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In this paper, a fast and precise algorithm for wavefront reconstruction by the registration of wavefront
segments is presented. If the wavefront exceeds the sensor aperture or the dynamic range of the sensor, a
Shack-Hartmann sensor can measure only segments of an optical wavefront. The algorithm registers the
wavefront segments in parallel, where they are simultaneously transformed to minimize their overlap
mismatch for a precise reconstruction of the entire wavefront. The original nonlinear optimization prob-
lem is approximated by a convex optimization problem that can be solved more efficiently. A simulation-
based analysis of the algorithm and a comparison to a previously proposed parallel registration (PR) as
well as to the iterative closest point (ICP) algorithm is presented. It is shown that despite measurement
noise the algorithm can precisely register plane as well as divergent wavefronts with root-mean-square
registration errors smaller than 10 nm. Particularly for the divergent wavefront, this enables a reduction
of the registration error by a factor of up to 750 as compared to the established algorithms. Analysis and
comparison to the ICP and PR algorithm also show that the computation time of the proposed algorithm
can be from one up to three orders of magnitude smaller. © 2021 Optical Society of America
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1. INTRODUCTION

A Shack-Hartmann sensor (SHS) is a device for the measurement
of optical wavefronts and widely used in adaptive optics [1]
and for the assessment of optical systems in ophthalmology
[2], optical system alignment [3] and the production of optical
systems and components [4]. The sensor is compact, insensitive
to vibrations and provides a reference free measurement
with significant dynamic range [4, 5]. However, wavefronts
larger than the sensor aperture or wavefronts containing huge
aberrations beyond the dynamic range of the sensor can not
be directly measured by the SHS. Typically, such wavefronts
are transformed into measurable wavefronts by additional
optics, e.g. null optics. But supporting optics cause additional
aberrations in the resulting wavefront and their application
is limited to the respective wavefront shape [6, 7]. In [8–10] a
measurement concept without these drawbacks is proposed.
The SHS measures parts of the wavefront, i.e. wavefront
segments at different locations, where the entire set of measured
wavefront segments contains the entire information of the
wavefront. In case of overlapping measurements the entire
wavefront can be reconstructed from the set of wavefront

segments by registration algorithms. To enable a qualitative
evaluation of the optical system by the registered wavefront,
small registration errors are crucial. Apart from that, the
computation time of the registration process is a relevant
quantity, especially in industrial cases like inline metrology
[11], where measurement times on the subsecond scale are
demanded. Besides conventional spherical lenses, lenses
with arbitrary surface shapes, i.e. freeform optics, grow in
popularity as they provide high quality optical performance and
compactness of the optical system [12]. As the wavefront shape
of freeform optics may vary significantly, ranging from plane
to highly divergent shapes, there is the need for a registration
algorithm capable of registering plane as well as divergent
wavefronts. Recently, an accurate registration algorithm robust
to measurement noise and based on parallel subpixel registra-
tion was proposed [13]. The algorithm registers the wavefront
segments by minimizing a nonlinear mismatch metric, which
might take a computation time too large for specific applications.
Moreover, analysis shows that the registration performance of
the algorithm decreases with respect to increasingly divergent
wavefronts.
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The contribution of this paper is the development and
evaluation of a parallel registration algorithm that enables fast,
precise and wavefront-shape-flexible registration. Section 2
introduces the algorithm and discusses its properties. Section 3
presents a simulative analysis of the algorithm and Section 4
concludes the paper.

2. ALGORITHM DESCRIPTION

A. Measurement concept
In [9] a measurement concept is proposed, where the SHS
is moved along a scan trajectory and measures parts of the
wavefront, i.e. wavefront segments, at specific sensor positions.
The sensor aperture at a specific sensor position is called a
subaperture. For the reconstruction of the entire wavefront the
sensor position and alignment at each measurement position
is essential. However, due to uncertainties and errors in the
positioning system, the actual measurement positions deviate
from the nominal measurement positions (see Fig. 1). Hence,
to obtain the entire wavefront, the wavefront segments have
to be registered via rigid body transformation and wavefront
propagation (see Fig. 2). Wavefront propagation is necessary
to compensate for the phase difference between wavefront
segments, as the scan trajectory might deviate from the
wavefront of a specific phase as illustrated in Fig. 1.
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Fig. 1. Measurement concept, where the wavefront is mea-
sured at different SHS positions. The actual sensor position
is typically subject to the uncertainty of the positioning sys-
tem. The scan trajectory may traverse an entire phase interval
causing phase differences between the measured wavefront
segments.

