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On the maximal offspring in a subcritical branching
process
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Abstract

We consider a subcritical Galton–Watson tree TΩ
n conditioned on having n vertices with

outdegree in a fixed set Ω. The offspring distribution is assumed to have a regularly
varying density such that it lies in the domain of attraction of an α-stable law for
1 < α ≤ 2. Our main results consist of a local limit theorem for the maximal degree of
TΩ

n , and various limits describing the global shape of TΩ
n . In particular, we describe the

joint behaviour of the fringe subtrees dangling from the vertex with maximal degree.
We provide applications of our main results to establish limits of graph parameters,
such as the height, the non-maximal vertex outdegrees, and fringe subtree statistics.
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1 Introduction and main results

1.1 The largest degree

Let T be a Galton–Watson tree whose offspring distribution ξ satisfies P(ξ = 0) > 0

and P(ξ ≤ 1) < 1. We assume that E[ξ] < 1 and that there is a slowly varying function f
and a constant α > 1 such that

P(ξ = n) = f(n)n−1−α (1.1)

for all large enough integers n. For a fixed non-empty set Ω ⊂ N0 of non-negative
integers with P(ξ ∈ Ω) > 0 we may consider the tree TΩ

n obtained by conditioning T on
the event that the number of vertices with outdegree in Ω is equal to n. We assume that
either Ω or its complement Ωc = N0 \ Ω is finite. See Remark 3.3 for further comments
on this restriction. Setting θ = min(α, 2) we let (Xt)t≥0 be the spectrally positive Lévy
process with Laplace exponent E[exp(−λXt)] = exp(tλθ). Let h be the density of X1.

Note that h(z) = 1√
4π

exp
(
− z

2

4

)
in the case V[ξ] < ∞. Our first main result is a local

limit theorem for the maximal outdegree ∆(TΩ
n ) of the tree TΩ

n .

*Institute of Mathematics, University of Munich, Theresienstr. 39, D-80333 Munich, Germany.
E-mail: stufler@math.lmu.de

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/20-EJP506
https://ams.org/mathscinet/msc/msc2020.html
mailto:stufler@math.lmu.de


On the maximal offspring in a subcritical branching process

Theorem 1.1. There is a slowly varying function gΩ such that

P(∆(TΩ
n ) = `) =

1

gΩ(n)n1/θ

(
h

(
P(ξ ∈ Ω)−1(1− E[ξ])n− `

gΩ(n)n1/θ

)
+ o(1)

)
uniformly for all ` ∈ Z.

The slowly varying function gΩ appearing in Theorem 1.1 admits an explicit descrip-
tion. Setting K(x) = E[ξ21ξ≤x], define the function g for sufficiently large integers n ≥ 1

to equal

g(n) =


√
V[ξ]

2 , V[ξ] <∞√
K
(

sup
{
x ≥ 0 | K(x)

x2 ≥ 1
n

})
, V[ξ] =∞ and θ = 2

n−1/θ(Γ(1− θ))1/θ inf
{
x ≥ 0 | P(ξ > x) ≤ 1

n

}
, V[ξ] =∞ and 1 < θ < 2.

(1.2)

The function gΩ may be chosen to satisfy

gΩ(n) =

 1√
2

(
E[ξ2]−1
P(ξ∈Ω) + (1−E[ξ])(1−E[ξ]+2E[ξ,ξ∈Ω])

P(ξ∈Ω)2

)1/2

, V[ξ] <∞
g(n)

P(ξ∈Ω)1/θ , V[ξ] =∞.
(1.3)

The behaviour of the maximal degree in this setting contrasts the case of a critical
Galton–Watson tree, where the largest outdegree has order op(n) [9, 10, 23], although
condensation may still occur on a smaller scale, as shown in [28], if the offspring
distribution lies in the domain of attraction of a Cauchy law. In the subcritical regime
the special case Tn := TN0

n was studied by Janson [23, Thm. 19.34], who established
a central limit theorem for ∆(Tn) if ξ follows asymptotically a power law. This was
extended to offspring laws with a regularly varying density by Kortchemski [27, Thm. 1]
using a different approach, which also inspired the present work. Hence Theorem 1.1
generalizes these results to different kinds of conditionings and sharpens the form
of convergence to a local limit theorem. We note that the maximal displacement of
subcritical branching random walks in the continuous regime also received attention in
previous literature, see [32, 37].

The case θ = 3/2 is related to extremal component sizes in uniform random planar
structures. It was observed by Banderier, Flajolet, Schaeffer, and Soria [7, Thm. 7] that
the Airy distribution precisely quantifies the sizes of cores in various models of random
planar maps. This phenomenon was also observed in random graphs from planar-like
classes by Giménez, Noy, and Rué [19, Thm. 5.4]. The local limit theorems established
in these sources were obtained using analytic methods. For uniform size-constrained
planar maps and related models Addario-Berry [4] observed that the number of corners
in the 2-connected core is distributed like the largest outdegree in a simply generated
tree. In a similar spirit S. [35, Cor. 6.42, Thm. 6.20] related the largest 2-connected block
in random graphs from planar-like classes and general tree-like structures to a Gibbs
partition of the maximum outdegree in large Galton–Watson trees. These connections
have been used in [4, 35] to recover the central limit theorem of the largest block in
these models via a probabilistic approach. Theorem 1.1 enables us to strengthen these
alternative proofs to recover the stronger local limit theorem.

2 Visualization was done with Mathematica using a spring-electrical embedding algorithm. The simulation
of the random tree was carried out with the author’s open source software GRANT – Generate RANdom Trees
– available at: https://github.com/BenediktStufler/grant. The code implements a multithreaded version of
Devroy’s algorithm [14] for simulating size-constrained Galton–Watson trees.
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Figure 1: Simulation of a random simply generated tree with 100k vertices in the com-
plete condensation phase.2The precise behaviour of the unique vertex with macroscopic
degree in the center of the image is described by Theorems 1.1 and 1.2. The offspring
distribution was chosen to be of the form (1.1) with α = 3/2, f(n) constant (except for
the first term f(0)), and E[ξ] = 1/2.

1.2 The global shape

We say a plane tree is marked if one of its vertices is distinguished. The path
connecting the root to the marked vertex is called the spine. The fringe subtree of a
plane tree at a vertex is the subtree consisting of the vertex and all its descendants.
Any plane tree T may be fully described by the ordered list (Fi(T ))1≤i≤∆(T ) of fringe
subtrees dangling from the lexicographically first vertex v with maximum outdegree,
and the marked tree F0(T ) obtained from T by marking the vertex v and cutting away
all its descendants.

We consider the size-biased random variable ξ̂ with values inN∪{∞} and distribution
given by

P(ξ̂ = k) =

{
kP(ξ = k), k <∞
1− E[ξ], k =∞.

(1.4)

Let T• be the random marked plane tree constructed as follows. We start with a root
vertex and sample an independent copy ξ̂1 of ξ̂. If it is equal to infinity, then we mark
the root vertex and stop the construction. Otherwise we add offspring according to ξ̂ to
the root vertex. We select one of the offspring vertices uniformly at random and declare
it special. Each of the non-special offspring vertices gets identified with the root of an
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independent copy of the ξ-Galton–Watson tree T. We then iterate the construction with
the special offspring vertex. In particular, the marked vertex of T• is always a leaf. For
any finite plane tree T with a marked leaf v it holds that

P(T• = (T, v)) = (1− E[ξ])
∏

u∈T,u 6=v

P(ξ = d+
T (u)). (1.5)

Let (Ti)i≥1 denote independent copies of the ξ-Galton–Watson tree T. The following
observation describes the asymptotic shape of the conditioned Galton–Watson tree TΩ

n .
It tells us that F0(Tn) converges weakly to T•, and that all but a very small number of
the fringe subtrees dangling from the vertex with maximum outdegree in Tn behave
asymptotically like a list of independent copies of the unconditioned Galton–Watson tree
T that is stopped after accumulating sufficient mass:

Theorem 1.2. There is a constant C > 0 such that for any sequence of integers (tn)n≥1

with tn →∞ and tn = o(n) it holds that(
F0(TΩ

n ), (Fi(T
Ω
n ))1≤i≤∆(TΩ

n)−tn ,1∑∆(TΩ
n )

i=∆(TΩ
n )−tn

|Fi(TΩ
n)|≥Ctn

)
d
≈
(
T•, (Ti)1≤i≤∆〈n〉−tn , 0

)
for

∆〈n〉 := sup

{
d ≥ 1

∣∣∣∣ LΩ(T•) +

d∑
i=1

LΩ(Ti) ≤ n

}
.

Here
d
≈ denotes that the total variation distance of the two random vectors tends to

zero as n tends to infinity. We also let | · | denote the number of vertices, and LΩ(·) the
number of vertices with outdegree in Ω.

Results similar to Theorem 1.2 are known to hold for the tree Tn = TN0
n . Janson [23,

Thm. 20.2] established convergence of (F0(Tn), Fi(Tn))1≤i≤k) for k a constant, assuming
significantly weaker requirements on ξ. Specifically, assuming only that ξ is heavy tailed
and E[ξ] < 1 he showed that such a limit holds with respect to the lexicographically first
vertex having “large” outdegree instead of maximum outdegree. The condition ensuring
that “large” means maximum with high probability is ∆(Tn) = (1−E[ξ] + op(1))n, which
seems to be more general than assumption (1.1). Kortchemski [27, Cor. 2.7] proved
a limit for the fringe subtrees (Fi(Tn))1≤i≤(1−E[ξ]−ε)n in the setting (1.1) for ε > 0 an
arbitrarily small constant.

Abraham and Delmas [2] established a local weak limit for the vicinity of the root
vertex of TΩ

n in the more general condensation regime. This implies that a vertex with
large outdegree emerges close to the root. In general this vertex does not have to
correspond with high probability to a vertex with maximum outdegree of TΩ

n . But it
clearly does in the setting (1.1), yielding weak convergence of (F0(TΩ

n ), Fi(T
Ω
n ))1≤i≤k) for

any fixed constant k. (At least in the case Ω = N0, this is known to hold under the weaker
assumption ∆(TΩ

n ) = n(1−E[ξ])P(ξ ∈ Ω)−1 + op(n), see [23, Sec. 20]. In the setting (1.1)
this is ensured by Theorem 1.1.) For conditioned Galton–Watson trees that encode
certain types of Boltzmann planar maps a result concerning the asymptotic behaviour of
the forest of fringe subtrees dangling from a vertex with macroscopic degree was also
established by Janson and Stefánsson [24].

The strategy for proving the main theorems is to treat the case Ω = N0 separately
in Section 2, and then transfer the results to the general case in Sections 3 and 4. The
transfer is performed using a blow-up procedure due to Ehrenborg and Méndez [16], Mi-
nami [30], and Rizzolo [33], where every vertex is expanded at random into a vertebrate.
The details are rather technical and use Gibbs partition results from S. [36] to describe
the asymptotic behaviour of the vertebrates corresponding to vertices with large degree.
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The approach for the case Ω = N0 is inspired by the work of Kortchemski [27]. For this
case, the local limit result in Theorem 1.1 is proved using a connection between random
trees and random walks, combined with estimates of Denisov, Dieker and Shneer [13]
on the big-jump domain for random walks. The asymptotic description of the fringe
subtrees in Theorem 1.2 is proved by combining approximation results by Armendáriz
and Loulakis [6] with a path decomposition.

Let us note a few implications of Theorem 1.2. First, if a sequence of positive
integers (rn)n≥1 satisfies rn/(g(n)n1/θ) → ∞ and rn = o(n), then P(∆(TΩ

n ) > P(ξ ∈
Ω)−1(1−E[ξ])n− rn)→ 1 by the central limit theorem for ∆(TΩ

n ) implied by Theorem 1.1.
Hence it follows by Theorem 1.2:

Corollary 1.3. If a sequence of positive integers (rn)n≥1 satisfies rn/(g(n)n1/θ) → ∞
and rn = o(n), then(

F0(TΩ
n ), (Fi(T

Ω
n ))1≤i≤P(ξ∈Ω)−1(1−E[ξ])n−rn

) d
≈
(
T•, (Ti)1≤i≤(1−E[ξ])P(ξ∈Ω)−1n−rn

)
. (1.6)

We may view (∆〈n〉)n≥1 as a renewal process with inter-arrival times distributed like
LΩ(T). The number LΩ(T) of vertices with outdegree in Ω has a probability density that
varies regularly with index −1− α. Specifically,

P(LΩ(T) = n) ∼ f(n)P(ξ ∈ Ω)α

(1− E[ξ])1+α
n−1−α. (1.7)

See Equations (3.13) and (4.71) below.
In Appendix A we collect a few results on general renewal processes with inter-arrival

times having regularly varying probability densities. For example, Lemma A.6 implies
that the first o(n) fringe subtrees dangling from the vertex with maximal degree in TΩ

n

asymptotically become independent from each other and the maximal degree:

Corollary 1.4. Let ∆[n] denote an identically distributed copy of ∆(TΩ
n ) that is indepen-

dent from T• and (Ti)i≥1. If a sequence of positive integers (mn)n≥1 satisfies mn = o(n),
then (

F0(TΩ
n ), (Fi(T

Ω
n ))1≤i≤mn ,∆(TΩ

n )
) d
≈
(
T•, (Ti)1≤i≤mn ,∆[n]

)
. (1.8)

Note the contrast between Corollaries 1.3 and 1.4. Almost all fringe subtrees dangling
from the vertex with maximal degree in TΩ

n become asymptotically independent from
each other, but only a small o(n) number additionally becomes independent from the
maximal degree itself. On an intermediary scale, it appears that the best we can achieve
is a a weaker contiguousness relation that follows from Lemma A.5:

Corollary 1.5. Let 0 < δ < P(ξ ∈ Ω)−1(1 − E[ξ]) be given. For any ε > 0 there are
constants 0 < c < C and a number N0 > 0 such that for all n ≥ N0 and all events E

cP
((
T•, (Ti)1≤i≤∆[n]−δn

)
∈ E
)
− ε ≤ P

((
F0(TΩ

n ), (Fi(T
Ω
n ))1≤i≤∆(TΩ

n)−δn
)
∈ E
)

(1.9)

≤ CP
((
T•, (Ti)1≤i≤∆[n]−δn

)
∈ E
)

+ ε.

That is, E may be any collection of finite sequences of finite plane trees, with the first
tree additionally carrying a marked leaf.

Note that the family
(
F0(TΩ

n ), (Fi(T
Ω
n ))1≤i≤∆(TΩ

n)−δn
)

determines ∆(TΩ
n ). Thus any

property that holds with high probability for
(
F0(TΩ

n ), (Fi(T
Ω
n ))1≤i≤∆(TΩ

n)−δn,∆(TΩ
n )
)

also
holds with high probability for

(
T•, (Ti)1≤i≤∆[n]−δn,∆[n]

)
, and vice versa.

1.3 Limits of graph parameters

We postpone the complex proofs of Theorems 1.1 and 1.2 to Sections 2, 3 and 4. In
the present section we collect and prove applications concerning limits of the height,
fringe subtree statistics, and the non-maximal vertex degrees.
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1.3.1 The height

We let H(·) denote the height. The unconditioned ξ-Galton–Watson tree T is known [21,
Thm. 2] to satisfy

P(H(T) = n) ∼ cHE[ξ]n (1.10)

for some constant cH > 0. Theorems 1.1 and 1.2 tell us that

H(TΩ
n )

d
≈H(T•) + max(H(T1), . . . ,H(T∆〈n〉)). (1.11)

Note that the height H(T•) follows a geometric geometric distribution

P(H(T•) = k) = E[ξ]k(1− E[ξ]). (1.12)

Using extreme value statistics it follows that for any sequence kn with kn →∞ it holds
uniformly for all integers k ≥ kn

P

(
max

1≤i≤n
H(Ti) ≤ k

)
=

exp

(
− exp

(
log (n)− k log

(
1

E[ξ]

)
+ log

(
cHE[ξ]

1− E[ξ]

))
(1 + o(1))

)
(1.13)

and hence

max
1≤i≤n

H(Ti) =
log n

log
(

1
E[ξ]

) +Op(1). (1.14)

Using Corollary 1.3 and a time-reversal argument, it follows that

max
1≤i≤∆〈n〉

H(Ti)
d
≈ max

1≤i≤ 1−E[ξ]
P(ξ∈Ω)

n

H(Ti) =
log n

log
(

1
E[ξ]

) +Op(1). (1.15)

Combining (1.11) and (1.15), we obtain:

Corollary 1.6. The height of the tree TΩ
n satisfies

H(TΩ
n ) = log(n)/ log(1/E[ξ]) +Op(1). (1.16)

The result agrees with the case Ω = N0 established by Kortchemski in [27, Thm. 4].
Convergence of moments may be verified as well:

Proposition 1.7. For any fixed constant p ≥ 1

E

[(
H(TΩ

n )

log n

)p]
→ (log(1/E[ξ]))

p
. (1.17)

The proof is by similar arguments as for [27, Prop. 2.11], where the case Ω = N0 was
treated:

Proof of Proposition 1.7. It follows from (1.16) that

H(TΩ
n )

log n

p−→ log(1/E[ξ]). (1.18)

Hence it suffices to show that H(TΩ
n)

logn is p-uniformly integrable. For this, it suffices to show

that H(TΩ
n)

logn is bounded in Lq for some fixed q > p. Let K > 0 be a constant. Then

E

[(
H(TΩ

n )

log n

)q]
≤ Kq + E

[
H(TΩ

n )q,H(TΩ
n ) > K log n

]
. (1.19)
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Using the trivial bound H(TΩ
n ) ≤ |TΩ

n |, it follows that

E
[
H(TΩ

n )q,H(TΩ
n ) > K log n

]
≤

2n

P(ξ ∈ Ω)
P(H(TΩ

n ) > K log n) + E

[
|TΩ
n |q, |TΩ

n | >
2n

P(ξ ∈ Ω)

]
. (1.20)

Letting (ξi)i≥1 denote independent copies of ξ, it follows from the Chernoff bounds, the
Potter bounds, and Equation (1.7) that uniformly for all integers k > 2n/P(ξ ∈ Ω)

P(|TΩ
n | = k) ≤ P(LΩ(T) = n)−1P

(
k∑
i=1

1ξi∈Ω = n

)
(1.21)

≤ O(n2+α) exp

(
−|n− kP(ξ ∈ Ω)|2

2k

)
≤ exp(−Θ(k)).

This entails

E

[
|TΩ
n |q, |TΩ

n | >
2n

P(ξ ∈ Ω)

]
= exp(−Θ(n)). (1.22)

Furthermore, using (1.10), the Potter bounds, and Equation (1.7) it follows that

P(H(TΩ
n ) > K log n) ≤ O

(
n2+α−K log(1/E[ξ])

)
. (1.23)

Taking K sufficiently large, it follows from Inequalities (1.19), (1.20), (1.22), and (1.23)

E

[(
H(TΩ

n )

log n

)q]
≤ Kq + exp(−Θ(n)) +O

(
n3+α−K log(1/E[ξ])

)
= Kq + o(1). (1.24)

This verifies that
(

H(TΩ
n)

logn

)q
is bounded in Lp, and completes the proof.

1.3.2 Counting fringe subtrees

For any finite plane tree T we may consider the functional NT (·) that takes a plane tree
as input and returns the number of occurrences of T at a fringe. It is easy to see that
the unconditioned ξ-Galton–Watson tree T satisfies

E[NT (T)] = P(T = T )/(1− E[ξ]). (1.25)

By Corollary 1.3 and a time-reversal argument it follows that

NT (TΩ
n )

nP(ξ ∈ Ω)−1

p−→P(T = T ). (1.26)

This agrees with known results for the case Ω = N0, see [23, Thm. 7.12].
We may also derive exponential concentration inequalities: Let F (·) denote a function

that takes a list of at least |T | integers as input, extends it cyclically, and returns the
number of occurrences of the depth-first-search ordered list of outdegrees of T as a
substring of the cyclically extended input. Note that such substrings cannot overlap.
Hence changing a single coordinate of the input changes the value of F by at most 1.

Recalling that d1, . . . , d|TΩ
n | denotes the outdegree list corresponding to TΩ

n , we may
write

NT (TΩ
n ) = F (d1, . . . , d|TΩ

n |). (1.27)
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Letting (ξ)i≥1 denote independent copies of ξ, it follows by McDiarmid’s inequality that
for all x > 0 and ` ≥ |T |

P(|F (ξ1, . . . , ξ`)− P(T = T )`| ≥ x) ≤ 2 exp(−2x2/`). (1.28)

Here we have used that E[F (ξ1, . . . , ξ`)] = `P(T = T ), since F cyclically extends the input
list. The number LΩ(T) of vertices of the unconditioned ξ-Galton–Watson tree T with
outdegree in Ω is known to equal the total of number of vertices in a Galton–Watson tree
with a different offspring distribution [33] (that is critical/subcritical heavy-tailed/light-
tailed if and only if ξ is). See Sections 3 and 4. Hence it follows by a general result of
Janson [23] that

P(LΩ(T) = n) = exp(o(n)). (1.29)

We may write

P(|TΩ
n | /∈ (1± ε)n/P(ξ ∈ Ω)) ≤

P(LΩ(T) = n)−1P

(
LΩ(T) /∈ 1

1± ε
|T|P(ξ ∈ Ω), LΩ(T) = n

)
.

