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Abstract: This paper presents a robust registration algorithm for wavefront reconstruction
from multiple partial measurements. Wavefronts exceeding the dynamic range or size of
the Shack-Hartmann sensor (SHS) can be measured as a set of segments. The wavefront is
reconstructed by parallel registration of these wavefront segments, enabling the compensation
of sensor misalignment as well as of phase differences. For registration, a global mismatch
metric is minimized by rigid body transformations and propagation of the wavefront segments.
Apart from the description of the algorithm, simulation-based evaluation and comparison to the
iterative closest point (ICP) algorithm is performed. It is shown that in the case of a noisy data
set, the parallel approach enables reconstruction errors which are a factor 10 smaller than the
result obtained with the ICP algorithm.

© 2021 Optical Society of America

1. Introduction

Shack-Hartmann sensors (SHS) are frequently used for evaluation of optical systems. The SHS
enables to directly assess the actual entity of interest, i.e. the wavefront, instead of evaluating
the geometrical properties of a lens or other optical device. The measurement with this sensor
provides several advantages like insensitivity to vibrations, reference free measurement, large
dynamic range and compactness [1,2]. Hence, this sensor is suitable for many optical applications
and widely used, e.g., in ophthalmology [3], adaptive optics [4, 5], optical system alignment [6]
and production of optical systems and components [2].
Nevertheless, optics featuring large wavefronts or wavefronts with huge aberrations can be a
challenge for the SHS, as the wavefront might exceed the dynamic range and the aperture of
the sensor. Additional supporting optics, e.g. null-optics, can transform the wavefront into a
measurable wavefront, but cause additional errors in the measurement and might depend on the
specific type of aberration [7, 8]. In a recently proposed concept, large or strongly aberrated
wavefronts are directly measured with the SHS at different positions and alignments, which
leads to a set of measurements including the information of the entire wavefront [9–11]. With
the sensor position and alignment of each measurement the wavefront can be reconstructed by
transforming each measured part of the wavefront, i.e. a wavefront segment into the global frame
(FG). However, due to errors like sensor misalignment or phase difference between wavefront
segments, a simple transformation into FG entails large reconstruction errors.
To enable an accurate measurement of the wavefront an algorithm that considers these errors
is required. In particular, stitching algorithms turned out to be a good choice for this issue.
These algorithms utilize the fact that overlapping measurements have the same information in
the overlapping region, which enables wavefront segments to get correctly aligned. There are
different concepts for registration of SHS measurements developed. In [12, 13] least squares
method and active alignment is used to register the wavefront segments. Furthermore, in [14] a
wavefront reconstruction based on the popular iterative closest point algorithm (ICP) is proposed.
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All these algorithms implement sequential registration concepts [15], where the wavefront
segments are consecutively added to the registered wavefront by individual registration processes
leading to accumulation of registration errors that might limit evaluation of optical devices,
especially if the aberrations of the nominal wavefront are small.

The contribution of this paper is a parallel registration algorithm that reduces accumulation of
registration errors and which is therefore more robust to noise than the sequential approach. In
particular, all wavefront segments are simultaneously rigidly transformed and propagated to
compensate for any rigid misalignment and phase difference between the measurements.
Section 2 introduces the algorithm and discusses its properties, while Section 3 presents a
simulative analysis of the algorithm and compares its performance with sequential registration
based on the ICP algorithm. Section 4 concludes the paper.

2. Algorithm Description

To capture a wavefront beyond the dynamic range or aperture size of the SHS, the sensor can be
moved over the wavefront, taking several measurements [9]. With each measurement the part
of the wavefront covered by the sensor aperture is measured, where the sensor aperture with a
specific position in space is called a subaperture. In the scope of this study a measured wavefront
part is called a wavefront segment. A scan trajectory deviating from the wavefront of a specific
phase leads to measurements at different phases as illustrated in Fig. 1. Furthermore, errors in
the positioning system cause the sensor to deviate from its nominal position (see Fig. 1). Due to
these errors, reconstruction of the entire wavefront based on the nominal positioning data leads
to wavefront errors. In particular, the segments reflect sensor misalignment and phase at which
they are measured and as a result mismatch between overlapping segments is observed.
To compensate for misalignment and phase difference the wavefront segments are rigid body
transformed and propagated as illustrated in Fig. 2. A rigid body transformation enables the
translation and rotation of the wavefront in all six spatial degrees of freedom by the use of six
parameters - three for translation and rotation, respectively - without altering the shape of the
wavefront. The segments are transformed until the overlap mismatch is minimized.
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Fig. 1. Wavefront measured at different subapertures. Typically, the sensor is misaligned
and the scan trajectory traverses a certain phase interval resulting in measurements of
different wavefronts.
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Fig. 2. Mismatch between wavefront segments due to sensor misalignment and phase
difference. With suitable alignment and positioning (rigid body transformation) and
propagation, the segments can be registered.

