G

Business Informatics Group

From In-Person to Distance Learning:
Teaching Model-Driven Software Engineering
in Remote Settings

Dominik Bork, Andreas Fend, Dominik Scheffknecht, Gerti Kappel,
Manuel Wimmer

In:

2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C) —
Educator Symposium, 2021, pp. 702 — 711.

©2021 by IEEE.

Final version available via DOI:
https://doi.org/10.1109/MODELS-C53483.2021.00114

www.model-engineering.info



https://doi.org/10.1109/MODELS-C53483.2021.00114
http://www.model-engineering.info/

From In-Person to Distance Learning:
Teaching Model-Driven Software Engineering
in Remote Settings

Dominik Bork
TU Wien, Vienna, Austria
Business Informatics Group
dominik.bork@tuwien.ac.at

Gerti Kappel
TU Wien, Vienna, Austria
Business Informatics Group
gerti.kappel@tuwien.ac.at

Abstract—The COVID-19 pandemic did not only
dramatically impact the personal and social lives, for
many academics, it also demanded immediate changes
to the way their courses are taught. While a pragmatic
approach is to do conventional lectures via video
streaming platforms, much more may be done to
educate students also in a remote setting properly.
This particularly holds true for practice-oriented and
technology-engaging courses. This paper describes our
experience of transforming an in-person Master level
class on model-driven software engineering into a
distance learning one. We describe the structure, the
content, the teaching and examination format, and the
used platforms in detail. We critically reflect on our
experiences and report the feedback gained by a post-
class student evaluation. We believe this paper provides
meaningful lessons learned and best practices for other
educators challenged with the task of teaching similar
courses in a remote setting. With this paper, we publish
an openly available Github repository that features
all course content including sample solutions for all
practical lab assignments.

I. Introduction

The COVID-19 pandemic did not only dramatically
impact our personal and social lives, it also changed
the way Higher Education Institutions (HEI) taught
their classes. While distance learning universities have
a long lasting experience in remote teaching and
students of such universities are used to distance
learning, both is not the case for ‘regular’ universities
and their students, respectively. This establishes a
challenge for many academics to transform their in-
person classes into ones delivered in remote settings.

This paper reports on our lessons learned of
conducting a model-driven software engineering
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(MDSE) course at TU Wien. The course, entitled
Model Engineering, was held in the winter term
2020/21. As a response to the global COVID-19
pandemic the rectorate of TU Wien decided that
all courses need to operate in a distance learning
format, giving the educators three months for
transforming their courses. While much literature
on the theoretical concepts behind and the design
of Massive Open Online Courses (MOOCs), distance
learning, and flipped classroom based HEI courses
exist, related work on how to conduct conceptual
modeling and model engineering in such a format is
still underdeveloped [1]. A recent survey by Ciccozzi
et al. [2] provided insights on the status quo of
teaching modeling and model-driven engineering.
Being published in 2018, i.e., before COVID-19, the
survey confirms that most of these highly technical
and practical courses were initially taught "based
on lectures, often in combination with laboratory
activities." [2, p. 124]

Aside from the long history of conducting the model
engineering course at the Business Informatics Group
at TU Wien (cf. e.g., [3]), conducting the course in a
distance learning format posed several challenges. This
paper lists some of these challenges and highlights our
lessons learned together with some best practices on
how we addressed them. We believe our experience is
of value to the conceptual modeling and metamodeling
communities in general and the MDSE community
in particular. Furthermore, we share the resources
used in our course openly such that other educators
can adapt and reuse it [4]. The course’s structure



is aligned to one of the de-facto standard course
books on MDSE [5]. The course’s content furthermore
maps to essential parts of the model-based software
engineering body of knowledge [6], [7]. We describe
the building blocks of the course by means of the
running scenario we developed. The scenario centers
the development of a Smart Building Systems Modeling
Language (SBSML).

This paper reports on our experience of transforming
an existing in-person model engineering course into a
distance learning format. We report on the structure
as well as on the organizational and technological
setup for preparing the course material, conducting the
distance learning course, and examining the students
in Section II. The content of the course is then
presented in Section III. Eventually, we report the
results of the student evaluation (Section IV) and
critically reflect on the lessons learned (Section V)
before we conclude the paper (Section VI).

