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Editorial Preface

Fenrong Liu Alessandra Marra Paul Portner
Frederik Van De Putte

* * *

This volume contains the proceedings of DEON2020/2021, the 15th Interna-
tional Conference on Deontic Logic and Normative Systems that was organized
by the Munich Center for Mathematical Philosophy at LMU Munich (Germany)
on 21st-24th July, 2021. The biennial DEON conferences are designed to pro-
mote interdisciplinary cooperation amongst scholars interested in linking the
formal-logical study of normative concepts, normative language and normative
systems with computer science, artificial intelligence, linguistics, philosophy,
organization theory, and law.

There have been fourteen preceding DEON conferences: Amsterdam 1991;
Oslo 1994; Sesimbra 1996; Bologna 1998; Toulouse 2000; London 2002; Madeira
2004; Utrecht 2006; Luxembourg 2008; Fiesole 2010; Bergen 2012; Ghent 2014;
Bayreuth 2016; and Utrecht 2018.

Special Focus of DEON2020/2021

In addition to the general themes of the DEON conferences, DEON2020/2021
had a special thematic focus on “Norms in Social Perspective”. While deon-
tic logic is still often approached as the logic of objective, agent-independent
notions of obligation, permission, and prohibition, there is a growing body of
literature on the role of groups, social interaction, and networks in our norma-
tive reasoning. The social perspective plays a role in our reasoning in at least
three different ways. First, it determines the ways norms are adopted and up-
dated. How individual and group agents relate to one another (e.g., via a social
network or as part of an institution) is a crucial factor that helps govern which
norms these agents endorse, and the way their norms change. Second, social
interaction is essential for the way normative language is used and interpreted:
deontic terms acquire meaning via social conventions; we use deontic terms to
communicate our ethical stances to one another and to convince each other of
the rationality of certain choices. Third, the social dimension is also essential
in the way we evaluate norms: often, obligations cannot be properly explained
in terms of a single normative code or one individual agent’s attitudes. Instead,
one needs to refer to the preferences, goals, and norms of several agents, and
to lift these to the group level in order to specify what ought to be done.



ii Editorial Preface

Contributed Papers and Keynote Speakers

The contributed papers collected in this volume respond both to the general
themes of DEON and to the special theme of DEON2020/2021. They cover
foundational issues on the formal study of normativity and its application to a
wide array of topics. These topics range from the fine-grained logical structure
of obligations and permissions, their relation with agency, and their role in
conditional constructions, to normative conflicts, the structure of normative
language in argumentation, and the analysis of normative concepts in legal
traditions as well as in Eastern and Western philosophies.

Our four keynote speakers were chosen with an eye on the special theme
and on their outstanding contributions to law, philosophy, logic, and computer
science: Marcia Baron (Indiana University, Bloomington), Emiliano Lorini
(Université Paul Sabatier, Toulouse), Shyam Nair (Arizona State University,
Tempe), and Sonja Smets (ILLC, University of Amsterdam). Titles and ab-
stracts of their keynote addresses are presented below.

Marcia Baron, Recklessness and Negligence in the Criminal Law
Abstract: Criminal law theorists debate whether negligence should suffice for
criminal liability. Put differently, should acting negligently ever be enough to
supply the mens rea, or culpability, component, required for criminal convic-
tion? Everyone agrees that recklessness should suffice, but there is disagreement
about negligence. The debate is marred by unclarity about just how negligence
differs from recklessness. It is not unusual to have the experience I recently
had when arguing that negligence should suffice: someone in the audience says,
“But that isn’t really negligence! That example you just gave is really an exam-
ple of recklessness.” The disagreement is surprising because the parties to the
debate all claim to be relying on the definitions of negligence and recklessness
in the Model Penal Code. However, the definitions are dense and the impli-
cations are not always obvious. In addition, some parts of the definitions are
often neglected by those offering summaries of what, according to the MPC,
the difference between negligence and recklessness is. In my presentation, af-
ter first explaining the mens rea requirement so as to provide the context for
the debate, I seek to shed light on what, according to the MPC definitions,
the difference between negligence and recklessness is. I then indicate some im-
plications for the controversy concerning whether negligence should suffice for
criminal liability.

Emiliano Lorini, Logics of Evaluation.
Abstract: We present a family of logics of evaluation which clarify the rela-
tionship between knowledge, values and preferences of multiple agents in an
interactive setting. Evaluation is a fundamental concept for understanding
how an ethical agent’s decision is affected by her values. We present complete
axiomatics for these logics as well as a dynamic extension by the concept of
value expansion. We show that value expansion indirectly affects the agents’
preferences by inducing a preference upgrade operation.
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Shyam Nair, Reasons-Based Theories of Obligation and Optimality.
Abstract: It is common in certain circumstances for philosophers and logi-
cians to conflate what is obligatory or required with what is optimal or ought
to be done. But it is a by now familiar thought that these notions should
be separated. Terms such as ‘must’ and ‘have to’ are most naturally used to
express obligations or requirements. Terms such as ‘ought’ and ‘should’ do
not express requirements. Instead they are used to express a kind of opti-
mality. Paul McNamara and other logicans have done much to improve our
understanding of these notions (as well as various other related notions) within
a broadly value- or preference-based deontic logic framework. But compara-
tively less work has been done exploring these issues in the broadly imperatival
or reasons-based deontic logic tradition. A notable exception is a recent paper
by Robert Mullins. This talk discusses various choice points and generalization
of Mullins’ framework. The aim is to highlight that there are many different
frameworks that deserve our attention and provide a preliminary assessment
of the costs and benefits of each.

Sonja Smets, The Logical Dynamics of Social Norms.
Abstract: The flow of information is what drives our information society of
interconnected agents capable of reasoning, communication, and learning. In
this context we are interested in the logical study of how information flows in
social networks by focusing on the spread of behaviors, ideas, and the adoption
of norms across a social network. With respect to the study of social norms,
our aim is to design a logical model that can give an adequate description
of agents being influenced to adopt a new norm. This refers to situations as
described by C. Bicchieri in [1]: “if people believe that a sufficiently large
number of others uphold a given norm, then, under the right conditions, they
will conform to it”. We will focus on these triggers of being persuaded to
adopt a new norm, which are here stated in terms of a “sufficiently large
number of others”, or “enough people”, upholding the norm. We will capture
these triggers for adopting norms in a qualitative logical framework and model
the diffusion process as well as the long-term informational evolution of our
networks. For this presentation, which is based on ongoing work with A.
Baltag and on the work presented in [2], we will make use of the tools of
Dynamic Epistemic Logic as well as Modal Mu-Calculus.

[1] C. Bicchieri, The Grammar of Society, The Nature and Dynamics of
Social Norms, Cambridge University Press, 2006.

[2] A. Baltag, Z. Christoff, R. K. Rendsvig, S. Smets, Dynamic Epis-
temic Logics of Diffusion and Prediction in Social Networks, Studia Logica,
107(3):489–531, 2019.

Format of DEON2020/2021

DEON2020/2021 was a special DEON conference in various respects. The
complex scenario yielded by the COVID-19 pandemic forced us to reconsider
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the schedule and structure of the conference. With the hope of benefiting the
DEON community, we decided to postpone the conference and have two rounds
of submissions: in 2020, when the conference was originally scheduled, and in
2021.

In the 2020 round, 45 papers were submitted in total, out of which 18 were
accepted for presentation, and 17 of these can be found in the proceedings.
In the 2021 round, 19 papers were submitted, out of which another 8 were
accepted for presentation and publication. As these numbers suggest, both
calls for papers were very successful, especially given the precarious situation
that so many members of our community found themselves in.

All papers underwent double-blind peer review by at least two Program
Committee members. We made the final selections on the basis of the resulting
scores and the reviews themselves, our own insight into the papers, and diversity
considerations. Even though at points this made for tough choices, we are
nevertheless very glad to present these papers as editors, and we are convinced
that they will contribute to deontic logic and the study of normative systems
just as much as previous DEON editions did.
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The Roles of Authority and Norm-Addressees

in Deontic Puzzles

Edgar Avendaño-Mej́ıa

Universidad Autónoma Metropolitana

Mexico

Mexico City

Yolanda Torres-Falcón

Universidad Autónoma Metropolitana

Mexico

Mexico City

Abstract

Attempts to solve classical deontic logic puzzles do not deem relevant the roles of

normative authority and norm-addressees. However, drawing a line in imperative

logic between the sets of actions validated by authority and the actions that agents can

fulfill in different situations prevents apparently unrelated paradoxes from arising at

all. This separation also establishes clearer criteria for deeming a result as paradoxical,

rather than a vague appeal to intuitions. The old semantic distinction between norm

validity and satisfaction is thus brought back and refined through this discussion:

norm validity as a reflection of the will of authority; norm satisfaction as the effects

of norm-following throughout possible worlds.

Keywords: authority, addressee, validity, satisfaction, agent, puzzle, norm,

imperative, deontic.

1 Introduction

Authority and norm-addressees in the logic of norms The will of au-
thority and the actions of norm-addressees are two main actors in the act
of norm validation and norm fulfillment or satisfaction. However, this social
aspect of the normative phenomenon is usually not deemed as necessary for a
basic logic of norms; only propositional contents, the right normative operators
and the usual logical connectives are considered to be basic.