Before the registration of the wavefront segments, the seg-
ments have to be reconstructed from the corresponding SHS
measurements. At each lenslet of the SHS the average gradi-
ent over the lenslet area of the wavefront that intersects with
the lenslet is measured. The local gradient of the wavefront at
the center of the lenslet is typically well approximated by the
measured average gradient [14]. Most likely the wavefronts
intersecting with different lenslets are not belonging to the same
phase, meaning that each gradient measurement corresponds
to a different phase value. For plane wavefronts the differences
between the phase values of the gradient measurements are
small and all gradients can be interpreted as the gradients of
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Fig. 2. For registration the wavefront segments are aligned,
positioned and propagated. Alignment and positioning are
equal to a rigid body transformation.

one wavefront, i.e. one phase. However, in the case of strongly
aberrated wavefronts this assumption is not valid, as the differ-
ences between the phase values of the gradient measurements
are no longer small (see Fig. 3a). In this case the phase values
of the gradient measurements have to be reconstructed, as a
direct wavefront reconstruction from the gradients is not possi-
ble. Thus also the phase gradient is determined [15], next to the
wavefront gradient itself, which enables the computation of the
phase value at the center of each lenslet. As for the wavefront,
the phase values can be derived from the phase gradients by a
zonal or modal reconstruction algorithm [16, 17]. In particular,
the calculated phase values are differences between the abso-
lute phase values and the absolute phase value of a reference
wavefront, due to the fact that absolute phase values cannot
be measured with a SHS, as illustrated in Fig. 3a. The point
cloud of a wavefront with specific phase is then determined by
propagating each wavefront point that intersects a lenslet center
with the corresponding negative phase value, as illustrated in
Fig. 3b.
For the reconstruction of the wavefront or the phase distribution
a zonal reconstruction is preferred, as it better preserves details
of the wavefront [18].

Besides the point cloud, the normal vectors of the wavefront
segment at the points of the point cloud are determined, as they
are directly derived from the direction of back-propagation.

B. Fast registration of two wavefront segments

The point cloud of segment i positioned in the global frame
(FG) based on the corresponding nominal sensor position is
denoted by P0i. After wavefront segment reconstruction, P0i is
represented in the coordinate system FSi, i.e. Pi

0i with elements
xi

0ij ∈ R3 and the corresponding normal vectors ni
0ij ∈ R3. The

upper index defines the coordinate system in which the objects
are represented and j is an index for numeration of the points.
FSi denotes the coordinate system of subaperture i with nominal
measurement position, where the x-y plane of the system lies in
the plane of the subaperture. Hence, points represented in FSi
are transformed to FG by a rigid body transformation in terms
of parameters ψi, vi ∈ R3, which denote the nominal sensor
alignment and position. In Fig. 4 the defined coordinate systems
and point clouds are illustrated. For subpixel registration Pi

0i and
the corresponding normal vectors are interpolated. Fi(x, y) ∈ R

is the interpolant of the points xi
0ij and N i(x, y) ∈ R3 the one

of the normal vectors ni
0ij in terms of the x-y coordinates of FSi.

Nik(x, y) ∈ N i(x, y) denotes the interpolant of one component
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Fig. 3. Wavefronts of different phases intersect with the
lenslets of the SHS. The phase value at the center of each
lenslet relative to a reference phase is determined from the
measured phase gradients (a). The point cloud of a wavefront
is determined by back-propagating each wavefront point inter-
secting a lenslet center with the negative phase value (b).

of the normal vectors. To enable registration, Pi
0i is transformed

by rigid body transformation and wavefront propagation and
the transformed points and normal vectors are

xi
ij(ai) = R(θi) (x

i
0ij + si ni

0ij) + ki ∈ Pi
i (ai) and

ni
ij(ai) = R(θi)ni

0ij ,
(1)

where R(θi) is a matrix describing the rotation in terms of
θi ∈ R3, ki ∈ R3 is the translation vector and si ∈ R denotes
the propagation distance. The parameters are collected in the
vector aT

i = (kT
i , θT

i , si) ∈ R7 (see Fig. 4). The registration of two
wavefront segments (i = 1, 2) can be carried out by minimizing
the metric

M12(a1, a2) = ∑
n

(
W1

2 (q21n, a2)−W1
1 (q21n, a1)