2.1. Reconstruction of wavefront segments

A SHS measures the gradients of the incoming wavefront at spots arranged in a grid. There
exist several algorithms to reconstruct the wavefront from its gradients, which can be divided
into modal and zonal reconstruction. In the modal case the wavefront is described by a series
of functions [16], while in the zonal case local assumptions for the wavefront are made [17].
Typically, the latter one better preserves details of the wavefront [18] and, as shape is crucial for
an accurate registration result, this type of reconstruction is preferred in this paper. After zonal
reconstruction the wavefront shape is in the form of a point cloud, i.e. a set of three-dimensional
points that are contained in the wavefront, which is explained by the discrete measurement of a
SHS.
In particular, a spline based approach is used to guarantee an accurate reconstruction [19].
Before registration each measurement is reconstructed, resulting in a set of point clouds, each
corresponding to a wavefront segment.

2.2. Registration of two wavefront segments

Ignoring sensor misalignment and taking only the nominal sensor positioning data into account,
the point cloud of wavefront segment i in FG is

%08 = {x081, .., x08=}. (1)

Furthermore, let be %08 rigidly transformed and propagated given by the point cloud

%8 (a8) = �88 (�B8 (%08)) = {x81 (a8), .., x8= (a8)}, (2)

where �B8 (%) and �88 (%) denote transformations of a point cloud % in terms of parameters
a8 = {B8 ,88} = {B8 , ) 8 , k8}. �B8 in particular denotes the wavefront propagation along a distance
B8 ∈ R and �88 a rigid body transformation with parameters k8 , ) 8 ∈ R3 defining translation and
rotation about the center of the respective nominal subaperture (see Fig. 3).
With parameters 8∗8 reflecting the actual misalignment %8 (0,8∗8 ) constitutes the segment with
actual position.
Let FSi be the coordinate system of subaperture i with nominal position, whose x-y plane
lies in the plane of the subaperture. Transformation from FSi to FG is given by a rigid body
transformation in terms of 78 , v8 ∈ R3, denoting the nominal sensor alignment and position. In
Fig. 3 the defined coordinate systems and point clouds are illustrated.
As a requirement for registration a metric has to be defined for the mismatch between

wavefronts. For this, point clouds %1 (a1) and %2 (a2) of overlapping wavefront segments 1 and
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Fig. 3. Point cloud %08 defines the measured wavefront segment i at the nominal
sensor position. %8 (a8) = %8 (B8 ,88) is %08 propagated by a distance B8 and rigid body
transformed by88 = {)8 , k8}. %8 (0,8∗8 ) denotes the actual position of segment i. After
zonal reconstruction %08 is represented in FSi, i.e. %808 .

2 are considered. As for the determination of the mismatch between the point clouds only the
overlap region is relevant, the point cloud

%21 (a2) = {x211 (a2), .., x21<21 (a2)} with
%21 (a2) ⊆ %2 (a2)

(3)

is considered, which is the part of %2 (a2) that belongs to the overlap with %1 (a1). A metric for
the mismatch of the point clouds is given by

"̃12 (G12) = Δ(%1 (a1), %21 (a2))

=
<21∑
9=1
|3(%1 (a1), x21 9 (a2)) − x21 9 (a2) |2, (4)

where 3(%, x) is the orthogonal projection of x to the wavefront segment of point cloud %
determined by interpolation. By varying all parameters, i.e. G12 = (B1,81, B2,82), both point
clouds are propagating, rotating and translating. If the point clouds match for parameters
G∗12 = (B∗1,8∗1, B∗2,8∗2) then "̃12 (G∗12) has its global minimum, i.e. min{"̃12}. With squaring
the distance between a point and its projection, minimization of the metric registers the point
clouds in the least squares sense.