It has even been said that the intentions and wishes of authority are not a
matter of logic, even if they are necessary to determine whether some norm is
correctly satisfying something commanded by authority:

To determine whether an imperative is ‘separable’ or ‘inseparable’, i.e.
whether doing A alone produces something ‘right’ with respect to an im-
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perative !(A∧B) or not, it is necessary to examine the intentions and wishes
of the authority that used the imperative, it is not a matter of logic. [2, p.
171]

However, the roles of authority and norm-addresses, when they are repre-
sented in a formal system through the semantic distinction between validity and
satisfaction 1 , offer two main reasons to consider the distinction not only rele-
vant, but basic to the logic of norms: first, it solves many apparently unrelated
puzzles usually thought to require different approaches to be solved; second, it
offers clear grounds to deem a result in normative logic as paradoxical or puz-
zling, rather than some vague appeal to natural language intuitions. To this
end, we propose to take the formal system described in Krister Segerberg’s 1990
article ‘Validity and satisfaction in imperative logic’ [4] as a system formalizing
both the logic of norm validation and the logic of norm satisfaction. 2

One important remark about Segerberg’s system is that it is described in
terms of imperatives, not in terms of deontic concepts. Nonetheless, we ar-
gue that it throws light onto the normative phenomenon in general. We will
comment on some of the counterarguments presented by Jörg Hansen in [2]. 3

We will denote the formal system described in [4] VSL (Validity-Satisfaction
Logic). Our purpose is to extend the analysis already offered there; whatever
merits are found in the formal system described and the basis of the arguments
developed should redirect the reader’s attention to Segerberg’s numerous works.

Validity and satisfaction in VSL In VSL, Segerberg’s goal is to prevent
the Ross Paradox, precisely the one which gave rise to this distinction between
validity and satisfaction most convincingly. He acknowledges a couple of pre-
suppositions that he needs in order to develop the intended interpretation of
his formal system. These presuppositions also describe the main reason why
this system represents so adequately the idea that authority and addressees
are basic to the logic of norms. The first one has to do with maintaining a
separation between the world of facts and the will and actions of authority and
norm addressees 4 .

[...] we believe that it is well to leave both the commanding authority (the
commander, Ross’s “imperator”) and the subject (the agent) out of it [the
world]. They have different roles to play, both having to do with changes in
the world. The subject’s is to act; he tries to manipulate the way in which

1 Long set aside in the discussions on normative logic.
2 This work takes a standpoint against the idea that we need to choose among truth, valid-
ity, satisfaction or some other semantic value for norms, in order to obtain one single true
standard deontic logic. Deontic puzzles may require not only a variety of symbolic tools, but
also a variety of semantic values.
3 He puts together important challenges to those who try to develop logics for norm validity
and norm satisfaction, but no analysis of the formal system to be described here is presented
there, so we will try to answer some of his objections through Segerberg’s system and also
by refining the notion of satisfaction involved in deontic systems like SDL (Standard Deontic
Logic).
4 He calls them ‘subjects’ or ‘agents’.
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the world changes. The world is in one state one moment, in another state
the next; but what the next state is may depend on the subject—on his will.
[...] Ultimately it is change in the world that is the authority’s concern too,
but the ways of authority are indirect, proceeding via the subject. [4, p. 204]

The second presupposition is that the realm of norm validity is seen as a
reflection of the will of authority and that this may be achieved by a special
semantic device separate from the one describing the different possible situ-
ations in a model, which is standard in modal logic semantics. Although he
doesn’t intend to represent the subject performing any actions because of the
complexity of the phenomenon, we suggest there is already a representation of
the decisions of agents by way of the actions available to any norm-addressee
throughout possible situations, thus taking the context of norm satisfaction as
a reflection of norm addressees.

Here we are doing elementary logic and so shall not be able to do more than
scratch the logical surface. In fact, we shall not even touch on the question
of how to represent the subject performing any actions. However, we will
represent the authority issuing commands. To this end we need to introduce
a semantic device to keep track of the commands issued by the authority. [4,
p. 204]

The way we are intending to represent authority and norm addressees doesn’t
allow us to identify and distinguish among separate individual subjects in their
role as authority or addressee, but only to distinguish in a most general way
among this two different roles. This means it’s not relevant if authority is
taken to be a singular subject, a group of people, a paper with rules written
on it or even the customs of society which eventually may deem some action
as normatively valid. It is only relevant to distinguish between the role played
by those who validate norms and the very different role played by those who
are supposed to follow those valid norms.

2 VSL’s language, syntax and semantics

Since VSL is not a well-known system, we will take some pages to describe it,
but only certain aspects of it for space reasons, pointing out specially where
the notions of validity and satisfaction come up. We will use the same symbols
and conventions which Segerberg uses originally, the same names for axioms,
inference rules, semantic conditions, language symbols, etc.

2.1 VSL language

Definition 2.1 A well-formed expression is either a formula or a term. Every
formula is either theoretical or practical, but not both.

(i) Every propositional letter is a theoretical formula.

(ii) ⊥ is a theoretical formula.
If A and B are formulas:

(iii) A → B is a formula: practical if A or B are practical, theoretical if both
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are theoretical.

(iv) [α]B is formula if α is term: it is theoretical if B is theoretical, it is
practical if B is practical.

(v) δA is term if A is theorical formula.
If α and β are terms:

(vi) α+ β is term.

(vii) α;β is term.

(viii) !α is practical formula.

(ix) There are no more well-formed expressions.

Theoretical formulas are those true or false formulas which do not contain
formulas with imperatives at any point. Practical formulas are those which do
contain at some point at least one formula with an imperative. 5 Imperative
formulas are considered practical formulas and they don’t have truth value,
but norm-validity value; they are prescriptive norms in the sense that they are
valid or invalid on the basis of a defined command set. 6 On the other hand,
terms are expressions representative for actions and are of the form ‘δA’, where
A is a theoretical formula and the term is read ‘to bring it about that A is the
case’. 7 They don’t have truth value, neither is it relevant to them the truth
value of the formulas which compose them. In this sense they are not actions
already taken but actions available and in order to appear as part of a formula
in a truth/falsity context, they need to be part of a modal-dynamic formula as
in ‘[δA]B’. This modal-dynamic formulas ‘[δA]B’ are read as usual in dynamic
logic: ‘bringing it about that A is the case leads always to situations where B
is the case’, where the ‘always’ is the reading of the brackets ‘[ ]’. Again, the
complete formal definition of these symbols can be found in Segerberg’s article.

2.2 Syntax

Axioms and inference rules The full list of axioms and inference rules can
be found in [4, p. 206]. We remark that they are grouped in four categories:
propositional, modal, action and imperative.

Propositional

(PA1) Every instance of tautology of propositional calculus in the VSL lan-

guage.

(MP) If A is a theorem and A → B is a theorem, then B is a theorem.

5 They don’t simply describe facts, but depend at some extent on the will of authority.
6 We could further add a definition for descriptive norms, commonly known as normative
propositions, also based on this command sets which would have truth value. But it is the
main goal of this text to keep things as simple as possible.
7 There’s also an article by Segerberg where he develops this operator [3]
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Modal

(MA0) [α](A→B)→([α]A→[α]B) 8

(MA1) [α](B∧C)≡([α]B∧[α]C)

(MA2) [α]⊤

(N) If A is a theorem, then [α]A is a theorem, for any α

(MR1) If B≡C is a theorem, then [α]B≡[α]C is also a theorem.

Action

(AA1) [δA]A

(AA2) [δA]B→([δB]C→[δA]C)

(AA3) [α+ β]C≡[α]C∧[β]C

(AA4) [α;β]C≡[α][β]C

(AR1) If A≡B is a theorem, then [δA]C≡[δB]C is also a theorem, given that
A and B are theoretical formulas.

Imperative

(IA1) (!δA∧!δB)→!δ(A∧B)

(IA2) !(α;β) →!α

(IA3) !(α;β) → [α]!β

(IA4) !α → ([α]!β →!(α;β))

(IR1) If [α]C ≡ [β]C is a theorem for every C, then !α ≡!β is also a theorem.

2.3 VSL semantics

We offer a brief sketch for the semantics of VSL. Further reference for metase-
mantic proofs such as soundness and completeness is to be found in [4]. The
semantics for VSL are defined in the familiar Kripke structures style, but we
first define truth for theoretical formulas and realization for terms in a model.
Only later can we define truth or validity for practical formulas.

Definition 2.2 A VSL model is a quintuple M =< U, A, D, P, V >, such
that:

(i) U 6= Ø ; U is a non-empty set. 9

(ii) A⊆ P(U ×U) ; the elements of A are sets of ordered pairs belonging to
U×U. 10

(iii) P⊆ P(U) ; The elements of P are sets containing elements of U. 11

8 This axiom is not stated explicitly in Segerberg’s 1990 article, but it is assumed since he
acknowledges that this system includes every theorem of the smallest normal modal logic [4,
p. 211].
9 Elements of U are usually interpreted as possible states or situations where different propo-
sitions may be the case.
10These are the actions of the model.
11We follow the traditional view of characterizing propositions extensionally as the set of
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(iv) D:P−→A ; D is a function from P to A. 12

(v) V:L−→ P(U) ; V is the standard valuation function. 13

Each one of this elements should fulfill certain conditions described in [4, pp.
208-9].

