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Abstract

The aim of this work was to develop a method to record low-level sounds underwater in order to
listen to possible sounds related to the gliding movement of raphid, motile diatoms, inspired by their
jerky, high acceleration movements. Different techniques concerning the gathering and handling of
diatoms and the possibilities of recording sounds related to their movement are presented.

A model was created to get a rough estimation of the expansion speed of mucopolysaccharide
filaments. In a series of initial experiments, a hydrophone was used to get an idea of the acoustic
situation. Furthermore some attempts to increase the density of raphid diatoms in a given volume
were made. Though with these rough measurements no sounds could be detected, alternatives and
advice on how to improve the experiment for future research are provided.

Keywords: Diatom, pennate, benthic, locomotion, tribology, acoustics, hydrophone, snail

Glossary
accretion Accumulation of material.
bulk modulus K Describes the change of pressure that is necessary to cause a change

of volume of a body.

*Corresponding author: gebeshuber@iap.tuwien.ac.at

Tlle C. Gebeshuber: gebeshuber@iap.tuwien.ac.at, https://orcid.org/0000-0001-8879-2302, http://www.ille.com

Florian Zischka: florian.zischka@aon.at, https://www.researchgate.net/profile/Florian_Zischka2

Helmut Kratochvil: helmut.kratochvil@univie.ac.at, https://www.nature.com/articles/srep44526, https://

zoology.univie.ac.at/people/staft/helmut-kratochvil/, https://hekratochvil.hpage.com/wissenschaftliches.html

Anton Noll: anton.noll@oeaw.ac.at, https://www.researchgate.net/profile/ Anton_Noll

Richard Gordon: dickgordoncan@xplornet.com

Thomas Harbich: thomas.harbich@diatoms.de, https://www.researchgate.net/profile/Thomas_Harbich, https://
diatoms.de/en/

Stanley Cohn, Kalina Manoylov and Richard Gordon (eds.) Diatom Gliding Motility, (249-282) © 2021 Scrivener Publishing LLC

249


mailto:florian.zischka@aon.at
helmut.kratochvil@univie.ac.at, https://www.nature.com/articles/srep44526, https://
zoology.univie.ac.at/people/staff/helmut-kratochvil/
helmut.kratochvil@univie.ac.at, https://www.nature.com/articles/srep44526, https://
zoology.univie.ac.at/people/staff/helmut-kratochvil/
mailto:anton.noll@oeaw.ac.at

250 DiatoM GLIDING MOTILITY

chemotaxis
diatom

ephemeral
epipelic

helictoglossa
hydrophone

inertial force

millidyne
mucopolysaccharide

pennate

photophobia

phototaxis
plasmalemma

protoplast
raphe
raphe-sternum

Reynolds number

sound pressure

triboacoustics

Movement or orientation of organisms caused by chemical
stimulus.

Single-celled alga that forms an outer shell out of hydrated silicon
dioxide.

Volatile, vanishing quickly.

Residing at the interface of water and sediments (mud, clays and
silt).

Internal, distal termination of the raphe.

The underwater equivalent of a microphone. Used for recording
sounds underwater.

Resistance of an object to change in its velocity.

A unit of force. 1 mdyne = 10* N

Acid polysaccharide that protrudes from the raphe in the form of
mucus filaments. They attach to the substratum and flow along
the raphe. Through that the motive force for diatom locomotion
could be generated.

Regarding diatoms, species that form usually bilaterally symmet-
ric shells typically elongated parallel to the raphes. Many pennate
diatoms can use the raphe to move along a solid substrate though
there are also pennate diatoms without a raphe (araphid).

When organisms react strongly to changes in light intensity,
avoiding light.

Movement or orientation of organisms caused by light stimulus.
Cell membrane that separates the interior of a cell from the outside
environment.

Plant cell composed of nucleus, cytoplasm and plastids without a
cell wall.

A slit in the shell of diatoms which is connected to diatom
motility.

Thickened silica typically located along the apical axis of diatoms.
Contains the raphe.

The Reynolds number is used for flow patterns in different fluid
flow situations. At a low Reynolds number the flow is dominated
by laminar flow, at a high Reynolds number turbulence occurs.
The Reynolds number is the ratio of inertial force to viscous
force:

_inertial force _vpl
viscous force 1

The variations of pressure of a medium that occur due to propaga-
tion of sound waves through that medium, because sound waves
are pressure waves.

The phenomenon of noise generated by friction, lubrication and
wear.
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vibrometer A measuring instrument for quantifying mechanical oscillation.
Interference of laser light is used to measure the frequency and
amplitude of an oscillation.

viscous force Resistive force on an object inside of a fluid due to the friction
between the layers of the fluid.

11.1 State-of-the-Art

11.1.1 Diatoms and Their Movement

Diatoms are single-celled algae with an outer shell made from hydrated silicon dioxide.
There are up to 200,000 different species in all kinds of forms and shapes. Raphid, motile
diatoms - as the name suggests - have slits called raphes in their shells [11.28]:

“The raphe, as an organelle for the motion of the cells is commonly found in many pennate
diatoms, but it occurs in very different structures. [...] Basically the raphe is a gap-shaped
breach of the cell wall of more or less complexity.” ([11.28], translated from German)

The raphe allows the diatoms to stick to surfaces and move along them. Previous work
of Harper and Harper [11.26], where the adhesive forces of diatoms sticking on substrates
as well as the tractive forces in the direction of motion were measured, showed that there
is clearly a close relation between locomotion and adhesion. “In a total of over 500 obser-
vations, whenever a diatom moved it was adhering to the substrate.” The amount of force
is heavily dependent on the species considered and can reach from few to several hun-
dreds of millidynes. “However, strong adhesion does not prevent movement: Amphora
ovalis (Kiitzing, 1844) cells were able to move normally while exerting adhesions of over
400 millidynes” [11.26]. “There are also diatoms that do not separate after asexual repro-
duction, but adhere together and form chain-like colonies” [11.25]: Bacillaria paxillifer
(O.E Miiller) Hendy (1951) even forms motile chains that can move around through water
[11.1].

Sizes of diatoms range from 4-5 pm to up to 500 um. “The highest speeds of locomo-
tion occur in tidewater-diatoms. The maximum speed of Navicula radiosa (Kiitzing, 1844)
amounts to 20 um/s. Pinnularia nobilis (Ehrenberg, 1843) was able to cover a distance of 14
mm in 20 min, which equals almost 12 um/s” ([11.28], translated from German).

The gliding movement of raphid, motile diatoms started to be the subject of research over
200 years ago [11.42] and over time various theories that tried to explain the mechanism
were developed [11.22]. “According to some, the raphe is occupied by streaming cytoplasm,
others proposed small flagella that protrude through the raphe slits” [11.36].

“Recent ideas have in common that the movement of the cell relative to the sub-stratum
is considered to be mediated by the secretion of material from the raphe” [11.36]. In a
model by Gordon, it is proposed that the hydration of mucopolysaccharide, the material
the raphe is filled with and which is left behind as a mucilage trail, would provide sufficient
motive force to explain the gliding motility of raphid diatoms [11.24] [11.21]. “Diatom
movement appears to be smooth over short periods of time between reversals or stopping,
but is in fact jerky, sudden accelerations and decelerations alternating with periods when
the diatom is stationary or moving with constant velocity” [11.36].
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Edgar [11.15] analyzed the speed and acceleration of several species of epipelic river
diatoms using data from motion picture films of moving cells, examined frame-by-frame,
and showed that large changes of speed occur within one tenth of a second, which is to be
expected at that scale, because of the small inertial forces. Therefore, high speed cinematog-
raphy is necessary to study the movements [11.15]. However, even at 890 frames per sec-
ond, large accelerations between frames still occurred, pushing the limits of ordinary light
microscopy [11.37]. Therefore, new approaches are needed to reach an understanding of
what causes these huge, short-term accelerations, which is why we turned to triboacoustics.

Considerations of the jerky movement of a diatom in a highly viscous situation were
made by Edgar [11.16]. Therefore, the effect of external forces on a moving diatom were
discussed. The Reynolds number (Re) is the expression of the ratio of inertial force to vis-
cous force.

o= [nertial force _ vpl (11.1)
viscous force 1

where: v = velocity, p = density of the fluid, [ = size of body, # = viscosity of the fluid [11.16].