II. Course Structure

In the following, we first report how we implemented
the flipped classroom teaching concept (Section II-A)
followed by a discussion on how we conducted the
examinations (Section II-B). The team responsible for
the model engineering course in the winter term
2020/21 was led by the first author who was supported
by guest lecturers in the teaching duties and two
student tutors (12 semester week hours) who were
primarily engaged in the lab parts (the other authors
of this paper).
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Fig. 1. Course flow (figure adapted from [1]).

A. Teaching Method

Aiming to maintain a course agenda that fits into the
overall curriculum of a - so far - regular university
study program, to reuse parts of the well established
material, and to not completely cut historical bonds, it
was decided to implement - for the first time - a flipped
classroom concept [8].

Instead of weekly in-person classes with frontal
teaching of the model engineering theory, the content
of each class was divided into smaller modules for
which individual lecture videos were produced (see
Table I). Each of these videos takes between five and
30 minutes - most of the videos last approximately
20 minutes. All videos of a lecture were shared
one week before a virtual, live Q&A session was
conducted to discuss the contents of that lecture
with the students. Thus, the theoretical content was
consecutively shared with the students to ensure a
balanced workload throughout the semester and to
make sure the discussions in the Q&A sessions are
focused on the current topics.

Similarly to the theoretical content, also the practical
content was distributed consecutively throughout the
semester. Lab descriptions and practical tutorial videos
were shared with the students only as soon as
the assignment of the preceding lab was concluded.
Moreover, also for the practical parts, live, virtual Q&A
sessions were conducted to provide students with the
possibility to directly ask their technology- and lab-
related questions.

The weekly virtual meetings were conducted via
Zoom!. After the first two weeks, we observed that
students are not responsive in the virtual setting.
In order to engage them actively in the course, we
decided to start each session with an interactive quiz
realized within the Zoom platform. The quiz featured
five to ten single or multiple choice questions related
to the current modules.

B. Examination Method

The examination of the model engineering course
was twofold to properly reflect the bipartite
nature of the course. It aims to develop, to equal
extents, theoretical and practical competencies. The
examination of the theoretical part was conducted
with two open book, multiple choice tests that were
executed via the e-learning platform Moodle?.

The practical competencies were examined by four
lab assignments and two solution reviews - one
combined for the lab 1 and lab 2 assignments and the
second one for the remaining two lab assignments. The
course leader together with at least one student tutor
conducted the solution reviews which were organized
as an individual virtual Zoom meeting for each group.

III. Course Content
In the following, the prerequisites (Section III-A) and
the aim (Section III-B) of the model engineering course

17Zoom platform [online]: https://zoom.us/
2Moodle e-learning platform [online]: https://moodle.com



are introduced. Afterwards, Sections III-C and III-D
describe the theoretical and practical content covered
in the course, respectively. Eventually, Section III-E
closes with a mapping of the content to Bloom’s revised
taxonomy on learning objectives [9].

A. Prerequisites

The model engineering course at TU Wien is
offered at the Master level [3]. It is an obligatory
course for business informatics master students and
is optional for master students of related study
programs such as computer science, data science,
and software engineering & internet computing. The
course presumes that students have already skills and
knowledge in object-oriented modeling, object-oriented
programming, data modeling, and data engineering, as
well as in software engineering in general. All students
have completed the course “Introduction to Object-
Oriented Modeling” (cf. e.g., [10]) which aims to teach
the basic modeling concepts of a selected subset of
UML. In the “Data Modeling” course, the Relational
Model as well as the Entity Relationship Model have
been introduced. Depending on their specialization,
students may have additional modeling knowledge and
skills, e.g., in business process modeling.

B. Aim of the course

From a curricular point of view, students at TU
Wien have so far seen models in a self-contained
environment where the teaching goal was to basically
introduce the notation of a modeling language for
object-orientated analysis and design. Alternatively,
students used models for sketching and documentation
purposes in the traditional software engineering
courses. The model engineering course aims to close
the gap between previous courses focusing topics such
as programming, software engineering and modeling.
This is an important point as otherwise these topics
may be seen as competitors by the students. On
the contrary, these topics have to be combined to
reach higher abstraction and automation levels. Thus,
the model engineering course shall help the students
to gain an idea of the practical usage of modeling
languages and models in a broader context. The
lectures, focusing the knowledge transfer, and the labs,
focusing on the development of MDSE capabilities, are
worth 3.0 ECTS (European Credit Transfer System)
points each. The overall workload is thus 150 hours.