2.4 Truth, validity and satisfaction

Truth and satisfaction Truth and satisfaction are defined in [4, p. 209]
through a definition of intension for formulas ‖A‖ and for terms ‖ α ‖. We will
here focus on the last three (IC5-7), the satisfaction conditions central to the
argumentation of this text:

(IC5) ‖ δA‖=D‖A‖

(IC6) ‖ α+ β ‖=‖ α ‖ ∪ ‖ β ‖

(IC7) ‖ α;β ‖=‖ α ‖ | ‖ β ‖

Since each action δA is to be understood as a set of ordered pairs, where each
pair represents a transition between possible worlds or situation, the notion of
satisfaction is given in such terms, that is, what satisfies an action is not a
state of affairs, but rather a transition between possible situations given by an
ordered pair. The definition of satisfaction for terms is thus:

Definition 2.3 Given ‖ α ‖∈A, < x, y > satisfies α if and only if < x, y >∈‖
α ‖.

Such a set ‖ α ‖ is defined according to the above definitions (IC5-7), so it
ultimately relies on the D function of the defined VSL-model.

These conditions set the basis for the role of norm-addressees in satisfying
the commands issued by authority. In a sense, they offer a way of answering
the question: ‘What changes in the world would count as performing which
actions?’, which would be a first step in answerring how to satisfy a certain
imperative. The second step would be asking if the action in question is nor-
matively valid, the criteria to answer it comes next.

Norm validity Lastly we get to the definition of norm validity, which is found
in the semantics for practical formulas on [4, pp.209-212]. A command system
Γ in a VSL-model M is defined as:

Γ = {Γx : x ∈ U}

where Γx is called a command set of x. Any command set Σ should fulfill
conditions (C0-4) found in [4, p. 210]. We will emphasize only the first two:

(C0) Σ ⊆ P(U×U)

(C1) if DX,DY ∈ Σ then D(X ∩ Y ) ∈ Σ, for all X,Y ∈ P.

situations or states where they are true.
12This is the δ-operator, which defines an action in terms of a transition that leads to a
certain proposition being true.
13

L is a set of propositional letters in VSL’s language. Thus the function assigns a set of
elements of U to each propositional letter from the language of VSL.
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Condition (C0) is central since it states that command sets are given in the
same terms as actions; as sets of ordered pairs of elements of U, sets which
represent transitions between possible situations, so that only transitions are
commanded and not directly propositions. Condition (C1) will be refered to
when analyzing the paradox of conflicting oblgiations in the next section. It
should also be noted that the conditions (C0-4) make it possible that there are
empty command sets.

Norm validity is thus defined by recursion in (RC1-5) [4, p. 211]. We will
only cite the most relevant one:

(RC5) Γ |=x!α iff ‖ α ‖∈ Γx.

The crucial definition (RC5) tells us that a commanded term is normatively
valid whenever it is found in the command system of the world in question.
This represents what is commanded by authority.

Other definitions We present important definitions not explicit in
Segerberg’s article.

Definition 2.4 A formula φ is VSL-valid if at any x ∈ U of any M, if φ is
either true or normatively valid in x. That is, if either x ∈‖ φ ‖ or Γ |=x φ.

Definition 2.5 A formula φ is logical consequence of ξ, if there is no model
M and a situation x ∈ U of the model where: φ is either true or normatively
valid in x and ξ is neither true nor normatively valid in x.

3 Reinterpreting three classic puzzles

We will discuss three main puzzles: the logical necessity of obligations, the
paradox of conflicting obligations and Chisholm’s paradox. The reasons for
these particular choices are mainly to show how paradoxes with different formal
sources may be approached through this lens. 14

3.1 Logical Necessity of Obligations

This puzzle is a clash between a very intuitive idea about the contingency of
norms and a very straightforward result of SDL (Standard Deontic Logic). The
idea of contingency of norms may be expressed in a simple statement:

(1) There are possible worlds without norms.

The theorem of SDL in clash with (1) is:

(2) (ON) O⊤ 15

This theorem basically says that it is a logical truth that every tautology is
obligatory. Since being a logical truth means being true at all posible worlds,
it follows that in all possible worlds tautologies are obligatory, so none of those
worlds is without norms.

14This analysis is part of a PhD thesis to be presented in the Autumn of 2020, under the
tentative title: ‘Validity and satisfaction in deontic logic’, by the first author of this text.
Eight more puzzles are analyzed in that text.
15Reading ‘⊤’ as any tautology of propositional logic.
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It is no mystery that the source of (ON) is the necessitation rule together
with the tautologies of propositional calculus. But why is it deemed as paradox-
ical? What does it mean to say that according to this theorem ‘tautologies are
obligatory’ and to say that ‘there are possible worlds without norms’? Under
what standard should we interpret there being norms or not being any norms.
We should review the semantic definition of formulas with the form Oα in SDL.

The semantic conditions of truth in terms of Kripke semantics state that,
for a formula Op to be true in a world x, the formula p has to be true in
all the worlds which have the normative-acceptability relation with the world
x. Given this definition, it should be obvious that the theorem has to be a
logical truth, since tautologies are true in all possible worlds, no exception
for the normatively acceptable ones. Thus the formula is satisfied throughout
normatively acceptable possible worlds, it’s modally-normatively satisfied.

But why then is the result paradoxical? It would be hard to argue against
the possibility of worlds without complex beings, complex enough to state rules.
Our own universe didn’t have any normative authorities when life wasn’t even
possible, in that possible world there would be no norms. The crucial focus
here is on the word are when saying ‘there are no norms’. What do we mean
by that? The most natural answer may be that norms haven’t been stated
or validated by anyone. 16 In that sense, of course, there are possible worlds
where no norms have been validated, in the abscence of any normative authority
necessary for that action.

SDL clearly fails to follow that simple intuition, but it correctly expresses
a truth about the context of satisfaction 17 of the norm-validating and norm-
following activities. Namely, that the criteria to consider an event as going
according to some norm is trivially satisfied even in the abscence of conscious
agents capable of even understanding rules. 18 In this sense, from the view-
point of norm-addressees, this theorem says that they shouldn’t worry about
obligations of making a tautology true, for anything they do or don’t do will
trivially satisfy that obligation. This may be the first intuitive answer one may
think about when first trying to make sense of this puzzle.

VSL doesn’t have this ambiguity problem, for it has separate criteria to
deem a normative formula as valid and a theoretical formula as true or satisfied.

16 In this discussion it should be prefered to talk about ‘validating’ a norm, instead of ‘stating’
one, for ‘stating’ may be interpreted as‘uttering’, which is not necessarily meant when talking
about norm validity. A norm may be uttered and thus validated, but its logical consequences
may have not been uttered and still be validated by their antecesor.
17The term ‘context of satisfaction’ is taken from a very interesting account of this concept
in [5]
18This is argued in the same spirit in which propositions are said to be true even in possible
worlds where there are no living creatures capable of uttering any sentence. Since uttering
a true sentence and its being true can be considered different matters, commanding an
imperative and its being satisfied can also be considered different matters. An event may
occur which would make some sentence true, even if that sentence has never been uttered.
In the same way, an event may occur which would count as satisfying some command, even
if that command has never been uttered.
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That is, the theorem is not logically valid in VSL, but the fact that anything
would count as satisfying such a command is also preserved. This is how this
same theorem would look in VSL:

(3)(V ON)!δ⊤

This formula (VON) should be interpreted as saying:

(4) Bring it about that ⊤ (an instance of any tautology) is the case!

Clearly, any action or even any failure to act would satisfy such a command,
in every possible world. There are only two conditions which the function D

has to fulfill whenever it belongs to a model M of VSL, given in [4, p. 209] as
FD1 and FD2. These should hold for any X, Y∈P

(FD1) DX ⊆ {< x, y >: y ∈ X}

(FD2) If < x, y >∈ DX ⇒ y ∈ Y , for all y, then < x, z >∈DX⇒< x, z >∈
DY.

The relevant condition for this puzzle is clearly (FD1), since it states that
the image of the function assigned to a proposition through the δ-operation
should be contained in the set of worlds represented by the proposition affected
by the operation. In other words, ‘doing A’ should always get you to a state
where ‘A’ is the case. Since ⊤ is the case in every possible world, any set of
ordered pairs ‖ α ‖∈A will count as seeing to it that ⊤ is true, for any set of
ordered pairs will take us to worlds where ⊤ is true. In other words, the way
we defined what counts as doing a certain action makes it true that any action
whatsoever will count as seeing to it that a tautology is true.

But that wouldn’t be enough to deem VON as logically valid in VSL, for the
semantics of formulas with the form !δA are not based on what propositions are
true in any possible world or situation of the model, but rather on command sets
specific to each possible world. These command sets may be empty according to
the semantic conditions in [4, pp. 209-211]; in that case ‖ δ⊤ ‖ wouldn’t belong
to the command set in question, thus it wouldn’t be normatively valid in virtue
of mere logic. Given (RC5), it would be necessary to have the specific formula
VON in a command set of a certain world to deem it as valid, regardless of
the fact that any action would count as δ⊤, thus distinguishing clearly between
what norms agents fulfill by doing ‘δ⊤’ (anything at all) and what the authority
wills to be done (perhaps not particulary δ⊤).

3.2 Paradox of conflicting obligations

This paradox calls for attention to the intolerance of standard deontic sys-
tems towards normative conflict, making it escalate to a logical contradiction.
Consider thus this two conflicting obligations:

(1) Op

(2) O¬p

It’s not hard to prove that from (1) and (2) a contradiction is derivable in SDL.
It’s also commonly accepted that even a conflict of obligations as impossible to
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fulfill simultaneously as the one between (1) and (2) shouldn’t be considered
as serious and strong as a logical contradiction.

