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Abstract
We study random composite structures considered up to symmetry that are sampled according to weights
on the inner and outer structures. This model may be viewed as an unlabelled version of Gibbs partitions
and encompasses multisets of weighted combinatorial objects. We describe a general setting characterized
by the formation of a giant component. The collection of small fragments is shown to converge in total
variation toward a limit object following a Pólya–Boltzmann distribution.

2010 MSC Codes: Primary 60C05, 05A18; Secondary 60B10

1. Introduction
The study of the evolution of shapes of random ensembles, as the total size becomes large, has a
long history, and connections to a variety of fields such as statistical mechanics, representation
theory and combinatorics are well known. A sketch of the history of limit shapes may be found
in the work by Erlihson andGranovsky [10] onGibbs partitions in the expansive case, and we refer
the reader to this informative summary and references given therein for an adequate treatment
of the historical development.

The term ‘Gibbs partitions’ was coined by Pitman [18] in his comprehensive survey on com-
binatorial stochastic processes. It describes a model of random partitions of sets, where the
collection of classes as well as each individual partition class are endowed with a weighted struc-
ture. For example, in a simply generated random plane forest, each component is endowed with
a tree structure carrying a non-negative weight, and the collection of components carries a linear
order. Likewise, Gibbs partitions also encompass various types of random graphs whose vertex
sets are partitioned by their connected components.

Many structures such as classes of graphs may also be viewed up to symmetry. The sym-
metric group acts in a canonical way on the collection of composite structures over a fixed set,
and its orbits are called unlabelled objects. Sampling such an isomorphism class with probabil-
ity proportional to its weight is the natural unlabelled version of the Gibbs partition model. This
encompasses as a special case the important model of random multisets, which has been stud-
ied by Bell, Bender, Cameron and Richmond [3], and which is also encompassed in the setting
by Arratia, Barbour and Tavaré [1] and Barbour and Granovsky [2]. The important example of
forests of unlabelled trees has been considered by Mutafchiev [17]. General unlabelled Gibbs par-
titions, however, appear not to have received any attention in the literature so far. This is possibly
due to the fact that this model of random ensembles is quite involved, as the symmetries of both
the inner and outer structures influence its behaviour. This makes it particularly hard to arrive at
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general results that characterize the asymptotic behaviour for a wide range of species of structures.
Nevertheless, it is natural to consider combinatorial objects up to symmetry, and to ask whether
similar regimes such as, for example, the expansive case [10] or the convergent case [20] may also
be found in the unlabelled setting.

For this reason, the present work aims to make a first step in this direction, with the hope that
this may incite further research. We study a general setting characterized by the formation of a
giant component with a stochastically bounded remainder. This phenomenon may, for example,
be observed for uniformly sampled unordered forests of unlabelled trees as the total number of
vertices tends to infinity, regardless of whether we consider trees that are rooted or unrooted,
ordered or unordered. The small fragments are shown to converge in total variation towards a
limit object following a Pólya–Boltzmann distribution, a term coined by Bodirsky, Fusy, Kang and
Vigerske [5], who generalized and further developed the theory of Boltzmann samplers initiated
in [7, 11]. Rather than taking a pure generating function viewpoint, our approach is to use the
methods from [5] to reduce each problem to probabilistic questions. This allows us to prove our
results in great generality and economically make use of available results for heavy-tailed and
subexponential probability distributions [6, 8, 9, 13].

The present work is also the logical continuation of [20], where a gelation phenomenon was
observed for labelled Gibbs partitions. The Pólya–Boltzmann sampler framework of [5] allows us
to pursue a similar overall strategy as in [20], but our proofs are more involved and technical, as
we have to consider objects up to symmetry.

The motivation of this particular line of research stems from the study of random graphs from
restricted classes. McDiarmid [15, 16] showed that the small fragments of a random graph from
a minor-closed addable class converge toward a Boltzmann Poisson random graph. In this work,
McDiarmid poses the question whether similar behaviour may be observed for unlabelled graphs.
As was shown in [20], an approach via Gibbs partitions and conditioned Galton–Watson trees is
possible in the labelled setting. Hence it is natural to ask whether a similar strategy also works in
the unlabelled setting. The present work provides a first piece of the puzzle, and we hope to pursue
this question further in future work.

Plan of the paper
In Section 2 we fix notations and recall some background related to Gibbs partitions, combinato-
rial species, Pólya–Boltzmann distributions and subexponential sequences. Section 3 presents our
main results for unlabelled Gibbs partitions. In Section 4 we collect all proofs.

2. Preliminaries
2.1 Notation
We use the notation

N= {1, 2, . . .}, N0 = {0} ∪N, [n]= {1, 2, . . . , n}, n ∈N0,
and let R>0 and R�0 denote the sets of positive and non-negative real numbers, respectively.
Throughout, we assume that all considered random variables are defined on a common probabil-
ity space (�,F , P). All unspecified limits are taken as n becomes large, possibly along an infinite
subset of N.

A function h :R>0 →R>0 is termed slowly varying if, for any fixed t > 0,

lim
x→∞

h(tx)
h(x)

= 1.

For any power series f (z)= ∑
n fnzn, we let [zn]f (z)= fn denote the coefficient of zn. A sequence

of R-valued random variables (Xn)n�1 is stochastically bounded if, for each ε > 0, there is a
constantM > 0 with
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lim sup
n→∞

P(|Xn|�M)� ε.

The total variation distance between two random variables X and Y with values in a countable
state space S is defined by

dTV(X, Y)= sup
E⊂S

|P(X ∈ E)− P(Y ∈ E)|.

