorem 3):

Lemma 1 For p → 0,

�(M,p) ∼ cM

p
with cM =

M∑

i=1

(
M

i

)
(−1)i+1

i
= HM,

where Hn denotes the n-th harmonic number.

The expected round duration λ′ can be written in terms of these expectations: Let â(t)

be the Markov chain obtained from a(t) by adding to each state a an additional flag Step
such that Step(â(t)) = 1 if there is a global round switch at time t , and 0 otherwise. Then
we have

λ′ = 1
∑

â Step(â) · π̂(â)

∑

â

Step(â) · π̂(â) · �(#−1(â), p),

where π̂ denotes the steady-state distribution of the Markov chain â(t) and #−1(â) is the
number of (−1)-entries in â (see Függer et al. (2015) for details). This formula shows that
λ′ can be represented as a weighted sum (weighted by the steady-state probabilities) of the
expected time to the next global round switch starting in state â, where we only take those
states which can occur after a global round switch.
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Note that this representation is equivalent to the following one: Let b(r) be the Markov
chain only on the states which can occur after a global round switch, i.e., on the states â

with Step(â) = 1 with steady state distribution ρ. Then

λ′ =
∑

b

ρ(b) · �(#−1(b), p) =
N2−N∑

i=N

ρ(i) · �(i, p) (10)

with ρ(i) = ∑
b: #−1(b)=i ρ(b).

Moreover, a standard method to compute the stationary distribution of a Markov chain is
the following: Let P denote the transition matrix of a homogeneous and irreducible Markov
chain with finite state space. Then the steady state distribution π is the solution of the
equation Bπ = e with e = (0, . . . , 0, 1)T and B = ((P − I )(n→1))T , where M(k→x)

denotes a matrix M with its k-th column set to x. For all states s of the Markov chain we
have π(s) > 0, and by Cramer’s rule π(s) = det(Bs)/ det(B) holds, where Bs is the matrix
arising from B by replacing the column corresponding to s by e. In particular, all matrices
Bs and B are regular.

Now we can establish the asymptotics for the α′-synchronizer:

Theorem 2 For p → 0,

λ′ ∼ θ ′
N

p
with θ ′

N =
N(N−2)∑

k=0

P(#1 = k) · cN2−N−k,

where

P(#1 = k)=
∑

(e1,...,eN−1)
ei≥0∑
ei=k

∑i
j=1 ej ≤(N−1)i−δN−1,i

N−1∏

i=1

P

⎛

⎝#(new 1s in 〈i, i + 1〉)= ei |#(old 1s) =
i−1∑

j=1

ej

⎞

⎠

(11)
for 0 ≤ k ≤ N(N − 2) and

P(#(new 1s in 〈d, d + 1〉) = e|#(old 1s) = g) =
{

P1(N, d, e, g) if 1 ≤ d ≤ N − 2

P2(N, e, g) ow.

with

P1(N, d, e, g) = N − d

d(N − 1) − g − e + N − d

e−1∏

s=0

d(N − 1) − g − s

d(N − 1) − g − s + N − d
(12)

P2(N, e, g) = 1

(N − 1)2 − g − e

e−1∏

s=0

(N − 1)2 − g − s − 1

(N − 1)2 − g − s
(13)

Remark 2 Let us give a rough explanation of formula Eq. 11 (see Step 3 of the proof for
details): With # we denote ‘the number of’, and let 〈d, d + 1〉 be the time interval from
switching from d to (d + 1) 1-processes. Then P(#1 = k) stands for the probability that the
number of (non-diagonal) 1s in the matrix a just before a global round switch is performed
equals k and P(#(new 1s in 〈d, d+1〉) = e|#(old 1s) = g) is the probability that in 〈d, d+1〉
e new 1-entries in the matrix a are created given that we have already had g non-diagonal
1-entries before.
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Proof

First step: We will observe that for the limit p → 0 it is enough to consider a restricted
model in which we allow only those transitions to be possible which arise from the suc-
cessful arrival of at most one relevant message in one time step: Denote with P the
transition matrix for the Markov chain â for the α′-synchronizer and consider the reduced
matrix P̃ = P (mod p2) (i.e., we delete all powers of order greater than or equal to 2 of
p in P ). Then P̃ is still a stochastic matrix (for p sufficiently small: the row sum is still
one since we deleted all higher powers, but the remaining terms of the form (1 − dp)

could be negative) and corresponds to the model in which only at most one arriving mes-
sage is allowed. Since every transition with k > 1 arriving messages can be simulated
by k transitions with only 1 arriving message, the corresponding markov chain is still
homogeneous, aperiodic and irreducible, and thus has a unique steady state distribution.
In particular, B̃ = ((P̃ − I )(n→1))T and B̃s are regular.

Since π̂(â) = det(Bâ)/ det(B), and all entries of B and Bâ are polynomials in p, the
involved determinants are polynomials in p, too, and therefore it is sufficient for the limit
p → 0 to know the term with the lowest power of p. Since for a matrix M = (mi,j ) we
have

detM =
∑

σ∈Sn

(

sgn(σ )

n∏

i=1

mi,σ(i)

)

,

we just need to know the lowest power of p in each row (provided they do not cancel
out in the sum). For B, note that the last row consists only of 1s, whereas in all the other
rows the lowest power is p (the only entries where 1 could appear is in the diagonal
when no message arrives and we stay in the same state, but we have substracted the
indentity matrix!). Hence the term with the lowest power of p in detB is of the form
c · pr(B)−1 (with r(B) the number of rows of the matrix B), but this is nothing else than
det(B (mod p2)). But B (mod p2) is the same as ((P̃ − I )(n→1))T , which is regular as
mentioned above, and hence we can use the restricted model.