To get only one point cloud propagated, both are backpropagated by B1 leading to the definition

"12 (B1,81, B2,82) = "̃12 (0,81, B2 − B1,82)
= Δ(%1 (0,81), %21 (B2 − B1,82))

(5)

Although,
"12 (B1,81, B2,82) ≠ "̃12 (B1,81, B2,82), (6)
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"12 still can be used for registration of %1 (a1) and %2 (a2). This is because "12 gets minimized
for the same parameters as "̃12, i.e. if and only if

"̃12 (G∗12) = min{"̃12} then (7a)
"12 (G∗12) = min{"12} (7b)

Proof

1. As two matching wavefronts still match if both are propagated equally by [ ∈ R, it is
inferred that

min{"̃12} = "̃12 (B∗1 + [,8∗1, B∗2 + [,8∗2). (8)

Setting [ = −B∗1 leads to

min{"̃12} = "̃12 (0,8∗1, B∗2 − B∗1,8∗2) = "12 (G∗12). (9)

2. Two wavefronts that do not match can not be registered by any uniform propagation [ ∈ R.
Hence, if G′12 = (B′1,8′1, B′2,8′2) with min{"̃12} < "̃12 (G′12) then

min{"̃12} < "̃12 (B′1 + [,8′1, B′2 + [,8′2). (10)

With [ = −B′1 and Eq. 9 the following is deduced

"12 (G∗12) < "̃12 (0,8′1, B′2 − B′1,8′2) = "12 (G′12). � (11)

Applying the reverse rigid body transform �−1
81 to both point clouds and considering Eq. 2

gives
�−1
81 (%1 (0,81)) = %1 (0, 0) = %01 (12)

and the definition

�−1
81 (%21 (B2 − B1,82)) = %̃21 (B1,81, B2,82) = %̃21 (G12). (13)

With Eq. 5, 12 and 13 and the fact that Δ(·, ·) is invariant under rigid body transformations of the
point clouds the following equation can be written

"12 (G12) = Δ(%01, %̃21 (G12)). (14)

Registration with Eq. 14 instead of Eq. 4 provides two advantages. First, one point cloud, i.e.
%01 is independent of the parameters, providing the benefit that a reduced number of points need
to be transformed, which decreases computation time. Second, interpolation of %01 has to be
carried out only once and not after every change of G, which also decreases computation time.
To outline these advantages, the considered point clouds and their dependence on parameters are
illustrated in Fig. 4.

Although,"12 is invariant under the coordinate system inwhich the point clouds are represented,
it is proposed to compute the metric in FS1, i.e.

"12 (G12) = Δ(%1
01, %̃

1
21 (G12)), (15)

where the upper index refers to the coordinate system in which an object is represented. One
reason for this is that with reconstruction of a wavefront segment i %8

08 is determined. Hence,
%1

01 is right after wavefront reconstruction available and no additional transformation of the
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Fig. 4. Point clouds of wavefront segment 1 and 2 with dependence on parameters
G12 = (B1,81, B2,82). In Eq. 4 %1 (B1,81) and %21 (B2,82) are used for registration
and in Eq. 14 %01 and %̃21 (G12). For subpixel registration point clouds of segment 1
are interpolated.

point cloud is necessary. To satisfy Eq. 2 and 13 %2
02 is propagated by (B2 − B1) and rigid body

transformed by 82 and 81 leading to

%̃2
2 (G12) = �−1

81 (�82 (�B2−B1 (%2
02))). (16)

Transformation from FS2 into FS1 is performed by a rigid body transformation in terms of the
nominal positions of the subapertures 71, v1,72, v2, i.e.