)2, (2)

where W1
1 (·, a1) = W1

1 (a1) and W1
2 (·, a2) = W1

2 (a2) are func-
tions describing the transformed segments respectively in the
FS1 coordinate system. q21n ∈ R2 denotes a sampling point in
the x-y plane of FS1 belonging to the overlapping region of the
segments. The difference between the functions is squared to
register the segments in the least squares sense. The segment
functions contain the corresponding point clouds described by
Eq. 1 (see Fig. 5), i.e.

x1
1j(a1) ∈ P1

1 (a1) ⊂W1
1 (a1),

x1
2j(a2) = R2�1 x2

2j(a2) + T2�1 ∈ P1
2 (a2) ⊂W1

2 (a2) with

n1
2j(a2) = R2�1 n2

2j(a2),

(3)

where R2�1 and T2�1 are rotation matrix and translation vector
in terms of ψ1, ψ2, v1, v2 ∈ R3 to transform objects from FS2 to
FS1. χ1

n ∈ P1
02 = P1

2 (a2 = 0) are those points that overlap with

x

FG

z
xi

FSi

zi subaperture i

at nominal position

si

θiki

Pi(si,θi,ki)=Pi(ai)

ψivi

P0i=Pi(ai=0)

Fig. 4. Defined point clouds and coordinate systems. P0i de-
fines the point cloud of segment i at the nominal subaper-
ture position in FG. P0i is rigid body transformed by {ki, θi}
and propagated by the distance si resulting in the point cloud
Pi(ai) = Pi(ki, θi, si). The point clouds represented in FSi are
denoted by Pi

0i and Pi
i (ai).

W1
1 (a1 = 0) and the corresponding normal vectors are denoted

by η1
n.The x and y component of χ1

n ∈ R3 define the sampling
points

qT
21n = (χ1

n1, χ1
n2). (4)

With Eq. 4 χ1
n and η1

n are point and normal vector of W1
2 (a2 = 0)

at q21n, as illustrated in Fig. 5. As W1
1 (a1 = 0) contains P1

01 =

P1
1 (a1 = 0), it is equal to F1. Hence, point and normal vector of

W1
1 (a1 = 0) at q21n are given by

χ̃1 T
n = (χ1

n1, χ1
n2, F1(q21n)),

η̃1
n = N1(q21n),

(5)

where N1 is the interpolant of the normal vectors corresponding
to P1

01.

FS1
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Fig. 5. Segment functions in terms of transformation param-
eters in FS1. W1

1 (a1) and W1
2 (a2) contain the point clouds

P1
1 (a1) and P1

2 (a2). χ1
n ∈ P1

02 and η1
n denote the point and

normal vector of W1
2 (a2 = 0) at the sampling point q21n. Point

and normal vector of W1
1 (a1 = 0) at q21n are χ̃1

n and η̃1
n deter-

mined by Eq. 5.
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If a1 and a2 are sufficiently small, the segment functions can
be approximated around q21n by functions with linear depen-
dences on aT

1 = (kT
1 , θT

1 , s1) and aT
2 = (kT

2 , θT
2 , s2) given by

W1
2 (q21n, a2) = χ1

n3 +
1

η1
n3

[
η2 T

n k2 +
3

∑
v=1

η2 T
n R′v χ2

n θ2v + s2
]

= χ1
n3 + CT

12n a2,

W1
1 (q21n, a1) = χ̃1

n3 +
1

η̃1
n3

[
η̃1 T

n k1 +
3

∑
v=1

η̃1 T
n R′v χ̃1

n θ1v + s1
]

= χ̃1
n3 + C̃T

12n a1,
(6)

where R′v = dR(θ)
dθv
|θ=0 with R(θ) the rotation matrix in Eq. 1

and C12n, C̃12n ∈ R7 are vectors including the coefficients
of a2 and a1. χ1

n3, χ̃1
n3, η1

n3, η̃1
n3 denote the z components of

χ1
n, χ̃1

n, η1
n, η̃1

n. C12n and C̃12n can be determined with χ2
n ∈ P2

02,
χ1

n ∈ P1
02 calculated by transforming χ2

n (see Eq. 3), χ̃1
n deter-

mined by χ1
n together with the interpolant of P1

01 (see Eq. 5) and
the corresponding normal vectors. This makes Eq. 6 convenient,
as the coefficients can be quickly determined with the point
clouds and normal vectors that are available after the wavefront
segments are reconstructed. Considering Eq. 6 the metric (see
Eq. 2) can be written as

