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Abstract

Developing, configuring, and deploying legacy protocol gateways for existing cyber-physical systems to improve interoperability remains chal-
lenging. A possible solution is using model-driven engineering languages such as the Architecture Analysis & Design Language (AADL) that
enables combined modelling of software, hardware, and communication for distributed systems. Experiences made while creating an OPC Unified
Architecture (OPC UA) / Data Distribution Service (DDS) gateway indicate the suitability of AADL to model complex software artefacts. More-
over, a proposed process reduces the development and configuration effort for platform-specific gateway instances. A challenge to be addressed is

the generation of executable code for resource-constraint devices.
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1. Introduction

Interoperability and connectivity are essential for the real-
isation of the Industrial Internet of Things (IloT) and Cyber-
physical Systems (CPSs) [33, 23]. To enable seamless infor-
mation exchange at all levels of a manufacturing organisation,
the IIoT proposes a flat communication architecture to consol-
idate previously separate or isolated data islands [33]. How-
ever, one of the remaining challenges is the conversion of ex-
isting operational technology (OT) (e.g., programmable logic
controllers (PLCs)) and Supervisory Control and Data Acquisi-
tion (SCADA) systems) with information technology (IT) (e.g.,
Enterprise-Resource-Planning (ERP) tool suites). Historically,
OT and IT environments utilise different types of technologies
to fulfil their specific needs on, for example, real-time capabil-
ities or safety [17]. Newer technologies such as cloud and fog
computing, time-sensitive networking (TSN), and middlewares
(e.g., OPC Unified Architecture (OPC UA), Data Distribution
Service (DDS)) aim to close the OT/IT gap [1].

Despite all technological advances, an often overlooked fact
is that replacing current industrial automation systems is not a
feasible solution (e.g., high cost). The long-life cycles in this
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area have created a decade’s old landscape of various com-
munication protocols that are still widely used and fully func-
tional [31]. Typical solutions that combine older protocols with
new technology are connectors, proxies, or gateways. However,
such solutions are complicated software artefacts that require
significant development effort and are difficult to maintain [30].

Specifically, building a gateway requires in-depth knowl-
edge about the bridged protocols and the network environment.
Adding to the complexity, each gateway instance needs to be
configured and deployed to different types of devices from the
cloud to the edge of a network [11]. A possible solution to re-
duce the effort for gateway development, configuration and de-
ployment is utilising model-driven engineering (MDE).

MDE is standard in the development of embedded and dis-
tributed systems [18] where software and hardware closely
interact [40]. In MDE, all or parts of a system are gener-
ated from models [32] created in modelling languages such as
MARTE Unified Model Language [8], System Modeling Lan-
guage (SysML) [15] or Architecture Analysis & Design Lan-
guage (AADL) [13]. In particular, AADL aims to describe soft-
ware and hardware components of a system independently.

Developers in avionics, robotics and embedded systems de-
sign are familiar with AADL; however, there is little experience
with AADL in industrial automation. In this context, the follow-
ing research aims to investigate the feasibility of using AADL
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as a modelling language for industrial automation and, thus, re-
ducing the complexity in creating and maintaining gateways. In
a first step, the research examines the ability of AADL to model
complex software artefacts for different target platforms (code
generation) and the possibility of automatically adapting mod-
els (configuration) by modelling an OPC UA/DDS middleware
gateway.

The obtained results indicate the suitability of AADL in in-
dustrial automation. However, a final evaluation was not possi-
ble as the intended code generation based on the modelled gate-
way failed. Nevertheless, the identified issues add to the MDE
body of knowledge in the automation systems context. Another
contribution is the gateway generation and configuration pro-
cess that reduces the development effort and builds the ground
for further studies.

Section 2 presents background information and related
work, followed by Section 3, introducing the AADL model lan-
guage. The described methodology in Section 4 lays the ground
for the OPC UA/DDS middleware gateway modelling in Sec-
tion 5 and the discussion of the findings in Section 6. Section 7
concludes the paper.

2. Related Work

There is a vast body of research about AADL due to
the diverse application possibilities of the language in do-
mains where real-time, embedded, fault-tolerant, secure, safety-
critical, software-intensive systems are relevant [14]. The main
focus lies on embedded systems where software and hardware
interact. In [38], AADL supports the model-driven design of
an avionics CPS. The study shows several benefits of AADL
in modelling the physical part of the CPS. Ziani et al. [40] fo-
cus on examining existing research related to MARTE, SysML,
and AADL and are concerned with modelling embedded sys-
tems that have restrictions on memory, autonomy, and process-
ing. The results indicate that AADL is most suitable for such
tasks. Huges et al. [21, 20] demonstrate the usability of AADL
in an MDE rapid prototyping process for space rugged embed-
ded systems.

