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ABSTRACT
Microservices Architectures (MSAs) are continuously replacing
monolithic systems toward achieving more flexible and maintain-
able service-oriented software systems. However, the shift toward
an MSA also requires a technological and managerial shift for its
adopters. Architecting and managing MSAs represent unique chal-
lenges, including microservices’ identification, interoperability, and
reuse. To handle these challenges, we propose an Ontology-driven
Conceptual Modelling approach, based on the Ontology of Mi-
croservices Architecture Concepts (OMSAC), for modelling and
analyzing microservices-based systems. We show, how OMSAC-
based conceptual models, stocked in a Stardog triple store, support
Stakeholder-specific communication, documentation, and reuse.
This paper reports on the application of our approach in three
open-source MSA systems with a focus on microservices’ discovery
based on similarity metrics. Eventually, we compare the extracted
similarity metrics derived from the application of machine learning
techniques to the OMSAC models with a manual analysis performed
by experts.
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1 INTRODUCTION
Microservices Architecture (MSA) is a recent architectural style,
considered as a Cloud-native architecture [7] that has met signifi-
cant success in the industry and a growing interest in academia [8,
10]. MSAs handle complexity by decomposing large systems and
by bringing modularity “to the next level,” [10] facilitating com-
ponents’ reuse [7, 28]. Indeed, architecting MSA-based systems
means the adoption of a compositional design approach. Thus, the
resulting architecture is a set of microservices composed to meet
business requirements.
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This compositional approach encourages reuse which facilitates
systems development. Designers composing a microservices based
system should be able to identify existing reusable microservices
that could be used as-is or extended to compose new systems,
leading to faster systems development [3, 4] and increased quality.
Thus, identifying similar microservices is a prerequisite to enable
microservices reuse.

MSA changes the technology stack impacting the design, de-
velopment, deployment, and operation tasks. In the design phase,
architects should be aware of the system’s functional, technological,
operational, and organizational aspects. For instance, some compo-
nents can be developed and operated by different teams, coded in
different languages and use different platform-provided services.
Consequently, the question of how to efficiently model and analyze
knowledge about MSA-based systems arises.

We believe that an ontological approach could address the stressed
challenges, and, consequently, present an Ontology-driven Concep-
tual Modelling approach based on the Ontology of Microservices
Architecture Concepts (OMSAC) [25] to describe MSAs in a holistic
form. Our approach aims to support MSA-based systems modelling
and improve automated analysis of large MSAs by providing a tai-
lored domain ontology. Our approach’s fundamental characteristics
are flexibility and extension. It allows representing MSA systems
holistically or decomposed into individual viewpoints that meet
different stakeholders’ specific information needs. All views can be
derived from the single underlying OMSAC ontology, represented
with the Web Ontology Language (OWL2 DL) [40]. Eventually, the
OMSAC ontology can be automatically processed e.g. to efficiently
identify similar microservices in large knowledge bases.

We evaluate our approach’s feasibility in the form of a use case,
using three open-source MSA systems to discover microservices
based on similarity metrics. The resulting similarities are expressed
as a synthetic metric that allows modellers to rely on it when
analyzing microservices interchange or replacement. Ultimately,
we compare the extracted similarity metrics derived from applying
machine learning techniques to the OMSAC models with a manual
analysis performed by experts. The evaluation material can be
found on this paper’s companion source code repository [26].

The remainder of this paper is structured as follows: Section 2
briefly introduces the relevant background before we introduce our
new approach in Section 3. Section 4 presents the use case based
evaluation. In Section 5 we discuss the findings before we close
with a conclusion and future work directions in Section 6.
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2 BACKGROUND
In the following, we briefly introduce the foundations of microser-
vice architectures (Section 2.1), conceptual modelling and ontology-
driven conceptual modelling (Section 2.2), and provide a concise
review of related works (Sections 2.3 and 2.4).

2.1 Microservices Architecture
Microservices are small, autonomous services that work together
and are “focused on doing one thing well” [28]. They are the compo-
nents that form a microservice architecture, which is “a distributed
application where all modules are microservices” [10]. The most
recurrent Microservice properties in the literature are: Indepen-
dency (share nothing), modularity, organization around a specific
functionality, and single responsibility.