C. Theory

Table I provides an overview of the decomposed
previous lecture units into smaller modules, the
provided lecture and tutorial videos, and it shows the
mapping of the course content to the four practical labs

(to be detailed in Section III-D). Moreover, Table I maps
the content to the corresponding chapters in the MDSE
book [5] and the Model-Based Software Engineering
Body of Knowledge (MBSE BoK) [7].

The model engineering course at TU Wien covers the
essential parts of the MDSE book [5] (see Table I).
Whereas some advanced topics of the book are not
covered - like model management and model-driven
testing — as the focus of the model engineering course
is to not cover as much theory as possible. Instead, the
course aims at accompanying the theory with practical
hands-on assignments wherever possible. The primary
focus of the course is on the language engineering and
transformation engineering parts of MDSE.

D. Practice

For the practical part of the course, the students
were divided into groups of three. In these groups four
lab assignments had to be solved. In the following,
the application scenario and the four labs will be
introduced. Excerpts of the solutions will be shown, the
complete solutions can be found in the accompanying
repository [4].

Application Scenario: In order for the students to
better comprehend how the lab parts fit together in a
simplified MDSE project, we developed an application
scenario that provided a coherent, guiding storyline
throughout the semester:

The SensAction Company is a young rising start-
up company that wants to revolutionise the smart
building market. Since the company consists
of members of lots of different sectors, they
have major communication difficulties, because
everybody has an own way of describing the
same thing. In order to overcome this problem,
SensAction installed a new department and hired
you and your colleagues. The purpose of your
department is to design a new domain-specific
language, the Smart Building System Modeling
Language (SBSML), describing smart building
systems your company offers and providing tools
that enable the other departments to work with
the language.

The language should be able to describe sensors,
actuators, fog devices and configurations, where
these devices are installed as nodes and are
connected to each other. Such a configuration also
describes controllers, which read sensor values
and invoke actuators if a given threshold is
reached.




TABLE I

Structure and content of the model engineering course.

Module MDSE

| MBSE

Material

| book [5] | BoK [7] | Lecture Video | Tutorial Video | Lab
Introduction to MDE 1&2& |1 MDE Principles
3&4 Lab 1:
Metamodeling | 6&7 | 1&4 | Introduction | | D1.1: SBSML Metamodel
D1.2: SBSML 1 1
Metamodeling with EMF _ SBSML example mode
. . Metamodeling D1.3: OCL constraints & models
. Programming with EMF .
EMF-Programming 7 4.2 OCL Introduction Modeling
OCL Tools and Examples OCL
Lab 2:
Textual Modeling | 7 1.1 &4.1 ;ggducmon Xtext giéf i’;g‘; S;gg;f;r
Languages &54 D2.3: Textual model
. D2.4: Sirius mapping
Graphical ~ Modeling | 7 11 &4.1 X‘tr‘;g;lgﬁf; Sirius D2.5: Sirius tools
Languages & 5.4 bp D2.6: Graphical model
Model Transformations | 8 8.1 & 8.2 glrtgogu"l?g;r;formations Henshin Lab 3:
P D3.1: Henshin transformation
ATL | 8 | 8.1 &8.2 | Introduction | ATL | D3.2: ATL transformation
Introduction
Code Generation 9 8.3 Model2Model Transformation | Xtend Setup Lab 4:
ode Leneratio ’ Programming Languages Xtend D4.1: Xtend code generator
Xtend

For all four model engineering lab assignments, we
provided the same two sample models, which should
ease the understanding of the modeling language and
the tools the students had to design and implement.
One of the sample models was an indoor farming
system, which can be seen in our graphical notation in
Figure 3. It consists of a humidity sensor for measuring
the humidity of a patch and to water it using a
watering valve if the humidity falls under a specific
threshold. Additionally, a light sensor and a lamp is
used, which is automatically turned on or off depending
the brightness of the room.

