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Fourier Series based Analytic Model of a Resonant
MEMS Mirror for General Voltage Inputs
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Abstract—This paper proposes an analytic model of a resonant
MEMS mirror with electrostatic actuation based on a Fourier
series approximation for both the comb drive torque and the
input waveform and verifies the model by measurements using
rectangular input waveforms with various duty cycles. The
analytic model is derived by the perturbation method, results
in slow flow evolution in amplitude and phase with dynamic
influence matrices and vectors and also provides the local dy-
namics for each equilibrium described by a Jacobian matrix. An
analysis of the dynamic influence matrices and vectors provides
understanding of the mirror dynamics by frequency components
of the input waveform and the comb drive capacitance. The
asymptotic behavior at zero amplitude provides the transition
curve in an extended dynamic model, which corresponds to
the well-known Mathieu’s equation solely with the constant and
fundamental frequency components of the input waveform. The
measurement results verify the proposed model, showing less than
±0.06 % frequency error for large amplitudes and ±0.47 % for
small amplitudes, which corresponds to ±1.2 Hz and ±9.6 Hz for
the case of a mirror with 2 kHz natural frequency, respectively.
Measurements of local dynamics and transition curves also show
a good agreement with the proposed model, which can be used
for a fast and accurate analysis of resonant MEMS mirrors for
high precision applications.

Index Terms—MEMS Mirror, Parametric Resonance, Duffing
Equation, Perturbation Theory, Discrete Fourier Transform,
Bessel Function, General Input Waveform, Transition Curve,
Automotive Lidar

I. INTRODUCTION

RESONANT MEMS mirrors are promising candidates as
beam-steering solution for wide angles at high frequen-

cies in various applications, such as laser scanning displays
[1], [2], scanning laser microscopy [3], [4], and automotive
lidars [5]–[9]. Bulk-micromachined scanners equipped with
electrostatic actuation, specifically with out-of-plane comb
drives, form a frequent subclass of resonant MEMS mirrors,
because of fabrication compatibility, long-term stability, inte-
gratability into the full scan system, competitive unit price
by large volume production, and well distributed driving
force along the large scan displacement [2]. However, such
electrostatically actuated resonant MEMS mirrors typically
operate in parametric resonance, exhibiting various nonlinear
effects e.g. the occurrence of driven oscillations confined to
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discrete frequency regions [10], [11] and bifurcations [12]–
[14]. These nonlinearities add difficulties in a fast and accurate
analysis of the dynamics for design and control purposes of
such MEMS mirrors, especially for demanding applications
that require high precision and robustness, e.g. MEMS lidars
[15].

To analyze the impacts of such nonlinearities, various
models have been proposed. The nonlinear torque function of
comb drives has been modeled by polynomial functions [11],
[13], [16]–[19], rational or hyperbolic functions [20]–[22],
piecewise functions [23], Gaussian functions [24], [25], and
Fourier series [26]. The model is desired to describe and ex-
plain the dynamics accurately at all amplitudes to understand
the dynamical behavior in order to optimize the performance
in application use. For automotive lidars, for example, an
accurate model of MEMS resonant mirrors at large amplitudes
is important to understand robustness properties against harsh
environment conditions, such as wide ranges of temperature,
pressure and vibration [15], [27], [28]. Instability conditions
at zero amplitude are also crucial since they influence the fast
start-up of the MEMS scan system after a sudden failure [29],
[30]. However most aforementioned models with an out-of-
plane comb drive torque show high accuracy only at either
small or large amplitudes mainly due to approximation errors.

Beside the comb drive models, voltage inputs to the comb
drives are also relevant for the analysis of the response
behavior. A square rooted sine waveform is popular in analysis
because it results in a singe tone harmonic input at small
amplitudes, leading to the well-known Mathieu equation [11],
[13], [18], [19]. In practice, rectangular voltage inputs are
widely used due to their maximized energy injection into the
oscillation and simplicity in implementation, leading to opti-
mized actuator dimensions and reduced power consumption of
the driving circuitry [31], [32]. The rectangular voltage inputs
are also beneficial for the control of both amplitude and phase
at the same time, by either leveling of the voltage source or
digitally changing the on-off switching timing [13], [30], [33]–
[35]. Generally, Fourier decomposition has been used in the
case of general inputs for instability analyses of Hill equations
and forced Duffing oscillators since it represents an extension
of single tone analysis and also allows to apply Floquet theory
directly [36]–[40]. For MEMS mirrors with out-of-plane comb
drive actuators, rectangular voltage inputs are analyzed by
Fourier decomposition with various duty cycles, leading to
an instability analysis by the Lindstedt-Poincaré technique
[24], which is applied for a vertical scanning actuator [25]. A
Fourier series based analytic model of parametrically driven
MEMS mirrors with out-of-plane comb drive actuators is
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proposed for a square rooted sine voltage input and shows
a high accuracy at large amplitudes [26]. For general voltage
inputs, however, there is no analytic model yet that accurately
describes the actual behavior of the mirror over its full
amplitude range.

The main contribution of this paper is an accurate analytic
model of global as well as local dynamics of a parametrically
driven resonant MEMS mirror with general voltage inputs.
Additionally, the model extends its high accuracy to small
amplitudes by a compensated torque approximation and an
asymptotic slow flow model at zero amplitude. The measured
angular derivative of the comb drive capacitance is sharpened
near zero angle, which compensates for distortions caused
by the limited bandwidth of the sensing circuitry. Both the
voltage inputs and the angular derivative of the comb drive
capacitance are modeled by a finite set of analytic functions
in two Fourier series. By averaging over an oscillation period,
slow flow dynamics of amplitude and phase are derived
using dynamic influence matrices and vectors given by Bessel
functions depending on the mirror amplitude. Asymptotic
behavior at zero amplitude provides phase equilibria, which
are related to the start-up behavior of the parametric reso-
nance. The proposed slow flow model provides an accurate
approximation of the global and the local dynamics for both
high amplitudes in nominal operation and small amplitudes for
start-up. In addition, the proposed model is computationally
efficient, allowing additional analysis of stationary solutions
and bifurcations readily.

The paper is organized as follows. Section II discusses a
single degree of freedom (SDoF) model of the MEMS mirror
and a Fourier series based approximation of the comb drive
torque and the input waveform. Section III describes the slow
flow dynamics and their local dynamics with dynamic influ-
ence matrices and vectors and further analyzes the structure of
the dynamic influence matrices and the asymptotic behavior
at zero amplitude. In Section IV, the proposed models are
verified with the measurement data via frequency responses,
transition curves, and the local dynamics using rectangular
input waveforms with various duty cycles. Finally, Section V
summarizes the outcome of the paper.

II. DYNAMIC MODEL OF A MEMS MIRROR

This section describes the analytical structure chosen for
the MEMS mirror dynamics, the comb drive torque, and the
voltage input in the equation of motion for further analysis
by perturbation theory. The MEMS mirror [26], [41] used in
verification is a variant of the MEMS mirror in [14], [35] with
an elliptic mirror. Fig. 1 illustrates a conceptual drawing of
major features of the MEMS mirror in addition to the mirror
itself, e.g. comb drives, leaf springs and torsion bars [42].
The out-of-plane electrostatic comb drives consist of inner and
outer electrode rows for enhancing the torque at small angles.
The leaf springs provide the dominant portion to the restoring
torque, enabling high scanning frequencies, and introduce
a significant geometric hardening effect. Short and narrow
torsion bars efficiently suppress rigid body modes different
from the intended rotational motion. A detailed discussion of
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Fig. 1. (a) A photographic picture of the resonant MEMS mirror used for
verification. (b) Perspective view of out-of-plane comb drive with inner and
outer electrode rows. (c) Conceptual drawing of the MEMS mirror rotor used
in verification. The out-of-plane electrostatic comb drive consists of two pairs
of comb drive arms for each side of the elliptic mirror with a long axis of
2.7 mm. The mirror is suspended by two pairs of leaf spring suspensions and
two torsion bars. The leaf springs are connected to the frame via relief springs
in order to reduce geometric hardening.
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Fig. 2. Nonlinear stiffness function and averaged damping function from
experimental identification. The stiffness identification using only linear and
cubic terms is also drawn for comparison.

the design concepts and the parameter identification can be
found in [26].

