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Abstract—The Fourth Industrial Revolution, or Industry 4.0,
aims to advance flexibility and reconfigurability in current
production systems. This paper sets cyber-physical production
systems in context with Industry 4.0 concepts and architectures.
The combination points out the importance of the interplay
between communication and component reconfiguration when
changes occur. A solution that utilizes fog computing, container-
based deployment and Kubernetes functionality is presented and
evaluated in simplified reconfiguration scenarios. The findings
show the feasibility and the challenges of the solution and point
towards further research to successfully create reconfigurable
cyber-physical production systems.

Index Terms—Cyber Physical Production Systems, Configura-
tion, Fog computing, OPC UA

I. INTRODUCTION

From a historical perspective, the core enablers of so-called
industrial revolutions were disruptive technologies and their
follow-up applications. The newest, the fourth industrial revo-
lution (4IR), is still in the initial stage, while the expectations
are unprecedented in regards to technological development and
societal benefits compared to its predecessors [1].

One potential core enabler for the 4IR are cyber-physical
production systems (CPPSs), a new generation of embedded
systems with advanced capabilities and many different defini-
tions [2]. A commonality in all CPPS definitions is the idea of
a logical/cyber embodiment linked to a physical/mechatronic
aggregate, acting as its virtual representation or avatar. Apply-
ing those principles to an automation system creates a compet-
itive edge concerning system reconfigurability [3]. The advan-
tage lies in the modularity, and self-contained composition of
cyber-physically represented equipment and systems. Instead
of building statically defined and customized interconnections,
CPPS focus on dynamic and on-demand interactions between
the system components [4]. These principles allow dynamic
and sustainable production and operations, where the industrial
equipment is almost instantly reorganized to address new
and ever-changing business opportunities. In such a setting,
equipment is easily disconnected and moved to another site
once the manufacturing task is finished. As each component
has a specific set of capabilities, the possibility exists to rent or
lease equipment from a machine pool provided by an external
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provider in a highly flexible manner. However, the potential
CPPS business models are out of this paper’s scope. Interested
readers are encouraged to find more information in [5].

Reconfiguration of production systems looks back onto
more than 20 years of multidisciplinary research. The con-
ducted research led to several creative production paradigms
and technical ideas, ranging from general applicable multi-
agent systems (MASs) [6] and service-oriented architectures
(SOAs) [7] to flexible and reconfigurable manufacturing sys-
tems (FMSs and RMSs) [3], [4] and specific paradigms
such as holonic manufacturing systems (HMS) [8], bionic
manufacturing systems (BMSs) [9] and evolvable assembly
systems (EASs) [10]. However, most of those concepts never
reached the industry and were not applied in actual repre-
sentative operations. The reasons for the hesitant implemen-
tation have been identified as the low maturity of the related
technologies [11], the absence of architectures that guide the
development from conceptual phases to the actual hardware
implementation [12], and missing verification and validation
procedures [13]. However, most significant is the lack of
know-how in establishing cyber-physical interfaces [14]. In
essence, all paradigms incorporate the main principles, ar-
chitectures and technologies required for a CPPS, but none
has been established or realized in its totality. Another reason
is the involved uncertainty when changing from conventional
automation technologies to a CPPS.

This paper aims to revisit CPPS reconfiguration capabilities
and presents a possibility to integrate them partly into indus-
trial automation. By combining the concept of cyber-physical
production modules (CPPMs), a subunit of CPPS, with In-
dustry 4.0 (I4.0) [2], it becomes apparent that the interplay
between communication and the software system is a crucial
element for reconfiguration. The presented solution addresses
this interplay by utilizing fog computing and Kubernetes
capabilities in combination with a configurator to deploy and
reconfigure containers and communication protocols. While
investigations into containerization are being carried out in
fog computing [15], little can be found that deals with the
simultaneous configuration of network and container contents.
Some research examines configuration issues between time-
sensitive networking (TSN) and fog computing in general [16],
[17]. Similarly, there is much research concerning the configu-
ration of protocols under various aspects such as OPC Unified
Architecture (OPC UA) safety [18] or automatic configuration
by using auto discovery or other approaches [19], [20].
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For demonstrating the feasibility of the proposed solution,
the evaluation case includes OPC UA and Message Queu-
ing Telemetry Transport (MQTT) [21] as communication
protocols and an OPC UA/MQTT gateway as configurable
container content. The contribution is twofold: Firstly, the use
of fog computing and containerization as a potential enabler
for reconfiguration. Secondly, presenting the arising challenges
when configuring communication, routing, and CPPMs soft-
ware systems in a dynamic environment.