Zhang et al. [39] studied research concerning the reconfigu-
ration of systems. AADL was used to model system configura-
tion architectures and reconfiguration behaviours in integrated
modular avionics systems in their studies. In the reconfigura-
tion context, AADL is often used in combination with other ap-
proaches, e.g., Timed Petri Nets (TPNs) [34], or model check-
ing [16] to find deadlocks, carry out reachability analysis or
detect faults based on missed deadlines during reconfiguration.
A recent study looks into using AADL to represent the im-
plementation architecture of systems under different designs to
improve verification and analysis of reconfigurable integrated
electronic systems [24].

A closely related topic to reconfiguration and MDE is code
generation based on models. The authors of [22] propose a code
generation model-based framework that provides the flexibility
to generate different source code for different devices. Their ap-
proach uses AADL to capture the platform’s hardware/software

architectural aspects, including sensors and actuators. An algo-
rithm then generates platform-dependent code based on code
snippets provided by a repository. Previous research built code
generators to transform AADL models to C-code [25]. Simi-
larly, the work done in [3] presents the generation of ROS-based
software from AADL models for complex robot systems. In [2],
the same authors extend their work to an entire toolchain to pro-
duce executable code. Whermeister et al. [37] present a nearly
identical model-based approach with the difference that they
use UML/MARTE.

Other research is using or analysing AADL for different pur-
poses. Delanote et al. [7] use AADL to model a UDP/IP proto-
col stack and point out the lack of generic component concepts
to model such applications. Other studies model middlewares
for Distributed Real-Time systems [36] or a Fog Computing
Platform (FCP) [4]. The latter one applies the AADL models to
implement an industrial use case based on conveyor belts.

3. AADL as a Modelling Language

AADL is an Architecture Description Language (ADL) that
aims to describe and analyse system designs before develop-
ment and during the system lifecycle. The language targets real-
time embedded systems, where hardware and software compo-
nents are tightly coupled, and interaction analysis is required.
Version 1.0 of AADL was published in 2004 and defines the
textual syntax and the semantics of the core language [13]. SAE
International standardises AADL. Several additional annexes
specify, for example, how to graphically model with AADL, the
meta-model and the XML/XMI interchange format. The AADL
ecosystem also includes an open-source tool environment (OS-
ATE) [5] based on Eclipse. Its plug-in mechanism allows the
development of additional analysis and generation tools. Those
tools provide the means for analysing availability & reliabil-
ity, security, data quality, real-time performance, and resource
consumption. It is possible to study individual models or the
overall system and identify potential exploits or flaws within
the overall design, which results in reduced development efforts
and increased quality.

The central element of AADL is a hierarchical system model
encompassing the entire system’s architecture with all its com-
ponents and their relationships. AADL distinguishes between
three component categories in the system model: software,
hardware, and hybrid (also called composite components). This
combination enables AADL to model the hardware, software as
well as communication components of a system.

Systems and components can have several sub-
components/systems. A sub-component can inherit features
and properties from its parent. Abstraction in AADL is possi-
ble as each component defines a type and an implementation
separately. The type represents and defines how a component
interacts with other components (e.g., interfaces), whereby
the implementation of a component defines its functionality
and internal structure. Furthermore, AADL allows specifying
properties for each type of software, hardware, and hybrid
component. For software components, such properties may
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be the dispatch protocol used or the period of some executed
thread. Hardware components might benefit from timing
requirements or bus bandwidth and processor frequency. These
properties enable more realistic modelling of components.

3.1. Modelling Basics

Modelling in AADL is either done graphically or textually.
The graphical part of the language gives a better overview of
the system model. Each architecture type (software, hardware
and composite) is a subelement of the system implementa-
tion and modelled with a case-insensitive generic syntax. Each
architecture type contains several component types: Process,
Thread, Thread group, Subprogram Data (software), Proces-
sor, Bus, Memory, Device (hardware) and Composite (compos-
ite). AADL also supports importing external previously created
packages (e.g., libraries, source files) with public and private
namespaces.

