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Optical nonlinearities are known to coherently couple amplitude and phase of light, which can result in
the formation of periodic waveforms. Such waveforms are referred to as optical frequency combs. Here we
show that Bloch gain—a nonclassical phenomenon that was first predicted in the 1930s—can play an
essential role in comb formation. We develop a self-consistent theoretical model that considers all aspects
of comb dynamics: band structure, electron transport, and cavity dynamics. In quantum cascade lasers,
Bloch gain gives rise to a giant Kerr nonlinearity, which enables frequency modulated combs and serves as
the physical origin of the linewidth enhancement factor. Bloch gain also triggers the formation of
solitonlike structures in ring resonators, paving the way toward electrically driven Kerr combs.
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Bloch and Zener predicted charge oscillations in a
periodic potential under a constant electric field in the
1930s [1,2], a phenomenon which is referred to as Bloch
oscillations. It attracted researchers ever since due to the
coupling with electromagnetic waves, potentially offering
new sources of radiation [3]. The motion of electrons in a
periodic crystal lattice is governed by the energy-momen-
tum relation within a Brillouin zone (BZ) [4]. A constant
electric field accelerates the electrons toward the edge of
the BZ, where they experience Bragg reflection, resulting
in oscillations. In semiconductor superlattices [Fig. 1(a)],
the width of the BZ is narrow and electrons can complete
multiple oscillation cycles within their lifetime [5].
Ktitorov et al.[6] predicted tunable optical Bloch gain
arising from these oscillations, which was subsequently
verified in a GaAs-AlGaAs superlattice [7]. The gain exists
even without population inversion—a necessary ingredient
in the case of a classical harmonic oscillator [Fig. (1b)].
Moreover, Bloch gain possesses an S-shaped profile [Fig. 1
(a)], known as the dispersive gain [7]. This unique spectral
response, contrasted by the symmetric Lorentzian gain of a
harmonic oscillator, is a fingerprint feature of the Bloch
gain. Analogous observations appear also in other physical
systems: Josephson junctions [8], Bose-Einstein conden-
sates [9], parity-time-symmetric potentials [10], optical
[11] and acoustic [12] waves, and in synthetic dimensions
in photonics [13].
More recently, quantum-mechanical treatments of the

Bloch gain were developed in the density matrix [14] and

the Green’s function [15] formalisms. They generalized the
concept of the Bloch gain and showed that it can appear
between any two states (subbands) in semiconductor
heterostructures, such as quantum cascade lasers (QCLs).
QCLs are unipolar lasers [16], which emit in the midin-
frared [17] and terahertz [18] spectral regions [Fig. 1(c)].
The gain bandwidth of QCLs is broadened by elastic
scattering processes beyond its natural limit defined with
the carrier lifetimes [19,20]. An accompanying effect of
these processes, neglected by most researchers so far, is
scattering-assisted optical transitions that yield the Bloch
gain [14]. The latter was also experimentally confirmed in
QCLs [21].
In this Letter, we conduct a theoretical study of the Bloch

gain and its influence on the laser dynamics. A meticulous
simulation tool is developed which self-consistently cou-
ples every aspect of QCL operation—from electronic band
structure and charge transport to the light spatiotemporal
evolution within the laser cavity. We show that a dominant
Bloch gain contribution is present in any operating QCL
and causes a giant Kerr nonlinearity at the laser wavelength.
The induced nonlinearity plays an essential role in the laser
cavity dynamics as it is a requirement for self-starting
optical frequency combs [22]. Bloch gain is not only the
reason why frequency modulated (FM) comb formation is
predominantly found in dispersion compensated cavities
[23,24], but it also allows one to tune the laser into the
phase turbulence regime. This can trigger the generation of
solitonlike structures [25,26], establishing a bridge between
semiconductor QCL lasers and Kerr microresonators [27].
The spectral response of the laser active region is

described by its complex susceptibility: χ ¼ χR þ iχI .
The gain is defined as g ¼ ωχI=nrc with ω being the
frequency, nr the refractive index, and c the speed of light.
The susceptibility that arises from any two subbands u and l
is calculated as [14]
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ð1Þ