2.2 Weighted combinatorial species and cycle index sums
The present section recalls the necessary species-theory following Joyal [14]. A species of combi-
natorial structures Fω with non-negative weights is a functor that produces for each finite set U a
finite set F[U] of F-structures and a map

ωU :F[U]→R�0.
We will often write ω(F) instead of ωU(F) for the weight of a structure F ∈F[U]. For the special
caseU = [k] we writeF[k] instead ofF[[k]]. If no weighting is specified explicitly, we assume that
any structure receives weight 1. We refer to the set U as the set of labels or atoms of the structure.
For anyF-object F ∈F[U], we let |F| := |U| ∈N0 denote its size. The speciesF is further required
to produce for each bijection σ :U →V a corresponding bijection

F[σ ] :F[U]→F[V]
that preserves the ω-weights. In other words, the following diagram must commute:

F[U] F [σ ]
��

ωU

���
��

��
��

��
F[V]

ωV
��

R�0

Species are also subject to the usual functoriality requirements: the identity map idU on U gets
mapped to the identity map F[idU]= idF [U] on the set F[U]. For any bijections σ :U →V and
τ :V →W, the following diagram commutes:

F[U] F [σ ]
��

F [τσ ]

���
��

��
��

��
F[V]

F [τ ]
��

F[W]

We further assume that F[U]∩F[V]= ∅ whenever U 	=V . This is not much of a restriction, as
we may always replace F[U] by {U} ×F[U] for all sets U, to make sure that it is satisfied.

Two weighted species Fω andHγ are said to be structurally equivalent or isomorphic, denoted
by Fω 
Hγ , if there is a family of weight-preserving bijections (αU :F[U]→H[U])U with U
ranging over all finite sets, such that the following diagram commutes for each bijection σ :U →V
of finite sets:

F[U]

αU
��

F [σ ]
�� F[V]

αV
��

H[U] H[σ ]
�� H[V]

(2.1)

For any finite set U, the symmetric group SU acts on the set F[U] via
σ .F =F[σ ](F)
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for all F ∈F[U] and σ ∈ SU . A bijection σ with σ .F = F is termed an automorphism of F. We let
F̃[U] denote the orbits of this group action. All F-objects of an orbit F̃ have the same size and
same ω-weight, which we denote by |F̃| and ω(F̃). It will be convenient to use the notation

U (F)=
⋃
k�0

Uk(F) with Uk(F)= F̃[{1, . . . , k}].

Formally, an unlabelled F-object is defined as an isomorphism class of F-objects. We may also
identify the unlabelled objects of a given size nwith the orbits of the action of the symmetric group
on any n-sized set. In particular, the collection of unlabelled F-objects may be identified with the
set U (F). By abuse of notation, we treat unlabelled objects as if they were regular F-objects. The
power series

F̃ω(z)=
∑

F̃∈U (F )

ω(F̃)z|F̃|

is the ordinary generating series of the species. Note that we really need condition (2.1) to ensure
that isomorphic species have the same ordinary generating series.

To any species F we may assign the corresponding species Sym(F) of F-symmetries such that

Sym(F)[U]= {(F, σ ) | F ∈F[U], σ ∈ SU , σ .F = F}.
In other words, a symmetry is a pair of an F-object and an automorphism. The transport along a
bijection γ :U →V is given by

Sym(F)[γ ](F, σ )= (F[γ ](F), γ σγ −1).

For any permutation σ we let σi denote its number of i-cycles. The cycle index sum of a species F
is defined as the formal power series

ZFω (z1, z2, . . . )=
∑
k�0

∑
(F,σ )∈Sym(F )[k]

ω(F)
k! zσ11 · · · zσkk

in countably infinitely many indeterminates z1, z2, . . . . The following standard result is given, for
example, by Bergeron, Labelle and Leroux [4, Chapter 2.3] and shows how the ordinary generating
series and the cycle index sum of a species are related.

Lemma 2.1. For any finite set U and any unlabelled F-object F̃ ∈ F̃[U] there are precisely |U|!
many symmetries (F, σ ) ∈ Sym(F)[U] such that F belongs to the orbit F̃. Consequently,

F̃ω(z)= ZFω (z, z2, z3, . . . ).

We illustrate the concepts of this section with an example.

Example 2.2. The species CYC of cycles associates to any finite set U the subset CYC[U]⊂ SU of
cyclic permutations with length k := |U|. Hence CYC[U] has (k− 1)! elements for k� 1. By conven-
tion,CYC[∅] contains a single element, the trivial bijection from the empty set to itself. The transport
along a bijection γ :U →V is given by

CYC[γ ] : CYC[U]→CYC[V], τ �→ γ τγ −1.

Conjugating a cycle τ = (u1, . . . , uk) ∈CYC[U] by a permutation σ ∈ SU yields the cycle
(σ (u1), . . . , σ (uk)). In particular, στσ−1 = τ holds if and only if σ is a power of τ . Hence

Sym(CYC)[U]= {(τ , τ i) | τ ∈CYC[U], 0� i< |U|}.
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The power τ i is the product of k/r disjoint cycles with length r, where r is the order of the coset
ī in the cyclic group Z/kZ. This entails that r | k, that is, r is a divisor of k. There are ϕ(r) elements
with order r in Z/kZ, with ϕ denoting Euler’s totient function. This leads to the well-known equality

ZCYC = 1+
∑
k�1

∑
r|k

ϕ(r)
k

zk/rr = 1+
∑
r�1

ϕ(r)
r

log
(

1
1− zr

)
.