Second step: Let σs and σ ′
s be two states that can occur after a global round switch. If we

pass from σs to σ ′
s then we have to go through the state

σ̂ =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 · · · 0 0
0 0 0 · · · 0 −1
0 0 0 · · · 0 −1
...
...
...

...
...

...
0 0 0 · · · 0 −1
0 0 0 · · · −1 0

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎠

.

To see this, assume that we are in state σs and let k denote the number of (non-diagonal)
zeros in σs . Due to computation step (3) of our upper bound we have k ≤ N(N − 2), and
due to (1a) each row contains at least one (−1)-entry. Again due to (1a) new zeros are
filled in according to our construction ‘column by column’, but at most one zero in one
time step. Hence, we have to pass σ̂ .

Third step: Nowwewant to compute the probability P(#1 = k) of exactly k ones occuring
at a global round switch given that we start from state σ̂ (in fact, ρ(N2 − N − k) =
P(#1 = k) with ρ from Eq. 10). When passing from σ̂ to the next state σs after a global
round switch, let td denote the time when we switch to a state with d one-processes. In
a first step we will determine the probability P(#(new 1s in [td , td+1)) = e|#1 = g), i.e.,
the probability of exactly e new 1-entries in the interval [td , td+1) (i.e., the time until
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the next 0-process becomes a 1-process) given already g 1-entries in the matrix a(td).
Assume d ≤ N − 2 first.
At every time there are three possibile events: no new message arrives (‘n’, i.e., the

matrix remains unchanged), a new 1-message arrives (‘1’, i.e., a 0-entry is overwritten
by 1) or a new 0-message arrives (‘0’, i.e., a (−1) is overwritten by 0 and the next 0-
process becomes a 1-process). Thus all sequences of events in the interval [td , td+1) are
of the form

nk11nk21 · · · nke1nke+10

with ki ≥ 0 (0 ≤ i ≤ e + 1).
Observe that the probability of the succesfully transmitted 0-message equals (N −d)p

(recall that we have (N − d) 0-processes), the probability of the arrival of the s-th new
1-message equals (d(N − 1) − g − (s − 1))p (we have d(N − 1) channels outgoing
from 1-processes, and we have to subtract the number of 1s already arrived). Thus, the
s-th sequence nks appears with probability (1− (d(N − 1) − g − (s − 1) + N − d)p)ks .
Hence, by summing over all possible lengths ks ≥ 0 and multiplying these three factors,

P(#(new 1s in [td , td+1)) = e|#1 = g)

= (N − d)p · pe
e−1∏

s=0

(d(N − 1) − g − s) ×

×
e∏

s=0

∑

k≥0

(1 − (d(N − 1) − g − s + N − d)p)k

= N − d

d(N − 1) − g − e + N − d

e−1∏

s=0

d(N − 1) − g − s

d(N − 1) − g − s + N − d
.

Thus Eq. 12 is shown.
In case d = N−1 the situation changes a little bit: Here we have only (d(N−1)−1) =

((N−1)2−1) channels outgoing from 1-processes not leading to the global round switch,
hence the probability of the arrival of the s-th new 1-message equals ((N − 1)2 − 1 −
g − (s − 1))p. Analogous to above we obtain (13).
In a second step we compute P(#1 = k): To obtain the probability of k ones at the

global round switch we have to sum over all weak compositions of k with (N − 1)
parts (a weak composition of k with m parts is an ordered collection of m non-negative
integers whose sum is k). Moreover, the number of arrived 1s cannot exceed the number
of possible 1-channels. Hence (11) is shown.

Fourth Step: Now we can determine the constant: We have (see Eq. 10)

λ′ =
N(N−2)∑

k=0

P(#1 = k)�(N2 − N − k, p).

By Lemma 1, the stated asymptotics follows.

3.5 Relation to the Existing Upper Bound

In this section, we will prove that our new upper bound provided by α′ is better than the one
presented in Függer et al. (2015). The upper bound for the α-synchronizer given in Függer
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et al. (2015) was given by λIII(N, p) = �(N(N − 1), p), which originated from a syn-
chronizer variant whose knowledge is reset after each global round switch. The following
Corollary 1 shows that λIII is also an upper bound for λ′, which confirms our claim. More-
over, it establishes that our new upper bound has a strictly better asymptotic behavior for
p → 0.

Corollary 1 Let θ denote the constant such that λIII(N, p) ∼ θ/p for p → 0. Then

– λ′(N, p) ≤ λIII(N, p) and
– θ ′ < θ = HN(N−1).

Proof To show λ′(N, p) ≤ λIII(N, p), we define a synchronizer α′
f in the same way as α′,

except that we reset knowledge after every global round switch in α′
f , i.e., we introduce a

new “forgetting” step (4):

(4) If md(1)(t) 	= md(2)(t), then A
(4)
i,j (t) = md(1)(t) for all i 	= j .

Let A and Af denote the matrices of the α′- resp. α′
f -synchronizer. Then the relation

Ai,j (t) ≤ A
f
i,j (t) for every t, i, j can be seen directly from comparing A and Af execution-

wise. Secondly, to see that α′
f is equivalent to λIII, it is sufficient to note the following two

properties:

(i) Step (3) is redundant for α′
f due to the forgetting step (4).

(ii) The reordering step (1a) cannot affect the expected time until the next global round
switch, since we reset all knowledge and thus all N(N − 1) messages have to arrive
every round.