M12(a1, a2) = ∑
n

(
χ1

n3 + CT
12n a2 − χ̃1

n3 − C̃T
12n a1

)2

= ∑
n

(
CT

12n a2 − C̃T
12n a1 − B12n

)2,
(7)

where B12n = χ̃1
n3 − χ1

n3 ∈ R. Equation 7 enables minimization
of M12 by solving a system of linear equations.
In Eq. 6 the segment functions are approximated around the
points χ1

n and χ̃1
n. Hence, registration based on this approxi-

mation is better the closer χ̃1
n is to the correspondence of χ1

n in
W1

1 (a1 = 0). Typically, orthogonal projection provides a good
estimation of the correspondence [19]. Considering Eq. 5, χ̃1

n is
determined by projection of χ1

n onto W1
1 (a1 = 0) along the z-axis.

Since the segments are represented in FS1, where the projection
along the z-axis is a good approximation of the orthogonal pro-
jection (see Fig. 6) due to the limited dynamic range of a SHS
and the typical scale of sensor misalignment [13], with Eq. 5
correspondences are well approximated. Therefore, with Eq. 7
the segments can be registered in FS1 independently of their
orientation in FG, enabling the registration of highly divergent
wavefronts.

C. Fast parallel registration of a set of wavefront segments
Equation 7 is an approximation of the overlap mismatch between
two wavefront segments in terms of parameters related to rigid
body transformation and wavefront propagation. The entire
overlap mismatch of a set of wavefront segments i = 1..U, each
transformed by parameters ai, is determined by the sum over
all overlap mismatches of overlapping segment pairs. As each
overlap mismatch of a segment pair can be approximated by
Eq. 7, the entire overlap mismatch is approximated by

Mg(A) = ∑
i,k

Mik(ai, ak)

= ∑
i,k

∑
n

(
CT

ikn ak − C̃T
ikn ai − Bikn

)2,
(8)
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Fig. 6. In FS1 the projection of χ1
n ∈ P1

02 along the z-axis onto
W1

1 (a1 = 0) approximates the orthogonal projection.

where AT = (aT
1 , .., aT

U) ∈ R7 U . Minimization of Eq. 8 is a
convex optimization problem and can be written as the matrix
equation

QT Q A = QT B, (9)

where Q ∈ RV×7 U and B ∈ RV with V denoting the total
number of squared terms in Eq. 8. A term

(
CT

ikn ak − C̃T
ikn ai −

Bikn
)2 is related to a row of Q and B given by (k < i)

(k-1) 7 k 7+1 (i-1) 7 i 7+1

Q =




...
...

...
...

0 . . 0 CT
ikn 0 . . 0 −C̃T

ikn 0 . . 0
...

...
...

...




(10)

and

B =




...

Bikn
...




. (11)

The matrix QT Q is singular as by registration the entire
wavefront is determined up to a rigid body transformation
and a wavefront propagation denoted by seven transformation
parameters. To solve Eq. 9 the seven transformation parameters
(a ∈ R7) of one wavefront segment are set to 0, which is
conveniently the wavefront segment in the center of the set of
segments to keep registration parameters small. Equation 9 can
then be efficiently solved with the Cholesky decomposition
[20]. To enable subpixel registration the point cloud and normal
vectors of one segment of each overlapping pair in Eq. 8 are
interpolated. For the sake of efficiency it is convenient to use the
interpolants of one segment for as many overlaps as possible.
For the registration of plane wavefronts the arrangement of
interpolated segments and not interpolated segments in a
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chessboard pattern is proposed [13] if the primary overlaps
between the segments are considered.

The proposed registration algorithm enables fast parallel reg-
istration (FPR) of the wavefront segments and can be summa-
rized in three steps. First, the point clouds and normal vectors
of a subset of segments are interpolated so that each overlap-
ping pair contains one interpolated segment. Second, correspon-
dences are determined with the interpolants (see Eq. 5). Third,
the matrix Q and the vector B are constructed with quantities of
Eq. 6 and registration is carried out by solving Eq. 9.

3. ALGORITHM ANALYSIS

The registration performance of the FPR algorithm is analysed
via simulations with respect to sensor misalignment, measure-
ment noise, etc. and compared to the performance of the parallel
registration (PR) algorithm [13] and the point-to-plane iterative
closest point (ICP) algorithm [21]. With the ICP algorithm the
wavefront segments are sequentially registered, which means
that registration is carried out in several individual registration
processes, where in each registration process one wavefront
segment is added to the registered wavefront using the ICP
algorithm.

