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Scientific modelling – a caveat

The bigger question wrt scientific modelling is that of what is an
acceptance “truth” or “fact”.

Often issues are multi-layered and appear to be an ambiguous, even
inconsistent patchwork rather than a consistently woven carpet.

We have in our minds a model, a narrative – Hertz calls it an
“image” – of the world. This model is rather stable in many areas,
and weakly determined and sketchy in others. It is based on our
own experience, on deductive reasoning relative to believes in
grounding axioms, and on acceptance of “ecclesial authority”.

Usually it is easy to corroborate or falsify certain junks of this
model, in particular, if phenomena are empirically reproducible:
think of “switching on the lights”.



Scientific modelling – a caveat cntd.

But there exist other situations when certain phenomena are not
reproducible at will; or lack what we consider “explanation” (telos)
or appear to be confusing and contradictory.

Think of ball lighting, or certain astronomical events – such as
meteorites or gamma-ray bursts – which occur sporadically and
cannot be (re)produced, which took some time to enter science
proper.

When it comes to claims of ESP or UFO/UAP/AAP the situation
gets blended with personal emotions, anxieties and even evangelical
aspirations.

This is also true for “interpretations” of the quantum mechanical
formalism. In particular, beware of the quantum “hocus pocus”!

And keep in mind that all theories are temporal, and science is a
historic process far from “completion”.



Quantum formalism 101 as a theory of vectors

I pure states and elementary binary observables/propositions are
(unit) vectors or the one-dimensional projection operators
spanned by them;

I context or maximal knowledge of a physical system are
orthonormal bases representing sets of elementary binary
observables/propositions wihich are
I mutually exclusive aka orthogonal (need scalar/inner product

for orthogonality, thus Hilbert space) as well as
I complete ie they span the entire vector space;

I state evolution is a generalized (unitary) permutation/rotation
of some orthonormal basis aka “frame” into another one;

I probability is defined in terms of generalized projections
(Gleason’s “derivation of the Born rule): take a state vector
|ψ〉, take some elementary observable |φ〉, then the probability
of the occurrence (frequentist)/expectation (Bayesian) of
observable φ given ψ is |〈φ | ψ〉|2, where 〈· | ·〉 stands for the
scalar/inner product.
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Coherent superposition aka linear combination of states

I Representation of state vectors in terms of different bases
results in linear combination of basis vectors, eg
|ψ〉 = |b1〉+ |b2〉+ · · · |bn〉;

I Claims of quantum parallelism |ψ〉 “co-represents” n mutually
exclusive basis states |b1〉, |b2〉, . . . |bn〉;

I Wrt the basis/frame in which |ψ〉 is an element, the quantized
system is value definite: any measurement of |ψ〉 yields |ψ〉
with certainty;

I Wrt the continuum of other bases/frames in which |ψ〉 is not
an element, the quantized system is value indefinite: any
measurement of |ψ〉 yields the occurence of |bi 〉 given |ψ〉 with
the respective frequency/expectation |〈bi | ψ〉|2; and because
of Pythagoras & exclusivity & completeness

∑
i |〈bi | ψ〉|2 = 1.
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Entanglement as indecomposable superpositions of
multi-partite states

I Multi-particle configurationssuch as as the k-particle
configuration can be
I either decomposable ie representable in product forms
|Ψ〉 = |ψ1 · · ·ψk〉;

I or indecomposable aka entangled/German “verschränkt” ie not
representable in product forms such;

I Entangled states lack individual value definiteness of its
constituent (particle) parts;

I Entangled states show value definiteness wrt relational
properties, such as, for instance in one (the singlet) of the Bell
basis states |Ψ−〉 = 1√

2
(|+1 −2〉 − | −1 +2〉) “one particle has

opposite spin/polarization wrt the other particle in all spatial
directions”; any constituent particle has a 50:50 chance to be
in either state |+〉 or |−〉.
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Brains are quantized

Just like “classical” computers, (human) brains are ultimately – that
is, on the “deepest level” (cf Anderson) of physical description –
quantized physical systems.

Whether quantization – and, in particular, coherent superpositions
and entanglement – play an important part in cognition is a
question of huge importance.

It can be either seen as deficiancy (lack of value definiteness) or as
an opportunity.



Music as a quantum cognitive process

Quantum music (cf Putz & Svozil
https://doi.org/10.1007/s00500-015-1835-x ) may present
more freedom due to multiplicity of expression; in particular,

I superposition:
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Thank you for your attention!

˜ ˜ ˜
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