As plane trees correspond to cyclic shifts of balls-in-boxes configurations (see Equa-
tion (2.1)), the Chernoff bounds and Equation (1.29) imply that this bound simplifies to
exp(−Θ(n)). Using Equations (1.27) this implies

P
(
NT (TΩ

n ) /∈ (1± ε)P(T = T )n/P(ξ ∈ Ω))
)
≤

exp(−Θ(n)) + exp(o(n))
∑

`∈(1±ε)n/P(ξ∈Ω)

P

(
F (ξ1, . . . , ξ`) /∈ (1± ε)P(T = T )P(ξ ∈ Ω)

n

)
.

By Equation (1.28) this bound simplifies to exp(−Θ(n)). We obtain:

Lemma 1.8. For any ε > 0 it holds that

P

(∣∣∣∣ NT (TΩ
n )

nP(ξ ∈ Ω)−1
− P(T = T )

∣∣∣∣ ≥ ε) ≤ exp(−Θ(n)), (1.30)

P
(
||TΩ

n | − nP(ξ ∈ Ω)−1| ≥ ε
)
≤ exp(−Θ(n)). (1.31)

This agrees with the known case Ω = N0, see for example [35, Thm. 6.5].

Remark 1.9. The proof of Lemma 1.8 does not use any of the assumptions on ξ. Hence
Inequality (1.30) holds for any offspring distributions ξ (with P(ξ = 0) > 0, P(ξ ≥ 2) > 0,
and P(ξ ∈ Ω) > 0), that is either critical, or subcritical and heavy-tailed. Furthermore, it
is well-known that if ξ subcritical and light-tailed, then the study of TΩ

n may be reduced
to one of these two cases by tilting the offspring distribution.

Lemma 1.8 implies by the Borel–Cantelli Lemma that

NT (TΩ
n )

|TΩ
n |

a.s.−→P(T = T ) (1.32)

This may be expressed equivalently in terms of random probability measures. Take the
random tree TΩ

n , and let µn denote the (random) law of the fringe subtree at a uniformly
selected vertex of TΩ

n . Then

µn
a.s.−→L(T), (1.33)

with L(T) denoting the law of the unconditioned Galton–Watson tree T.
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1.3.3 Sizes of subtrees dangling from the vertex with maximal degree

It follows from [13, Cor. 2.1] (see Equation (2.2) below for details) that

P(|T| = n) ∼ P(ξ = b(n− 1)(1− E[ξ])c) ∼ f(n)

(n(1− E[ξ]))1+α
. (1.34)

Similar as for the height in (1.11), we obtain by extreme value statistics the following
limit for the maximal size of the fringe subtrees Fi(TΩ

n ), 1 ≤ i ≤ ∆(TΩ
n ) dangling from

the vertex with maximum degree.

Corollary 1.10. There is a slowly varying function f0(n) with

f0(n)n−1/α max
1≤i≤∆(TΩ

n)
|Fi(TΩ

n )| d−→Fréchet(α). (1.35)

The slowly varying function f0 may chosen to satisfy

f0(n) = n−1/α inf

{
m ≥ 1

∣∣∣∣∣ P(|T| > m) ≤ P(ξ ∈ Ω)

(1− E[ξ])n

}
. (1.36)

By Karamata’s theorem it holds that

P(|T| > n) ∼ f(n)

α(1− E[ξ])1+α
n−α. (1.37)

Thus, if for example f(n) ∼ c for some constant c > 0, then we may set

f0(n) =

(
c

αP(ξ ∈ Ω)

)1/α
1

1− E[ξ]
. (1.38)

Or, if f(n) is any slowly varying function and 1 < α < 2, Equation (1.2) entails that we
may set

f0(n) =

(
1

P(ξ ∈ Ω)Γ(1− α)

)1/α
g(n)

1− E[ξ]
. (1.39)

We let D([0, 1],R) denote the space of all càdlàg functions [0, 1]→ R, endowed with
the Skorokhod J1-topology. Equation (1.34) implies that the random walk (Zi)i≥1 with
step-size distribution |T| satisfies(

Zbntc − nt/(1− E[ξ])

f1(n)n1/θ
, 0 ≤ t ≤ 1

)
d−→ (Xt)0≤t≤1 (1.40)

in the space D([0, 1],R) for some slowly varying function f1(n). By [27, Lem. 2.10], we
may set

f1(n) =
g(n)

(1− E[ξ])1+1/θ
(1.41)

for the function g defined in Equation (1.2). Using [26, Lem. 5.7], we obtain:

Corollary 1.11. It holds that∑b∆(TΩ
n)tc

i=1 |Fi(TΩ
n )| −∆(TΩ

n )t/(1− E[ξ])
g(n)

P(ξ∈Ω)1/θ n1/θ
, 0 ≤ t ≤ 1

 d−→
(

1

1− E[ξ]
Xt

)
0≤t≤1

(1.42)

in the space D([0, 1],R).

This was established by Kortchemski [27, Thm. 3] for the case Ω = N0. The proof of
Corollary 1.11 is by similar arguments.
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1.3.4 The remaining vertex outdegrees

We order the outdegrees of the tree TΩ
n in descending order ∆1(TΩ

n ) ≥ ∆2(TΩ
n ) ≥ . . ..

It was shown in [20, Prop. 3.2] that the maximal outdegree of the unconditioned
Galton–Watson tree T satisfies

P(∆(T) = n) ∼ P(ξ = n)/(1− E[ξ]). (1.43)

Similar as for the height in (1.11), it follows that the second largest degree ∆2(TΩ
n )

satisfies

∆2(TΩ
n )

d
≈ max(∆(T1), . . . ,∆(T∆〈n〉)). (1.44)

By extreme value statistics we obtain analogously as for (1.6):

Corollary 1.12. There is a slowly varying function f2(n) with

∆2(TΩ
n )/(f2(n)n1/α)

d−→Fréchet(α). (1.45)

This generalizes the case Ω = N0 established by Janson [23, Thm. 19.34]) and
Kortchemski [27, Thm. 1]. The slowly varying function f2 may be set to

f2(n) = n−1/α inf

{
m ≥ 1

∣∣∣∣∣ P(∆(T) > m) ≤ P(ξ ∈ Ω)

(1− E[ξ])n

}
. (1.46)

By Karamata’s theorem it holds that

P(∆(T) > n) ∼ f(n)

α(1− E[ξ])
n−α ∼ P(ξ > n)

1− E[ξ]
. (1.47)

So, we may just as well set

f2(n) = n−1/α inf

{
m ≥ 1

∣∣∣∣∣ P(ξ > m) ≤ P(ξ ∈ Ω)

n

}
. (1.48)

It is not clear how to evaluate this in general. However, for some special cases it is
fairly easy: For example, if f(n) ∼ c for some constant c > 0, then we may set

f2(n) =

(
c

αP(ξ ∈ Ω)

)1/α

. (1.49)

Or, if f(n) is any slowly varying function and 1 < α < 2, Equation (1.2) entails that we
may set

f2(n) =

(
1

P(ξ ∈ Ω)Γ(1− α)

)1/α

g(n). (1.50)

More generally, we may also treat the ith largest outdegree for i ≥ 2:

Theorem 1.13. For any i ≥ 2 and any fixed x > 0 it holds that

P

(
∆i(T

Ω
n )

f2(n)n1/α
≤ x

)
→ exp(−x−α)

i−1∑
s=0

x−αs

s!
. (1.51)

That is,

∆i(T
Ω
n )

f2(n)n1/α

d−→Wi (1.52)
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for a random variable Wi having density

α exp(−x−α) (x−α)
i

x(i− 1)!
(1.53)

for x > 0.

Proof. Let us fix a constant δ > 0 with 1/θ < δ < 1, and set

un =
1− E[ξ]

P(ξ ∈ Ω)
n− nδ.

From Equation (1.43), Theorem 1.1, Corollary 1.3 and a time-reversal argument it follows
that the largest outdegree in the forest consisting of F0(TΩ

n ) and (Fi(T
Ω
n ))un≤i≤∆(TΩ

n) has

order Op(nδ/α+o(1)). Hence it suffices to show that the (i− 1)th largest outdegree in the
forest (Fi(T

Ω
n ))1≤i≤un admits Wi as distributional limit after rescaling by f2(n)n1/α.

Corollary 1.3 tells us that

(Fi(T
Ω
n ))1≤i≤un

d
≈ (Ti)1≤i≤un ,

with T1,T2, . . . denoting independent copies of T. Let ξ1, ξ2, denote independent copies
of ξ and set for all integers k < 0

τk = inf

{
d ≥ 1

∣∣∣∣∣
d∑
i=1

(ξi − 1) = k

}
.

The lexicographically ordered list of outdegrees in (Ti)1≤i≤un is distributed like

(ξ1, . . . , ξτ−un ).

Note that (1.34) entails

τ−un = un/(1− E[ξ]) +Op(n
1/θ+o(1)).

In particular, τ−un > n/P(ξ ∈ Ω) − nδ with a probability that tends to 1 as n → ∞. It
follows that the (i−1)th largest entry Mn of the list (ξ1, . . . , ξτ−un ) is with high probability
among the first n/P(ξ ∈ Ω)− nδ coordinates. That is, asymptotically distributed like the
(i − 1)th largest outdegree in bn/P(ξ ∈ Ω) − nδc independent copies of ξ. By extreme
value statistics, see [29, Thm. 2.2.2], and Equation (1.48) it follows that

Mn/(f2(n)n1/α)
d−→Wi.

This completes the proof.

Remark 1.14. We proved Theorem 1.13 as a consequence of the main theorems. At
least in the case 0 ∈ Ω, there is also a nice and short alternative approach: In Section 3
we describe for the case 0 ∈ Ω how TΩ

n may be sampled by taking a simply generated
tree T̃n with n vertices (with offspring distribution described in Equation (3.7)) and
blowing up each vertex into an ancestry line by a process illustrated in Figure 7. This
construction goes back to Ehrenborg and Méndez [16], and was fruitfully applied in the
probabilistic literature [30, 33, 2, 1]. Applying results from [6] and [27, Cor. 2.7] to the
tree T̃n (compare with Equation (2.3) below) yields that the depth-first-search ordered
list d̃1, . . . , d̃n satisfies the following: If j̃0 denotes the smallest index with d̃j̃0 = ∆(T̃n),
then

(d̃j̃0 , . . . , d̃n, d̃1, . . . , d̃j̃0−1)
d
≈ (n− 1− ξ̃1 − . . .− ξ̃n−1, ξ̃1, . . . , ξ̃n−1). (1.54)
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Here (ξ̃i)i≥1 denote independent copies of the branching mechanism ξ̃ with probability
generating function φ̃(z) stated in Equation (3.7). The blow-up procedure transforms ξ̃
into a depth-first-search order respecting segment

D := (ξΩc

1 , . . . , ξΩc

L , ξΩ) (1.55)

of independent outdegrees. Here (ξΩc

i )i≥1 denotes independent copies of (ξ | ξ ∈ Ωc),

ξΩ d
= (ξ | ξ ∈ Ω), and L an independent geometrically distributed integer with distribution

P(L = k) = P(ξ ∈ Ωc)k/(1− P(ξ ∈ Ωc)). (1.56)

(In case Ω = N0 this means that L = 0 is almost surely constant.) The description of
the blowup of the first coordinate

∑n−1
i=1 (1 − ξ̃i) is more delicate, and carried out in

Lemma 3.1. Let (Di)i≥1 be independent copies of D, and let (Li)i≥1 denote independent
copies of L. We let _ denote a binary operator that concatenates any two given lists.
We obtain:

a) If |Ωc| <∞, then

(dj0+1, . . . , d|TΩ
n |, d1, . . . , dj0−1)

d
≈D1 _ . . . _ Dn−1 _ (ξΩc

1 , . . . , ξΩc

L ). (1.57)

In particular,

|TΩ
n |

d
≈

n∑
i=1

(1 + Li)
d
=n+ NB(n,P(ξ ∈ Ω)). (1.58)

b) If |Ω| <∞, then

(dj0+1, . . . , d|TΩ
n |, d1, . . . , dj0−1)

d
≈D1 _ . . . _ Dn _ (ξΩc

1 , . . . , ξΩc

L ). (1.59)

In particular,

|TΩ
n |

d
≈

n+1∑
i=1

(1 + Li)
d
=n+ 1 + NB(n+ 1,P(ξ ∈ Ω)). (1.60)

From this we may directly deduce Theorem 1.13 using extreme value statistics.

1.4 Comparison with critical Galton–Watson trees

Figures 2–5 illustrate typical behaviour of large n-vertex Galton–Watson trees whose
offspring distribution ξ has a regularly varying density with index −(α + 1). Each
figure shows a drawing of a simulation of the tree in the top left corner, and the
associated looptree (obtained by blowing up any vertex with outdegree d into a cycle
of circumference d+ 1, see [12]) in the top right corner. The bottom left corner shows
the Łukasiewicz path associated to the tree, and the bottom right corner the height
process. The colour gradient corresponds to the height of a vertex in the tree, and is
used consistently in all four corners.

The tree in Figure 2 exhibits a unique vertex whose degree has order (1 − E[ξ])n,
which is typical for the regime [25, 23, 27, 1] of Theorem 1.1. A similar condensation
phenomenon has recently been shown to occur when ξ is critical and lies in the domain
of attraction of a Cauchy law [28], see Figure 3 for an illustration. There the order of the
maximum degree is o(n), but varies regularly with index 1, and is much larger than the
second largest degree.

In the so called stable regime illustrated in Figure 4, ξ is critical and lies in the
domain of attraction of an α-stable law for 1 < α < 2. There for each fixed i ≥ 1 the
order of the ith largest degree varies regularly with index 1/α [23, 15, 12]. Finally, the
regime where ξ is critical and lies in the domain of attraction of the normal law [23, Sec.
19] is illustrated in Figure 5.
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Figure 2: A subcritical Galton–Watson tree with 100k vertices. The offspring distribution
ξ was chosen to be of the form (1.1) with α = 3/2, f(n) constant (except for f(0)), and
E[ξ] = 3/4.

Figure 3: A critical Galton–Watson tree with 500k vertices. The offspring distribution
was chosen to lie in the domain of attraction of the Cauchy law.

2 Conditioning on the number of vertices

We start by establishing the limit theorems for the special case Ω = N0 using results
by Denisov, Dieker, and Shneer [13] and Armendáriz and Loulakis [6] on the big-jump
domain for random walks.
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Figure 4: A critical Galton–Watson tree with 500k vertices. The offspring distribution
was chosen to lie in the domain of attraction of the Airy law.

Figure 5: A critical Galton–Watson tree with 500k vertices. The offspring distribution
was chosen to lie in the domain of attraction of the normal law.

2.1 Plane trees correspond to cyclic shifts of balls-in-boxes configurations

A (planted) plane tree T is a rooted unlabelled tree where each offspring set is
endowed with a linear order. The outdegree of a vertex v ∈ T , denoted by d+

T (v), is its
number of children. We let ∆(T ) denote the maximal outdegree of T . The total number
of vertices of T is denoted by |T |. Setting n = |T |, the tree T is fully determined by the
vector

(x1, . . . , xn) = (d+
T (v1)− 1, . . . , d+

T (vn)− 1),

with v1, . . . , vn denoting the depth-first-search ordered list of vertices of T . The vector
(xi)1≤i≤n satisfies

∑n
i=1 xi = −1 and

∑k
i=1 xi ≥ 0 for all k < n. The following result is

classical:

Lemma 2.1 ([38]). For any r ≥ 1 and any vector y = (yi)1≤i≤n of integers yi ≥ −1

with
∑n
i=1 yi = −r there exist precisely r indices i0 with the property that the cyclically
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shifted vector

(ȳ1, . . . , ȳn) = (yi0 , yi0+1, . . . , yn, y1, . . . , yi0−1)

satisfies
∑k
i=1 ȳi > −r for all k < n.

Hence for r = 1 such a vector y corresponds to a unique tree T (y). The index i0 is
obtained by letting k0 denote the smallest integer between 1 and n for which

k0∑
i=1

yi = min
1≤k≤n

k∑
i=1

yi,

and setting i0 = 1 if k0 = n, and i0 = k0 + 1 otherwise.

2.2 Non-generic simply generated trees and the big-jump domain

If (ξi)i≥1 denote independent copies of ξ, then

Tn
d
=T ((ξi − 1)1≤i≤n | ξ1 + . . .+ ξn = n− 1) . (2.1)

Suppose that E[ξ] < 1 and (1.1) holds. By results for the big-jump domain in random
walk [13, Cor. 2.1] it follows that

P(|T| = n) = n−1P

(
n∑
i=1

ξi = n− 1

)
∼ P(ξ = b(n− 1)(1− E[ξ])c) ∼ f(n)

(n(1− E[ξ]))1+α
.

(2.2)

Let v1, . . . , vn denote the depth-first-search ordered list of vertices of Tn, and set
di = d+

Tn
(vi)−1. (The depth-first-search order is often also referred to as the lexicographic

order due to the usual embedding of plane trees as subtrees of the Ulam–Harris tree.)
Let 1 ≤ j0 ≤ n denote the smallest index such that the maximum outdegree of Tn is
attained at the corresponding vertex. It was observed in [27, Cor. 2.7] using results from
[6] (compare with [23, Thm. 19.34, (iii)]) that

lim
n→∞

sup
A⊂B(Rn)

|P((dj0 , . . . , dn, d1, . . . , dj0−1) ∈ A)− P(vn ∈ A)| = 0 (2.3)

for the vector

vn = (n− ξ1 − . . .− ξn−1, ξ1, . . . , ξn−1)− (1, . . . , 1).

Note that vn does not have to correspond to a tree, since the first coordinate may be
smaller than −1. In this case, we set T (vn) = � for some symbol � that is not contained
in any other set under consideration in this paper. The probability for this event tends to
zero as n becomes large. Equation (2.3) implies that

lim
n→∞

sup
A⊂Tn∪{�}

|P(Tn ∈ A)− P(T (vn) ∈ A)| = 0 (2.4)

with Tn denoting the finite set of all plane trees with n vertices.

2.3 Limits for the extremal degree of Tn

Recall that (Xt)t≥0 denotes the spectrally positive Lévy process with Laplace exponent
E[exp(−λXt)] = exp(tλθ) for θ := min(2, α). It is known that the density h ofX1 is positive,
uniformly continuous, and bounded on R (see [17, Sec. XVII.6] and [8]). The classical
local limit theorem [22, Thm. 4.2.1] states that if ξ lies in the domain of attraction of a
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θ-stable law, then there is a slowly varying function g such that the sums Sn = ξ1 + . . .+ξn
satisfy

lim
n→∞

sup
`∈Z

∣∣∣∣g(n)n1/θP(Sn = `)− h
(
`− nE[ξ]

g(n)n1/θ

)∣∣∣∣ = 0. (2.5)

It was shown in [26, Thm. 1.10] that the function g may be chosen to satisfy Equa-
tion (1.2). If assumption (1.1) is satisfied, then Equation (2.4) implies

∆(Tn)
d
≈n− ξ1 − . . .− ξn−1 (2.6)

This may be used (see [27, Thm. 1]) to deduce a central limit theorem

(1− E[ξ])n−∆(Tn)

g(n)n1/θ

d−→X1. (2.7)

Compare also with [23, Thm. 19.34]. We may strengthen (2.7) to a local limit theorem.
This does not follow directly from (2.6), as we would require knowledge on the speed
with which the total variation distance tends to zero.

Lemma 2.2. It holds that

P(∆(Tn) = `) =
1

g(n)n1/θ

(
h

(
(1− E[ξ])n− `

g(n)n1/θ

)
+ o(1)

)
uniformly for all integers `.