Lab 1: Metamodelling: The goal of the first
assignment was to develop the abstract syntax
of the Smart Building System Modeling Language
(SBSML). Therefore, the students had to develop a
SBSML metamodel with Ecore and furthermore define
several OCL constraints to realize additional well-
formedness rules for SBSML models. We provided
two sample SBSML models in a graphical notation
and a tabular metamodel [11] that specifies the
metamodel by mapping metamodel elements to a
sample graphical representation and textual semantic
description including four constraints.

The students started from scratch and had to define
all metamodel concepts with Ecore. Moreover, they
had to realize not only the four pre-defined constraints

using OCL, they also had to define and implement four
additional, meaningful constraints. Students needed to
submit the Ecore project containing the metamodel
with the eight OCL constraints and an SBSML model
of the indoor farming system as a solution.

The sample solution we provided after the
submission deadline can be seen in Figure 2. The root
element of such a SBSML model is a SmartSystem,
which contains Things, Units, and Configurations. Such
a Configuration further defines Nodes, which point to
a single Thing and Controllers. A Controller defines a
behavior using a Threshold and a ServiceCall.

The reason why we chose this domain example is that
the metamodel is large enough to represent the model
engineering core concepts such as classes, attributes,
relations, containments, abstraction and enumerations,
and at the same time it is not too large, thereby limiting
repetitive work where students would not gain further
knowledge.

Lab 2: SBSML Concrete Syntax: In the second lab,
the students had to implement a concrete graphical
syntax and a concrete textual syntax for the SBSML
modeling language. Moreover, tools for the creation
and editing of SBSML models needed to be created.
Consequently, the assignment was divided into two
independent parts. We provided a sample solution from
the first assignment, i.e., the implemented metamodel



E'L] Pammefen‘sedﬂeme@

_’ﬁ

|

[0..*] things % Thing

% shortName : EString
)

[0..*] parameters|

[1..1] thing

[0..*] ports
| H Port | —
[ SmartSystem
7 singleConnection : EBoolean = false [0..*] configs
[1.1] portA
[1..1] portB G
[ Configuration
0..* ti
(0-"] connections e [0..*] controllefs
0.7 Yodes [0..*] units
[1..1] nodeA -
onnection [ Node
C Nod 1.1 N
J

L Jhtnedes L

[1..1] source

[1..1] parameter

' type: DataType = INT
= abbreviation : EString

E Actuator

*] services

= Sensor

5 mips : ELong

Paramet:
@ |

1] service

‘ [1..1] node

] Threshold l

_—

[0..*] threshold [ Controller

< mips: ELong

[0..*] servicecalls

= Service
= description : EString

e )
= ServiceCall

[0..*] arguments

2 DataType % Comparator

‘ [ FloatThreshold ‘ = IntThreshold

[ BoolThreshold

7 value : EDouble = 0.0
= comperator : Comparator = GREATER

< value : Elnt
' triggerOn : EBoolean = false

= comperator : Comparator = GREATER

Fig. 2. Sample metamodel for the SBSML language.

shown in Figure 2, such that all groups start with
the same setup and students with an insufficient
solution for the first lab did not have any disadvantage.
In addition, we provided templates for both tasks
such that the students could focus on the actual
implementation and not have to deal with project
setups and configurations.

Graphical Concrete Syntax: For the graphical
concrete syntax, the Sirius® framework was used. The
students had to implement two viewpoints for different
aspects of a SBSML model. The viewpoints should
define mappings to display the model elements. In
addition, for both viewpoints, certain creation tools
should be provided, which allow modellers to create
model elements.

We used the same graphical models that the students
already knew from the first assignment (see Figure 3),
therefore the students could concentrate on the task
itself. In addition, we defined certain mappings as
well as creation tools in the project template for
lowering the entry barriers and easing understanding.
A template project contained the two example projects
and was configured in such a way that the Sirius
mappings to be implemented were applied directly to
the models. The students could thus directly use EMF

Shttps://www.eclipse.org/sirius/

| = INT = GREATER
[ Argument = FLOAT = SMALLER
= stringValue : EString SECOL
<3 Percent: FLOAT (®) HumiditySensor(HS) & WateringValve(WV) W RaspberryPi(RPI)
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SunShineController

47 BasilLS.brightness > 100
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LowHumidityController

2 BasilHS.humidity < 0.8
9\, BasilWV.waterPlant(10)

Fig. 3. Indoor farming graphical model.