The inherent complexity of distributed architectures establishes
a major challenge faced by industry when architecting and main-
taining MSAs [8, 10]. Shared persistence, monitoring, exchange
mechanisms, security and modularization challenges seem to be ex-
acerbated in microservices-based architectures. Likewise, defining
the appropriate size and number of microservices, correctly bound
business contexts, manage polyglotness, and adequate skill and ex-
pertise make up challenges directly related to MSA principles [19].

2.2 Ontology-driven Conceptual Modelling
Ontologies in systems engineering are “an explicit specification
of conceptualization” [36]. In software engineering, they are mod-
els used to represent and codify a subject of matter. Those mod-
els are descriptive and normative; they aim to formalize domains
into knowledge structures by generically describing relevant con-
cepts, properties, and relationships. They include a vocabulary of
related terms and their significance, allowing the structure to ease
knowledge sharing [36]. Also, they can be used to support other
AI technologies [39], which on the other hand, can extend ontolo-
gies’ capabilities [9]. Concretely, the knowledge representation is
based on named graphs which are data models for objects and their
relationships. In these graphs, objects are represented as nodes,
object relationships as edges, and knowledge is organized through
subject-predicate-object statements [2]. Compared to other knowl-
edge structures like relational databases, an ontology allows high
expressiveness and reasoning capabilities.

Conceptual modelling “focuses on communication, learning and
problem solving among human users” [38]. Using ontologies ex-
tends this notion to machine understanding, as ontologies are un-
derstandable by humans and machines [36]. Applying ontologies
in conceptual modelling thus enables several benefits, such as a
formal specification of the semantics [5], bringing reasoning on the
content of a conceptual model, improving domain-specific knowl-
edge reuse, and enhancing the domain’s structural and behavioural
description [13, 38].

Guizzardi et al. [18] define Ontology-driven Conceptual Mod-
elling (ODCM) as a discipline that applies ontological theories to
develop engineering artifacts “for improving the theory and prac-
tice of conceptual modelling.” Indeed, ontologies (e.g. foundational
and domain ontologies) have also been used to improve semantic
integration to facilitate the interoperability of models, methods,
languages, and paradigms [37]. ODCM is also suitable for handling

complexity in modelling large systems and describing complicated
domain aspects. Likewise, ODCM improves reusability, reliability,
and domain understanding [38]

2.3 Modelling Microservices
We believe modelling has great potential to address some of the
challenges stressed at the outset. However, there is a “lack of con-
ceptual models able to support engineers since the early phases of
MSA development” [22], and a lack of “a uniform way to model au-
tonomous and heterogeneous microservices at a level of abstraction
that allows easy interconnection through dynamic relation” [22].

Various approaches to represent microservices architectures
have been proposed: Informal drawings [1], UML based diagrams [20],
Domain-specific Languages (DSL) [6], directed graphs [1], program-
ming languages [17], and modelling languages [30]. However, mod-
elling microservice-based systems using these approaches does not
address common challenges in software modelling like the analy-
sis and exploration of multiple viewpoints [34] and modelling in
different granularity levels [29], because in these approaches, each
viewpoint remains a separate model. Thus, the modelled viewpoints
are, if at all, analyzed and explored separately.

2.4 Measuring Microservices’ Similarity
Calculating similarity is paramount to address challenges like reuse,
interoperability, and interchangeability. However, establishing sim-
ilarity metrics in MSA is a challenge on its own because of the
variety of criteria that could be considered.

While the importance of identifying similarities in MSA seems
intuitive, existing works on microservices’ similarity are limited.
Some of them had mentioned similarity metrics used when decom-
posing a monolithic application into microservices [11]. Others
had investigated mechanisms to identify [23] and establish vari-
ability [4] among microservices for reuse purposes. Microservices
identification and variability remain as open research challenges [3].
Benni et al. [4] proposed a set of four factors to establish whether
a microservice is interchangeable: sharing feature sets, interaction
compatibility, communication compatibility, and no coevolution.

On the other hand, several similarity measurement approaches
have been proposed to enhance services’ reuse in web services archi-
tectures, which are compositional architectures. These approaches
mainly use the structure of web services (extracted from the source
code based on programming language standards or derived from
functional descriptions), semantic analysis, and a combination of
the two. They rely on web services functional descriptions formal-
ized using the Web Service Description Language (WSDL) and its
extensions [15]. However, these approaches have limitations inher-
ent to the quality and form of the descriptions using WSDL [31].
Ontological approaches have been suggested to address those lim-
itations [21, 33]. Despite the fact that ontologies perform better
when identifying similarities [31], these benefits remain marginal
because of the costs imposed and the ontological expertise required
when implementing them [15, 33].