2.3 Constructions on species
There are many ways to form species of structures by combining other species. Most prominently,
composite structures are formed by partitioning a set and endowing both the partition classes and
the collection of all classes with additional weighted structures. Derived structures are regular
structures over a set of labels together with a distinguished ∗-placeholder that does not count as
a regular atom. We recall the details following the classical literature by Joyal [14] and Bergeron,
Labelle and Leroux [4].

2.3.1 Composite structures

Let Fω and Gν be two combinatorial species with non-negative weights. We assume that Gν[∅]=
∅. The compositionFω ◦ Gν = (F ◦ G)μ is a weighted species that describes partitions of finite sets,
where each partition class is endowed with a G-structure, and the collection of partition classes
carries an F-structure. That is, for each finite set U,

(F ◦ G)[U]=
⋃
π

F[π]×
∏
Q∈π

G[Q],

with the index π ranging over all unordered partitions of U with non-empty partition classes. In
other words, π is a set of non-empty subsets of U such that U = ⋃

Q∈π Q and Q∩Q′ = ∅ for all
Q,Q′ ∈ π with Q 	=Q′. The weight of a composite structure (F, (GQ)Q∈π ) is given by

μ(F, (GQ)Q∈π )= ω(F)
∏
Q∈π

ν(GQ).

For any bijection σ :U →V , the corresponding transport function
(F ◦ G)[σ ] : (F ◦ G)[U]→ (F ◦ G)[V]

is given as follows. For each element (F, (GQ)Q∈π ) ∈ (F ◦ G)[U], we let π̄ = {σ (Q) |Q ∈ π} denote
the corresponding partition of V and set

σ̄ : π → π̄ ,Q �→ σ (Q).
For each Q ∈ π we let

σ |Q :Q→ σ (Q), x �→ σ (x)
denote the restriction of σ to the class Q. We set

(F ◦ G)[σ ](F, (GQ)Q∈π )= (F[σ̄ ](F), (G[σ |σ−1(P)](Gσ−1(P)))P∈π̄ ).
The cycle index sum of the composition is given by

ZFω◦Gν (z1, z2, . . . )= ZFω (ZGν (z1, z2, . . . ), ZGν2 (z2, z4, . . . ), ZGν3 (z3, z6, . . . ), . . . ).

Here we let νi denote the weighting that assigns to each G-object G the weight ν(G)i.

Example 2.3. The species SET given by SET[U]= {U} for all U has cycle index sum given by

ZSET(z1, z2, . . . )= exp
( ∞∑

i=1

zi
i

)
.
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Hence, for any weighted species Gν the generating series for multisets of unlabelled G-objects is given
by

exp
( ∞∑

i=1

G̃νi(zi)
i

)
.

By Example 2.2 it follows that the generating series for cyclically ordered collections of unlabelled
G-objects is given by

∑
r�1

ϕ(r)
r

log
(

1
1− G̃νr (zr)

)
.

2.3.2 Derived structures

Let Fω be a weighted species. The derived species (F ′)ω is defined as follows. For each set U we
let ∗U denote a placeholder object not contained in U. For example, we could set ∗U :=U, as no
set is allowed to be an element of itself. By abuse of notation, we will usually drop the index and
just refer to it as the ∗-placeholder atom. We set

F ′[U]=F[U ∪ {∗U}].
The weight of an element F′ ∈F ′[U] is itsω-weight as anF-structure. Any bijection σ :U →V

may canonically be extended to a bijection
σ ′ :U ∪ {∗U} →V ∪ {∗V},

and we set
F ′[σ ]=F[σ ′].

Thus, an F ′-object with size n is an F-object with size n+ 1, since we do not count the
∗-placeholder.

Note that an F ′-symmetry over the set U corresponds to an F-symmetry over U ∪ {∗U} that
fixes the ∗-object. The cycle index sum of (F ′)ω is given by the formal derivative

Z(F ′)ω (z1, z2, . . . )= d
dz1

ZFω (z1, z2, . . . ).

Example 2.4. The species SEQ of ordered sequences has cycle index sum given by

ZSEQ = 1
1− z1

.

Objects of the derived species SEQ′ correspond to pairs of ordered sequences that are separated by
the ∗-placeholder. Hence

ZSEQ′ = 1
(1− z1)2

.

Deriving a species restricts the number of symmetries. For example, objects of the derived species
CYC′ correspond to a ∗-placeholder followed by a linearly ordered list, yielding

ZCYC′ = 1
1− z1

.

2.4 Pólya–Boltzmann distributions for composite structures
Given a weighted species Fω and a parameter y> 0 with 0< F̃ω(y)< ∞, we may consider the
corresponding Boltzmann probability measure

PF̃ω ,y(F̃)= F̃ω(y)−1y|F̃|ω(F̃), F̃ ∈ U (F).
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Likewise, given parameters y1, y2, . . . ,� 0 with
0< ZFω (y1, y2, . . . )< ∞,

we may consider the Pólya–Boltzmann distribution

PZFω ,(yj)j(F, σ )= ZFω (y1, y2, . . . )−1ω(F)
k! yσ1

1 · · · yσk
k

for
(F, σ ) ∈

⋃
k�0

Sym(F)[k].

Note that if we condition a PF̃ω ,y-distributed random variable on having a fixed size n, then the
result gets drawn from Un(F) with probability proportional to its ω-weight. In a way, this is
analogous to the fact that simply generated trees (with analytic weights) may be viewed as Galton–
Watson trees conditioned on having a fixed number of vertices, and the viewpoint is equally useful
in this context.

