

From Conceptual Models to Knowledge Graphs:

A Generic Model Transformation Platform

Muhamed Smajevic and Dominik Bork

In:

2021 ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems Companion (MODELS-C) – Tools

& Demonstrations Track, 2021, pp. 610 – 614.

©2021 by IEEE.

Final version available via DOI:

https://doi.org/10.1109/MODELS-C53483.2021.00093

www.model-engineering.info

https://doi.org/10.1109/MODELS-C53483.2021.00093
http://www.model-engineering.info/

From Conceptual Models to Knowledge Graphs:
A Generic Model Transformation Platform

Muhamed Smajevic
TU Wien, Business Informatics Group

Favoritenstrasse 11, 1040 Vienna, Austria
Email: e11742556@student.tuwien.ac.at

Dominik Bork
TU Wien, Business Informatics Group

Favoritenstrasse 11, 1040 Vienna, Austria
Email: dominik.bork@tuwien.ac.at

Abstract—Semantic processing of conceptual models is a fo-
cus of research since several years, bridging the disciplines
of knowledge-based systems, conceptual modeling, and model-
driven software engineering. With the uptake of Knowledge
Graphs, the research in this area gained further momentum.
In this paper, we introduce a generic and extensible platform
that enables the automated transformation of conceptual models
into Knowledge Graphs. The platform can transform any model
created by a state-of-the-art metamodeling platform (EMF and
ADOxx) into standardized Knowledge Graph representations like
GraphML, RDF, and OWL. In the paper at hand, we introduce
our platform and evaluate it with a corpus of 5.000 UML models
that we transform into Knowledge Graphs and subsequently
exemplify the rich functionalities enabled by the graph structure
by an automated detection of UML model smells.

Index Terms—Knowledge Graph, Modeling tool, Code smells,
Model refactoring, Model transformation

I. INTRODUCTION

Semantic processing of conceptual models is a focus
of research since several years, bridging the disciplines of
knowledge-based systems, conceptual modeling, and model-
driven software engineering (MDSE). While manual analysis
might be feasible for small models, automation is required for
medium to large-size models which we often find in practice.
The aim of such an automated analysis is to ”extract valuable
information” from conceptual models ”to support the analytic
process.” [1, p. 1] Recently, first ideas have been proposed to
use Knowledge Graphs for reasoning on conceptual models [2]
and to transform conceptual models into Knowledge Graphs
– as e.g., reported for Genomic Datasets by Bernasconi et
al. [3]. A Knowledge Graph is ”a large network of entities, and
instances for those entities, describing real world objects and
their interrelations, with specific reference to a domain or to
an organization.” [4, p. 27] A Knowledge Graph encapsulates
a knowledge base, which is represented by a graph structure,
and a reasoning component that enables to reason about the
knowledge represented by the graph.

This paper builds upon and extends our previous works that
focused on the graph-based analysis of enterprise architecture
models [5]. In the paper at hand, we introduce a generic
model transformation platform – Conceptual Model to Knowl-
edge Graph (CM2KG) – that is capable of transforming any
conceptual model realized with state-of-the-art metamodeling
platforms like EMF, ADOxx, or Papyrus (for UML, SysML

and UML profile models). The CM2KG platform thus excels
existing works on graph-based analysis of conceptual models
by being generic (i.e., modeling language and modeling tool
independent), extensible (i.e., new language- and tool-specific
transformations can be easily realized), and scalable (i.e., even
very large Knowledge Graphs can be efficiently processed [4]).

As a running example, we show the transformation of
conceptual models of the Unified Modeling Language (UML)
into Knowledge Graphs represented in GraphML (i.e., the
knowledge base). To exemplify the value of the transformation
– or more particularly the value of the Knowledge Graph in
MDSE – we show how the graph structure enables efficient
reasoning by means of graph queries. This reasoning aims to
automatically detect software design smells. Using a corpus
of 5.000 publicly available UML models [6], we evaluate
the validity of the transformation and the efficiency of the
reasoning applied onto the transformed Knowledge Graphs.