11.1.2 The Navier-Stokes Equation

The Navier-Stokes equation is the general equation of motion for the volume element dV of
a viscous, flowing fluid. It results from Newton’s second law, the basic equation of motion
in classical mechanics: F=m - a

The equation of motion for one mass element Am = ¢ - AV of a flowing medium is:

F:Fp+Fg+FR:Ami":p-AV-?; (11.2)

where u= d; is the velocity of flow of the volume element dV [11.7].
With the terms:

dF, = nAudv (force of friction)
de = —grad(p) - dV (force of pressure)
dF = pgdV (gravity)

of the single forces and the acceleration:

du 8u
- ) (11.3)
. ; +(u-Vu

the equation of motion becomes the Navier-Stokes equation:

p(§t+u-V)u:—gmdp+p‘g+nAu (11.4)

For ideal liquids (7 = 0) it becomes the Euler equation. The friction term #yAu
turns the Euler equation (differential equation of first order) into an equation of second
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order and thereby complicates solving it. On the right side of the Navier-Stokes equa-
tion there are the forces and on the left side the movement caused by those forces [11.7].

All dimensions of length can be scaled to one standard length /, all times to one standard
time T and then all velocities u can be expressed as functions of I/ T:

t=t'-T u:u’-i

T

% 1Y

vV () .

I p=p T P
’ ! ’ a a a ’ . . e e
where t',u’, V'=1-| —,—,— | and p’ are nondimensional quantities.
ox dy 0z

Through that, the Navier-Stokes equation (without the gravity term) becomes:

ou’ 1
+ (VW =-V'p +— N 11.5
ot’ (@ Vu P Re " (11.5)

with the nondimensional Reynolds number:

2
Re=P L _pvl (11.6)
n-T n

v =1/T has the dimension of a velocity. It defines the velocity of flow averaged over
the length [. In ideal liquids n = 0 and therefore Re = o. In fluid dynamics that means
that for viscous liquids with n = 0, currents are only similar when they take place in
vessels with similar ratio of dimension and when they have the same Reynolds number
Re. [11.7].

11.1.3 Low Reynolds Number

The following words from the wonderful publication Life at Low Reynolds Number by E.M.
Purcell [11.33] lead to a better understanding of the meaning of situations at very low
Reynolds number:

“The Reynolds number for a man swimming in water might be 10*. For a goldfish it
might get down to 10 At very low Reynolds number of about 10 or 10 inertia is totally
irrelevant. [...] As an example an animal of about a micron (= 1 pm) in size may move
through water, where the kinematic viscosity is 10 cm/s, at a typical speed of 30 m/s. If
the driving force for the movement of that animal suddenly ceases, it will only coast for
about 0.1 A and it takes about 0.6 s to slow down. This makes clear what low Reynolds
number means. Inertia plays no role whatsoever. If you are at very low Reynolds number,
what you are doing at the moment is entirely determined by the forces that are exerted
on you at that moment, and by nothing in the past” [11.33].
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Also, according to Purcell [11.33], at low Reynolds number a living being can’t shake off
its environment. “If it moves, it takes it along; it only gradually falls behind. [...] In that con-
text diffusion is very important, because at low Reynolds number stirring isn’t very good.”
Purcell also showed that the transport of wastes away from the animal and food to the ani-
mal is entirely controlled locally by diffusion: “It can thrash around a lot, but the fellow who
just sits there quietly waiting for stuff to diffuse will collect just as much”

Also, an increased velocity of the moving animal is not beneficial for gaining more nutri-
ents: “To increase its food supply by 10% it would have to move at a speed of 700 um/sec, which
is 20 times as fast as it can swim. The increased intake varies like the square root of the bug’s
velocity so the swimming does no good at all in that respect. But what it can do is find places
where the food is better or more abundant.” Therefore, it has to move far enough to outrun
diffusion. At typical diffusion constant D and speed v that minimum distance to outswim
diffusion D/v is about 30 um. It has been shown that this is just about what swimming bac-
teria were doing [11.33].

11.1.4 Reynolds Number for Diatoms

According to Edgar, the Reynolds number of a diatom 10 - 10 - 100 um? in volume, moving
at 10 um/s is in the region of 107, which is very low. “A low Reynolds number (<1) indicates
laminar flow, because in that case the viscous forces predominate. Movement of diatoms in
water therefore represents a highly viscous situation in which inertial forces are negligible,
despite the fact that water itself is not a highly viscous liquid” [11.16].

“This means the diatom cannot coast’ or ‘freewheel” [11.36]. Once the driving force for
locomotion ceases, the cell will stop almost immediately.

“Movement is directional, the path taken corresponding fairly closely to the course of
the raphe system—curved where the raphe is curved (e.g., some Nitzschia species with
eccentric raphe systems), straight where the raphe is straight (e.g., Navicula, Pinnularia),
and even sigmoid where the raphe is sigmoid (e.g., Pleurosigma angulatum (Quekett)
W. Smith 1852)” [11.36].

“Because of the low Reynolds numbers the movement of diatoms is jerky and once the
driving force for locomotion ceases the cell will come to a rapid halt. Also, there is no
obvious reason why a streamlined shape should reduce drag at such a low Reynolds
number. Furthermore, the idea of jet propulsion as mechanism of locomotion can be
rejected, because it would prove extremely inefficient in a viscous situation” [11.16].

However, streamlining can be important for attached diatoms in rapidly moving water
[11.23].

11.1.5 Further Thoughts About Movement of Diatoms

Movement of raphid diatoms is generally only possible on solid surfaces [11.22]. “During
movement, polysaccharide is secreted into the raphe slit and is present within the whole
length of the slit. Also, a discontinuous trail of this material is left behind by the diatom as
it moves” [11.36]. According to Hopkins & Drum “so far two motility mechanisms can be
derived from the evidence given; these could work separately or together” [11.27].
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1. “The expansion of the crystalloid body fibrils (presumed to be trail sub-
stance) by hydration in the raphe system and subsequent spiraling could give
a propulsive force ... when some of this material adheres to the substratum”
[11.27].

2. “A propulsive force could be created by expulsion of materials by contraction
of the fibrillar bundles under the raphe, and the direction of such a stream
against the point of adhesion of the trail substance” [11.27].

Hopkins and Drum also argued that “criticism of mucus secretion as it was postu-
lated by Lauterborn (1896), by Miiller (1893, 1894), Hustedt (1930) and Fritsch (1935)
on grounds of quantity alone, can be countered in two ways: The material as detected by
the accretion of particles is very adhesive and its expansion on hydration substantial; the
small production by numerous crystalloid bodies would support Lauterborn’s conten-
tion. Secondly, diatoms do not move continuously unless disturbed [11.27]. In darkness
motility is slowed down and stops after 4-24 hours depending upon species (Hopkins,
1963)” [11.27].

Round et al. [11.36] have summarized the work of Edgar et al., who have outlined a
hypothesis to explain the mechanism of motility based on ultrastructural observations of
protoplast structure in the vicinity of the raphe and other pieces of evidence:

“It is suggested that the motive force is generated by interaction between actin fil-
aments and transmembrane structures which are free to move within the cell and
raphe, but fixed to the substratum at their distal ends. The transmembrane structure
presumably includes an ATPase and a protein able to make translational movements
within the plasmalemma. [...] The transmembrane structure is itself connected to fil-
aments of acid mucopolysaccharide, which can become attached to the substratum at
their distal ends. Thus, as the transmembrane structures are moved along the raphe by
their interactions with the bundles of actin filaments beneath [11.14], the cell moves
relative to the substratum. Edgar and Pickett-Heaps [11.17] proposed that the flow of
mucopolysaccharide along the raphe is made easier by a hydrophobic lipid coat over
the silica of the raphe-sternum. When the mucopolysaccharide reaches the end of the
raphe, it is detached from the plasmalemma at the helictoglossa and continues within
the terminal fissure (if present) before being left behind as a sticky but ephemeral trail”
[11.36].

These mucilage trails were examined using atomic force microscopy (AFM) by Wang
et al. [11.44]. It was also shown that the mechanism of diatom locomotion as explained
in the prevailing model by Edgar does not work at least for Navicula sp. because of many
reasons, e.g., “the turning of diatom gliding, that was never tried to be explained using
the Edgar model, but diatoms have been shown frequently turning when gliding” [11.44].
Therefore, the mechanism itself still remains unsolved.

11.1.6 Possible Reasons for Diatom Movement

The reason for movement among diatoms is not essentially clarified yet. The movements
often seem random. Therefore, the benefits for the diatom are not obvious. Possible benefits
could be:
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« Optimization of light conditions: Many motile species show positive or neg-
ative phototaxis. Also, photophobia can be observed, where diatoms react
to strong local variations of light intensity with reversal of the direction of
movement.

o Periodic vertical movement of diatoms that inhabit sand deposits, especially
in intertidal zones. These sediments can be disturbed by tides and currents,
so diatoms move upwards to stay at the surface of the sediment (see review
article Harper 1977 [11.45]).