Consequently, extending similarity approaches from the web ser-
vice context without an existing ontology to microservices would be
challenging. Firstly, the absence of a standard language to describe
microservices concomitantly with the diversity of programming
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Figure 1: Excerpt of the OMSAC’s ontology (derived from [25])

languages used to code them are barriers to establish similarity
using structural approaches. Lastly, establishing similarity in the
microservices domain calls for using multiple viewpoints and as-
pects other than functional; thus, using ontological approaches
“will be more reliable” than the lexical dictionaries used in common
web services similarity approaches [14].

The holistic representation of the MSAs proposed in this arti-
cle could provide modellers with the necessary tools to describe
microservices and handle MSA modelling and similarity metrics
challenges, allowing comparison of microservices based both on
their structure and semantics.

3 THE ONTOLOGY OF MICROSERVICE
ARCHITECTURE CONCEPTS – OMSAC

OMSAC [25] is a domain ontology focusing the microservices archi-
tecture domain, formalized in OWL2 DL. OMSAC aims to support
modelling, exploring, understanding, sharing knowledge and using
MSA concepts to build MSA-based systems. It enables: representing
MSA (anti-)patterns; cognifying MSA’s supporting tools to improve
designer understanding of MSA’s principles; describing and stock-
ing models to manage MSAs; building machine learning models for
MSAs’ classification and analysis.

During MSA-based systems design, OMSAC allows modellers to
represent various conceptual aspects of these systems used in de-
velopment life cycle tasks. Our approach has explored this OMSAC
capability by applying a subset of its terminological component
(TBox), covering the concepts needed to model an MSA system.
Fig. 1 offers a UML view of an OMSAC ontology’s excerpt to support
the comprehension of the subsequent use case. For a detailed de-
scription of OMSAC’s TBox, see [25]. Once the system is modelled,
the created assertion component (ABox) can be explored using a
triple-compliant query language and an inference engine.

4 USE CASE
In this section, we show how OMSAC can be applied to model
(Section 4.2) and analyze (Sections 4.3 and 4.4) MSA-based sys-
tems. We have modelled three MSA-based systems using OMSAC
concepts presented in Fig.1. These three systems are Hipster Shop,
eShopOnContainers, and Vert.x. They contain between seven and ten
microservices developed in different programming languages (C#,
Go, Java, Javascript, Python), implementing a set of (common and
shared) features, and deployed in containers – for more details on
these systems please see [3]. We have chosen these systems because
of their technological variety and the number of shared functional-
ities they implement. Using these systems allowed us to analyze
them by applying different techniques and measurements, identify
similarities between them, and discover potentially interchangeable
microservices based on functional and technical aspects.

4.1 Preparatory Steps
We have primarily relied on the results from Benni et al. [4] and
Mendonça et al. [23] to represent the three selected systems using
OMSAC. Those works have analyzed the three systems in-depth to
extract all functional aspects and some technical aspects from the
microservices composing them. Despite the detailed information
provided by these works, we have identified a lack of operational
aspects while modelling these three systems with OMSAC.

Consequently, we have explored the files related to these sys-
tems’ deployment processes from their source code repositories and
extract the deployment dependencies and the platform-provided
services they use. We have analyzed mainly the Dockerfiles, which
allowed us to expose deployment dependencies among microser-
vices and services sharing. The latter has exhibited dependencies
that the previous works did not analyze and unveiled deployment
aspects that should be considered when analyzing microservices
for interoperability or reuse. Table 1 provides a sample of the data
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Table 1: A sample of the Basket Microservice’s analyzed data

Features Interactions Coevolution Services Communication
Create Cart
Get Cart
Add item
Update cart
Checkout Cart

Catalog Microservice
Ordering Microservice
Identity Microservice

Catalog Microservice
Ordering Microservice Cache Redis gRPC

extracted for the Basket Microservice, one of the microservices
composing the “eShopOnContainers” system.