In this context, this paper proceeds with the introduction
and definition of the main terminology, background, and the
relation between CPPM and 14.0. Section III presents the
proposed solution to address reconfiguration. The evaluation of
the setup is introduced in Section IV, and Section V describes
the evaluation scenarios and the obtained results and identified
challenges. Section VI discusses the findings and Section VII
concludes the paper and points to future research directions.

II. BACKGROUND

Defining a CPPS is a complex endeavor. Due to the
multidisciplinary nature, available definitions tend to adjust
to the respective domain from which the authors look at a
CPPS. Commonly agreed seems to be that a CPPS represents
the sum of all involved human resources, production equip-
ment, and accumulated products. In industrial automation,
a CPPS encompasses all layers of the automation pyramid,
however, focusing on the lower levels. For each element,
the CPPS provides a cyber-physical representation with for-
mulated interaction interfaces for monitoring and controlling
its operation. Moreover, those interfaces allow access to the
generated knowledge accumulated by the equipment and hu-
man resources during the production process and obtained by
the produced products throughout their life cycle [2]. The
collected knowledge continuously improves operations and
resource consumption by establishing performance indicators.
The knowledge generated by the products helps to improve
CPPSs operations [22].

In a CPPS, a component may establish relations of differ-
ent nature in rank, scope, and abstraction level with other
components. A component within a CPPS therefore follows
a modular architecture. Each component has one or a few
distinct functions and allows interaction via simple and well-
defined interfaces [23]. The internal architecture does not
affect other components as they only see the provided inter-
faces. This circumstance allows a loose coupling between the
components of a CPPS [24]. Ideally, the interfaces handle all
interactions, and the system’s behavior is equal to the sum of
its components.

Some authors refine the CPPS components as CPPMs [22].
Such modules combine three logical entities: equipment
(mechatronic system), a controller or computing platform, and
a cyber representation (software system) [24]. The computing
platform provides access to the physical equipment and can
be shared between several cyber representations. The cyber
part represents the interface and the necessary algorithms to
interact with the module. In theory, the CPPMs can interact

with all sorts of other modules (e.g., human resources or
subsystems) without reprogramming. The reason is that the
cyber part abstracts the hardware and decouples interaction
and execution logic. CPPMs are either built by a functional or
structural decomposition approach. The functional decomposi-
tion is a system decomposition style where the boundaries of
the modules align with system functions or roles (e.g., order,
feeding, supply) [10]. In the structural decomposition style,
the modules’ boundaries overlap with those of the physical
components [25].

A. Reconfiguration in CPPS

Reconfiguration in production systems has a long re-
search tradition and is a characteristic of excellence for mid-
variety/volume production [26]. Besides that, current trends in-
dicate sustainability as the more critical excellence paradigm;
reconfiguration is an essential part of long-term sustainability.
The ability to reconfigure and share resources (e.g., equipment)
in different sites and activities contributes directly to the
total sustainability of the system. In general, a reconfigurable
manufacturing system (RMS) could be defined as a system
designed to accommodate rapid change related to production
capacity, functionality, or new governmental regulations. This
capability includes the structure of the system as well as the
hardware and software components. Previous research [3],
[27], [28] identified required characteristics of reconfigurable
systems as:

o Scalability — the ability to sustainably increase or reduce

manufacturing resources.

o Modularity — the ability to encapsulate functions to be

independently used in various production activities.

« Integrability — the ability to integrate new modules into

the system without disruptions.

¢ Customization — the system is designed to accommodate

large-scale changes.

o Convertibility — the ability to ease functional changes.

« Diagnosability — the ability to react to disturbances.