But we could ask again exactly what aspect of norms makes it so paradoxical
that a conflict of norms derives in a logical contradiction. Let’s introduce the
points of view of authority and norm-addressees to clear out this question.

From the point of view of norm-addressees and specifically when considering
the context of satisfaction of (1) and (2), trying to fulfill both obligations would
amount to a contradiction. The very semantic conditions of SDL make it clear
that making both true in a certain world would require that in all normatively
adequate worlds both p and ¬p be true, which would cause contradictions in
all such worlds. This supports the idea that a certain notion of satisfaction is
the best way to interpretic deontic formulas in SDL.

From the point of view of authority, there’s certainly some kind of tension
(maybe a rationality tension) between two norms which can’t be fulfilled, but
it’s not clear that this tension should amount to a contradiction. This point of
view favojrs the idea which gives rise to the paradox: a conflict of obligations
is not as strong as a logical contradiction.

But let’s consider how VSL deals with this sort of conflict. The traslation
of (1) and (2) would be:

(3) !δA

(4) !δ¬A

Where A is any theoretical formula of VSL. There should be no doubt that the
normative conflict between (3) and (4), although stated in terms of imperatives,
is completely analogous to that of (1) and (2). Does VSL allow a logical
contradiction from (3) and (4)? The short answer is no, but the details are
very interesting: although (3) and (4) don’t result in a logical contradiction,
they can’t be both normatively valid in the same world; also, the system allows
us to see that both commands can’t be simultaneously fulfilled, so the system
tells us something about the context of validity and also about the context of
satisfaction of these commands in VSL.

Firstly, these formulas don’t result in contradiction because these are im-
peratives, practical formulas which have no relevance in the factic description
of any world of a VSL-model, this task is left to theoretical formulas. Axioms
and rules of VSL back up this, since none of them is analogous to the axiom of
SDL which gives rise to the paradox: Op→ ¬O¬p.

Secondly, one consequence of rendering both formulas normatively valid is
a trivialization of the norm-giving activity of authority. This is due to semantic
condition for command sets C1. Given (C1), if both (3) and (4) belong to a
command set, the following should also belong to that command set:

(5) !δ(A∧¬A)

This would amount to command an impossibility, just as in SDL Op and
O¬p would amount to commanding an impossibility. This can happen in VSL
according to its semantic conditions, not only can a command set be empty,
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but also the empty set could belong to a command set. However, the problem
doesn’t escalate to a logical contradiction, it just makes the command system
of the model useless, as Segerberg proves in his Proposition 4.1 [4, p. 210].
This proposition says that, if Ø ∈ Γx, then Γx=A and if < x, y >∈R, for any
R∈A, then Γy=A. That is, it deems the command set, and all the command
sets with which it is related through an action, equal to the action set of the
model, so everything would be normatively validated. But this is different from
having a propositional contradiction, for this trivialization of norm validity
would not make every theoretical formula a theorem. The system is at least
able to contain the explosivity of normative contradiction within the domain
of normative reasoning, without affecting the descriptive or propositional part
of the system.

This view is in consonance with the intuition that there is some tension
between (3) and (4) which should neither scalate to contradiction, nor should it
be normatively or rationally indifferent for authority to command contradicting
things.

Lastly, we notice that commands (3) and (4) could not possibly be fulfilled

simultaneously. Because of the way the δ-operator is defined, there is no way
to execute both δA and δ¬A, for it would require a world where A and ¬A
were true. 19 Norm-addressees would certainly backup the idea that fulfilling
both commands would amount to a logical contradiction.

3.3 Chisholm’s paradox

This paradox can’t be solved as straightforwardly as the last two and that is
why we chose it for exposition, to show some of the drawbacks of VSL and the
distinction in question. Notwithstanding, some aspects of the paradox are very
interesting under this light.

This paradox is usually taken to reveal SDL’s lack of capacity to represent
normative conditionals and also its questionable capacity to deal with norma-
tively unacceptable worlds, where a logic of norms should nevertheless hold. 20

As we will see, VSL’s modal-dynamic symbols add some expressive capacity
in those areas, but it remains questionable how succesful it is in solving this
puzzle since it also requires an additional semantic condition and an additional
axiom to represent some important intuitions about this sentences.

Consider the following statements: 21

(1) It ought to be that John goes to the assistance of his neighbours.

(2) It ought to be that if John goes to the assistance of his neighbours, then
he tells them he is coming.

19But this leaves the possibility to fulfill both commands sequentially, first getting to a world
where A is the case and then to one where it is not the case or viceversa: (δA; δ¬A) or (δ¬A;
δA).
20This already hints to the relevance of distinguishing between validity and other semantic
values, it leads to evaluate separately which norms have been violated or fulfilled and which
norms are nevertheless valid or invalid.
21The formulation is taken from [1, p. 83]
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(3) If John doesn’t go to the assistance of his neighbours, then he ought not
tell them he is coming.

(4) John does not go to their assistance.

The problem arises when different formalizations of this four sentences clash
with at least one of the following intuitions about them: That (1)-(4) are
mutually consistent and also logically independent.

The formalizations differ on the scope of the normative operator in sentences
(2) and (3), precisely the sentences with conditionals involved. They can be
symbolized with a wide scope (as in ‘O(p→q)’) or with a narrow scope (as in
‘p→Oq’). Either way, and no matter which of the conditionals is symbolized
in these different ways, the set of sentences will be either inconsistent or there
will be logical dependency among some of the sentences.

Let’s see how VSL could symbolize this set of sentences without using the
classical conditional:

(5) !δA

(6) [δA]!δD

(7) [δ¬A]!δ¬D

(8) ¬A

The modal-dynamic ingredient added in VSL allows us to represent condi-
tionals (2) and (3) in terms the worlds or situations where doing A or not doing
A would take us (whether John fulfills or doesn’t fulfill his obligation stated in
(1)). This is one of the two important aspects where SDL fails, in its capacity
to deal with less-than-ideal worlds, meanwhile VSL can tell us which command
is valid in any of the two cases, even considering that (5) validates that δA is
the normatively right way to go.

From the point of view of authority, this sentences are covering what au-
thority wills to be done, whether the addressee decides to assist his neighbors
or not: the commands that would hold as valid in any of the two cases are
already foreseen by the command sets representing the will of authority. From
the point of view of John, the norm-addressee, it is also clear which actions
would satisfy which commands and the consequences of his choices.

Regarding the alleged consistency and independence of this sentences, both
seem to be respected. It is to be noted that this particular modeling in VSL
allows an inference when considering axiom AI4 22 :

(AI4) !α → ([α]!β →!(α;β))

The inference seems harmless, since all we get is !(δA;δD). But it does
reveal that the modal-dynamic brackets may not be rescuing the conditional
spirit of the advice given in (6), for the result would read something like this:
‘Assist your neighbors! Then tell them you are coming!’, which is certainly
bizarre since it shouldn’t be a matter of timing or order of execution, it should

22 [4, p. 206]
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rather be a matter of a command being valid whenever some action should be
taken. But (6) describes what happens when the action is taken, not when
it is normatively valid; therefore, that couldn’t be represent either, since the
rules for well-formed expression only allow terms to be between modal-dynamic
brackets, not imperatives or formulas of any kind.

We could stick to the traditional implication, leaving (5) and (8) as they
are and changing only (6) and (7):

(6’) A→!δD

(7’) ¬A→!δ¬D

We would be following the narrow scope formalization, but then we could
derive (6’) from (8), using propositional logic and thus would be rendering the
sentences not logically independent.

Another observation is that, if we stick to the formalization with brackets,
there’s yet another problem regarding (7) and (8). That is, it should be clear
that from the original sentences (3) and (4) follows that John ought not tell his
neighbors that he is coming, which is precisely the consequent in (3). But from
(7) and (8) VSL doesn’t allow us to infer the validity of ‘!δ¬D’. For this, an
additional action axiom and an additional semantic condition for the function
D would be needed:

(AA5) A→([δA]B→B)

(FD3) For any u∈U and X∈P, if u∈X, then < u, u >∈DX

The axiom means that if you are in a world where A is the case and doing A
always takes you to a situation where B is the case, then you are already in a
situation where B is the case. 23 . The condition FD3 reflects this on a semantic
level by saying that any world where a proposition X holds should always be
included as one of the possible transitions that leads to X. 24

Further observations could be made, but the goal of showing the limitations
of this distinction between authority and norm-addressees to solve this puzzle
has already been met.

4 Counterarguments and further questions

Valdity as utterance An interesting argumentation line against the very idea
of a logic of imperative validity is that, in trying to explain what it means to
logically infer one imperative from other, we may be implying that the existence
of an imperative somehow implies the existence of another imperative. Hansen
cites [2, p. 153] many examples of different logicians warning us against the
idea that a logic of imperative may be understood as the logic of the existence

23This may lead to say that whenever something is the case you may assume some action
lead to it, which is rather questionable since actions are usually thought of in relation to
some agent. It would be a matter of discussion how this affects the characterization of action
in this system
24This is also an odd condition, since it is doubtful that any instance of < u, u > should
really count as a transition between situations.
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of a command, its utterance, the action of stating or similar definitions. The
warning is certainly helpful, but it hardly undermines the very idea of a logic
of norm validity. Let us take the example from Aleksander Peczenik:

The premiss ‘love your neighbour’ may be regarded as describing the fact that
the authority – Jesus – has in fact said ‘love your neighbor’. The imperative
existed because it was uttered by Jesus. But the conclusion, for example,
‘love Mr. X’ does not describe anything which in fact has been said by
Jesus. 25

In this sense, to say that an imperative exists would mean something like the
‘stating’ or ‘uttering’ of a certain command in the right context. But why
should we define norm validity like that? In VSL, for example, there are con-
ditions to ensure some kind of rationality for command sets, the ones listed
(C0-4). Condition C1, for example, says that if two different commands belong
to the command set, then the D function of the intersection of both propo-
sitions also belong to the set, thus rendering it normatively valid. That the
set of commands issued by an authority may be closed under logical conse-
quence doesn’t mean that authority is somehow ‘silently uttering’ commands,
but rather that authority is committed to the validity of implicit norms, just
as asserting propositions may committ a speaker to the implicit truths.