We relied on Protégé [27] version 5, an open-source ontology
editor, to model the systems and build the ABox, and on Stardog [35]
version 7.5.1 (under academic licensing) and Docker version 20.10.5
to create the knowledge base by uploading the OMSAC’s TBox
and the ABox containing our models. The created knowledge base
would then be ready to be explored in an environment supporting
triple-queries and inferences; for this purpose, we relied on the
Startdog Studio tool to build and run SPARQL [41] queries. Stardog
offers machine learning capabilities, which we used for computing
similarity metrics.

4.2 Modelling MSA-based Systems with
OMSAC

Once we collected and analyzed the data, we mapped the identified
concepts to the respective classes and relations in OMSAC’s TBox,
presented in Fig 1. Then, we modelled the systems by creating
individuals and linking them following the identified concepts and
unveiled relations from the analysis step. The outcome is an ABox
containing the three systems modelled using OMSAC’s TBox and
the OWL2 language. Fig. 2 shows the OMSAC-based conceptual
model of the Basket Microservice in a UML fashion while Listing 1
shows this model in OWL2.
@prefix omsac :
< h t t p : / /www. semant icweb . org / o n t o l o g y O f M i c r o s e r v i c e s A r c h i t e c t u r e # > .
@prefix msa :
< h t t p : / /www. semant icweb . org / WebBasedMicroserv i cesMode l s # > .
{ msa : B a s k e t M i c r o s e r v i c e a omsac : M i c r o s e r v i c e ;

omsac : c o n s t i t u t e s msa : eShopOnConta iners ;
omsac : dep loyab leOn msa : AKS ;
omsac : implements msa : CheckoutCart , msa : C r e a t e C a r t ,

msa : GetCart , msa : UpdateCar t ;
omsac : coded In msa : CSharp ;
omsac : i n t e r a c t s W i t h msa : C a t a l o g M i c r o s e r v i c e ,

msa : O r d e r i n g M i c r o s e r v i c e s ,
msa : I d e n t i t y M i c r o s e r v i c e ;

omsac : e x p l o i t s msa : RedisCacheEShop ;
omsac : exposedBy msa : APIGatewayShoppingMobile ,

msa : APIGatewayShoppingWeb ,
msa : Shopp ingAggregatorMobi l e ,
msa : ShoppingAggregatorWeb ;

omsac : dependsOn msa : C a t a l o g M i c r o s e r v i c e ,
msa : O r d e r i n g M i c r o s e r v i c e s ;

omsac : communicatesThrough msa : gRPC ;
omsac : hasName " B a s k e t ␣ M i c r o s e r v i c e "@en . }

Listing 1: OWL2 specificaiton of the Basket Microservice in
OMSAC

4.3 Analyzing MSA-based Systems modelled
with OMSAC

We have relied on the following competency questions (CQ) listed
in Table 2 to explore and analyze the modelled systems - an ap-
proach widely adopted in ODCM (cf. [12, 16, 38]). Here, we present

the analysis of the eShopOnContainers system and its Basket Mi-
croservice. These CQ are answered by SPARQL queries, which
extract sub-graphs from the knowledge base. As various criteria
can be used in these queries, this mechanism allows extracting dif-
ferent information to meet different stakeholders’ needs. Also, we
relied on these sub-graphs to measure similarities among the Basket
Microservices and other microservices from all three systems.

Results for CQ1 to CQ5 are sub-graphs that focus on the sys-
tem’s functional aspects; thus, representing functional models. Fig. 3
shows the CQ3 sub-graph which can meet system analysts’ needs.
CQ6 and CQ7 focus on technical aspects; thus, the sub-graphs ex-
tracted represent technological models that could address operators’
and integrators’ needs. Finally, for CQ8 and CQ9, the extracted sub-
graphs contain multiple microservices’ aspects, addressing multiple
needs. Table 2 shows the OMSAC’s classes and relations used for
each query; complete queries are available on this article source
code companion [26].

4.4 Measuring Similarity
To explore the knowledge base for identifying similar microservices,
we relied on three different approaches: Stardog’s ML similarity
model, EdgeSim [24], and manual analysis by an expert. Below, we
introduce the three methods, their execution results are discussed
in Section 5.