II. THE CM2KG CLOUD PLATFORM

In this section, we report on the realization of the CM2KG
Cloud platform. Fig. 1 shows the framework that forms the
foundation of the platform. CM2KG is cloud-based, thus
offering the transformation, visualization, and analysis func-
tionality through the web browser. The implementation and
the example models can be found in the accompanying Github
repository [7].

A. CM2KG Platform Architecture

The architecture of the CM2KG platform consists of three
components: Model Import, CM2KG Cloud, and Third Party
Tools. In the model import component, users upload a model
(in Extensible Markup Language (XML) format) which they
have created (and exported) with any EMF- or ADOxx-based
modeling tool including Archi and Papyrus. The XML file
serves as the input for the CM2KG Cloud component. CM2KG
Cloud consists of two virtual machines running the web server
and the database, respectively. The web server serves the web
application and the model transformation service, while the
Neo4j database stores the transformed Knowledge Graph and
offers additional functionality. The front-end is realized with
the neovis.js [8] library, which provides a rich set of graph
visualizations (see Fig. 2b).

Fig. 1. Conceptual Model to Knowledge Graph (CM2KG) Cloud platform.

B. CM2KG Core Functionalities

In the following, we briefly introduce the core functionality
of the CM2KG Cloud platform. A more detailed introduction
to the technical realization of the transformation is not possible
given the limited space. A detailed discussion of the transfor-
mation from Ecore models to GraphML Knowledge Graphs
can be found in [5].

1) Model Transformation: The CM2KG Cloud platform
offers the functionality to upload a conceptual model in XML
format and to transform it into a Knowledge Graph which
can be inspected in the browser or directly downloaded.
Currently, the platform supports the transformation of any
conceptual model created with the EMF or ADOxx metamod-
eling platforms as well as the Ecore-based modeling platforms
Papyrus (for UML, SysML, and UML profiles) and Archi (for
ArchiMate).

2) Knowledge Base Initialization: The CM2KG Cloud plat-
form not only transforms a given conceptual model into a
Knowledge Graph, it moreover directly initializes a knowledge
base with the resulting graph in Neo4j. This database instance
is used for the visual inspection of the graph (discussed in
the following). The database reference also allows third-party
graph analysis tools to directly connect to the instance.

If further analysis is required, CM2KG Cloud supports the
export of the Knowledge Graph in GraphML, OWL2, and RDF
format. These standardized formats can then be used as an
input for any dedicated graph analysis third party tools [9]
like Gephi, yEd, or Stardog.

3) Knowledge Graph Visualisation & Analysis: The
CM2KG Cloud platform visualizes the Knowledge Graph in

the central pane (area 3 in Fig. 2b). The platform surrounds this
pane with powerful visualization and analysis functionality,
e.g., to customize the rendering of the graph, i.e., with respect
to size, color, and labels of the graph elements (area 4 in
Fig. 2b). CM2KG supports three different means of analyzing
the Knowledge Graph directly in the cloud:
Predefined analysis queries The user may execute standard-

ized structural graph analysis queries such as centrality
and community detection queries (area 1 in Fig. 2b).
These queries are presented to the user to enable direct
adaptation (area 2 in Fig. 2b).

Code smell analysis queries The user may execute some of
the code smell queries introduced in this paper.

User-defined queries The user may also directly run any
complex Cypher query by using the query text field on
the lower right area of the CM2KG Cloud platform (see
Fig. 2b, area 5).

The execution of a query always triggers an update of the
visualized graph, i.e., CM2KG directly updates the central
pane (area 3 in Fig. 2b) to render the result of the query
directly in the browser. Likewise, each change in the visu-
alization configuration will trigger an UI update.

III. CASE STUDY: KNOWLEDGE GRAPH BASED CODE
SMELL DETECTION

The detection of code smells is not a new research direction
in itself. Early works go back to Fowler [10] who published
a well respected book on refactorings in 1999. Afterwards,
others further developed code smells and mapped them to
UML Class Diagrams [11]–[14]. It needs to be stated, that this

(a) The source UML model in Papyrus.

(b) The transformed Knowledge Graph in the CM2KG Cloud platform.