In general, we may take this kind of objection as a healthy warning against
the identification between the kind of actions that may render some norm as
valid (its utterance, for example), and the validity itself, which may be acquired
in a variety of ways (by being written in some particular place, being uttered by
some person, being the result of a certain social convention, being performed
by a number of individuals through a long period of time, being implied by
some other valid norm, etc.). Taking the warning seriously doesn’t require to
throw away altogether the concept of a logic of norm validity.

Imperatives and deontic concepts A more serious objection may be that
it is doubtful that a logic of imperatives can contain a logic of deontic con-
cepts without loss. Even by defining the obligation operator O exactly as the
imperative ! in VSL, it is doubtful that the specific logic for the concept of
permission would be adequately represented. This would affect the scope of
the present arguments, so that we would only be arguing for the relevance of
the distinction between authority and norm-addressees regarding the logic of
imperatives and not for the logic of norms in general.

Moreover, an interesting problem arises when trying to define the concept of
permission in terms of the distinction between validity and satisfaction. When
the propositional content of an obligation is true, it’s satisfied; when it’s false,
it’s violated. If I have an obligation to pay taxes, then whenever it is true
that I pay them, the obligation is certainly satisfied. The same may hold for
imperatives, but it doesn’t hold for permission, for if I have a permission to
drive a car, were it true that I drive one doesn’t satisfy it in any meaningful

25 In a letter by Peczenik found in [6], cited in [2, p. 152]
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sense and were it false, it wouldn’t be in violation of the permission.
What, then, is to satisfy a permission? A possible answer may lie in com-

paring permissions to rights, in the sense that they are duties or obligations for
authorities (usually norm-givers), thus inverting the directionality of responsi-
bilty for norm satisfaction from norm-adreessees to norm-givers or authorities.

5 Conclusions

Although Chisholm’s Paradox couldn’t be solved with the aid of the distinction
between authority and norm-addressees, the other two paradoxes were not only
overcome, but it is clearer why they are considered as paradoxes to begin with:
it depends on the semantic values we are assuming to evaluate the soundness
of each result, either validity or satisfaction. This is where we intend to make
a contribution, in showing that not only the Ross paradox calls for an analysis
which makes a clear semantic distinction between norm validity and satisfa-
cion, but other classical paradoxes could also be better understood and solved
through this approach.

We also wish to address how the semantic distinction in question is also
related to the points of view of authority and norm-addressees, suggesting
that their relevance to a standard logic of norms may be more important than
usually regarded. The system VSL may be too complex to be considered basic
to the logic of norms, but its capacity to solve paradoxes calls for a detailed
analysis of the aspects of this complexity that should be preserved in order to
define a truly standard logic for normative reasoning.

The suggestion to add axiom (AA5) and semantic condition (FD3) is a small
formal contribution to VSL. Hopefully, it adds to the suggestions of possible
ways to make more positive contributions to the enrichment of systems of
normative logic seeking resources from dynamic logic to solve the problems of
conditionals in normative contexts and the logic of norms in less-than-ideal
situations.

The correct interpretation of deontic formulas in standard systems such as
SDL is problematic, but a refinement in the notion of norm satisfaction may
help reivindicate the line of interpretation which leans towards satisfaction

for this systems. The refinement here proposed would be the one we called
‘normative-modal satisfaction’ in Section 3.1: the fulfillment of a norm in a
specific set of possible worlds and not just its truth value in the actual world.

The problem of defining a reasonable notion of satisfaction for permission
in terms of inverting the directionality of responsibility among authority and
norm-addressees was also brought to light through this view. It could also
be argued that the notion of satisfaction can’t make sense at all regarding
the concept of permission, but it would be hard to explain the relevance of
permissions in evaluating the overall fulfillment of a normative system which
includes permissions.
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Abstract

For decades, the gentle murder paradox has been a central challenge for deontic logic.
This article investigates its millennia-old counterpart in Sanskrit philosophy: the
śyena controversy. We analyze three solutions provided by Mı̄mām. sā, the Sanskrit
philosophical school devoted to the analysis of normative reasoning in the Vedas, in
which the controversy originated. We introduce axiomatizations and semantics for
the modal logics formalizing the deontic theories of the main Mı̄mām. sā philosophers
Prabhākara, Kumārila, and Man.d. ana. The resulting logics are used to analyze their
distinct solutions to the śyena controversy, which we compare with formal approaches
developed within the contemporary field of deontic logic.

Keywords: Mı̄mām. sā, Dyadic Deontic Logic, Instruments, Gentle Murder Paradox

1 Introduction

Introduced by Forrester [9], the Gentle Murder Paradox (GMP) is a well-known
problem for monadic deontic logic [13,28], motivating the use of alternative sys-
tems employing dyadic deontic operators, e.g., [16,21]. The GMP in a nutshell:
(i) x is obliged not to kill, (ii) if x kills, x is obliged to kill gently, (iii) gentle
killing implies killing, and (iv) x will kill. Although intuitively consistent, the
sentences (i)-(iv) lead to a contradiction in Standard Deontic Logic, implying
x’s obligation to kill. Originally, the GMP was introduced as a stronger Good
Samaritan Paradox [24], but it is commonly taken as a variant of Chisholm’s
Paradox [6]. Under the former reading, (i)-(iv) imply conflicting obligations
(i.e., a dilemma), inconsistent under normality of deontic operators. Under the
latter reading, the GMP relates to challenges of reasoning with violations and
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contrary-to-duty (CTD) obligations (i.e., the obligation (ii) is only in force if
(i) is violated). In fact, the GMP has features of both paradoxes [17].

While the GMP was introduced to the deontic logic community only a few
decades ago, a similar example has been thoroughly investigated in Sanskrit
philosophy for more than two millennia. This is the renowned śyena contro-
versy. The śyena is a one-day long ritual in which the Soma beverage is offered.
Its putative result is the death of the sacrificer’s enemy. Unlike animal sacrifices
it does not involve violence in its performance, violence is only found in its re-
sult. The controversy is due to the fact that the śyena appears to be prescribed
in the Vedas —the sacred texts of what is now known as “Hinduism”—, which
also prohibits the performance of violence. The śyena controversy in short 4 :

(A) The one who desires to kill their enemy should sacrifice with the śyena

(B) One should not harm any living being

(C) Performing śyena implies causing someone’s death

(D) Causing someone’s death implies harming

With (A)-(D), the Vedas seem to provide contradicting commands concerning
the performance of violence, a possibility which is ruled out by the (indis-
putable) claim that the Vedas are consistent.

The Sanskrit philosophical school of Mı̄mām. sā—which flourished between
the last centuries BCE and the 20th c. CE—paid exceptional attention to
the controversy, explaining why the śyena should not be performed and why
the sacred texts prescribing it are not contradictory. In general, the Mı̄mām. sā
school focused on the rational interpretation and systematization of the pre-
scriptive portions of the Vedas. To reason with Vedic commands, and resolve
seeming conflicts, the Mı̄mām. sā developed a vast system of theories containing
rigorous analyses of deontic concepts. Key to their enterprise was the formu-
lation of general reasoning principles called nyāyas, and the distinction among
elective duties (to be performed only if one wishes their specific result), fixed
duties (to be performed no matter what), and prohibitions. The resulting the-
ories, which have been extremely influential in Sanskrit philosophy, theology
and law, provide an inexhaustible resource for deontic investigation, largely
still unexplored.

Although all Mı̄mām. sā authors agree that śyena should not be performed,
they disagree on the reasons underlying it. In this article, we focus on the three
main Mı̄mām. sā authors: Kumārila, Prabhākara (both ca. 7th c. CE), and
Man.d. ana (ca. 8th c. CE). They are known for their distinctive deontic theories,
which give rise to different interpretations of Vedic commands. Likewise, their
solutions to the śyena controversy are markedly distinct.

We provide three modal logics 5 describing the deontic theories of these

4 (A) and (B) are direct translations from Sanskrit, whereas (C) and (D) are derived from
Mı̄mām. sā arguments about the śyena.
5 The logics in this paper are intended to reason about commands as interpreted by the
Mı̄mām. sā. Since the Vedas are self-contained and immutable, new Vedic commands cannot
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authors, whose rational, structured approach makes their accounts particularly
suitable for formalization. The resulting logics are obtained by “extracting”
Hilbert axioms out of translated and parsed Mı̄mām. sā nyāyas and additional
passages by the three authors. While the logics for Prabhākara and Kumārila
are a modification of those presented in [7] and [20], Man.d. ana’s logic is novel.