Showing that our new bound has a better asymptotic behavior for p → 0 is straightfor-
ward:

θ ′
N =

N(N−2)∑

k=0

P(#1 = k) · cN2−N−k < cN2−N

N(N−2)∑

k=0

P(#1 = k) = cN2−N−k

By Lemma 1, θ = HN(N−1), which concludes the proof.

Remark 3 If one compares the the first few values of θ and θ ′ given below, it is apparent
that our new upper bound is indeed strictly better than the old one.

N = 3 4 5 6 7 8

θ 2,4500 3,1032 3,5977 3,9950 4,3267 4,6115
θ ′ 2,0965 2,5178 2,8378 3,0940 3,3069 3,4886
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4 New Lower Bound

Similar to the upper bound, we can also construct a lower bound for the α-synchronizer.
We will start by presenting the algorithm that generates our new lower bound, which will
be called the α′′-synchronizer. Subsequently, we will give the proof that it is indeed a lower
bound. In contrast to the upper bound, we will now choose the channels on which messages
arrive in a ‘good’ way, i.e., we try to generate 1-entries in the diagonal as fast as possible.
The basic idea is to fill in incoming messages received by 0-processes now line by line.
But to make our proof working, we have to speed up our algorithm even more: Roughly
speaking, we will treat entries below the diagonal as 1-entries.

We adapt the steps (1a) and (3) of the α′-synchronizer in Section 3.1. Letmd := md(1)(t)

and w := w(1)(t), cf. Section 2.3.

(1a) Partial reordering of the knowledge: Let (ki)
w(w−1)
i=1 be a decreasing sorting of the

multiset {A(1)
i,j (t) : i 	= j, A

(1)
i,i (t) = md}, i.e., a sorting only of the knowledge

of the md-processes (note that the rows of (md + 1)-processes remain unchanged!).
Now fill in this sequence into the rows of 0-processes again according to the follow-
ing rule: Fill them in line by line, but if a non-(md − 1)-entry is to be placed into
A(1)(t, md,md) replace it by a md , and if it is to be placed into A(1)(t, md,md +1)
replace it by (md + 1).

This means that we not only reorder the knowledge, we also sometimes change the values
of the knowledge depending on the round number of the new sender. Note the following:

(α) Firstly, this reordering step causes the diagonal of a(n) to have all 1-processes before
the 0-processes, i.e., the diagonal is of the form (1, . . . , 1, 0, . . . , 0). If the 1s of the
diagonal are on positions 1, . . . , j − 1, we call process j the first 0-process (of a(n)).

(β) Secondly, this reordering implies that below of 1-entries in the diagonal we either
have 1- or (−1)-entries.

(3) a: If md(2)(t) = md(1)(t) and if there are (md(2) + 1)-processes in A(2) then replace
all md(2)(t)-entries below the diagonal in A(2)(t) by (md(2)(t) + 1).
b: If md(2)(t) > md(1)(t), we do again a reordering of the knowledge: take all non-
diagonal elements of A(2) and fill them in again line by line in decreasing order.

Step (3a) means that if the system does not perform a global round switch and if there
are processes in front we increase some knowledge below the diagonal. This modification
is necessary to make our proof work – it avoids some specific executions in which the
α-synchronizer would overtake the lower bound: Roughly speaking, it can happen that in
the lower bound several 0-processes become 1-processes at the same time step, whereas in
the α-synchronizer they switch step by step. Then, in the lower bound, there are 0-entries
between the ‘new’ 0-processes below the diagonal. But in the α-synchronizer there are still
(−1)-entries at those positions which will be overwritten by 1s afterwards step by step.
Hence the α-synchronizer could be in front.

Step (3b) ensures that also after a global round switch we immediately have knowledge
filled in in decreasing order. Note that omitting this step would lead to a mathematical
equivalent synchronizer, since reordering would be done in the next time step in step (1a),
but with this additional step the synchronizer is easier to handle in the following.
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Example 7 This example illustrates the α′′-synchronizer and compares it to the α-
synchronizer:

t: 0 1 2 3 4

a(t):

⎛

⎜⎜⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

0 −1 0

−1 0 0

0 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

0 −1 0

0 1 0

0 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

0 −1 0

0 1 0

0 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

0 0 0

−1 0 0

−1 0 0

⎞

⎟⎟⎟
⎠

→ · · ·

P(t):

⎛

⎜⎜
⎜
⎝

1 0 1

0 1 1

1 1 1

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

1 0 0

1 1 0

1 1 1

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

1 1 1

0 1 1

1 1 1

⎞

⎟⎟
⎟
⎠

→ · · ·

a′′(t):

⎛

⎜
⎜
⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 0 0

1 1 0

−1 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

0 0 0

0 0 −1

−1 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 0 0

1 0 −1

−1 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

0 0 0

−1 0 −1

−1 −1 0

⎞

⎟
⎟
⎟
⎠

→ · · ·

Here the α-synchronizer does only one global round switch (at time t = 4), but the α′′-
synchronizer performs two (at times t = 2 and t = 4). So the α′′-synchronizer is indeed
faster than the original α-synchronizer. We will see later on, however, that—when provided
with the same sequence of matrices P(t)—this speed-up does not always happen. Note that
at times t = 1 and t = 3 we applied step (3a), whereas at t = 2 we applied step (3b).

Formally, the lower bound can be described as follows: We consider the number of 0-
entries in the diagonal (i.e., 0-processes) x, the total number of 1-entries above the diagonal
y, and the total number of 0- or 1-entries z in rows of 0-processes, where

1 ≤ x ≤ N, 0 ≤ y ≤ n(x)/2, 0 ≤ z ≤
{

N − 2 if x < N

(N − 1)2 if x = N,
(14)

with
n(x) = (N − x)(N − x − 1).