Proof. By Equation (2.1) we know that ∆(Tn) is distributed like the maximum jump of
the random walk Sn conditioned to arrive at n− 1. Hence

P(∆(Tn) = `) =
P(max(ξ1, . . . , ξn) = `, Sn = n− 1)

P(Sn = n− 1)
. (2.8)

By [13, Cor. 2.1] it holds that

P(Sn = n− 1) ∼ nP(ξ = bn(1− E[ξ])c) ∼ f(n)n−α(1− E[ξ])−α−1 (2.9)

It follows from Equations (2.8), (2.9) and the exponential bounds [13, Lem. 2.1] (applied
to the centred random walk Sn − nE[ξ]) that there is a constant C > 0 such that

P(∆(Tn) ≤ cg(n)n1/θ) ≤ C exp

(
−n(1− E[ξ])

cg(n)n1/θ

)
nα/f(n) (2.10)

for all c ≥ 1. Hence there is a constant ε1 > 0 such that it suffices to verify that
Lemma 2.2 holds uniformly for all ` ≥ ε1n/ log n.

Throughout the following we only consider values ` with ε1n/ log n ≤ ` ≤ n. By
Equations (2.8) and (2.9) it follows that g(n)n1/θP(∆(Tn) = `) equals

(1 + o(1))
g(n)n1/θ

(1− E[ξ])−α−1f(n)n−α∑
k≥1

(
n

k

)
P(ξ = `)kP

(
max

1≤i≤n−k
ξi < `, Sn−k = n− 1− k`

)
. (2.11)

Our next step is to discard all summands except for the first. Note that Sn−k ≥ 0 implies
that all summands with k > n/` are equal to zero. Hence

g(n)n1/θ

f(n)n−α

∑
k≥2

(
n

k

)
P(ξ = `)kP

(
max

1≤i≤n−k
ξi < `, Sn−k = n− 1− k`

)

≤ f(`)

f(n)

(
`

n

)−α−1 ∑
2≤k≤n/`

(nP(ξ = `))k−1P(Sn−k = n− 1− k`)g(n)n1/θ. (2.12)
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Note that n/` ≤ ε−1
1 log n and hence n ∼ n − k uniformly for all summands. Since h is

bounded, it follows from the local limit theorem (2.5) that P(Sn−k = n− 1− k`)g(n)n1/θ

remains bounded uniformly for all 2 ≤ k ≤ n/` and ` ≥ ε1n/ log n. Hence the expression
in (2.12) admits an upper bound of the form

O(1)
f(`)

f(n)
(log n)α+1

∑
2≤k≤n/`

(nP(ξ = `))k−1. (2.13)

Moreover, nP(ξ = `) = O(f(`)n−α(log n)1+α) holds uniformly as well. Hence, using the
Potter bounds, the expression in (2.12) may be further bounded by

f(`)

f(n)
(log n)α+1O(f(`)n−α(log n)1+α) = o(1). (2.14)

This verifies that g(n)n1/θP(∆(Tn) = `) equals

o(1) + (1 + o(1))
g(n)n1/θ

(1− E[ξ])−α−1f(n)n−α
nP(ξ = `)P

(
max

1≤i≤n−1
ξi < `, Sn−1 = n− 1− `

)
(2.15)

uniformly for all ` with ε1n/ log n ≤ ` ≤ n.
Let 0 < ε < 1− E[ξ] be some constant. By [13, Cor. 2.1] (applied to the centred sum

Sn − nE[ξ]) it holds uniformly for all integers ` with ε1n/ log n ≤ ` ≤ εn that

P(Sn−1 = n− 1− `) ∼ nP(ξ = (n− 1)(1− E[ξ])− `) (2.16)

= O(n−αf(n)).

Since α > 1 implies that 1/θ < α, it follows that the expression in (2.15) tends to zero
uniformly for all ` in the restricted range. Thus it suffices to verify that Lemma 2.2 holds
uniformly for all ` with εn ≤ ` ≤ n.

Let ` ∈ [εn, n] be given. Our next step will be to get rid of the event max1≤i≤n−1 ξi < `

in the expression (2.15). To this end, note that supk≥nP(ξ = k) = O(P(ξ = n)) implies
that

P

(
max

1≤i≤n−1
ξi ≥ `, Sn−1 = n− 1− `

)
≤ n

∑
i≥`

P(ξ = i)P(Sn−1 = n− 1− `− i) (2.17)

≤ O(n)P(ξ = `).

Also,

nP(ξ = `)

(1− E[ξ])−α−1f(n)n−α
∼
(

(1− E[ξ])n

`

)1+α

(2.18)

remains bounded for ` ≥ εn. Using again 1/θ < α, this implies that the result of
substituting max1≤i≤n−1 ξi < ` by max1≤i≤n−1 ξi ≥ ` in expression (2.15) tends to zero.
This shows that

g(n)n1/θP(∆(Tn) = `) = o(1) +

(
(1− E[ξ])n

(1 + o(1))`

)1+α

P (Sn−1 = n− 1− `) g(n)n1/θ (2.19)

holds uniformly.
The local limit theorem (2.5) tells us that

P (Sn−1 = n− 1− `) g(n)n1/θ = h

(
`− n(1− E[ξ])

g(n)n1/θ

)
+ o(1). (2.20)
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Using that the function h and the expression in (2.18) are bounded, it follows from (2.19)
that

g(n)n1/θP(∆(Tn) = `) = o(1) +

(
(1− E[ξ])n

`

)1+α

h

(
`− n(1− E[ξ])

g(n)n1/θ

)
. (2.21)

Let ε2 > 0 be small enough such that 1/θ + ε2 < 1. It holds that

sup
`′ /∈n(1−E[ξ])±n1/θ+ε2 ,`′≥εn

h

(
`′ − n(1− E[ξ])

g(n)n1/θ

)
→ 0. (2.22)

Consequently, it remains to verify that Lemma 2.2 holds uniformly for ` ∈ n(1− E[ξ])±
n1/θ+ε2 . For ` ranging in this interval, Equation (2.21) yields

g(n)n1/θP(∆(Tn) = `) = o(1) + h

(
`− n(1− E[ξ])

g(n)n1/θ

)
. (2.23)

This completes the proof.

For future use we remark on some deviation bounds:

Proposition 2.3. 1. For any s > 0 we may select ε > 0 small enough such that

P

(
∆(Tn) ≤ ε n

log n

)
= O(n−s). (2.24)

2. We may select ε > 0 small enough so that there exists a δ > 0 with

g(n)n1/θP (∆(Tn) ≤ εn) = O(n−δ) (2.25)

as n→∞.

Proof of Proposition 2.3. Inequality (2.24) follows directly from (2.10). In order to

check (2.25), it suffices to shows such a bound for P
(
ε1

n
logn ≤ ∆(Tn) ≤ εn

)
for some

ε1 > 0 chosen sufficiently small according so that (2.24) holds for s = α− 1/θ.
The expression of g(n)n1/θP(∆(Tn) = `) in (2.11) for ε1

n
logn ≤ ` ≤ εn entails that

g(n)n1/θP(∆(Tn) = `) ≤ A+B (2.26)

with A denoting the bound of (2.14)

A = O(n−α+o(1)), (2.27)

and B denoting the bound from (2.15)

B = O(n1/θ+α+1+o(1))P(ξ = `)P

(
max

1≤i≤n−1
ξi < `, Sn−1 = n− 1− `

)
(2.28)

= O(n1/θ+o(1))P

(
max

1≤i≤n−1
ξi < `, Sn−1 = n− 1− `

)
.

It follows from the Inequality [23, (19.129)] (generalized to admit regularly varying
densities instead of asymptotic power laws) that for ε < α−1

α+1 (1− E[ξ])

P

(
max

1≤i≤n−1
ξi < `, Sn−1 = n− 1− `

)
= exp

(
−(α+ 1)

log n

n(1− E[ξ])
(n− 1− `− nE[ξ] + o(n))

)
(2.29)

≤ n−(α+1)(1−ε+o(1)).
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Note that α > 1 implies that 1/θ < α. Taking ε > 0 sufficiently small and summing over
all integers ` with ε1

n
logn ≤ ` ≤ εn it follows that

P

(
ε1

n

log n
≤ ∆(Tn) ≤ εn

)
≤ n

(
O(n−α+o(1)) +O(n1/θ−(α+1)(1−ε)+o(1))

)
(2.30)

= O(n−δ)

for some δ > 0.

2.4 The asymptotic shape of the random tree Tn

Lemma 2.4. 1. Let (tn)n≥1 denote a sequence of integers with tn →∞ and tn = o(n).
The asymptotic equivalence

P
(
F0(T (vn)) = T •, (Fi(T (vn)))1≤i≤k = (T i)1≤i≤k

)
∼ P(T• = T •)

k∏
i=1

P(T = T i)

(2.31)

holds uniformly for all k ≥ 1, all marked plane trees T • ∈ T • and all ordered forests
(T i)1≤i≤k of plane trees with a total number of vertices

|T •|+
k∑
i=1

|T i| ≤ n− tn. (2.32)

2. For any sequence of integers (tn)n≥1 with tn →∞ and tn = o(n)(
F0(Tn), (Fi(Tn))1≤i≤∆(Tn)−tn

) d
≈
(
T•, (Ti)1≤i≤∆〈n〉−tn

)
(2.33)

with

∆〈n〉 := sup

{
d ≥ 1

∣∣∣∣ |T•|+ d∑
i=1

|Ti| ≤ n

}
< n. (2.34)

The remaining tn fringe subtrees satisfy with high probability

∆(Tn)∑
i=∆(Tn)−tn

|Fi(Tn)| < 2tn
1− E[ξ]

. (2.35)

Proof of Lemma 2.4. We start by verifying the equivalence (2.31). Recall that in Sec-
tion 2.1 we discussed how a plane tree with m ≥ 1 vertices corresponds to a sequence
(xi)1≤i≤m with

∑m
i=1 xi = −1 and

∑`
i=1 xi ≥ 0 for all ` < m. An ordered forest of plane

trees corresponds to concatenations of such sequences. There is a unique way to cut
(ξ1 − 1, . . . , ξn−1 − 1) into initial segments x1, . . . ,xr, each corresponding to a tree, and
a single tail segment y = (yi)1≤i≤d with

∑j
i=1 yi ≥ 0 for all 1 ≤ j ≤ d. (For example, x1

corresponds to the tree F1(T (vn)).) The segment y corresponds to the initial segment
of the depth-first-search ordered list of vertex outdegrees of F0(T (vn)) obtained by
stopping right before visiting the lexicographically first vertex with maximum outdegree.
Hence it encodes the outdegrees of the spine vertices (except for the marked vertex),
and all vertices that lie to the left of the spine. It also encodes the precise location of
the marked vertex. The sum R :=

∑d
i=1 yi tells us the quantity of direct offspring of

spine vertices (except for the marked vertex) of F0(T (vn)) that lie to the right of the
spine. Hence x1, . . . ,xr−R correspond to the fringe-subtrees dangling from the marked
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Figure 6: Decomposition of (ξ1 − 1, . . . , ξn−1 − 1).

vertex in T (vn), and xr−R+1, . . . ,xr correspond to the fringe subtrees dangling from
spine vertices (except for the marked vertex) to the right of the spine. Compare with the
example in Figure 6.

So in order for the tail segment xr−R+1, . . . ,xr,y to encode the tree T • it must hold
that the concatenation of y,−1,xr,xr−1, . . . ,xr−R+1 is equal to the depth-first-search
ordered list of outdegrees of T •. In order for x1, . . . ,xk to encode (T i)1≤i≤k it must
hold that xi encodes T i for all 1 ≤ i ≤ k. The only requirement for the middle segment
(ξ1+

∑k
i=1 |T i|

, . . . , ξn−|T•|) is that it must correspond to a forest. Note that the middle

segment has sn := n − |T •| −
∑k
i=1 |T i| list entries and sn ≥ tn by assumption. Using

Equation (1.5) it follows that the probability

P
(
F0(T (vn)) = T •, Fi(T (vn)) = T i for 1 ≤ i ≤ k

)
= (1− E[ξ])−1P(T• = T •)

(
k∏
i=1

P(T = T i)

)
P((ξ1 − 1, . . . , ξsn − 1) corresponds to a forest). (2.36)

For any integer s ≥ 1 the probability P((ξ1 − 1, . . . , ξs − 1) corresponds to a forest) is
equal to the probability that s is an arrival time for i.i.d. interarrival times distributed
like |T|. As E[|T|] = (1− E[ξ])−1, it follows by the renewal theorem3 that

lim
s→∞

P((ξ1 − 1, . . . , ξs − 1) corresponds to a forest) = 1− E[ξ]. (2.37)

This completes the verification of (2.31).
Our next step is to verify (2.33). Recall that by Equation (2.4) the random tree Tn has

a total variational distance from the tree T (vn) that tends to zero as n becomes large.
This allows us to work with T (vn) instead of Tn.

It follows from (2.2) and the classical local limit theorem that there is a slowly varying
function gT such that

lim
n→∞

sup
`∈Z

∣∣∣∣∣gT(n)n1/θP

(
n∑
i=1

|Ti| = `

)
− h

(
`− nE[ξ]

gT(n)n1/θ

)∣∣∣∣∣ = 0. (2.38)

As shown by Kortchemski [27, Lem. 2.10], the function gT may be chosen to satisfy for
all n ≥ 1

gT(n) =
g(n)

(1− E[ξ])1+1/θ
. (2.39)

3The author thanks an anonymous referee for pointing out this elegant application of the renewal theorem
to obtain Equation (2.37).
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Suppose that (rn)n≥1 is a sequence of positive integers satisfying rn/g(n)n1/θ →∞
and rn = o(n). As ∆(Tn) = (1−E[ξ])n+Op(g(n)n1/θ), it follows that there is a sequence
of integers (t′n)n≥1 satisfying t′n → ∞ and t′n = o(n) such that kn := b(1 − E[ξ])n − rnc
satisfies

|T•|+
kn∑
i=1

|Ti| ≤ n− t′n

with probability tending to 1 as n → ∞. Using Equation (2.31) (for (t′n)n≥1), it follows
that (

F0(Tn), (Fi(Tn))1≤i≤(1−E[ξ])n−rn
) d
≈
(
T•, (Ti)1≤i≤(1−E[ξ])n−rn

)
. (2.40)

Given ε > 0, it follows from Equation (2.40) and a time-reversal argument that we
may choose a constant M > 0 large enough so that

P

∣∣∣∣∣∣
∆(T (vn))∑

i=∆(T (vn))−tn

|Fi(T (vn))| − tn
1− E[ξ]

∣∣∣∣∣∣ < Mg(tn)t1/θn

 > 1− ε (2.41)

for all large enough n.
Now, let T • ∈ T • and let (T i)1≤i≤k be a sequence of plane trees such that sn =

n− |T •| −
∑k
i=1 |T i| satisfies ∣∣∣∣sn − tn

1− E[ξ]

∣∣∣∣ < Mg(tn)t1/θn . (2.42)

Then

P
(
F0(T (vn)) = T •, (Fi(T (vn)))1≤i≤∆(T (vn))−tn = (T i)1≤i≤k

)
= P

(
F0(T (vn)) = T •, (Fi(T (vn)))1≤i≤k = (T i)1≤i≤k,∆(T (vn)) = k + tn

)
. (2.43)

Arguing analogously as for Equation (2.36), we obtain that the probability in (2.43) is
given by

(1− E[ξ])−1P(T• = T •)

(
k∏
i=1

P(T = T i)

)
P((ξ1 − 1, . . . , ξsn − 1) corresponds to a forest with tn trees). (2.44)

Using Lemma 2.1, Assumption (2.42), and the local limit theorem (2.5), we obtain

P((ξ1 − 1, . . . , ξsn − 1) corresponds to a forest with tn trees)

= P

 ∑
1≤i≤sn

(ξi − 1) = −tn,
∑

1≤i≤j

(ξi − 1) > −tn for all j < sn


=
tn
sn
P

 ∑
1≤i≤sn

(ξi − 1) = −tn


=

1− E[ξ]

g(sn)s
1/θ
n

(
o(1) + h

(
tn − sn(1− E[ξ])

g(sn)s
1/θ
n

))
.

The o(1) term in this expression is uniform in (T •, (T i)1≤i≤k). Assumption (2.42) also
entails that the value of the function h in this expression is bounded away from zero.
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Summing up, we obtain

P
(
F0(T (vn)) = T •, (Fi(T (vn)))1≤i≤∆(T (vn))−tn = (T i)1≤i≤k

)
= P(T• = T •)

(
k∏
i=1

P(T = T i)

)
1

g(sn)s
1/θ
n

(
o(1) + h

(
tn − sn(1− E[ξ])

g(sn)s
1/θ
n

))
. (2.45)

On the other hand,

P
((
T•, (Ti)1≤i≤∆〈n〉−tn

)
= (T •, (T i)1≤i≤k)

)
= P(T• = T •)

(
k∏
i=1

P(T = T i)

)
P

(
tn∑
i=1

|Ti| ≤ sn <
tn+1∑
i=1

|Ti|

)
. (2.46)

Using (2.38), (2.39), (2.42) and the fact that the function h is uniformly continuous and
bounded, we obtain

P

(
tn∑
i=1

|Ti| ≤ sn <
tn+1∑
i=1

|Ti|

)
= o

(
1

gT(tn)t
1/θ
n

)
+

log tn∑
`=0

P

(
tn∑
i=1

|Ti| = sn − `

)
P(|T| > `)

=
1

(1− E[ξ])gT(tn)t
1/θ
n

(
o(1) + h

(
tn/(1− E[ξ])− sn

gT(tn)t
1/θ
n

))

=
1

g(sn)s
1/θ
n

(
o(1) + h

(
tn − sn(1− E[ξ])

g(sn)s
1/θ
n

))
.

Assumption (2.42) ensures that the h-term in this expression is bounded away from zero,
uniformly in (T •, (T i)1≤i≤k). Summing up, it follows that

P
(
F0(T (vn)) = T •, (Fi(T (vn)))1≤i≤∆(T (vn))−tn = (T i)1≤i≤k

)
= (1 + o(1))P

((
T•, (Ti)1≤i≤∆〈n〉−tn

)
= (T •, (T i)1≤i≤k)

)
, (2.47)

with a uniform o(1) term. Since the constant ε in (2.41) (implicit in Assumption (2.42))
may be chosen to be arbitrarily small, this verifies (2.33).

Finally, Equation (2.35) follows readily by Equation (2.40), a time-reversal argument,
and Markov’s inequality.

3 The case 0 ∈ Ω

We reduce the case of a general Ω containing 0 to the special case Ω = N0 via a combi-
natorial transformation. This construction goes back to Ehrenborg and Méndez [16] and
is also known in the probabilistic literature, see Abraham and Delmas [2, 1], Minami [30],
and Rizzolo [33]. Further studies of related conditionings of Galton–Watson trees may
be found in [26, 3, 11].

Throughout this chapter we assume that Ω is a proper subset of N0 such that 0 ∈ Ω

and either Ω or its complement Ωc := N0 \ Ω is finite. To each finite (planted) plane
tree T we may assign its weight ω(T ) = P(T = T ). We let LΩ(T ) denote the number of
vertices in T whose outdegree lies in Ω. The generating function

A(z) =
∑
T

ω(T )zLΩ(T ) (3.1)

with the index T ranging over all finite plane trees represents the combinatorial class
A of plane trees weighted by ω and indexed according to the number of vertices with
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outdegree in Ω.4 We set ωk = P(ξ = k) and for any subset M ⊂ N0 we set

φM (z) =
∑
k∈M

ωkz
k. (3.2)

Decomposing with respect to the outdegree of the root vertex readily yields

A(z) = zφΩ(A(z)) + φΩc(A(z)). (3.3)

Since 0 lies in Ω we may write

φΩc(z) = zφ∗Ωc(z) (3.4)

for some power series φ∗Ωc(z). Hence Equation (3.3) becomes

A(z) = zφΩ(A(z)) +A(z)φ∗Ωc(A(z)). (3.5)

We may interpret this equation as follows. If the root vertex has outdegree in Ω, then we
have to account for it by a factor z and attach the roots of a weighted forest φΩ(A(z)).
This accounts for the first summand. The second corresponds to the case where the
outdegree of the root does not lie in Ω. Here we take a root-vertex, attach to it as left-
most offspring the root of a tree (counted by A(z)) and then add the root of a weighted
forest φ∗Ωc(A(z)) as siblings to the right. If we are in the second case, then we may
recurse this case-distinction at the left-most offspring of the root. In this way, we descend
along the left-most offspring until we encounter for the first time a vertex with outdegree
in Ω. In this way we form an ordered list of φ∗Ωc(A(z))-forests, yielding

A(z) = zφΩ(A(z))
1

1− φ∗Ωc(A(z))
. (3.6)

In other words,

A(z) = zφ̃(A(z)) with φ̃(z) =
φΩ(z)

1− φ∗Ωc(z)
. (3.7)

In combinatorial language, decomposition (3.7) identifies the class A as the class of
φ̃-enriched plane trees. We refer the reader to [35] and references given therein for
details on the enriched trees viewpoint on random discrete structures.