Compare? to compare their solution with the provided
graphical examples.

The students needed to submit the implemented
Sirius project and a small example model, which
was to be created with the implemented graphical
editor. Moreover, the realized creation tools had to be
submitted for this subtask of lab 2.

4https://www.eclipse.org/emf/compare/



Listing 1. Excerpt of the SBSML Xtext solution for lab 2.

SmartSystem:
‘system’ name=ID ’{’
(’units’ '{’ (units+=Unit (’,’ units+=Unit)=*)? ’'}’)?

(things+=Thing| configs+=Config)*
oy

Unit returns Unit:

name=ID (’'(’ abbreviation=SIRING ’)’)? ’:’ type=DataType

Thing returns Thing:
Sensor|Actuator|FogDevice

Port returns Port:

(singleConnection?='single’)? ’'port’ name=ID

Sensor returns Sensor:
‘sensor’ name=ID ’(’
(ports+=Port)*
(parameters+=SensorParam)*
3}

shortName=ID ')’ '{’

SensorParam returns Parameter:
‘param’ name=ID ’:’ unit=[Unit]

Textual Concrete Syntax: Xtext® was used for
implementing a concrete textual syntax for SBSML.
In a first step, the students had to define the Xtext
grammar, which they had to derive from a textual
model of the indoor farming system and the smart
home system that we provided. In a second step,
the scoping for five pre-defined scenarios had to be
implemented, ensuring that the Eclipse content assist
only displays valid suggestions.

We implemented some Xtext rules and terminal
definitions in the template project for lowering the
entry barriers and easing understanding. In addition,
the two example models were included in the textual
syntax as well as customized examples for scoping.
These examples enabled the students to immediately
verify their solution. Listing 1 shows an excerpt of the
Xtext sample solution for lab 2.

The students needed to submit their implemented
Xtext project and the same example model from the
graphical concrete syntax sub-task (see Figure 3)),
which had to be modeled with the implemented Xtext
editor (see Listing 2).

Lab 3: SBSML Model Transformation: Lab 3 was
again divided into two independent sub-tasks, one of
which dealt with out-place transformations and the
other with in-place transformations. As for lab 2, the
sample solution metamodel for lab 1 was provided to
the students to ensure all had the same prerequisites.

Shttps://www.eclipse.org/Xtext/

Listing 2. Textual concrete syntax.
system IndoorFarming {

config Basil {
node bashs: HumiditySensor
node basls: LightSensor
node baswv: WateringValve
node basl: Lamp
node basrpi: Raspberry

connections: {
basrpi.RPI GPIO 1 >—< bashs.HS GPIO,
basrpi.RPI GPIO 2 >—< basls.LS GPIO,
basrpi.RPI GPIO 3 >—< baswv.WV_GPOI,
basrpi.RPI GPIO 4 >—< basl.L GPIO

}

controller LowHumidityController computed on basrpi {
mips: 500
on: {
FloatThreshold (bashs. humidity < 0.8)

}
call:{
baswv.waterPlant(10);

}

Out-Place Model Transformations: Out-place
transformations show to the students that models
created with one language can be transformed easily
into models of another one to e.g., address different
stakeholders and purposes. ATL® was used for
implementing the out-place transformations. The two
provided sample models had to be transformed into an
AutomationMI/CAEX’ conforming model according to
certain rules we specified. AutomationML is a family of
standardized modeling languages designed to support
the data exchange among heterogeneous engineering
tools in the production system automation domain.
For exchanging information about the hierarchical
structure of production systems, AutomationML
provides the CAEX modeling language.

A configured ATL template project was supplied
in which only the ATL rules and helpers had to be
implemented-for an excerpt, see Listing 3. It was
mandatory to use certain ATL concepts, such as rule
inheritance and helper functions. In addition, the two
example models were supplied as source models, their
expected transformation result, as well as the launch
file for executing the transformation. With the model
compare functionality of Eclipse, the students could
compare their transformation results with the expected
ones, and thus, directly verify their implementation.