Lemma 2.1 implies the useful fact that the orbit of the F-object of a PZFω ,(y,y2,...)-distributed
symmetry follows a PF̃ω ,y-distribution. This provides a systematic way for sampling Boltzmann
distributed structures, as the cycle index sums for constructions on species admit explicit expres-
sions with concrete combinatorial interpretations. For composite structures in particular, the
following result is given in Bodirsky, Fusy, Kang and Vigerske [5, Proposition 25] for species
without weights, and the generalization to the weighted setting is straightforward.

Lemma 2.5. Let Fω and Gν be weighted species with G[∅]= ∅. Let y> 0 be a parameter with

F̃ω ◦ Gν(y)= ZFω (G̃ν(y), G̃ν2 (y2), G̃ν3 (y3), . . . ) ∈ ]0,∞[.
Then the following procedure terminates with an unlabelled (Fω ◦ Gν)-object that follows a
PF̃ω◦Gν ,y-distribution.

(1) Let (F, σ ) be a PZFω ,(G̃ν (y),G̃ν2 (y2),...)-distributed F-symmetry.
(2) For each cycle τ of σ let |τ | denote its length and draw independently a G-object Gτ according

to a PG̃ν|τ | ,y|τ |-distribution.
(3) Construct an F ◦ G-object by assigning for each cycle τ and each atom v of τ an identical

copy of Gτ to v.

2.5 Subexponential sequences
Subexponential sequences correspond up to tilting and rescaling to subexponential densities of
random variables with values in a lattice, and may be put into the more general context of
subexponential distributions [6, 8, 13].

Definition. Let d� 1 be an integer. A power series g(z)= ∑∞
n=0 gnzn with non-negative coeffi-

cients and radius of convergence ρ > 0 belongs to the classSd if gn = 0 whenever n is not divisible
by d, and

gn
gn+d

∼ ρd,
1
gn

∑
i+j=n

gigj ∼ 2g(ρ)< ∞ (2.2)

as n≡ 0 mod d becomes large.

We are going to make use of the following basic properties of subexponential sequences.
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Lemma 2.6 ([13, Theorems 4.8, 4.11, 4.30], [9]). Let g(z) belong to Sd with radius of conver-
gence ρ.

(1) For each ε > 0 there is a c(ε)> 0 and an n0 > 0 such that, for all n� n0 with n≡ 0 mod d,
and each k� 0,

[zn]g(z)k � c(ε)(g(ρ)+ ε)k[zn]g(z).
(2) If f (z) is a non-constant power series with non-negative coefficients that is analytic at ρ, then

f (g(z)) belongs to Sd and
[zn]f (g(z))∼ f ′(g(ρ))[zn]g(z), n→ ∞, n≡ 0 mod d.

(3) If an = h(n)n−βρ−n for some constants ρ > 0, β > 1 and a slowly varying function h, then
the series

∑
n∈dN anzn belongs to the class Sd.

The following criterion will prove to be useful as well.

Lemma 2.7 ([13, Theorem 4.9]). Let f (z) belong to S1 with radius of convergence ρ, and
g1(z), g2(z) be power series with non-negative coefficients. If

[zn]g1(z)
[zn]f (z)

→ c1 and
[zn]g2(z)
[zn]f (z)

→ c2

as n→ ∞ with c1, c2 � 0, then
[zn]g1(z)g2(z)

[zn]f (z)
→ c1g2(ρ)+ c2g1(ρ).

If additionally c1g2(ρ)+ c2g1(ρ)> 0, then g1(z)g2(z) belongs to S1.

3. Unlabelled Gibbs partitions
LetFω and Gν be weighted combinatorial species with G[∅]= ∅, so that the weighted composition

(F ◦ G)μ =Fω ◦ Gν

is well-defined. Throughout we assume [zk]F̃ω(z)> 0 for at least one k� 1 and that F̃ω ◦ Gν(z)
is not a polynomial. For each integer n� 0 with

[zn]F̃ω ◦ Gν(z)> 0,
we may sample a random composite structure

Sn = (Fn, (GQ)Q∈πn)
from the set Un(F ◦ G) with probability proportional to its μ-weight.

We are going to study the asymptotic behaviour of the remainder Rn when deleting ‘the’ largest
component from Sn. More specifically, we pick an arbitrary representative of Sn and construct
Rn as follows. We make a uniform choice of a component Q0 ∈ πn having maximal size, and let
F′
n denote the F ′-object obtained from the F-object Fn by relabelling the Q0 atom of Fn to a

∗-placeholder.
Thus

F′
n =F[γ ](Fn) ∈F ′[πn \ {Q0}]

for the bijection γ : πn → (πn \ {Q0})∪ {∗} with γ (Q0)= ∗ and γ (Q)=Q forQ 	=Q0. This yields
an unlabelled F ′ ◦ G-object

Rn := (F′
n, (GQ)Q∈πn\{Q0}) ∈ U (F ′ ◦ G).
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We let ρ denote the radius of convergence of the ordinary generating series G̃ν(z) and suppose
throughout that

ZFω (G̃ν(ρ)+ ε, G̃ν2 ((ρ + ε)2), G̃ν3 ((ρ + ε)3), . . . )< ∞ (3.1)

for some ε > 0.
For example, in the special case of multisets we have Fω = SET and each G-object receives

weight 1. It follows from the expression for ZSET in Example 2.3 that condition (3.1) is satis-
fied in this case if ρ < 1 and G̃(ρ)< ∞. A classical example where condition (3.1) is not satisfied
are multisets of positive integers, where G is given by the species SEQ�1of ordered non-empty
sequences.