We let ξ̃ denote a random non-negative integer with distribution given by the probabil-
ity generating series φ̃. We let T̃ denote a ξ̃-Galton–Watson tree and let T̃n = (T̃ | |T̃| = n)

denote the result of conditioning it to have n vertices. For each k ≥ 0 let Bk denote the
set of all vectors (y, x1, . . . , x`) with ` ≥ 0, y ∈ Ω, x1, . . . , x` ∈ Ωc − 1, and y +

∑`
i=1 xi = k.

We let the weight of such a vector be given by

([zy]φΩ(z))
∏̀
i=1

[zxi ]φ∗Ωc(z). (3.8)

For each vertex v ∈ T̃n we independently select a vector βn(v) ∈ Bd+

T̃n
(v) at random with

probability proportional to its weight. The pair (T̃n, βn) is a φ̃-enriched plane tree with n
vertices that by the decomposition (3.7) corresponds to a plane tree that has precisely
n vertices with outdegree in the set Ω. The correspondence goes by blowing up each
vertex v ∈ T̃n into an ancestry line according to βn(v) as illustrated in Figure 7.

4A (weighted) combinatorial class consists of a countable set S and a weight function γ : S → R≥0. The
class may be indexed by a size function s : S → N0 and the corresponding generating series may be formed

by
∑

n≥0

(∑
m∈s−1({n}) γ(m)

)
zn if all its coefficients are finite.
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Figure 7: Blowing up a vertex v (red) into an ancestry line segment for the case
βn(v) = (y, x1, x2) with y = 2 (yellow), x1 = 1 (blue), and x2 = 3 (green).

The blow-up of the random enriched plane tree (T̃n, βn) is distributed like the random
tree TΩ

n . This may be verified directly as by Rizzolo [33] or deduced from a general
sampling principle [35, Lem. 6.1]. Note that E[ξ] < 1 implies that

E[ξ̃] = φ̃′(1) =
φ′Ω(1) + (φ∗Ωc)

′(1)

1− φΩc(1)
=
φ′(1)− φΩc(1)

1− φΩc(1)
< 1 (3.9)

and

1− E[ξ̃] =
1− E[ξ]

P(ξ ∈ Ω)
. (3.10)

We assumed that either Ω or Ωc is finite. Using Equation (1.1) together with φ∗Ωc(1) =

φΩc(1) < 1 and [18, Thm. 4.8, 4.9, 4.30] it follows that

[zn]φ̃(z) ∼ 1

P(ξ ∈ Ω)
[zn]φ(z). (3.11)

That is, the random variable ξ̃ has a regular varying density. Moreover, ξ̃ has a finite
variance if and only if ξ has finite variance. In this case, we may use Equation (3.7) and
a computer algebra system to compute

V[ξ̃] =
E[ξ2]− 1

P(ξ ∈ Ω)
+

(1− E[ξ])(1− E[ξ] + 2E[ξ, ξ ∈ Ω])

P(ξ ∈ Ω)2
. (3.12)

We will require this expression for the variance later on when computing the slowly
varying function gΩ(n) that appears in Theorem 1.1. Note that Equations (2.2), (3.11),
and (3.10) entail

P(LΩ(T) = n) = P(|T| = n) (3.13)

∼ f(n)

P(ξ ∈ Ω)

1

(n(1− E[ξ̃]))1+α

=
f(n)P(ξ ∈ Ω)α

(1− E[ξ])1+α
n−1−α.

Lemma 3.1. Let (Y k, Xk
1 , . . . , X

k
Lk

) be drawn from Bk with probability proportional to
the weights defined in (3.8). We form the sequence

(Y k, Xk
1 , . . . , ∗, . . . , Xk

Lk
)

by replacing the largest coefficient in the sequence (Y k, Xk
1 , . . . , X

k
Lk

) with a ∗-place-
holder. Let L, X, and Y be random independent integers with distributions given
by

E[zL] =
1− φ∗Ωc(1)

1− zφ∗Ωc(1)
, E[zX ] =

φ∗Ωc(z)

φ∗Ωc(1)
, and E[zY ] =

φΩ(z)

φΩ(1)
.
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Let (Xi)i≥1 and (X ′i)i≥1 be independent copies of X, and let L′ be an independent copy
of L.

a) If Ωc is finite, then

(Y k, Xk
1 , . . . , ∗, . . . , Xk

Lk
)

d−→ (∗, X1, . . . , XL) (3.14)

as k tends to infinity.

b) If Ω is finite, then

(Y k, Xk
1 , . . . , ∗, . . . , Xk

Lk
)

d−→ (Y,X ′1, . . . , X
′
L′ , ∗, X1, . . . , XL) (3.15)

as k tends to infinity.

c) There are constants k̃, C, c > 0 such that for all k ≥ k̃ and x ≥ 0 it holds that

P(max(Y k+x, Xk+x
1 + 1, . . . , Xk+x

Lk+x
+ 1) = k) ≤

C
P(ξ = k) exp(− cxk )(1P(ξ=x)=0 + P(ξ = x))

P(ξ = k + x)
. (3.16)

Proof. Claim a) is a probabilistic version of the enumerative result (3.11) and follows
by standard arguments. Claim b) is the probabilistic version of the enumerative for-
mula (3.11) and may be justified using a general result for the asymptotic behaviour of
random Gibbs partitions that exhibit a giant component [36, Thm. 3.1].

Claim c): Suppose that |Ω| <∞. In this case it holds by [18, Thm. 4.30] that

P(X1 + . . . XL = k) ∼ E[L]P(X = k)

as k becomes large. It follows that there are constants C2, k0 > 0, such that for all k ≥ k0

and x ≥ 0

P(max(X1, . . . , XL) = k | X1 + . . .+XL = k + x)

≤ P(X = k)

P(X1 + . . .+XL = k + x)∑
`≥1

`P(L = `)P(X1 + . . .+X`−1 = x,max(X1, . . . , X`−1) ≤ k)

≤ C2
P(X = k)

P(X = k + x)

∑
`≥1+ x

k

`P(L = `)P(X1 + . . .+X`−1 = x)

Applying the bound [18, Thm. 4.11] yields that for any ε > 0 there are constants
c(ε), `0 > 0 such that for all ` ≥ `0

P(X1 + . . .+X`−1 = x) ≤ c(ε)(1 + ε)`P(X = x).

Using that L has finite exponential moments it follows that there are constants c1, C3 > 0

such that

P(max(X1, . . . , XL) = k | X1 + . . .+XL = k + x) ≤ C3

P(X = k)P(X = x) exp(−c1 xk )

P(X = k + x)
.

Since we are in the case |Ω| <∞ the random variable Y has a deterministic upper bound,
and it follows that there are positive constants C4, k1 > 0 with
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Figure 8: Illustration of the blow up of the tree T̃n in the two cases.

P(max(Y k+x, Xk+x
1 + 1, . . . , Xk+x

Lk+x
+ 1) = k) ≤ C4

P(ξ = k)P(ξ = x) exp(−c1 xk )

P(ξ = k + x)
(3.17)

for all k ≥ k1 and x ≥ 0.

In the case |Ωc| <∞ theXi are deterministically bounded and the sum L+X1+. . .+XL

has finite exponential moments. Hence, as k →∞

P(Y +X1 + . . .+XL = k) ∼ P(Y = k).

This implies that there are constants k2, C5 > 0 such that for all k ≥ k2 and x ≥ 0

P(max(Y k+x, Xk+x
1 + 1, . . . , Xk+x

Lk+x
+ 1) = k)

≤ C5P(Y = k + x)−1P(max(Y,X1 + 1, . . . , XL + 1) = k, Y +X1 + . . .+XL=k+x)

≤ C5
P(Y = k)

P(Y = k + x)
P(X1 + . . .+XL = x)

Using that X1+. . .+XL has finite exponential moments it follows that there are constants
C6, c2 > 0 such that

P(max(Y k+x, Xk+x
1 + 1, . . . , Xk+x

Lk+x
+ 1) = k) ≤ C6

P(ξ = k) exp(−c2x)

P(ξ = k + x)
(3.18)

for all k ≥ k2 and x ≥ 0.

Combining the bounds (3.17) and (3.18) yields Claim c).

Proof of Theorem 1.2 for the case 0 ∈ Ω. By Equations (3.11) and (3.9) we may apply
Lemma 2.4 to the tree T̃n. Hence for any sequence of integers (tn)n≥1 with tn →∞ it
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holds that(
F0(T̃n), (Fi(T̃n))1≤i≤∆(T̃n)−tn ,1∑∆(T̃n)

i=∆(T̃n)−tn
|Fi(T̃n)|≥ 2tn

1−E[ξ̃]

)
d
≈
(
T̃•, (T̃i)1≤i≤∆̃〈n〉−tn , 0

)
,

(3.19)

with (T̃i)i≥1 denoting a family of independent ξ̃-Galton–Watson trees, T̃• the analog of
T• that is constructed with ξ̃ instead of ξ, and

∆̃〈n〉 := sup

{
d ≥ 1

∣∣∣∣ |T̃•|+ d∑
i=1

|T̃i| ≤ n

}
.

We start with the case |Ωc| <∞. By Lemma 3.1 it follows that the largest outdegree

of TΩ
n is with high probability equal to the giant component Y ∆(T̃n) in the blow-up of the

decoration

βn(ṽ∗) =
(
Y ∆(T̃n), X

∆(T̃n)
1 , . . . , X

∆(T̃n)
L∆(T̃n)

)
with ṽ∗ the (lexicographically first) vertex with maximum outdegree in T̃n. The small
components admit the limit

(Y ∆(T̃n), X
∆(T̃n)
1 , . . . , ∗, . . . , X∆(T̃n)

L∆(T̃n)
)

d−→ (∗, X1, . . . , XL)

Given ∆(T̃n) the family of fringe subtrees (Fi(T̃n))1≤i≤∆(T̃n) is conditionally exchange-
able. Hence reordering the fringe subtrees in a suitable way and applying (3.19) yields
that simultaneously the fringe subtrees dangling from the vertices belonging to small
components in βn(ṽ∗) and the first Y ∆(T̃n)− tn fringe subtrees corresponding to the large
component behave like (T̃i)1≤i≤∆̃〈n〉−tn . Compare with the right-hand side of Figure 8.

The limit (3.19) also tells us that the total number of vertices of the remaining tn
fringe subtrees in T̃n is with high probability smaller than 2tn/(1−E[ξ̃]). When blowing
up a tree we add additional vertices, but the size of any fringe subtree may at most
double. This shows that the size of the blow ups of the remaining tn fringe subtrees is
with high probability smaller than 4tn/(1− E[ξ̃]).

The limit of F0(TΩ
n ) is determined by T̃• together with the small components of βn(ṽ∗)

and their fringe subtrees. Let us make this precise. Note that the blow-up of T̃ with
canonically chosen random local decorations is by construction distributed like the
ξ-Galton–Watson tree T, and the vertices of T̃ correspond bijectively to the vertices
of T with outdegree in the set Ω. Let S• denote the random marked tree constructed
as follows. We start with the blow-up of the tree T̃• with canonically chosen random
decorations. If L = 0 we stop. Otherwise we add XL + 1 offspring vertices to the marked
leaf. All except the first of these offspring vertices become the roots of independent
copies of T. If L = 1 we declare the first offspring vertex to be the new marked leaf and
stop the construction. Otherwise the first offspring vertex becomes father of XL−1 + 1

children. All but the first become roots of independent copies of T, and we proceed in
the same manner until we are finished after L steps in total.

Using again that the number of vertices with outdegree in Ω in the blow-up correspond
bijectively to the total number of original vertices, we may sum up what we have shown
so far by(

F0(TΩ
n ), (Fi(T

Ω
n ))1≤i≤∆(TΩ

n)−tn ,1∑∆(TΩ
n )

i=∆(TΩ
n )−tn

|Fi(TΩ
n)|≥ 4tn

1−E[ξ̃]

)
d
≈
(
S•, (Ti)1≤i≤∆′〈n〉−tn , 0

)
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with

∆′〈n〉 := sup

{
d ≥ 1

∣∣∣∣ LΩ(S•) +

d∑
i=1

LΩ(Ti) ≤ n

}
.

The distribution of the random marked plane tree S• agrees with the distribution of T•.
This follows by a slightly tedious but inoffensive calculation from standard properties of
size-biased geometric distributions.

It remains to treat the case |Ω| <∞. This is analogous to the case |Ωc| <∞, with the
only difference being that we additionally have to take into account the small decorations
X ′1, . . . , X

′
L′ . That is, we have to check that the circled fringe subtree on the left hand

side of Figure 8 follows the distribution of the Galton–Watson tree T. But this is clear,
since it is distributed like the blow up of T̃ and hence like T.

Proof of Theorem 1.1 for the case 0 ∈ Ω. Equations (3.11) and (3.9) allow us to apply
Lemma 2.2 to the tree T̃n, yielding that there is a slowly varying function g̃ with

P(∆(T̃n) = x) =
1

g̃(n)n1/θ

(
h

(
(1− E[ξ̃])n− x

g̃(n)n1/θ

)
+ o(1)

)
(3.20)

uniformly in x ∈ Z. We are going to show that

sup
1≤`≤n

∣∣∣∣∣g̃(n)n1/θP(∆(TΩ
n ) = `)− h

(
(1− E[ξ̃])n− `

g̃(n)n1/θ

)∣∣∣∣∣→ 0 (3.21)

as n tends to infinity. As h(t)→ 0 as |t| → ∞, t ∈ R this already implies that (3.21) also
holds uniformly for ` ∈ Z.

Our first step in the verification (3.21) is a lower bound on the maximum degree
∆(TΩ

n ). By Equation (2.10) it follows that

g̃(n)n1/θP(∆(T̃n) ≤ n/ log2 n) = o(1). (3.22)

If we let Zn denote the size of the largest outdegree produced by blowing up the lexico-
graphically first vertex ṽ with maximal outdegree in T̃n, then it follows by (3.22), (3.20)
and the fact that h is bounded that

g̃(n)n1/θP(Zn ≤ n/ log4 n)

= o(1) + g̃(n)n1/θ
∑

n/ log2 n≤r≤n

P(∆(T̃n) = r, Zn ≤ n/ log3 n)

≤ o(1) +O(1)
∑

n/ log2 n≤r≤n

P(Zn ≤ n/ log4 n | ∆(T̃n) = r)

= o(1) +O(1)
∑

n/ log2 n≤r≤n

P(max(Y r, Xr
1 + 1, . . . , Xr

Lr + 1) ≤ n/ log4 n).

It follows easily by Equation (3.16) that this bound tends to zero. This shows that

g̃(n)n1/θP(∆(TΩ
n ) ≤ n/ log4 n) = o(1). (3.23)

Thus, it suffices to verify that (3.21) holds with ` ranging over the set In of integers
in the interval from n/ log4 n to n instead. To this end, let tn be a sequence that tends to
infinity and let ` ∈ In be an integer. Then

g̃(n)n1/θP(∆(TΩ
n ) = `) = Rn,` + Sn,` (3.24)

EJP 25 (2020), paper 104.
Page 28/62

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP506
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the maximal offspring in a subcritical branching process

with an error term Rn,` and

Sn,` =
∑

0≤x≤tn

g̃(n)n1/θP(∆(T̃n) = `+ x)P(max(Y `+x, X`+x
1 + 1, . . . , X`+x

L`+x
+ 1) = `)

the product of g̃(n)n1/θ with the probability for the event that the largest outdegree in
the blow-up of the lexicographically first vertex ṽ with maximal outdegree in T̃n is equal
to ` and that ∆(T̃n) − ` ≤ tn. If this event fails but ∆(TΩ

n ) = `, then at least one of the
following events must take place.

1) The maximal outdegree in the blow-up of the vertex ṽ equals ` but ∆(T̃n)− ` > tn.
We let Rn,`(1) denote the product of g̃(n)n1/θ with the probability for this event.

2) At least two vertices of T̃n have outdegree at least ` and the blow-up of one of
them produces a vertex with outdegree equal to `. The product of g̃(n)n1/θ with
the probability for this event is denoted by Rn,`(2).

Hence

Rn,` ≤ Rn,`(1) +Rn,`(2). (3.25)

We are going to verify that this bound tends to zero uniformly for all ` ∈ In. Using
Inequality (3.16) and Equality (3.20) it follows that

Rn,`(1) ≤
∑

tn≤x≤n

g̃(n)n1/θP(∆(T̃n) = `+ x)P(max(Y `+x, X`+x
1 + 1, . . . , X`+x

L`+x
+ 1) = `)

≤ C
∑

tn≤x≤n

(
h

(
(1− E[ξ̃])n− `− x

g̃(n)n1/θ

)
+ o(1)

)
P(ξ = `)P(ξ = x)

P(ξ = `+ x)
exp

(
−x
`

)
≤ O(1)

∑
x≥tn

P(ξ = x)
f(`)

f(`(1 + x
` ))

(
1 +

x

`

)1+α

exp
(
−x
`

)
≤ O(1)P(ξ ≥ tn)

and thus

Rn,`(1)→ 0 (3.26)

uniformly for all ` ∈ In. Here we have used that h is bounded, that the o(1) term tends to
zero uniformly, and that the Potter bounds for slowly varying functions imply that for
any ε > 0 there is a positive constant C(ε) with

f(`)

f(`(1 + x
` ))
≤ C(ε)

(
1 +

x

`

)ε
for all `, x ≥ 1.

In order to verify that the bound in (3.25) tends to zero it remains to show that Rn,`(2)

tends to zero. Let (ξ̃i)i≥1 be a family of independent copies of the offspring distribution ξ̃
and set S̃k = ξ̃1 + . . .+ ξ̃k for all k. Using Lemma 2.1 and Equation (2.1) it follows that

Rn,`(2) ≤ g̃(n)n1/θ

P(S̃n = n− 1)
n2
∑
x≥0

P(ξ̃ = `+ x)P(S̃n−1 = n− 1− `− x, ξ̃1 ≥ `)

P(max(Y `+x, X`+x
1 + 1, . . . , X`+x

L`+x
+ 1) = `).
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By Inequality (3.16), the asymptotic expansion (3.11), and using [13, Cor. 2.1] in a
similar way as in (2.2) it follows that we may bound Rn,`(2) by

O(1)g̃(n)n1/θ+1P(ξ = `)

P(ξ̃ = b(n− 1)(1− E[ξ̃])c)

∑
x≥0

P(S̃n−1 = n− 1− `− x, ξ̃1 ≥ `)(1P(ξ=x)=0 + P(ξ = x)).

By the expansion (3.11) there are constants x′, C ′ > 0 such that for all x ≥ x′

1P(ξ=x)=0 + P(ξ = x) = P(ξ = x) ≤ C ′P(ξ̃ = x).

Using the local limit theorem (2.5) (for S̃n instead of Sn) and the fact that the density h
is bounded it follows that

Rn,`(2)

≤ O(1)g̃(n)n1/θ+1
(
P(S̃n = n− 1− `, ξ̃1 ≥ `) + P(S̃n−1 ∈ n− 1− `− [0, x′], ξ̃1 ≥ `)

)
≤ O(1)g̃(n)n1/θ+1

∑
i≥`

P(ξ̃ = i)
O(1)

g̃(n)n1/θ

≤ O(1)nP(ξ ≥ `)

and thus

Rn,`(2)→ 0 (3.27)

uniformly for all ` ∈ In. Combining Inequality (3.25) and the limits (3.26) and (3.27) we
obtain

Rn,` → 0. (3.28)

We now turn our attention to Sn,`. By the limits (3.14) and (3.15) it follows that there
is a probability density (px)x≥0 such that for each constant integer x ≥ 0 it holds that

lim
k→∞

P(max(Y k+x, Xk+x
1 + 1, . . . , Xk+x

Lk+x
+ 1) = k) = px.

Consequently, if we choose our sequence tn such that it tends to infinity sufficiently
slowly, then

tn∑
x=0

P(max(Y `+x, X`+x
1 + 1, . . . , X`+x

L`+x
+ 1) = `) = 1 + o(1) (3.29)

holds uniformly for all ` ∈ In. We may additionally assume that tn = o(g̃(n)n1/θ). As h is
uniformly continuous this implies that

h

(
(1− E[ξ̃])n− `− x

g̃(n)n1/θ

)
= h

(
(1− E[ξ̃])n− `

g̃(n)n1/θ

)
+ o(1)

holds uniformly for all ` ∈ In and 0 ≤ x ≤ tn. Using the local limit theorem (3.20) and
Equation (3.29) it follows that

Sn,` =
∑

0≤x≤tn

g̃(n)n1/θP(∆(T̃n) = `+ x)P(max(Y `+x, X`+x
1 + 1, . . . , X`+x

L`+x
+ 1) = `)

=
∑

0≤x≤tn

(
h

(
(1− E[ξ̃])n− `

g̃(n)n1/θ

)
+ o(1)

)
P(max(Y `+x, X`+x

1 + 1, . . . , X`+x
L`+x

+ 1) = `)

= h

(
(1− E[ξ̃])n− `

g̃(n)n1/θ

)
+ o(1)

EJP 25 (2020), paper 104.
Page 30/62

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP506
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the maximal offspring in a subcritical branching process

with uniform o(1) terms. By Equation (3.24) and (3.28) it follows that

g̃(n)n1/θP(∆(TΩ
n ) = `) = h

(
(1− E[ξ̃])n− `

g̃(n)n1/θ

)
+ o(1)

holds uniformly for ` ∈ In. This completes the proof.