Fig. 2. An example transformation from a UML model (a) to a Knowledge Graph (b) in the CM2KG Cloud platform.

paper does not intend to make a contribution on code smells or
code refactorings. Instead, we use the code smell detection as a
relevant and ongoing research field in MDSE. We aim to show
the feasibility and strengths of transforming conceptual models
into Knowledge Graphs, thereby preparing them for semantics
analysis and reasoning. The realized Knowledge Graph queries
though make a minor technical contribution by themselves.

Table I describes five UML smells summarized by
Haendler [13] based on previous works by Fowler [10] and
Suryanarayana et al. [12]. This set of metrics serves as an
initial feasibility assessment of our platform. We show, how
they can be i) realized on a Knowledge Graph, and ii) exe-

cuted on a large corpus of UML models [6]. The selection of
smells aims to cover the diversity of design smells that can be
detected solely based on the UML Class Diagram1: Hierarchy
Smells (Deep Hierarchy and Multipath Hierarchy), Abstraction
Smells (Unutilized Abstraction), and Modularization Smells
(Cyclic Dependency and Message Chain).

IV. EVALUATION

For evaluating the CM2KG platform, we first transformed
5.025 UML Class Diagram models which were created with

1Note that other smells like Deficient Encapsulation additionally require
e.g., to consider the corresponding UML Sequence Diagram.

TABLE I
KNOWLEDGE GRAPH QUERIES DETECTING EA SMELLS

UML Class Diagram Smell – based on [10], [12], [13] Knowledge Graph Query – realized as a Neo4j Cypher query

Cyclic Dependency
Two or more units (e.g., classes, methods) are mutually dependent.

MATCH (a) −[*]−>(a)
re turn a , p a t h

Message Chain
A client unit (e.g., method) calls another unit, which then in turn calls
another unit, and so on (navigation through class structure).

MATCH (a) −[r1]−>(b) −[r2]−>(c) −[r3]−>(d) −[r4]−>(e)
re turn a , r1 , b , r2 , c , r3 , d , r4 , e

Unutilized Abstraction
Not or barely used units (e.g., class or method).

MATCH (n)
WHERE n . i s A b s t r a c t =” t r u e ” and n o t (n) − −()
re turn n

Deep Hierarchy
An unnecessarily deep hierarchy.

MATCH (a) −[r1]−>(b) −[r2]−>(c) −[r3]−>(d)
where r1 . Labe l = ’ g e n e r a l i z a t i o n ’ and r2 . Labe l = ’ g e n e r a l i z a t i o n

’ and r3 . Labe l = ’ g e n e r a l i z a t i o n ’
re turn a , b , c , d , r1 , r2 , r3

Multipath Hierarchy
A subtype inherits both directly and indirectly from a supertype.

MATCH (c)<−[r3] −(a) −[r1]−>(b) −[r2]−>(c)
where r1 . Labe l = ’ g e n e r a l i z a t i o n ’ and r2 . Labe l = ’ g e n e r a l i z a t i o n

’ and r3 . Labe l = ’ g e n e r a l i z a t i o n ’
re turn a , b , c , r1 , r2 , r3

the Papyrus [15] modeling tool and made available through
the MAR search engine [6] before we analyzed them to
automatically detect UML model smells. We applied the
realized UML Smells Knowledge Graph queries defined in
Table I. The evaluation aimed to respond to the following
research questions:
RQ.1 – Feasibility Is our approach feasible to automatically

detect code smells in UML models?
RQ.2 – Quality How many code smells can we identify in

an openly available corpora of UML models?
RQ.3 – Performance How fast is our Knowledge Graph

based approach in detecting code smells in UML models?
In order to run the evaluation an experiment was set up

in custom manner to process folders containing many models
while using the CM2KG functionality. In the future, we plan to
have such a possibility directly integrated in the UI of the plat-
form. From an initial set of 5.025 UML Class Diagrams, the
platform successfully transformed and analyzed 4.262 models
(84.8%), the remaining 763 models were excluded because
they contain special characters, hampering their upload into
the graph database engine. This can be easily fixed in a pre-
processing step but we can still positively respond to the
feasibility of our approach (RQ.1).