« Looking for places with better nutrient concentration or other advantageous
chemical proportions (chemotaxis). In the publication of Bondoc et al. [11.4]
it is shown that Seminavis robusta moves towards a source of silica.

« Colonizing new habitats.

 Searching and approaching a partner for sexual reproduction [11.5].

All of the possible benefits above have a change in location in common. Observing the
movement of some species, it can be doubted that locomotion is always the motivation for
movement. Cymatopleura elliptica (Brébisson) W. Smith 1852 mostly slowly rotates around
a vertical axis, scarcely making any headway, meaning that it hardly budges from the spot.
Benefit could in some cases also have physiological backgrounds like regulation of energy
balance [11.25].

11.1.7 Underwater Acoustics, Hydrophones
11.1.7.1 Underwater Acoustics

In gases and liquids acoustic waves are pressure waves that spread longitudinally. The acous-
tic speed c, is dependent on the temperature. The different values for air and water can be
seen in Table 11.1.

Acoustic speed is much higher in liquids than in gases due to the greater bulk modulus
K. The acoustic speed also increases with higher pressure [11.7]. This can be seen by con-
sidering the following general equation to determine the acoustic speed in any gas or liquid

[11.29]:
/K
cgr=Af=[— (11.7)
G,L f P

Table 11.1 Different values for the acoustic speed
¢, inair and water at different temperatures [11.7].

m m
CG,L |:*:| at0°C | cg1 |:*:| at 100°C
Medium S S

air 331.5 387.5

water 1402 1543
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The following empirical formula can be used to determine the speed in water ¢, with
various parameters for temperature © in [°C], salinity s in [%] and depth d in [m] [11.29]:

cr :(1492.9+3-(@—10)—6-10‘3 (O-10)*

J\m (118

~4-107-(©—-18)* +1.2-(s—35)-107 -(@—18)-(5—35)+a]—
S

11.1.7.2  Hydrophones

A hydrophone is a measuring instrument that transforms the waterborne sound into an
electrical voltage which is proportional to the sound pressure. That signal can then be mea-
sured. So it is basically the underwater equivalent of a microphone. Modern hydrophones
are usually composed of piezoelectric ceramics. Piezoelectric materials generate a voltage in
response to applied mechanical stress, which is in this case the pressure wave of an acoustic
signal [11.35].

During previous work with hydrophones by Kratochvil and Pollirer the sounds from
aquatic plants during photosynthesis were recorded. “Oxygen is emitted in the form of
bubbles which are released from the stomata or small openings caused by injuries. [...] In
the moment of escape the oxygen bubble emits a short single sound pulse, which can be
recorded with a hydrophone. This acoustic side effect can be used to detect changes in the
rate of photosynthetic processes” [11.30]. Cf. [11.19].

11.2 Methods

11.2.1 Estimate of the Momentum of a Moving Diatom

For further consideration of the movement of diatoms a rough estimate of momentum can
be made as follows: Calculations are based on a hypothetical diatom 10 - 10 - 100 um® in
volume, moving at 10 um/s as proposed by Edgar [11.16].

Therefore, the volume of our diatom is: V = 10*um’ = 10~*m°.

The density of our diatom was roughly assumed to be somewhere in between the density
of water and silicon dioxide:

Density of water: p = 997 kg/m’
Density of silicon dioxide: p_ = 2650 kg/m’
Density of our diatom: p = 1500 kg/m?

Therefore, the massis: m=p-V=15-10"kg

Moving with the speed v = 10 um/s = 10 m/s

With that information the momentum of one single diatom can be calculated in the
following way:

p=m-v=15-10"kg -m/s
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11.2.2 On the Speed of Expansion of the Mucopolysaccharide Filaments

In the following section a model to estimate the sounds produced by a moving diatom was
created. Through changing the different parameters any other source of sound can be sim-
ulated in the same way.

11.2.2.1 Estimation of Radial Expansion
Preliminary Remarks

It is assumed that the fibril has the shape of a cylinder and that there is a homogeneous
distribution of mucopolysaccharide inside the fibril. There is evidence [11.10] that a fully
hydrated fibril is hollow inside, which is not explicitly considered in the model.

The model parameter values as used for the mathematical model can be found in Table 11.2.

When water molecules pass through the surface of the fibril, they can move inside by
diffusion. However, such a description reaches its limits with fibrils consisting of only a
few molecules. If, however, a continuum model is used as an approximation, the move-
ment of the water molecules inside the fibril can be described by diffusion. The binding
to the polysaccharides requires a modeling of the concentration of unbound water and
the degree of saturation with water by spatial scalar fields. The coupling of the equations
leads to a reaction-diffusion equation. A high complexity results from the introduction of
fibril expansion depending on the local bound and unbound water content. This probably
requires very sophisticated modeling and simulation. This approach will not be pursued
further here. In addition, the corresponding model parameters are not known.

Instead, an approximation method is used based on the assumption that the water mol-
ecules are bound very quickly and that there is a homogeneous water concentration within
the fibril. Immediately after the fibril has been ejected and after saturation with water has
been reached, this homogeneity is given. If one would take into account the fact that the
water concentration at the surface is higher than inside, a slower water absorption and a
slower increase of the radius would result. The following model calculation therefore over-
estimates the speed of expansion.

Table 11.2 Model parameter values with definition and sources as used for the mathematical
model.

Parameter | Description Values Reference
T, initial radius of the fibril 2.5 nm [11.10]
r. final radius of the fibril 12.5nm [11.10]
h fibril length 0.3 to 3 um (chosen: [11.24]
3 um)
k mass transfer coefficient 2.3-10° m/s™ [11.41]
o measure for mucilage expansion | 4.7 [11.8]
R distance between fibril and 0.01 m Equipment used
microphone
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Model

The assumption is therefore the description by a water concentration ¢ (in mol), which
depends only on time. The flow on the surface of the fibril is proportional to the differ-
ence between the saturation concentration c_and the concentration c:

j=k(c,-c) (11.9)

where k is the mass transfer coeflicient (see [11.6]). Strictly speaking, concentration ¢
applies only to the surface, but within the fibril.
The transfer through the entire surface A gives Aj. The change in the mass of water N

(mol) inside the fibril is due to Aj= LZ;]:

d—N:ch:Ak(cs—c) (11.10)
dt dt

where the volume V of the fibril was introduced. As A and V are functions of the radius, Eq.
(11.10) represents an equation with the time-dependent variables ¢ and radius 7. A second
equation with these variables is provided by the equation (also used in [11.8])

V=V +aV, (11.11)

where V. is the volume of the fibril without water content (“dry”) and V/ is the volume of the
water in the water body, i.e., before hydration. For the factor a, a > 1 (see [11.8]). The water
is therefore not as densely packed in the bound state as in the bulk of the water. Eq. (11.11)
is used (see Deng et al. [11.8]) for the case of complete hydration, so that V means the
maximum volume (V' = V, ). Obviously, the equation is also correct before the beginning
of hydration (V' = V)). For volumes between the extremes, Eq. (11.11) would also apply,
assuming that the inflowing water locally leads to complete hydration, so that an outer fully
hydrated region and an inner water-free region exist. Since this cannot be assumed in prin-
ciple, Eq. (11.11) is only considered to be a linear interpolation for all volumes.

For the volume of water it holds, V =NV, where v, is the volume of one mole of liquid
water. From Eq. (11.11) it follows:

NV (11.12)
oV

Using Eq. (11.10) we get:

dvzaVMAk[cs—V_Vd) (11.13)
dt oVyV

An approximation was used that V, is not time-dependent and that ¢ = N/V. Until now,
the geometric shape of the fibril was not explicitly taken into account. It is assumed that
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the cylinder has a radius of  and the height of h. Water absorption should only take place
through the curved surface area and expansion should only take place radially. If you insert
V = r’nh, V, = r’mh and A = 2rmth in Eq. (11.12), you get an equation with r as the only
time-dependent variable (dV/dt = Adr/dt):

22
v=jtr=k(ocVMcs—rrd) (11.14)

7"2

If the radius of the cylinder without water content r, and at saturation with water r,
are used as model parameters, c_is not an independent parameter. From Eq. (11.12) we
get results for saturation with water (V' = V ) and with ¢_ = N/V (N total amount of water
absorbed):

2 2
Tm — 14

c. = (11.15)

o VM r,fl

Ifr,<r ,thenc = 1/(aV )is valid as expected. So far it has not been determined in
which state the expansion will start. It should be assumed that the fibril initially con-
tains no water, so that the start condition at time t = 0 is r, = 7(0) = r,and V = V(0) =
V.. With this definition and with Eq. (11.15), Eq. (11.14) it is taking the form:

2 2
y=4 :k("’z—r"j (11.16)

=7
dt o

The initial velocity v(0) results with r(0) = r, from Eq. (11.16) giving

2 2
Tm — 1o

2
m

v(0)=k

(11.17)

The calculation of the quantity v(0) does not yet make use of the assumption of homoge-
neous water density in the fibril over the period of expansion, because this homogeneity is
given at the beginning. A reaction-diffusion equation should also provide this initial value.