We may compute the slowly varying function gΩ(n), hence verifying (1.3) for the case
0 ∈ Ω:

Proposition 3.2. In the case 0 ∈ Ω, we may set

gΩ(n) =


√
V[ξ̃]

2 , V[ξ] <∞
g(n)

P(ξ∈Ω)1/θ , V[ξ] =∞.
(3.30)

The variance V[ξ̃] was expressed in (3.12):

V[ξ̃] =
E[ξ2]− 1

P(ξ ∈ Ω)
+

(1− E[ξ])(1− E[ξ] + 2E[ξ, ξ ∈ Ω])

P(ξ ∈ Ω)2
.

Proof. In the previous proof we verified Theorem 1.1 for gΩ(n) = g̃(n). The function
g̃(n) stems from the local limit theorem 2.5 and Equation (1.2), but for ξ̃ instead of ξ.

Using (1.2) the slowly varying function g̃(n) may be chosen to satisfy g̃(n) =

√
V[ξ̃]

2 if

V[ξ̃] < ∞, which is equivalent to V[ξ] < ∞. Suppose that V[ξ] = ∞. Using P(ξ̃ = n) ∼
1

P(ξ∈Ω)P(ξ = n) from (3.11), it follows that if 1 < θ < 2

inf
{
x ≥ 0 | P(ξ̃ > x) ≤ 1

n

}
inf
{
x ≥ 0 | P(ξ > x) ≤ 1

n

} → 1

P(ξ ∈ Ω)1/θ
. (3.31)

Hence we set g̃(n) = 1
P(ξ∈Ω)1/θ g(n) in the this case. The remaining case V[ξ] = ∞ and

θ = 2 follows by similar arguments.

Remark 3.3. Throughout we assumed that either Ω or Ωc is finite. Accordingly, the max-
imal outdegree of TΩ

n either belongs with high probability to Ωc or with high probability
to Ω. In our proofs we constructed the tree TΩ

n via a bijection from the decorated tree
(T̃n, βn). The difference between the two cases is reflected by the asymptotic behaviour
of the decoration βn(ṽ∗) of the lexicographically first vertex ṽ∗ of T̃n with maximal
outdegree. As ensured by Lemma 3.1, according to whether Ω or Ωc is finite we will
either see a giant “Ω-component” in βn(ṽ∗) or a giant “Ωc-component”. However, as we
saw in the proofs of Theorems 1.1 and 1.2, the implications for the tree TΩ

n are the same
in both cases.

If Ω and Ωc are both infinite, then we expect a mixture of these two behaviours to
occur, with the end result for the tree TΩ

n being the same. However, when making this
formal, rather unpleasant periodicity issues have to be taken into account. Studying the
asymptotic behaviour of the coefficients [zk]φ̃(z) of the probability generating function
φ̃(z) = φΩ(z)/(1− φΩc(z)/z) for ξ̃ requires us to partition the support of ξ̃ into multiple
infinite subsets. In order to extend the proofs we would have to show versions of
Equation (3.11) and Lemma 3.1 for restrictions to theses subsets. We would also have
to make sure that our main tools still apply to ξ̃, so that the proof of the case Ω = N0

may be extended to this setting: The large deviation results of [13] already apply to
O-regularly varying probability densities. The results of [6] assume ∆-subexponentiality,
so we would have to verify that they also apply to this setting.
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4 The case 0 /∈ Ω

Throughout this section we assume that Ω is a proper subset of N0 satisfying 0 /∈ Ω.
We are going to use the same strategy as in the case 0 ∈ Ω: we generate the random tree
TΩ
n via a blow-up construction of some random decorated tree. Using Gibbs partition

methods we will then show that the decoration of the largest degree in this second tree
is likely to produce the vertex with largest degree in TΩ

n .

4.1 Decomposition

We recap the lifeline-tree decomposition by Rizzolo [33] that in the special case of
plane trees extends the Ehrenborg–Méndez bijection.

We consider the generating series A(z) of the class of weighted plane trees indexed
by their number of vertices with outdegree in Ω. We denote the restrictions φM (z) =∑
k∈M P(ξ = k)zk of the generating series φ(z) = E[zξ] to subsets M ⊂ N0. We set

p := P(LΩ(T) = 0). (4.1)

Our assumption P(ξ ∈ Ω) > 0 ensures that p < 1. As we are in the case 0 /∈ Ω, it follows
that p > 0. Hence

0 < p < 1. (4.2)

Let us consider the subclass A∗ of A of finite plane trees with at least one vertex having
outdegree in Ω. Its complement A∗∗(z) consists of finite plane trees whose outdegrees
are required to belong to Ωc. Clearly

A∗∗(z) = p (4.3)

and

A(z) = A∗(z) + p. (4.4)

Given a tree from A∗, we may consider the path from the root to the lexicographically
first vertex with outdegree in Ω and call it the spine of the tree. It consists of a sequence
of vertices with outdegree in Ωc and a single vertex with outdegree Ω. Any of these
spine vertices with outdegree in Ωc have the property, that their offspring to the left of
the spine have only descendants with outdegree in Ωc. That is, they are roots of fringe
subtrees belonging to A∗∗. Those to the right of the spine may have descendants of
arbitrary kind and are hence roots of trees from A. Moreover, the offspring of the unique
spine vertex with outdegree in Ω may also have arbitrary descendants. Hence

A∗(z) = z
φΩ(A(z))

1− φ∗Ωc(A(z))
(4.5)

with

φ∗Ωc(z) :=
∑
k∈Ωc

P(ξ = k)

k−1∑
i=0

pizk−i−1. (4.6)

The sum index i corresponds to the number of vertices that lie to the left of the spine. As
A(1) = 1 it follows from (4.4) that A∗(1) = 1− p. Using (4.4) it follows that

A∗(z)/(1− p) = zϕ(A∗(z)/(1− p)) (4.7)
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with

ϕ(z) = (1− p)−1 φΩ(p+ z(1− p))
1− φ∗Ωc(p+ z(1− p))

. (4.8)

In combinatorial language, decomposition (4.7) identifies the class A∗ as the class of
ϕ-enriched plane trees. That is, any tree from A∗ with n vertices having outdegree in Ω

corresponds in a bijective and weight-preserving manner to a plane tree with n vertices
where each vertex is endowed with a ϕ-decoration whose size matches the outdegree of
the vertex. We refer the reader to [35] and references given therein for details on the
enriched trees viewpoint on random discrete structures.

4.2 Sampling procedure

Note that (4.7) entails that ϕ(1) = 1. Hence it is the probability generating function
of some random non-negative integer ζ. We let An denote a ζ-Galton–Watson tree
conditioned on having n vertices. Rizzolo [33] calls this tree the lifeline tree. The random
tree TΩ

n may be constructed from An by a randomized blow-up procedure which we are
going to describe in this section.

Figure 9: Blowing up a vertex v (red) with ` = 2, x1 = (2, 3), x2 = (1, 2), y = 3,
m = {1, 3, 4, 6, 8} into a vertebrate. The grey triangles represent independent copies of
T∗, a ξ-Galton–Watson tree conditioned on producing no vertex with outdegree in Ω.

We let L denote a geometric random variable with distribution given by

E[zL] =
1− φ∗Ωc(1)

1− zφ∗Ωc(1)
. (4.9)

Furthermore, we let X = (X(1), X(2)) denote a random pair of non-negative integers
with probability generating function

E[z
X(1)
1 z

X(2)
2 ] =

1

φ∗Ωc(1)

∑
k∈Ωc

P(ξ = k)

k−1∑
i=0

pizi1z
k−i−1
2 . (4.10)

We let Y denote a random non-negative integer with distribution determined by

E[zY ] =
φΩ(z)

φΩ(1)
. (4.11)

We assume the three random variables L, X, and Y to be independent. We let Xi =

(Xi(1), Xi(2)) for i ≥ 1 denote independent copies of X. Equation (4.8) entails that

ζ
d
= Bin

(
Y +

L∑
i=1

Xi(2), 1− p

)
. (4.12)
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Let M denote a subset of {1, . . . , Y +
∑L
i=1Xi(2)} drawn according to a binomial distribu-

tion with parameter 1−p. Equation (4.7) entails that we may generate a ξ-Galton–Watson
tree A∗ conditioned on producing at least one vertex with outdegree belonging to Ω by
“blowing up” a ζ-Galton–Watson tree A. The sampling procedure draws for each vertex v
of A an independent copy (y, (x)1≤i≤`,m) of (Y, (X)1≤i≤L,M) conditioned on

d+
A (v) = |M |.

The vertex v is then blown up as illustrated in Figure 9 into a vertebrate whose spine
has length `+ 1. With xi = (xi(1), xi(2)) for each 1 ≤ i ≤ ` the ith spine vertex receives
xi(1) offspring vertices to the left of the spine, and xi(2) offspring vertices to the right
of the spine. Each offspring to the left becomes the root of an independent copy of T∗,
a ξ-Galton–Watson tree conditioned on producing no vertex with outdegree in Ω. Each
offspring to the right is coloured grey. The tip of the spine receives y grey offspring
vertices. The set m maybe interpreted as a subset of the y +

∑`
i=1 xi(2) grey vertices

in a canonical way. Its elements may be identified with the original offspring of v in a
canonical way. All remaining grey vertices become roots of independent copies of T∗.

We refer to the additionally sampled data for each vertex v as its decoration. Of
course, this blow-up operation may also be applied to any plane tree having at least one
vertex with outdegree in Ω. In particular, if An denotes the result of conditioning the
ζ-Galton–Watson tree A on producing n vertices, then the blow-up of An is distributed
like TΩ

n .

4.3 Asymptotics of the blow-ups

Our aim is to apply the case Ω = N0 to the tree An, yielding that An exhibits a vertex
with degree fluctuating around a constant multiple of n. As

ζ
d
= Bin

(
Y +

L∑
i=1

Xi(2), 1− p

)
follows a binomial distribution with a random number of slots, we need some estimates
on the asymptotic behaviour of such compound random variables when we condition

them to be large. Proposition 4.1 below ensures that when Bin
(
Y +

∑L
i=1Xi(2), 1− p

)
is

large, then so is Y +
∑L
i=1Xi(2), and we have a local limit theorem available to determine

the fluctuation. The question now is what happens when the sum Y +
∑L
i=1Xi(2) becomes

large. As we shall see further down below, there will be a single macroscopic summand
accounting for the entire mass minus a stochastically bounded remainder.

We start with a description of the behaviour of a random non-negative integer Z
conditioned on the event Bin(Z, q) = n that Z i.i.d. coin flips yield head precisely n times,
assuming that each individual flip shows head with a fixed probability 0 < q < 1.

Proposition 4.1. Let Z be a random non-negative integer such that P(Z = n) varies
regularly. Let 0 < q < 1 be given. It holds uniformly for all k ∈ Z that

P(Z = k | Bin(Z, q) = n) =
1√
n

(
o(1) +

q√
2π
√

1− q
exp

(
−1

2

(
k − n/q√
nq−1

√
1− q

)2
))

.

(4.13)

There are constants C, c > 0 such that for all n ≥ 1 and ε > 0

P(|Z − n/q| > ε
√
n | Bin(Z, q) = n) ≤ C(exp(−cn) + n exp(−cε2)). (4.14)

Moreover,

P(Bin(Z, q) = n) ∼ 1

q
P(Z = bn/qc). (4.15)
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Proof. Note that the event Bin(Z, q) = n entails Z ≥ n. Using the Azuma–Hoeffding
inequality, it follows that for any fixed 0 < δ < 1 there are constants C, c > 0 such that
for all integers n ≥ 1

P(Z /∈ (1± δ)n/q,Bin(Z, q) = n) ≤ C exp(−cn). (4.16)

Using again the Azuma–Hoeffding inequality, it follows that for any ε > 0

P(|Z − n/q| > ε
√
n,Bin(Z, q) = n) ≤

C exp(−cn) +
∑

k∈(1±δ)nq
|n−qk|>εq

√
n

P(Z = k)2 exp

(
−|n− qk|

2

2k

)
. (4.17)

From this we obtain the crude bound

P(|Z − n/q| > ε
√
n,Bin(Z, q) = n) ≤ C exp(−cn) + 2 exp

(
− ε2q3

2(1 + δ)

)
. (4.18)

Using the strengthened local limit theorem from [34, p. 79, P10] and setting σ =√
q(1− q) and x = n−kq

σ
√
k

it follows that

P(Bin(Z, q) = n) =

O(1)n−Θ(logn) +
∑

k∈n/q±
√
n logn

P(Z = k)
1√
k

(
o

(
1

max (1, x2)

)
+

1√
2πσ

exp
(
−x2/2

))
.

(4.19)

For k ∈ n/q ±
√
n log n, it holds that k ∼ n/q and, since we assumed that the density of Z

varies regularly,

P(Z = k) ∼ P(Z = bn/qc). (4.20)

Using dominated convergence, it follows that

P(Bin(Z, q) = n)

=
1

q
P(Z = bn/qc)

o(1) +
∑

k∈n/q±
√
n logn

1√
2πnσ/q3/2

exp

(
−1

2

(
k − n/q√
nσ/q3/2

)2
)

=
1

q
P(Z = bn/qc)(1 + o(1)).

This verifies (4.15). Combining this with Inequality (4.17) we may verify the bound (4.14)
too.

In order to verify (4.13), note that for if k /∈ n/q ±
√
n log n it follows from (4.14) that

P(Z = k | Bin(Z, q) = n) = O(n−Θ(logn)). (4.21)

Hence it suffices to verify (4.13) for k ∈ n/q±
√
n log n. Arguing analogously as for (4.19)

it follows that uniformly for all k in that interval

P(Z = k | Bin(Z, q) = n)

=
P(Z = k)

P(Bin(Z, q) = n)

1√
k

(
o

(
1

max (1, x2)

)
+

1√
2πσ

exp
(
−x2/2

))
.

=
1√
n

(
o

(
1

max (1, x2)

)
+

1 +O(log2(n)/n)√
2πσ/q3/2

exp

(
−1

2

(
k − n/q√
nσ/q3/2

)2
))

=
1√
n

(
o

(
1

max (1, x2)

)
+

1√
2πq−1

√
1− q

exp

(
−1

2

(
k − n/q√
nq−1

√
1− q

)2
))

. (4.22)
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This verifies (4.13).

Proposition 4.2. Suppose that Ω is finite. Then

P(X(2) = n) ∼ 1

(1− p)φ∗Ωc(1)
P(ξ = n). (4.23)

as n tends to infinity. Moreover,

(X(1) | X(2) = n)
d−→Geom(p) (4.24)

for a geometrically distributed random variable Geom(p) that assumes an integer i ≥ 0

with probability pi/(1 − p). Even more, if tn denotes a sequence of positive integers
satisfying tn = o(n), then

P(X(1) = i | X(2) = n) ∼ pi/(1− p) (4.25)

holds uniformly for all 0 ≤ i ≤ tn. Finally, there is a constant C > 0 such that for all
sufficiently large n and all x ≥ 0

P(X(1) ≥ x,X(2) = n) ≤ CpxP(ξ = n). (4.26)

Proof. Let i ≥ 0 be an integer. From (4.10) it follows that

P(X(1) = i,X(2) = n) =
pi

φ∗Ωc(1)
P(ξ = n+ i+ 1)1n+i+1∈Ωc . (4.27)

Since we assumed that Ω is finite, it holds that n + i + 1 ∈ Ωc for all sufficiently large
n, not depending of the value of i. Let (tn)n≥1 be a sequence of positive integers with
tn = o(n) and tn →∞. As ξ has a regularly varying density it follows that

sup
x∈Z,|x|≤tn

∣∣∣∣P(ξ = n+ x)

P(ξ = n)
− 1

∣∣∣∣→ 0. (4.28)

Hence

tn∑
i=0

P(X(1) = i,X(2) = n) ∼ 1

(1− p)φ∗Ωc(1)
P(ξ = n). (4.29)

Moreover, the Potter bounds imply that

sup
x∈Z,x≥0

∣∣∣∣P(ξ = n+ x)

P(ξ = n)

∣∣∣∣ = O(1) (4.30)

as n→∞. Thus

1

P(ξ = n)

∑
i>tn

P(X(1) = i,X(2) = n) = O(ptn). (4.31)

It follows that

P(X(2) = n) ∼ 1

(1− p)φ∗Ωc(1)
P(ξ = n). (4.32)

This verifies Equation (4.23). Combining (4.27), (4.28) and (4.23) implies that

P(X(1) = i | X(2) = n) ∼ pi/(1− p) (4.33)

holds uniformly for all 0 ≤ i ≤ tn. This verifies (4.24) and (4.25). Finally, (4.26) follows
from (4.27) and (4.30), analogously as in the verification of (4.31).
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Propositions 4.1 and 4.2 enable us to determine the asymptotic behaviour of ζ:

Lemma 4.3. As n→∞,

P

(
Y +

L∑
i=1

Xi(2) = n

)
∼ P(ξ = n)

P(ξ ∈ Ω)
(4.34)

Consequently,

P(ζ = n) ∼ (1− p)α

P(ξ ∈ Ω)
P(ξ = n). (4.35)

Proof. Suppose that Ωc is finite. Then X(2) is bounded. As L is light-tailed, it follows
that

∑L
i=1Xi(2) is light-tailed. On the other hand, Y is heavy-tailed. Using [18, Lem.

4.9], it follows that

P

(
Y +

L∑
i=1

Xi(2) = n

)
∼ P(Y = n) (4.36)

∼ 1

φΩ(1)
P(ξ = n).

Suppose that Ω is finite. As L is light-tailed, Proposition 4.2 allows us to apply [18, Thm.
4.30], yielding

P

(
L∑
i=1

Xi(2) = n

)
∼ E[L]P(X(2) = n) (4.37)

∼ E[L]

(1− p)φ∗Ωc(1)
P(ξ = n)

∼ 1

(1− p)(1− φ∗Ωc(1))
P(ξ = n).

Since Y is now bounded, we may apply [18, Lem. 4.9] to obtain

P

(
Y +

L∑
i=1

Xi(2) = n

)
∼ P

(
L∑
i=1

Xi(2) = n

)
(4.38)

∼ 1

(1− p)(1− φ∗Ωc(1))
P(ξ = n).

As ϕ(1) = 1, it follows from (4.8) that

(1− p)(1− φ∗Ωc(1)) = φΩ(1). (4.39)

Hence (4.38) simplifies to

P

(
Y +

L∑
i=1

Xi(2) = n

)
∼ 1

φΩ(1)
P(ξ = n).

This completes the verification of (4.34). Using Proposition 4.1, it follows that

P(ζ = n) ∼ 1

1− p
P

(
Y +

L∑
i=1

Xi(2) = bn/(1− p)c

)
(4.40)

∼ φΩ(1)−1 1

1− p
P(ξ = bn/(1− p)c)

∼ (1− p)α

φΩ(1)
P(ξ = n).

This completes the proof.
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Lemma 4.4. For integers k ≥ 1 we consider the list of integers

(Y k,Xk
1 , . . . ,X

k
Lk

) :=

(
(Y,X1, . . . ,XL)

∣∣∣∣ Bin

(
Y +

L∑
i=1

Xi(2), 1− p

)
= k

)
.

with Xk
i = (Xk

i (1), Xk
i (2)) for all 1 ≤ i ≤ Lk. We form the sequence

P k := (Y k, Xk
1 (1), Xk

1 (2), . . . , ∗, . . . , Xk
Lk

(1), Xk
Lk

(2))

by replacing the largest coefficient of the original list with a ∗-placeholder. Let L′ denote
an independent copy of L and let X ′i = (X ′i(1), X ′i(2)), i ≥ 1, denote independent copies
of X.

a) If Ωc is finite, then

P k
d−→ (∗, X1(1), X1(2), . . . , XL(1), XL(2)) (4.41)

as k tends to infinity.

b) If Ω is finite, then

P k
d−→ (Y,X1(1), X1(2), . . . , XL(1), XL(2),Geom(p), ∗,

X ′1(1), X ′1(2), . . . , X ′L′(1), X ′L′(2)) (4.42)

as k tends to infinity.

c) There are constants x0, k̃, C, c > 0 such that for all k ≥ k̃ and x ∈ Z with
P(ξ = k + x) > 0 it holds that

P

(
max(Y,X1(1)+X1(2)+1, . . . , XL(1)+XL(2)+1) = k

∣∣∣∣∣ Y +

L∑
i=1

Xi(2) = k+x

)

≤ C P(ξ = k)

P(ξ = k + x)

(
1x≤x0 exp(−c|x|) + 1x>x0 exp

(
−cx
k

)
P(ξ = x)

)
(4.43)

Proof. Let us first consider the vectors (Y <k>,X<k>
1 , . . . ,X<k>

L<k>
) and P<k> that are

defined analogously, but by conditioning on Y +
∑L
i=1Xi(2) = k instead. Thus P k is a

mixture of (P<i>)i≥0.
Claim a): If Ωc is finite, then it follows analogously as for (4.36) that

P<k>
d−→ (∗, X1(1), X1(2), . . . , XL(1), XL(2)). (4.44)

Using Proposition 4.1 it follows that

P k
d−→ (∗, X1(1), X1(2), . . . , XL(1), XL(2)).