Most of the research activity, therefore, focuses on enablers
that address those characteristics. Such enablers are, among
others, a highly universal product and systems design with
mobile equipment, plug-and-play functionality, and increased
compatibility between the components within the production
system.

B. Relation to Industry 4.0

It is not surprising that the envisioned advanced function-
alities of CPPS found their way into the 14.0 and represent
an essential building block for the 4IR [2]. 14.0 describes
concepts to boost industrial output and competitiveness by
improving efficiency, productivity, and flexibility. The aim is
to create a digital enterprise that is entirely interconnected
by combining people, innovative connected technologies with
advanced production and operations techniques. All systems
in I4.0 communicate, analyze, and use collected data to adjust
intelligently the physical world [1]. The used technologies
span from robotics, analytics, artificial intelligence, Internet of



Things (IoT), additive manufacturing, to advanced materials.
While 14.0 roots in manufacturing, it includes all aspects
of an enterprise environment and changes how organizations
process and apply information to continuously improve their
operations and adjust to consumer wishes.

C. Asset Administration Shell

Analogous to CPPS, 14.0 aims at optimizing production
by using reconfigurable manufacturing, in which production
equipment can be reorganized or reassembled. In 14.0, assets
are more than just machines, production modules, or systems;
they include references to individual products, software instal-
lations, intellectual property, or human resources. Therefore,
an asset must be identifiable with a type, its lifecycle stage,
or its current state. Each asset communicates, apart from
its real-time parameters, also its production capabilities. The
combination creates a logical representation called the Asset
Administration Shell (AAS) [29]. The AAS describes an
asset electronically in a standardized manner and allows the
exchange of asset-related data. In 14.0 terminology, the asset
and the AAS form an 4.0 component [30].

The AAS can be divided into submodules that characterize
the asset by describing its aspects in different domains. Ex-
amples for such domains are identification, communication,
engineering, safety, or security. Moreover, the sub-modules
describe the asset’s functions, like drilling, milling, welding,
or assembling. Each submodule has a set of well-defined
attributes and a unique global identifier [29].

For an asset to communicate and interact with information
technology (IT) systems, it requires a standardized communi-
cation architecture [31]. The Reference Architecture Model
Industry 4.0 (RAMI 4.0) includes next to communication
several other aspects of 14.0 and has gained broad support in
significant companies and foundations [32]. The architecture
depicts itself as a three-dimensional cube promoting a Service-
Oriented Architecture (SOA) that combines services and data
in the sense of I4.0. Each dimension represents different
aspects, relevant to establish 14.0. The horizontal integration
covers aspects from the product perspective to the connected
world, while the life cycle & value stream axis represents
lifecycle management covering development, production, and
maintenance. The vertical integration spans across the func-
tional layers and tackles different types of interoperability (i.e.,
business, functional, information, communication, integration,
and asset).

D. Combining CPPM and I4.0

There are different approaches on how to connect the CPPM
concept with 14.0 [2]. In this paper, the CPPM is simplified as
part of the vertical integration axis of RAMI 4.0 as depicted
in Figure 1. Depending on the degree of the asset’s existing
instrumentation, automation, and communication abilities, the
integration can reach up to the functional layer. The AAS sup-
plements the CPPM with additional functionality depending
on its integration and acts as its virtual representation. In 14.0,
this construct is an 14.0 component [1]. The AAS and the
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Fig. 1. Connecting CPPM with RAMI 4.0 (14.0)

CPPM software system could also be located anywhere on
the horizontal integration axis.

An advantage of combining these two concepts is that
it shows the importance of communication to enable re-
configuration. For example, moving a piece of equipment
to another location, reconfiguring the network and internal
CPPM software system is inevitable to ensure that the data
reaches the cloud. RAMI 4.0 addresses this circumstance
partly in the communication and information layers [32]. The
communication layer describes a unified 14.0 transmission
mechanism, component discovery, and data format, while
the information layer takes care of the transmitted service
descriptions and the data model. RAMI 4.0 favors for that
task OPC UA and MQTT as communication protocols, as they
possess the necessary abstraction and modeling capabilities.
However, RAMI 4.0 does not consider (re-)configuration of
the communication protocols and assets.