A. Dynamic Model of Resonant MEMS Mirror

Consider a single degree of freedom (SDoF) equation of
motion for the MEMS mirror angle θ as a generalized Duffing
equation [14], [43]

Iθ̈ + c(Θ)θ̇ + k(θ)θ =
1

2

dC
dθ

V 2(t), (1)

where I denotes the inertia of the mirror in the considered
rotational mode, c denotes the averaged damping function and
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k denotes the nonlinear stiffness function given by

c(Θ) = c0 + c1Θ+ c2Θ
2 + c3Θ

3 + c4Θ
4 + c5Θ

5, (2)

k(θ)θ = k1θ + k3θ
3 + k5θ

5 + k7θ
7, (3)

where ci denotes the nonlinear damping coefficient of the i-th
polynomial term in the amplitude Θ [14] and ki denotes the
nonlinear stiffness coefficient of the i-th polynomial term in
the angle θ. The averaged damping function is a behavioral
approximation of the damping in slow flow evolution [26].
The orders of (2) and (3) are chosen based on a prior study
[14] to obtain a close fit of mechanical parameters from
measurements. The nonlinear stiffness function is identified
by the amplitude-frequency relation of the backbone curve
[26]. By an actuated decay, i.e. the ring-down oscillation
with a DC voltage applied to the comb drives, the angular
derivative of the capacitance is obtained via the comb drive
current measured with a transimpedance amplifier [14] and
the deflection angle measurements with the MEMS Testbench
[44]. Using the frequency response of the actuated decay, the
inertia of the mirror is obtained as a scaling factor. Finally, the
averaged damping function is estimated from the measured
response curve and corrected phase by a square rooted sine
input with a 120 V peak input voltage [26].

Fig. 2 shows the normalized nonlinear stiffness function
and the averaged damping function identified for the MEMS
mirror [26]. The actuation torque is given by the angular
derivative of the comb drive capacitor, dC/dθ, and the time-
dependent actuation voltage, V (t). The resonant MEMS mirror
is parametrically excited by the voltage input, i.e. the trivial
solution θ = 0 is unstable in certain regions of the parameter
space of input amplitude and frequency, leading to resonant
oscillations. The first parametric resonance is excited when the
input frequency is approximately twice the mirror’s natural
frequency. This paper is constrained to the case of the first
order resonance since it is much more efficient compared
to higher order resonances and thus of dominant interest for
practical purposes.

B. Fourier Approximation for Angular Derivative of the Comb
Drive Capacitance

A Fourier series based approximation is proposed for an
accurate model of the angular derivative of the comb drive
capacitance as in [26]

dC
dθ

≈ a0(0) +

N∑

n=1

2a0(n) cos

(
πnρ0
N0

θ

)

+

N∑

n=1

2b0(n) sin

(
πnρ0
N0

θ

)
, (4)

where a0(n) and b0(n) denote Fourier coefficients as

a0(n) =
1

N0

N0/2−1∑

l=−N0/2

dC

dθ

∣∣∣∣
θ=2ρ−1

0 l

cos

(
2πnl

N0

)
, (5)

b0(n) =
1

N0

N0/2−1∑

l=−N0/2

dC

dθ

∣∣∣∣
θ=2ρ−1

0 l

sin

(
2πnl

N0

)
, (6)
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Fig. 3. (top) Measured and compensated angular derivative of the comb drive
capacitance. (bottom) Magnitude of Fourier coefficients of the compensated
dC/dθ, i.e. a0(n) and b0(n), compared to those of the measurements dC̃/dθ,
i.e. ã0(n) and b̃0(n). A black dashed-dot line indicates N = 80.

and N denotes a finite number of summands for the approx-
imation and N0 denotes an even number for discretization
of the comb drive capacitance for discrete Fourier transform
(DFT). A scaling factor ρ0 defines a span to the maximum
amplitude Θmax, i.e. ρ0 = N0/Θmax. The maximum amplitude
is chosen to be an angle larger than the range of the scan-
ning angle since (4) defines dC/dθ as a function of period
2Θmax and the approximation is consequently not valid for
|θ| > Θmax. Θmax can be any value up to π. Considering com-
putational efficiency, however, the choice close to, but slightly
larger than the maximum target amplitude is preferential. For a
good convergence of (4) in a finite N , an extrapolation to zero
at the negative and positive maximum amplitude, i.e. −Θmax
and Θmax, is used to eliminate the discontinuity at each end
[26].

The angular derivative of the comb capacitance is obtained
by current sensing of the comb drives [14], but it can be
distorted by the characteristics of the employed measurement
circuit, e.g. its bandwidth, and slew rate, resulting in a gradient
reduction at the zero crossing [30]. To heal such distortion,
a local compensation near zero angle is considered by a
Gaussian-like function as

dC
dθ

=
(
1 + α1e

−0.5λ−2
1 θ2

+ α2e
−0.5λ−4

2 θ4
) dC̃

dθ
, (7)

where dC̃/dθ denotes the measured angular derivative of the
comb drive capacitance, λ1 and λ2 are derivation parameters
for the local distortion near the zero crossing, and α1 and
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α2 denote scaling factors for compensation. Two sets of
parameters (α1, λ1) and (α2, λ2) generate the slope changes
near the zero crossing and are manually adjusted based on
frequency responses at low and zero amplitudes by inputs with
a square rooted sine waveform.

Fig. 3 illustrates the measured and the compensated angular
derivative of the comb drive capacitance and their Fourier
coefficients. The measured dC̃/dθ function reflects the com-
bination of an inner comb drive and an outer comb drive at
each side of the rotation axis in Fig. 1. As a consequence
of their placement, the former exerts a weak torque, but in a
wide angle range, while the latter creates a stronger torque, but
in a narrower angle range. This results in a high but narrow
plateau with negative and positive torque at small positive and
negative angles, respectively, up to approximately ±0.45 and
two distinct sections with approximately linear slopes at larger
amplitudes over ±0.48. The overall torque function has odd
symmetry due to the symmetric design of the comb drives
and the use of the same layer for stator and rotor electrodes.
Around zero, the torque sharply transits from the positive
plateau to the negative plateau. To compensate the measure-
ment error near the zero angle, the slope of the compensated
derivative near zero crossing is about 14 % steeper than in
the measurements, while the values at other angles are the
same. This increases the high frequency Fourier components.
For a more accurate approximation of the zero crossing, N
should be at least 80, which increases the dimension of the
calculation. As discussed in [26], N = 50 is still sufficient
to accurately describe stationary solutions at large amplitudes,
e.g. on the top response curve, with reduced computation effort
(cf. Sec. IV-A).

C. Fourier Approximation of General Voltage Inputs

The voltage input to the comb drives can be approximated
by a limited number of harmonics M , i.e.

|V (t)| ≈ U
√

uc(t), (8)

uc(t) =
au(0)

2
+

M∑

m=1

au(m) cos (mΩt)

+

M∑

m=1

bu(m) sin (mΩt) , (9)

where uc denotes a non-negative general input waveform,
whose maximum is set to 1 without loss of generality, and
U denotes a peak input voltage. The Fourier coefficients of
the input waveform are defined as

au(m) =
2

TΩ

∫

TΩ

uc(t) cos(mΩt)dt,m ∈ 0, 1, · · ·, (10)

bu(m) =
2

TΩ

∫

TΩ

uc(t) sin(mΩt)dt,m ∈ 1, 2, · · ·, (11)

where TΩ denotes the period of the input signal, i.e. TΩ =
2π/Ω. With M0 samples per a period, DFT approximates the
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Fig. 4. Measured frequency response and frequency-phase plot from a square
rooted sine input waveform and a rectangular input waveform of 0.5 duty
cycle. Both have a 90 V peak input voltage and the phase of the square rooted
sine input waveform is shifted for matching the synchronized excitation.

coefficients for a finite number M ≤ M0/2 as

au(m) =
2

M0

M0∑

i=1

uc(ti) cos(mΩti), (12)

bu(m) =
2

M0

M0∑

i=1

uc(ti) sin(mΩti), (13)

where ti denotes i-th discrete time sample ti ∈ (0, TΩ) and i
is the index of the time slices.

Fig. 4 illustrates the measured frequency responses and
frequency-phase plots of the MEMS mirror with a square
rooted sine input waveform and a rectangular input waveform
with the peak input voltage 90 V for both. The frequency
responses are similar while the rectangular voltage input can
reach 20 % larger amplitudes than the square rooted sine
voltage input. The phases at high amplitudes show a significant
difference: the frequency-phase plot from the square rooted
input waveform has a parabola shape while the frequency-
phase plot from the rectangular input waveform is charac-
terized by two linear functions. This demonstrates that these
frequency and phase responses cannot be accurately described
by superposition, but require a dedicated analysis due to the
nonlinear structure of (1).