%̃1
2 (G12) = )2→1

71 ,v1 ,72 ,v2
(%̃2

2 (G12)). (17)

Considering only the points belonging to the overlap with %1
01 %̃

1
21 (G12) ∈ %̃1

2 (G12) is determined.
Another advantage of calculating the metric in FS1 is that orthogonal projection of points of
%̃1

21 onto %
1
01 can be approximated by a projection along the z-axis. This is explained, due to the

limited dynamic range of the SHS, where the maximal measurable tilt of an incoming wavefront
is less than 15◦ [20]. Hence, in FS1 the maximum angle between segment 1 and the x-y plane
of the system is smaller than 15◦. Moreover, as translational and rotational misalignment of
positioning systems is usually at a scale of a few `< and 10 − 100 `A03, the local change of
orientation of a wavefront is much smaller than 15◦. Therefore, overlapping wavefront segments
can be locally approximated by parallel planes. The stronger these parallel planes are tilted in
FS1 the stronger the projection along the z-axis deviates from the orthogonal projection with the
phase difference between the segments. However, even in case of maximal tilted planes (15◦)
and a large phase difference where propagation of 400 `< is necessary for compensation, the
deviation of the projection along the z-axis from the orthogonal projection is still smaller than
110 `<. As this is smaller than the typical resolution of a SHS about 130 `< [21], the projection
along the z-axis is still a good approximation of the orthogonal projection. Projection along the
z-axis is quickly determined by evaluation of the interpolant of %1

01 at the x-y coordinates of
the point being projected. Therefore, even in case of divergent wavefronts where large sensor
angles are necessary and orthogonal projection might be time consuming in FG, it is still quickly
determined in FS1 (see Fig. 5).

2.3. Parallel registration of wavefront segments

Eq. 15 provides an efficient way to calculate the overlap mismatch between two wavefronts that
are both transformed with the respective rigid body and propagation parameters.
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Fig. 5. In FS1 orthogonal projection can be approximated by projection along the z-axis,
which is quickly determined by evaluation of the interpolant at the x-y coordinates of
the point that is projected.

To get the mismatch of a set of wavefront segments 8 = 1..# , where each is transformed by
parameters a8 the sum over all overlap mismatches between two segments is considered. Hence,
a global mismatch metric can be defined using Eq. 15 as the sum over all overlapping wavefront
pairs

"6 (G) =
∑
8,:

"8: (G8: ) =
∑
8,:

Δ(%8
08 , %̃

8
:8 (G8: )). (18)

As mentioned before the first point cloud in Δ(·, ·) gets interpolated. To reduce the amount of
interpolations the segments are divided into type1 and type2 segments, which are arranged in a
chessboard pattern (see Fig. 6). Each type1 segment is interpolated in the corresponding sub
system, while point clouds of type2 segments get reduced to the overlap with the type1 segment
based on the corresponding position data.

x

y
segment 1 

segment 4 

P01 interpolated

 

P41(A14) 

x

y

FG FS1 
segment 2 

segment 3 

P21(A12) 
~ 

~ 

Fig. 6. Primary overlaps are between type1 (black) and type2 (red) segments. A type1
segment gets interpolated in the corresponding sub system, while type2 segments get
reduced to the overlapping region.

Minimization of Eq. 18, resembling the parallel registration, is a nonlinear optimization
problem. A Quasi-Newton method is chosen for this purpose, as it is an efficient method for
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nonlinear optimization [22].
In summary, there are four basic steps of the proposed wavefront reconstruction as illustrated
in Fig. 7. First, the zonal reconstruction of the wavefront segments from the measurements
is carried out. Second, the interpolation of type1 segments and third, the reduction of type2
segments to the overlap is performed. Fourth, parallel registration of the wavefront segments by
minimization of the global mismatch metric is carried out.

interpolation of type1 segments

reduction of type2 segments to the overlaps

parallel registration of wavefront segments by 

minimization of the metric for the global mismatch  

zonal reconstruction of wavefront segments

Fig. 7. Basic steps of the parallel registration algorithm.

3. Algorithm analysis

To investigate the properties of the parallel registration (PR) algorithm and examine its dependence
on quantities like misalignment, noise, etc., a simulation based analysis is performed.
To evaluate the performance of the PR algorithm, the registered wavefronts are compared to the
results of the well established ICP algorithm [23].