In [11.8] k=2.3-10"m/s is used (adopted from [11.41]). Using the model parameters for
r, and r, (Table 11.1) it follows from Eq. (11.17):

v(0) =k-0.96 =~ 2.21 - 10° m/s (11.18)

If this speed would last until reaching the maximum radius (12.5 nm), this radius would
be reached in 0.57 ms. This is very long compared to the estimated duration of the ejection,
so that almost the entire expansion of the fibril takes place after the ejection. However, the
form of Eq. (11.16) shows that the velocity decreases very rapidly with the radius. In the above
approximation, at twice the radius of the starting value r, it is only 1/4 of the speed at the start.
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Eq. (11.16) can be analytically integrated after separation of variables. The inverse func-
tion #(r) reads:

2
t:klr’”(rg‘lnr’"ﬂ—coj (11.19)

7’02 Tm—7T

with the integration constant C;:

T T, +1
Co=—1, +ln(0) (11.20)
2 T —1

Numerical Results

For the volume, the length of the fibril & is also needed (Table 11.1). From the range
0.3—3 pum the value 3 pm was chosen in order to describe the optimum case of observability.
In Figure 11.1, the graphs according to Eq. (11.19) show the expected qualitative behavior:

In the selected time period, after a steep ascent, a slow increase of the radius is seen.
The initial radius is doubled in approx. 0.284 ms. The doubling of the surface (\/Ero) is
already achieved after approx. 0.071 ms. The fast decrease of the speed with increasing
radius leads to the fact that the 10-fold initial radius is never reached.

As the radius asymptotically approaches the maximum radius r , this radius is never
matched. As a measure for the duration of the expansion, you can define, for exam-
ple, after which time 90% of the radial expansion is completed. If the characteristic
radius r, is defined by (r, - r)/(r, - r,) = 0.9 the characteristic radius is reached after
9.05 - 107* seconds.

For the question of sound generation, it is important that rapid expansion only
occurs as long as the radius of the fibril is a few nm.

11.2.2.2  Sound Generation
Model Assumption

One of the main assumptions was that the fibrils are ejected at an enormous speed and
therefore their expansion along their entire length starts as soon as they are in the water
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(a) Expansion of the radius (b) Expansion of the volume

Figure 11.1 Expansion of a cylindrical mucopolysaccharide fibril.
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body. Apart from a possible sound development due to the ejection itself, the sound is gen-
erated by the expansion of the cylindrical fibril. This expansion starts with an initial velocity
of v(0) = 0.96 - k. With the selected model parameters, the expansion initially occurs at
2.21 - 107 ms™. After that, the speed drops very rapidly. Therefore, a wide frequency spec-
trum can be expected. Theoretically it is infinitely broad according to the model; because
the movement starts immediately, practically an infinitely steep edge is not to be expected
in nature.

In the following estimation we therefore work with the assumption that the wavelengths
of the sound are large compared to the expansion of the sound-emitting body. A wave of the
wavelength of A corresponds to a frequency of ¢, /A, where ¢, is the speed of sound in water
(about 1500 m/s). If we would consider frequencies where the wavelengths are in the range
of the length of the fibril (0.3 to 3 pm [24]), we would also have to include frequencies in
the range of 2.5 - 10° to 2.5 - 10° hertz.

Velocity Potential and Boundary Condition

When using a description of the sound by a velocity potential @, so that the velocity of
the particles in the wave v_is given by the gradient of this scalar potential

v =V (11.21)
the following equation must be solved:
10°®
ADP-——-=0 11.22
ci ot? ( )

Considering an expanding body with a solid surface, the normal component of the liquid
velocity at the surface must be equal to the normal component of the velocity of the body
at the surface [11.31]:

9@ _ (11.23)
on

In the case of the expanding fibril, however, water from the water body flows into the
fibril, which reduces the speed of the water pressed outwards, as shown in Figure 11.2.
Instead of Eq. (11.23) we write:

oD
——=y-v, (11.24)
on

Here v is the velocity with which the water flows into the fibril. From Eq. (11.11) it
follows that

AV, _dv _ dr_
dt  dt dt

Av (11.25)
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Figure 11.2 Schematic drawing of the expanding fibril.

As the volume change of the water is given by the flow of water through the surface
(dV /dt = Av ), the following applies:

Vi =A_lddlt“'=a_1v (11.26)

Eq. (11.24) therefore becomes

0P o—1
——=v—v, =
on o

v (11.27)

Calculation of the Velocity Potential

In the vicinity of the body (distance small compared to the wavelength) the second term
in Eq. (11.22) can be neglected and the Laplace’s equation A® = 0 applies. In [11.31] it is
shown that for large distances compared to the size of the body but small compared to the
wavelength a general solution of the Laplace’s equation exists which has the form

o=—2ikvi (11.28)
R R

R is the distance to the sound emitting object, where the coordinate origin is somewhere
inside the body. The first term a/R only occurs when the body is pulsating, whereby 4mna
represents the flow of liquid through a closed sphere around the body, so that

oa—1 oa—1_.
da=(v—v, )A= VA= \% (11.29)
o o

By looking at the outgoing spherical wave (R > [), the solution for Eq. (11.22) is
given:

_a—1V(t—Ricy)
o 4R

D=

(11.30)
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and for the velocity of the particles in the wave

-1 1 R).
vszvcpza— Vit——|n (11.31)
o 4TECLR CL

where 71 is the unit vector in radial direction. Egs. (11.30) and (11.31) are adopted from
[11.31], whereby only the pre-factor has been modified.

The factor (a - 1)/a) in Egs. (11.30) and (11.31) shows that sound generation only occurs
if a > 1. If a = 1, then the radius of the fibril would grow to its maximum size, but water
would enter to the same extent as its diameter increases. An impulse would not be trans-
ferred to the surrounding water. As model parameter a = 4.7 was used. Thus (a — 1)/a = 0.79.
Altering this factor would not change the result by orders of magnitude.

Calculation of the Sound Pressure

For the question of which signal is produced by a microphone, the sound pressure of the
pulse is determined.

P=p,CV, (11.32)

where p is the density of the water. Using Eq. (11.31) one gets

B Coc—l 1 V't—B
P = pocL o 47oR . (11.33)

By expressing the radius r in the solution #(r) according to Eq. (11.19) by the volume
V and deriving it with respect to V, one obtains:

2
- 1o Vm—V
V—Zk\/ﬂ,'hg \/V (11.34)

A second differentiation yields

(11.35)

2
V = 2k/7h :’Z\/W

where V is given by Eq. (11.34).

For aradius rwithr <r<r (r isnever reached) the time at which this given radius
is achieved can be calculated with the help of Eq. (11.19). Furthermore, r also gives the
volume V. Using Eqs. (11.34) and (11.35), the time derivatives of the volume can be
calculated and finally, with Eq. (11.33), the desired pressure p.

Assuming a distance between sound source and microphone of R = 1 cm and with the
model parameters given above, this leads to this time dependence of p (Figure 11.3):

The maximum pressure is about 6.24 - 107" Pa. Since the retardation R/c, in Eq. (11.33)
does not play a role for a single pulse, the shift in the time axis is not shown.
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Figure 11.3 Time dependence of the sound pressure p.
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Figure 11.4 Time dependence of the sound pressure p for different mass transfer coefficients k.

It should be noted that the mass transfer coefficient k, which is not known exactly, has
a large effect on p(¢). In Figure 11.4, in addition to the model parameter of 2.3 - 10~ m/s,
other values covering one decade were used.

Finally, it should be mentioned that the sound absorption by the water has no relevant
impact considering the small distances between diatoms and hydrophone. If a diatom
moves on the substrate, however, the sound wave is created between the valve and the sub-
strate. The sound can at least partially reach a hydrophone by diffraction around the valve
(wavelengths in the detectable range are large compared to the diatom’s extension). If the
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raphe system opposite the substrate is active, a sound wave generated there can, however,
propagate freely into the water body.