A. Simulation setting
In the scope of this analysis two sets of simulated wavefronts
are considered. One is a plane wavefront with a diameter of
50 mm containing aberrations with a peak to valley of 11 µm,
which results from the collimation of a spherical wavefront with
a meniscus lens [13, 22]. The other one is a spherical wave-
front with a diameter of 30 mm and a divergence of 140◦. Due
to the propagation through a cover slip with 170 µm thickness,
the divergent wavefront contains aberrations with a peak to
valley of 5 µm. With the software OpticStudio (Zemax LLC,
Kirkland, WA, USA) both wavefronts are obtained by ray trac-
ing simulations. The plane wavefront is measured at 5x5 square
subapertures, each with a side length of 13 mm, as illustrated
in Fig. 7a. The divergent wavefront is measured at 43 circular
subapertures with a respective diameter of 7 mm, as depicted
in Fig. 7b. Owing to the symmetry of a sphere, the dynamic
range of the SHS limits the size of the subaperture to a circle, as
the dynamic range is reached at a specific radius on the sensor
aperture. The measurement is simulated using a MATLAB (The
MathWorks Inc., Natick, MA, USA) based software, which can
also consider sensor misalignment and measurement noise. The
dimensions of the subapertures are on the order of the dimen-
sion of a sensor aperture of a state of the art SHS [23]. Similarly,
the dimensions of the simulated lenslets of 130× 130 µm2 are
set to realistic values. The lenslets are arranged in a rectangular
grid, leading to 10.000 lenslets per subaperture for the plane
wavefront and about 2.200 lenslets per subaperture for the di-
vergent wavefront. The wavefront segments are reconstructed
with a spline-based zonal reconstruction algorithm [24] which
reconstructs the segments of both wavefronts with a root mean
square (RMS) reconstruction error of at most 0.1 nm. The seg-
ments are then registered by the algorithms. The interpolation
of point clouds of the segments is based on cubic interpola-
tion, as with cubic interpolation the RMS interpolation error of
the wavefronts is smaller 0.1 nm while being up to 100 nm with
linear interpolation especially for the divergent wavefront. Inter-
polation of the normal vectors is based on linear interpolation,
as the normal vector is typically a function of less order than

(a)

(b)

Fig. 7. Plane wavefront (PV=11 µm) virtually measured at 25
square subapertures (a) and divergent wavefront (PV=5 µm)
with 140◦ divergence virtually measured at 43 circular sub-
aperturs (b).

the wavefront. Moreover, the interpolation error of the normal
vector is less critical, as it causes an error of second order in a
propagated wavefront. For the ICP algorithm, the wavefront
segment in the center of the set of wavefront segments is set to
the initial segment. The other segments are then sequentially
added in a spiral way [13].
For evaluation of the reconstruction first, the registered wave-
front is fitted into the exact wavefront and the difference between
the wavefronts is calculated. Second, the registration errors are
determined by removing the noise components from the differ-
ence. Third, the RMS and peak to valley (PV) of the registration
errors are computed for comparison of the various algorithm
results.