3.2. Component Modelling in AADL

The software components allow modelling processes,
threads, data, and subprograms. Equally to processes within
any operating system, processes in AADL represent executable
application instances assumed to run on a processor. Threads
are always a part of a process and communicate with features
and connections. Features provide a common communication
link with ports as interfaces that trigger events or represent con-
stant data communication. Furthermore, features may also use
component access, subprogram calls, and parameter interfaces
(connectors) instead of ports to enable communication between
components. Connections provide a common communication
construct that defines one communication interface’s mapping
to another communication interface (one feature to another fea-
ture, for example). AADL also offers other features such as data
types definition or component modes; For more information,
the interested reader is referred to Feiler et al. [13].

To model the hardware components, AADL specifies four
distinct types: processors, buses, memories and devices. Each
component has a device and a bus type identifier. The first one
represents an Input/Output (I/O) of a component. The latter en-
ables a component to act as a hardware bus and establish com-
munication between all connected hardware components.

The actual binding between the hardware and software archi-
tecture happens with binding properties. Each property maps a
software component to the hardware architecture and specifi-
cally assigned usable resources. For this purpose, three types
of binding properties exist, namely processor binding, memory
binding, and connection binding.

To cover components that are not pure software or hardware
related at the time of definition and may even be composed of
several subsystem models, AADL allows the modelling of com-
posite components. These hybrid constructs make the model of
a system more identical to the concrete system. The main bene-
fit of these components is that they combine software and hard-
ware components to guarantee a flexible modelling process for
software/hardware architecture interactions.

4. Methodology

As a methodological frame, this paper uses a design and cre-
ation research strategy that mainly focuses on developing new
artefacts for creating new knowledge [27]. Such artefacts in-
clude constructs, models, methods and instantiations [6]. The
focus lies either on the artefact itself (e.g., the IT application
incorporates a new theory), the artefact as a vehicle to create
new knowledge (e.g., the IT application in use), or on the pro-
cess to build an artefact to create knowledge [19].

In this context, our research focuses on the creation process
of an artefact (i.e., an OPC UA/DDS gateway) with AADL as
the model language. The aim is to create knowledge about the
suitability of AADL for industrial automation and specifically
for reducing development efforts. Partly following the UML
systems development methodology [29], the OPC UA/DDS
gateway specification provided the foundation of the modelling
process. As a modelling environment, the Open Source AADL
Tool (OSATE) [5], and for code generation, the Ocarina tool
suite [35] were used.

The evaluation criteria are the accuracy of the modelled gate-
way compared to the specification and the accomplished func-
tionality. As a framework for this assessment, the gateway spec-
ification [28] stipulates conformance points to judge the quality
of implementation. Moreover, by creating and testing different
gateway instances, the configuration and deployment abilities
of AADL are assessed.

5. Modelling an OPC UA / DDS Gateway

As indicated beforehand, modelling an OPC UA/DDS mid-
dleware gateway, specified by the Object Management Group
(OMG) [28], builds the base for evaluating the suitability of
AADL for ITIoT. Middleware gateways represent a form of gate-
ways that deal with complex mappings between advanced mid-
dleware systems essential in modern CPS and are, therefore, a
suitable evaluation artefact. Moreover, such gateways can oper-
ate on different target systems (e.g., server, fog node) and dif-
ferent positions in the network. In fog computing environments,
gateways are dynamically reconfigured and deployed [11].

5.1. OPC UA/DDS Gateway

In 2018, the OMG published a specification on bridging
OPC UA and DDS in a standardised, interoperable, vendor-
independent, and configurable way [28]. OPC UA is an object-
oriented client/server-based information exchange standard for
industrial automation systems that supports various IP-based
networking technologies [26]. The request-response message
pattern allows clients to access a server’s services for ma-
nipulating Nodes by addressing their unique Nodeld. DDS
is a fourth-generation middleware that relies on the pub-
lish/subscribe communication model. With its data-centric ap-
proach, DDS transports data with high performance and consis-
tency via a global data space accessible by all strictly decoupled
subscribers and publishers [1].
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The OPC UA/DDS gateway specification defines two sepa-
rate bridges that connect the OPC UA and the DDS domain but
operate unidirectionally based on the intended information con-
trol flow. In one direction, DDS applications can communicate
with different OPC UA servers, navigate through their address
space, manipulate the connected nodes and data. Complemen-
tarily, the second bridge allows OPC UA client applications to
participate in the global data space of the DDS system as a
publisher or a subscriber. The following subsections describe
the modelling in AADL of the main gateway components. The
complete model is available in a Git repository [12].