Note on Pulse Superposition and Sound Spectrum

For a single and a periodic pulse, its spectrum can be obtained by Fourier transformation.
However, this is not of primary importance for observation with a hydrophone. A sequence of
discrete single pulses can be recognized if the single pulse is perceptible by a “clicking” sound."
However, if there are a lot of pulses per time, the probability of overlapping pulses
increases. By superposition, higher pressures are then achieved than with a single pulse.
With the pulse shape of p(t) shown above, two pulses must follow in a time interval of no
more than 1.81 - 10™*s, in order for the sum level to be about 10% above the maximum
value of a single pulse. For a periodic pulse sequence, this is the case at 5500 pulses per
second. As a rule, it can also be said for randomly distributed events that high pulse peaks
rarely occur with significantly fewer than 5500 events on average per second. With a sig-
nificantly higher number of pulses per time unit, one can profit from the superposition
and achieve higher output voltages at the hydrophone. In Section 11.4 (Conclusions and
Outlook) a pulse sequence of 400 pulses per second for a single diatom is estimated. These
pulses should not overlap significantly in view of the short duration of the pulses. A positive
effect on the observability beyond that of a single pulse can be expected from 5500/400 ~ 14
active diatoms in the vicinity of the microphone. If the pulse sequence of a diatom is reg-
ular (no strong temporal fluctuations between single pulses), a clear peak in the spectrum
at the frequency of the pulse sequence should be visible even in the case of many diatoms.
Accordingly, this would show up in the autocorrelation function of pressure versus time.

11.2.3 Gathering Diatoms

Keeping diatoms is not that simple. Many species change their behavior when cultivated
or kept in captivity because of the change in environment. Sometimes the diatoms even
change their form. This can even lead to the point where the species cannot be identified
anymore. If there is no sexual reproduction the diatoms get smaller and smaller until nor-
mally after a few months they are nonviable and the population dies out [11.39].

Nevertheless, there are a few raphid species that can be kept for years because they do
not need sexual reproduction for a very long time, e.g., Nitzschia palea. That species is
very active, durable, grows very fast and is therefore suitable and highly recommended for
experiments. Other active species are diatoms from the Navicula genus. Pinnularia are also
a suitable option, although they are rather sedate in their movement [11.39].

Edgar stated that: “Observations show that the large, bulky cells (e.g., Pinnularia,
Cymatopleura) move more slowly than the flatter species (e.g., many Navicula spp. and
Nitzschia spp.)” [11.16].

In order to keep diatoms, it is important that there is not too much water over the layer
of diatoms in the container (as seen in Figure 11.5) to enable gas exchange also with the
container closed, e.g., during transport. Of course, not closing the container airtight can be

"This can be compared to the observation of raindrops by the sound of their impact on a roof, which are sta-
tistically independent and produce a so-called shot noise. However, the pulses of a single diatom are not
statistically independent.
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Figure 11.5 Schematic drawing of a jar with diatoms.

the preferred option, but it should be covered lightly to prevent entry of foreign substances
or organisms from contaminating the water. Many diatoms can live well at a temperature
of about 20°C. The container with the diatoms should ideally be placed at a window facing
north, because direct sunlight should be avoided [11.39].

In general, there are two different ways of obtaining diatoms: Purchasing diatoms and
catching diatoms in the wild. Both have advantages and disadvantages

11.2.3.1 Purchasing Diatom Cultures

Diatoms can be purchased online. As mentioned before, it should be considered that many
diatom cultures that are kept in captivity for longer periods of time lose their typical mor-
phology. Nevertheless, the advantages are that only one specific species can be obtained and
the amount of foreign substances and organisms would be minimal.

At the University of Gottingen (Germany) there is an institution for research and culti-
vation of diatoms, where some species are offered. See also [11.38] [11.43].

11.2.3.2  Diatoms from the Wild

One advantage of diatoms that are harvested from the wild is that they are generally more
active and vital. On the other hand, one disadvantage is that there are many different species
and so it is hard to determine the one at hand. Single diatoms of the desired species can be
extracted with capillary pipettes, but the species would first need to be identified. Another
option to isolate raphid, motile diatoms could be to set a light spot to one area (perhaps on
a microscope slide), so that motile diatoms would move there [11.39]. Redfern has already
described another method to isolate Navicula and other test objects, using fine hairs [11.34].

Further research and experiments were made with diatoms from the wild exclusively (as
shown in Figure 11.6.), because of their activeness and the possibility of obtaining them
easily with little time investment, and performed some quick, rough measurements.

For gathering diatoms from the wild, a few different techniques were tried out:

Mud from the Bottom of a Body of Water

Because they can be found in almost every water body, diatoms can be obtained just by
collecting mud, sand or other kinds of substrates from the bottom. For collecting raphid
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Figure 11.6 Raphid diatom (to our best knowledge), caught by FZ; Note the visibility of the chloroplasts
inside the diatoms; the scale bars are estimated.

diatoms, it is advised to do so on the side of a river or creek, where the current is not too
strong, but strong enough for non-raphid diatoms to get flushed away. In the case presented
here, the mud from a pondside was collected in Natschbach, Austria on June 14, 2019 and
observed under the optical microscope.

Placing a Substrate in a Water Body

Another option specifically for gathering raphid diatoms is to place some kind of substrate
for diatoms to move up to in some body of water. Therefore, different kinds of substrates
were placed in a small creek in Natschbach, Austria, with not too strong current and left
there for a few weeks. This was done first with microscope slides and then with plastic foil,
which could later be crumpled up to increase the surface of the substrate and thereby also
the density of raphid diatoms.

Stones from Underwater

For this technique stones from underwater are collected. Stones with golden-brown film
on them usually work well for obtaining diatoms (as displayed in Figure 11.7.). The film is
brushed off into a container with an old toothbrush and then washed away with a little bit of
water from the same origin as the diatoms. The water should then be of a light-brown color.
To receive diatoms, only the film from the upside of the stone needs to be scraped off. This
is also a technique specifically for gathering raphid, motile diatoms [11.9].

Comparison of the Different Methods

Samples of diatoms collected with the different methods were observed under an optical
microscope from Budapest Telescope Center (BTC), model BIM313T.

In Figure 11.8a there are diatoms that were brushed off stones from underwater. This has
proven to be the best method for obtaining raphid diatoms while at the same time mostly
avoiding other organisms, plants or material. It can clearly be seen that there is the least
amount of foreign substances.

Figure 11.8c shows mud from the edge of a pond. In this case, although many raphid
diatoms were collected, many other organisms could also be observed.

On the right side of Figure 11.8, substrates that were placed in a small creek and left there
for a few weeks are shown. Here the enormous growth of algae is clearly visible.
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Figure 11.7 Stones from underwater with golden-brown film on them, collected by FZ in Natschbach,
Austria, on May 5, 2019.

(a) Diatoms brushed off stones (b) Microscope slide

o

(c) Mud from a pondside . - (d) Iastic foil
Figure 11.8 Comparison of diatom samples obtained with different methods; the scalebars are estimated.

In Figure 11.8b, the substrate was a microscope slide made out of glass, which usually is a
good substrate for raphid diatoms. Therefore, this sample contained many raphid diatoms,
but also a lot of foreign substances.

In Figure 11.8d, the substrate was a piece from the plastic foil that was placed in the creek.
Here the ratio of raphid diatoms to foreign substances is the worst of all methods that were
used. Pennate diatoms usually cannot stick well to plastic, so plastic is not a suitable substrate.

11.2.4 Using a Hydrophone to Detect Possible Acoustic Signals from Diatoms
11.2.4.1  First Setup

For a first measurement, to detect possible acoustic signals related to diatom movement,
diatoms were first scraped off stones from underwater and then mud and sand from a
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riverside were collected. For every measurement with diatoms, a reference measurement
was performed. It is important that the reference container is of the same material and
shape as the container with diatoms. Furthermore, it was filled with water from the same
origin as the diatoms, directly from the top of the small creek, where the water is pumped
from the bottom of the pond. Therefore, there probably were not that many live diatoms as
in the containers where diatoms were gathered with the different methods presented earlier.
The two containers had roughly the same level of liquid. The containers used were glass jars
with a diameter of about 10 cm.

In Figure 11.9 the setup for these measurements is shown. On the left there is the power
supply for the hydrophone, in the middle the recorder and on the right the jar with diatoms
and the hydrophone and the reference jar. Here the diatoms scraped off stones are recorded.
Also, different materials to muffle ambient noise can be seen in Figure 11.9. Usually tex-
tiles or artificial fur work well. In this case, vibration-insulating mats (as seen in yellow)
were also used. The material these mats are made from is called “Sylomer” from Getzner
Werkstoffe GmbH in Vorarlberg, Austria. There are different kinds available for different
weight forces (force per area).