3.1. Simulation setting

The wavefront that is registered by the algorithms, is a spherical wavefront collimated by a
meniscus lens with a diameter of 50.8<< and a focal length of 200<< [24]. The wavefront
is determined by using the software OpticStudio (Zemax LLC, Kirkland, WA, USA) and the
aberration has a peak to valley of 11 `< with a dominating spherical aberration (see Fig. 8). The
size of the wavefront with a diameter of about 50<< exceeds the sensor aperture of a standard
SHS by a factor about 3 [21]. Furthermore, shrinking the wavefront would need additional
optical systems that cause additional aberrations and corrupt the measurement. The wavefront
is virtually measured using 5 × 5 subapertures with a self developed tool based on MATLAB
(The MathWorks Inc., Natick, MA, USA), as illustrated in Fig. 8. Each subaperture constitutes
a square with a side length of 13<< and all subapertures are located in the x-y plane. The
number of lenslets, i.e. the number of spots per subaperture where the gradient of the wavefront
is measured, is set to a standard sensor configuration comprising 100 × 100 lenslets, each with a
size of 130 × 130 `<2 [21]. To mimic a realistic measurement, errors like sensor misalignment
as well as measurement noise are simulated. The algorithms are then used to reconstruct the
wavefront from the set of simulated measurements. For subpixel accuracy cubic interpolation is
used to interpolate the point clouds of type1 segments. Cubic interpolation is preferred as by
comparison with the nominal shape of the wavefront the peak to valley interpolation error is
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about 2 =< for linear interpolation and 0.01 =< for cubic interpolation.

Fig. 8. Wavefront for algorithm evaluation (PV = 11 `<). The wavefront is generated
by propagation of a spherical wavefront through a meniscus lens. The wavefront is
virtually measured over a 5×5 subaperture matrix in the x-y plane. At each subaperture
a measurement with the SHS is simulated with 100 × 100 lenslets.

For initialization of the ICP algorithm a segment is set as the partially registered wavefront. Then
individual registration processes are carried out sequentially, where in each process the partially
registered wavefront is extended by a wavefront segment stitched onto it. The segments are
registered in a spiral way (see Fig. 9).
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Fig. 9. Wavefront segments are sequentially stitched in a spiral way using ICP algorithm.
The initial subaperture is in the center.

For the evaluation of an algorithm result, the deviation of the registered wavefront from the
exact wavefront is determined. In particular, the registered wavefront is fitted into the exact one
and the difference between the wavefronts is computed. The noise distribution added before the
reconstruction process for augmenting measurement uncertainties is removed from the difference
to get the error distribution only due to registration errors. For comparison the root mean square
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(RMS) and peak to valley (PV) of the respective wavefront differences are calculated. In Fig. 10
the procedure of testing an algorithm is summarized.

virtual measurement of wavefront under 

specified conditions (misalignment, noise, etc.) 

registration of wavefront segments 

 

fitting of registered wavefront 

into the exact wavefront 

calculation of error distribution = 

difference between registered and exact wavefront 

computation of RMS and PV of 

error distribution 

removal of noise distribution from error distribution

to get error only from registration

Fig. 10. Steps of simulative testing of the registration algorithms.

3.2. Reference Configuration

As described in Section 2 position and alignment of a subaperture deviate from the nominal
position due to sensor misalignment. The misalignment can be described by the rigid body
transformation in terms of the six parameters (\G8 , \H8 , \I8 , :G8 , :H8 , :I8), where the first three
represent rotational (tilt, tip, azimuthal angle) and the last three translational misalignment. In
the simulation each subaperture is misaligned, with the misalignment randomly chosen within
predefined ranges for rotational and translational misalignment

\G8 , \H8 , \I8 ∈ [−50, 50] `A03,
:G8 , :H8 , :I8 ∈ [−0.8, 0.8] `<. (19)

The values for misalignment ranges are on the order of typical errors of linear and rotational
stages [25, 26] that can be used for subaperture positioning.
There are several sources of noise in a SHS measurement like background light, readout or dark
current [27]. To simulate the impact of these noise sources on the measurement, gaussian noise
with zero mean is added to the point cloud of each segment. The reference noise variance is
f = 10 =<, which is on a typical order for measurement noise [28]
As described in Section 2 only points in the overlap are considered for registration. Using only
100 points per overlap (PPO) for registration might lead to a sufficient reconstruction quality and
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(a) (b)

(c) RMS = 7 =<, PV = 41 =< (d) RMS = 93 =<, PV = 707 =<

Fig. 11. Registered wavefront (a: PR, b: ICP) and its registration error as compared to
the exact wavefront (c: PR, d: ICP) for the reference configuration.