Let R be a random unlabelled F ′ ◦ G-element that follows a Boltzmann distribution

P(R= R)= μ(R)ρ|R|

˜(F ′)ω ◦ Gν(ρ)
, R ∈ U (F ′ ◦ G).

Theorem 3.1. If the series G̃ν(z) belongs to the class Sd, then

dTV(Rn, R)→ 0

as n→ ∞ with n≡ 0 mod d.

The main challenge for verifying Theorem 3.1 is that we consider objects up to symmetry.
Lemma 2.5 provides a way of sampling Sn as a conditioned Boltzmann-distributed composite
structure consisting of anF-symmetry with identical G-objects dangling from each cycle. The key
idea will be that the largest G-object is likely to correspond to a fixpoint of the symmetry. A similar
congelation phenomenon was observed for random labelled composite structures sampled from
(Fω ◦ Gν)[n] with probability proportional to their weight [20, Theorem 3.1]. Our overall strategy
is similar, but treating unlabelled structures is more involved.

Theorem 3.1 is relevant for the structure of connected components in certain models of
random graphs such as uniform random unlabelled series-parallel graphs or uniform random
unlabelled outerplanar graphs. We refer the reader to the subsequent paper [19] for details.

We require the following enumerative result for the proof of our main theorem.

Lemma 3.2. Let ρ denote the radius of convergence of the series G̃ν(z). If G̃ν(z) belongs to the class
Sd, then

[zn]F̃ω ◦ Gν(z)∼ ˜(F ′)ω ◦ Gν(ρ)[zn]G̃ν(z),

as n→ ∞ with n≡ 0 mod d. Here

˜(F ′)ω ◦ Gν(ρ)=
(

d
dz1

ZFω

)
(G̃ν(ρ), G̃ν2 (ρ2), . . . ).

If G̃ν(z) is amenable to singularity analysis, then Lemma 3.2 may also be verified using analytic
methods [12]. But we make no assumptions at all about the singularities of G̃ν(z) on the circle
|z| = ρ. We only require that this series belongs to the class Sd, which is far more general.

Clearly Theorem 3.1 also implies distributional convergence of the number of components,
which has been studied in [3] for the case of weighted multisets where Fω = SET.

Corollary 3.3. Suppose that the series G̃ν(z) belongs to the class Sd. Let c(·) denote the number of
components in a composite structure. Then c(Sn) converges towards 1+ c(R) in total variation.
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If we condition Rn on having a fixed size k< n/2, then the G-object of the largest component
gets drawn with probability proportional to its weight from Un−k. And clearly, with probability
tending to 1, R has size less than n/2. Hence we may rephrase Theorem 3.1 as follows.

Corollary 3.4. Suppose that the series G̃ν(z) belongs to the class Sd. If R has size less than n, let Ŝn
denote the random unlabelled F ◦ G-object constructed by drawing a G-object Gn−|R| from Un−|R|
with probability proportional to its weight, and attaching it to R. If R� n, set Ŝn to some placeholder
value �. Then

dTV(Sn, Ŝn)→ 0,
as n→ ∞ with n≡ 0 mod d.

4. Proofs
Before starting with the proofs of our main results, we make an elementary observation.

Lemma 4.1. Let Fω and Gν be weighted species with Gν[∅]= ∅, and let (S, σ ) be a random sym-
metry that follows a PZFω◦Gν ,(ρj)j -distribution for some ρ > 0. The composite structure of S is of the
form (F, (GQ)Q∈π ) with π a partition of a finite set, F an F-structure on π , and GQ a G-structure
on Q for each Q ∈ π . As σ is an automorphism, it follows that

σ̄ : π → π ,Q �→ σ (Q)
is a well-defined permutation of the collection π of partition classes. For each i� 1, let Xi denote
the number of cycles of length i in the induced permutation σ̄ , Yi = iXi the total number of atoms
contained in cycles of length i, and Zi the sum of sizes of all G-objects corresponding to atoms of σ̄

that are contained in cycles of length i. Then

E

[∏
i�1

xXi
i yYii zZii

]
= ZFω (x1y1G̃ν(z1ρ), x2y22G̃ν2 ((z2ρ)2), x3y33G̃ν3 ((z3ρ)3), . . . )

F̃ω ◦ Gν(ρ)
.

Lemma 4.1 is a minor extension of the proof of the well-known enumerative formula

F̃ω ◦ Gν(z)= ZFω (G̃ν(z), G̃ν2 (z2), . . . )
given, for example, in [14, Theorem 3 and Section 6] or [4, Proposition 11 of Section 2.3]. Instead
of using a single formal variable z in the proof for counting the total size, all involved counting
series may be replaced by versions with additional formal variables (xi, yi, zi)i�1, that keep track
of the required fine-grained statistics. We do not aim to go through the details. Roughly speaking,
the idea behind it is that symmetries of composite F ◦ G-structures correspond, up to a certain
relabelling and cycle composition process, to an F-symmetry, where each cycle τ with length |τ |
gets endowed with |τ | identical copies of a G-symmetry. Thus, in the sum

ZFω (x1y1G̃ν(z1z), x2y22G̃ν2 ((z2z)2), x3y33G̃ν3 ((z3z)3), . . . ),
the variable z keeps track of the total size, the xi of the number of cycles of length i in the symmetry
and consequently the yi of the total mass of these cycles. The powers (ziz)i are due to the fact that
each G-object assigned to a cycle with length i gets counted i times due to the identical copies
corresponding to each atom of the cycle.