As a deliverable for this sub-task of lab 3, the
students needed to submit an ATL project with the
implemented ATL rules. Listing 3 shows an excerpt

Shttps://www.eclipse.org/atl/
"https://www.automationml.org/o.red.c/home.html



of the lab 3 sub-task solution by means of the ATL
rules for transforming SBSML FogDevice instances
into CAEX InternalElement instances.

Listing 3. ATL rules for FogDevice Nodes.

abstract rule Node2InternalElement {
from
n : SBSML!Node
to
ie : CAEX!InternalElement(
name <— n.name + ‘(' + n.thing.name + ’)’
)
}

rule FogDeviceNode2InternalElement extends Node2InternalElement {
from
n : SBSML!Node (n.thing.oclIsTypeOf(SBSML! FogDevice))
to
ie : CAEX!InternalElement (
attribute <— thisModule. createAttribute ( 'mips’,

)

n.thing.mips)
}

— Called rule
rule createAttribute (name: String, value: OclAny) {
to
attribute: CAEX!Attribute (
name <— name,
value <— value.toString()
)
do {
attribute;
}
}

In-Place Model Transformations: In this sub-
task of lab 3, we introduced in-place transformations
to the students, using them for assuring the quality of
the SBSML models. The transformations were applied
to automatically fix corrupted models. Henshin® was
used for realizing the in-place transformations.

We described three different scenarios of
incorrect SBSML models and how these models
should be fixed by applying Henshin rules. In
Figure 4 you can see the sample solution for the
scenario split workload using the sequential unit
DuplicateFogNodeAndMoveController, which invokes
the rules Duplicatel FogNode and MoveController. The
rule Duplicatel FogNode creates a new Node element
for each existing Node with a name passed as an rule
argument and connects it to the already existing one.
The rule MoveController sets the computationNode
attribute from a Controller element, again specified by
a rule argument, to a specific Node, as well specified
by a rule argument.

Also for this sub-task we provided a fully configured
Henshin template project. The rules for the three
scenarios were already defined and had to be
implemented by the students. For each of the three
scenarios, a corrupted SBSML model, its expected
transformation result, as well as the launch file for

8https://www.eclipse.org/henshin/
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Fig. 4. Sample Henshin rules for the split workload scenario.

executing the transformation was supplied. In this
way, the students were again able to verify their
implementation with EMF compare.

For this sub-task, the students had to submit the
Henshin project with the implemented Henshin rules.

Lab 4: SBSML Code Generation: Lab 4 focused on
the implementation of a code generation tool that
transforms SBSML models into a Java application
that simulates the behaviour of the modeled smart
building system. The application also monitors the
system behaviour by providing sophisticated console
logs. When executing such a generated Java program,
a scenario file is passed as an argument, which defines
an ordered set of values for each sensor node of the
system. These sensor values are read and processed
according to the thresholds of the controllers and, if
applicable, actions of actuators are executed.

For the code generator, Xtend® was used with several
Eclipse plugins for processing EMF models. Xtend is
well suited for this task because the language provides

9https://www.eclipse.org/xtend/



template expressions and is also very similar to Java,
which is expected to be mastered by the students.

The example metamodel of lab 1 and the two
example models were again provided. In addition, a
fully configured code generation project was provided,
where the students only had to implement the
Xtend files to generate the required Java code. As
previously, we included the expected generated Java
code, thereby again enabling that students could focus
solely on generating the code instead of brainstorming
a possible Java application for the scenario. This
also enabled us to control the complexity of the
code generator and ensure identical challenges for all
groups. The Xtend file for the generation of SBSML
units was provided fully implemented for lowering
the entry barriers and easing understanding. We also
provided launch files to execute the generated code
and generate log files. The students could use these log
files and compare them with the expected log files to
continuously verify their implemented code generator.

The students needed to submit their code generation
project with the implemented Xtend files (see Listing 4
for an excerpt of the code generator of the Unit class).