The total susceptibility in Eq. (1) comprises two com-
ponents. The usual harmonic contribution is given by the
first term within the large parentheses. It depends on the
population inversion fuðkÞ − flðkÞ and yields a Lorentzian
gainshape. The dipole matrix element is μul, ε0 is the
vacuum permittivity, fðkÞ and γðkÞ are the electron dis-
tribution and broadening at wave vector k, and ΔWðkÞ ¼
WuðkÞ −WlðkÞ is the resonant transition energy, where
ΔW0 ¼ ΔWðk ¼ 0Þ ¼ ℏω0. The highlighted second term
in Eq. (1) is more intriguing. It generates the Bloch gain by
allowing optical transitions between states with different
wave vectors. The level broadenings are γu;l, where γ ¼
γu þ γl [20], and the in-plane momenta of the final
states are k2� ¼ ðml;u=mu;lÞk2�ð2ml;u=ℏ2ÞðΔW0−ℏωÞ. A
thorough analysis is given in the Supplemental Material,
Sec. 1 [28].
While Eq. (1) provides a perturbative analytic treatment

of the Bloch gain, the origin of the dispersive spectral shape
is not intuitive. Equation (1) significantly reduces its
complexity by assuming electron distributions in the frame
of Boltzmann statistics. Following the derivation presented
in the Supplemental Material, Sec. 1.1 [28], we obtain

ð2Þ

where Lp is the period length, kB is the Boltzmann
constant, T is the temperature, and nu;l are the electron
sheet densities. Equation (2) explains the origin of the
Bloch gain, which is proportional to the highlighted term.
Contrary to the harmonic susceptibility, it is not dependent
on the population inversion (nu − nl) but rather on the
population sum (nu þ nl). The dispersive gainshape
appears due to the imaginary value of the highlighted
terms. They induce a π=2 phase shift and exchange the
shapes of χR and χI [Figs. 1(a) and 1(b)]. The factor b in

Eq. (2) captures the impact of the Bloch gain. It deviates the
total gainshape from a Lorentzian curve and causes spectral
asymmetry. Subband nonparabolicity, which is known to
induce a similar behavior, has a weaker effect. Most
importantly, Eq. (2) allows for the straightforward imple-
mentation of Bloch gain in any carrier transport model,
unlike Eq. (1), which requires k-space resolved approaches.
With the aim of quantitatively assessing the influence of

the Bloch gain on the laser dynamics, our model is
employed with a reference midinfrared QCL two-phonon
design [30]. For details about our band structure and charge
transport model, see the Supplemental Material [28]. The
calculated conduction-band profile with probability den-
sities of the states and the electron density are shown in the
Supplemental Material, Sec. 4.1 [28]. The calculation of the
optical gain for the lasing transition follows from Eq. (1).
Its unsaturated value is shown in Fig. 2(a). The Bloch gain
induces an asymmetric total gainshape and a redshift of the
peak. However, the unsaturated gain asymmetry conveys
only a fraction of what happens above the laser threshold.
In the usual harmonic description, the emission of light
depletes the population inversion until the gain saturates to
the threshold value, while χR remains zero at the gain peak
[Fig. 2(b)]. On the other hand, the Bloch gain is independent
of the population inversion and thus remains mostly unaf-
fected. As the harmonic gain fades away with stronger light
intensity, the Bloch contribution prevails and results in an
increasingly asymmetrical gain accompanied by a redshift
and nonzero χR at the gain peak [Fig. 2(c)]. Intriguingly, a
negative global population inversion is required to com-
pletely diminish the total gain (Supplemental Material,
Sec. 4.2 [28]). Figure 2(d) shows the saturated gain for three
different current densities J. The gain peak is blueshifted due
to the quantum-confined Stark effect and, more importantly,
the asymmetry increases toward the dispersive shape.
Gain asymmetry has historically been analyzed in the

context of the laser linewidth broadening. It was treated
with the linewidth enhancement factor (LEF) [31], defined
as LEF ¼ −ð∂χR=∂NÞ=ð∂χI=∂NÞ, where N is the carrier
population. In interband lasers, the gain asymmetry and
LEF dominantly originate from the opposite curvature of
the valence and conduction band. Since subbands in a QCL
have similar curvatures, the LEF was expected to vanish.
Interestingly, nonzero experimental values were obtained
mostly between −0.5 and 1.5 [32,33]. We explain this with
the gain asymmetry in QCLs that is dominantly caused by