ITI. ADDRESSING RECONFIGURATION

Combining the previously mentioned CPPS requirements
(II-A) with the identified importance of communication and
the internal CPPM software system reconfiguration raises the
question of how to address these challenges. A possible first
step is to create a simplified arrangement as depicted in
Figure 2. The CPPMs (including the AAS) represent any type
of equipment. OPC UA is used to connect the CPPMs with
a gateway that transfers the data via MQTT to a cloud appli-
cation. For simplicity reasons, the arrangement assumes that
the software part of the CPPM contains an OPC UA server.
Moving a CPPM to another gateway requires several changes
on the gateways, MQTT and OPC UA simultaneously. This
paper proposes a solution that utilizes fog computing and
container-based deployment to address the described interplay
between the various parts.
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A. Fog computing

Fog computing brings cloud computing functionality such
as virtualization and advanced networking closer to the equip-
ment in the field. While cloud computing locates itself in the
higher IT environments, fog computing acts as a bridge to
the traditionally separated operational technology [33]. Due
to this proximity, fog computing enables applications that
would not be possible in the cloud. An essential part of
fog computing is the so-called fog node with specific non-
functional properties. Such non-functional features include, for
example, real-time behavior, reliability, availability, safety, and
security. Due to the industrial setting, fog nodes usually consist
of verified software and hardware to fulfill industry-specific
safety standards (e.g., IEC 61508). The virtualization capa-
bilities of fog nodes build the foundation for the deployment
of containerized applications in the field. In combination with
TSN [33], containerization enables developers to create dis-
tributed applications for industrial automation. Recent research
on fog computing focuses on implementing fog computing
platforms, tools, implementation strategies, and suggestions
for efficient container deployment to handle the limited fog
node resources [34].

B. Container deployment and Kubernetes

For containerization, the open-source project Docker
emerged as an enabling technology to build and scale con-
tainerized applications. The combination of Docker and a
resource management system that deploys the containers to
available fog node resources, enables a highly flexible environ-
ment as needed for reconfiguration. A prominent example of
an orchestration service for the deployment and management
of the containerized applications is Kubernetes. The Google-
incubated open-source container orchestration tool became the
de facto standard for managing large container deployments in
cloud environments. Kubernetes supports all types of deploy-
ment functionalities, e.g., automatic redeployment by failure
or overload. However, the distributed nature, heterogeneity,
and limited resources within a fog environment, demand
an adjusted approach to benefit from the flexibility. Current
research looks into the challenges arising with the deployment
and management of [oT applications on fog nodes [15].

C. OPC UA and MQTT

OPC UA is the successor of the open platform commu-
nications (OPC) protocol and is regarded as a new standard
to homogenize communication in the industrial domain. The

architecture of OPC UA is one of two pillars [35]. The first
pillar defines a meta-model to enable information modeling,
while the second pillar describes the transport mechanisms re-
sponsible for encoding data and exchanging messages between
devices. In OPC UA, the primary communication paradigm
follows a client-server pattern. However, newer additions to the
standard support publish-subscribe (OPC UA PubSub) com-
munication. The client-server mechanism can invoke complex
services like browsing the information model and calling
methods. Most of the configuration in OPC UA is static, and
changes require manual intervention.

In contrast to OPC UA, MQTT is a TCP/IP based publish-
subscribe protocol, developed for constrained devices in unre-
liable network environments [21]. MQTT is built upon topics
to which clients can publish data and subscribe for updates.
Technically, a client publishes a payload-agnostic message to
the MQTT-server (broker), which takes care of the distribution
to every subscribed client. The flexibility of MQTT makes it
also suitable for IT environments, like other protocols that
follow a publish-subscribe paradigm (e.g., Data Distribution
Service (DDS)). Bridging OPC UA and MQTT as foreseen in
RAMI 4.0 requires gateways that handle the data conversion.

