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A multiscale mean field model for elastic
properties of hypereutectoid pearlitic steels
with different microstructures

Multiscale modeling of macroscopic elastic properties of
pearlitic hypereutectoid steel using the Eshelby matrix–in-
clusion approach is possible. The model works through suc-
cessive homogenization steps, based on the elastic properties
of cementite and ferrite. Globular pearlite is homogenized
using a Mori–Tanaka approach. Lamellar pearlite and pear-
lite colonies with fragmented proeutectoid cementite are
homogenized by a classical self-consistent scheme. In the
case of pearlite colonies surrounded by a continuous cemen-
tite film, a generalized self-consistent scheme is used. The
influence of microstructural parameters such as the pearlite
colony size or the thickness of the proeutectoid cementite
on Young’s and shear moduli and on coefficients of the stiff-
ness tensor is simulated. Proof of concept is obtained by
comparison between predicted elastic behavior and experi-
mental results from the literature.

Keywords: Micromechanics; Multiscale; Homogenization;
Hypereutectoid; Steel

1. Introduction

The elastic properties of a material depend on its microstruc-
ture. In continuum micromechanics modeling, a microstruc-

ture is defined as the whole of inhomogeneities in a given ma-
terial at a given state. Inhomogeneities can be classified by
their dimension from 0D, for example a lattice vacancy, up
to 3D, including spatially distributed phases and their differ-
ent chemical compositions, crystallographic structures and in-
trinsic elastic properties. A microstructure evolves during
thermo-mechanical treatment. Each transient state of an evol-
ving microstructure during thermo-mechanical treatment can
be defined in terms of the changes of microstructural constitu-
ents such as grain and subgrain size and orientation distribu-
tion, as well as phase contents, sizes and morphologies. The
evolving microstructure affects the macroscopic materials
properties. These effects of micro- or mesoscale artefacts on
the macroscopic elastic properties of the material can be de-
scribed by continuum micromechanics modeling. A simple
mean field approach simulates these properties for the materi-
al taken as a homogeneous bulk. For the critical issue of the
transition from the microscale to the macroscale, established
homogenization models are employed in a multiscale ap-
proach. This means, as in Hellmich’s group’s work [1–4],
that successive homogenizations are applied at different size
scales. We use homogenized phases at lower scales as input
for homogenization at higher scales. The use of such a multi-
scale homogenization approach – as opposed to single-step
homogenization – is assessed for biological or construction
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materials (bones, concrete. . .), as presented by Hellmich’s
group, but not for polycrystalline metals. Repeated homogeni-
zation steps are, however, required in the modeling of hyper-
eutectoid steels due to their composite nature of pearlite and
the presence of proeutectoid cementite. The assessment of
the applicability of multiscale homogenization to this material
is thus the innovative part of the present work. The used
homogenization models are based on Eshelby’s equivalent in-
clusion method [5] and are well documented in the literature
[1, 6, 7]. Up to now, their use in steel modeling has been re-
stricted to microstructures requiring only a single homogeni-
zation step. Examples include the simulation of the elastoplas-
tic properties of dual-phase steels by Brassart [8] with adapted
Hill’s self-consistent schemes [9], simulative strength–ducti-
lity optimization of transformation-induced plasticity steels
and associated phase stability criteria by Lani [10] using a
Mori–Tanaka homogenization scheme [11] combined with
the secant pseudo-elastic moduli from Berveiller and Zaoui
[12], and the evaluation of elastoplasticity of a dual-phase
steel by Perdahcıoğlu [13], comparing the results of different
adaptations of Hill’s homogenization schemes [9]. The focus
will be kept on elastic properties in the present work, since
its purpose is to evaluate the validity of the adaptation of mul-
tiscale homogenization for the complex microstructures of
hypereutectoid steel.

2. Material

Hypereutectoid steels contain a carbon concentration above
the carbon concentration for the eutectoid decomposition
from austenite to ferrite (a) and cementite (Fe3C, h), which,
in the Fe–C system, lies at 0.77 wt.% C. Their higher hard-
ness in comparison to steels with lower carbon concentra-
tions makes them particularly interesting for some industrial
applications such as rail production. During the cooling in-
volved in the alloy’s production process after the austenitiza-
tion, proeutectoid cementite (or, synonymous, secondary ce-
mentite, denoted as hS in the following) nucleates at the
austenite grain boundary edges and corners [14] and may
form a continuous film (CC) or fragmented film (FC) along
the grain boundary [15]. Once the temperature of the alloy
is below the steel eutectoid temperature, the eutectoid reac-
tion starts, and pearlite colonies with alternating lamellae of
aP and hP [16] grow from the austenite grain boundaries.
Due to the effect of carbides formed prior to pearlite [17] or
as a consequence of soft annealing [18], the pearlite may be
spheroidized. In this case, in place of a lamellar pearlite
(LP) microstructure, globular pearlite (GP) is found, which
consists of h precipitates within a matrix of a.