4.4.1 Using Stardog. The similarity model proposed by Stardog is
an ensemble model based on three different approaches: Syntactic,
semantic, and structural. Syntactic similarity is measured on the
labels’ characters by applying e.g. “edit distance, fuzzy string match-
ing or trigram cosine similarity”. Semantic similarity is measured on
the meaning of the labels by exploiting “a manually curated lexical
database (e.g. WordNet) or a separately trained word embedding
model”. Structural similarity is measured through the schema’s
structure, which detects “relationships having the same source and
target types” [32].

INSERT { graph spa : model { : simModel a spa : SimilarityModel ;
spa : p r e d i c t ? m i c r o s e r v i c e ;
spa : arguments ( ? f e a t u r e s ? p r o t o c o l s

? i n t e r a c t i o n s ? c o e v o l u t i o n s ) . } }
WHERE { SELECT ( spa : se t ( ? f ) as ? f e a t u r e s )

( spa : se t ( ? p ) as ? p r o t o c o l s )
( spa : se t ( ? i ) as ? i n t e r a c t i o n s )
( spa : se t ( ? c ) as ? c o e v o l u t i o n s )
? m i c r o s e r v i c e

{ ? m i c r o s e r v i c e omsac : implements ? f .
OPTIONAL { ? m i c r o s e r v i c e omsac : i n t e r a c t s W i t h ? i . }
OPTIONAL { ? m i c r o s e r v i c e omsac : dependsOn ? c . } }
OPTIONAL { ? m i c r o s e r v i c e omsac : communicates ?p . }

GROUP BY ? m i c r o s e r v i c e }

Listing 2: Creation of a Stardog similarity model using crite-
ria proposed in [4]
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Figure 2: OMSAC model of the Basket Microservice

Table 2: Use of OMSAC elements to respond to the Competency Questions

Competency Questions OMSAC Classes OMSAC Relations

CQ1 - Which microservices compose a system? MicroserviceArchitecture
Microservice isComposedOf

CQ2 - Which features are implemented by a
microservice?

Microservice
Functionality implements

CQ3 - Which MSA requirements are met by a
microservice?

Functionality
Requirement
Microservice

implements
respondsTo

CQ4 - Which features are related to a given feature? Functionality interactsWith, dependsOn
CQ5 - What is the shortest path between two
features?

Functionality
Microservice all

CQ6 - Which are the technical dependencies
of a microservice?

Microservice
Technology

exploits, exposedBy
communicatesThrough

CQ7 - Where is a microservice deployed? Microservice
Infrastructure deployedOn

CQ8 - Which interconnections exist between microservices? Microservice interactsWith, dependsOn

CQ9 - Which microservices are similar?
Microservice
Functionality
Technology

implements, interactsWith
communicatesThrough
dependsOn, codedIn

We have created three different models: Based on the criteria
from Benni et al. [4], based on functional attributes, and based
on technological attributes. These models have been created by
executing SPARQL “insert” queries where we declared the features
and the prediction variables, and provided a graph extracted from
the knowledge base, which is used as training data. Listing 2 shows
the SPARQL query for the first model.

4.4.2 Using EdgeSim. The EdgeSim metric was proposed by Mitchell
et al. [24] to calculate similarity among graphs, taking into account
the internal and external edges between entities, which can be
weighted. This metric has been used to calculate the similarity
between two clusters in software decomposition approaches. The
general formula of the EdgeSim metric is:

𝐸𝑑𝑔𝑒𝑆𝑖𝑚(𝐴, 𝐵) = 𝑌

𝐸
(1)
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msa:BasketMicroservice

msa:CheckoutCart
omsac:implements

msa:CreateCartomsac:implements

msa:GetCart

omsac:implements

msa:UpdateCart

omsac:implements

msa:ShoppingCartManagement

omsac:respondsTo

omsac:respondsTo

omsac:respondsTo

omsac:respondsTo

Figure 3: Basket Microservice Functional Model

Where A, B are graphs, Y is the sum of the edges’ weights that are
of the same type in both graphs (inter and intra-edges), and E is
the sum of the weight of all edges in the graph, when all edges
have the same weight, we set it to 1. EgdeSim works with clusters
having the same edge numbers. In our case, there may be differences
in the number of relations each microservice has. Thus, here, we
considered only the number of relations of the Basket Microservices
to the computation of E, and gave each relation the same weight.
Then we have implemented it using SPARQL queries. Listing 3
shows the request used to calculate the sum of Y, for the complete
version of this implementation see [26].