at the same time reduces computation time.
In the following sections both algorithms are analysed with respect to sensor misalignment,
measurement noise, number of PPO and the percentage of overlap with respect to the subaperture
area that is set to 20 % in reference configuration. Each section focuses on one quantity,
which means that based on the aforementioned reference configuration only the quantity under
consideration is changed. In Fig. 11 the registered wavefronts of both algorithms are shown
together with the corresponding differences to the exact wavefront (see Fig. 8). The differences
to the exact wavefront show the superiority of the PR algorithm with an RMS of 7 =< over the
ICP algorithm with an RMS of 93 =<. Especially at areas remote from the wavefront center
the ICP algorithm shows large errors. This is because registration is carried out in a spiral way,
where wavefront segments the more remote they are from the center the later they get registered.
As accumulation of registration errors grows with each registration process the outer wavefront
segments show larger errors.

3.3. Influence of misalignment

Reconstruction is carried out for different misalignment ranges and the results are shown in
Table 1. The results show a clear advantage of the developed parallel registration algorithm with
an RMS error value about a factor 10 smaller than the one of the ICP algorithm. This can be

Post-print version (generated on 15.02.2021)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: Nikolaus Berlakovich, Martin Fuerst, Ernst Csencsics, and Georg Schitter, “Robust
wavefront segment registration based on a parallel approach,”Applied Optics, Vol. 60, Issue 6, pp. 1578-1586, 2021. DOI:
10.1364/AO.413207
© 2021 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic
reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or
modifications of the content of this paper are prohibited.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1364/AO.413207


mainly explained by the fact, that with parallel registration the accumulation of stitching errors is
reduced.
Due to measurement noise, the mismatch metric changes and the global minimum gets shifted as
well as local minima emerge causing registration errors. The small errors of the PR algorithm
(≈ 8 =<) show the robustness of the global mismatch metric (see Eq. 18) to the measurement
noise. The results show that the considered misalignment ranges do not strongly affect the
registration performance. Both algorithms show a rather constant RMS error for the various
parameter sets. Only for large translational misalignment around 10 `< the errors slightly
increase. Although, there is some uncertainty between the results, it does not correlate with
misalignment ranges. A reason for the small variations of the results might be local minima in
the mismatch metric caused by the noise. With a different initial position the algorithm converges
differently to the global minimum of the mismatch metric and gets caught in different local
minima around the global minimum.

Table 1. Error of registered wavefront of parallel registration (PR) and iterative
closest point (ICP) for different rotational and translational misalignment ranges
±A\ and ±A: .

A\ A: PR PR ICP ICP

(`A03) (`<) RMS (=<) PV (=<) RMS (=<) PV (=<)

15 0,5 7 36 91 734

50 0,5 7 42 95 813

100 0,5 7 39 82 654

200 0,5 6 39 94 743

300 0,5 8 50 82 670

15 1 6 37 88 660

15 2 6 36 83 614

15 5 8 53 94 752

15 10 11 76 94 732

50 0,8 7 41 93 707

75 1 6 38 96 795

100 2 7 41 91 710

200 5 7 48 98 714

300 10 12 79 93 696

3.4. Influence of noise

Variances of measurement noise between 2 =< and 30 =< are considered. Fig. 12 shows the
RMS error of the results of both algorithms. Additionally, for the PR algorithm the RMS error
without noise removal is plotted to illustrate the direct contribution of noise to the difference.
For both algorithms the RMS error increases rather linearly with the noise variance. While
the RMS error of the PR algorithm increases by only 16 =< for the considered f-range, the
RMS error of the ICP algorithm is much more sensitive to noise and increases by 166 =<. The
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robustness of the PR algorithm to noise is explained by the reduced accumulation of stitching
errors compared to the ICP algorithm. For all noise variances errors of the PR algorithm are about
a factor 10 smaller than the errors of the ICP algorithm. Typically, wavefronts of as-built optical
systems contain RMS errors at a scale of 500 =< [29] down to a scale of a few nanometers [30].
In case of a low measurement noise (f < 2 =<) the PR algorithm has a RMS error smaller 3 =<
making the algorithm suitable for the evaluation of high-end optical systems with RMS wavefront
errors about 10 =<.
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Fig. 12. Error of registered wavefront (RMS) of PR algorithm with and without noise
removal and ICP algorithm in terms of noise variance.