D. Bringing it together

While fog computing provides the platform for container-
ization, Kubernetes takes care of the container deployment
and the routing. However, the missing link to establish the
intended functionality is the combination of container content
configuration (e.g., CPPM, MQTT, OPC UA, gateway) and
deployment. In essence, the system needs to get all relevant
configuration information before deploying and starting the
containers. An external entity can take over this role. The pro-
cess depicted in Figure 3 assumes a configurator to take over
this task while receiving the change request by a user. Based on
the intended change, the configurator provides configuration
files for the container content and Kubernetes. In this case, the
user provides the intended changes; however, those could also
come from simulation environments previously testing the new
configuration. Section IV contains the implementation details.

1 | -OPCUA
PP -MaTT
"] | - Gateways

»

Fog Nodes

=
*—H

—0

Fig. 3. Docker and Kubernetes configuration

Configurator




IV. EVALUATION SETUP

A Kubernetes cluster with Raspberry Pi computers as nodes
acts as an evaluation environment to demonstrate the feasibility
of the proposed solution. The cluster simulates a fog envi-
ronment with containerization deployment capabilities. Such
a cluster is capable to accommodate several reconfiguration
scenarios (e.g., adding/removing CPPMs functionality such as
adding a sensor or moving CPPMs to another location).

A. Gateway architecture

An essential part of the evaluation setup is a bidirectional
OPC UA/MQTT gateway, leaning on the Object Manage-
ment Group (OMG) gateway specification [36]. The gateway
processes requests and responses from OPC UA servers and
clients on one side, and the other side handles the MQTT
topics. Inside the gateway an OPC UA client and server as
well as an MQTT client take care of the bridging (cf. Figure
4). A specialty of OPC UA/MQTT gateway is that it consists
of two bridges, each responsible for one bridging direction,
(i.e., OPC UA to MQTT and versa). The modular architecture
allows the adding and removing of bridges if one bridge,
for example, reaches its capacity limit. Before starting the
gateway, a configuration file specifies the internal gateway
mappings and routings. Readers interested to know more about
the gateway are encouraged to consult [37].

B. Configurator and XML files

Configuring the gateway is a complex task that requires fol-
lowing strict structures and naming conventions to ensure the
correct functioning of the gateway’s services. Included within
the configuration are types used by the gateway and connected
OPC UA servers, URLs specifying these servers and mappings
to define OPC UA nodes and corresponding MQTT topics, on
which the gateway will publish changes to before mentioned
OPC UA nodes. In order to reduce potential errors, a Python
script was developed which generates the necessary XML-
encoded configuration files. The configurator enables the cre-
ation of these XML files with minimal knowledge about the
internal structures of the configuration. For example, in order
to map an OPC UA node to the MQTT topic hierarchy, the
Python script requires only the following information. First,
the OPC UA node and the server which provides the node
in its address space; and second, the MQTT topic on which
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Fig. 5. Raspberry Pi cluster setup

node changes should be published as well as the corresponding
type and name of the node’s variable. The output configuration
contains all internal references necessary for the gateway’s
mapping process. Additionally, the configurator generates a
second configuration file that includes the necessary MQTT
environment information so that the gateway can establish a
connection to the specified MQTT broker. The git repository
provides the entire source code [38].

C. Configuration and service deployment

In case of a deployment, several OPC UA servers and
gateways may be involved. These components have to be
configured and instantiated on the target computing resource.
A Kubernetes cluster is the deployment target, which uses the
Raspberry Pi computers for the evaluation setup. The gateways
and OPC UA servers are represented by Kubernetes Deploy-
ments. Similarly, one Kubernetes Deployment represents the
MQTT broker using the official eclipse-mosquitto container
image. The configuration files are stored in Kubernetes Con-
figMaps and linked to their associated Deployments. For al-
lowing the gateways to communicate with the OPC UA servers
and MQTT broker, Kubernetes Services provide endpoints for
each of the Deployments. In order to ease the description of
the deployment, the Python script was extended to generate
the description of the whole deployment.

D. Implementation details software

The gateway implementation uses the SDKs, Eclipse Paho
v1.2.1 MQTT) and Eclipse Milo v0.2.5 (OPC UA) and an
XML-encoded configuration file. As part of the evaluation, an
OPC UA server provides nodes for attaching the sensors and
uses Eclipse Milo v0.2.5 as well [37].