Proof of Lemma 3.2. Throughout, we let n denote an integer that is divisible by d. We assumed
that Fω and Gν are weighted species such that the ordinary generating function G̃ν(z) belongs to
Sd. We further assumed by inequality (3.1) that
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ZFω (G̃ν(ρ)+ ε, G̃ν2 ((ρ + ε)2), G̃ν3 ((ρ + ε)3), . . . )< ∞ (4.1)

for some ε > 0, with ρ denoting the radius of convergence of the series G̃ν(z).
We start by constructing a PF̃ω◦Gν ,ρ-distributed composite structure according to Lemma 2.5.

Let (F, σ ) follow a PZFω ,(G̃ν (ρ),G̃ν2 (ρ2),...)-distribution. For each cycle τ of σ , let |τ | denote its length
and draw a G-object Gτ according to a PG̃ν|τ | ,ρ|τ |-distribution. We construct the F ◦ G-object S by
assigning, for each cycle τ and each atom v of τ , an identical copy of Gτ to v. Thus S corresponds
to (F, (Gv)v).

Let f denote the number of fixpoints of the permutation σ , and G1, . . . Gf the corresponding
G-structures. We set gi = |Gi| for all i. LetH denote the structure obtained from S by deleting all G-
objects that correspond to fixpoints of σ , and let h denote the total size of its remaining G-objects.
Thus

|S| =
f∑

i=1
gi + h. (4.2)

The (gi)i are independent, but f and h may very well depend on each other. By Lemma 4.1, their
joint probability generating function is given by

E[y f wh]= ZFω (yG̃ν(ρ), G̃ν2 (w2ρ2), G̃ν3 (w3ρ3), . . . )

F̃ω ◦ Gν(ρ)
. (4.3)

Hence the assumption (4.1) states precisely that the vector ( f , h) has finite exponential moments.
We are going to show that

P(|S| = n)∼E[ f ]P(g = n), (4.4)

where g denotes the size of a PG̃ν ,ρ-distributed random G-object. Since equation (4.3) implies

E[ f ]= (d/dz1)ZFω (G̃ν(ρ), G̃ν2 (ρ2), G̃ν3 (ρ3), . . . )G̃ν(ρ)

F̃ω ◦ Gν(ρ)
,

it is clear that equation (4.4) is equivalent to

[zn]F̃ω ◦ Gν(z)∼ ˜(F ′)ω ◦ Gν(ρ)[zn]G̃ν(z), n→ ∞, n≡ 0 mod d.

We have thus successfully reduced the task of asymptotically determining the coefficients of
F̃ω ◦ Gν(z) to the probabilistic task of verifying (4.4), and we may apply available results for
subexponential probability distributions. Equation (4.2) implies that

P(|S| = n)= P

( f∑
i=1

gi + h= n
)

=
∑
k�0

P( f = k)P
( k∑

i=1
gi + h= n

∣∣∣ f = k
)
. (4.5)

Let g denote a random variable that is distributed like the size of a PG̃ν ,y-distributed random
G-object. Given f = k, the (gi)1�i�k are independent and identically distributed copies of g.
Lemma 2.6 implies that, for each fixed k,

P

( k∑
i=1

gi = n
∣∣∣ f = k

)
= P

( k∑
i=1

gi = n
)

∼ kP(g = n).
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As the vector ( f , h) has finite exponential moments, it also holds that the conditioned version
(h | f = k) has finite exponential moments. It follows from Lemma 2.7 that

P

( k∑
i=1

gi + h= n
∣∣∣ f = k

)
∼ kP(g = n)

and hence

P

( k∑
i=1

gi + h= n, f = k
)

∼ P( f = k)kP(g = n).

Consequently, if we can find a summable sequence (Ck)k�0 such that

P

( k∑
i=1

gi + h= n, f = k
)
� CkP(g = n), (4.6)

for all k, then it follows by dominated convergence that

P(|S| = n)=
∑
k�0

P( f = k)P
( k∑

i=1
gi + h= n

∣∣∣ f = k
)

∼E[ f ]P(g = n).

Thus, in order to show (4.4) it remains to establish inequality (4.6). By Lemma 2.6 for each ε > 0
there is an integer x0 = x0(ε)> 0 and a constant c(ε)> 0 such that, for all integers x� x0 and each
k� 0, it holds that

P

( k∑
i=1

gi = x
)
� c(ε)(1+ ε)kP(g = x). (4.7)

Clearly we have

P

( k∑
i=1

gi + h= n, f = k
)

= P

( k∑
i=1

gi + h= n, h> n− x0, f = k
)

+ P

( k∑
i=1

gi + h= n, h� n− x0, f = k
)
. (4.8)

Since h has finite exponential moments, there are constants C, c> 0 such that, for all n,

P

( k∑
i=1

gi + h= n, h> n− x0, f = k
)
� P(h> n− x0)� C exp (−cn).