III. ANALYTIC MODEL OF THE MEMS MIRROR WITH A
GENERAL VOLTAGE INPUT

A. Slow Flow Model of the MEMS Mirror with a General
Voltage Input

By introducing a dimensionless state variable x = θ/θ0,
amplitude A = Θ/θ0, normalized time τ = t/t0 where t0 =√
I/k1, and normalized actuation frequency Ωa = Ωt0. A
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dimensionless dynamic equation can be derived from (1), (4),
and (8) as

ẍ+ 2µ(A)ẋ+ x+K3x
3 +K5x

5 +K7x
7

= U2

(
au(0) +

M∑

m=1

2au(m) cos (mΩaτ) + 2bu(m) sin (mΩaτ)

)

×
(
1

2
a(0) +

N∑

n=1

a(n) cos (ρnx) + b(n) sin (ρnx)

)
, (14)

where the dimensionless damping and stiffness coefficients
and actuation parameters are defined by

µ(A) =
c(Aθ0)t0

2I
, K3 =

k3θ
2
0t

2
0

I
, K5 =

k5θ
4
0t

2
0

I
, K7 =

k7θ
6
0t

2
0

I
,

a(n) =
t20a0(n)

2Iθ0
, b(n) =

t20b0(n)

2Iθ0
, ρ =

πθ0ρ0
N0

. (15)

In the further derivation, only sine terms b(n) in the actuator
model of (4) are considered and the constant and cosine terms
a(n) are neglected, the reason for which is discussed later (cf.
Cor. 2). Based on perturbation theory [45], [46], Eq. (14) can
be rewritten as

ẍ+ σ2x = ϵ
[
−2µ(A)ẋ−K3x

3 −K5x
5 −K7x

7

+
(
σ2 − 1

)
x+ U2au(0)

N∑

n=1

b(n) sin (ρnx)

+ 2U2
N∑

n=1

M∑

m=1

b(n)au(m) sin (ρnx) cos (mΩaτ)

+2U2
N∑

n=1

M∑

m=1

b(n)bu(m) sin (ρnx) sin (mΩaτ)

]
, (16)

where ϵ is a dimensionless parameter, used as a bookkeeping
device [45], [47], [48]. The value of ϵ scales the nonlinearity
and ϵ = 1 means the full nonlinearity [46], [47]. The parameter
σ denotes the normalized frequency of the mirror, given by one
half of the actuation frequency, i.e. σ = Ωa/2, in the first order
parametric resonance. The term of σ on the right hand side
corrects the frequency error compared to the natural frequency
on the left hand side [46]. Following perturbation theory, the
solution can be decomposed as x = x0 + ϵx1 and the time
scales can be written as Ti = ϵiτ , i.e. T0 = τ , T1 = ϵτ .
The partial derivative operators are defined as Di =

∂
∂Ti

, i.e.
D0 = ∂

∂T0
and D1 = ∂

∂T1
. Only considering terms of order ϵ0

and ϵ1, Eq. (16) is rewritten as

D2
0x0 + σ2x0 = 0, (17)

D2
0x1 + σ2x1 = Ψ(x0, σ, T0)− 2D0D1x0, (18)

where a nonlinear function Ψ is defined by

Ψ(x0, σ, T0) = −2µ(A)D0x0 +
(
σ2 − 1

)
x0 −K3x

3
0 −K5x

5
0

−K7x
7
0 + U2au(0)

N∑

n=1

b(n) sin (ρnx0)

+ 2U2
N∑

n=1

M∑

m=1

b(n)au(m) sin (ρnx0) cos (2mσT0)

+ 2U2
N∑

n=1

M∑

m=1

b(n)bu(m) sin (ρnx0) sin (2mσT0) .

The ordinary undamped harmonic oscillator in (17) yields

x0 = A(T1) cos (σT0 + β (T1)) , (19)

where A(T1) and β(T1) denote the dimensionless amplitude
and phase, respectively, which evolve in slow time T1. The di-
mensionless amplitude has already been used in the description
of the averaged nonlinear damping function. By the solvability
condition [45], [46], [48], the solution of (17) and (18) satisfies

∫ 2π

0

[Ψ(x0, σ, T0)− 2D0D1x0] e
−iωdω = 0, (20)

where ω = σT0+β (T1). For the calculation of these averaging
integrals of the comb drive capacitance in (20), a lemma and
a corollary in [26] are extended as follows.

Lemma 1. The average over a period for the sine terms of
the comb drive torque in (4) is given by
∫ 2π

0

sin (ρnA cosω) cosω cos (2mω − 2mβ) dω

= π (−1)m (J2m+1(ρnA)− J2m−1(ρnA)) cos (2mβ)

= 2π (−1)m
(

2m

ρnA
J2m(ρnA)− J2m−1(ρnA)

)
cos (2mβ) ,

(21)
∫ 2π

0

sin (ρnA cosω) sinω cos (2mω − 2mβ) dω

= π (−1)m (−J2m+1(ρnA)− J2m−1(ρnA)) sin (2mβ)

= 2π (−1)m
(
− 2m

ρnA
J2m(ρnA)

)
sin (2mβ) , (22)

∫ 2π

0

sin (ρnA cosω) cosω sin (2mω − 2mβ) dω

= π (−1)m (−J2m+1(ρnA) + J2m−1(ρnA)) sin (2mβ)

= 2π (−1)m
(
− 2m

ρnA
J2m(ρnA) + J2m−1(ρnA)

)
sin (2mβ) ,

(23)
∫ 2π

0

sin (ρnA cosω) sinω sin (2mω − 2mβ) dω

= π (−1)m (−J2m+1(ρnA)− J2m−1(ρnA)) cos (2mβ)

= 2π (−1)m
(
− 2m

ρnA
J2m(ρnA)

)
cos (2mβ) , (24)

where Jν(z) is the Bessel function of the first kind.

Corollary 2. The average over a period for the cosine terms
of the comb drive torque in (4) is given by

∫ 2π

0

cos (ρnA cosω) cosω cos (2mω − 2mβ) dω = 0, (25)
∫ 2π

0

cos (ρnA cosω) sinω cos (2mω − 2mβ) dω = 0, (26)
∫ 2π

0

cos (ρnA cosω) cosω sin (2mω − 2mβ) dω = 0, (27)
∫ 2π

0

cos (ρnA cosω) sinω sin (2mω − 2mβ) dω = 0. (28)

The proof of the lemma and corollary is given in Ap-
pendix A. Corollary 2 means that the terms with a(n) in-
cluding a(0), which model an asymmetry and an offset of the
comb drive torque, do not influence the first order parametric
oscillation because their contributions are annihilated when
σ = Ωa/2, as discussed in [26]. Corollary 2 generalizes
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from [26] that this explanation holds regardless of the input
waveform.

By Lemma 1 and Corollary 2, the slow flow amplitude and
phase dynamics of the solution (19) with a generalized input
can be obtained for positive amplitude, i.e. A > 0, as

dA
dT1

= −Aµ(A)− U2

σ
bNJA (DaM

bs +DbM
bc) (29)

dβ
dT1

=
3K3A

2

8σ
+

5K5A
4

16σ
+

35K7A
6

128σ
− (σ2 − 1)

2σ

− U2

σA
bN (au(0)J0 + Jβ (DaM

bc −DbM
bs)) , (30)

where dynamic influence matrices for amplitude and phase
JA,Jβ ∈ RN×M and a zero frequency dynamic influence
vector J0 ∈ RN are used, whose elements are defined by

JA(n,m) = (−1)
m+1

(J2m−1(ρnA) + J2m+1(ρnA)) , (31)

Jβ(n,m) = (−1)
m+1

(J2m−1(ρnA)− J2m+1(ρnA)) , (32)

J0(n,1) = J1(ρnA), (33)

and the torque component vector bN ∈ RN and the input fre-
quency component vector aM and bM ∈ RM are respectively
defined by

bN =
[
b(1) b(2) · · · b(N)

]
, (34)

aM =
[
au(1) au(2) · · · au(M)

]T
, (35)

bM =
[
bu(1) bu(2) · · · bu(M)

]T
, (36)

where vT denotes the transpose operator of the vector v and
Dv denotes the diagonalized matrix of a vector v. The cosine
and sine term of integer scaled double phase bc,bs ∈ RM are
defined by

bc =
[
cos 2β cos 4β · · · cos (2Mβ)

]T
, (37)

bs =
[
sin 2β sin 4β · · · sin (2Mβ)

]T
. (38)

The detailed derivation is given in Appendix B. For gen-
eral inputs of (8), the slow flow model of (29) and (30)
approximates the global dynamics for given input frequency
σ, amplitude A, and phase β while it does not provide a closed
form solution of primary frequencies as in the case of a square
rooted sine input [26]. Instead, the stationary solutions can be
obtained numerically (cf. Sec. III-D).