The hydrophone used was a Briiel & Kjeer hydrophone, Type 8106, with the hydrophone
power supply also from Briiel & Kjer, Type 2804. The recorder used was a Tascam DR-100
MKIII linear PCM recorder. This hydrophone Type 8106 is a low-noise hydrophone,
designed for the measurement of weak, underwater signals. It has a frequency range from
3 Hz to 80 kHz and a receiving sensitivity of =173 dB re 1 V/pPa. The measurements with
the first setup were performed in an office with a surrounding background sound level of
39 dBA, re 20 pPa, RMS fast, where “dBA” means “decibel according to evaluation curve
A which takes into account the human hearing, “re” stands for “relative to.” So “relative to
20 pPa” is the sound pressure reference value in the level measurement, which corresponds
to the human hearing threshold at 1000 Hz. This has to be stated in this context, because it
specifies the reference level. Otherwise, this declaration would be ambiguous. “RMS fast”
means that the measuring steps were performed at intervals of 135 ms.

Figure 11.9 Setup of first measurements.
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Figure 11.10 Measurement of jar with diatoms (right), reference jar (left).

Figure 11.10 shows the measurement of the diatoms that were collected from a river,
together with mud, sand and possibly many foreign organisms and substances. Nevertheless,
a rough measurement was performed.

11.2.4.2  Second Setup

In a second attempt, we tried to increase the density of raphid diatoms. To do so, transpar-
ent glass balls with a diameter of about 4 mm [11.3] were filled in jars so that the bottom
was covered with them. The glass balls are made from soda-lime glass, the prevalent type
of glass.

Diatoms were collected by scraping them off stones from the same creek as before and
put inside the jars with the glass balls, as seen in Figure 11.11. For the measurements, the
content of all the jars could be filled in one container, and with the much higher surface
there would hopefully also be a higher density of raphid diatoms. A reference jar with
roughly the same amount of glass balls and the same level of water from the same creek was
also prepared.

The hydrophone and its power supply were the same as in the first setup, but the recorder
was a Marantz model No. PMD660.

Additionally, we tried to record the noises made by two adult great pond snails—Lymnaea
stagnalis (Linnaeus, 1758). These animals have a radula, which they use to scrape algae off
a surface and eat them. This usually produces a munching sound. The snails were put in an
extra jar with water from the same origin. The rest of the setup remained the same as for
the diatoms.

This time measurements were performed in a soundproof room in Althanstrafle 14, 1090
Vienna, Austria. Its internal dimensions are 3 m - 3 m - 3 m. Beyond there is 1 m of silencers
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Figure 11.11 Jars with diatoms and little glass balls.

out of foam material on the ceiling, on the floor and on all four walls. Behind that there is
a double wall filled with sound-insulating material. The whole cube is mounted on buffers
out of rubber and also acts as a Faraday cage. At the time of the measurements 3 observors
were present in the room, which could have been an additional source of noise, but was
considered neglectible, as the goal was only to perform rough measurements.

11.3 Results andDiscussion

11.3.1 Spectrograms

Figures 11.12 and 11.16 show the results of the setup shown in Figure 11.10 and the
results of the reference measurement with the same water but without diatoms. The
diagrams shown here are spectrograms, the illustrations of the frequency spectrum
of a signal, as they are used for analysis of acoustic signals. They serve as an overview
illustration of sound signals and cannot be used to read exact amplitude values. On
the abscissa the time in [s] and on the ordinate the frequency in kilohertz [kHz] is
displayed. The sound level in decibel [dB] is displayed through color, where brighter
colors indicate stronger sound levels. In the following spectrogram, 40 dB are displayed
(—82 dB...—42 dB). This makes 0.634 dB per color grade. The color range is ordered as
follows: black (< —82 dB), dark blue, light blue, green, yellow, white, red (> —42 dB). Exact
values and differences in the sound levels can be read off the averaged spectra.

All averaged spectra were created in the same way. For each of the two recordings a long-
term averaging and a short-term averaging were performed. Comparing the short- and
long-term averaged spectra shows that the spectrum is quite stable over the whole period
of time (short converges to long). Also, besides short disturbances or pulses, no recogniz-
able signal is visible. Differences between the averaged spectra of the two recordings can be
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Figure 11.12 Spectrogram of measurement with diatoms.

explained as follows: Firstly, it is a matter of two recordings that were performed separately.
Secondly, the recordings have different lengths and the pulses are not evenly distributed.
Lastly, the horizontal lines in the spectrogram/peaks in the spectrum differ, showing the
same frequency but different sound levels.

Analyzing the recorded sounds and creating the spectrograms was done with the pro-
gram STx. It is freeware and can be downloaded from the website of the Austrian Academy
of Sciences [11.2].

Some characteristics of the spectrogram of the measurement with diatoms (Figure 11.12)
can be summarized as follows:

Throughout the whole signal:

 Tone at 16.4 kHz, 10 dB above the background

o Tone at ca. 24 kHz, 7 dB above the background (occasionally interrupted or
AM modulated)

+ Noise band between 44 kHz and 64 kHz

At some locations:

» Tone at ca. 7200 Hz, slightly modulated; The level is difficult to measure,
ca. 3-8 dB above the background. For example, between 2.75 s and 3 s: a
tone at about 7100 Hz (+8 dB) and a modulated/varying tone between
4800 Hz and 5200 Hz

o There are similar signals between 2.4 s - 2.5 s and 1.85 s — 1.95 s and possibly
0.6 s -0.95s.
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In Figure 11.13, both stationary tones (16.4 kHz and 24 kHz) and the noise band are
clearly visible. The small peaks at around 5 kHz and 7 kHz are caused by the sporadic
signals.

In Figure 11.14 the stationary tone at 16.4 kHz and the localized tone at ca. 7100-
7200 Hz are clearly visible.

In this range (Figure 11.15) there is no occurrence of the sporadic tones, and the spec-
trum is therefore similar to the averaged spectrum over the whole signal (Figure 11.13),
although the variance is higher, since the averaged signal is shorter. The same kind of con-
siderations were made for the reference measurement.

Throughout the whole signal:

« Tone at ca. 16.4 Hz, 13 dB above the background

« Tone at ca. 24 kHz, 7 dB above the background (occasionally interrupted or
AM modulated)

fft: length=9600 samples, df=20Hz phase: -Pi..+Pi

20000 40000 60000 Hz

Figure 11.13 Averaged spectrum over the whole spectrogram (0.5 s - 3.5 s).

fft: length=9600 samples, df=20Hz phase: -Pi..+Pi

40000

Figure 11.14 Averaged spectrum over the range 2.75s - 3 s.

fft: length=9600 samples, df=20Hz phase: -Pi..+Pi

0000

Figure 11.15 Averaged spectrum between 1 s - 1.5 s.
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Figure 11.16 Spectrogram of reference measurement.

« Tone at ca. 32.8 Hz, 10 dB above the background
+ Noise band between 44 kHz and 64 kHz

At some locations:

o Atca. 1.2 s there is a short broadband disturbance.
o Atca. 1.65s - 1.75 s (just before the relative strong 1.3 kHz tone) there is a
short tone at ca. 4000 Hz (possibly with parts at lower frequencies).

Comparison with the first signal of the measurement with diatoms:

« All three tones are also present in the first sound file (Figures 11.12-11.15),
though with lower amplitudes (particularly the 32.8 kHz tone).
o The tones at 7 kHz and 5 kHz found in the first sound file are not found here.

In Figure 11.17 the three static tones (16.4 kHz, 24 kHz, 32.8 kHz) and the noise band
are clearly visible.

In Figure 11.18 a tone with slowly rising frequency can be seen at ca. 12.5 kHz to 13.5
kHz.

Figure 11.19 shows a relatively strong tone at ca. 1300 Hz (not completely stable
frequency).

Figure 11.20 shows only the “background signal”” It is similar to the average of the com-
plete signal, but with higher variance.
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Figure 11.17 Averaged spectrum over whole spectrogram (0.5 s — 3.5 s).
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Figure 11.18 Averaged spectrum between 0.5 s — 0.65 s.
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Figure 11.19 Averaged spectrum between 1.85s -2 s.
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Figure 11.20 Averaged spectrum between 2.5s - 3.0 s.

Apart from background noise in both measurements no sounds could be recorded.
The spectrograms of the measurements with diatoms and the reference measure-
ments show no great differences. They also do not look exactly the same, which is due
to the fact that they were not recorded at the same time, which would require two
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hydrophones. The recordings of diatoms scraped off stones, as well as the measurement
of the containers with diatoms on glass balls, all led to the same results.

The recordings of Lymnaea stagnalis were a challenge, because they did not seem to
be very hungry at the time of the experiment. Only one quiet munching sound could
be recorded. For this experiment with the snails, it might be best to put the hydrophone
under water for some time, so that algae can grow on it. Then the snails could scrape
them right off the hydrophone, which would produce a strong signal.