E. Implementation details cluster

The Kubernetes cluster comprises 24 Raspberry Pi Model 4
single-board computers, of which three are equipped with 4GB
RAM and the rest with 2GB RAM. For the evaluation, one
4GB Raspberry Pi orchestrates the other 23 cluster nodes. The
Kubernetes K3s (v1.17) distribution was chosen to manage
the cluster [39]. A gigabit Ethernet 24-Port MikroTik Cloud
Router Switch connects the individual nodes. The 10-gigabit
internet up-link of the switch enables fast downloads of
container images. Ubuntu 18.04 is used as operating system
for each Raspberry Pi.
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V. EVALUATION CASES

In order to evaluate how a CPPS reconfiguration would
impact a running system, the evaluation setup utilizes three
scenarios. This evaluation process measures lost messages
while doing reconfiguration of the containers within the cluster
setup. As a starting point, setup one provides the initial
configuration, with a sensor , one OPC UA server @ an
OPC UA/MQTT gateway and one MQTT broker [c | (cf.
Figure 6). After deploying, the sensor writes its measured
value to the OPC UA server on fixed intervals. For forwarding
this new sensor value to the cloud, the OPC UA/MQTT gate-
way has a subscription on the relevant nodes of the OPC UA
server. Due to this subscription, the gateway will publish any
changes made to monitored nodes to the corresponding MQTT
topics.

A. Scenarios

The first scenario simulates the adding of components to the
cluster setup and builds upon setup one. After redeployment,
an additional sensor node of a new type writes values on
a fixed interval to the existing OPC UA server. Part of the
redeployment involves restarting the OPC UA/MQTT gate-
way, which will load the required configuration files generated

along with the deployment files. Subsequently, the gateway
maintains an additional subscription for the node of the
OPC UA server to which the new sensor node writes its value.
Similarly to setup one, the gateway publishes new values
to the corresponding MQTT topics. Figure 6 highlights the
configuration changes of the various containers as blue boxes.
In addition to the already mentioned configuration change of
the gateway’s subscription, the new type of the sensor requires
changes in the type configuration of the gateway and changes
in the OPC UA server configuration. This change is necessary
because publishing to the cloud requires strict typing.

Scenario two introduces a second OPC UA server and
demonstrates the movement of equipment. Consequently, sev-
eral configuration changes are necessary. Indicated by the
dotted line (tagged as old connection in Figure 6), the new
deployment intends changing the connection of the second
sensor node to the newly created OPC UA server. This change
requires removing the unused type information of the first
OPC UA server. Additionally, the gateway’s configuration
receives a change as well, as it has to establish a connection
and change its existing subscription to the newly created
OPC UA server. Therefore, in order to realize these changes,
the gateway restarts alongside the redeployment process.

For moving software components to another fog node,
scenario three introduces a second OPC UA/MQTT gate-
way within the cluster. Additionally, in this scenario, one
of the existing OPC UA servers and a sensor node change
their location. Therefore, after redeploying the containers and
adding the new gateway on another fog node, a restart of the
existing gateway for loading new configuration files removes
the subscription to the moved OPC UA server.

B. Measurements

Each scenario change requires a redeployment of individual
containers and a new set of configuration files. During those
changes, some sensor values may be lost during container
creation and termination. To measure the number of lost
messages, a specifically created Python script monitors all
available MQTT topics in the cloud. The script was started
before any changes were issued on the cluster to ensure that
all messages were logged.

Regarding the container redeployment, Kubernetes first
starts a new container instance and waits until it is fully booted
before terminating the old one. This process reduces the
downtime of containers that require replacement. Additionally,
the time it takes to create and terminate can vary. Hence the
Kubernetes deployment was extended to log the startup and
replace timestamps.