In addition to the global evolution equations, the local
dynamics for an operating point can be written as [49]

Ai(T1) = Āi + εξ(T1),

βi(T1) = β̄i + εζ(T1), (39)

where ξ and ζ denote local deviations of the amplitude and
phase, respectively. Āi and β̄i are the stationary amplitude
and the phase of the i-th equilibrium at the specific frequency
σ, respectively, defining the operating point. A dimensionless
parameter ε is introduced for local dynamics derivation. This
leads to a Jacobian matrix at the operating point defined by

[
ξ̇

ζ̇

]
=

[
A11 A12

A21 A22

] [
ξ
ζ

]
, (40)

where the elements are

A11 = −
(

d
(
Āiµ(Āi)

)

dĀi
+

U2

σ
bNJ̄dA

(
DaM b̄s +DbM b̄c

)
)
,

(41)

A12 = −U2

σ
bNJ̄A

(
DaMD2Mb̄c −DbMD2Mb̄s

)
, (42)

A21 =
3K3Āi

4σ
+

5K5Ā
3
i

4σ
+

105K7Ā
5
i

64σ

+
U2

σ
bN

(
au(0)J̄d0 − J̄dβ

(
DaM b̄c −DbM b̄s

))
, (43)

A22 =
U2

σĀi
bNJ̄β

(
DaMD2Mb̄s +DbMD2Mb̄c

)
, (44)

where J̄A and J̄β are dynamic influence matrices for ampli-
tude (31) and phase (32) of i-th equilibrium, respectively, and
and b̄c and b̄s are also the cosine and sine terms of integer
scaled double phase in (37) and (38) with β̄i. J̄dA, J̄dβ , and
J̄d0 denote the amplitude derivatives of the dynamic influence
matrices and vector, whose elements are given by

J̄dA(n,m) = (−1)m+1 ρn

2

(
J2m−2(ρnĀi)− J2m+2(ρnĀi)

)
, (45)

J̄dβ(n,m)
=

(−1)m+1

Ā2
i

(
−
(
J2m−1(ρnĀi)− J2m+1(ρnĀi)

)
+

ρnĀi

2

×
(
J2m−2(ρnĀi)− 2J2m(ρnĀi) + J2m+2(ρnĀi)

)
)
,

(46)

J̄d0(n,1) =
1

Āi
ρnJ2(ρnĀi), (47)

and a scaling matrix is defined by

D2M = diag
([

2 4 · · · 2M
])

. (48)

The amplitude derivatives of the dynamic influence matrices
are obtained by the derivative of the Bessel function using the
following Bessel identities

d
dĀi

Jν(ρnĀi) =
ρn

2

(
Jν−1(ρnĀi)− Jν+1(ρnĀi)

)
,

d
dĀi

Ā−ν
i Jν(ρnĀi) = −ρnĀ−ν

i Jν+1(ρnĀi).

The Jacobian matrix plays an important role for determining
the stability of a equilibrium solution and the local dynamics
near the steady state solution. The local dynamics are used for
design of the control and analysis of the vibration influence
[22], [35].

B. Dynamic Influence Matrices and Vectors

The dynamic influence matrices JA, Jβ , J̄dA, J̄dβ , and
dynamic influence vectors J0 and J̄d0 are uniquely defined by
the amplitude of the oscillator and are not dependent on the
shape of the comb drives and the input waveform. The choice
of the scaling factor ρ0 does not affect the dynamic influence
matrices and vectors, either. The elements of the matrices
describe a weighted mapping of the frequency components
of the angular derivative of the comb drive capacitance and
the input waveform to the slow flow mirror dynamics.

Fig. 5 illustrates normalized absolute values of the matrix
elements from the dynamic influence matrices JA and Jβ for
amplitudes of 0.1, 0.5, and 1.0 and from the dynamic influence
matrices, weighted by the comb drive torque, i.e. DbN

JA
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Fig. 5. The normalized absolute element values of dynamic influence matrices
JA and Jβ and the weighted dynamic influence matrices scaled by the comb
drive torque, DbN

JA and DbN
Jβ , plotted according to the comb drive

frequency component index n and the input frequency component index m.
The absolute values of the elements of the matrix are normalized by the
maximum element of the matrix. The maximum element is drawn in white
and elements less than 10−6 of the maximum element are depicted in black.

and DbN
Jβ . (See the supplementary movie S1 for evolution

of dynamic influence matrices with amplitude.) The absolute
values of the elements in the matrices are normalized by the
maximum value of the elements to illustrate the structure of the
matrices. It reveals that the effective frequency components m
of the input waveform to the mirror dynamics are determined
by both the amplitude A of the oscillator and frequency
components n of the comb drive torque. Low frequency
components of the input waveform influence the dynamics
at low amplitudes, and the high frequency components of
the input waveform increase their influences as the amplitude
becomes larger. In addition, high frequency components of the
input only couple to the high frequency components of the
comb drive torque. This is reflected by large zero regions in
the right upper side of the dynamic influence matrices, which
is due to properties of Bessel function [50]. This influence is
weighted by the torque function via DbN

, which reduces the
influence of high-n matrix entries and results in a dominance
of low frequency components.

Since the comb drive torque is typically band-limited, the
effective bandwidth of the input waveform is also limited by

the target maximum amplitude of the oscillator. For this rea-
son, the ripples of Gibbs phenomenon in the input waveform
[19] do not influence the first order slow flow mirror dynamics
as long as a sufficient number of harmonics, M , is considered
in the input. In the case of Fig. 5, M = 78 for N = 50, e.g.
312 kHz for 2 kHz mirror frequency, is sufficient to cover the
amplitude of 1. This can be used to determine the bandwidth of
the driving circuitry without harming the maximum amplitude.
Since this analysis implies an approximation (19), it only holds
for a weakly nonlinear oscillator, as implicitly defined by its
expansion in an power series in ϵ (16).

C. Asymptotic Behavior at Zero Amplitude

This section investigates the instability of (1) based on the
derived slow flow model. The behavior at zero amplitude
can be analyzed asymptotically using a slow flow model,
considering an oscillation with an infinitely small amplitude.
Using limA→0 Jν(ρnA)/Aν = (ρn)ν/(2νν!) by L’Hôpital’s
rule, the asymptotic values of the dynamic influence matrices
and vectors at zero amplitudes are given as

lim
A→0

JA(n,m) = 0, ∀n,m, (49)

lim
A→0

A−1Jβ(n,m) =

{
ρn
2 , m = 1 and ∀n,
0, m ̸= 1 and ∀n, (50)

lim
A→0

A−1J0 =
ρ

2

[
1 2 · · · N

]T
= JZ, (51)

where JZ is the zero amplitude dynamic influence vector. This
leads to the asymptotic slow flow dynamics at zero amplitudes
as

lim
A→0

dA
dT1

= 0, (52)

lim
A→0

dβ
dT1

= − (σ2 − 1)

2σ
− 1

σ
U2bNJZ

× (au(0) + au(1) cos 2β − bu(1) sin 2β) . (53)

Due to the structure of the comb drive, which exerts at any
position only pulling forces towards the rest position but no
forces pushing the oscillator away from zero, bNJz is a
negative scalar, i.e. bNJz < 0. Stationary solutions are given
by dβ/dT1 = 0 for σ > 0 as

σ2 − 1 = −2U2bNJz

(
au(0) +

√
au(1)2 + bu(1)2

× sin

(
arctan

(
au(1)

bu(1)

)
− 2β

))
. (54)

Using the inverse of the sine leads to stationary phases at zero
amplitude as

2β = − arcsinα+ φ, (55)

α =

(
−

σ2−1
2U2bNJZ

+ au(0)√
a2u(1) + b2u(1)

)
, φ = arctan

au(1)

bu(1)
, (56)

where α and φ are parameters for simplification. The phase is
real valued if and only if |α| ≤ 1. This leads to the frequency
boundaries of equilibria at zero amplitude σz± as

σz± =
(
1− 2U2bNJZ

(
au(0)±

√
a2
u(1) + b2u(1)

)) 1
2
. (57)
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The stationary phases are defined for the zero amplitude
stationary frequencies of σ ∈ (σz−, σz+). From (55) with the
condition of a real phase, it also follows that the stationary
phase at zero amplitude is bounded as

− π

2
+ φ < 2β <

π

2
+ φ. (58)

It is observed that the total stationary phase at zero amplitude
spans over a range of π for 2β, and the ratio of the coefficients
of the sine and cosine component in the fundamental frequency
of the input signal determines the center of the stationary phase
at zero amplitude. Trivially, the sine and cosine component
ratio defines the phase setting of the input, and the phase def-
inition shifts as the composition changes while equation (58)
specifies that the fundamental frequency components solely
determine this shift regardless of phases of high frequency
input components.