The main contributions of this paper are threefold: First, we develop a logic
formalizing Man.d. ana’s deontic theory. His account is particularly noteworthy
due to its deontic reduction: the reduction of all commands of the Vedas (i.e.,
fixed and elective obligations, as well as prohibitions) to mere descriptive state-
ments of instrumentality. For instance, according to Man.d. ana, an obligation
to perform an action means the action is an instrument for attaining a cer-
tain result. The introduced logic reproduces Man.d. ana’s reduction by adopting
a PDL-like language [8,23], together with a modified Andersonean reduction
of deontic modalities [1]. Second, we offer a consistent formalization of the
śyena controversy as interpreted by Kumārila and Man.d. ana, faithful to the
explanations found in Mı̄mām. sā texts. Kumārila’s formalization is achieved
by introducing a neighbourhood semantics for its logic. Prabhākara’s solu-
tion was formally analyzed in [7], however, the logic presented there contained
only obligations. In [12,20] it was shown that obligations and prohibitions
in Mı̄mām. sā are not inter-definable and, hence, we extend Prabhākara’s logic
(and solution) with a prohibition operator. Third, we analyze and compare
the three formal solutions to the śyena controversy and discuss their relations
to approaches in contemporary deontic logic. In particular, the dual reading
of the GMP is reflected in the different approaches to the śyena controversy:
As for the Chisholm paradox, Prabhākara takes the śyena prescription as a
contrary-to-duty obligation. Kumārila addresses the controversy by interpret-
ing śyena as an elective sacrifice, to which he assigns no deontic force. As
for the Good Samaritan Paradox, Man.d. ana endorses the view that there is a
proper dilemma in the controversy, but addresses it through his reduction, ar-
guing for a pragmatic rational-choice solution based on a cost-benefit analysis
of (un)desirable outcomes.

Our work is the first study of the śyena controversy in Mı̄mām. sā, the school
in which the controversy originated. The interest in this controversy from
the point of view of modern deontic logic is also testified by the recent work
[14], where the śyena is analyzed from the perspective of the Navya-Nyāya, a
different school of Sanskrit philosophy. 6

2 Prabhākara and Kumārila

Prabhākara and Kumārila interpret Vedic prescriptions as proper commands
with deontic force. Despite their shared view on fixed duties (to be read as
obligations) and on prohibitions, Prabhākara and Kumārila disagree on the

be derived through Logic. Accordingly, our logics deal with commands on the derived level.
6 The work [14], also relating the śyena to the GMP, was published while the present paper
was under review.
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reading of elective sacrifices, which are always conditioned on a desire.
Prabhākara’s system is eminently deontic: Vedic statements are binding,

independently from their conditions; hence, an elective sacrifice is also a type
of obligation. The desire for a specific worldly result, necessarily mentioned
as the condition of an elective ritual, only represents the requirement through
which the eligible agents are identified, but it does not weaken the deontic force
of the injunction. By contrast, for Kumārila, elective sacrifices are of a different
type, not enjoining any deontic force, and can be omitted without risk. Still, an
eligible agent—i.e., an agent who desires the expected result of the sacrifice—
feels prompted to undertake the sacrifice due to its presence in the Vedas: such
sacrifices represent a “guaranteed” method for obtaining the desired results.
Hence, whereas Prabhākara sees elective sacrifices as conditional obligations,
Kumārila sees them as a different type of Vedic command.

The two logics presented in this section will reflect this distinction. Since
their only difference is the presence of elective sacrifices as a distinct deon-
tic concept, the logic for Prabhākara will be a proper subset of Kumārila’s.
However, the distinction causes wholly different solutions to the śyena contro-
versy. The logics are variants of the formalism introduced in [20], whose prop-
erties were extracted from a collection of general Mı̄mām. sā reasoning principles
(nyāyas, see Sect. 1). By adding the deontic operators for prohibitions F(·/·)
and for injunctions prescribing elective duties E(·/·), the resulting logics extend
the non-normal dyadic deontic logic bMDL. Introduced in [7] to formalize the
deontic theory of Prabhākara, bMDL only contained a single deontic operator
O(·/·) for obligations.

2.1 Deontic logics for Kumārila and Prabhākara

The languages LLPr for Prabhākara and LLKu for Kumārila are defined through
the following BNF (with X ∈ {O,F} for LLPr and X ∈ {O,F , E} for LLKu):

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | �U ϕ | X (ϕ/ϕ) with p ∈ Atom

Atom is the set of atomic propositions, ¬ and ∨ are primitive connectives, the
others defined as usual. �U ϕ reads “it is universally necessary that ϕ”. The op-
erators O(ϕ/ψ)/F(ϕ/ψ)/E(ϕ/ψ) read as “ϕ is obligatory/forbidden/enjoined
by an injunction prescribing an elective ritual, given ψ”.

Axiomatization. The properties of the operators O,F , and E are extracted
from the following Mı̄mām. sā principles (see [11] for details on how these prin-
ciples were transformed into axioms for O, and [20] for the remaining axioms):

(P1) “If the accomplishment of a task presupposes the accomplishment of
another connected but different task, the obligation to perform the
first task prescribes also the second one”.

(P2) “Two actions that exclude each other cannot be prescribed simultane-
ously to the same group of eligible people under the same conditions”.

(P3) “If two sets of conditions always identify the same group of eligible
agents, then a command valid under the conditions in one of those
sets is also enforceable under the conditions in the other set”.
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The two logics are described in Definition 2.1. In contrast with bMDL [7],
we use S5 to characterize necessity �U , instead of S4: Note that the concept
of necessity is not explicitly defined by Mı̄mām. sā authors in the context of
deontic reasoning, and the choice of S4 in [7] was motivated by the simpler
proof theory of this logic, with respect to S5. In this paper we use necessary
statements mainly as global assumptions (assertions commonly recognised as
describing “facts”); hence, any assumption defines an equivalence class of states
sharing the same truths.

Using the corresponding universal modality of S5 makes the bMDL axiom
✷((ψ → θ)∧ (θ → ψ))∧O(ϕ/ψ) → O(ϕ/θ) redundant (it is derivable by using
axiom T and the congruence rule of S5), also in the versions for E and F .

Definition 2.1 Prabhākara’s logic LPr extends S5 with the following axioms:

ALKu1. (�U (ϕ→ ψ) ∧ O(ϕ/θ)) → O(ψ/θ)

ALKu2. (�U (ϕ→ ψ) ∧ F(ψ/θ)) → F(ϕ/θ)

ALKu3. �U (ψ → ¬ϕ) → ¬(X (ϕ/θ) ∧ X (ψ/θ)) for X ∈ {O,F}

ALKu4. �U (ϕ→ ψ) → ¬(O(ϕ/θ) ∧ F(ψ/θ))

ALKu5. (�U ((ψ → θ) ∧ (θ → ψ)) ∧ X (ϕ/ψ)) → X (ϕ/θ) for X ∈ {O,F}

Kumārila’s deontic logic LKu, extends LPr with the following axioms:

ALKu6. (�U (ϕ→ ψ) ∧ E(ϕ/θ)) → E(ψ/θ)

ALKu7. �U (¬ϕ) → ¬E(ϕ/ψ)

ALKu8. (�U ((ψ → θ) ∧ (θ → ψ)) ∧ E(ϕ/ψ)) → E(ϕ/θ)

A derivation of ϕ in LKu (i.e., ⊢LKu ϕ) is defined as usual [3] (similarly for LPr).

Axioms ALKu1, ALKu2, ALKu6 are based on (P1) and correspond to the prop-
erty of monotonicity. Axioms ALKu3, ALKu4 formally represent (P2) (found in
Kumārila’s Tantravārtika ad 1.3.3 [27]). Last, the Mı̄mām. sā property (P3) is
ensured by ALKu5, ALKu8.

Semantics We present a neighbourhood semantics (e.g., see [5]) for LPr and
LKu (resp.), as defined along the lines of the one for bMDL in [7]:

Definition 2.2 An LPr-frame FLPr = 〈W,R�U ,NO,NF 〉 is a tuple where W 6=
∅ is a set of worlds, R�U = W ×W is the universal relation, and NX : W 7→
℘(℘(W )× ℘(W )) is a neighborhood function (for X ∈ {O,F}). FLPr satisfies:

(i) If (X,Z) ∈ NO(w) and X ⊆ Y , then (Y, Z) ∈ NO(w);

(ii) If (X,Y ) ∈ NX (w), then (X,Y ) /∈ NX (w) for X ∈ {O,F};

(iii) If (X,Z) ∈ NF (w) and Y ⊆ X, then (Y, Z) ∈ NF (w);

(iv) It cannot be the case that (X,Z) ∈ NO(w) and (X,Z) ∈ NF (w).

An LPr-model MLPr = 〈W,R�U ,NO,NF , V 〉 extends the LPr-frame by a valua-
tion function V which maps propositional variables to subsets of W .

Definition 2.3 An LKu-frame FLKu = 〈W,R�U ,NO,NF ,NE〉 is an LPr-frame
extended with a neighbourhood function NE :W 7→ ℘(℘(W )× ℘(W )) s.t.:
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(v) If (X,Z) ∈ NE(w) and X ⊆ Y , then (Y, Z) ∈ NE(w);

(vi) If (X,Y ) ∈ NE(w), then X 6= ∅.

An LKu-model MLKu = 〈FLKu, V 〉 is an LKu-frame with a valuation function V .