Note, due to the reordering step (1a), that the non-(−1)-entries in rows of 0-processes are
located in the row of the first 0-process if x < N . In case x = N we can have up to
(N − 1)2 0-entries because after a global round switch the 1-entries become 0-entries, and
we can have up to (N − 1) 1-processes and thus up to (N − 1)2 non-diagonal 1-entries
before performing the round switch. So the number of states of the Markov chain equals
(N4 − N3 + 5N2 − 11N + 12)/6.

Moreover, let μ(y) = (N − 1)y and s1 = (x1, y1, z1) and s2 = (x2, y2, z2) be two
states of our Markov chain. Then, the transition probabilities ps1s2 are given by ps1s2 =
p̃s1s2 + p̂s1s2 , where p̃s1s2 is the probability of a transition from s1 to s2 without making a
global round switch and p̂s1s2 is the probability of a transition performing a global round
switch:

p̃s1s2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n(x1)/2 − y1

−�(y)

)(
μ(x1) − z1

−�(z)

)
×

× p−�(y+z)(1 − p)n(x1)/2−y2+μ(x1)−z2

if x1 = x2, y1 ≤ y2, z1 ≤ z2, z2 ≤ N − 2 (15a)
(

n(x1)/2 − y1

−�(y)

)(
μ(x1) − z1

μ(x1 − x2) − �(z)

)
×

× pμ(x1−x2)−�(y+z)(1 − p)n(x1)/2−y2+μ(x2)−z2

if x1 > x2, z2 ≤ N − 2, y1 ≤ y2 ≤ n(x1)/2 (15b)

0 ow. (15c)
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In both cases, we have to bound z2 by (N − 2) since states with z1 > (N − 2) can only
occur directly after a global round switch as all 0-processes with (N − 1) 0-entries would
perform a local round switch and become 1-processes otherwise. Let us turn to the transition
probabilities in detail:

Equation 15a: If the number of 0-processes remains constant, the number of 1-entries
above the diagonal and the number of non-(−1)-entries of the first 0-process trivially cannot
decrease. For the number of ones we have (n(x1)/2 − y1) possible channels to choose
(y2 − y1) new entries. For the new entries of the first 0-process we have (μ(x1) − z1)

possible channels for the new entries. This immediately gives the transitions probabilities
in this case.

Equation 15b: If the number of 0-processes decreases, the number of 1-entries above the
diagonal cannot decrease and is clearly bounded by n(x1)/2. To generate (x1 − x2) new 1-
processes and z2 non-(−1)-entries at the first 0-process (μ(x1 − x2) − z1) + z2 messages
overwriting (−1)-entries must arrive (the first summand equals the number of non-diagonal
entries in (x1 −x2) rows) minus the number of already existing non-(−1)-entries z1 in rows
of 0-processes). This gives the stated formula in this case.

For the transition probability of a transition performing a global round switch, we have

p̂s1s2 =

⎧
⎪⎨

⎪⎩

(
n(x1)/2−y1

z2−x1(N−x1)−y1−n(x1)/2

)
pz2+x1(x1−1)−y1−n(x1)/2−z1(1 − p)ν(x1)−z2

if x1 ≤ x2 = N, y1 + x1(N − x1) + n(x1)/2 ≤ z2 ≤ ν(x1)

0 ow.

(16)

After making a global round switch, the number of 0s in the diagonal equals N . For the
number of zeros z2 in s2 recall that these 0-entries arise from 1-entries by applying the
normalization step. Thus, the number of non-diagonal 0-entries z2 must be at least the num-
ber of 1-entries above the diagonal before (i.e., y1) plus all entries below the diagonal of
1-processes (for performing the global round switch all messages must arrive and below
1-processes we have only 1-entries – see (β)), this number equals n(x1)/2 + x1(N − x1).
Since we had (N − x1) 0-processes in state s1 and each process can send messages to at
most (N − 1) other processes, we have z2 ≤ ν(x1).

Since all (−1)-entries must be overwritten and since due to (β) no 0-entries exists below
1s in the diagonal, the only choice we have for relevant messages leading to 1-entries (before
normalizing) which may arrive or not is to choose them from the (n(x1)/2 − y1) 0-entries
above the diagonal; because of the argument above we have to choose z2 − (y1 + x1(N −
x1) + n(x1)/2) from them. This gives the binomal coefficient.

The total number of messages which must arrive for this state transition is the number of
new 1-entries above the diagonal plus the number of (−1)-entries in s1, i.e.,

(z2 − x1(N − x1) − y1 − n(x1)/2) + (x1(N − 1) − z1)

= z2 + x1(x1 − 1) − y1 − n(x1)/2 − z1;
this is the exponent of p. Finally, computing the exponent of (1 − p), we have

(n(x1)/2 − y1) − (z2 − x1(N − x1) − y1 − n(x1)/2)

= n(x1) + x1(N − x1) − z2 = ν(x1) − z2

4.0.1 Proof Lower Bound

Nowwewant to show that our previously defined process is indeed a lower bound. As before
this can not be done execution-wise, since there exist schedules such that the α-synchronizer
is faster than the α′′-synchronizer.
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Example 8 We give an example of a schedule such that the α-synchronizer is faster than the
α′′-synchronizer. Here A′′(t) and A(t) denote the matrices as defined in Section 2.3.

t: 0 1 2 3 4

A(t):