The stability of the equilibrium at zero amplitude is de-
termined by the Jacobian. The amplitude derivatives of the
dynamic influence matrices and vector at zero amplitude
asymptotically follow

lim
A→0

J̄dA(n,m) =

{
ρn
2 , m = 1 and ∀n,
0, m ̸= 1 and ∀n, (59)

lim
A→0

J̄dβ(n,m) = 0, ∀n,m, (60)

lim
A→0

J̄d0 =
[
0 0 · · · 0

]T
. (61)

With (55), this leads to a Jacobian matrix as a diagonal matrix,

lim
Ai→0

[
A11 A12

A21 A22

]
=

[
A11,0 0
0 A22,0

]
, (62)

where the diagonal components are defined by

A11,0 = −µ0 −
1

σ
U2bNJZ

√
a2u(1) + b2u(1)

√
1− α2, (63)

A22,0 =
2

σ
U2bNJZ

√
a2u(1) + b2u(1)

√
1− α2. (64)

Since the Jacobian matrix is diagonal, the poles are the values
of diagonal components. Since A22,0 < 0 by bNJz < 0, the
stationary solution is unstable if A11,0 > 0, forming a saddle
point [39]. This results in the following second order inequality
in σ2

σ4 − 2
(
1− 2µ2

0 − 2U2bNJzau(0)
)
σ2 + 1− 4

(
U2bNJz

)2

×
(
a2u(1) + b2u(1)− a2u(0)

)
− 4U2bNJzau(0) < 0.

The frequency boundaries, i.e. transition curves, are obtained
by the solutions as

σzµ± =

(
1− 2µ2

0 − 2U2bNJZ

(
au(0)

±
√

a2
u(1) + b2u(1) +

µ4
0 + (2U2bNJZau(0)− 1)µ2

0

(U2bNJZ)2

)) 1
2

.

(65)

This shows that only the constant and fundamental frequency
components of the input waveform influence the phase, sta-
tionary and unstable regions at zero amplitude. This trend
is also observed in the dynamic influence matrices at low
amplitudes in Fig 5. The resulting criterion has a simple closed

form, but it assumes the first order perturbation approximation
of (19). This is verified by taking Taylor series of the approx-
imated angular derivative of the comb drive capacitance for a
small angle, i.e. x ≪ 1, as

N∑

n=1

b(n) sin (ρnx) ≈ 2bNJzx, (66)

which also approximates the electrostatic actuated stiffness
term by the normalized curvature of the comb drive capac-
itance as

U2 t
2
0

I

d2C

dθ2

∣∣∣∣
θ=0

≈ 4U2bNJZ. (67)

By (66) and with only the zero and fundamental frequency
components of the input waveform, (14) results in the well
known Mathieu’s equation as [40]

ẍ+ 2µ̄0ẋ+ (δ + η cos(τ + φ̄))x = 0, (68)

where the normalized parameters are

µ̄0 =
µ0

Ωa
, δ =

1− γau(0)

Ω2
a

, η = −2γ
√

a2u(1) + b2u(1)

Ω2
a

,

φ̄ = − arctan
bu(1)

au(1)
, γ = 2U2bNJZ. (69)

The boundaries of the instability region of (57) and (65) can
be obtained by the first order approximation of the transition
curves [40]. Equation (65) corresponds to the well known
approximation of the transition curve in the presence of
damping

δ =
1

4
± 1

2

√
η2 − 4µ̄2

0. (70)

This implies that the stability analysis of the slow flow model
is equivalent to the first term in Floquet theory, which is natural
considering the use of the same approximation of the solution
(19). Therefore (57) and (65) inherit the same limitation in
accuracy by adopting a first order approximation [37], [40].
High frequency components can influence the minimum peak
input voltage for instability [38] as well as the transition curves
at high input voltages [40]. For small input voltages, which
still includes over 100 V in the case of the used MEMS mirror
and for inputs dominated by the fundamental frequency, e.g.
the square rooted sine waveform or the rectangular waveform
with various duty cycles, the proposed asymptotic analysis can
still provide a good approximation of the stability region.

D. Numerical Implementation

The stationary solutions of (29) and (30) with a general
input do not have a closed form, but they can be found
numerically. For this calculation, a continuation technique is
used for the slow flow dynamics. The initial condition is
chosen by the solution considering only the constant input and
the fundamental frequency, i.e. au(0), au(1), and bu(1), which
allows a closed form solution as in [26]. Then the solution
with full frequency components is numerically obtained by
this initial condition and stationary conditions in (29) and (30).
Once a solution is found, the nearest solutions are found for
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Fig. 6. Definition of the phase of the mirror and the duty cycle of the
input waveform. The peak values of the input waveform are scaled for better
visibility.

an amplitude increased or decreased by one increment using
the solution as an initial value. This procedure continues until
no solution is available. A nonlinear solver fsolve in Matlab
is used for solution calculation.

This numerical calculation can be efficiently designed by
calculating the dynamic influence matrices and vectors in
advance since they are constant for a given amplitude and do
not depend on the actuator parameters or input parameters.
In addition, with a specific actuation design, expressed by
b(n), the dimension is further reduced to an inner product of
vectors, removing the need of any matrix vector calculation.
Although this precalculation scheme cannot be applied to
describe the global dynamics, e.g. phase portraits, it can reduce
the calculation time and effort for the search of the stationary
solutions and for the Jacobian matrices significantly. The
computation effort as well as the measurement verification of
the model are evaluated in the following section.

IV. VERIFICATION OF THE MODEL

This section describes a verification of the proposed Fourier
series based slow flow model with measurement data using
frequency response, transition curve, and local dynamics mea-
surements. A MEMS test bench is used for a wide bandwidth
and highly accurate MEMS deflection angle measurement,
enabled by a dedicated calibration procedure [44]. The details
of the employed MEMS test bench can be found in [26] and
[44].

As general drive inputs to the MEMS mirror, rectangular
waveforms with various duty cycles from 0.2 to 0.7 are con-
sidered since these waveforms are conveniently generated with
simple high voltage generation circuitry [35]. Fig. 6 illustrates
the definition of the rectangular input waveform of uc with
various duty cycles and the definition of the mirror phase
with respect to the input, used in this article. To vary the duty
cycle, the convention fixes the falling edge of the rectangular
input at half of its period while the time of the rising edge
is shifted. The convention defines zero phase to coincide
with the synchronized excitation [31], [51] for a rectangular
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Fig. 7. Frequency response and amplitude-phase plot from the slow flow
model (light solid and dotted lines) and measurements (dark dashed lines) for
various peak input voltages. The stable and unstable solutions of the model are
represented by solid lines and dotted lines, respectively. Dark colored triangles
represent the measured lower bound of the respective unstable regions, while
a double triangle represents a direct jump to the top response curve. The
backbone curve is drawn with a bright pink line.

input with 0.5 duty cycle. In addition, it is also a convenient
convention for the current sensing method which measures
the time difference between the falling input edge and the
zero crossing of the mirror current [30]. The amplitude and
frequency values are normalized to the maximum amplitude
reached with a 90 V input peak voltage with 0.5 duty cycle
and the linear mirror frequency, respectively.

A. Frequency Response by Peak Input Voltages

To evaluate the accuracy of the model, the frequency
response and the amplitude-phase plot are analyzed, which
show a set of the stationary points of the mirror dynamics.
The stable equilibria are retrieved by measuring steady-state
oscillations of the MEMS mirror for given input frequencies
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Fig. 8. Phase portraits and amplitude-phase plots (thick light colored lines) at
the measured frequency of the lower bound of the zero amplitude instability
region, specifically (left) frequency 1.0331 with 60 V peak input voltage and
(right) frequency 1.0441 with 70 V peak input voltage. From initial conditions
(circles) the slow flow dynamics lead to the stable equilibria (blue squares)
while the unstable equilibria are given by blue x marks. The color of the
trajectory represents its final steady state value, i.e. if it arrives at the solution
of the top response curve (red) or of the bottom response curve (light gray).

where the actuation frequency is increased and decreased in
increments of 2 Hz. For convenience, the stable solutions at
the low amplitude side and the high amplitude side are called
bottom response curve and top response curve, respectively.
Due to a significantly hardening spring characteristic [26], the
used mirror can usually reach the maximum amplitude on the
top response curve. The lower bound of the Mathieu instability
region [40] can be identified by the first unstable point in an
up sweep from the stable region, where no oscillation occurs,
hereafter referred to as start-up frequency.