5.2. General Structure of the AADL System Model

Figure 1 presents an overview of the general structure of the
OPC UA/DDS gateway as an AADL system model. The model
consists of an array of multiple OPC UA to DDS and DDS to
OPC UA bridges to create a bi-directional gateway. The advan-
tage of multiple bridges lies in configuring each bridge indi-
vidually (i.e., to enable separate communication) and improv-
ing the overall performance and latency (i.e., processing many
requests and responses simultaneously). Moreover, the system
model includes several other AADL models representing rele-
vant components of the OPC UA and DDS middlewares. For
OPC UA, there is a need for modelling OPC UA clients and
servers and several datatype specifications. The specifications
are distributed over several AADL files and categorised by
OPC UA Service Set assignments. For DDS, the model incor-
porates general DDS datatypes specifications and the AADL
model for DDS applications.

[ Gateway.impl*

N
opcua_input (op(uajnput dds_output dds_output
> >

» »
dds_input opcua_output
J

N
ddsopcuabridge[]*
opcua_input dds,outpuL
>
dds_input

opcuaddsbridge[]*

opcua_output
J
" v

dds_input opcua_output

Fig. 1. General AADL model structure of the OPC UA/DDS gateway

5.3. OPC UA to DDS Bridge

The OPC UA to DDS bridge establishes the communica-
tion between participants of the DDS domain on one side and
OPC UA servers on the other side. DDS applications can access
(read, write, modify) and receive notifications on resources pro-
vided through the address space of an OPC UA server. A DDS
application sends a request to the bridge’s DDS endpoint, and
the bridge forwards the request to the integrated OPC UA client,
which in turn sends it to the requested OPC UA server. The
DDS application would receive an answer from the OPC UA
server if the request was successful. In principle, the integrated
DDS endpoints act as an interface for DomainParticipants of

DDS to publish and subscribe to topics and receive notifica-
tions on these topics. The OPC UA clients operate in the same
way for the OPC UA servers on the other side. For both sides,
the bridge is a standard participant in the corresponding DDS
or OPC UA environment. To efficiently and correctly handle in-
coming requests and responses, the OPC UA to DDS gateway
specification defines three types of mappings (OPC UA to DDS
Type System, OPC UA to DDS Service Sets, and OPC UA to
DDS Subscription) for all kind of interactions and communica-
tion. In AADL, those mappings were generically implemented
as DDS domain participants that specify DDS data types as
I/Os and OPC UA clients with OPC UA datatypes as I/Os. The
OPC UA/DDS gateway specification also defines a configura-
tion interface for these mappings so that any types of mappings
can directly be adapted and configured to the immediate re-
quirements of the user.

5.4. DDS to OPC UA Bridge

The second bridge provides the opposite communication di-
rection from OPC UA to DDS. An OPC UA client application
sends a request to the bridge’s internal OPC UA server that for-
wards the request to the integrated DDS endpoint, which in turn
sends it to the appropriate DDS application. If the request is
successful, the OPC UA client application receives a response
from the DDS application. The OPC UA server acts as an inter-
face for the OPC UA clients of the OPC UA domain and repli-
cates the DDS global data space using the nodes and references
of its address space. OPC UA client applications may either use
the View Service, the Subscription and Monitoredltems Ser-
vice, or the Attribute Service Set to publish and subscribe to
topics like any other ordinary DDS application.

For the DDS to OPC UA bridge, it is required to implement
the DDS to OPC UA type system mappings and a precise infor-
mation model that correctly represents the global data space of
the DDS system within an address space of an OPC UA server.
In the AADL model, the same approach was applied in the first
bridge, including the potential for adaption and configuration.
The OPC UA information model used the additional OPC UA
AADL components.