B. Reference configuration
Considering Eq. 1, θi reflects rotational misalignment and ki
translational misalignment of a wavefront segment. Misalign-
ment is simulated by randomly distributed components of θi
and ki between [−100, 100] µrad and [−1, 1] µm respectively.
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The simulated measurement noise has zero mean, a standard
deviation of 10 nm and is contained in the point clouds as well as
the normal vectors [13]. The overlap area between subapertures
is 20 % of the subaperture area. Considering the divergent wave-
front (see Fig. 7b), the overlap size of the wavefront is at least
20 % of the subaperture area or larger, owing to the complex
wavefront shape. For each wavefront segment pair only points
belonging to the overlap area can be used for registration. The
number of points per overlap (PPO) used for registration is set
to its maximum value, i.e. all points belonging to the overlap are
used leading to an average of 928 PPO for the plane wavefront
and 315 PPO for the divergent wavefront.
The plane wavefront and the divergent wavefront are registered
by the algorithms, with the resulting registration errors for the
FPR, PR and ICP algorithm depicted in Fig. 8 and Fig. 9. Consid-
ering the divergent wavefront the FPR algorithm gives a result
that is two orders of magnitude better than those of the other al-
gorithms. While the RMS registration error of the FPR algorithm
is 9 nm those of the PR and ICP algorithm are 640 nm and 5 µm.
The decrease of registration performance of the PR algorithm
is explained by the fact that the PR algorithm minimizes the
original global mismatch metric, which contains local minima.
The extent of the local minima depends on the shape and errors
in the wavefront segments, e.g. due to measurement noise. As
wavefront propagation and translation along the z-axis have sim-
ilar effects on a segment, the PR algorithm typically gets caught
into local minima with respect to these parameters. While the
remaining phase difference between the wavefront segments
has less impact to registration errors for plane wavefronts, it
might lead to large registration errors for divergent wavefronts.
The FPR algorithm can not get caught into a local minimum
as the approximation of the global mismatch metric (see Eq. 8)
is a convex function that contains no local minimum but one
global minimum. As long as the approximation is good, the
global minimum of Eq. 8 is close to the global minimum of the
original global mismatch metric and the FPR algorithm shows
accurate results. Moreover, the FPR algorithm shows slightly
larger registration errors for the divergent wavefront as com-
pared to the plane wavefront. The increased registration errors
can be explained by the fact that for the divergent wavefront
first, a smaller number of PPO is available and second, a larger
number of wavefront segments is registered.
There are two reasons for the large registration errors of the ICP
algorithm concerning the divergent wavefront. First, the ICP
algorithm can not propagate the wavefront segments and the ini-
tial phase difference between the wavefront segments remains,
leading to large registration errors concerning divergent wave-
fronts. Second, due to sequential registration the registration
errors accumulate much stronger than in parallel registration
and the impact of phase difference is increased, leading to huge
registration errors and cracks in the registered wavefront (see
Fig. 9c).
The registration with the algorithms is carried out on a personal
computer with 6 cores and a processor frequency of 2.6 GHz.
While the PR algorithm needs around 100 s to 200 s and the ICP
algorithm around 2 s to register the wavefront segments, the
FPR algorithm requires only about 100 ms, suggesting its appli-
cability for real-time applications.
The simulation configuration of this section is the reference con-
figuration for the subsequent sections, where in each section
the algorithms are analysed with respect to one of the quanti-
ties sensor misalignment, measurement noise, number of points
per overlap used for registration and the percentage of overlap

with respect to the subaperture area. Only the quantity under
consideration is altered, while the other quantities remain at the
reference configuration value.

C. Influence of misalignment
The sensor misalignment at a specific measurement position
can be divided into rotational and translational misalignment,
described by θi and ki (see Eq. 1). The two types of misalign-
ment are simulated by a random choice of the corresponding
parameters within predefined misalignment ranges, i.e. ±rθ and
±rk. The RMS registration errors of the algorithms considering
both wavefronts and different misalignment ranges are shown
in Table 1. Besides results for combined types of misalignment,
results for low translational misalignment ranges as well as low
rotational misalignment ranges are depicted. The PV error is
typically a factor 5 to 8 larger than the RMS error. Concerning
the plane wavefront, the FPR algorithm shows a slightly better
robustness to sensor misalignment than the other algorithms.
Concerning the divergent wavefront, the FPR algorithm has reg-
istration errors a factor 75 smaller than the PR algorithm and at
least a factor around 750 smaller than the ICP algorithm.
The reason for the registration errors of the PR algorithm are
local minima in the global mismatch metric. Typically a phase
difference remains, causing registration errors in divergent wave-
fronts. The convergence into the global minimum depends on
the initial configuration of the wavefront segments. Hence, the
PR algorithm gets caught into a different local minimum by a
change of misalignment, which explains the strong variations
of the registration errors of the PR algorithm considering the
divergent wavefront.
The large registration errors of the ICP algorithm are explained
by the accumulation of registration errors and its incapability
to compensate phase differences between wavefront segments.
Moreover concerning the divergent wavefront, results show a
strong variation of the registration errors of the ICP algorithm
with a change of misalignment. In the FPR algorithm the global
mismatch metric is approximated with a convex function includ-
ing no local minima that compromise the registration perfor-
mance.

Table 1. RMS registration error in dependence of misalign-
ment ranges for FPR, PR and ICP algorithm with respect to
the plane and the divergent wavefront.

rθ rk FPR PR ICP FPR PR ICP

(µrad) (µm) plane plane plane div. div. div.