Fig. 7a shows the frequency response of the slow flow model
together with the measurement data for the rectangular input
waveform with a 0.5 duty cycle. For verification, peak input
voltages of 60, 70, 80, and 90 V are chosen. For all cases,
the analytic solution by the slow flow model shows a good
match with the measurement data at large amplitudes including
the points of the bifurcation. This is mainly facilitated by
the Fourier series’ property as a modal approximation, which
provides a good accuracy of the overall features. For large
amplitudes above 0.2, normalized frequency errors are less
than ±0.06 %, and even for small amplitudes below 0.2,
the normalized frequency errors are less than ±0.47 %,
corresponding to less than ±1.2 Hz and ±9.4 Hz errors for
a 2 kHz linear mirror frequency, respectively. The accuracy
at small amplitudes shows much improvement compared to
[26] but there is still some mismatch that is not corrected
by the simple correction in (7). The peak amplitude also
shows a good agreement, the worst case error is 0.58 %
in the 90 V peak input voltage case, which corresponds to
0.087◦ for a 15◦ amplitude. The start-up frequencies, which
are obtained by the amplitude zero of the unstable solution that
extends from the top response curve of the model, also show
good agreement with measurements except for the case of a
80 V peak input voltage. Fig. 7b illustrates the amplitude-
phase plot from the model and measurements for various
peak input voltages of the rectangular waveform. The phase

variation along the amplitude is composed of two linearly
shaped regions, which are different from the parabola-like
shape in the square rooted sine input case while the solution
lines for both input waveforms are symmetric to zero phase
[26].

Contrary to the other peak input voltages, the MEMS mirror
with an input at 60 V peak input voltage can directly reach
the top response curve from zero amplitude at the start-up
frequency. This shows that the branch eventually reached as
the stationary solution from zero amplitude, i.e. either top or
bottom response curve, depends on the peak input voltage.
Fig. 8 illustrates two phase portraits for 60 V and 70 V peak in-
put voltage, respectively, at the measured start-up frequencies,
describing the global dynamics by (29) and (30). The initial
conditions of amplitudes and phases are defined by amplitudes
of 0.004 and 0.708 and phases kπ/6, k ∈ 0, 1, · · · , 5, where
the initial amplitude of 0.004 approximates the mirror with
zero amplitude. The phase portraits of the dynamics illus-
trate different behaviors, reaching different stationary solutions
at the top and the bottom response curve from the same
approximated zero amplitude. (See supplementary movie S2
for evolution of phase portraits by frequencies.) These phase
portraits also verify that the proposed slow flow model can
describe the start-up behavior from zero amplitude adequately.

The simulation also demonstrates the low computational
effort required by the proposed model. For evaluation, a case
of N = 50 is considered as a standard case for large amplitude
analysis because it reduces the computation effort while the
stationary frequencies of top response curves differ less than
0.0005 % from the case of N = 80. With N = 50 and
M = 100, the dynamic influence matrices of JA, Jβ , J̄dA,
and J̄dβ are calculated for the given amplitude points first, then
the actuation vectors from the comb drive approximation are
calculated for each amplitude. Using the actuation vectors, the
stationary solutions and the Jacobian matrices are obtained for
each peak input voltage and waveform. For 2,000 amplitude
values, the dynamic influence matrix calculation takes 35.94 s,
the solution calculation takes 11.33 s, and the Jacobian calcula-
tion takes 0.80 s with a Matlab 2018b script using a laptop PC
(Intel Core-i7 8850H, 2.6 GHz). The simulation of the global
dynamics in Fig. 8 takes 36.82 s average for a normalized time
of 5000. This is 33 times longer than the single tone case, but
still much less than the brute force simulation of 1303.20 s,
which directly exploits (1) [14], [26].

B. Frequency Response for Various Duty Cycles

Fig. 9 shows the frequency responses and amplitude-phase
plots from the model and measurements for various duty cycles
of 0.2, 0.4, 0.5, and 0.7 and peak input voltages of 60 V, 70 V
and 90 V. For all cases the model shows a good agreement
with the measurements like Fig. 7. It is shown that the highest
maximum amplitude is achieved by the 0.5 duty cycle, and that
it drops if the duty cycle deviates from 0.5. This is obvious
since the energy injection of the pulling torque from the comb
drive actuation is maximized for 0.5 duty cycle. The start-up
frequencies decrease as the duty cycle becomes smaller since
the electrostatic stiffening by the DC component of the input
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Fig. 9. Frequency responses (top figures) and amplitude-phase plots (bottom figures) from the model (light colored lines) and measurements (dark dashed
lines) for various duty cycles. The representation of stability and start-up frequencies are the same as in Fig. 7.

is reduced for lower duty cycles, leading to a smaller deviation
of the start-up frequency from the free oscillation frequency.
In addition, a low duty cycle also allows the start-up directly
to the top response curve, which is shown for all duty cycles
up to 0.4. This can be used for a fast start-up strategy by
omitting the transition through a bifurcation to reach the large
amplitude operational point [29].

The amplitude-phase plots show more pronounced changes
than the frequency response for varying duty cycle, visible
in a significant asymmetry of the amplitude for positive and
negative phases. The phase of the solutions deforms toward
the positive phase for a large duty cycle above 0.5 and vice
versa for low duty cycles below 0.5. A subtle change of the
phase at the peak amplitude is found as well. This implies that
zero phase is difficult to be reached for a duty cycle over 0.5
and that negative phase can be achieved by a small duty cycle
below 0.5. This change of the phase at the peak amplitude is
stronger when the peak input voltage decreases.

C. Asymptotic Analysis at Zero Amplitude

Fig. 10a illustrates a frequency-phase plot for various input
waveforms with a 70 V peak input voltage including stationary
points of zero amplitude. These stationary points at zero
amplitude span over a range of π between the bounds of
(58), connecting the top and the bottom response curve.
The stationary points at zero amplitude shift to linear mirror

frequency as the duty cycle decreases mainly due to reduction
of electrostatic stiffening at zero angle. With the amplitude-
phase plots in Fig. 9, direct start-up to the top response curve
with a small duty cycle can be roughly explained by the
proximity of a stable equilibrium at a small amplitude on the
top response curve and a saddle point at zero amplitude at the
same frequency, although a global bifurcation analysis [52]
or a numerical simulation as Fig. 8 are required to precisely
describe it. The zoomed plot in Fig. 10a illustrates links of the
non-zero amplitude response curves to the unstable equilibria
at zero amplitude.

Fig. 10b depicts the renowned transition curves, delimiting
the instability tongues, i.e. boundaries between parametric
oscillations and no excitation [40], [53], by the model (65) and
measurements for various peak input voltages and waveforms.
There are mismatches around 80 V for the 0.5 duty cycle case
and 90 V for the 0.4 duty cycle case, exhibiting unusual steady
state quasiperiodic oscillations [40] as shown in Fig. 10c while
almost all other start-up oscillations have a constant steady
state amplitude. These deviations of the transition curves and
exceptional quasiperiodic oscillations are possibly caused by
coupling to a different rigid body mode of the mirror or high
order components of the voltage input, which are largest for
0.5 duty cycle [38], but they cannot be analyzed by the first or-
der perturbation approximation of the SDoF dynamics in (19).
For low voltages, the measurements are consistent with an
assumed 30 % increase in damping over the identified value,

Post-print version (generated on 04.06.2021)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: H. W. Yoo, S. Albert, G. Schitter, “Fourier Series based Analytic Model of a Resonant
MEMS Mirror for General Voltage Inputs,”Journal of Microelectromechanical Systems, vol. 30, no. 3, pp. 343-359, 2021.
DOI: 10.1109/JMEMS.2021.3072795
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/JMEMS.2021.3072795


JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. XX, NO. X, XX 2020 12

1 1.05 1.1 1.15 1.2

frequency, normalized

-135

-90

-45

0

45

90

135

180

p
h

a
se

 2
 [

d
e

g
re

e
]

duty 0.2

duty 0.5

duty 0.7

sqrt. sine

1.02 1.04 1.06

80

85

90

(a) simulated frequency-phase responses

1 1.1 1.2 1.3 1.4

frequency, normalized

0

20

40

60

80

100

p
e

a
k 

in
p

u
t 

v
o

lt
a

g
e

 [
V

]

Rect. duty 0.2, model

Rect. duty 0.2, meas.