3.5. Influence of points per overlap

In Fig. 13 the RMS registration error in terms of the number of PPO is plotted for both algorithms.
A number of PPO from 50 to 500 is considered.
The errors of both algorithms decrease with a larger number of PPO, which is explained by two
reasons. First, the impact of noise is reduced due to taking the average of a larger number of
points. Second, with a larger number of PPO more information of the surface shape is available
and hence registration is more accurate.
While the RMS error of the PR algorithm depends linearly on the number of PPO the RMS error
of the ICP algorithm shows nonlinearities and is quite sensitive for a number of PPO smaller 100.
For a number of PPO above 100 the PR errors are about a factor 10 smaller than the errors of the
ICP algorithm. For a low number of PPO of 50 the ICP algorithm errors strongly increase to a
RMS of 175 =<, while the PR algorithm still has a small RMS error of 8 =<. This proofs the
reliability of the PR algorithm in cases where a low amount of surface information is available.

3.6. Influence of overlap size

To increase the overlap the subapertures are enlarged. The size of the lenslets remains constant to
maintain the sensor resolution. Overlaps of 20 %, 30 % and 40 % of the subaperture area are
considered with subaperture side lengths of 13<<, 14.82<< and 17.16<< respectively. The
results are shown in Table 2. The errors of both algorithms decrease with a larger overlap area.
One reason for this is that with a larger overlap the mismatch metric gets more sensitive to angles
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Fig. 13. Error of registered wavefront (RMS) of PR algorithm and ICP algorithm in
terms of the number of points per overlap.

between the wavefront segments. Another reason is that on a larger area larger variations of
the wavefronts shape are observed increasing the signal-to-noise ratio. An increase of overlap
percentage from 20 % to 40 % results in a decrease of the errors of the PR algorithm by 55 %
and of the ICP algorithm by 70 %, but would require a larger amount of measurements per
subaperture and thus increases measurement time. With an overlap percentage of 40 % the PR
algorithm has an RMS error of 3 =<. Hence, despite a noise variance of 10 =< the PR algorithm
reaches a registration accuracy that enables the evaluation of high-end optical systems with RMS
wavefront errors about 10 =<.

Table 2. Results for different overlap sizes. Error of registered wavefront of
parallel registration (PR) and iterative closest point (ICP) is listed.

overlap PR PR ICP ICP

(%) RMS (=<) PV (=<) RMS (=<) PV (=<)

20 7 41 93 707

30 4 26 49 382

40 3 20 28 200

In summary the functionality of the developed parallel registration algorithm is successfully
demonstrated, showing its high resilience to sensor misalignment and measurement noise and
superior performance as compared to the ICP algorithm. The registration errors of the PR
algorithm are about a factor 10 smaller than the registration errors of the ICP algorithm. Moreover,
despite measurement noise the PR algorithm reaches registration accuracies suitable for the
evaluation of high-end optical systems with RMS wavefront errors about 10 =<.
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4. Conclusions

In this paper, an algorithm for wavefront reconstruction from multiple SHS measurements is
proposed. In particular, the reconstruction is carried out by parallel registration of the measured
wavefront segments. Mathematics of the algorithm are discussed and wavefront reconstruction
despite rigid body sensor misalignment or phase difference between the measurements is possible.
The performance of the parallel registration algorithm is simulatively analysed and compared
with sequential registration based on the established ICP algorithm. The analysis is carried out
with respect to sensor misalignment, measurement noise, number of points per overlap and the
percentage of overlap with respect to the subaperture area. While the ICP algorithm is quite
sensitive to measurement noise and low surface information the parallel registration algorithm is
more robust and has registration errors about a factor 10 smaller than those of the ICP algorithm.
Results show that even in challenging cases with, e.g. large measurement noise, the parallel
registration algorithm achieves qualitative wavefront reconstruction with a RMS registration
error of 10 =< to 20 =<, while the RMS registration error of the ICP is 100 =< to 200 =<. The
superiority of the parallel registration algorithm is mainly explained by the reduced accumulation
of registration errors. This is due to the fact that in parallel registration for minimization of the
mismatch in an overlap between two wavefront segments the surface information of all overlaps
is used. Hence, the parallel registration algorithm better exploits the surface information of
overlaps than the ICP algorithm. Considering a wavefront of a meniscus lens the PR algorithm
reaches RMS registration errors smaller 3 =< making the evaluation of high-end optical systems
with 10 =< RMS wavefront errors possible.
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