3. Multiscale mean field continuum micromechanics
modeling

In our present modeling, macroscopic mechanical proper-
ties of hypereutectoid steel are deduced from the knowl-
edge of the mechanical properties of the individual phases
composing this material, i. e. proeutectoid cementite hS,
pearlitic cementite (hP) and pearlitic ferrite (aP). The key

idea of the present model is that the investigated material
follows the so-called Eshelby matrix–inclusion problem
[5]: the sample can be considered as a composite material
made of a matrix surrounding ellipsoidal inclusions. Con-
sistent modeling requires consideration of interactions be-
tween the different inclusions. For this, different calcula-
tion schemes are used, the Mori-Tanaka, classical self-
consistent scheme (CSCS) and the generalized self-consis-
tent scheme (GSCS). In essence, a virtual reconstruction of
various hypereutectoid steel microstructures is obtained by
our model, and their respective elastic properties can be
evaluated. Integral parts of the model development are pre-
sented in the following.

3.1. Multiscale homogenization

Homogenization is defined as the replacement of a hetero-
geneous material by an equivalent statistically homoge-
neous one, having the same macroscopic behavior and de-
scribed by a representative volume element (RVE). Here,
the RVE is treated as the smallest material volume element
for which the macroscopic behavior of the constitutive
moduli of the homogenized material are a sufficiently accu-
rate approximation of the macroscopic mean field response
of the same moduli in the microheterogeneous material
[19]. The separation of scales implies

L� d ð1Þ

where L is the characteristic length of the RVE and d is the
characteristic length of the inhomogeneities within the
RVE. This separation of scales is a limiting factor defining
a maximal size scale for the inhomogeneities compared to
the RVE. It appears that L = 4.5d is sufficient to guarantee
a high accuracy of the results, with a maximum error of
1 % [19]. Within one RVE a set of homogeneous or quasi-
homogeneous subdomains can be defined, which are called
material phases [20].

In a multiscale approach, a previously defined material
phase that appears quasi-homogeneous on the scale of the
RVE may still exhibit a heterogeneous internal microstruc-
ture when observed at its own characteristic scale. We may
then define a new RVE of smaller dimensions (typically of
the same size scale as the inhomogeneities in the larger
RVE), representative of respective material phase and ap-
ply the rule of separation of scales as defined by Eq. (1),
for the new RVE [3]. Then it is possible to obtain iteratively
the macroscopic properties of the entire material from the
properties of the smallest identified material phases consti-
tuting the macroscopic material. The scale of the smallest
material phase involved in the model is confined by the us-
ability of continuum mechanics. This effectively allows
taking into account phases with a size in the order of magni-
tude of 100 nm [3].

3.2. Linear elasticity and the homogenization problem

Typically, metallic materials show linear elastic behavior.
We thus only consider linear elasticity. We consider an RVE
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of domain X and volume V, and we set the following consti-
tute equations: Hooke’s law for linear elasticity (Eq. (2)),
static equilibrium conditions disregarding volume forces
(Eq. (3)), and linear strain–displacement relations (Eq. (4)).

r xð Þ ¼ C xð Þ : e xð Þ ð2Þ

div r xð Þ ¼ 0 ð3Þ

e xð Þ ¼ 1
2
ru þ truð Þ ð4Þ

Here, x is the position vector, r(x) and e(x) are respectively
the second-order tensors for the local stresses and strains,
C(x) is the fourth-order stiffness tensor, and u(x) is the dis-
placement tensor. The double dot \:" notes the double con-
traction tensor product, such that for example for Eq. (2)
rij = Cijklekl. The so-called concentration or localization
problem in continuum micromechanics is concerned with
the modeling and derivation of the local stress and strain
fields from the knowledge of the macroscopic stress and
strain fields R(X) and E(X), respectively. The homogeniza-
tion problem on the other hand is concerned with the deri-
vation of the macroscopic stress and strain fields from the
knowledge of the local ones. As explained originally by
Zaoui [6] and resumed by the research group of Hellmich
[1, 3, 20, 21], the original localization problem requires set-
ting of detailed boundary conditions, which is why homo-
geneous macroscopic strain boundary conditions – or so-
called Hashin boundary conditions [22] – are assumed:

u xð Þ ¼ E:x ð5Þ

and under such homogeneous strain boundary conditions,
the following strain average rule follows:

E ¼ 1
X

Z

X

e xð ÞdV ð6Þ

And similarly, stress averaging on the macroscopic scale in-
side the RVE leads to:

R ¼ 1
X

Z

X

r xð ÞdV ð7Þ

The macroscopic stress and strain fields, R(X) and E(X), are
now defined as spatial macroscopic average stresses R and
strains E. Meanwhile, from the point of view of the homo-
genization problem, we write:

R ¼
X

p

fprp ð8Þ

E ¼
X

p

fpep ð9Þ

where p is an index running over all phases considered in
the RVE, fp is the volume fraction of phase p, and rp and

ep are the second-order tensors of average phase stresses
and strains for the phase p, respectively. For the complete
description of the multiscale problem a localization relation
is needed, allowing to reach every individual rp and ep from
respectively R and E. The linearity of the constitutive equa-
tions (Eqs. (2) to (4)) and the unicity of their solution leads
to the definition of the fourth-order strain concentration ten-
sors of phase p, Ap, with:

ep ¼ Ap : E ð10Þ

We finally distinguish a macroscopic stiffness tensor Chom

and a phase stiffness tensor Cp for the phase p allowing the
use of the macroscopic Hooke’s law for linear elasticity
and the same constitutive law as given by Eq. (2) but for
phase p:

R ¼ Chom : E ð11Þ

rp ¼ Cp : ep ð12Þ

Chom is derived from the different phase stiffness tensors
and the previous relations as shown in Hellmich’s group’s
works [2, 4], considering that fp and Cp are supposed to be
known for each phase p and that Ap can be estimated using
matrix-inclusion calculations such as presented by Eshelby
[5] and Benveniste [23]:

Chom ¼
X

p

fpCp : Ap ð13Þ

and finally:

Chom ¼
X

p

fpCp : I þ P0
p : Cp � C0
� �h i�1

:
X

q

fq I þ P0
q : Cq � C0
� �h i�1

( )�1

ð14Þ

where I is the fourth-order identity tensor, P0
p is the fourth-

order Hill tensor accounting for the shape of the phase p
forming an inclusion within a matrix described by the
fourth-order stiffness tensor C0. C0 is the stiffness tensor of
a homogeneous matrix of an Eshelby matrix-inclusion con-
figuration. Its calculation schemes are discussed in the fol-
lowing.

3.3. Parametrization of the Eshelby matrix–inclusion
problem

The material RVE is homogenized by considering it as an
Eshelby matrix–inclusion configuration, a composite with
a set of ellipsoidal inclusions embedded in a homogeneous
matrix. The calculation schemes used in the present work
for the determination of C0 are the following: the Mori–Ta-
naka calculation scheme [11] as reformulated by Benve-
niste [23], recommended for the homogenization of real
matrix–inclusion composites; the CSCS [24 – 26], recom-
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mended for polycrystalline aggregate structures; and the
GSCS [27, 28] for a polycrystalline aggregate in which
every individual inclusion is surrounded by a film of a
homogeneous matrix phase. We used the more recent for-
mulation by Benveniste of GSCS in this work [28]. This
formulation requires isotropic elastic behavior of the inclu-
sions and the film, and all inclusions have to be spherical.

The derivation method of the Hill tensor (Eq. (14)) de-
pends on the C0 tensor, on the possible stiffness symmetries
and, in the case of an ellipsoidal inclusion, on the aspect ra-
tio a and the slenderness ratio s of the inclusion,

a ¼ r1

r2
and s¼ r1

r3
ð15Þ

where ri is the length of the inclusion in the direction i of the
system’s orthogonal coordinate system attached to the in-
clusion. The direction i = 3 will be preferentially given to

the direction of the longest inclusion dimension. For further
details about the derivation of Hill tensors, the reader is re-
ferred to the literature [3, 6].

3.4. Implementation of tensor calculation

Theory of continuum micromechanics is built via tensor cal-
culation, computed by a simpler matrix formulation. The dif-
ferent tensors involved in our work are fourth-order tensors
with symmetry rules allowing reduction of the original 81
coefficients of the tensor to 36 distinct components. The
Mandel or Kelvin–Mandel variant of the Voigt notation is
used for equivalence between tensor operations and matrix
operations, as presented and discussed in [29–31]. With i, j,
k and l being the indexes of the coefficients Cijkl in the con-
sidered fourth-order stiffness tensor:

Fig. 1. Schematic representation of the real
microstructure, with cementite (black) and
ferrite (white) (left side) and the different
steps of the multiscale modeling approach.
ra = uniform far-field stress; r(m) = effective
matrix stress. h.p. = homogenized pearlite;
h.i.p. = homogenized isotropic pearlite.

Table 1. Homogenization schemes used for studied microstructures.