⎛

⎜⎜⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

0 −1 0

−1 0 0

0 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

1 0 1

0 1 0

0 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

2 1 1

1 2 1

1 0 1

⎞

⎟⎟⎟
⎠

→

⎛

⎜⎜⎜
⎝

2 2 1

1 2 1

1 2 2

⎞

⎟⎟⎟
⎠

→ · · ·

P(t):

⎛

⎜⎜
⎜
⎝

1 0 1

0 1 1

1 1 1

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

1 1 1

1 1 0

0 1 1

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

1 1 0

1 1 1

1 0 1

⎞

⎟⎟
⎟
⎠

→

⎛

⎜⎜
⎜
⎝

1 1 0

0 1 1

0 1 1

⎞

⎟⎟
⎟
⎠

→ · · ·

A′′(t):

⎛

⎜
⎜
⎜
⎝

0 −1 −1

−1 0 −1

−1 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 0 0

1 1 0

−1 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 1 0

1 1 0

1 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 1 0

1 1 0

1 −1 0

⎞

⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎝

1 1 1

1 1 1

0 0 1

⎞

⎟
⎟
⎟
⎠

→ · · ·

As before we will construct a measure-preserving bijection g on the sets of schedules
such that the α-synchronizer under a schedule E is always slower than the α′′-synchronizer
given the schedule g(E). Again, the basic idea behind our construction is to map the relevant
messages of the α-synchronizer on the relevant messages of the α′′-synchronizer in such a
way that the α′′-synchronizer is always in front.

Then we have the following theorem:

Theorem 3 There exists a bijection g : E → E with

– |En| = |g(E)n| ∀ E ∈ E, ∀n and
– R(E, n) ≤ R′′(g(E), n) ∀ E ∈ E, ∀n.

Here, R(E, n) denotes the global round number of the α-synchronizer at time n given the
schedule E and R′′(E′′, n) the global round number of the α′′-synchronizer at time n given
the schedule E′′.
Proof Let A(n) = A(E, n) and A′′(n) = A′′(g(E), n) denote the matrices of the α-
and the α′′-synchronizer under the schedule E and g(E), resp. Moreover, define m′′

n =
mini,j A′′(n)i,j (i 	= j ) as the minimum of A′′(n), and a′′

n(m′′
n) as the number of non-

diagonal entries of A′′(n) that equal the minimum m′′
n. With bn(m

′′
n) we denote the number

of non-diagonal entries in A(n) less than or equal to m′′
n. Similarly, R(n) = R(E, n) and

R′′(n) = R′′(g(E), n) are the global round numbers of A(n) and A′′(n), respectively.
Now we will inductively construct functions gn : En → En (n ≥ 1), the limit of which

gives g, with the following properties:

(i) gn bijective on En,
(ii) |En| = |(gn(E))n| ∀ E ∈ En,
(iii) R(E, n) ≤ R′′(gn(E), n) ∀ E ∈ En,
(iv) a′′

n(m′′
n) ≤ bn(m

′′
n) and

(v) if R(n) = R′′(n): |An| + |Gn| ≤ |A′′
n| + |G ′′

n | where (for matrices A(n) and A′′(n)

with r = R(n) = R′′(n))

An,A′′
n = {positions of non-diagonal (r + 1)-entries in A(n) resp. A′′(n)},

Gn,G ′′
n = {positions of (r − 1)-entries in A(n, r, r + 1) resp. A′′(n, r, r + 1)}.

(vi) if R(n) = R′′(n): |Ãn| ≤ |Ã′′
n|, where Ãn resp. Ã′′

n denote the set of positions of
(r + 1)-entries in A(n, r + 1, r + 1) resp. A′′(n, r + 1, r + 1) above the diagonal.
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(vii) The function gn is an extension of gn−1, i.e., if gn((x1, . . . , xn−1, xn)) =
(y1, . . . , yn−1, yn) then gn−1((x1, . . . , xn−1)) = (y1, . . . , yn−1) for n ≥ 2.

Then the function g defined by g(E) = limn→∞ gn(E≤n) has the stated properties.

Remark 4 It is worthwile to mention that conditions (iv) and (v) imply
∑

i 	=j A(E, n)i,j +
|Gn| ≤ ∑

i 	=j A′′(gn(E), n)i,j + |G ′′
n |.

We start with g1 := idM. Then g1 fulfils obviously (i) − (vi). Let gn with (i) − (vi)

be already defined. We will first construct – in dependence on E≤n (and consequently on
A(n)) – the functions gE≤n :M → M. Then, the function gn+1 is defined as follows:

gn+1(E) = gn+1(E≤n, En+1) = (gn(E≤n), gE≤n(En+1)). (17)

For our construction, we have to do a case distinction:
Case A R(n) = R′′(n) = r:
Given the matrices A(n) and A′′(n), we define the sets A,A′′, . . . analogously to the

proof of Theorem 1 for the upper bound. Moreover, let B̃n resp. B̃′′
n denote the set of

positions of r-entries in A(n, r + 1, r + 1) resp. A′′(n, r + 1, r + 1) above the diagonal.
Our assumptions imply |A|+|G| ≤ |A′′|+|G ′′| (due to (v)) and |D|+|G| ≥ |D′′|+|G ′′|

(see (iv): we havem′′
n = r−1). Similar to the upper bound we have due to (iv) and reordering

step (1a) where messages are inserted line by line, that the number of r-processes in An is
greater than or equal to the number of r-processes in A′′

n; equivalently |C| + |D| ≥ |C ′′| +
|D′′| (the sizes of the submatrices A(n, r, r) and A′′(n, r, r)) or equivalently

|A| + |B| + |G| ≤ |A′′| + |B′′| + |G ′′| (18)