SELECT ? m i c r o s e r v i c e
? s i m i l a r M i c r o s e r v i c e
( ( ? y F e a t u r e +? y I n t e r a c t s +? y P r o t o c o l +? yDependsOn ) as ?Y )

{ SELECT ? s i m i l a r M i c r o s e r v i c e
( count ( d i s t i n c t ? f e a t u r e ) as ? y F e a t u r e )
( count ( d i s t i n c t ? i n t e r a c t i o n ) as ? y I n t e r a c t s )
( count ( d i s t i n c t ? p r o t o c o l ) as ? y P r o t o c o l )
( count ( d i s t i n c t ? d e p e n d e n c i e s ) as ? yDependsOn )
WHERE { VALUES ? m i c r o s e r v i c e { msa : B a s k e t M i c r o s e r v i c e }
? f e a t u r e ^omsac : implements ? m i c r o s e r v i c e , ? s i m i l a r M i c r o s e r v i c e .
OPTIONAL { ? m i c r o s e r v i c e omsac : dependsOn ? a n o t h e r M i c r o s e r v i c e .

? a n o t h e r M i c r o s e r v i c e omsac : implements ? d e p e n d e n c i e s .
? s i m i l a r M i c r o s e r v i c e omsac : dependsOn ? a n o t h e r M i c r o s e r v i c e 2 .
? a n o t h e r M i c r o s e r v i c e 2 omsac : implements ? d e p e n d e n c i e s . }

OPTIONAL { ? m i c r o s e r v i c e omsac : i n t e r a c t s W i t h ? o t h e r M i c r o s e r v i c e .
? o t h e r M i c r o s e r v i c e omsac : implements ? i n t e r a c t i o n .
? s i m i l a r M i c r o s e r v i c e omsac : i n t e r a c t s W i t h ? o t h e r M i c r o s e r v i c e 2 .
? o t h e r M i c r o s e r v i c e 2 omsac : implements ? i n t e r a c t i o n . }

OPTIONAL { ? p r o t o c o l ^omsac : communicates
? m i c r o s e r v i c e , ? s i m i l a r M i c r o s e r v i c e . }

} GROUP BY ? s i m i l a r M i c r o s e r v i c e }

Listing 3: EdgeSim metric based on the criteria introduced
in [4]

4.4.3 Manual/Informal Approach. The manual-informal analysis
of these systems was done by a practitioner using the data from the
first step of our approach, which we cleaned to enhance understand-
ing. We have limited the analysis to the microservices implementing
the cart management functionality and limited the information pro-
vided to the features, interactions, coevolution, platform-provided
services, and communication technologies related to them.

5 EVALUATION
OMSAC-based models support information needs by allowing the
description of various aspects of microservices-based systems at
the same place. These models’ ontological nature makes them intel-
ligent, as we can make inferences on the knowledge they represent,
and accessible to machines and humans, as both can explore these
models. When describing MSAs using OMSAC, we create a unique

model containing all the relevant information, which means hav-
ing the functional, technological, operational and organizational
information into the same knowledge base, which can be queried
to respond to specific information needs. As shown above, we can
extract different sub-graphs from the knowledge base to meet differ-
ent stakeholders’ needs. It addressed challenges in the analysis and
exploration of multi-viewpoints and modelling in different granu-
larity levels [29] because, in OMSAC-based models, all viewpoints
are derived from one single model, which allows analyzing and
exploring them at once.

We can use the OMSAC-based models as input to measure simi-
larity metrics. This measure can be computed based on the extracted
sub-graphs. As shown in the previous section, we can apply differ-
ent metrics to the same data. Further, the similarity identification
can also facilitate from the application of machine learning tech-
niques as such techniques extend the similarity computation to
hidden relations and consider models’ semantics and structure.

5.1 Comparison of similarity identification
approaches

To evaluate the different similarity approaches we defined a scenario
in which a similar microservice, suitable to replace the Basket Mi-
croservice of the eShopOnContainers system, needed to be identified
among all microservices of all three use case systems, composing
25 microservices. We applied Stardog, EdgeSim, and the manual
approach. With respect to the manual approach, we were further
interested in which aspects the expert considered the most and
the less relevant for the similarity identification. We translated the
relevance into weights to normalize the perceived similarity.