Case 1 Case 2 Case 3 Case 4

Steel microstructure LP LP GP GP
Homogenization scheme

of pearlite
CSCS CSCS Mori-Tanaka Mori-Tanaka

Phase relations Parallel discs of a and h Parallel discs of a and h h spheres in a matrix h spheres in a matrix
hs appearance CC FC CC FC

Homogenization scheme
of hs

GSCS CSCS GSCS CSCS

Virtual microstructure h film around pearlite
sphere

Pearlite spheres and
h spheres

h film around pearlite
sphere

Pearlite spheres and
h spheres
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C¼

C1111 C1122 C1133

ffiffiffi
2
p

C1132

ffiffiffi
2
p

C1131

ffiffiffi
2
p

C1121

C2211 C2222 C2233

ffiffiffi
2
p

C2232

ffiffiffi
2
p

C2231

ffiffiffi
2
p

C2221

C3311 C3322 C3333

ffiffiffi
2
p

C3332

ffiffiffi
2
p

C3331

ffiffiffi
2
p

C3321ffiffiffi
2
p

C2311

ffiffiffi
2
p

C2322

ffiffiffi
2
p

C2333 2C2332 2C2331 2C2321ffiffiffi
2
p

C1311

ffiffiffi
2
p

C1322

ffiffiffi
2
p

C1333 2C1332 2C1331 2C1321ffiffiffi
2
p

C1211

ffiffiffi
2
p

C1222

ffiffiffi
2
p

C1233 2C1233 2C1231 2C1221

2
6666664

3
7777775

ð16Þ

This type of notation is used with all fourth-order tensors
in the present work. When one knows the stiffness matrix
C of a material, it is possible to obtain the Young’s moduli
Ei for the different directions i of the coordinate system.
Isotropic behavior, for the case of GSCS, further allows
for straightforward evaluation of bulk modulus j and shear
modulus l of the material.

4. Application to microstructure modeling of
hypereutectoid steel

4.1. Hypereutectoid steel microstructures and their avatars

Four microstructures of hypereutectoid steel are consid-
ered: 1) Lamellar pearlite colonies with CC (denoted LP/
CC in the following); 2) LP/FC; 3) Globular pearlite colo-
nies (GP) with CC (GP/CC); 4) GP/FC. A schematic repre-
sentation of the studied microstructures and their modeled
counterparts is presented in Fig. 1, with classical definitions
of stress for the homogenization schemes. Their respective
homogenization schemes are listed in Table 1.

The following assumptions are used in the mean field elas-
ticity modeling of lamellar pearlite: we consider that there is
only one orientation of the pearlite lamellae per former auste-
nite grain. The virtual microstructure then contains an ensem-
ble of pearlite colonies with exactly the same lamellar struc-
ture but different orientations, representing one material
phase per orientation, surrounded by hS. Indeed, by this setup,
the influence of hS on elastic properties will be intrinsically
overestimated. It should also be mentioned that an RVE can-
not be perfectly filled only by spheres. This supposes a partial
virtual overlapping of the spherical pearlite colonies.

The elastic properties of h and a are sufficient inputs for
the calculation of the elastic properties of the entire materi-
al. Both phases are considered as isotropic. The dependence
of elastic properties on direction due to relative crystallo-
graphic orientation differences between hP and aP are ne-
glected. Orientation differences are expected to vanish at
the macroscopic scale after homogenization due to the pre-
sence of multiple pearlite colonies with diverse orientations
in the material. This further advises the use of simple com-
binations of elastic parameters, bulk and shear moduli as
modeling inputs instead of full stiffness matrices.

4.2. Determination of stiffness matrix

For derivation of the stiffness matrix of the homogenized
pearlite Cpearl for both studied pearlite types, LP and GP,

the following inputs are used: the stiffness matrix of h
Cpcem, the stiffness matrix of ferrite Cfer, the volume frac-
tion of hP, fpcem and the volume fraction of aP, fpfer. For LP,
the thickness/length aspect ratio apcem and the slenderness
ratio spcem of hP lamellae, and of aP lamellae (apfer, spfer)
are additional modeling inputs. We consider that the lamel-
lae have the shape of discs parallel to directions i = 2 and
i = 3 (see Table 1), therefore aspect and slenderness ratios
are equal. Considering equal length – or diameter – of hP
and aP lamellae (llam), the following relations hold:

