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Abstract: The ultrafast carrier transport in mid-infrared QCLs has so far constituted a seemingly insurmountable obstacle for the
formation of short pulses. Here, we demonstrate transformation-limited picosecond pulses generated by 8 µm wavelength QCLs at
room-temperature.

The discovery of ultrashort light pulses has triggered numerous breakthroughs in science and technology, including
frequency combs1, high-speed optical telecommunication2 and refractive surgery in ophthalmology. Nowadays, optical
pulses are routinely generated in mode-locked lasers operating in the visible or near-infrared range3,4. Currently, large
efforts are aimed at bringing ultrafast laser science in the mid-infrared (MIR) region to a similarly high degree of
maturity5. Methods for the generation of pulses in the molecular fingerprint region beyond 5µm wavelength have so far
relied on non-linear downconversion of near-infrared pulses6, often limited to sub-mW power levels and tabletop-sized
optical setups.

Quantum cascade lasers (QCL) have matured to the dominant mid-infrared laser source and have recently seen a
rapid surge in attention for frequency comb generation9,10. Microchip-sized and electrically pumped, they are capable of
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Figure 1 – Mode-locking of mid-infrared quantum cascade lasers. a: Characterization of coherence and phases of the mode-locked QCL using
Shifted Wave Interference Fourier Transform Spectroscopy (SWIFTS) 7. While the SWIFTS spectrum shows that the entire spectrum is phase-
locked 8, the intermodal differen phases are synchronized almost perfectly in phase. b: SWIFTS allows to reconstruct the waveform emitted by the
QCL, revealing a train of mode-locked pulses. The individual pulses are 6.5 ps short, which is exactly equal to the transformation limit of the spectrum
shown in a. c Numerical simulation of the mode-locked QCL using a single Master equation derived from the Maxwell-Bloch equations. Both the
spectral shape and the pulse width are in excellent agreement with the experimental results. d: The interferometric autocorrelation (IAC) of the pulses
close to the threshold of the QCL shows a characteristic narrow peak at zero delay and peak-to-background ratio of 8:1. This is widely considered
as the smoking gun of mode-locked pulses. Moreover, the measured autocorrelation is in excellent agreement with the SWIFTS reconstruction (red
dots), which corroborates both the proof for mode-locking and the pulse width. e: IAC at higher current. f IAC at rollover, still showing the required
8:1 ratio. At a delay equal to the cavity roundtrip frequency, a second burst appears, which is caused by interference of subsequently emitted pulses.
The inset shows the interferometric fringes of the IAC around zero delay.
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producing Watt-level average power11,12. Tailoring the emission wavelength via quantum engineering allows to unlock
the entire mid-infrared region with a single technology9. Hence, harnessing high-performance QCL technology for
the generation of mid-infrared pulses represents a long-sought milestone in ultrafast laser science. However, the sub-
picosecond carrier transport in QCL active regions has so far constituted a seemingly insurmountable obstacle for the
formation of short light pulses13,14,15.
In this work, we report on mode-locking of high-performance mid-infrared QCLs. The light pulses are generated by
actively modulating the intracavity loss16 in a QCL, whose geometry (Fig. 1a) and quantum design were engineered for
maximal modulation depth17. Both an interferometric radio-frequency technique7 (Fig. 1a,b) and numerical simulations
(Fig. 1c) confirm that the QCL emits a train of 6.5 ps short and transformation-limited pulses around 8 µm - a spectral
region so far only explored by downconverted pulses and often limited to sub-mW average power18. Furthermore, a well-
established technique called ’interferometric autocorrelation’ (IAC) (Fig. 1d,e,f) is employed to corroborate both the
proof for mode-locking and the pulse width. Mode-locked operation of the QCL is observed over its entire lasing range
from threshold to rollover, with peak power in excess of 400 mW and pulse energies up to 5.5 pJ. Further experiments
unveil stunning similarities of mode-locking in QCLs to synchronization of coupled oscillators19 and confirm the existence
of multiple synchronization states, both of which can be excited by modulation at their synchronization frequency.
These results prove that QCL technology constitutes a highly promising platform for ultrafast laser science in the mid-
infrared region, combining compactness, direct electrical pumping and widely tailorable wavelength. The availability
of a semiconductor laser based source for ultrashort optical pulses paves the way towards monolithic supercontinuum
generation and potentially octave spanning mid-infrared frequency combs.
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