The results of analyzing the remaining 4.262 models (RQ.2)
in order to detect code smells can be seen in Fig. 3. The
analysis showed that all smells mentioned in Table I were
found in the model repository. In total, 548 out of 4.262
models had at least one code smell with Message Chain
being the most frequent one, followed by Deep Hierarchy. 178
models had two or more code smells, while the most frequent
one (102 co-occurrences) we found was the combination
of Message Chain and Deep Hierarchy, followed by Cyclic
Dependency and Message Chain (62 co-occurrences).

Fig. 3. Code smells detected in 4.262 UML Class Diagram models.

Overall, the transformation and analysis (i.e., the execution
of the queries to detect smells) lasted around 30 minutes.
The average transformation time was 16ms while the longest
transformation lasted 14s. On the other side, the queries had
an average execution time ranging from 0.007s to 0.43s. It
is important to note, that some transformed models were
quite large with more than 100 MB in size, resulting in a
huge impact on the time. Considering the Knowledge Graph
size, the average number of nodes was 12 (±1.853), the
average number of edges was 7 (±111). The largest graph
comprised 2.044 nodes and 129 edges. In the future, we plan to
investigate the impact of model size on the transformation and
analysis performance. For now, we can state that the results
are promising with respect to the performance (RQ.3).

V. RELATED WORK

Graph-based approaches have a long tradition in MDSE,
especially in the field of model transformation using graph
grammars [16]. Also, research on the transformation of UML
models into graphs has been conducted for a while, see
e.g., [17]. Graph-based analysis is also widely adopted in
enterprise modeling and enterprise architecture, see e.g. [18],
[19]. The use of Knowledge Graphs is a very recent develop-
ment with first domain-specific applications proposed in [2],
[3], [5], [20].

Several tools exist that are capable to detect code smells
in Java source code or UML Class Diagrams, e.g., EMF
Refactor, DECOR [21] and JDeodorant [22] – see [13] for
a recent survey. Most of them use static analysis techniques
that are only applicable to Java-based programs (or only
few languages) [13]. What is missing, and what we aim to
contribute with the CM2KG Cloud platform, is an environment
that is language agnostic, easy to adapt to new languages in
case of language-specific smells, and scalable to analyze large
models. In contrast to our platform, however, some tools not
only detect smells but also provide means to refactor the code.
Conversely, CM2KG provides all the functionality in the web,
thereby mitigating installation and compatibility issues.

The aim of this paper was not to contribute to code refac-
toring research, but, considering the first insights we gained
through the case study, we consider collaborating with code
refactoring experts to continue working on this stream.

VI. CONCLUSION

In this paper, we presented the CM2KG Cloud platform – a
generic, extensible, and scalable platform for the transforma-
tion of conceptual models into Knowledge Graphs using model
transformation. Our approach is generic in the sense of being
realized on the meta-metamodel level (i.e., not dependent on
one modeling tool) and extensible to ease its adoption for
other conceptual modeling languages while the Knowledge
Graph promotes scalability. We reported on the conceptual
architecture and the implementation of our platform.

Besides introducing the core aspects of the CM2KG Cloud
platform, we exemplified its value by transforming and ana-
lyzing a corpus of 5.000 UML Class Diagram models. The
use case proved feasibility, efficiency, and scalability of the
approach and yielded insights into the code smells prevalent in
the corpus. Our major research is not focusing on code smells
but instead on providing the generic CM2KG Cloud platform
that the model-driven software engineering community can use
and extend to plug-in their specific analysis and reasoning
algorithms. CM2KG is therefore freely available [7]. In our
future research, we will develop further use cases for the
Knowledge Graph based reasoning on conceptual models.

REFERENCES

[1] A. Santana, K. Fischbach, and H. Moura, “Enterprise architecture
analysis and network thinking: A literature review,” in 49th Hawaii Int.
Conference on System Sciences. IEEE, 2016, pp. 4566–4575.

[2] D. Medvedev, U. Shani, and D. Dori, “Gaining insights into concep-
tual models: A graph-theoretic querying approach,” Applied Sciences,
vol. 11, no. 2, p. 765, 2021.