Listing 4. Xtend code generator for Units.
package at.ac.tuwien.big.sbsml.codegen.xtend
import sbsml.Unit
import sbsml.DataType
import static at.ac.tuwien.big.sbsml.codegen.xtend.NameUtil.toClass
class UnitGenerator {

public static final String UNIT PACKAGE = "unit"

private def dataType(DataType type) {

return type === DataType.BOOL ? "boolean" :
type === DataType.INT ? "int" :
"double" ;

}
def generate(String packageName, Unit unit)
package «packageName».unit;

public class «toClass(unit.name)» {
private «dataType(unit.type)» value;

public «toClass(unit.name)»(«dataType(unit.type)» value) {
this.value = value;

}

public «dataType(unit.type)» getValue() {
return value;

}

@Override
public String toString() {
return this.value + "«IF unit.abbreviation !== null

&% unit.abbreviation.length > O»«unit.abbreviation»«ENDIF»";
}
}

E. Summary of Learning Objectives

Following the preceding descriptions, one can
grasp the comprehensive aim this course follows.
Considering the framework for teaching conceptual
modeling and metamodeling proposed in [12], which
is based on Bloom'’s revised taxonomy [9] on learning
objectives, the presented course content covers the
following dimensions.

Knowledge Dimension: The presented course covers
all four knowledge dimensions. Students need to have
the factual knowledge about, e.g., modeling languages
and model transformations. They also need to have
conceptual knowledge on how metamodel concepts are
organized in meta-hierarchies. Moreover, students had
to have procedural knowledge as they had to actually
develop the SBSML metamodel. Eventually, the course
also touched to some extent metacognitive knowledge
as for some aspects several alternatives have been
discussed and realized, e.g., textual and graphical
concrete syntax, and different model transformation
frameworks.

Cognitive Process Dimension: When considering the
cognitive process dimension, students in the described
course needed to Remember and Understand the
core concepts of metamodeling and Apply them in a
new domain. As a prerequisite, students also needed
the competencies to Analyze the SBSML domain and
Evaluate intermediate solutions with respect to the
requirements of the course and the domain specifics.
An emphasis of the course is obviously on the Create
aspect as the students are heavily engaged with
applying their model engineering skills.

IV. Evaluation

As the COVID pandemic forced us to rapidly
transform the model engineering course into a distance
learning one, we were keen to learn how students
perceived the new course format. Moreover, we were
interested to see, whether the student’s results differed
when comparing them with those of the previous
years. We used a post-class anonymous evaluation,
where out of 61 course participants, 40 responded. Our
evaluation focuses on the following research questions:

RQ-1 Is a flipped classroom an adequate teaching

paradigm for MDSE?

RQ-2 What is the perceived quality of a distance

learning MDSE course?

RQ-3 How do course results differ compared to a

physical course?

In response to RQ-1, we can state that students
responded very positively about the flipped classroom
concept in general and the use of it for the MDSE
course (see Figure 5). However, we also recognized



M Strongly Disagree Disagree

The tutorial videos were helpful to solve the labs.

One can solve the labs only by using the lecture slides and
online material like specifications.

The provision of lab solutions was helpful in understanding the
own mistakes?

The lab reviews were helpful in gaining a deeper understanding
on the discussed topics?

Collaboration via Github classroom and Github was efficient?

It would have been easier to succeed in weekly regular physical
meetings instead of the video-based learning?

The flipped classroom concept is a good teaching concept for
model engineering.

Overall | would recommend the model engineering course to
other students.
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Fig. 5. Results of the student survey.

that approximately only half of the enrolled students
participated in the Q&A sessions. On average, students
responded that they participated in 3.9 + 2.3 of eight
possible Q&A sessions — 18 out of 40 only attended
three or less sessions. In contrast, students watched in
average 7.2+1.2 of eight available tutorial videos — 27 of
40 responded they watched all eight videos. Moreover,
the hits on the lecture videos on YouTube was very
good (in average 143.5 4+ 45.5). Overall, students very
positively responded to the question whether they think
the flipped classroom is a good teaching concept for
model engineering (see Figure 5).

What concerns RQ-2, we were interested in the
perceived quality of the course by students and the
final, overall assessment of the students. For the latter
part, we asked in the survey whether or not students
would recommend the course. The response was very
good with 33 out of 40 agreeing or strongly agreeing
to recommend the course.