As mentioned, each scenario change requires replacing
the existing gateway container, as a configuration reload is
necessary. Figure 7, depicts the lost messages during this
switch and the timestamps of creation and termination of the
gateway container. The vertical lines illustrate when the new
gateway container starts and the execution of the replacement
process. The gaps of 0,21s and 1,14s respectively indicate the
gateway’s downtime.
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Fig. 7. Scenario measurements

C. Challenges

The scenarios point out challenges in the chosen solution,
mainly when reconfiguring and redeploying the gateway dur-
ing runtime. Foremost, as the configuration of the current
implementation is static, to add or remove subscriptions, a
restart of the gateway’s container is necessary. The need
for restarting introduces the potential for race conditions
between the containers, particularly between the gateway and
the OPC UA server. If the server is not fully booted before
the OPC UA/MQTT gateway, the connection establishment is
unsuccessful.

In the current implementation, this would result in a restart
of the gateway, as the successful connection to the configured
OPC UA server is a requirement. Moreover, such a condition
creates more extended downtimes and lost messages. Error
handling of containers introduces another challenge. Kuber-
netes is able to detect if a container enters an internal loop or
gets unresponsive, however, the containerized software has to
support this feature. Hence there may be a need for external
supervision.

Specifically to the gateway, is the challenge that defining the
correct and required mappings between a CPPM and cloud
applications requires external knowledge. The configurator
can provide the correct format, but the knowledge needs

to be provided by a domain expert. Important here is that
advanced applications that access the sensor data require strict
typing from the OPC UA server up to the gateway to avoid
misinterpretations.

Apart from the configuration of the Kubernetes deployment,
every involved entity, e.g., the fog node, has to have enough
computational power and resources to route the messages
within reasonable time frames.

VI. DISCUSSION

The proposed solution to address reconfiguration in CPPS
shows promising results but also presents further challenges.
Each evaluation scenario represents simplified reconfiguration
activities that allow the assessments of the solution regarding
the reconfiguration requirements (II-A). The results indicate
that requirements of scalability, integrability, and modularity
are possible to address. Containers can be scaled, added
and removed, changed, and redeployed as long there is a
computing platform available. Moreover, the setup is resilient
to disturbances, as in case of a failure (e.g., fog node break
down), Kubernetes detects the failure and redeploys the con-
tainer to another fog node. Customization and convertibility
are system-level requirements and, therefore, not assessable.

A benefit of the CPPM concept is that the software part
could also be separated and hosted on a fog node. Separating
the software part would create more deployment flexibility
and the possibility to execute more advanced algorithms. A
fog node has more computing resources as an embedded
system located in a machine. Such functionality is very
similar to traditional programmable logic controllers (PLC)
environments and conforms to the general ideas of how to use
fog computing. A limitation of the proposed solution is that
a CPPS assumes that CPPMs are self-contained and interact
with other modules without the need for reconfiguration. Such
functionality would require auto-configuration or interfaces
that provide the CPPM’s functions to other modules. In the
simplified setup, this is yet not attainable. After deploying
the OPC UA/MQTT gateway, it is not possible to add or
remove subscriptions, to publish value changes to other MQTT
topics, or establish new or change existing connections without
redeployment. The gateway’s architecture needs to be changed
to support auto-configuration or implement an interface that
provides the gateway services to others. The changes would
require changing the configuration during runtime instead of
the static configuration that defines the mappings between
OPC UA nodes and MQTT topics. A possibility would be
exposing gateway endpoints (interfaces) that allow creating
subscriptions to OPC UA nodes, define MQTT topics, and
create the mappings between them. With such a change, the
gateways internal services handling these endpoints, would
create the required instances, e.g., new OPC UA clients or
OPC UA data space structures, to send data to the cloud. No
restart of the gateway would be necessary for scenario three,
and no messages would be lost.



VII. CONCLUSION

The paper addresses reconfiguration in CPPS, by combining
the CPPM concept with 14.0 and points out the difficulties
to configure communication and software parts of CPPMs si-
multaneously. A potential solution that utilizes fog computing,
containerization, and Kubernetes functionality was evaluated
in simplified reconfiguration scenarios. The findings indicate
the potential of the solution and its challenges while laying the
ground for further research that aims to address the CPPMs
interfaces. Another aim is connecting the configurator with an
information model to generate configurations.
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