[3] A. Bernasconi, A. Canakoglu, and S. Ceri, “From a conceptual model to
a knowledge graph for genomic datasets,” in Conceptual Modeling - 38th
International Conference, Proceedings, Laender et al., Ed. Springer,
2019, pp. 352–360.

[4] L. Bellomarini, D. Fakhoury, G. Gottlob, and E. Sallinger, “Knowledge
graphs and enterprise ai: the promise of an enabling technology,” in
35th International Conference on Data Engineering. IEEE, 2019, pp.
26–37.

[5] M. Smajevic and D. Bork, “Towards graph-based analysis of enterprise
architecture models,” in Proceedings of the 40th International Confer-
ence on Conceptual Modeling, 2021, p. in press.

[6] J. A. H. López and J. S. Cuadrado, “MAR: a structure-based search
engine for models,” in ACM/IEEE 23rd International Conference on
Model Driven Engineering Languages and Systems, E. Syriani, H. A.
Sahraoui, J. de Lara, and S. Abrahão, Eds. ACM, 2020, pp. 57–67.

[7] D. Bork and M. Smajevic, “Source code repository of the CM2KG cloud
platform,” https://github.com/borkdominik/CM2KG, 2021.

[8] Neo4j Contrib, “neovis.js,” https://github.com/neo4j-contrib/neovis.js,
2021.

[9] U. Brandes, M. Eiglsperger, J. Lerner, and C. Pich, “Graph markup
language (graphml),” in Handbook of graph drawing visualization, ser.
Discrete mathematics and its applications, R. Tamassia, Ed. CRC Press,
2013, pp. 517–541.

[10] M. Fowler, Refactoring - Improving the Design of Existing Code, ser.
Addison Wesley object technology series. Addison-Wesley, 1999.

[11] T. Arendt and G. Taentzer, “Uml model smells and model refactorings
in early software development phases,” Universitat Marburg, Tech. Rep.,
2010.

[12] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

[13] T. Haendler, “On using UML diagrams to identify and assess software
design smells,” in Proceedings of the 13th International Conference on
Software Technologies. SciTePress, 2018, pp. 447–455.

[14] H. Mumtaz, M. Alshayeb, S. Mahmood, and M. Niazi, “A survey on uml
model smells detection techniques for software refactoring,” Journal of
Software: Evolution and Process, vol. 31, no. 3, p. e2154, 2019.

[15] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic, “Papyrus: A uml2
tool for domain-specific language modeling,” in Dagstuhl Workshop on
Model-Based Engineering of Embedded Real-Time Systems. Springer,
2007, pp. 361–368.

[16] G. Taentzer, K. Ehrig, E. Guerra, J. d. Lara, L. Lengyel, T. Leven-
dovszky, U. Prange, D. Varro, and S. Varro-Gyapay, “Model transfor-
mation by graph transformation: A comparative study,” 2005.

[17] K. Hölscher, P. Ziemann, and M. Gogolla, “On translating uml models
into graph transformation systems,” Journal of Visual Languages &
Computing, vol. 17, no. 1, pp. 78–105, 2006.

[18] S. Buckl, F. Matthes, and C. M. Schweda, “Classifying enterprise
architecture analysis approaches,” in IFIP-International Workshop on
Enterprise Interoperability. Springer, 2009, pp. 66–79.

[19] A. Barbosa, A. Santana, S. Hacks, and N. v. Stein, “A taxonomy for
enterprise architecture analysis research,” in 21st International Confer-
ence on Enterprise Information Systems, vol. 2. SciTePress, 2019, pp.
493–504.

[20] H. A. Proper, D. Bork, and G. Poels, “Towards an Ontology-Driven Ap-
proach for Digital Twin Enabled Governed IT Management,” in ODCM-
DT’21: First Workshop on Ontology-Driven Conceptual Modelling of
Digital Twins. Springer, 2021, p. in press.

[21] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2009.

[22] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodor-
ant: identification and application of extract class refactorings,” in 33rd
International Conference on Software Engineering (ICSE). IEEE, 2011,
pp. 1037–1039.

APPENDIX

A short video demonstrating CM2KG Cloud is available at:
https://youtu.be/ib763YQ9kCE.