(i.e., the total number of entries in columns in A(n) with (r + 1) in the diagonal is less than
or equal to the number of entries in columns in A′′(n) with (r + 1) in the diagonal). In fact
– by adding a term counting the difference of (r + 1)-processes in A(n) and A′′(n) – we
even have

|A| + |B| + |G| + (xn − x′′
n)(N − 1) = |A′′| + |B′′| + |G ′′| (19)

with xn resp. x′′
n the number of r-processes in A(n) resp. A′′(n). Furthermore, we have the

relations

|B′′| = (N − x′′
n)(N − x′′

n − 1)

2
− |Ã′′| and (20)

|B| ≥ |B̃| = (N − xn)(N − xn − 1)

2
− |Ã|. (21)

Let h be any bijection from [N ]2 to [N ]2 keeping the diagonal fixed with

a) h(D ∪ G) ⊆ D′′ ∪ G ′′ and
b) {

B′′ ⊆ h(B) if |B′′| ≤ |B|
h(B) ⊆ B′′ if |B′′| > |B|,

and
c) {

B̃′′ ⊆ h(B̃) if |B̃′′| ≤ |B̃|
h(B̃) ⊆ B̃′′ if |B̃′′| > |B̃| .

Now define gE≤n onM as the function induced by h. We have to check properties (i) – (vi)
for gn+1.
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Conditions (i) and (ii) are obviously fulfilled. Property a) implies immediately (iii).
To verify condition (iv) we distinguish two cases: In case m′′

n+1 = r − 1 (i.e, no global
round switch occured) we have

bn+1(m
′′
n+1) − a′′

n+1(m
′′
n+1) ≥ bn(m

′′
n) − a′′

n(m′′
n) − (|D| + |G| − |D′′| − |G ′′|) = 0,

since due to condition a) at most (|D| + |G| − |D′′| − |G ′′|) more (r − 1)-entries in A(n)

can be overwritten by r- or (r + 1)-entries than in A′′(n).
In case m′′

n+1 = r (i.e., in A′′(n) a global round switch occured) let B−, B′′−, and G−
denote the number of succesfully transmitted messages in the sets B, B′′, and G. Hence,

bn+1(m
′′
n+1) = |Fn| + |Cn| + |Dn| + |Bn| − B− + |Gn| − G−

(6)= N(N − 1) − |An| − B− − G−,

a′′
n+1(m

′′
n+1) = |F ′′

n | + |C ′′
n | + |D′′

n| + |B′′
n| − B′′−

(6)= N(N − 1) − |A′′
n| − |G ′′

n | − B′′−
and consequently,

bn+1(m
′′
n+1) − a′′

n+1(m
′′
n+1) = |A′′

n| − |An| + |G ′′| + B′′− − B− − G−
≥ |A′′

n| − |An| + |G ′′| + min(0, |B| − |B|′) − |G| ≥ 0.

The last inequality holds in case of min(|B|, |B′|) = |B′| due to condition (v), in case of
min(|B|, |B′|) = |B| due to Eq. 18. Thus also (iv) is valid.

If R(n + 1) = R′(n + 1), we also have to verify condition (v). In case R(n + 1) = r + 1
there are no (r + 2)-processes and the condition is fulfilled trivially. On the other hand, i.e,
in case R(n + 1) = r , first note that we can write

Gn+1 = (Gn ∪ N ) \ G−
withN = Gn+1\Gn the set of ‘new’ (r−1)-positions inA(n+1, r, r+1) (i.e., those (r−1)-
entries which are in columns of processes which switched from r- to (r +1)-processes from
A(n) to A(n + 1)). Hence,

|Gn+1| = |Gn| + |N | − |G−| ≥ |Gn| + 0 − |G−|.
Moreover, note that every arriving message related to G− increases the number of (r +
1)-entries.

Additionally, we can decompose the setAn+1 in the following way:

An+1 = An ∪ G− ∪ B−.

But, due to our construction of the lower bound, the correspondig equation for A′′
n+1 is

A′′
n+1 = A′′

n ∪ G ′′− ∪ B′′− ∪ L′′,

whereL are the positions of the new (r+1)-entries (instead of r-entries) below the diagonal
of new (r + 1)-processes (see step (3)).

Hence,

� := |A′′
n+1| + |G ′′

n+1| − |An+1| − |Gn+1|
= |A′′

n| + |G ′′−| + |B′′−| + |L′′| + |G ′′
n | + |N ′′| − |G ′′−|

−|An| − |G−| − |B−| − |Gn| − |N | + |G−|
= |A′′

n| + |B′′−| + |L′′| + |G ′′
n | + |N ′′| − |An| − |B−| − |Gn| − |N |;
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due to property b) we can bound the difference |B′′−| − |B−| by max(0, |B′′| − |B|) from
below, hence

� ≥ |A′′
n| + |G ′′

n | − |An| − |Gn| + max(0, |B′′| − |B|) + |L′′| + |N ′′| − |N |.
Observe that the number |L′′| + |N ′′| of (r + 1)- or (r − 1)-entries below new (r + 1)-

processes equals x′′
n (x′′

n−1)
2 − x′′

n+1(x
′′
n+1−1)
2 (the first term equals the number of entries of

r-processes in A(n) below the diagonal, the second term equals the number of entries of r-
processes in A(n + 1) below the diagonal). Furthermore, the number |N | can be bounded
from above by (xn − xn+1)xn+1 (the size of the rectangle below the new (r + 1)-processes).
Moreover, using xn+1 ≥ x′′

n+1, we obtain

N ≤ (xn − xn+1)xn+1 ≤ xn(xn − 1)

2
− xn+1(xn+1 − 1)

2

≤ xn(xn − 1)

2
− x′′

n+1(x
′′
n+1 − 1)

2
.