Claim b) Suppose that Ω is finite. Consider the list

(Y <k>, X<k>
1 (2), . . . , ∗, . . . , X<k>

L<k>
(2))

obtained from
(Y <k>, X<k>

1 (2), . . . , X<k>
L<k>

(2))

by deleting the largest entry by a ∗-placeholder. Using a general result concerning the
asymptotic behaviour of random Gibbs partitions that exhibit a giant component [36,
Thm. 3.1] it follows that

(Y <k>, X<k>
1 (2), . . . , ∗, . . . , X<k>

L<k>
(2))

d−→ (Y,X1(2), . . . , XL(2), ∗, X ′1(2), . . . , X ′L′(2)).

EJP 25 (2020), paper 104.
Page 38/62

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP506
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the maximal offspring in a subcritical branching process

Using Proposition 4.2 it follows that

P<k>
d−→ (Y,X1(1), X1(2), . . . , XL(1), XL(2),Geom(p), ∗, X ′1(1), X ′1(2), . . . , X ′L′(1), X ′L′(2)).

(4.45)

Using Proposition 4.1 we may deduce

P k
d−→ (Y,X1(1), X1(2), . . . , XL(1), XL(2),Geom(p), ∗, X ′1(1), X ′1(2), . . . , X ′L′(1), X ′L′(2))

as k tends to infinity.
Claim c) To simplify notation, we set Z := Y + X1(2) + . . . + XL(2). We start with

the case |Ωc| < ∞. Choose k̃ > sup(Ωc) such that P(ξ = k) > 0 for all k ≥ k̃. Using
X(1) +X(2) + 1 ∈ Ωc, it follows that for k ≥ k̃

P(max(Y, 1 +X1(1) +X1(2), . . . , 1 +XL(1) +XL(2)) = k, Z = k + x) = 0

if x < 0. For x ≥ 0 it holds that

P(max(Y, 1 +X1(1) +X1(2), . . . , 1 +XL(1) +XL(2)) = k | Z = k + x)

= P(Y = k | Z = k + x)

=
P(Y = k)P

(∑L
i=1Xi(2) = x

)
P(Z = k + x)

.

Using Lemma 4.3 and the fact that
∑L
i=1Xi(2) has finite exponential moments, it follows

that there are constants C1, c1 > 0 with

P(Y = k)P
(∑L

i=1Xi(2) = x
)

P(Z = k + x)
≤ C1

P(ξ = k) exp(−c1x)

P(ξ = k + x)
.

It remains to treat the case |Ω| <∞. Chose k̃ > sup(Ω) such that P(ξ = k) > 0 for all
k ≥ k̃. Using Y ∈ Ω, it follows that there is a constant C0 > 0 such that for k ≥ k̃

P(max(Y, 1 +X1(1) +X1(2), . . . , 1 +XL(1) +XL(2)) = k | Z = k + x)

= P(max(X1(1) +X1(2), . . . , XL(1) +XL(2)) = k − 1 | Z = k + x)

≤ P(X(1) +X(2) + 1 = k)

P(Z = k + x)∑
`≥1

`P(L = `)P

(
`−1∑
i=1

Xi(2) = x+ 1 +X(1)− Y, max
1≤i<`

(Xi(1) +Xi(2)) ≤ k − 1

)

≤ C0
P(ξ = k)

P(ξ = k + x)∑
`≥1

`P(L = `)P

(
`−1∑
i=1

Xi(2) = x+ 1 +X(1)− Y, max
1≤i<`

(Xi(1) +Xi(2)) ≤ k − 1

)
.

Choose some constant x0 > 0 such that P(ξ = s) > 0 for all integers s > x0 − sup(Ω). For
x < x0 (including explicitly negative values of x), the fact that Y is bounded and X(1)

has finite exponential moments entails that the expression in the last line admits a bound
of the form C2 exp(−c2|x|) for some constants C2, c2 > 0 that do not depend on x or k.

For x > x0, note that all summands with (` − 1)(k − 1) < x + 1 − sup(Ω) equal zero.
Hence it suffices to sum over integers ` with ` > x/k − 1. Applying the bound [18, Thm.
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4.11] and using the fact that 1 +X(1)− Y has finite exponential moments it follows that
for any ε > 0 there are constants C3, c3, `0 > 0 such that for all ` ≥ `0

P

(
`−1∑
i=1

Xi(2) = x+ 1 +X(1)− Y

)
≤ c3(1 + ε)`P(X1(2) = x+ 1 +X(1)− Y )

≤ C3(1 + ε)`P(ξ = x).

Using that L has finite exponential moments and taking ε > 0 small enough it follows
that

∑
`≥1

`P(L = `)P

(
`−1∑
i=1

Xi(2) = x+ 1 +X(1)− Y, max
1≤i<`

(Xi(1) +Xi(2)) ≤ k − 1

)
C4 exp(−c4x/k)P(ξ = x).

Combining the two bounds for the cases x ≤ x0 and x > x0, Inequality (4.43) follows.
This concludes the proof.

4.4 Subcriticality

Rizzolo [33, Lem. 6] calculated moments of ζ using the representation

Y +

L∑
i=1

Xi(2)
d
=

1 +

N(ξ)∑
i=1

(ξi − 1)

∣∣∣∣ N(ξ) ≤ τ−1(ξ)

 (4.46)

with

N(ξ) = inf{k ≥ 1 | ξk ∈ Ω} (4.47)

and

τ−1(ξ) = inf

{
k ≥ 1

∣∣∣∣ k∑
i=1

(ξi − 1) = −1

}
. (4.48)

Specifically, [33, Lem. 6] shows that if E[ξ] = 1 then E[ζ] = 1. The arguments may be
copied almost verbatim to calculate E[ζ] if ξ is subcritical:

Proposition 4.5. It holds that

E[ζ] = 1 + (1− p) E[ξ]− 1

P(ξ ∈ Ω)
< 1. (4.49)

Proof. First, (4.12) and Wald’s first equation entails

E[ζ] = (1− p)E

1 +

N(ξ)∑
i=1

(ξi − 1)

∣∣∣∣ N(ξ) ≤ τ−1(ξ)


= 1− p+ E

N(ξ)∑
i=1

(ξi − 1), N(ξ) ≤ τ−1(ξ)

 . (4.50)

Again by Wald’s first equation, it holds that

E

N(ξ)∑
i=1

(ξi − 1)

 = E[N(ξ)](E[ξ]− 1) =
E[ξ]− 1

P(ξ ∈ Ω)
. (4.51)
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Using the strong Markov property of (ξi)i≥1 at the stopping time τ−1(ξ) it follows that

E

N(ξ)∑
i=1

(ξi − 1), N(ξ) > τ−1(ξ)

 = P(N(ξ) > τ−1(ξ))

−1 + E

N(ξ)∑
i=1

(ξi − 1)


= p

(
−1 +

E[ξ]− 1

P(ξ ∈ Ω)

)
. (4.52)

Hence

E

N(ξ)∑
i=1

(ξi − 1), N(ξ) ≤ τ−1(ξ)

 = E

N(ξ)∑
i=1

(ξi − 1)

− E
N(ξ)∑
i=1

(ξi − 1), N(ξ) > τ−1(ξ)


= p+ (1− p) E[ξ]− 1

P(ξ ∈ Ω)
. (4.53)

Hence

E[ζ] = 1 + (1− p) E[ξ]− 1

P(ξ ∈ Ω)
. (4.54)

As E[ξ] < 1, it follows that E[ζ] < 1.

In [33, Lem. 6] it was also shown that if E[ξ] = 1 and V[ξ] < ∞, then the variance
of ζ equals (1 − p)2V[ξ]/P(ξ ∈ Ω). Arguing similarly we may also compute V[ζ] if ξ is
subcritical instead:

Proposition 4.6. The offspring distribution ξ has finite variance if and only if ζ has
finite variance. If this is the case, then

V[ζ] =
(1− p)2(E[ξ2]− 1)− (1− p)p(1− E[ξ])

P(ξ ∈ Ω)

+
(1− p)2(1− E[ξ])(1− E[ξ]− 2E[ξ, ξ ∈ Ω])

P(ξ ∈ Ω)2
. (4.55)

We will require Proposition 4.6 later in order to compute the slowly varying function
gΩ(n) of Theorem 1.1. Note that if we formally set p = 0, then expression for V[ζ]

in (4.55) simplifies to the expression of the variance in (3.12). The latter was obtained
directly from the generating functions using a computer algebra system. Moreover, if
we formally set E[ξ] = 1, then (4.55) simplifies to the expression (1− p)2V[ξ]/P(ξ ∈ Ω)

obtained in [33, Lem. 6] in this case.

Proof of Proposition 4.6. We know from (4.35) that the variance of ζ is finite if and only
if the variance of ξ is finite

Suppose that V[ξ] <∞. For now, set Z := Y +
∑L
i=1Xi(2). Equations (4.12), (4.50),

xand (4.46) entail that

V[ζ] = E[ζ2]− E[ζ]2

= E[Z]p(1− p) + E[Z2](1− p)2 − E[ζ]2

= E[ζ]p+ E[Z2](1− p)2 − E[ζ]2. (4.56)
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From (4.46) and (4.50) it follows that

E[Z2] = 1 + 2E

N(ξ)∑
i=1

(ξi − 1)

∣∣∣∣ N(ξ) ≤ τ−1(ξ)

+ E


N(ξ)∑

i=1

(ξi − 1)

2 ∣∣∣∣ N(ξ) ≤ τ−1(ξ)


(4.57)

=
2E[ζ]

1− p
− 1 + E


N(ξ)∑

i=1

(ξi − 1)

2 ∣∣∣∣ N(ξ) ≤ τ−1(ξ)

 .
Combining this with (4.56), it follows that

V[ζ] = (2− p)E[ζ]− (1− p)2 − E[ζ]2 + (1− p)E


N(ξ)∑

i=1

(ξi − 1)

2

, N(ξ) ≤ τ−1(ξ)

 .
(4.58)

(4.54) With Sn =
∑n
i=1 ξi and Equation (4.54), this simplifies to

V[ζ] =(1− p)
(
p+ p

1− E[ξ]

P(ξ ∈ Ω)
− (1− p) (1− E[ξ])2

P(ξ ∈ Ω)2

)
+ (1− p)2E

[
(SN(ξ) −N(ξ))2, N(ξ) ≤ τ−1(ξ)

]
(4.59)

Our next step is to calculate the unconditioned expectation E
[
(SN(ξ) −N(ξ))2

]
.

Wald’s second equation yields

E
[(
SN(ξ) − E[ξ]N(ξ)

)2]
= V[ξ]E[N(ξ)] =

V[ξ]

P(ξ ∈ Ω)
. (4.60)

Moreover,

E
[(
SN(ξ) −N(ξ)

)2]− E [(SN(ξ) − E[ξ]N(ξ)
)2]

= 2(E[ξ]− 1)E[N(ξ)SN(ξ)] + (1− E[ξ]2)E[N(ξ)2] (4.61)

An elementary calculation shows that

E[N(ξ)2] =
1 + P(ξ /∈ Ω)

P(ξ ∈ Ω)2
. (4.62)

Moreover, using the definition of N(ξ),

E[N(ξ)SN(ξ)]

= E[N(ξ)SN(ξ), ξ1 ∈ Ω] + E[N(ξ)SN(ξ), ξ1 /∈ Ω]

= E[ξ, ξ ∈ Ω] + P(ξ /∈ Ω)
(
E[N(ξ)SN(ξ)] + E[SN(ξ)]

)
+ E[ξ, ξ /∈ Ω] (1 + E[N(ξ)]) (4.63)

Using Wald’s first equation, it follows that

P(ξ ∈ Ω)E[N(ξ)SN(ξ)] = E[ξ] + E[N(ξ)]E[ξ, ξ /∈ Ω] + E[N(ξ)]E[ξ]P(ξ /∈ Ω) (4.64)

= E[ξ] +
E[ξ, ξ /∈ Ω]

P(ξ ∈ Ω)
+
E[ξ]P(ξ /∈ Ω)

P(ξ ∈ Ω)

=
E[ξ] + E[ξ, ξ /∈ Ω]

P(ξ ∈ Ω)
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Applying (4.62) and (4.64) to (4.61) yields

E
[(
SN(ξ) −N(ξ)

)2]− E [(SN(ξ) − E[ξ]N(ξ)
)2]

= 2(E[ξ]− 1)
E[ξ] + E[ξ, ξ /∈ Ω]

P(ξ ∈ Ω)2
+ (1− E[ξ]2)

1 + P(ξ /∈ Ω)

P(ξ ∈ Ω)2
(4.65)

Using (4.60), it follows that

E
[
(SN(ξ) −N(ξ))2

]
=
E[ξ2]− 1

P(ξ ∈ Ω)
+

2(E[ξ]− 1)2 − 2(1− E[ξ])E[ξ, ξ ∈ Ω]

P(ξ ∈ Ω)2
. (4.66)

Using the strong Markov property of (ξi)i≥1 at the stopping time τ−1(ξ) it follows that

E


N(ξ)∑

i=1

(ξi − 1)

2

, N(ξ) > τ−1(ξ)

 = P(N(ξ) > τ−1(ξ))E


−1 +

N(ξ)∑
i=1

(ξi − 1)

2


= p

(
1− 2

E[ξ]− 1

P(ξ ∈ Ω)
+ E

[
(SN(ξ) −N(ξ))2

])
.

(4.67)

Hence

E
[
(SN(ξ) −N(ξ))2, N(ξ) ≤ τ−1(ξ)

]
= (1− p)E

[
(SN(ξ) −N(ξ))2

]
− p

(
1− 2

E[ξ]− 1

P(ξ ∈ Ω)

)
.

(4.68)

Using Equation (4.66) it follows that

E
[
(SN(ξ) −N(ξ))2, N(ξ) ≤ τ−1(ξ)

]
= −p+

(1− p)(E[ξ2]− 1)− 2p(1− E[ξ])

P(ξ ∈ Ω)
+ (1− p)2(E[ξ]− 1)2 − 2(1− E[ξ])E[ξ, ξ ∈ Ω]

P(ξ ∈ Ω)2
.

(4.69)

Having established Equation (4.69) we may now evaluate Equation (4.59), yielding

V[ζ] = (1− p)
(
p+ p

1− E[ξ]

P(ξ ∈ Ω)
− (1− p) (1− E[ξ])2

P(ξ ∈ Ω)2

)
¸

+ (1− p)
(
−p+

(1− p)(E[ξ2]− 1)− 2p(1− E[ξ])

P(ξ ∈ Ω)

)
+ (1− p)2 2(E[ξ]− 1)2 − 2(1− E[ξ])E[ξ, ξ ∈ Ω]

P(ξ ∈ Ω)2

=
(1− p)2(E[ξ2]− 1)− (1− p)p(1− E[ξ])

P(ξ ∈ Ω)

+
(1− p)2(1− E[ξ])(1− E[ξ]− 2E[ξ, ξ ∈ Ω])

P(ξ ∈ Ω)2
(4.70)

Note that using (2.2), Proposition 4.5 and Equation (4.35) it follows that

P(LΩ(T) = n) = P(LΩ(T) > 0)P(|A| = n)

∼ (1− p)α+1

P(ξ ∈ Ω)

f(n)

(n(1− E[ζ]))1+α

=
P(ξ ∈ Ω)α

(1− E[ξ])1+α
f(n)n−1−α. (4.71)

EJP 25 (2020), paper 104.
Page 43/62

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP506
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the maximal offspring in a subcritical branching process

4.5 Proof of the main theorems for the case 0 /∈ Ω

Throughout this section we assume that the random tree TΩ
n is constructed from the

tree An by the blow-up procedure described in Section 4.2.

Proof of Theorem 1.2 for the case 0 /∈ Ω. The offspring distribution ζ has a regularly
varying density by Lemma 4.3 and satisfies E[ζ] < 1 by Proposition 4.5. As we already
proved Theorem 1.2 for the case Ω = N0, it follows that for any sequence (tn)n≥1 of
positive integers satisfying tn = o(n) and tn →∞(
F0(An), (Fi(An))1≤i≤∆(An)−tn ,1∑∆(An)

i=∆(An)−tn
|Fi(An)|≥ 2tn

1−E[ζ]

)
d
≈
(
A•, (Ai)1≤i≤∆A

〈n〉−tn
, 0
)
,

(4.72)

with (Ai)i≥1 denoting a family of independent ζ-Galton–Watson trees, A• the analogue of
T• that is constructed with ζ instead of ξ, and

∆A
〈n〉 := sup

{
d ≥ 1

∣∣∣∣ |A•|+ d∑
i=1

|Ai| ≤ n

}
. (4.73)

Let v denote the lexicographically first vertex with maximum outdegree in An. The result
of replacing the largest component from the decoration of v by a ∗-placeholder is dis-

tributed like P∆(An), with (P k)k≥1 assumed to be independent from An. As ∆(An)
d−→∞,

it follows from Equations (4.41) and (4.42) that

P∆(An) d−→ (∗, X1(1), X1(2), . . . , XL(1), XL(2)) (4.74)

if Ωc is finite, and

P∆(An) d−→ (Y,X1(1), X1(2), . . . , XL(1), XL(2),Geom(p), ∗,
X ′1(1), X ′1(2), . . . , X ′L′(1), X ′L′(2)) (4.75)

if Ω is finite.
Having (4.72), (4.74), and (4.75) at hand, the proof may now be completed in an

entirely analogous fashion as in the case 0 ∈ Ω.

We are going to need the some preliminary observations before proceeding to prove
Theorem 1.1. The offspring distribution ζ has a regularly varying density satisfies
E[ζ] < 1, see Lemma 4.3 and Proposition 4.5. We already proved Theorem 1.2 for the
case Ω = N0, hence there is a slowly varying function gA with

P(∆(An) = N) =
1

gA(n)n1/θ

(
h

(
(1− E[ζ])n−N

gA(n)n1/θ

)
+ o(1)

)
(4.76)

uniformly for all N ∈ Z. Using the asymptotic expression of P(ζ = n) from Lemma 4.3 it
follows analogously as in Proposition 3.2 that

gA(n) =


√
V[ζ]

2 , V[ξ] <∞
(1−p)g(n)
P(ξ∈Ω)1/θ , V[ξ] =∞.

(4.77)

Lemma 4.7. Assume that (Y,X1, . . . ,XL) is independent from ∆(An) and set Z :=

Y +
∑L
i=1Xi(2). Set

gΩ(n) =

 1√
2

(
E[ξ2]−1
P(ξ∈Ω) + (1−E[ξ])(1−E[ξ]+2E[ξ,ξ∈Ω])

P(ξ∈Ω)2

)1/2

, V[ξ] <∞
g(n)

P(ξ∈Ω)1/θ , V[ξ] =∞.
(4.78)
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Then

P(Z = ` | Bin(Z, 1− p) = ∆(An)) =
1

gΩ(n)n1/θ

h
 1−E[ξ]
P(ξ∈Ω)n− `
gΩ(n)n1/θ

+ o(1)

 (4.79)

uniformly for all integers ` ≥ 0.

Proof. Clearly it holds that

P(Z = ` | Bin(Z, 1− p) = ∆(An)) =

n∑
N=1

P(∆(An) = N)P(Z = ` | Bin(Z, 1− p) = N).

(4.80)

By Proposition 2.3 it follows that there are constants ε, δ > 0 such that

n1/θP(∆(An) ≤ εn) = O(n−δ). (4.81)

Hence

P(Z = ` | Bin(Z, 1− p) = ∆(An)) = O(n−δ−1/θ) (4.82)

+

n∑
N=bεnc

P(∆(An) = N)P(Z = ` | Bin(Z, 1− p) = N).