(nm) (nm) (nm) (nm) (nm) (nm)

100 1 4 3 7 9 640 5000

100 0.5 4 5 7 8 600 10000

200 0.5 4 4 7 8 600 3000

15 1 4 8 7 8 150 15000

15 5 5 7 6 10 900 6000

200 5 5 12 7 9 1000 15000

D. Influence of noise
The measurement noise of a SHS can have several sources, e.g.
background light, readout and dark current [25]. Figure 10
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(a) FPR
RMS = 4 nm, PV = 39 nm

(b) PR
RMS = 3 nm, PV = 23 nm

(c) ICP
RMS = 7 nm, PV = 81 nm

Fig. 8. Registration error of the reconstructed plane wavefront of the FPR (a), PR (b) and ICP (c) algorithm with respect to the exact
wavefront.

(a) FPR
RMS = 9 nm, PV = 53 nm

(b) PR
RMS = 640 nm, PV = 2.3 µm

(c) ICP
RMS = 5 µm, PV = 23 µm

(d) FPR
RMS = 9 nm, PV = 53 nm

Fig. 9. Registration error of the reconstructed diver-
gent wavefront of the FPR (a,d), PR (b) and ICP (c)
algorithm with respect to the exact wavefront.

shows the RMS registration error of the algorithms in depen- dence of the standard deviation of noise for both wavefronts.
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The algorithms show comparable robustness to measurement
noise concerning the plane wavefront. However, considering the
divergent wavefront the PR algorithm shows large registration
errors, while the FPR algorithm still shows accurate registration
results. The ICP algorithm shows less robustness to measure-
ment noise as registration errors accumulate due to sequential
registration. For the divergent wavefront the registration error
of the ICP algorithm shows in general large values and also
large variations with even decreasing errors for increased noise
standard deviation levels. This is explained, as the noise has a
rather small contribution to the registration error as compared
to the phase difference between the wavefront segments and a
larger noise standard deviation might even reduce the impact of
phase difference leading to a smaller registration error.
Compared to the plane wavefront the FPR algorithm is slightly
less robust to noise concerning the divergent wavefront, which
can be explained by the fact that for the divergent wavefront
a smaller number of PPO and a larger number of wavefront
segments are considered. The less the standard deviation of
noise the better the registration performance and results show
that for a standard deviation less than 12 nm the FPR algorithm
reaches RMS registration errors smaller 10 nm for both wave-
fronts making the evaluation of high-end optical systems with
RMS wavefront errors down to 10 nm possible [26].
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Fig. 10. RMS registration error of the FPR, PR and ICP algo-
rithm for the plane and the divergent wavefront in depen-
dence of the standard deviation of noise.

E. Influence of points per overlap

In the reference configuration all points belonging to the overlap
are used for registration, leading to an average number of PPO of
928 for the plane wavefront and 315 for the divergent wavefront.
With a larger number of PPO the registration errors might be
decreased, as more surface features, crucial for registration, are
available and uncertainties, especially those with zero mean, get
more compensated. A larger number of PPO, however, increases
computation time, as more operations have to be carried out.
The computation time and the RMS registration error of the algo-
rithms with respect to the number of PPO used for registration
are depicted in Fig. 11. The PPO are uniformly distributed in the
overlap area. From the lines in Fig. 11a the computation time of
the algorithms in dependence of the PPO is deduced and given

by

tFPR = 0.08 + 0.23 10−3 PPO,

tPR = 79 + 0.225 PPO,

tICP = 1.5 + 2 10−3 PPO,

where [t] = s. For all considered numbers of PPO the computa-
tion time of the FPR algorithm is between 80 ms and 200 ms and
a factor 500 to 2000 smaller than the computation time of the PR
algorithm and a factor 10 to 20 smaller than the computation
time of the ICP algorithm.
For 100 PPO the RMS registration errors of the FPR algorithm
remain smaller than 20 nm considering both wavefronts (see
Fig. 11b). For the plane wavefront the PR algorithm is robust
with respect to small numbers of PPO and has a RMS registra-
tion error smaller 10 nm for 100 PPO. The ICP algorithm shows
qualitative registration of the plane wavefront for the maximum
number of PPO but has large RMS registration errors up to
100 nm for 300 PPO or less. For the divergent wavefront large
variations of the RMS registration error of the PR and ICP algo-
rithm are observed considering different numbers of PPO. This
is explained as the PR algorithm gets caught in different local
minima, and the ICP algorithm does not reduce phase differ-
ences and their impact might change arbitrarily with the number
of PPO.