Consequently,

� ≥ |A′′
n| + |G ′′

n | − |An| − |Gn| + max(0, |B′′| − |B|)
+ x′′

n(x′′
n − 1)

2
− x′′

n+1(x
′′
n+1 − 1)

2
− xn(xn − 1)

2
+ x′′

n+1(x
′′
n+1 − 1)

2
.

In case |B′′| > |B| we use Eq. 19 to get

� ≥ (xn − x′′
n)(N − 1) + x′′

n(x′′
n − 1)

2
− xn(xn − 1)

2

= 1

2
(xn − x′′

n)(2N − xn − x′′
n − 1) ≥ 0

(this is clear for xn ≤ N − 1, and for xn = N condition (v) is trivially fulfilled). In case
|B′′| ≤ |B| we get by using Eq. 19 again

� ≥ |B| − |B′′| + (xn − x′′
n)(N − 1) + x′′

n (x′′
n−1)
2 − xn(xn−1)

2

and by using Eqs. 20 and 21

� ≥ (N − xn)(N − xn − 1)

2
− |Ã| − (N − x′′

n)(N − x′′
n − 1)

2
+ |Ã′′|

+(xn − x′′
n)(N − 1) + x′′

n(x′′
n − 1)

2
− xn(xn − 1)

2

= |Ã′′| − |Ã| ≥ 0.

The last inequality holds due to (vi). So property (v) is proven.
It remains to show (vi). Property c) of the bijection ensures that in A(n) at most

max(|B̃| − |B̃′′|, 0) more (r + 1)-messages above the diagonal than in A′′(n) can arrive.
This yields

|Ã′′
n+1| − |Ãn+1| ≥ |Ã′′

n| − |Ãn| − max(|B̃| − |B̃′′|, 0)

=
{

|Ã′′
n| − |Ãn| ≥ 0 if |B̃| ≤ |B̃′′|

|Ã′′
n| + |B̃′′| − |Ãn| − |B̃| = (N−x′′

n )(N−x′′
n−1)

2 − (N−xn)(N−xn−1)
2 ≥ 0 ow.

So the proof is finished in Case A.
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Case B r := R(n) = R′′(n) − 1: We will use the sets A,B, C,D,F ,G (as defined in
the proof of the upper bound) and define the sets A′′,B′′,H′′,I ′′,K′′,J ′′ analogously to
those in the proof of the upper bound.

Again, denote with M ′′ = I ′′ ∪ B′′ ∪ J ′′ and M = B ∪ D ∪ G the sets of relevant
channels. Choose any bijection h: [N ]2 → [N ]2, that keeps the diagonal fixed, with

{
M ′′ ⊆ h(M) if |M| ≥ |M ′′|
h(M) ⊆ M ′′ if |M ′′| ≥ |M| (22)

and {
B ∪ G ⊆ h(B′′ ∪ J ′′) if |B| + |G| ≤ |B′′| + |J ′′|
h(B′′ ∪ J ′′) ⊆ B ∪ G if |B| + |G| > |B′′| + |J ′′|. (23)

Define gE≤n as the bijection on M induced by h. Then conditions (i) and (ii) for gn+1
defined in Eq. 17 are obviously fulfilled. The fact R(n+1) ≤ R(n)+1 immediately implies
(iii).

Let us we verify (iv). If m′′
n+1 = r +1 (i.e., a global round switch in A′′(n) occured), then

mn+1 ≥ maxA(n + 1) and we are done. Otherwise, if m′′
n+1 = r , observe that m′′

n = r , that
B′′ and J ′′ contain all relevant r-entries of A′′(n) and B and G contain all those relevant
entries in A(n) which can be overwritten by (r + 1). Hence the change in a′′

n and bn can be
bounded, due to property (23), by

bn+1 (m′′
n+1) − a′′

n+1(m
′′
n+1)

≥ bn(m
′′
n) − a′′

n(m′′
n) − max(|B| + |G| − |B′′| − |J ′′|, 0)

= |B| + |C| + |D| + |F | + |G| − |B′′| − |J ′′| − max(|B| + |G| − |B′′| − |J ′′|, 0)

=
{

|B| + |C| + |D| + |F | + |G| − |B′′| − |J ′′| ≥ 0 if |B| + |G| ≤ |B′′| + |J ′′|
|C| + |D| + |F | ≥ 0 if |B| + |G| > |B′′| + |J ′′|,

and so (iv) is proven.
To finish the proof in Case B, it remains to check conditions (v) and (vi) in case of

R(n + 1) = R′′(n + 1) = r + 1, i.e., a global round switch occured in A(n), but then there
are no (r + 2)-processes in A(n + 1) and so (v) and (vi) are trivially fulfilled.

Case C R(n) + 1 < R′′(n) + 1: Here we define gE≤n := idM. The conditions (i)
and (ii) are clear, and we can ignore (v) and (vi). From R(n) + 1 < R′′(n) we obtain
R(n+ 1) < R(n+ 1)′′ and thus (iii). Moreover, we have maxA(n) ≤ minA′′(n) and hence
A(n + 1)i,j ≤ A′′(n + 1)i,j for all 1 ≤ i, j ≤ N ; this implies (iv).