Note that (i), (iii), (v) express the property of monotonicity in the first ar-
gument of the deontic operators (cf. ALKu1, ALKu2, ALKu5); (ii), (iv) correspond
to the principle (P2) (cf. ALKu3, ALKu4), and (vi) expresses the self consistency
of statements prescribing elective sacrifices (cf. ALKu6).

Definition 2.4 LetMLKu be an LKu-model and ||θ|| = {w ∈W | MLPr, w |= θ}.
We define the satisfaction of a formula ϕ ∈ LLKu at any w of MLKu inductively:

MLKu, w � p iff w ∈ VLPr(p), for any p ∈ Atom

MLKu, w � ϕ→ ψ iff MLKu, w 2 ϕ or MLKu, w � ψ

MLKu, w � ¬ϕ iff MLKu, w 2 ϕ

MLKu, w � �U ϕ iff for all wi ∈W s.t. (w,wi) ∈ R�U , MLKu, wi � ϕ

MLPr, w � X (ϕ/ψ) iff (||ϕ||, ||ψ||) ∈ NX (w) for X ∈ {O,F , E}

Global truth and validity are defined as usual [3]. Note that satisfaction for
MLPr-models is defined as for MLKu, without the clause for NE(w).

Theorem 2.5 (Soundness and completeness) The logic LKu (LPr) is
sound and complete with respect to the class of LKu-frames (LPr − frames).

Soundness and completeness are proven as usual. The latter is shown using
the method of canonical models [5], generalized to the dyadic setting.

2.2 The solutions of Prabhākara and Kumārila

The sentences (A)-(D) comprising the śyena controversy (Sect. 1) are formal-
ized in a similar way by the two authors. The only difference is their interpreta-
tion of (A), prescribing the śyena sacrifice: for Prabhākara this is a conditional
obligation (AP ), whereas Kumārila interprets it as an elective sacrifice (AK).
Their formalization:

(AP ) O(Śy/des kill) (B) F(harm/⊤)
(C) �U (Śy → death)

(AK) E(Śy/des kill) (D) �U (death → harm)

Fig. 1 shows the models MP and MK demonstrating the mutual satisfiabil-
ity of (AP ), (B), (C), (D) in LPr and of (AK), (B), (C), (D) in LKu, respectively,
and hence the consistency of the śyena controversy for both authors. That is,
there is always at least one world in which no command is violated. (A com-
mand O(φ/ψ) or E(φ/ψ) is violated if ψ is satisfied, but φ is not. F(φ/ψ) is
violated when both φ and ψ are satisfied.)

The models MP and MK , satisfying Def. 2.2 and 2.3, are defined as: WP

= WK={wi | 1 ≤ i ≤ 8} s.t. ||harm|| = V (harm)={w2, w3, w4, w6, w7, w8},
||kill|| = V (kill) = {w2, w3, w6, w7}, ||Śy|| = V (Śy) = {w4, w8}, ||des kill|| =
V (des kill) = {w5, w6, w7, w8} (with V P = V K = V ), NP

F
(wi) = NK

F
(wi) =

{(X,Y ) | X ⊆ {w2, w3, w4, w6, w7, w8}, Y = W}, NP
O
(wi) = NK

E
(wi) =

{(V,Z) | {w2, w6} ⊆ V,Z = {w5, w6, w7, w8}} and NK
O
(wi) = ∅.
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w1

w2

harm

w3

harm,

death

w4

harm,

death, Śy

w5

des kill

w6

harm,
des kill

w7

harm, death,

des kill

w8

des kill

harm, death,

Śy

Fig. 1. depicts the models MP and MK satisfying the Śyena controversy (Ai)-(D)
(i ∈ {P,K}): for (||harm||, ||⊤||) ∈ N i

F (i ∈ {P,K}). The worlds wi ∈ ||harm|| are
coloured grey and for (||Śy||, ||des kill||) ∈ NP

E (wi) = NK
O (wi) (expressing AP and

AK , resp.) the elements are indicated by arrows from each wi ∈ ||des kill|| to
each wj ∈ ||Śy||. For Prabhākara w1 is the only deontically acceptable world, while
Kumārila also accepts w5, as (AK) has no deontic force.

From Kumārila’s perspective, all the worlds that are not coloured grey—i.e.,
worlds where the prohibition (B) is not violated—are deontically acceptable,
namely, no command with deontic force is violated. Kumārila’s answer re-
lies on the distinction between obligations and statements prescribing elective
sacrifices, which are mutually independent: i.e., in case they conflict with a
prohibition, elective sacrifices can be omitted without risk, thus avoiding to
violate the prohibition. In contrast, in Prabhākara’s logic the two neighbour-
hoods associated with (AP ) and (B) are not independent: i.e., condition (iv)
of Def. 2.2 excludes the possibility that the same neighbourhood of a world
represents both a prohibition and an obligation. However, since the eligibil-
ity conditions of the two commands do not exactly coincide, there is at least
one world—i.e., w1—in which no command is violated. That is, w1 is the
only deontically acceptable world from Prabhākara’s point of view, the state
in which one does not desire to kill one’s enemy. Since desires are interpreted
by Prabhākara as irreversible decisions—i.e., for Prabhākara the desire to kill
amounts to a decision to kill—his solution is a case of CTD reasoning: the
injunction to perform the śyena represents an obligation taking effect when a
violation (the decision to cause a death) has occurred.
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Following [7], the model MP also explains Prabhākara’s claim that the
Vedas do not impel one to perform the malevolent sacrifice śyena, they only
say that it is obligatory. This claim that a Vedic obligation does not necessarily
impel was wrongly considered meaningless, for instance, in [25].

3 Man.d. ana

Man.d. ana is a key Sanskrit philosopher, also known for his revolutionary ap-
proach to deontic modals. He reduces commands to descriptions of states of
affairs, that is, to instrumentality relations holding between actions and desired
results. For instance, “you are obliged to perform the kār̄ıri ritual, if you desire
rain” is reduced to “the kār̄ıri is an instrument for attaining rain”. Presently
we interpret ‘instrument’ as an action sufficient to guarantee its result. Despite
his revolutionary approach, Man.d. ana did not wish to break with the Mı̄mām. sā
tradition and its distinction among different types of duties. Still, his reduc-
tion may suggest that since all command-types are mere instrument statements
there is also no difference in degrees of commands. To retain the distinction,
Man.d. ana adopts two constraints involving pāpa, i.e., bad karma.

First, to individuate fixed duties, Man.d. ana argues for the universal desir-
ability of their coveted result: the reduction of bad karma. For Man.d. ana, the
reduction of bad karma is a desire shared by every agent. The introduction
of this fixed desire, preserves the distinction between obligations (instruments
that reduce bad karma) and elective duties (instruments serving specific de-
sires). Second, to ensure the prohibitive strength of actions leading to unde-
sirable outcomes, Man.d. ana argues that prohibited actions are instruments to
outcomes whose undesirability is incommensurably greater than any desirable
result. This universally undesired result is the accumulation of bad karma.

As will be shown at the end of this section, Man.d. ana’s solution to the śyena
controversy centers on the rationality of the agents involved. No rational agent
would desire the small benefit of performing śyena in exchange for its accessory
negative result, the accumulation of bad karma.

Related work. As Man.d. ana reasons about actions and outcomes, a PDL-like
language [8,23] seems adequate. Actually, a minimal action-language suffices:
i.e., negation and combination. Hence, we base our logic on [2]: a basic PDL-
like language reducing action-modalities to action constants. The formalism in
[2] is aimed at representing Von Wright’s theory of instrumentality and hence
appears particularly suitable. An alternative approach may be BDI logics [22],
due to its connection to means-end reasoning (cf. [18]). However, they do not
accommodate the required distinction between actions and outcomes. (Due to
the role of desires in Man.d. ana’s account, BDI-like extensions of our logic will
be reserved for future work.)

To reason about bad karma, we adopt and enhance an Andersonean reduc-
tion to deontic logic [1]: ϕ is obligatory iff ¬ϕ necessarily implies a sanction.
The reduction was adapted by Meyer [23] to the deontic action setting: action
∆ is obligatory iff all performances of its complement ∆ lead to a violation.
Similarly, Man.d. ana can be seen as a reductionist of deontic reasoning: every
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Vedic command is an instrumentality statement about actions leading to states
of affairs, sanctions, and rewards. In deontic logic, the use of positive constants
was introduced by Kanger [19]: ϕ is obligatory iff in the good state ϕ holds.
However Kanger’s approach takes ϕ as a necessary condition for the ‘good state’
whereas Man.d. ana takes ϕ as sufficient condition for ‘reducing bad karma’.

3.1 The logic LMa: Language, Axioms and Semantics

We introduce the normal modal logic LMa equipped with action constants
and karma constants. LMa captures Man.d. ana’s intended reduction of norms
to claims of instrumentality. We start by introducing an algebra of action
LAct and the logical language LLMa into which these actions will be translated.
Presently, a single-agent setting suffices. Let Act be a set of atomic actions δ
(such as ‘opening the window’). The action language LAct is defined as

∆ ::= δ | ∆ | ∆ ∪∆ with δ ∈ Act

The operator − denotes the complement of an action, whereas ∪ is read as a
disjunctive action. We use uppercase Greek letters ∆,Γ, ... to denote arbitrary

actions. We define ∆ ∩ Γ = ∆ ∪ Γ as the the joint performance of actions.
The language LLMa for Man.d. ana is defined through the following BNF:

ϕ ::= p | dδ | P | R | ¬ϕ | ϕ ∨ ϕ | �S ϕ | �U ϕ

with p ∈ Atom and dδ ∈ WitAct, where Atom is the set of atomic propositions,
and WitAct the set of atomic constants called ‘action-witnesses’. The constant
dδ is to be read as a witness stating that ‘the action δ has just been success-
fully performed’. 7 P is a constant reading ‘bad karma is accumulated’ and
the constant R reads ‘bad karma is reduced’. The unary operators �S and �U

are interpreted as ‘in all succeeding states it holds that’ and ‘it is universally
necessary that’, respectively. Their respective duals �S and �U are defined as
usual.