FIG. 1. Illustration of different systems and their optical susceptibilities. The complex susceptibility of a QCL can be represented as a
sum of both Bloch and harmonic contributions.
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the Bloch gain. Furthermore, the LEF is frequency depen-
dent, which yields a large range of values [Fig. 2(e)]. This is
in excellent agreement with a recent measurement of the
spectrally resolved LEF above lasing threshold, obtained
by a novel technique [34]. A measurement of the LEF
depending on the light intensity (Supplemental Material,
Fig. 7 [28]) would further prove the key role of the Bloch
gain. Elimination of the Bloch gain in QCLs yields a
symmetric gain profile and vanishing LEF (Supplemental
Material, Sec. 4.2 [28]). Figure 2(f) shows the simulated
light-current-voltage (LIV) characteristic with the lasing
threshold at around J ¼ 1.6 kA=cm2 and rollover at J ¼
5.5 kA=cm2 [30]. The calculated values of the LEF and
factor b at the gain peak are shown in Fig. 2(g). While the
population inversion is clamped, the population sum
increases with the current in Eq. (2). This leads to a linearlike
dependence of the LEF and factor b on J, which matches
observations found in the literature [32,33,35]. The impact of
the gain saturation is underlined yet again, as the saturated
values notably break off from the unsaturated ones.
The asymmetric gainshape causes population-dependent

changes of the susceptibility in the active region [36],
leading to a dependence of the gain and refractive index on
the intensity. Because of the ultrafast dynamics of the QCL,
Bloch gain therefore gives rise to a giant Kerr nonlinearity.
Based on the saturation analysis of χ in Supplemental
Material, Sec. 3 [28], we calculate the resonant Kerr
contribution due to Bloch gain to be in the range of
10−15 m2=W, which is 2 orders of magnitude larger than

the highest bulk values [37]. The value of the Kerr non-
linearity can be tailored by changing the laser heterostruc-
ture design.
Optical nonlinearities couple the amplitude and phase of

the laser field and give rise to coherent processes such as
frequency comb formation. Frequency combs arewaveforms
whose spectra consist of equidistant modes with a fixed
phase relation [38,39]. Although historically their formation
relied on the emission of short pulses [40], recently a new
type of FM combs is blossoming. They are self-starting and
appear in numerous Fabry-Pérot laser types such as QCLs
[41], interband cascade lasers [42], quantum dot lasers [43],
and laser diodes [44]. The fascinating property of FMcombs,
which distinguishes them from other frequency combs, is an
almost constant intensity accompanied by a linear frequency
chirp [45]. This unique behavior was explained in [22] as a
result of the group velocity dispersion (GVD) or a Kerr
nonlinearity, thus underlining the key role of the Bloch gain
in FM comb formation.
In order to quantitatively study the frequency comb

dynamics, we conduct spatiotemporal simulations of the
intracavity field based on a master equation approach [22].
We describe the gain shape asymmetry through the param-
eter b from Eq. (2). Its population dependence can be
accurately modeled as a function of the current density J
and the laser intensity I (Supplemental Material, Eq. (42)
[28]). This allows a self-consistent implementation of the
Bloch gain into the master equation:

FIG. 2. Bloch gain in QCLs. (a) Unsaturated optical gain from Eq. (1) represented as the sum of the harmonic Lorentzian contribution
and dispersive Bloch gain. (b)–(c) Effect of saturation on real χR and imaginary part χI of the optical susceptibility, whether the Bloch
gain is included or not. Red dots indicate values at gain peak, and arrows show the direction of the increasing intensity. Bloch gain
induces asymmetric gain, redshift, and nonzero values of χR at the gain peak. (d) Saturated gain clamped to the threshold for three values
of the current density JðkA=cm2Þ. (e) Spectrally calculated LEF for the same current densities as in (d). Values at the gain peak are
indicated with dots. (f) LIV characteristic of the QCL design [30] operating in continuous wave at room temperature. (g) Dependence of
LEF and factor b from Eq. (2) on the current density. A linearlike dependence of both values is observed.
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where E� are the right and left propagating field envelopes,
T1, T2, and Tg are the recovery times of the gain,
polarization and the population grating, αw is the wave-
guide loss, g is the saturated gain, Isat is the saturation
intensity, and I ¼ jEþj2 þ jE−j2 is the normalized inten-
sity. The Bloch gain enters the equation through terms b,
ξðbÞ, and T̃2ðbÞ. A detailed derivation is presented in the
Supplemental Material, Sec. 2.3 [28], along with the
analysis for interband lasers with slower dynamics.
Boundary conditions for a Fabry-Pérot cavity are E−ðLÞ ¼ffiffiffiffiffi
Rr

p
EþðLÞ and Eþð0Þ ¼

ffiffiffiffiffi
Rl

p
E−ð0Þ, and for a ring cavity

E�ð0Þ ¼ E�ðLÞ, where L is the cavity length and Rl;r are
the reflectivities of the left and right facet.
Temporal evolution of the light intensity in a Fabry-Pérot