11.3.2 Discussion

At the Institute of Sound Research of the Austrian Academy of Sciences, the comparative
sound recordings (with diatoms and reference recording without diatoms) were subjected
to a detailed analysis. Averaged spectra were taken from equally long sections of both sig-
nals. These showed background signals that could not be distinguished between the two
signals. Stable partials that occur in the background have the character of technical faults.
Likewise, faults are to be detected, but these occur only for a short period of time and there-
fore cannot originate from the expected organic source.

In summary, it can be stated that both recordings have a very similar background sig-
nal, which is present over the entire time. This can be shown by the overall average spectra
(Figures 11.12 and 11.16) and by the short-time averages (Figures 11.15 and 11.20), which
have the same mean but a higher variance (because of the shorter average time). The first
recording (measurement with diatoms) contains some short localized signals with low fre-
quency components. Because the signals have similar frequency components, they may be
caused by the same (probably mechanical) source. The second recording (reference mea-
surement) also contains some short low-frequency signals, but they are different from that
in the first signal. The stable/continuous tones at 16.4 kHz, 24 kHz and 32.8 kHz are prob-
ably caused by electrical devices (monitor?).

The results from these experiments could have different causes. It is possible that there
simply were not enough diatoms. For recording sounds with hydrophones, it would be best
if the diatoms stuck directly to the surface of the hydrophone and move alongside it. This
is not very likely because most hydrophones usually are coated with elastomers, which is
probably not a suitable substrate for raphid diatoms.

Furthermore, the sounds of the diatoms could also be too quiet to be recorded with that
kind of hydrophone. The problem here is that hydrophones need to be of a certain size to be
very sensitive. At the same time, it would be best to get as close to the diatoms as possible,
which would require a small hydrophone, but with smaller size its sensitivity decreases.

Finally, it is also possible that there simply are no sounds related to raphid diatom movement.

11.4 Conclusions and Outlook

We have put forward the hypothesis that diatoms are driven by the explosive hydration of
the mucopolysaccharide microfilaments released from raphes, whose diameter may be esti-
mated from micrographs in [11.13] at 50 nm. If a diatom is moving at 20 um/s, it would then
be releasing 20,000/50 = 400 filaments per second. If these are indeed explosions, they would
then be occurring in the frequency range of 0.4 kHz. However, an individual explosion could
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last for an even shorter period of time. If a filament exits the raphe at the speed of a discobo-
locyst (a projectile launching organelle), estimated at 260 m/s [11.21], and we assume a fila-
ment length equal to the cross-sectional length of a raphe (0.3—-3 pm in [11.24]), then a single
explosion could last as little as 1 ns, providing acoustic frequencies in the range of 10° kHz.
The latter is beyond the frequency range of the hydrophone we used and might explain our
negative result. There is a possibility that the diatom trail itself damps the sound of hydration
explosions, as analogously suggested for instrument vibrations [11.37].

Of course, all the experiments performed were rough, basic approaches and could
be refined tremendously. With two hydrophones of the same kind available, the ref-
erence measurement could be done at the same time as the measurement of the jar
with diatoms. Then the signal of the reference measurement could be subtracted and
only sounds that are present in the jar with diatoms would be shown, assuming that
the noise is from the environment or the observer and not from the hydrophone itself.
A soundproof room is possibly the best environment to perform these kinds of mea-
surements, but with two hydrophones it might not be necessary, because most of the
background noise would be cancelled out.

Another issue is the density of diatoms, which should definitely be increased, because
the more diatoms per volume unit there are in the container, the more likely it is to
detect possible sounds. To accomplish that, while at the same time maintaining the dia-
toms’ activeness, it could be worth trying to put active, vital diatoms from the wild into
one container together with great numbers of diatoms from cultures. Increasing the
surface could also be done by constructing some kind of inset out of microscope slides,
or, even more ideally, coverslips on which the diatoms could attach. Because coverslips
are made out of very thin glass, they would amplify potential vibrations.

The glass balls that were used to increase the surface (as presented in Subsection
11.2.4.2), are out of solid glass. A proposal to improve the experiment would be to use
hollow glass balls, like Christmas tree balls, but much smaller. Of course, they would
float on the water because of buoyancy, and therefore would have to be held underwa-
ter, e.g., with a net or sintered or glued to a surface.

Another promising approach could be to experiment with colonies of Bacillaria, the ear-
liest known genus of diatoms. Bacillaria cells live in colonies where the cells are connected
to long strands and can move parallel to each other [11.28]. This would provide a high den-
sity of diatoms, which means higher sound levels can be expected. Sounds could also occur
in Diatoma colonies. This genus forms chains or even bundles and sometimes two parallel
diatoms open up to form a “V” so that the chain reaches a new state of equilibrium. This
process happens very fast and could possibly produce an acoustic signal.

A suggestion for a setup for future measurements would be to grow a very dense colony
of diatoms, preferably of a species that is very active. Ideally, they are bred directly on the
hydrophone, because the acoustic signal would decrease tremendously with increasing
distance. Then possible changes in the signal could be detected when the light is turned off
and on again, because diatom movement is in most cases correlated with light intensity.

An alternative proposal to the presented method could be to use a vibrometer. A
drop of water with diatoms would have to be applied onto a very thin bar, e.g., an AFM
cantilever, which could maybe be stimulated by the vibrations of the diatoms. This
could be measured via interference. Of course, a reference measurement with the same
amount of water but without diatoms would also have to be performed.



Diatrom TrRiBoACOUSTICS 279

As another approach an optical hydrophone could be used, e.g., from XARION Laser
Acoustics GmbH in Vienna. Their hydrophone output signal is analogue (max +7.5 V at
50 Ohm), therefore there is no software, but it can be connected with any measurement
device. According to Wolfgang Rohringer, the lowest sound pressures detectable at the
moment are at ~ 50 uPa/Hz, in a frequency range from 10 Hz to ~ 3 MHz.

In case acoustic analysis of diatoms succeeds in the future, an interesting applica-
tion could be to track the sounds of different activities in water, especially of moving
diatoms. Through that perhaps conclusions about diatoms or other active organisms
inside the water body could be made.

Acoustic methods for analysis and control of friction processes are widely used in
tribology. Approaches on triboacoustic monitoring of friction were made by Dykha
et al. [11.12] [11.11]. There have already been proposals to measure vibrations with
MEMS (microelectromechanical systems) sensors, e.g., by Looney. The sounds pro-
duced by the repetitive mechanical motion of mechanical parts can be used to observe
machine health [11.32].

If measuring low intensity sound signals of that kind succeeds, it could be applicable
to ensure the proper functionality of machines. The measured acoustic signals could
serve as a check if a device is working correctly [11.40] [11.20].

We hope that these rough initial measurements of sounds of underwater creatures
will stimulate further research along these lines, and that future scientific approaches
can build upon our undertakings! Shrimp and other marine organisms produce and
use sound that propagates distances many times their sizes. Perhaps there is yet a defin-
itive chapter on diatom ecoacoustics [11.18] to be written.
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Nitzschia communis, 9, 83, 84,92, 97
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Nitzschia linearis, 111, 113
photocharacteristics, 125-126

Nitzschia palea, 84, 87

Nitzschia sigmoidea, 16-22

Nutrient cycling, 136, 146

Nutrient foraging, 85, 94-96, 99

Nutrient turnover and biogeochemistry,

145-146
Nutrients, 159-161, 163-164, 173

Oat-animal, 338, 339
Ochromonas spp., 380, 395
OpenCV, 234
OpenDevoCell, 232, 234-235, 238-239, 242
Optical illusions, 347
Optical properties,
diatom nanoarchitecture, 144
Oscillatory movement, 243