We know that g is heavy-tailed because it belongs to Sd. Hence it follows that

P

( k∑
i=1

gi + h= n, h> n− x0, f = k
)

= o(P(g = n)) (4.9)

uniformly for all k� 0 as n becomes large. As for the other summand in (4.8), it holds that

P

( k∑
i=1

gi + h= n, h� n− x0, f = k
)

=
n−x0∑
�=0

P(h= �, f = k)P
( k∑

i=1
gi = n− �

)
.
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Since n− k� x0, it follows from inequality (4.7) that, for all ε > 0,
n−x0∑
�=0

P(h= �, f = k)P
( k∑

i=1
gi = n− �

)
� c(ε)

n∑
�=0

P(h= �, f = k)(1+ ε)kP(g = n− �). (4.10)

As the vector ( f , h) has finite exponential moments, there is a δ > 0 such that

E[(1+ δ) f (1+ δ)w]< ∞. (4.11)
Since ε > 0 was arbitrary, we may choose it small enough such that 0< ε < δ. Thus

1+ ε

1+ δ
< 1

and

P

( k∑
i=1

gi + h= n, h� n− x0, f = k
)

� c(ε)
(
1+ ε

1+ δ

)k n∑
�=0

P(h= �, f = k)(1+ δ)kP(g = n− �)

� c(ε)
(
1+ ε

1+ δ

)k n∑
�=0

p�P(g = n− �), (4.12)

with
p� =

∑
k�0

P(h= �, f = k)(1+ δ)k,

satisfying ∑
��0

p�(1+ δ)� < ∞

by inequality (4.11). Hence we may apply Lemma 2.7 to obtain
n∑

�=0
p�P(g = n− �)∼ P(g = n).

So equation (4.9) and inequality (4.12) imply that, for all k� 0,

P

( k∑
i=1

gi + h= n, f = k
)
� CkP(g = n)

for a summable sequence (Ck)k�0. This verifies inequality (4.6) and hence (4.4) follows by
dominated convergence.

Proof of Theorem 3.1. We use the same notation as in the proof of Lemma 3.2, that is, we let S
denote a random PF̃ω◦Gν ,ρ-distributed composite structure assembled according to Lemma 2.5
as follows. We sample an F-symmetry (F, σ ) following a PZFω ,(G̃ν (ρ),G̃ν2 (ρ2),...)-distribution and
let f denote the number of fixpoints of σ . We let (Gi)i�1 denote an independent family of PG̃ν ,ρ-
distributed G-objects, of which we match the first f to the fixpoints of σ in any canonical order.
For example, wemay order the fixpoints according to their labels in {1, . . . , |F|}, but any canonical
order will do by exchangeability of the Gi. Likewise, for each cycle τ of σ with length |τ |� 2 we
draw a G-objectGτ according to a PG̃ν|τ | ,ρ|τ |-distribution, and assign to each atom of τ an identical
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copy of Gτ . We let H denote the structure obtained from (F, σ ) by only attaching the G-objects to
atoms of cycles with length at least 2. Then S is fully described by the vector

(H, G1, . . . , Gf ).

It holds that

|S| =
f∑

i=1
gi + h,

where h denotes the number of atoms of H and gi = |Gi| for all i. As discussed in Section 2.4, the
result of conditioning a Boltzmann-distributed object on having a fixed size gets sampled with
probability proportional to its weight among all objects of this size. Hence

Sn
d= (S | |S| = n).

Similarly, the P ˜(F ′)ω◦Gν ,ρ-distributed F ′ ◦ G-object Rmay, by virtue of Lemma 2.5, be sampled
as follows. We draw an F-symmetry (F′, σ ) following a PZ(F ′)ω ,(G̃ν (ρ),G̃ν2 (ρ2),...)-distribution and
let f ′ denote the number of fixpoints of σ ′. Note that σ is a permutation of the non-∗-atoms of F,
hence we do not count the place-holder atom. We let (Gi)i�1 denote a list of independent copies
of a PG̃ν ,ρ-distributed G-object, and match the first f ′ to the fixpoints of σ ′ in a canonical way. For
each cycle τ of σ ′ with length |τ |� 2 we draw a G-object G′

τ according to a PG̃ν|τ | ,ρ|τ |-distribution,
and assign to each atom of τ an identical copy of Gτ . We let H′ denote the pruned structure where
only atoms of non-fixpoints of σ ′ receive a G-object. Thus R is fully determined by the vector

(H′, G1, . . . , G f ′),

and we set gi = |Gi| for all i and let h′ denote the number of atoms inH′. If R has size less than n, we
let Ŝn denote the result of assigning to the ∗-placeholder atom a random unlabelled G-structure
G∗ sampled from Un−|R|(G) with probability proportional to its weight. If R� n, we let Ŝn assume
some placeholder value Ŝn = �. We are going to show that

dTV(Sn, Ŝn)→ 0, n→ ∞, n≡ 0 mod d. (4.13)

If R< n/2, then G∗ is the largest G-object of Ŝn. Since R is almost surely finite, this event takes
place with probability tending to 1 as n becomes large. Hence (4.13) implies that

dTV(Rn, R)→ 0.

Thus verifying (4.13) is sufficient to conclude the proof.
If we interpret F′ as anF-object F′∗ (rather than anF ′-object), then the permutation σ ′ extends

to anF-automorphism σ ′∗ of F′∗ such that the ∗-vertex is a fixpoint. The distributions of (F, σ ) and
(F′∗, σ ′∗) differ in the fact that σ ′ always has at least one fixpoint, and that the probability to assume
a fixed size is different. However, given integersm, k� 1, it holds that up to relabelling

((F, σ ) | f = k, |F| =m) d= ((F′∗, σ ′∗) | f ′ = k− 1, |F′| =m− 1). (4.14)

This may be verified as follows. The left-hand side gets drawn with probability proportional to
its weight from the subset Ak ⊂ Sym(F)[m] of all symmetries with k� 1 fixpoints. Likewise,
the right-hand side gets drawn with probability proportional to its weight from the subset
Bk ⊂ Sym(F ′)[m− 1] of symmetries with k fixpoints in total (counting the ∗-atom). There is a
weight-preserving bijection between Sym(F ′)[m− 1] and the symmetries in Sym(F)[m] where
the atom m is a fixpoint. It follows that there is a weight-preserving 1 to m correspondence
between Sym(F ′)[m− 1] and the set of symmetries in Sym(F)[m] with a distinguished fixpoint.
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Now, for each symmetry in Ak, there are precisely k ways to distinguish a fixpoint, hence there is
a weight-preserving 1 to km relation between Ak and Bk. Thus (4.14) holds.