apcem ¼ spcem ¼
fpcem:k

llam
¼ fpcem:x ð17Þ

apfer ¼ spfer ¼
fpfer:k

llam
¼ fpfer:x ð18Þ

with

x ¼ k

llam
ð19Þ

k is the interlamellar spacing. x may be seen as a \general-
ized aspect ratio" for both types of pearlite lamellae. It de-
scribes the general trend for the aspect of both aP and hP la-
mellae due to their length and interlamellar spacing,
weighted by fpfer and fpcem. This definition of x allows for
the setting of the lamellar shape independently of the size
of the pearlite colony. In order to avoid scaling problems
with lamellar inclusions of too large dimensions in compar-
ison to the dimensions of the RVE, i. e. the size of the pear-
lite colony, for a given dpearl, we define a maximal pearlitic
lamellar length lmax = dpearl/4.5, resulting in the minimal
general slenderness factor xmin for a given interlamellar
spacing k

xmin ¼
4:5k
dpearl

� x ð20Þ

The stiffness matrix of the entire homogenized material,
Cmat is derived using Ccem, the previously calculated Cpearl,
the volume fraction of hS, fscem and the volume fraction of
pearlite fpearl. dscem is the thickness of the hS layer in the case
of CC, or precipitate diameter in the case of FC. An approx-
imation of fscem from dpearl and dscem is possible, considering
the volume of a pearlite sphere relatively to the volume of a
surrounding hS film of thickness dscem/2:

fscem ¼
dscem: 3: dpearl þ dscem

2

� �2 þ dscem
2

� �2
� �

4: dpearl þ dscem
� �3 ð21Þ

For FC, Cmat is derived using the classical self-consistent
scheme. We note that for FC, Eq. (21) will overestimate
fscem. The lack of systematic statistically relevant data on
the differences in fscem between CC and FC in the literature
prevents us from evaluating the exact extent of this over-
estimation. However, we qualitatively assume the use of
Eq. (21) acceptable.
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4.3. Implementation of the diversity factor

For CC, Cmat is derived using GSCS because it is the only
homogenization scheme allowing description of a homoge-
neous matrix film surrounding an inclusion without break-
ing the rule of separation of scales. This requires a further
constraint for the combination LP/CC, since the equations
used for GSCS work only if all phases constituting the
homogenized material are isotropic [28]: not only hs but
also pearlite must show isotropic properties. The LP case
leads only to transverse isotropy since pearlite is constituted
here of parallel discs of isotropic hP and aP materials. The
problem is solved by inserting an intermediate step between
the homogenization of the single pearlite inclusions and the
homogenization of the macroscopic material. In this inter-
mediate step, we define a diversity factor D of the pearlite
colonies’ orientations. The orientation of the lamellae of a
given colony is defined using a set of three Euler angles,
and D is an integer that represents how many different equi-
distant values each Euler angle is allowed to take. This
means that for a given D, there are D3 different sets of Euler
angles. Once D is defined, a CSCS is used, including a set of
D3 pearlite colonies with the different orientations. Due to
the fact that orientation distributions of pearlite colonies
have not been researched yet, D is calibrated here in a way
to approximate isotropic elastic properties for pearlite, and
the according stiffness matrix Cipearl. Cipearl will then be
used instead of Cpearl for the final homogenization step, see
Fig. 1 for the case 1 (LP/CC). Finally, the homogenized
macroscopic material is isotropic in the four cases LP/GP
– CC/FC.

In the LP/CC case, the requirement of isotropy due to the
use of GSCS prohibits the investigation of preferential
pearlite colony orientations. In principle it would be possi-
ble to homogenize an anisotropic CC material considered
as composite made of a h matrix embedding a – previously
homogenized by CSCS – single pearlite inclusion instead,
using the Mori–Tanaka scheme, and subsequently a macro-
scopic aggregate of such composites could be homogenized
using CSCS. In fact, this method would however break the
rule of separation of scales (Eq. (1)). Fully aware of this
violation, we tested its outcome in comparison to the ap-
proach with GSCS, with similar input data and similar D.
We use D in this example for comparability with the results
using GSCS. This analysis assisted our understanding of
present modeling limitations and provided clues for our
continuative modeling, as discussed in Section 6.2.

4.4. Experimental input data

Input data for the derivation of Ccem and Cfer were taken from
the literature. The standard deviation of this material data
found in the literature is small for a [32] but larger for h
[33]. Knowing this, we chose to test our model using data
for h only from Ledbetter [33] since this is a quite recent
work on isotropic elasticity of cementite and consistent with
other recent data on monocrystalline cementite [34]. Model-
ing results are validated by literature data for hypereutectoid

steel. The simulation yields an entire stiffness matrix of ideal
Fe–C hypereutectoid steel. Whereas directly comparable lit-
erature data is missing, the Young’s (E) and shear (l) moduli
of AISI 1080 steel [35], showing an LP microstructure, are
available. Further, there is information on all stiffness matrix
terms for pearlitic steel with 0.82 wt.% C and a LP micro-
structure [36]. Other experimental data on C1111 are available
for a hypoeutectoid ferritic–pearlitic steel with an LP micro-
structure [32]. Evaluation results of computed C1111 will be
presented and compared with experimental data [32, 36].
For the evaluation of elastic and shear moduli from the vir-
tual stiffness matrix theoretical values of fpcem and fpfer are
calculated from the Fe–C phase diagram, i. e. fpcem = 11 %
and fpfer = 89 % and inserted into Eqs. (17), (18), and (21) in
order to determine apcem, apfer and fscem.