Pad, 214
Paramecia cilia, 286
Parasitism, 212
Particle analysis, 26, 28
Passive locomotion, 211
Pellicle, 66
Pennate diatoms, 3, 159-170, 173, 175
Periodic pits, 295, 302, 318
Peritidal South African stromatolite, 147
Phaeodactylum tricornutum, 82, 84, 87, 89,
382
Pheromones, 85-86, 94, 96-99, 164, 167, 173
Phoresy, 212
Phoront, 212, 214, 217
Phosphate, 85, 94, 96
Photoacclimation, 163-165, 218
Photocharacteristics, 124-129
Photodamage, 114, 164, 175
Photokinesis, 165-166
Photon flux density (light), 137, 138
Photophobic effects,
cellular memory of light exposure, 117-118
direction change response, 111-130
energy threshold, 115-116, 125
exposure time threshold, 115
habituation of light responses, 118
high irradiance responses, 114-118
light boundary response, 113
light spot accumulation, 113-114
light spot accumulation model, 114
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localization of response, 115
refractory period, 118
repression of light response, 115-120,
122-123,127-128, 130
species distribution, 114
species-specific characteristics, 116-118
Photophobic response, 112
Photoprotective, 78-79, 131
Photoreceptors, 130, 166
Photosynthesis, 160-164, 168, 173-176
Photosynthetically active radiation (PAR), 136
Phototaxis, 165-166, 168, 170-172, 174
Phytoplankton, 160, 173
Pinnularia, 285, 290
Pinnularia gentilis, 22-23
Pinnularia maior, 15, 357
Pinnularia nobilis, 358
Pinnularia viridiformis, 14
Pinnularia viridis, 87,92, 111-129, 348
photocharacteristics, 124-129
Pivot point, 6-7
Pivoting,
apical, 285, 290, 291
diverse, 290-291
horizontal, 285
myosin heads, 286
polar, 285
problem, 290-291
vertical polar, 285, 290, 291
Plagiogramma sp., 85, 97, 98
Planktonic diatoms, benthic vs., 137
Plasmolysis, 353
Podocystis, 395
Polar coordinates, 223
Polycelis tenuis, 148
Polysaccharides,
capillary electrophoresis of, 372
mucopolysaccharide, 382
noncellulosic polysaccharide biosynthesis,
385-388
polyelectrolytes, 390
raphe fibrils as, 382, 384
Population density, 78
Pre-trained model, 223, 230, 232, 234, 236, 239,
244,245
Productivity, 159, 163, 175
Prokaryotes, 137
Proposed motors, for diatom motility, 335-397
membrane surfing, 393-397
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models for diatom motor, 338-381

acoustic streaming, 378, 379

adhesion as sliding toilet plunger, 365, 366,

368

as “compressed air” Coanda effect gliding
vehicle, 368, 369, 371

as monorail, 366, 368-370

bellowing diatoms, 355, 357

bubble powdered diatoms, 358360

clothes line or railroad track, 372-374

cytoplasmic streaming, 360-367

diatoms crawl like snails, 342-344

electrokinetic diatom, 371-372

flame of life, capillarity, 354-356

internal treadmilling, 375, 376

ion cyclotron resonance, 374-375

jelly powered jet skiing diatoms, 355, 357,
358

jet engine, 344-346

no new theory, 360, 361

propulsion of diatoms via many small
explosions, 379-380

protoplasmic tank treads, 350-354

rowing diatoms, 346-350

somersault via protruding muscles, 338,
339

surface treadmilling, swimming and
snorkeling diatoms, 376-378

vibrating feet/protrusions move diatoms,
338, 340-343

walk like geckos, 380, 381

overview, 336-337
raphe fibrils, 381-393

as polysaccharides, 382, 384, 385

diameters, 393

directionality for raphan movement,
390-392

exit, 392

forces, diatoms to lift 5000 times, 392-393

mucopolysaccharide, 382

raphan movement along raphe, 389-390

state of raphe fibrils in raphe, 388-389

synthesis and secretion at cell membrane,
382-385

synthesis and secretion into vesicles,
385-388

synthesis over whole cell membrane and
secretion into raphe, 385

Propulsion of diatoms via many small
explosions, 379-380

Proteoglycans, 382, 387

Protists, 137

Protoplasmic tank treads, 350-354

Protruding muscles, diatoms somersault via, 338

Protrusions move diatoms, 338, 340-342, 343

Pseudonitzschia multistrata, 99

Pseudostaurosira trainorii, 85, 97, 98

Putative proteoglycans, 382

Railroad track, diatom, 372-374
Raman spectrum, 309
Raphan, 382, 385, 387-397
Raphan synthase, 335, 382, 384, 385, 387, 389,
390, 393-397
Raphe(s),
crystalloid bodies (CB) and, 372, 373
fibrils,
as polysaccharides, 382, 384, 385
diameters, 393
directionality for raphan movement,
390-392
exit, 392
forces, diatoms to lift 5000 times, 392-393
membrane surfing, 393-397
motion of, 360, 371-372, 380
mucopolysaccharide, 382
raphan movement along raphe, 389-390
state of raphe fibrils in raphe, 388-389
synthesis and secretion at cell membrane,
382-385
synthesis and secretion into vesicles,
385-388
synthesis over whole cell membrane and
secretion into raphe, 385
in Cocconeis diminuta, 350
lining, 389
oriented fibrils, 347-348
passive resistance of flow, 355
trail, 366, 370
with organic material, 348
Raphe, 3, 78, 81, 83, 86, 159, 161-162, 168-169,
173,283
angle, 194-196, 203
branch, 189, 192-198, 201
curve, 187, 195-198, 203
distal, 185, 195, 197
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end, 189-193, 195
fissure, 196-197, 203
length, 195-196, 198, 203
movements of, 285
diverse pivoting, 290-291
hypothesis, 285-288
transapical toppling movement, 290
translational apical movement, 288-289
proximal, 195
recurve, 186-187, 196, 201
slit, 185, 197, 202
transapical raphe diatoms, 285
valve face, 185-188, 192, 195-198, 201-203
valve mantle, 185, 197, 202
Raphe-based mucilage secretions, 90-91
Raphid diatoms, 78-80, 86, 89-91, 97, 159,
161-163, 165, 168-170, 173,174
Raphid pennate diatom, 336, 362, 371, 376, 382
Reproduction,
auxospore, 203
sexual, 203
Research, on diatoms, 136
Resources,
competition, 198-200, 204
light, 199-200
nutrient, 200
sense, 199-200
Responses to light stimuli, see Photophobic
effects
Reversal point, 5, 8-13
Reynolds number,
definition, 250, 252-253
low, 253-254
Rhoicosphenia abbreviata, 284, 285, 290
Rhopalodia, 10, 16, 22
Rimoportula, 185, 187, 198-199, 202-204
Rowing diatoms, 346-350
Run-reverse motile behavior, 83, 86, 92-93, 95
circular run-reverse, 83, 92-93, 95
Run-reverse motility, 83, 86, 92-93, 95

Salinity, 164, 168

Sand grain coating, 143

Sediment stabilization, 141-143, 145

Seminavis robusta, 82-83, 85-87, 92-93, 95-96,
98-99

Sexual reproduction, 84-86, 97, 159, 161, 163,
167,173

Sexual size threshold (SST), 96-97, 99
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Shear stress, 80-83, 88
Shields curve, 141
Sigmoid, 212, 215,217
Silica, 389
Silica, for benthic diatoms, 145-146
Silicate, 85, 94-95
Silicate frustules, 144
Simulation,
adhesion, 327, 328, 330, 331
life cycle, 323, 324
mutual perception, 323, 326, 327
splitting, 323
trajectory, 319, 325, 326
Size,
range, 194
series, 194-195, 204
Snorkeling, 376-378
Sound generation, 261, 264
Sound recording, 277
Spatial distribution, 78-79, 92-94, 96, 99
Speed, 194-195, 199, 201, 203
Spiraling, 385
Stalk, 213
Stauroneis, 3,8
Stauroneis baileyi, 355, 357
Stauroneis phoenicenteron, 80-84, 87-89,
111-129
photocharacteristics, 124-129
Stimuli-directed motility, 80, 84-86, 94-99
Stress, 199, 201
Stromatolites, 147
Surface treadmilling, swimming and snorkeling
diatoms, 376-378
Surface wettability, 80-84
Surfing, membrane, 393-397
Surirella, 284
Surirella biseriata, 11-13
Swinging diatoms, 365, 366
Swirling, 393, 394
Symbiosis, 219
Synechococcus spp., 378

Tabularia fasciculata, 85,97

Tabularia tabulata, 85, 97

Taxis, 84-85, 91-95, 98

Temperature, 81, 83, 162, 164, 167, 170
Temperature effect, 124-125, 131
Thalassiosira fluviatilis, 382
Thalassiosira spp., 385
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Tilting, 286-287

Trajectory, 319, 327, 332

Transapical raphe diatoms, 285
Transapical toppling movement, 290
Translational apical movement, 288-289
Tribology, 279

Tychoplankton, 137

UDP (uridine diphosphate), 383
Ulnaria ulna, 85, 97
UV radiation, 166, 174

Van der Waals force model, 295, 302, 311, 314,
316, 317, 323, 331, 332
Variance-to-mean ratio (VMR), 325-330

Vertical migration, 79-80, 93-94, 98, 159-160,
163-164, 166-176

Vertical polar pivoting, 285, 290

Vesicles, 67

Vibrating feet, 338, 340-343

Vibrator or jack hammer, diatom as, 378,
379

Viscoelasticity, 15

Voluntary prehensile filaments/contractile
bodies, 349, 350

Water surface, 16-23
Wave trains, 283, 286, 288, 289

Yalin parameter, 141
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