Moreover, P(Z = ` | Bin(Z, 1− p) = N) = 0 whenever ` < N . It follows that

P(Z = ` | Bin(Z, 1− p) = ∆(An)) = O(n−δ−1/θ)

uniformly for all ` ≤ εn. Hence it suffices to verify (4.79) for ` > εn. Set

x =
N − `(1− p)√

`
(4.83)

and

I` = {N ∈ N | εn ≤ N ≤ n, |`−N/(1− p)| ≤
√
N logN}. (4.84)

For εn ≤ N ≤ n, it follows from (4.21) and (4.22) that

P(Z = ` | Bin(Z, 1− p) = N) = O(N−Θ(logN)) = O(n−Θ(logn)) (4.85)

if N /∈ I`, and

P(Z = ` | Bin(Z, 1− p) = N) =

1√
N

(
o

(
1

max (1, x2)

)
+

1− p√
2πp

exp

(
− (1− p)2

2p

(
`−N/(1− p)√

N

)2
))

(4.86)

for N ∈ I`. Using (4.82), it follows that

P(Z = ` | Bin(Z, 1− p) = ∆(An)) = A+B (4.87)

with

A = O(n−δ−1/θ) +
∑
N∈I`

P(∆(An) = N)
1√
N
o

(
1

max (1, x2)

)
, (4.88)
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and

B =
∑
N∈I`

P(∆(An) = N)
1√
N

1− p√
2πp

exp

(
− 1

2p

(
(1− p)`−N√

N

)2
)
. (4.89)

Note that N ∈ I` entails that ` < n(1 + o(1))/(1 − p). Hence (4.79) holds uniformly for
` ≥ 2n/(1− p) as n tends to infinity, and throughout the rest of the proof we may assume
that

εn < ` < 2n/(1− p). (4.90)

Using (4.76), it follows that

A = o

(
1

gA(n)n1/θ

)
. (4.91)

As for B, the asymptotic N ∼ (1 − p)` entails that uniformly for all integers ` satisfy-
ing (4.90)

B = (1 + o(1))
∑
N∈I`

P(∆(An) = N)
1√
`

1− p√
2πp(1− p)

exp

(
− 1

2p(1− p)

(
(1− p)`−N√

`

)2
)
.

(4.92)

By (4.76) it holds that

P(∆(An) = N) =
1

gA(n)n1/θ

(
h

(
(1− E[ζ])n−N

gA(n)n1/θ

)
+ o(1)

)
. (4.93)

For the remaining part of the proof, we have to argue differently according to whether
1 < θ < 2 or θ = 2.

Let us start with the case θ < 2. Then,

√
n log n = o(gA(n)n1/θ). (4.94)

Hence it holds uniformly for all ` satisfying (4.90) and N ∈ I`

h

(
(1− E[ζ])n−N

gA(n)n1/θ

)
= h

(
1−E[ζ]

1−p n− `
(1− p)−1gA(n)n1/θ

)
(4.95)

Applying this to (4.92) yields

B = (1 + o(1))
1− p

gA(n)n1/θ

(
h

(
1−E[ζ]

1−p n− `
(1− p)−1gA(n)n1/θ

)
+ o(1)

)
∑
N∈I`

1√
`

1√
2πp(1− p)

exp

(
− 1

2p(1− p)

(
(1− p)`−N√

`

)2
)
. (4.96)

Using dominated convergence and the fact that h is bounded, this simplifies to

B =
1− p

gA(n)n1/θ

(
h

(
1−E[ζ]

1−p n− `
(1− p)−1gA(n)n1/θ

)
+ o(1)

)
. (4.97)

Equation (4.79) now follows using the expression of gA(n) from Equation (4.77) and the
expression of E[ζ] from Proposition 4.5.
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It remains to treat the case θ = 2, where

h(z) = exp(−z2/4)/
√

4π. (4.98)

Using again dominated convergence and the fact that h is bounded, it follows that

B =
1− p

gA(n)
√
n

(
o(1) +B′

)
. (4.99)

for

B′ =
∑
N∈I`

1√
4π

exp

(
−1

4

(
(1− E[ζ])n−N

gA(n)
√
n

)2
)

1√
`

1√
2πp(1− p)

exp

(
− 1

2p(1− p)

(
(1− p)`−N√

`

)2
)
. (4.100)

Using dominated convergence, it follows that for any ε1 > 0 we may select a constant
M1 > 0 sufficiently large such that the sum of all summands in this expression of B′ for
which N /∈ (1− p)`±M1

√
n is smaller than ε1. If V[ξ] = ∞ (or equivalently V[ζ] = ∞),

the slowly varying function gA(n) satisfies gA(n)→∞ as n becomes large. Thus, using
dominated convergence analogously as in the case θ < 2, it follows that uniformly for all
integers ` satisfying (4.90)

B′ =
1√
4π

exp

−1

4

(
1−E[ζ]

1−p n− `
(1− p)−1gA(n)

√
n

)2
+R

(1)
`,n (4.101)

for an error term R
(1)
`,n satisfying |R(1)

`,n| < ε1 for all large enough n. As ε1 > 0 was arbitrary,
Equation (4.79) now follows using the expression of gA(n) from Equation (4.77) and the
expression of E[ζ] from Proposition 4.5.

It remains to treat the case V[ξ] =∞, where gA(n) =
√
V[ζ]/2 may be chosen to be

constant. Using dominated convergence it follows that we may select a constant M2 > 0

sufficiently large such that the sum of all summands in the expression (4.100) of B′ for
which N /∈ (1 − E[ζ])n ±M2

√
n or N /∈ (1 − p)` ±M1

√
n is smaller than 2ε1 (for large

enough n). This entails also that for large enough n it holds that there is a constant
M3 := (M1 +M2)/(1− p) such that B′ < 2ε1 uniformly for all ` with ` /∈ 1−E[ζ]

1−p n±M3
√
n.

Now, suppose that ` ∈ 1−E[ζ]
1−p n±M3

√
n. This allows us to write

` =
1− E[ζ]

1− p
n+ y`gA(n)

√
n(1− p)−1 (4.102)

with |y`| bounded by some constant multiple of M3. Furthermore, set

z =
N − (1− p)`√

n
(4.103)

and

h1(z) =
1√

2πp(1− E[ζ])
exp

(
− 1

2p(1− E[ζ])
z2

)
. (4.104)

Thus, choosing the constants Mi to be large enough, it follows that

B′ = (1 + o(1))
∑
N∈I`

1√
n
h(z/gA(n) + y`)h1(z)

=

∫ ∞
−∞

h(z/gA(n) + y`)h1(z) dz +R
(2)
`,n, (4.105)
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for an error term R
(2)
`,n satisfying |R(2)

`,n| < 3ε1 for large enough n. Now,

y 7→
∫ ∞
−∞

h(z/gA(n) + y`)h1(z) dz

is the density of
A−B/gA(n)

with A,B variables with distributions

A
d
=N (0, 2)

and
B

d
=N (0, p(1− E[ζ])).

As
A−B/gA(n)

d
=N (0, σ2

C)

for

σ2
C = 2 + p(1− E[ζ])/g2

A(n), (4.106)

it follows that for all y ∈ R∫ ∞
−∞

h(z/gA(n) + y)h1(z) dz =
1√

2πσC
exp

(
− y2

2σ2
C

)
=

√
2

σC
h

(√
2y

σC

)
. (4.107)

As ε1 > 0 was arbitrary, it follows that

P(Z = ` | Bin(Z, 1− p) = ∆(An)) =
√

2(1− p)
σCgA(n)n1/θ

(
h

(
1−E[ζ]

1−p n− `
(1− p)−12−1/2σCgA(n)n1/θ

)
+ o(1)

)
. (4.108)

The expression of E[ζ] from Proposition 4.5 implies that

1− E[ζ]

1− p
=

1− E[ξ]

P(ξ ∈ Ω)
. (4.109)

By Equation (4.77) we may set gA(n) =
√
V[ζ]

2 for all n. Hence, using the expression of

V[ζ] from Proposition 4.6, it follows that

σCgA(n)√
2(1− p)

=

√
V[ζ]

2

1

1− p

√
1 +

p(1− E[ζ])

V[ζ]

=
1√
2

√
V[ζ]

(1− p)2
+
p(1− E[ζ])

(1− p)2

=
1√
2

√
V[ζ]

(1− p)2
+

p(1− E[ξ])

(1− p)P(ξ ∈ Ω)

=
1√
2

(
E[ξ2]− 1

P(ξ ∈ Ω)
+

(1− E[ξ])(1− E[ξ] + 2E[ξ, ξ ∈ Ω])

P(ξ ∈ Ω)2

)1/2

. (4.110)

Equation (4.79) now follows.
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Let v∗ denote the lexicographically first vertex of An with maximal degree. There are
two steps for proving Theorem 1.1. The first is to locate a vertex within the blow-up of
v∗ whose outdegree satisfies a local limit theorem as in (4.79). The second step is to
discard all possibilities for a larger outdegree to appear anywhere in the blow-up of the
entire tree An.

Recall from Figure 9 that the blow-up creates a vertebrate. Hence we may distinguish
the vertices on the spine and the vertices created from attaching independent copies
of T∗. We let Dn denote the largest outdegree of a spine vertex created from the blow-up
of the lexicographically first vertex of An with outdegree ∆(An).

Lemma 4.8. Uniformly for all integers ` ≥ 0

P(Dn = `) =
1

gΩ(n)n1/θ

h
 1−E[ξ]
P(ξ∈Ω)n− `
gΩ(n)n1/θ

+ o(1)

 . (4.111)

Proof. We continue to assume that (Y,X1, . . . ,XL) is independent from ∆(An). Let us
set

D = max(Y,X1(1) +X1(2) + 1, . . . , XL(1) +XL(2) + 1) (4.112)

Then

Dn
d
= (D | Bin(Z, 1− p) = ∆(An)) . (4.113)

Using Lemma 4.7, it follows that

gΩ(n)n1/θP(Dn = `)

= gΩ(n)n1/θ
∑
x≥−`

P(Z = `+ x | Bin(Z, 1− p) = ∆(An))P(D = ` | Z = `+ x)

=
∑
x≥−`

h
 1−E[ξ]
P(ξ∈Ω)n− `− x
gΩ(n)n1/θ

+ o(1)

P(D = ` | Z = `+ x). (4.114)

This expression tends to zero for any constant `. Hence there is some sequence `n →∞
so that gΩ(n)n1/θP(Dn = `)→ 0 uniformly for ` ≤ `n.

Throughout the following, we assume ` ≥ `n. We observed in the limits of Equa-
tions (4.44) and (4.45) the emergence of giant components with a stochastically bounded
remainder that admits a distributional limit. Hence there is a random non-negative
integer R such that for any constant integer x

P(D = ` | Z = `+ x)→ P(R = x). (4.115)

Using that h is uniformly continuous and bounded, it follows that there is a sequence of
integers xn with xn →∞ so that

∑
|x|≤xn

h
 1−E[ξ]
P(ξ∈Ω)n− `− x
gΩ(n)n1/θ

+ o(1)

P(D = ` | Z = `+ x) =

h

 1−E[ξ]
P(ξ∈Ω)n− `
gΩ(n)n1/θ

+ o(1). (4.116)
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Moreover, using Inequality (4.43), it follows that there are constants x′, c > 0 with

∑
|x|>xn,x≥−`

h
 1−E[ξ]
P(ξ∈Ω)n− `− x
gΩ(n)n1/θ

+ o(1)

P(D = ` | Z = `+ x)

= O(1)
∑

|x|>xn,x≥−`

P(D = ` | Z = `+ x)

≤ O(1)
∑

|x|>xn,x≥−`

P(ξ = `)

P(ξ = `+ x)

(
1x≤x′ exp(−c|x|) + 1x>x′ exp

(
−c|x|

`

)
P(ξ = x)

)
= o(1). (4.117)

Combining (4.114), (4.116), and (4.117), it follows that

gΩ(n)n1/θP(Dn = `) = h

 1−E[ξ]
P(ξ∈Ω)n− `
gΩ(n)n1/θ

+ o(1). (4.118)

This concludes the first step. Now we prepare to eliminate the possibility for a vertex
with larger degree than Dn to appear in TΩ

n . First, we need some rough deviation bounds.

Lemma 4.9. There are constants C, δ > 0 such that

P(Dn < n/ log2 n or Dn > Cn) = O(n−1/θ−δ).

Proof. By (4.81) there are constant ε, δ > 0 such that

n1/θP(∆(An) ≤ εn) = O(n−δ). (4.119)

As ∆(An) < n, it follows by (4.14) that for some constants c1, C1 > 0

P(Z < c1n or Z > C1n | Bin(Z, 1− p) = ∆(An)) = O(n−δ). (4.120)

With D as in (4.112), it follows that that uniformly for all d ∈ [c1n,C1n],

P(D ≤ d/ log2 n or D > 2C1 | Z = d) ≤ n−Θ(logn). (4.121)

Thus

P(D < n/ log2 n or D > 2C1n | Bin(Z, 1− p) = ∆(An)) = O(n−1/θ−δ). (4.122)

During the blow-up procedure that constructs TΩ
n from An we attach a random

number Vn of independent copies of T∗
d
= (T | LΩ(T) = 0). We need to ensure that it’s

sufficiently unlikely that any of these attached copies contains a vertex with outdegree
∆(TΩ

n ). The first step is to control Vn:

Lemma 4.10. For any ε > 0

P

(
Vn /∈ n

(
p

1− p
+ E[L]E[X(1)]

)
(1± ε)

)
≤ exp(−Θ(n)). (4.123)

Proof. Recall the expression of ζ in (4.12). For each k ≥ 1 let (Y [k],X
[k]
1 , . . . ,X

[k]

L[k])

denote an independent copy of (Y,X1, . . . ,XL), and set

ζk = Bin

Y [k] +

L[k]∑
i=1

X
[k]
i (2), 1− p

 . (4.124)
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Thus, (ζk)k≥1 is a family of independent copies of ζ. The conditioned ζ-Galton–Watson
tree An corresponds naturally to (ζ1, . . . , ζn) conditioned on the event

En :=

{
min

{
m ≥ 1

∣∣∣∣∣
m∑
k=1

(ζk − 1) = −1

}
= n

}
. (4.125)

Recall from Figure 9 that we construct the tree TΩ
n from An by a blow-up procedure,

where each vertex is expanded into a vertebrate. All vertices to the left of the spine
become roots of independent copies of T∗. Among the vertices to the right of the spine
and the vertices dangling from the tip of the spine a random binomial subset with
parameter p becomes is selected, an each vertex from that subset becomes the root of
an independent copy of T∗. Specifically, for the kth vertex vk (with outdegree ζk) of An,
the number of vertices to the left of the spine in the blow-up is given byL[k]∑

i=1

X
[k]
i (1)

∣∣∣∣∣ En
 .

The remaining number of vertices of the vertebrate in the blow-up of the kth vertex that
become independent copies of T∗ may be expresssed byY [k] +

L[k]∑
i=1

X
[k]
i (2)− ζk

∣∣∣∣∣ En
 .

Let us write

Vn = Vn(1) + Vn(2) (4.126)

with Vn(1) the total number of vertices appearing to the left of the spine in all the
blow-ups. Hence

Vn(1) =

 n∑
k=1

L[k]∑
i=1

X
[k]
i (1)

∣∣∣∣∣ En
 . (4.127)

Note that P(En) = P(|A| = n) varies regularly with index −1 − α by (4.71). Moreover,∑L
i=1Xi(1) has finite exponential moments and E

[∑L
i=1Xi(1)

]
= E[L]E[X(1)]. It follows

from large deviation inequalities for sums of i.i.d. light-tailed random variables that for
any constant ε > 0

P(Vn(1) /∈ nE[L]E[X(1)]± εn) ≤ P(|A| = n)−1P

 n∑
k=1

L[k]∑
i=1

X
[k]
i (1) /∈ nE[L]E[X(1)]± εn


(4.128)

= exp(−Θ(n)).

Using
∑n
i=1 d

+
An

(vi) = n− 1 we may write

Vn(2) =

 n∑
k=1

Y [k] +

L[k]∑
i=1

X
[k]
i (2)

− (n− 1)

∣∣∣∣∣ En
 . (4.129)

The event En entails that

Bin

 n∑
k=1

Y [k] +

L[k]∑
i=1

X
[k]
i (2)

 , 1− p

 = n− 1.
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Using Proposition 4.1, it follows that for any ε > 0

P

 n∑
k=1

Y [k] +

L[k]∑
i=1

X
[k]
i (2)

 /∈ n

1− p
± εn

∣∣∣∣∣ En
 ≤ exp(−Θ(n)). (4.130)

Hence

P

(
Vn(2) /∈ p

1− p
n± εn

)
≤ exp(−Θ(n)). (4.131)

Inequality (4.123) now follows by combining (4.126), (4.128), and (4.131).

Lemma 4.11. Let D∗n denote the largest degree of any vertex of TΩ
n that belongs to one

of the Vn attached copies of T∗. Then it holds uniformly for all integers ` ≥ n/ log2 n that

P(D∗n = `) = o

(
1

gΩ(n)n1/θ

)
. (4.132)

Proof. The statement is trivial if Ωc is finite. Hence it suffices to treat the case where Ω

is finite. Using [20, Prop. 3.2], it follows that the maximal degree of ∆(T∗) satisfies

P(∆(T∗) = n) ≤ P(∆(T) = n)

P(LΩ(T) = 0)
(4.133)

=
1 + o(1)

(1− E[ξ])P(LΩ(T) = 0)
P(ξ = n).

Letting (T∗i )i≥1 denote independent copies of T∗, it holds that

D∗n
d
= max

1≤i≤Vn
∆(T∗i ). (4.134)

By Lemma 4.10 there are constants 0 < c < C such that

P(Vn /∈ [cn, Cn]) ≤ exp(−Θ(n)).

Moreover, using Inequality (4.133) it follows that uniformly for all k ∈ [cn, Cn] and
` ≥ n/ log2 n

P

(
max

1≤i≤k
∆(T∗i ) = `

)
≤ kP(∆(T∗) = `) (4.135)

≤ k 1 + o(1)

(1− E[ξ])P(LΩ(T) = 0)
P(ξ = `).

Note that α > 1 implies α > 1/θ. Hence, using the Potter bounds it follows that

gΩ(n)n1/θP

(
max

1≤i≤k
∆(T∗i ) = `

)
= O(1)gΩ(n)n1/θkf(`)`−1−α = o(1). (4.136)

By (4.134) this verifies (4.132).