F. Influence of overlap size

Inherently, the registration errors decrease with a larger overlap
size, which is explained by multiple reasons. First, the sensibility
to out of plane angles between the segments increases. Second,
more surface features are available and third more PPO are
available. With a larger overlap, however, a larger sensor or
more subapertures are necessary increasing measurement time.
Moreover, computation time of the algorithm increases if a
larger number of PPO or subapertures is considered. In this
study the number of subapertures remains constant and while
staying at the same position, the subapertures are enlarged to
get a larger overlap area and all available PPO are considered
for registration.
The registration errors of the algorithms for different overlap
sizes are depicted in Table 2. Results show a considerable
decrease of the registration errors by 75 % when increasing
the overlap size from 20 % to 40 %. In some cases saturation
of the improvement is reached and an increase of the overlap
size does not lead to a further decrease of registration errors
as observed for the FPR and ICP algorithm concerning the
divergent wavefront. For the divergent wavefront the step
from 30 % to 40 % considerably enlarges the registration errors
of the PR algorithm, as it gets caught into a non-optimal local
minimum. As all PPO are considered the computation time of
the algorithms increases with a larger overlap size. Considering
both wavefronts and an overlap size of 40 % the computation
time of the FPR algorithm increases from 100 ms to 500 ms, of
the PR algorithm from 100− 200 s to 230− 330 s and of the ICP
algorithm from 2 s to 3.5 s.

In summary the improved registration performance and effi-
ciency of the FPR algorithm is successfully demonstrated and
compared to the PR and ICP algorithm, with the algorithm being
capable to reconstruct plane and highly divergent wavefronts
with RMS registration errors smaller 10 nm. Moreover, the com-
putation time of the proposed algorithm is a factor of up to 20
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Fig. 11. Computation time (a) and RMS registration error (b)
of the FPR, PR and ICP algorithm for the plane and the di-
vergent wavefront in dependence of the average number of
points per overlap used for registration.

smaller than the computation time of the ICP algorithm and a
factor of up to 1000 smaller than the one of the PR algorithm.

4. CONCLUSIONS

In this paper a fast and precise algorithm for the registration
of wavefront segments measured with a scanning SHS setup
is presented. It is capable of registering misaligned wavefront
segments as well as wavefront segments of different phases,
resulting from sensor misalignment or deviations of the scan
trajectory from the wavefront of a specific phase. Parallel
registration and interpolation of the wavefront segments
enables precise reconstruction of the entire wavefront. The
registration is carried out by the minimization of a global
mismatch metric, which is approximated by a convex function
that can be efficiently minimized. In a simulation-based
analysis the algorithm is compared with a recently proposed
PR algorithm [13] and the point-to-plane ICP algorithm [21].
Sensor misalignment and measurement noise are considered
in the analysis and wavefront segments of a plane and a

Table 2. RMS registration error in dependence of overlap
size (in % of subaperture area) for FPR, PR and ICP algo-
rithm with respect to the plane and the divergent wavefront.

overlap FPR PR ICP FPR PR ICP

(%) plane plane plane div. div. div.

(nm) (nm) (nm) (nm) (nm) (nm)

20 4 3 7 9 640 5000

30 2 2 5 11 81 3000

40 1 1 2 4 190 3000

divergent wavefront are registered by the algorithms. While
registration performance of the algorithms is comparable for
the plane wavefront, the PR and ICP algorithms show large
registration errors for the divergent wavefront, as remaining
phase differences between the wavefront segments are more
critical for this wavefront type. Phase differences between
the wavefront segments remain as the PR algorithm gets
caught in local minima and the ICP algorithm is incapable of
compensating phase differences. The proposed algorithm is
flexible with respect to the shape of the wavefront, as the convex
function does not contain local but only one global minimum
and accurately registers the plane wavefront as well as the
divergent wavefront. In particular, for the divergent wavefront
the algorithm shows an RMS registration error a factor 75 to 750
smaller than the RMS registration errors of the other algorithms.
The FPR algorithm running on a personal computer has a low
computation time of about 100 ms for both wavefronts, while the
PR algorithm needs about 100 s to 200 s and the ICP algorithm
about 2 s. The proposed algorithm registers the wavefronts with
high precision, i.e. registration errors smaller 10 nm, enabling
real time measurements of high-end optical systems.
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