Let x1, . . . , xk � 1 and r� 0 be given with

x1 + · · · + xk + r = n.

It follows from (4.14) and the construction of H and H′ that

(H | f = k, h= r) d= (H′ | f ′ = k− 1, h′ = r).

If we condition the left-hand side additionally on gi = xi for all 1� i� k, then the distribution of
H does not change, and Gi gets drawn from G̃[xi] with probability proportional to its ν-weight.
Likewise, if we condition the right-hand side additionally on gi = xi for all 1� i� k− 1, then
for each i it holds that Gi gets drawn from G̃[xi] with probability proportional to its weight, and
G∗ gets drawn with probability proportional to its weight among all unlabelled G-objects with
n− r − x1 − · · · − xk−1 = xk atoms. Thus

(S | f = k, h= r, g1 = x1, . . . , gk = xk)
d= (Ŝn | f ′ = k− 1, h′ = r, g1 = x1, . . . , gk−1 = xk−1).

(4.15)

We let g denote a random variable that is distributed like the size of a random G-object with a
PG̃ν ,ρ distribution. Since G̃ν(z) belongs to Sd, it holds that

P(g = n+ d)∼ P(g = n), n→ ∞.

This implies that there is a sequence tn of non-negative integers such that tn → ∞ and

lim
n→∞ sup

0�y�tn
y≡0 mod d

|P(g = n+ y)/P(g = n)− 1| = 0. (4.16)

Without loss of generality we may assume tn < n/2 for all n. For any sequence y= (y1, . . . , yk−1)
of positive integers, we set

D(y) := y1 + · · · , yk−1.

For each integerm withm>D(y), we also set
σm(y) := {(y1, . . . , yj−1,m−D(y), yj, . . . , yk) | 1� j� k}.

Finally, we set

Mn := {(k, r, y) | k� 1, r� 0, y ∈Nk−1, r +D(y)� tn}.
We will show that as n becomes large, it holds uniformly for all (k, r, y) ∈Mn that

P( f = k, h= r, (g1, . . . , gk) ∈ σn−r(y) | g1 + · · · + gf + h= n)

∼ P( f ′ = k− 1, h′ = r, (g1, . . . , gk−1)= y). (4.17)

For D(y)+ r� tn < n/2, the (g1, . . . , gk) ∈ σn(y) corresponds to k distinct outcomes, depending
on the unique location for the maximum of the gi. Thus the left-hand side in (4.17) divided by the
right-hand side equals

kP( f = k, h= r)P(g = n−D(y)− r)
P( f ′ = k− 1, h′ = r)P(g1 + · · · + gf + h= n)

.

Note that

kP( f = k, h= r)
P( f ′ = k− 1, h′ = r)

= G̃ν(ρ) ˜(F ′)ω ◦ Gν(ρ)

F̃ω ◦ Gν(ρ)
=E[ f ].

https://doi.org/10.1017/S0963548319000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000336


308 B. Stufler

By Lemma 3.2, it holds that

P(g1 + · · · + gf + h= n)∼E[ f ]P(g = n).

Equation (4.16) and D(y)+ r� tn yield that

P(g = n−D(y)− r)∼ P(g = n)

uniformly for (k, r, y) ∈Mn. This verifies the asymptotic equality in (4.17).
As tn → ∞, it clearly holds that

( f ′ + 1, r′, (g1, . . . , gf ′)) ∈Mn

with probability tending to 1 as n becomes large. Hence it follows from (4.17) that

P(( f , h, (g1, . . . , gk)) ∈ {{(k, r)} × σn−r(y) | (k, r, y) ∈Mn})→ 1

as n becomes large. Thus, we have that uniformly for all sets E of n-sized unlabelled F ◦ G-objects
P(Sn ∈ E)= P(S ∈ E | g1 + · · · + gf + h= n)

= o(1)+
∑

(k,r,y)∈Mn

P(S ∈ E , ( f , h)= (k, r), (g1, . . . , gk) ∈ σn(y))
P(g1 + · · · + gf + h= n)

.

The summand for (k, r, y) may be expressed by the product

P(S ∈ E | ( f , h)= (k, r), (g1, . . . , gk) ∈ σn(y))
P(( f , h)= (k, r), (g1, . . . , gk) ∈ σn(y) | g1 + · · · + gf + h= n).

Equation (4.15) yields that the first factor is equal to

P(Ŝn ∈ E | f ′ = k− 1, h′ = r, (g1, . . . , gk−1)= y).
By equation (4.17), the second factor is asymptotically equivalent to

P( f ′ = k− 1, h′ = r, (g1, . . . , gk−1)= y)
uniformly for all (k, r, y) ∈Mn as n becomes large. Thus

P(Sn ∈ E)= o(1)+
∑

(k,r,y)∈Mn

P(Ŝn ∈ E , ( f ′, h′, (gi)i)= (k− 1, r, y))= o(1)+ P(Ŝn ∈ E).

This completes the proof.
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