One word on the accuracy of the data used for the assess-
ment of our model: experimental data can be subject to errors,
and the experimental microstructure may deviate from the
simulated one. A way to avoid such problems would be to
compare our simulations to finite element calculations with
similar microstructures. Such data were not available for hy-
pereutectoid steels in the literature. We thus evaluated and se-
lected the considered experimental data with a critical eye,
and discussed its quality in the following chapters for [32, 36].

4.5. Virtual microstructural parameter setup

After determining the stiffness matrix and elastic moduli in
the modeling, the influence of varied virtual microstructural
parameters on the elastic properties of the homogenized
macroscopic material was assessed. For this purpose, dscem
was chosen among meaningful values, with regards to pre-
vious experimental works [37], up to 1 lm. Further, different
values of dpearl, k and x were assessed, with x respecting the
criteria defined by Eq. (20). We noticed that for both LP/CC
and LP/FC, a diversity factor D = 5 represented the lower lim-
it to approximate isotropic behavior of the material. Use of a
diversity factor D = 10 in all calculations, associated with
103 = 1000 different sets of Euler angles, had marginal im-
pact on the calculation time and certified reaching isotropy
approximation. All calculations were done on the software
MATLAB. Table 2 summarizes the material and microstruc-
tural simulation parameters. dpearl and k were chosen as com-
promising values between the data given by Elwazri et al.
[38] and the constraint of Eq. (20) with a suitable value of x.

5. Results

The results of our simulations appear to be close to the data
found in the literature for l and E, and the absolute differ-
ence between the literature data and our values does not
exceed 1.3 GPa (or 1.6 % relative difference) for l and
3.0 GPa (or 1.5 % relative difference) for E for all studied mi-
crostructures, with a consistently larger difference between
the simulation results and the literature data for C1111.

Table 3 compares numerically the simulated values of
C1111, C1122 and C4444 for all modeling cases with experimen-
tal data for pearlitic steel from Durgaprasad et al. [36], and
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the simulated values of C1111 with experimental data of ferri-
tic–pearlitic steel from Kim and Johnson [32]. All simulated
terms deviate considerably from the values reported by Dur-
gaprasad et al. [36], whereas the simulated values of C1111
match well with the values from Kim and Johnson’s work
[32]. Note that the term C1111 of the stiffness matrix of pear-
litic steel obtained by Durgaprasad et al. [36] is lower than
C1111 of ferritic–pearlitic steel as obtained by Kim and John-
son [32] (see Table 2), which clearly justifies the preference
of the data from Kim and Johnson for the purpose of simula-
tion validations. Moreover, Kim and Johnson have shown in
their work [32] the consistency of their data for ferritic–pear-
litic steel with data from several other studies.

Using the same set of material input data, a very small re-
lative difference of less than 0.05% between LP and GP is
found for a given hs morphology (CC or FC) for the evalu-
ated elastic parameters. For a given pearlite morphology
(LP or GP) the relative difference between different hs
morphologies CC and FC is larger for a particular material
input source. It should be noted that the highest values of re-
lative difference between CC and FC (up to 0.20%) are al-
ways seen for the simulation of the shear modulus.

In the following, the effects of varied microstructural pa-
rameters dscem, dpearl, k and x for lamellar pearlitic micro-
structures LP are assessed, choosing the same material input
datasets. We investigate the evolution of the C1111 stiffness
matrix term, of the shear modulus l and of the Young’s mod-
ulus E as a function of dscem and dpearl – see respectively Fig. 2
and Fig. 3 – and compared to the literature references and to
the corresponding phase-fraction-weighted averaged moduli.

Simulated C1111 (a), l (b), and E (c) increase slightly with
increasing dscem. In contrary, C1111 (a), l (b), and E (c) de-
crease slightly with increasing pearlite colony size dpearl.
The volume-weighted averaged values of C1111, l and E
show similar tendencies but less pronounced than for the re-
spective simulated moduli. The larger dscem and the smaller
dpearl, the larger the difference between the simulated and
averaged values. The influence of varied interlamellar spac-
ing k or of the lamellae generalized aspect ratio x on the
elastic properties of the homogenized material is not con-
sidered here. Despite the relevance of these parameters for
industrial applications, to date interrelations between these
microstructural features and mechanical properties lie be-
yond the limitations of the model, which will be discussed
in Section 6.2.