5.5. Addressing Configuration and Code Generation

A benefit of an MDE approach is the possibility to create dif-
ferent implementations on the fly. The AADL model represents
a framework that allows adding or removing new mappings and
further information for more specific models. To address the
stated intention to use AADL for reducing the development ef-
fort, the process as depicted in Figure 2 was implemented to in-
stantiate gateways running on standard office computers. In the
first step, a parser transforms the generic gateway model into
a specific instance of a gateway where an XSD configuration
file provides the required information. In this stage, the Oca-
rina tool suite can generate source code either in C or Ada. As
stated before, the generated code is not specific to one platform.
For the next step to create a gateway application, further "hard-
coded” information is required, such as configuration informa-
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Fig. 2. Gateway generation process

tion (e.g., server addresses, subscription topics). An XML file
provides the configuration part concerned regarding the gate-
way environment, such as the network or the connected nodes.
Additionally, it is necessary to specify internal data types that
depend on the XML configuration. For this reason, the XSD file
needs to be transformed into C/Ada to address this issue. The
last step compiles the code into a gateway application.

6. Discussion

As mentioned beforehand, this research aims to assess the
capabilities and suitability of AADL for IIoT and CPS. The ex-
periences and obtained results made while implementing the
OPC UA/DDS gateway indicate that AADL possesses the ca-
pabilities to model complex software artefacts. As a basis for
this statement, the created AADL gateway model was com-
pared with the conformance points specified by OMG.

In essence, there are four (two for each bridge) conformance
points to assess the implementation quality and accuracy of
the gateway. One pair provides basic and complete compliance
requirements for the corresponding bridge. Fulfilling all con-
formance points symbolises a high accuracy comparing to the
specification. For basic compliance, the first pair (OPC UA to
DDS bridge) requires the implementation of the System and
Service Set mappings, while for complete compliance, the full
adherence to the Subscription Model is mandatory. For the sec-
ond DDS to OPC UA bridge, basic compliance requires the
DDS Type System and the DDS Global Data Space Mapping.
Complete compliance adds a sub-clause demanding the reading
of historical data from instance nodes.

Both modelled bridges fully comply with all conformance
points, including the sub-clauses. Moreover, the model outper-
forms as it provides additional AADL packages such as a stan-

dalone OPC UA Client, the OPC UA View, Query and Method
Service Sets, and OPC UA Attributes. This finding mirrors ex-
periences made by other researchers that used AADL for mod-
elling embedded systems in the avionics domain [38, 40] or
when used to model a fog computing platform [4]. Problems to
model software layers as described by Delanote et al. [7] could
not be identified. However, implementing the OMG specified
hybrid data types is challenging as required information is only
available during the compilation of the final instance.

A second step assessed the capabilities of AADL to gener-
ate executable code and specific gateway instances based on the
presented process in Figure 2. However, due to an internal er-
ror in the Ocarina toolchain, it was impossible to compile the
complex data type mappings. The problem occurs during the
transformation of the AADL code to C programming language,
a problem other authors did not experience [21]. Until the final
publication of this paper, it was not possible to identify the is-
sue in Ocarina, and it was necessary to continue the trials with
a reduced gateway model with fixed mappings. In further stud-
ies, the aim is to try other tools as described by Wehrmeister et
al. [37] to assess the code generation capabilities of AADL.

In addition to the problems described, the process for creat-
ing specific gateway instances led to consistent results with the
reduced gateway model comparable with results obtained by
[39]. An adjusted instance of the generated gateway provided
the foundation for a study to assess the gateway’s capacities to
transport automation data from OT to an IT environment [9].
Another issue in the proposed process is the use of XSD and
XML files. Due to the complexity of the internal gateway map-
pings and parameters, the XSD and XML files require consid-
erable formulation effort. This particular finding initiated the
development of an external configurator to ease the creation
process for the configuration files. The configurator and the
gateway instance are part of a study presented recently [10].
Since the toolchain currently generates C-code without specific
platform considerations, the suitability of AADL for platform-
specific code cannot be conclusively assessed.

In summary, results indicate that the model language AADL
provides capabilities to model complex software artefacts and
specific gateway models. Conclusively answering the suitabil-
ity of AADL for code generation and platform-specific deploy-
ment in [IoT environments is not reasonable and requires fur-
ther research.

7. Conclusion

The paper explores the feasibility of using the modelling lan-
guage AADL for IIoT and CPS applications by modelling an
OPC UA/DDS gateway. It was possible to model the complex
gateway in AADL with full compliance to the specification,
yet the code generation for gateway instances was unsuccess-
ful. The results indicate the suitability of AADL and contribute
to the MDE body of knowledge applied in IIoT. Further studies
need to address the code generation with AADL to continue the
assessment and investigate other code generation tools specifi-
cally suitable for resource-constraint devices.
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