We are now ready to complete the proof of Theorem 1.1:

Proof of Theorem 1.1 for the case 0 /∈ Ω. By Lemma 4.9 and the Potter bounds it follows
that

P(∆(TΩ
n ) < n/ log2 n) = o

(
1

gΩ(n)n1/θ

)
. (4.137)
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Hence it suffices to prove

P(∆(TΩ
n ) = `) =

1

gΩ(n)n1/θ

(
h

(
P(ξ ∈ Ω)−1(1− E[ξ])n− `

gΩ(n)n1/θ

)
+ o(1)

)
(4.138)

uniformly for all integers ` ≥ n/ log2 n.
It is elementary that

P(∆(TΩ
n ) = `) = P(Dn = `)− P(Dn = `,∆(TΩ

n ) > `) + P(∆(TΩ
n ) = `,Dn < `). (4.139)

Using Lemma 4.8 and it follows that in order to verify (4.138) it is sufficient to show

P(Dn = `,∆(TΩ
n ) > `) = o

(
1

gΩ(n)n1/θ

)
, (4.140)

and

P(∆(TΩ
n ) = `,Dn < `) = o

(
1

gΩ(n)n1/θ

)
. (4.141)

Similarly as for Dn, we let D◦n denote the largest outdegree of a spine vertex created
from the blow-up of a vertex of An except the lexicographically first vertex with outdegree
∆(An). Hence

∆(TΩ
n ) = max(Dn, D

∗
n, D

◦
n). (4.142)

Our next intermediate step is to reduce to reduce (4.140) and (4.141) to properties
of D◦n and Dn only. Using ` ≥ n/ log2 n, it follows from Lemma 4.11 that

P(∆(TΩ
n ) = `,Dn < `) ≤ P(D◦n = `,Dn < `) + o

(
1

gΩ(n)n1/θ

)
. (4.143)

This reduces (4.141) to showing

P(D◦n = `,Dn < `) = o

(
1

gΩ(n)n1/θ

)
. (4.144)

As for (4.140), it is elementary that

P(Dn = `,∆(TΩ
n ) > `) ≤ P(Dn = `,D◦n > `) + P(Dn = `,D∗n > `) (4.145)

Using Lemma 4.8 it follows that for any ε > 0 we may select a constant M > 0 large
enough so that

gΩ(n)n1/θP(Dn = `,D∗n > `) ≤ ε (4.146)

uniformly for all ` /∈ P(ξ ∈ Ω)−1(1 − E[ξ])n ±MgΩ(n)n1/θ. For all ` ∈ P(ξ ∈ Ω)−1(1 −
E[ξ])n±MgΩ(n)n1/θ it follows from Lemma 4.10 and Lemma 4.8 that there are constants
0 < c < C with

gΩ(n)n1/θP(Dn = `,D∗n > `) = O(1)
P(D∗n > `,Dn = `)

P(Dn = `)
(4.147)

= O(1)
P(D∗n > `,Dn = `, cn < Vn < Cn) + o(1)

P(Dn = `, cn < Vn < Cn)(1 + o(1))

= O(1)P(D∗n > ` | Dn = `, cn < Vn < Cn) + o(1)
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Now, conditionally on Vn, it holds that D∗n is distributed like the maximum of Vn in-
dependent copies of ∆(T∗). Using (4.133) it follows that uniformly for ` ∈ P(ξ ∈
Ω)−1(1− E[ξ])n±MgΩ(n)n1/θ

gΩ(n)n1/θP(Dn = `,D∗n > `) = o(1). (4.148)

As ε > 0 was arbitrary, it follows that

P(Dn = `,D∗n > `) = o

(
1

gΩ(n)n1/θ

)
(4.149)

uniformly for all ` ≥ n/ log2 n. Hence in order to verify (4.140) it suffices to show that

P(Dn = `,D◦n > `) = o

(
1

gΩ(n)n1/θ

)
(4.150)

Summing up, we have reduced the task of proving Theorem 1.1 to verifying that (4.144)
and (4.150) hold uniformly for all ` ≥ n/ log2 n, that is,

max(P(D◦n = `,Dn < `),P(Dn = `,D◦n > `)) = o

(
1

gΩ(n)n1/θ

)
. (4.151)

Let 1 ≤ d ≤ n− 1 be an integer with P(ζ = d) > 0. For ease of notation, set

tn = n/ log2 n. (4.152)

Consider the event E1 that

max(Y,X1(1) +X1(2) + 1, . . . , XL(1) +XL(2) + 1) ≥ tn, (4.153)

and the event E2 that

Bin

(
Y +

L∑
i=1

Xi(2), 1− p

)
= d. (4.154)

The sum
∑L
i=1Xi(1) has finite exponential moments. Hence

P

(
E1, Y +

L∑
i=1

Xi(2) < tn/2

)
≤ P

(
1 +

L∑
i=1

Xi(1) ≥ tn/2

)
≤ exp(−Θ(tn)). (4.155)

Consequently,

P (E1, E2, d < (1− p)tn/4) ≤ exp(−Θ(tn)). (4.156)

As 1 ≤ d ≤ n − 1 and P(ζ = d) > 0, the probability P(E2) = P(ζ = d) is bounded from
below by some fixed polynomial in n−1 that does not depend on d. For ease of notation,
we set

sn = b(1− p)tn/4c. (4.157)

It follows that

P(E1 | E2) ≤ exp(−Θ(tn)) (4.158)

uniformly for all 1 ≤ d ≤ sn with P(ζ = d) > 0.
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It follows that there is an upper bound of the form exp(−Θ(tn)) for the probability
of the event that An contains a vertex v with outdegree less than sn so that the largest
degree in the spine of the blow-up of b is larger than tn. In particular, there exists a
bound of the form exp(−Θ(tn)) for the probability that D◦n got produced in the spine of
the blow-up of some vertex of An with outdegree less than sn. Using (4.81), it follows
that

max(P(D◦n = `,Dn < `),P(Dn = `,D◦n > `)) ≤ Rn,` + o

(
1

gΩ(n)n1/θ

)
. (4.159)

for the probability Rn,` that at least two vertices of An have outdegree at least sn and
the blow-up of one of them produces a spine vertex with outdegree `.

This reduces the verification of (4.151) and hence also the completion of the proof of
Theorem 1.1 to proving

Rn,` = o

(
1

gΩ(n)n1/θ

)
(4.160)

uniformly for all integers ` ≥ tn.

Let (ζi)i≥1 be a family of independent copies of the offspring distribution ζ and set
S̃k = ζ1 + . . . + ζk for all k. Using Lemma 2.1 and Equations (2.1), (2.2), and (4.35) it
follows that

Rn,` ≤
1

P(S̃n = n− 1)
n2

n∑
y=sn

P(ζ = y)P(S̃n−1 = n− 1− y, ζ1 ≥ sn)p`,y (4.161)

≤ O(n)

P(ξ = n)

n∑
y=sn

P(ξ = y)P(S̃n−1 = n− 1− y, ζ1 ≥ sn)p`,y

with p`,y denoting the conditional probability

P

(
max(Y, 1 +X1(1) +X1(2), . . . , 1 +XL(1) +XL(2)) = `

∣∣∣∣∣
Bin

(
Y +

L∑
i=1

Xi(2), 1− p

)
= y

)
.

Applying the local limit theorem for sums of independent copies of ζ, it follows that
uniformly in ` and y

P(S̃n−1 = n− 1− y, ζ1 ≥ sn) =
∑
i≥sn

P(ζ = i)P(S̃n−2 = n− 1− y − i) (4.162)

=
O(1)

gA(n)n1/θ
P(ζ ≥ sn)

As P(ζ ≥ sn) = O(P(ξ ≥ sn)), it follows from (4.161) that

Rn,` ≤
O(n)P(ξ ≥ sn)

gA(n)n1/θP(ξ = n)

n∑
y=sn

P(ξ = y)p`,y. (4.163)

As y ≥ sn = Θ(n/ log n) and y ≤ n, we may apply Inequality (4.14) and the local limit
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theorem in (4.13), yielding

p`,y =O(exp(−Θ(log2 n))) (4.164)

+
∑

r∈by/(1−p)c±
√
n logn

P

(
Y +

L∑
i=1

Xi(2) = r

∣∣∣∣∣ Bin

(
Y +

L∑
i=1

Xi(2), 1− p

)
= y

)
q`,r

=O(exp(−Θ(log2 n))) +O(1/
√
n)

∑
r∈y/(1−p)±

√
n logn

q`,r

with

q`,r := P

(
max(Y, 1 +X1(1) +X1(2), . . . , 1 +XL(1) +XL(2)) = `

∣∣∣∣∣ Y +

L∑
i=1

Xi(2) = r

)
.

(4.165)

It follows from Inequality (4.43) that there are constants c0, r0 > 0 with

q`,r ≤ O(1)
P(ξ = `)

P(ξ = y)
(1r−`≤r0 exp(−c0|r − `|) + 1r−`>r0P(ξ = r − `)) (4.166)

Thus,

Rn,` ≤O(exp(−Θ(log2 n))) +
O(n)P(ξ ≥ sn)P(ξ = `)

gA(n)n1/θP(ξ = n)
√
n
B` (4.167)

for

B` :=

n∑
y=sn

∑
r∈by/(1−p)c±

√
n logn

(1r−`≤r0 exp(−c0|r − `|) + 1r−`>r0P(ξ = r − `)) (4.168)

≤
∑

|s|≤
√
n logn

n∑
y=sn

(exp(−c0|by/(1− p)c+ s− `|) + P(ξ = |by/(1− p)c+ s− `|))

= O(
√
n log n)

uniformly for all ` ≥ tn. Using α > 1, ` ≥ tn and the Potter bounds it follows that

O(n)P(ξ ≥ sn)P(ξ = `)

gA(n)n1/θP(ξ = n)
√
n
B` =

O(n)P(ξ ≥ sn)P(ξ = `) log n

gA(n)n1/θP(ξ = n)
(4.169)

= o

(
1

gΩ(n)n1/θ

)
.

This verifies (4.160) and completes the proof.

A Renewal theory

Let (Yi)i≥1 and (Ȳi)i≥1 denote independent copies of a non-negative random integer
Y that lies in the domain of attraction of a θ-stable law for 1 < θ ≤ 2. Let Y0 denote an
arbitrary non-negative integer and let Ȳ0 denote an independent copy of Y0. We define
the renewal process

τn = sup

{
k ≥ 0

∣∣∣∣ k∑
i=0

Yi ≤ n

}
∈ {−∞} ∪N0. (A.1)

Here we use that the convention that the supremum of the empty set equals −∞. Thus

P(τn = −∞) = P(Y0 > n). (A.2)
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The present section is dedicated to the question, how much the sequence (Ȳi)0≤i≤τn
deviates from (Yi)0≤i≤τn . Clearly there are some differences, as

∑τn
i=0 Ȳi fluctuates

around n at a larger order of magnitude than the sum
∑τn
i=0 Yi. However, subfamilies

may asymptotically become independent from each other and from τn.

A.1 Local limit theorems for first passage times

Local limit theorems for first passage times have received attention in the literature,
see for example [31, 5] and references given therein. We collect some preparatory
results.

Let (Xt)t≥0 denote the spectrally positive Lévy process with Laplace exponent
E[exp(−λXt)] = exp(tλθ). X1 has a density h that is positive, uniformly continuous,
and bounded on R (see [17, Sec. XVII.6] and [8]). Let us check that the local limit
theorem for

∑n
i=1 Yi still holds if the sum includes the additional term Y0 that follows a

different distribution than the rest.

Proposition A.1. There is a slowly varying function gY such that

lim
n→∞

sup
`≥0

∣∣∣∣∣gY (n)n1/θP

(
n∑
i=0

Yi = `

)
− h

(
`− nE[Y ]

gY (n)n1/θ

)∣∣∣∣∣ = 0. (A.3)

Proof. The classical local limit theorem [22, Thm. 4.2.1] implies that there is a slowly
varying function gY such that

lim
n→∞

sup
`≥0

∣∣∣∣∣gY (n)n1/θP

(
n∑
i=1

Yi = `

)
− h

(
`− nE[Y ]

gY (n)n1/θ

)∣∣∣∣∣ = 0.

It follows that, with an o(1) term that is uniform in ` ∈ Z,

gY (n)n1/θP

(
n∑
i=0

Yi = `

)
=
∑̀
k=0

P(Y0 = k)

(
h

(
`− k − nE[Y ]

gY (n)n1/θ

)
+ o(1)

)

= o(1) +
∑̀
k=0

P(Y0 = k)h

(
`− k − nE[Y ]

gY (n)n1/θ

)
.

For any ε > 0 we may select a constant integer K > 0 such that P(Y0 > K) < ε. Using
that h admits an upper bound H > 0 and is uniformly continuous, it follows that∣∣∣∣∣gY (n)n1/θP

(
n∑
i=0

Yi = `

)
− h

(
`− nE[Y ]

gY (n)n1/θ

)∣∣∣∣∣ ≤ o(1) + 2εH.

As this holds for arbitrary (but fixed) ε > 0, Equation (A.3) follows.

The stopping time τn satisfies a similar local limit theorem for the remaining possible
values.

Proposition A.2. Let (`n)n≥1 denote a sequence of positive integers that satisfies `n →
∞ as n becomes large. Then

sup
`≥`n

∣∣∣∣E[Y ]−1gY (`)`1/θP(τn = `)− h
(
n− `E[Y ]

gY (`)`1/θ

)∣∣∣∣ = 0. (A.4)
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Proof. Using Proposition A.1, it follows that, for a uniform o(1) term,

gY (`)`1/θP(τn = `) =

n∑
k=0

gY (`)`1/θP

(∑̀
i=0

Yi = n− k

)
P(Y > k)

=

n∑
k=0

(
h

(
n− k − `E[Y ]

gY (`)`1/θ

)
+ o(1)

)
P(Y > k)

= o(1) +

n∑
k=0

h

(
n− k − `E[Y ]

gY (`)`1/θ

)
P(Y > k).

As E[Y ] < ∞, for any ε > 0 we may select a constant K > 0 with
∑
k>K P(Y > k) < ε.

Using that the density h has an upper bound H > 0 and is uniformly continuous, it
follows that uniformly for ` ≥ `n∣∣∣∣gY (`)`1/θP(τn = `)− E[Y ]h

(
n− `E[Y ]

gY (`)`1/θ

)∣∣∣∣ ≤ o(1) + 2εH.

As this holds for any fixed ε > 0, Equation (A.4) follows.

Corollary A.3. Let δ > 0 be given. Then

lim
n→∞

sup
`≥δn

∣∣∣∣gY (n)n1/θE[Y ]−1−1/θP(τn = `)− h
(

n/E[Y ]− `
gY (n)n1/θE[Y ]−1−1/θ

)∣∣∣∣ = 0 (A.5)

and

n/E[Y ]− τn
gY (n)n1/θE[Y ]−1−1/θ

d−→X1. (A.6)

Proof. The central limit theorem in (A.6) is a direct consequence of the local limit
theorem (A.5), so it suffices to verify the latter.

Let M > 0 be a constant, and define the interval IM,n := n/E[Y ]±MgY (n)n1/θ. Then
gY (`)`1/θ ∼ gY (n)n1/θE[Y ]−1/θ uniformly for all integers ` ∈ Z∩IM,n as n tends to infinity.
By Proposition A.2, it follows that (A.5) holds uniformly for ` ∈ IM,n. As this holds for
any fixed M > 0, it follows that there exists a sequence (Mn)n≥1 with Mn → ∞ such
that (A.5) holds uniformly for ` ∈ IMn,n.

It holds uniformly for ` ∈ Z \ IMn,n that∣∣∣∣ n/E[Y ]− `
gY (n)n1/θE[Y ]−1−1/θ

∣∣∣∣→∞
and hence

h

(
n/E[Y ]− `

gY (n)n1/θE[Y ]−1−1/θ

)
= o(1).

Moreover it follows from Proposition A.2 that uniformly for ` ∈ Z ∩ ([δn,∞[ \ IMn,n)

gY (n)n1/θP(τn = `) =
gY (n)n1/θ

gY (`)`1/θ

(
o(1) + h

(
gY (n)n1/θ

o(1)gY (`)`1/θ

))
= o(1).

Here we have used that the density h is bounded, and that ` ≥ δn ensures that gY (n)n1/θ

gY (`)`1/θ
=

O(1). (In detail: if the argument of the h-function in this expressions has an absolute

value that becomes large, then the entire expression tends to zero since gY (n)n1/θ

gY (`)`1/θ
= O(1).

The only way for this case not to happen is when gY (n)n1/θ

gY (`)`1/θ
tends to zero, but in this case

the fact that h is bounded ensures that the entire expression tends to zero.)
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A.2 Decoupling

Recall that the family (Ȳi)i≥0 is defined to be independent from (Yi)i≥0 and hence τn.
The following proposition ensures that the majority of coordinates of (Yi)0≤i≤τn become
asymptotically independent from each other.

Proposition A.4. Let (un)n≥1 denote a sequence of positive integers such that

un − n/E[Y ]

gY (n)n1/θ
→ −∞. (A.7)

Then

(Y0, . . . , Ymin(τn,un))
d
≈ (Ȳ0, . . . , Ȳun). (A.8)

Proof. The central limit theorem for τn in (A.6) implies that the probability for un < τn
tends to 1 as n tends to infinity. This readily verifies (A.8).

Care has to be taken that although most coordinates of (Yi)0≤i≤τn become asymptoti-
cally independent from each other, the dependence on τn perseveres. For this reason,
only a weaker contiguousness relation holds:

Lemma A.5. Let ε > 0 and 0 < δ < 1/E[Y ] be given, and set tn = bδnc. There are
constants 0 < c < C such that for all collections E of finite sequences of integers

cP((Ȳ0, . . . , Ȳτn−tn) ∈ E)− ε ≤ P((Y0, . . . , Yτn−tn) ∈ E) (A.9)

≤ CP((Ȳ0, . . . , Ȳτn−tn) ∈ E) + ε.

Note that the vector (Y0, . . . , Yτn−tn) determines τn, since tn is deterministic.

Proof of Lemma A.5. For all M1,M2 > 0 we consider the collection En,δ,M1,M2 of finite
sequences y = (y0, . . . , yk), k ≥ 1, of non-negative integers satisfying the following
properties:

1. P(Y0 = y0) > 0 and P(Y = yi) > 0 for all integers 1 ≤ i ≤ k.

2.
∑k
i=0 yi ∈ kE[Y ]±M1gY (k)k1/θ.

3. k + tn ∈ n/E[Y ]±M2gY (n)n1/θ.

For any such sequence set ` =
∑k
i=0 yi. Then

P((Y0, . . . , Yτn−tn) = y)

P((Ȳ0, . . . , Ȳτn−tn) = y)
=

P(τn−` = tn)

P(τn = k + tn)
. (A.10)

Our assumptions ensure that tn/gY (n)n1/θ → ∞ and hence n− ` → ∞. This allows us
apply Proposition A.2 and Corollary A.3, yielding

P(τn−` = tn)

P(τn = k + tn)
=

gY (n)n1/θ

E[Y ]1/θgY (tn)t
1/θ
n

h
(
n−`−tnE[Y ]

gY (tn)t
1/θ
n

)
+ o(1)

h
(

n−(k+tn)E[Y ]
gY (n)n1/θE[Y ]−1/θ

)
+ o(1)

. (A.11)

If we write k + tn = n/E[Y ] + ygY (n)n1/θ with |y| ≤M2 and ` = kE[Y ] + xgY (k)k1/θ with
|x| ≤M1, then

n− (k + tn)E[Y ]

gY (n)n1/θE[Y ]−1/θ
= −yE[Y ]1+1/θ

and
n− `− tnE[Y ]

gY (tn)t
1/θ
n

=
−ygY (n)n1/θE[Y ]− xgY (k)k1/θ

gY (tn)t
1/θ
n

.
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Using tn = bδnc, it follows that uniformly for all y ∈ En,δ,M1,M2

1 + o(1)

E[Y ]1/θδ1/θ

inf |z|≤δ−1/θ(M2E[Y ]+M1|E[Y ]−1−δ|1/θ) h(z)

supz∈R h(z)
≤ P((Y0, . . . , Yτn−tn) = y)

P((Ȳ0, . . . , Ȳτn−tn) = y)
(A.12)

≤ 1 + o(1)

E[Y ]1/θδ1/θ

supz∈R h(z)

inf |z|≤M2E[Y ]1+1/θ h(z)
.

Corollary A.3 and Proposition A.4 ensure that for any ε > 0 we may select M1 and
M2 sufficiently large so that (Y0, . . . , Yτn−tn) and (Ȳ0, . . . , Ȳτn−tn) lie in En,δ,M1,M2

with
probability at least 1− ε for all sufficiently large n. This concludes the proof.

A small portion of the coordinates becomes fully independent of each other and of τn:

Lemma A.6. Let (kn)n≥1 denote a sequence of positive integers satsifying kn = o(n).
Then

(τn, Y0, . . . , Ymin(τn,kn))
d
≈ (τn, Ȳ0, . . . , Ȳkn). (A.13)

Proof. For any numbers M1,M2 > 0 and any integer k > 0 we may consider the collection
EM1,M2,k of vectors (t, y0, . . . , yk) of positive integers satisfying the following properties:

1. P(Y0 = y0) > 0 and P(Y = yi) > 0 for all integers 1 ≤ i ≤ k.

2.
∑k
i=0 yi ∈ kE[Y ]±M1gY (k)k1/θ.

3. t ∈ n/E[Y ]±M2gY (n)n1/θ.

Setting ` =
∑k
i=0 yi, it holds that

P((τn, Y0, . . . , Yk) = y)

P((τn, Ȳ0, . . . , Ȳk) = y)
=
P(τn−` = t− k)

P(τn = t)
. (A.14)

For k = kn our assumptions entail n− `→∞ and t− kn →∞. This allows us to apply
Proposition A.2 and Corollary A.3, yielding

P(τn−` = t− kn)

P(τn = t)
=

gY (n)n1/θ

E[Y ]1/θgY (t− kn)(t− kn)1/θ

h
(

n−`−(t−kn)E[Y ]
gY (t−kn)(t−kn)1/θ

)
+ o(1)

h
(

n−tE[Y ]
gY (n)n1/θE[Y ]−1/θ

)
+ o(1)

. (A.15)

Since kn = o(n), it follows that t− kn ∼ n/E[Y ] and ` = o(n), yielding

P((τn, Y0, . . . , Yk) = y)

P((τn, Ȳ0, . . . , Ȳk) = y)
= 1 + o(1) (A.16)

uniformly for all (t, y0, . . . , yk) ∈ EM1,M2,kn .
For any ε > 0 we may select M1,M2 > 0 large enough so that the vector

(τn, Ȳ0, . . . , Ȳkn)

lies in the set EM1,M2,kn with probability at least 1− ε. This completes the proof.
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