For the LP/CC case, we compared our approach using
GSCS to the approach using Mori–Tanaka and breaking
the rule of separation of scales for different values of dscem
and similar input parameters, including the diversity factor
D. Both methods give similar results for the Young’s modu-
lus, see Fig. 4. This result is also discussed in Section 6.2.

6. Discussion

6.1. Trends of evaluated elastic properties

Since material elastic properties differ between a and h, an
increase in the h phase fraction will shift the values of all
elastic parameters of the homogenized material closer to
the respective values for pure h, independent of CC or FC

Table 2. Material and morphological input parameters.

Phase input data

a (Kim, Johnson, 2007) [32] h (Ledbetter, 2010) [33]

Bulk modulus (GPa) Shear modulus (GPa) Bulk modulus (GPa) Shear modulus (GPa)

167 82 168 90

Compared elastic
steel properties

AISI 1080 steel
(Freitas et al., 2010) [35]

Ferritic-pearlitic steel
(Kim, Johnson, 2007)

[32]

Pearlitic steel (Durgaprasad et al., 2017) [36]

Young’s
modulus

(GPa)

Shear
modulus

(GPa)

C1111 (GPa) C1111 = C2222 =
C3333 (GPa)

C1122 = C1133 =
C2233 (GPa)

C4444 = C5555 =
C6666 (GPa)

211.12 81.95 273.9 237 141 116

Sets of microstruc-
tural parameters

Study of the influence of dscem

dpearl (mm) dscem (mm) Interlamellar
spacing k (mm)

Generalized aspect
ratio x

Diversity
factor D

12 0.1 to 1
(0.1 mm

step)

0.14 0.06 10

Study of the influence of dpearl

dpearl (mm) dscem (mm) Interlamellar
spacing k (mm)

Generalized aspect
ratio x

Diversity
factor D

8 to 16 (1 mm step) 0.2 0.14 0.08 10
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characteristics. This behavior is shown in the simulation,
testing an increase in dscem, while keeping all other model-
ing parameters constant, which actually reflects an increase
in the h phase fraction. The bulk and shear moduli of h ac-

cording to Ledbetter [33] are higher than the respective data
for a taken from Kim and Johnson [32]. Thus, C1111, l and
E increase in the simulation with an increasing h volume
fraction. The opposite trend of elastic properties is of course

Fig. 2. Calculated (a) C1111, (b) l, and (c) E as a function of dscem with
x = 0.065, k = 0.14 lm and dpearl = 12 lm, from the models with LP
and CC or FC at grain boundaries, and corresponding volume-weighted
averaged values. Material input data for a: [32]; material input data for
h: [33].

Table 3. Calculated values of C1111, C1122 and C4444 for LP or GP and for CC or FC, and absolute and relative difference between the
simulated values and the values given by Durgaprasad et al. [36] and by Kim and Johnson for C1111 [32].

Model
type

C1111 C1122 C4444

Value
(GPa)

Absolute
difference

(GPa)

Relative
difference

(%)

Value
(GPa)

Absolute
difference

(GPa)

Relative
difference

(%)

Value
(GPa)

Absolute
difference

(GPa)

Relative
difference

(%)

[36] [32] [36] [32] [36] [36] [36] [36]

LP/CC 278.01 41.01 4.11 17.30 1.50 111.72 29.28 20.77 166.29 50.29 43.35
LP/FC 278.06 41.06 4.16 17.32 1.52 111.70 29.30 20.78 166.36 50.36 43.41
GP/CC 278.01 41.01 4.11 17.30 1.50 111.72 29.28 20.77 166.29 50.29 43.35
GP/CC 278.06 41.06 4.16 17.32 1.52 111.7 29.30 20.78 166.36 50.36 43.41
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observed in the simulation when dpearl is increased instead
of dscem, since an increase in the pearlite colony size means
an increase in the volume fraction of pearlite, indirectly as-
sociated with a decrease in the volume fraction of hS. How-
ever, the changes in the volume fraction of hS are only a part
of the explanation of the evolution of C1111, l and E, be-
cause the simulated elastic properties would follow their
volume-weighted averaged values otherwise. The increas-
ing difference between the simulated and averaged moduli
with an increasing h volume fraction suggests additional
microstructural effects, such as an influence of hS on the in-
teraction between pearlite colonies for example. Compari-
son between the present model and finite-element calcula-
tion for the same microstructure could provide a more
accurate assessment of such effects, besides also improving
the demonstration of the calculation quality.