For RQ-3, we compared the results of the distance
learning course with the results of the previous
years, where the course with a similar content
was conducted with weekly physical classes. When
comparing the awarded points in several years,
no significant differences could be found. However,
it needs to be acknowledged that the change in
evaluating the theoretical part hampers a concluding
comparison on the knowledge transfer. Considering
the MDSE capabilities, the evaluation method and the
points for the labs were comparable.

V. Lessons Learned

Before concluding the paper, we share our lessons
learned such that others can benefit from what worked
and mitigate problems we faced.

Course structure: The flipped classroom concept
did work, but with limited adoption on student side.
It remains a challenge how to further engage the
students actively also in a remote setting. The students
throughout the course emphasized the importance and
efficiency of providing answers through the student
forum. Having access to their repositories, we often
used code snippets of their code in our response.

Course content: We saw that the tutorial videos
were watched frequently and the evaluation confirmed
their value (see Figure 5). We prepared these videos
using the lab assignment of the previous semester.
This ensured that the tutorial is very close to the
actual assignment of this year while not revealing
any solution to the SBSML case. When examining the
theoretical aspects of the course in a multiple choice
test via Moodle, we identified several issues, e.g.,
related to the size and presentation of large figures
(e.g., metamodels), the time required for students to
respond to these questions, etc. Consequently, we need
to reflect how testing model engineering theory in
remote settings can be further improved.

Technological infrastructure: For all practical
work of the course, we set up a Github classroom.
Each group was assigned a repository in which they
could remotely collaborate throughout the course. The
administration was very easy and students perceived
it to be very useful. On several occasions we helped
students in bug hunting or provided an update to
the lab solutions. Moreover, the system also allows to
monitor the group’s progress and to see, which group
members are active. This also proved useful when
preparing the solution review meetings.

What concerns the tool development environment



(i.e., Eclipse) and the lab assignments, we aimed to
prepare as much as possible and to enable students
to directly and autonomously verify their solutions.
This also proved very efficient as the students gained
confidence in their solution and questions regarding
the fulfillment degree and correctness of a lab solution
hardly came up. Still, providing sample solutions for
finished labs and enabling all students to start from the
same project is inevitable. We even prepared a ready to
use Eclipse environment with all necessary plugins for
Windows and Unix. However, this was only used in one
single case, where a problem with the Eclipse Update
Site occurred.

Albeit the mostly positive feedback regarding Github
classroom and Eclipse, we also learned that some
teams had issues with setting up Eclipse and Github.
Most of these problems related to different operating
systems, badly configured local Git ignore files and
a lack of experience in collaborative and remote
programming. In the future, we hope that with the
uptake of web modeling and web model engineering
environments we can also mitigate some of these issues
as real-time collaboration is enabled.

VI. Conclusion

In the paper at hand we described the transformation
of an existing in-person model engineering course into
a distance learning format. We presented the structure,
the content, and the technological and organizational
setup we used. The evaluation results showed that our
course was perceived very positively on the student
side. When looking at the awarded points, we can
confirm that students who participated in this very first
distance learning course achieved similar good results
compared to students of previous, in-person courses.
We believe the detailed description of the course and
the comprehensive discussion of our lessons learned
enables the MDSE community to reflect on their
courses and maybe to adopt some of our best practices.

All course content, except for the already publicly
available MDSE book slides!?, can be found at the
accompanying Github repository [4]. The repository
features all four lab assignments, initial workspace
configurations for students to start working on the
assignments, and complete sample solutions for each
lab. We hope the community finds this material useful
and invite them to reuse (parts of) the material in their
model-driven software engineering courses.

We furthermore plan to continuously extend the top-
level Github organization!! with future MDSE teaching
cases, thereby aiming to establish a knowledge base

10MDSE book slides: https://mdse-book.com/bonus-content/
https://github.com/MDSE-TeachingCases/

of MDSE cases and quality-assured solutions similar
to the current efforts of developing and maintaining a
corpora of models [13]. Of course, we hope that others
also contribute their MDSE course material and case
studies to also better reflect the heterogeneity and
richness of the field.
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