Rect. duty 0.4, model

Rect. duty 0.4, meas.

Rect. duty 0.5, model

Rect. duty 0.5, meas.

Rect. duty 0.7, model

Rect. duty 0.7, meas.

Sqrt. sine, model

Sqrt. sine, meas.1 1.005 1.01
10

12

14

16

18

(b) simulated and measured transition curves

10 20 30 40 50

time, normalized

-0.02

0

0.02

a
n

g
le

, n
o

rm
a

li
ze

d

(c) measured steady state quasiperiodic oscillation

Fig. 10. (a) Simulated frequency-phase plot with a 70 V peak input voltage
for rectangular waveforms with 0.2 to 0.7 duty cycles and a square rooted
sine waveform, including equilibria at zero amplitude (finer darker lines).
The stable and unstable equilibria are drawn by solid lines and dotted lines,
respectively. (b) Measured and simulated transition curves of the parametric
resonance for various peak input voltages and input waveforms from the model
and measurements. (c) Measured steady state quasiperiodic oscillation (blue
solid line) at the start-up with 0.5 duty cycle and 82 V peak input voltage
(black + mark in (b)). The red solid lines show the envelope of the angular
trajectory.

which can be due to the first order perturbation approximation
[38] or a physical damping mechanism that is not identified
by the averaging method. In general for most voltage inputs,
however, the proposed model shows a good agreement with
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Fig. 11. Simulated evolution of the poles along the stable solutions with 90 V
peak input voltage and duty cycles of 0.2, 0.5, and 0.7. The amplitude of the
poles are represented by the colors of the points, illustrating the direction of
the pole movement with changing amplitude.

the measurements, verifying the proposed asymptotic analysis
at zero amplitude.

D. Local dynamics at Stable Equilibria

The local dynamics at a specific equilibrium is crucial for
robustness against external disturbances [41] and the design
of the control [35]. Fig. 11 describes the root locus of the
complex valued poles of Jacobians of (40) for the duty cycles
of 0.2, 0.5, and 0.7. The eigenfrequencies and damping ratios
of the local dynamics are represented by the absolute value
and the argument of the poles. Fig. 12 shows simulation
and measurements of eigenfrequencies and damping ratios
of the local dynamics for various duty cycles and peak
input voltages. The eigenfrequencies at a given stationary
amplitude of the global dynamics are increased as the peak
input voltage becomes higher or the duty cycle decreases.
In contrast, the damping ratio decreases as the peak input
voltage becomes higher or the duty cycle decreases. Although
the detailed analysis of the local dynamics is not complete
by evaluation of eigenfrequency and damping ratio only, it is
apparent that a trade-off between the choice of the duty cycle
and the peak input voltage exists to attain the desired local
dynamics. Besides, a large flat region of both eigenfrequency
and damping is observed for large amplitudes, which can be
regarded as beneficial operational points for a control design
[35]. Overall, the simulation results show a good agreement
with measurements except for a large mismatch at amplitudes
near 0.4, where a mode coupling to the translational in-plane
mode perpendicular to the rotation axis occurs rendering the
SDoF model (1) insufficient.

These results verify that the proposed slow flow model
with a Fourier based torque approximation and a Fourier-
decomposed input waveform can accurately describe the be-
havior of a parametrically driven resonant MEMS mirror,
showing potentials for the fast and accurate analysis of reso-
nant MEMS mirror designs and their control.
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Fig. 12. Eigenfrequency and damping ratio of the simulated Jacobian matrix (light colored solid lines) and the measurements (dark colored dashed lines) for
various peak input voltages and duty cycles.

V. CONCLUSION

This paper proposes an accurate analytic model for a reso-
nant MEMS mirror with general voltage inputs for describing
its global and local dynamics. Both the nonlinear torque
function and the input waveform are approximated by Fourier
series with a finite number of coefficients, leading to a slow
flow model and a Jacobian at equilibrium featuring dynamic
influence matrices and vectors with Bessel functions. The
dynamic influence matrices and vectors are only amplitude-
dependent, describing the dynamic effects by frequency com-
ponents of the comb drive torque and the input waveform. An
analysis of the asymptotic behavior at zero amplitude reveals
that only the constant and the fundamental frequency compo-
nents of the input waveform influence stationary solutions and
the transition curve, corresponding to a simple approximation
by Mathieu’s equation. The models and analysis are verified
by rectangular input waveforms with various duty cycles
as examples of general voltage inputs. Frequency responses
demonstrate a high accuracy of the proposed model of 0.06 %
and 0.47 % frequency error for large and small amplitudes,
which corresponds to 1.2 Hz and 9.4 Hz peak errors for
2 kHz linear mirror frequency, respectively. Amplitude-phase
plots, phase portraits, transition curves, and local dynamics
demonstrate a good agreement with measurements, verifying
the accuracy of the proposed model in various aspects.

The proposed analytic model can also provide practical

benefits via a wide range of accurate and efficient analyses for
resonant MEMS mirrors and their control design even prior to
MEMS fabrication and characterization. As demonstrated as
an application example, the required bandwidth of the driving
circuits can be deduced with the model from the design of the
comb drive and the target amplitude. In addition, an analysis
of the start-up can lead to a fast start-up strategy without
transiting through a bifurcation between the bottom and the
top response curve. An optimal input waveform can be also
investigated considering certain target characteristics of the
MEMS mirror. For robustness analysis to external vibration
[41], a fast and accurate analysis of local dynamics allows an
accessible design tool for a realistic performance estimation
by employing the usual rectangular waveform of typical use
cases. This enables a systematic design of resonant MEMS
mirrors and their control for high precision and robustness
applications, e.g. automotive lidars.

APPENDIX A
PROOF OF THE LEMMA

Generalized cases of Lemma 1 are given as follows.

Lemma 3. Consider generalized averaging integrals over a
period of the motion for integers p and q. If p+ q is an odd
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number, the averaging integrals are given by
∫ 2π

0

sin (ρnA cosω) cos qω cos (pω − pβ) dω

= π
(
J(p−q)(ρnA) sin

(p− q

2
π
)
+ J(p+q)(ρnA) sin

(p+ q

2
π
))

× cos pβ, (71)
∫ 2π

0

sin (ρnA cosω) sin qω cos (pω − pβ) dω

= π
(
J(p−q)(ρnA) sin

(p− q

2
π
)
− J(p+q)(ρnA) sin

(p+ q

2
π
))

× sin pβ, (72)
∫ 2π

0

sin (ρnA cosω) cos qω sin (pω − pβ) dω

= π
(
−J(p−q)(ρnA) sin

(p− q

2
π
)
− J(p+q)(ρnA) sin

(p+ q

2
π
))

× sin pβ, (73)
∫ 2π

0

sin (ρnA cosω) sin qω sin (pω − pβ) dω

= π
(
J(p−q)(ρnA) sin

(p− q

2
π
)
− J(p+q)(ρnA) sin

(p+ q

2
π
))

× cos pβ. (74)

If p+ q is an even number, all integrals are zero.

Proof. Regarding the first case, trigonometric identities de-
compose the latter part as

cos qω cos (pω − pβ)

=
1

2
((cos(p+ q)ω + cos(p− q)ω) cos pβ

+(sin(p+ q)ω + sin(p− q)ω) sin pβ) .

This leads to

1

2

∫ 2π

0

sin (ρnA cosω) ((cos(p+ q)ω + cos(p− q)ω) cos pβ

+(sin(p+ q)ω + sin(p− q)ω) sin pβ) dω

=
1

4

∫ 2π

0

(sin ((p+ q)ω + ρnA cosω)

+ sin (−(p+ q)ω + ρnA cosω)) dω cos pβ

+
1

4
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0
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+
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+ cos (−(p+ q)ω + ρnA cosω)) dω sin pβ

+
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0

(− cos ((p− q)ω + ρnA cosω)

+ cos (−(p− q)ω + ρnA cosω)) dω sin pβ.