QCL for one bias point is shown in Fig. 3(a). The inclusion of
the Bloch gain leads to a periodicwaveform after 6000 round
trips and the formation of an FM comb, which is fully
characterized in the Supplemental Material, Sec. 4.2 [28].
Conversely, the intensity evolves chaotically in the absence
of a locking mechanism provided by the Bloch gain induced
Kerr nonlinearity. By extracting the scattering rates from the
transport model, we are able to accurately simulate the
intracavity dynamics from the laser threshold to rollover
[Fig. 3(b)]. The laser is in the single-mode regime near the
threshold and significantly broadens its spectrum with the
current increase. The key role of the Bloch gain is clearly
visible, as it leads to an FM comb operation over the entire
bias range. This is indicated by the autocorrelation value
equal to 1 in Fig. 3(b). In sharp contrast, the pure harmonic
gain results in unlocked states with the autocorrelation
smaller than unity and chaotic spectra. This validates the
Bloch gain induced giant Kerr nonlinearity as an efficient
locking mechanism and explains why FM combs in QCLs
have mostly been found in GVD compensated cavities
[23,24,45]. A nonzero GVD yields an unlocked state for
most of the bias range (SupplementalMaterial, Sec. 4.4 [28]),
in accordance with the literature [24].
Linking the physics of FM combs to Bloch gain induced

giant Kerr nonlinearity suggests a connection to the Kerr
combs in microresonators [27]. They represent passive
media, where pumping is achieved through an external
injection of a monochromatic laser and the gain stems from
the Kerr nonlinearity of the bulk crystal. Through a
cascaded parametric process, the injected wave induces
the appearance of side modes, giving rise to phase-locked
frequency combs in the form of temporal solitons [46].
QCL combs in ring cavities [Fig. 4(a)] have recently been

shown to possess several similarities with Kerr micro-
resonators [25,26]. Within the framework of the Ginzburg-
Landau formalism [47], it was demonstrated that a single-
mode operation is destabilized by the phase turbulence. The
latter is controlled with the laser nonlinearity to induce
multimode emission with a hyperbolic secant (sech) spec-
trum type [Fig. 4(b)]. The nonlinearity can trigger the for-
mation of localized structures in the waveform [Fig. 4(c)],
which are related to dissipative Kerr solitons. In the absence
of the Bloch gain, the laser operates in a single-mode
regime with constant intensity. The study in [48] demon-
strated that the Kerr microresonators and ring QCLs can
both be analyzed within the same theoretical framework
and predicted the emission of temporal solitons from a ring
QCL with a suitable nonlinearity.

FIG. 3. FM combs in a Fabry-Pérot cavity. (a) Temporal
evolution of the intensity. Excluding Bloch gain results in an
unlocked state (bottom). Including Bloch gain leads to a stable
FM comb (top). The waveforms in the last round trip are shown
on the right. (b) Evolution of the intensity spectrum with the
increasing current density J. Near threshold, the spectrum
consists of a single mode and broadens with the increase of J.
The Bloch gain induced Kerr nonlinearity forms a locked FM
comb over the entire range of J, as is seen from the autocorre-
lation value equal to unity (blue line on the left). Neglecting the
Bloch contribution leads to unlocked states with the autocorre-
lation value smaller than unity (red line on the left). The four
spectra on the right are taken at 2.5 kA=cm2 and 4.5 kA=cm2,
indicated by the white dashed lines.
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In conclusion, we have shown that the Bloch gain
contribution due to intersubband transitions provides a
locking mechanism for frequency comb formation. The
saturated total gain considerably deviates from a
Lorentzian curve toward a dispersive asymmetric shape
due to Bloch gain. We capture its nonclassical nature with
the master equation to study the spatiotemporal evolution of
the laser field and show that FM comb formation in Fabry-
Pérot QCLs is triggered by a Bloch gain induced giant Kerr
nonlinearity. The Bloch gain acts as a locking mechanism
over the entire range of the bias, explaining why FM combs
were experimentally observed mostly in GVD compensated
cavities. In a ring resonator, the impact of Bloch gain is
particularly strong due to low cavity losses and stronger
saturation. The induced Kerr nonlinearity can result in comb
formation and the emission of solitonic structures, paving the
way toward electrically drivenKerr combs in themidinfrared
range. As we now know that the Kerr nonlinearity domi-
nantly stems from the Bloch gain, using ourmodel will allow
researchers to tailor the nonlinearity in order to optimize
frequency comboperation and to discover new states of light.
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