The expert analysis outcome is that the Shopping Cart Microser-
vice from the Vert.x system is the most similar one in terms of
features. However, technological differences are perceived as a bar-
rier to interchange them. Thus, Hipster Shop system’s Cart Service
seems to be more suitable to replace the Basket Microservice. Table 3
summarizes the results.

Table 3: Manual-informal expert’s similarity analysis

Microservice Basket Cart Shopping Cart
Functional 9/9 2/9 5/9
Technical 2/2 2/2 0/2
Expert Score 100,00% 61,11% 27,78%
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Table 4 shows the metrics obtained with each technique for the
Basket Microservice using the criteria proposed in Benni et al. [4].
The expert score served as a baseline to compare them. The results
show that the similarity obtained using Stardog’s machine learning
approach performs better than the EdgeSim metric and is close to
the expert’s.

Table 4: Comparison of the similarity metrics approaches.

Microservice Expert Stardog SM EdgeSim
Basket 100,00% 100,00% 100,00%
Cart 61,11% 56,57% 22,22%
Shopping Cart 27,78% 33,54% 27,78%

5.2 Discussion
Using a manual-informal approach based on expert analysis to
calculate similarity among microservices is time-consuming. Ex-
perts need to explore raw data gathered from different documents
as source code, models and architectural artifacts. Calculating the
EdgeSim metric, the semi-automatic approach needs an in-depth
knowledge of the different hidden relations between microservices
to build accurate queries which provide the input for similarity
calculation. These queries should include extensive relations con-
sidering both direct and hidden relations. Likewise, queries ignore
semantic aspects, as query projections will consider specific indi-
viduals in a relationship that limits similarity metrics’ accuracy.
Consequently, using only queries could lead to passing by common-
alities.

For instance, when querying the knowledge base using criteria
from Listing 2 but without the Stardog similarity model, the results
differed for interaction and coevolution. The projection considered
two individuals as strictly different even if they were close consid-
ering feature implementation and technology stack. Consequently,
we have changed the query to compare features implemented by
microservices sharing interaction and coevolution relationships.

Finally, the machine learning (ML) approach using Stardog Simi-
larity Model has had results close to the manual-informal approach.
It has performed similarity identification with short analysis time,
as we can focus on relevant relations, which eliminates the need
for in-depth knowledge of the knowledge base’s structure. Beyond,
the Stardog Similarity Model applied in our use case shows the
perspective of using semantic comparison, the distance between in-
dividuals, and the knowledge base’s structure to measure similarity.
Furthermore, the advantage of using ML techniques in this context
grows following the amount and the diversity of microservices in
the knowledge base.

This research of course also comes with limitations. The most
obvious one concerns the generalizability (external validity) of the
evaluation results. We successfully applied OMSAC to model and
analyze the three presented systems, while future research needs to
apply it to more MSAs. Moreover, the similarity metrics were calcu-
lated based on a rather narrow complexity with 25 microservices.
However, this was a purposeful decision as we wanted to involve
the manual approach by a human expert who would not be able to

manually comprehend and analyze larger models. We thus expect
that our approach is even more valuable when the complexity of
the MSA exceeds the cognitive abilities of humans.

6 CONCLUSION
This paper presented an ontology-driven conceptual modelling ap-
proach illustrated by a use case that demonstrated the relevance of
modelling MSA-based systems using a unified semantic description
language which allows discovery and comparison of microservices.
OMSAC-based models represent MSA systems holistically but en-
able efficient derivation of stakeholder-specific viewpoints that
meet specific information needs.

These models support the identification of existing microser-
vices and provided services, which could be reused as-is or in an
extended version and highlight technical and platform-driven con-
cerns, which are mandatory for efficient design. We showed, that
this approach features similarity metrics using various criteria,
which support microservices identification for reuse. Likewise, we
demonstrated that using machine learning techniques can simplify
the computation of such metrics.

Future work will focus on establishing the most suitable proper-
ties to be used in a machine learning model to classify components
of an MSA-based system and build variability metrics. We also plan
to develop a domain-specific language (DSL) to encapsulate OWL2
and SPARQL queries to enhance OMSAC implementation, provid-
ing a simplified vocabulary shaped for domain experts. Besides, we
plan to develop supporting tools and an intelligent model projection
mechanism based on OMSAC and machine learning techniques.
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