5 Discussion and FutureWork

In the previous sections, we constructed an upper and a lower bound for the α-synchronizer
and proved several properties of these approximations. In this section, we will complement
our analytical findings by some simulation results.

Based on our constructions of the Markov chains in Sections 3 and 4, the upper and lower
bound can be directly determined by solving the linear equation system for the steady state
distribution π of the respective Markov chain and by computing the expected round round
duration from π using Füger et al. (2015, Theorem 5). Algorithm 1 and 2 provide the details
of these computations.
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In Figs. 4 (for p fixed) and Fig. 5 (for N fixed), we compare simulations for the α-
synchronizer against the exact values of the bounds given in Függer et al. (2015) and of our
new bounds. For the simulations, we performed 30 runs with 100000 time steps each. The
results for the α-synchronizer are represented as (very thin) box-whisker-charts in Fig 4,
whereas in Fig. 5 we only show the average. Note that the bounds of Függer et al. (2015) are
represented by triangles, whereas our bounds are represented by squares. Noticeable is the
very good approximation by our new upper bound, which confirms the analytic dominance
results obtained in Section 3.5.

Our bounds are indeed an improvement of the results of Függer et al. (2015), since we
reduced the state-space of the Markov chains from exponential to polynomial size and since
our bounds (especially the upper bound) are much better. Nevertheless, we don’t have closed
formulas and calculating and solving the Markov chains of our bounds is still expensive: We
could solve it algebraically only up to n = 4 (whereas for the α-synchronizer we could do
it only for n = 3 and were not even able to generate the state space for n = 4). Numercial
solutions are computable also for higher n: the upper bound we could solve for n = 12 in
about 12 seconds, for n = 20 it took us about five minutes. The lower bound is more time-
consuming: For n = 10 it took us about half a minute, whereas for n = 12 the solution was
computed in 2,2 minutes. To be more precise, the size of the state spaces of theMarkov chain
and time andmemory consumption of our algorithms computing the bounds are summarized
in the following table.
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Fig. 4 Monte-Carlo simulation results for the α-synchronizer (represented as boxplots) compared against the
lower (�) and upper (�) bound given in Függer et al. (2015), our new upper bound �, and our new lower
bound�. As usual, the (orange) box of the boxplots represents the interval from the 25% to the 75% quantile,
whereas the fences mark the minimum and the maximum
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Fig. 5 Monte-Carlo simulation results (for N = 5 and N = 10 the means represented as •) and exact round
duration (for N = 3) for the α-synchronizer compared against the lower (�) and upper (�) bound given
in Függer et al. (2015), our new upper bound �, and our new lower bound �
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Upper bound Lower bound

Number of states N(N2 − 1)/2 (N4 − N3 + 5N2 − 11N + 12)/6
Memory �(N6) �(N8)

Time O(N9) O(N12)

For example, for n = 12 the Markov chain describing the upper bounds has 858 states,
whereas the Markov chain for the lower bound has 3268 states.

So future challenges are to find bounds which are also easily computable for higher
values of n and which are still of good quality. Furthermore, we plan to investigate the
asymptotic behavior for large n. The present paper reveals that this is not a priori hope-
less, in the sense that the improved understanding of the underlying Markov chain already
allowed us to reduce the exponential state space to polynomial and to compute consider-
ably improved upper and lower bounds. It may well be the case that the additional insights
gained in the analysis of the modified synchronizer algorithms will eventually allow us to
come up with computationally better tractable bounds.

Moreover, in Függer et al. (2015) the authors considered variants of the α-synchronizer
by allowing processes to actively forget parts of their accumulated knowledge. It is also part
of our future work to adapt the ideas of the upper and the lower bound of the α-synchronizer
to construct bounds for their case II (when processes forget their knowledge at a local round
switch).

6 Glossary of Notation

Ri(t) local round number of process i p. 4
R(t) global round number p. 4
Ki,j (t) knowledge of process i from process j p. 4
P probability matrix of successful transmission p. 4
λ = λ(N, p) expected round duration p. 5
A(t), A(i)(t) matrix of the Markov Chain (after computation step (i)) p. 6
a(t), a(i)(t) matrix of the normalized Markov Chain p. 6
md(i)(t) minimum of the diagonal of A(i)(t) p. 6
w(i)(t) number of md(i)(t)-entries in the diagonal of A(i)(t) p. 6
�(x) = x1 − x2 p. 9
ν(x) = (N − 1)(N − x) p. 9
ν = N(N − 1) p. 9
M set of messagepatterns, ∼= {0, 1}N2−N p. 12
E set of schedules, = MN p. 12
An = {positions of non-diagonal (r + 1)-entries in A(n)} p. 13
Gn = {positions of (r − 1)-entries in A(n, r, r + 1)} p. 13
Bn = {positions of r-entries in A(n, r + 1, r + 1)

and A(n, r, r + 1)} p. 13
Fn = {positions of r-entries in A(n, r + 1, r)} p. 13
Cn = {positions of non-diagonal r-entries in A(n, r, r)} p. 13
Dn = {positions of (r − 1)-entries in A(n, r, r)} p. 13
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Hn = {positions of non-diagonal (r + 2)-entries in A(n)} p. 16
In = {positions of (r + 1)-entries in A(n, r + 2, r + 2)

and A(n, r + 1, r + 2)} p. 16
Kn = {positions of (r + 1)-entries in A(n, r + 2, r + 1)} p. 16
Jn = {positions of r-entries in A(n, r + 1, r + 2)} p. 16
n(x) = (N − x)(N − x − 1) p. 23
μ(x) = (N − 1)x p. 23
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