Set a new parameter w = ω − π/2. The function inside of
integral is periodic by 2π, i.e. the interval can be shifted by
[−π, π]. The first term is

1

4

∫ π

−π

(
sin
(
(p+ q)w +

p+ q

2
π + ρnA cos

(
w +

π

2

))

+sin
(
−(p+ q)w − p+ q

2
π + ρnA cos

(
w +

π

2

)))
dw cos pβ

=
π

2

(
J(p+q)(ρnA)− J−(p+q)(ρnA)

)
sin
(p+ q

2
π
)
cos pβ

=
π

2
(1− (−1)(p+q))J(p+q)(ρnA) sin

(p+ q

2
π
)
cos pβ,

by Jν(z) = (−1)νJ−ν(z) for integer ν. By a similar manner,
the second term is

1

4

∫ π

−π

(
sin
(
(p− q)w +

p− q

2
π + ρnA cos

(
w +

π

2

))

+sin
(
−(p− q)w − p− q

2
π + ρnA cos

(
w +

π

2

)))
dw cos pβ

=
π

2
(1− (−1)(p−q))J(p−q)(ρnA) sin

(p− q

2
π
)
cos pβ.

For cosine parts,

1

4

∫ π

−π

(
− cos

(
(p+ q)w +

p+ q

2
π + ρnA cos

(
w +

π

2

))

+cos
(
−(p+ q)w − p+ q

2
π + ρnA cos

(
w +

π

2

)))
dw sin pβ

=
π

2
(−1 + (−1)(p+q))J(p+q)(ρnA) cos

(p+ q

2
π
)
sin pβ.

This is because the sine term with integral is canceled by the
integral. In a similar manner, the second term is

1

4

∫ π

−π

(
− cos

(
(p− q)w +

p− q

2
π + ρnA cos

(
w +

π

2

))

+cos
(
−(p− q)w − p− q

2
π + ρnA cos

(
w +

π

2

)))
dw sin pβ

=
π

2
(−1 + (−1)(p−q))J(p−q)(ρnA) cos

(p− q

2
π
)
sin pβ.

By adding up and (−1)p+q = (−1)p−q for integer p and q,
the total value is

∫ 2π

0

sin (ρnA cosω) cos qω cos (pω − pβ) dω

=
π

2
(1− (−1)(p+q))

(
J(p+q)(ρnA) sin

(
p+ q

2
π

)

+J(p−q)(ρnA) sin

(
p− q

2
π

))
cos pβ

+
π

2
(−1 + (−1)(p+q))

(
J(p+q)(ρnA) cos

(
p+ q

2
π

)

+J(p−q)(ρnA) cos

(
p− q

2
π

))
sin pβ

=

{
Λ, p+ q is odd,
0, p+ q is even,

where

Λ = π

(
J(p+q)(ρnA) sin

(
p+ q

2
π

)

+J(p−q)(ρnA) sin

(
p− q

2
π

))
cos pβ.

The other results are obtained in a similar manner.

The Lemma 1 is a special case of p = 2m and q = 1 with
a Bessel identity of Jν+1(z) =

2ν
z Jν(z)−Jν−1(z) for ν ∈ Z.

By a similar way, a generalized corollary can be drawn as
follows.
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Corollary 4. Consider generalized averaging integrals over a
period of the motion for integers p and q. If p+ q is an even
number, the averaging integrals are given by
∫ 2π

0

cos (ρnA cosω) cos qω cos (pω − pβ) dω

= π
(
J(p−q)(ρnA) cos

(p− q

2
π
)
+ J(p+q)(ρnA) cos

(p+ q

2
π
))

× cos pβ, (75)
∫ 2π

0

cos (ρnA cosω) sin qω cos (pω − pβ) dω

= π
(
J(p−q)(ρnA) cos

(p− q

2
π
)
− J(p+q)(ρnA) cos

(p+ q

2
π
))

× sin pβ, (76)
∫ 2π

0

cos (ρnA cosω) cos qω sin (pω − pβ) dω

= π
(
−J(p−q)(ρnA) cos

(p− q

2
π
)
− J(p+q)(ρnA) cos

(p+ q

2
π
))

× sin pβ, (77)
∫ 2π

0

cos (ρnA cosω) sin qω sin (pω − pβ) dω

= π
(
J(p−q)(ρnA) cos

(p− q

2
π
)
− J(p+q)(ρnA) cos

(p+ q

2
π
))

× cos pβ. (78)

If p+ q is an odd number, the integrals are all zero.

APPENDIX B
DERIVATION OF SLOW FLOW MODEL

Before applying the solvability condition of (20), the deriva-
tive term is rewritten as

D1D0x0 = −∂A(T1)

∂T1
σ sinω − ∂β (T1)

∂T1
σA(T1) cosω.

By Lemma 1 and Corollary 2, the real part is reduced as

0 =

∫ 2π

0

[
2Aµ(A)σ sinω cosω +

(
σ2 − 1

)
A cos2 ω −K3A

3 cos4 ω

− K5A
5 cos6 ω −K7A

7 cos8 ω + U2au(0)
N∑

n=1

b(n) sin (ρnA cosω) cosω

+2U2
N∑

n=1

M∑

m=1

b(n)au(m) sin (ρnA cosω) cosω cos (2m (ω − β))

+2U2
N∑

n=1

M∑

m=1

b(n)bu(m) sin (ρnA cosω) cosω sin (2m (ω − β))

+2

(
∂A

∂T1

)
σ sinω cosω + 2

(
∂β

∂T1

)
Aσ cos2 ω

]
dω

= −2π
3K3A3

8
− 2π

5K5A5

16
− 2π

35K7A7

128

+ 2πσA
∂β

∂T1
+

2π(σ2 − 1)A

2
+ 2πU2au(0)

(
N∑

n=1

b(n)J1(ρnA)

)

+ 2πU2
N∑

n=1

M∑

m=1

(−1)m b(n)au(m)

× (J2m+1(ρnA)− J2m−1(ρnA)) cos (2mβ)

+ 2πU2
N∑

n=1

M∑

m=1

(−1)m b(n)bu(m)

× (−J2m+1(ρnA) + J2m−1(ρnA)) sin (2mβ) ,

and the imaginary part is then

0 =

∫ 2π

0

[
2Aµ(A)σ sin2 ω +

(
σ2 − 1

)
A cosω sinω

−K3A
3 cos3 ω sinω −K5A

5 cos5 ω sinω −K7A
7 cos7 ω sinω.

+ U2au(0)

N∑

n=1

b(n) sin (ρnA cosω) sinω

+ 2U2
N∑

n=1

M∑

m=1

b(n)au(m) sin (ρnA cosω) sinω cos (2m (ω − β))

+2U2
N∑

n=1

M∑

m=1

b(n)bu(m) sin (ρnA cosω) sinω sin (2m (ω − β))

+2

(
∂A

∂T1

)
σ sin2 ω + 2

(
∂β

∂T1

)
Aσ cosω sinω

]
dω

= 2πσAµ(A) + 2πσ

(
∂A

∂T1

)

+ 2πU2
N∑

n=1

M∑

m=1

(−1)m b(n)au(m)

× (−J2m+1(ρnA)− J2m−1(ρnA)) sin (2mβ)

+ 2πU2
N∑

n=1

M∑

m=1

(−1)m b(n)bu(m)

× (−J2m+1(ρnA)− J2m−1(ρnA)) cos (2mβ) .

Equations in real and imaginary part lead to two partial
differential equations as

∂A

∂T1
= −Aµ(A)− U2

σ

N∑

n=1

M∑

m=1

(−1)
m+1

b(n)au(m)

× (J2m+1(ρnA) + J2m−1(ρnA)) sin (2mβ)

− U2

σ

N∑

n=1

M∑

m=1

(−1)
m+1

b(n)bu(m)

× (J2m+1(ρnA) + J2m−1(ρnA)) cos (2mβ) , (79)

A
∂β

∂T1
=

3K3A
3

8σ
+

5K5A
5

16σ
+

35K7A
7

128σ
− (σ2 − 1)A

2σ

− U2au(0)

σ

(
N∑

n=1

b(n)J1(ρnA)

)

− U2

σ

N∑

n=1

M∑

m=1

(−1)
m+1

b(n)au(m)

× (−J2m+1(ρnA) + J2m−1(ρnA)) cos (2mβ)

− U2

σ

N∑

n=1

M∑

m=1

(−1)
m+1

b(n)bu(m)

× (J2m+1(ρnA)− J2m−1(ρnA)) sin (2mβ) . (80)

The result in [26] is a special case with au(0) = 1, au(1) =
1/2, and zeros for the other Fourier coefficients of the input
waveform. By assuming A > 0, rewriting summations in a
matrix form, and using the ordinary differential operator, (79)
and (80) yield (29) and (30).
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