6.2. Limitations of the present model

We noticed no impact of variations of the value of k or x on
the stiffness matrix Cmat of the macroscopic material or Cipearl
of the homogenized isotropic pearlite, whereas the stiffness
matrix Cpearl was affected when only one pearlite colony
was considered. Thus, we believe that the constraint of iso-
tropic pearlite, realized by the use of the diversity factor D
erases the variations in the elastic properties of the pearlite
colonies. The use of the Mori–Tanaka method for LP/CC
would have the advantage of allowing for contemplation of
preferential orientations of pearlite colonies, without manda-
tory use of D. This is relevant for simulations of microstruc-
tures with a strong texture, and in the case of plastic deforma-
tion. Despite breaking the rule of separation of scales, this
approach gave, in fact, similar results to GSCS with the same
diversity in orientations of the pearlite colonies. The work of

Fig. 3. Calculated (a) C1111, (b) l, and (c) E as a function of dpearl with
x = 0.08, k = 0.14 lm and dscem = 0.2 lm, from the models with LP
and CC or FC at grain boundaries, and corresponding volume-weighted
averaged values. Material input data for a: [32]; material input data for
h: [33].
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Drugan and Willis [19] on quantitative RVE definitions sug-
gests that ignoring the rule of separation of scales would
mostly lead to an increase in local strain variations from the
overall strain, decreasing the accuracy of the approximation
of elastic moduli used for the definition of an RVE. How-
ever, our results suggest that elastic properties of a and h
are sufficiently close to keep local strain variations low. Our
work anyway justifies the possibility of further investiga-
tions on the effect of texture on the elastic properties of hy-
pereutectoid steels.

The calculated C1111 term of the stiffness matrix, the
shear modulus l and the Young’s modulus E by the present
model lie very close to each other for CC and FC morphol-
ogies. This implies that the current simplifications of sphe-
rical and isotropic pearlite colonies and cementite precipi-
tates cannot reproduce the observation that a decrease in
the continuity of the grain boundary h layer in hypereutec-
toid steels leads to better mechanical properties [14].

6.3. Outlook

The release of isotropy constraint is necessary in a modifica-
tion of the generalized self-consistent scheme in order to al-
low for the conversion of the multiscale mean field homoge-
nization model to a form of texture modeling, which will
particularly extend usability towards plasticity modeling.
This conforms to the technological fact that microstructural
parameters such as k, dscem, x, as well as the cementite conti-
nuity, are particularly effective beyond the elastic domain
[38]. Predictive simulation of this behavior will further have
to take into account the effects of the continuity of hS on the
movement of dislocations within the alloy and on local stress
concentrations. Solutions do exist for the construction of
Eshelby homogenization methods with non-elliptical inclu-
sions [39]. Such solutions will become particularly relevant

in the modeling of microstructures containing Widmanstät-
ten cementite, growing from the grain boundary within the
austenite grain as plates or laths [40].

7. Summary and conclusion

We developed four different multiscale mean field calcula-
tion schemes for the elastic properties of hypereutectoid
steels based on a mean field approach of the Eshelby ma-
trix–inclusion problem in continuum mechanics. These
schemes correspond to four types of microstructural interre-
lations between pearlite and proeutectoid cementite that are
typically seen in these alloys. The main input parameters
for the modeling are the material input data for cementite
and ferrite describing their elastic properties, a set of elastic
coefficients such as bulk and shear moduli, or, alterna-
tively, stiffness tensors. A virtual microstructure of hyper-
eutectoid steel consisting of spherical pearlite colonies was
constructed by a set of a maximum of four different param-
eters: 1) the proeutectoid cementite size represented by the
thickness of the grain boundary cementite film or the size
of individual cementite particles, 2) the size of the pearlite
colonies, and in the case of lamellar pearlite, 3) the interla-
mellar spacing, and 4) the generalized lamellar aspect ratio.

Calculated elastic properties are very close to the experi-
mentally determined values of lamellar pearlitic steels from
the literature. These results support the feasibility of the
multiscale elasticity homogenization approach for hypereu-
tectoid steel microstructures. For a given set of material in-
put parameters and microstructural parameters, there are
only small differences between the results for all evaluated
microstructures. These differences are controlled by the
thickness of proeutectoid cementite and the pearlite colony
size. This result follows the trend of the volume fraction of
proeutectoid cementite and pearlite. The diversity of orien-
tations of pearlite colonies in the microstructure probably
erases local effects of interlamellar spacing and the general-
ized aspect ratio of the pearlitic lamellae. Whereas this
seems realistic in the elastic domain, a more accurate pic-
ture of the influence of the continuous versus fragmented
character of proeutectoid cementite on mechanical proper-
ties will require the consideration of anisotropy of elastic
properties and crystal plasticity in the modeling.
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