The translation between LAct and action formulae in our object language
LLMa is established through the following recursive definition:

• For all δ ∈ Act, t(δ) = dδ

• For all ∆ ∈ LAct, t(∆) = ¬t(∆)

• For all ∆,Γ ∈ LAct, t(∆ ∪ Γ) = t(∆) ∨ t(Γ)

The upshot of the above translation is that it enables us to reason with actions
on the object language level. The resulting versatility will prove useful in
(i) defining a variety of modal operators (including instruments and commands)
and (ii) axiomatizing action-properties. For instance, �S (t(∆) → ϕ) reads “at
every successor state witnessing the successful performance of action ∆, the

7 The logic LMa does not allow to keep track of action histories, only the last executed actions
are known (cf. the presence of action witnesses). This is due to the absence of modalities
referring to the past, which are not required in our present analysis of instruments.
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state-of-affairs ϕ holds”. When taken together with action, the modality �S can
be seen as an indeterministic execution operator, in the spirit of propositional
dynamic logic (PDL): “every successful execution of ∆, guarantees ϕ”. See
[2] for a discussion of this basic PDL-reductionist approach, and for a formal
analysis of different notions of instrumentality.

Axiomatization. As for the previously introduced logics, also for Man.d. ana
we want to avoid imposing any property that cannot be traced back to the
Mı̄mām. sā in general, and Man.d. ana in particular. For this reason, the pro-
posed logic will be rather minimal. The Hilbert-style axiomatization of LMa is
presented in Def. 3.1 (below) and justified accordingly: Both �U and �S are nor-
mal modal operators due to the S5 charactization of the former and ALMa1 for
the latter. ALMa2 expresses a bridge axiom, stating that what holds universally,
must also hold at any successor state. ALMa3 conveys the Mı̄mām. sā principle
that whenever bad karma is attainable, it is also avoidable. (This principle is
based on the Mı̄mām. sā meta-rule according to which all commands need to be
non-trivial and to prescribe something new, see [10].) ALMa4 captures the same
property for the reduction of bad karma, and ALMa5 gives a central Mı̄mām. sā
principle: “if an action is executable, then it is executable in such a way that
it does not trigger both the reduction and the increase of bad karma” ([29] ad
1.1.2), see Remark 3.9.

Definition 3.1 Man.d. ana logic LMa extends �U -S5 with the following axioms:

ALMa1. �S (ϕ→ ψ)
→ (�S ϕ→ �S ψ)

ALMa2. �U ϕ→ �S ϕ

ALMa3. �S P → �S ¬P

ALMa4. �S R → �S ¬R

ALMa5. �S t(∆) → �S (t(∆) ∧ (¬P ∨ ¬R))

A derivation of ϕ ∈ LLMa in LMa from a set Σ ⊆ LLMa (i.e., Σ ⊢LMa ϕ) is defined
as usual [3]. When Σ = ∅, we say ϕ is an LMa-theorem, and write ⊢LMa ϕ.

Semantics. We introduce a relational semantics for the logic LMa:

Definition 3.2 An LMa-frame FLMa = 〈W, {Wδ : δ ∈ Act},WP,WR, R�U , R�S 〉
is a tuple with W 6= ∅ a set of worlds w, v, u... etc. For every dδ ∈ WitAct,
let Wδ ⊆ W be the set of worlds witnessing the successful performance of δ.
Let W∆ = W \W∆, and W∆∪Γ = W∆ ∪WΓ. WP ⊆ W and WR ⊆ W , are sets
of worlds witnessing the accumulation and reduction of bad karma, resp. Last,
R�S ⊆W ×W and R�U =W ×W are binary relations s.t. the following holds:

(i) R�S ⊆ R�U ;

(ii) ∀w, v ∈W ((w, v) ∈ R�S and v ∈WP) implies ∃u((w, u) ∈ R�S and u 6∈WP)

(iii) ∀w, v ∈W ((w, v) ∈ R�S and v ∈WR) implies ∃u((w, u) ∈ R�S and u 6∈WR)

(iv) ∀w, v ∈ W ((w, v) ∈ R�S and v ∈ W∆) implies ∃u((w, u) ∈ R�S and
u ∈W∆ \WR ∩WP)

An LMa-model is a tuple MLMa = 〈FLMa, V 〉 where FLMa is an LMa-frame and
V is a valuation function mapping atomic propositional symbols from Atom ∪
WitAct ∪ {P} ∪ {R} to sets of worlds, such that the following conditions are
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satisfied: V (dδ) =Wδ for every dδ ∈ WitAct, V (P) =WP, and V (R) =WR. (n.b.
constants P, R and those from WitAct have a fixed evaluation over frames). We

use Cf
LMa to refer to the entire class of LMa-frames.

The �U -modality behaves as a universal modality, hence its corresponding
accessibility relation R�U is reflexive, symmetric and transitive (cf. Sect. 2).
The purpose of �U is to represent universally true statements, which should
hold ‘at every world’. The intended use of the �S -modality is to represent the
possible outcomes of transitions triggered by actions. We have adopted a very
general notion of the ‘immediate successor’ relation, by imposing no additional
properties on this relation (cf. the absence of irreflexivity and asymmetry).
We point out that there is no Mı̄mām. sā characterization of time available to
justify such properties. However, we do realize that, in general, these properties
may be desirable in a temporal logic of action. Following [2], one can show
that LMa can likewise be characterized by a subclass of LMa-frames including
only asymmetric and intransitive tree-like frames (this is due to the fact that
languages such as LLMa cannot force these additional frame properties; cf. [3]).
For the purpose of this paper, a general notion of the immediate successor
relation suffices.

Semantic evaluation of formulae ϕ from LLMa is defined accordingly:

Definition 3.3 Let MLMa be an LMa-model and w ∈ W of MLMa. We define
the satisfaction of a formula ϕ ∈ LLMa in MLMa at w inductively:

MLMa, w � χ iff w ∈ V (χ), for any χ ∈ Atom ∪WitAct ∪ {P} ∪ {R}
MLMa, w � ¬ϕ iff MLMa, w 2 ϕ

MLMa, w � ϕ ∨ ψ iff MLMa, w � ϕ or MLMa, w � ψ

MLMa, w � �U ϕ iff for all v ∈W s.t. (w, v) ∈ R�U , MLMa, v � ϕ

MLMa, w � �S ϕ iff for all v ∈W s.t. (w, v) ∈ R�S , MLMa, v � ϕ

The semantic clauses for the dual operators �S and �U as well as global truth,
validity and semantic entailment are defined as usual (see [3]).

Theorem 3.4 (Soundness) For all ϕ ∈ LLMa and Γ ⊆ LLMa, if Γ ⊢LMa ϕ, then

Cf
LMa,Γ �LMa ϕ

Proof. Soundness is proven as usual. Explicating the use of constants we prove
axiom ALMa5. Let MLMa be an LMa-model with w ∈ W . Suppose MLMa, w �

�S t(∆). Then ∃v ∈ W s.t. (w, v) ∈ R�S and MLMa, v � t(∆). So v ∈ W∆. By
(iv) of Def. 3.2, ∃u ∈W s.t. (w, u) ∈ R�S and u ∈W∆ \WR∩WP. So MLMa, u �

t(∆) and MLMa, u 6� R ∧ P. Which gives MLMa, w � �S (t(∆) ∧ (¬R ∨ ¬P)). ✷

Strong completeness is proven via canonical model construction, adjusted to
the inclusion of constants. LMa-maximal consistent sets (MCS) are defined as
usual, enjoying the usual properties. We define the following canonical model:

Definition 3.5 Let Mc = 〈Wc, {Wc
dδ
|dδ ∈ LLMa},W

c
P,W

c
R,R

c

�U
,Rc

�S
,Vc〉 be a

canonical model, where Wc is the set of all LMa-MCSs ( Γ,Σ,Φ...) and:

• For all dδ ∈ LLMa and Σ ∈ Wc, Σ ∈ Wc
dδ

iff dδ ∈ Σ
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• For α ∈ {P, R}, and all Σ ∈ Wc, Σ ∈ Wc
α iff α ∈ Σ

• For α ∈ {�S ,�U }, and all Σ,Γ ∈ Wc, (Σ,Γ) ∈ Rc
α iff {φ| [α]φ ∈ Σ} ⊆ Γ

• For all χ ∈ Atom ∪ ActWit ∪ {P} ∪ {R}, Vc(χ) = {Σ|χ ∈ Σ ∈ Wc}

The existence lemma and truth lemma are proven in [3, Sect. 4.2] (nb. LMa

is a normal modal logic). We show that Mc belongs to the class of LMa-models,
i.e., satisfying the properties of Def. 3.2.

Theorem 3.6 Mc is an LMa-model.

Proof. We demonstrate the LMa specific properties (ii) and (iv) (Def. 3.2).
The proofs of the remaining properties are similar.

(ii) For all Σ,Γ ∈ Wc, (Σ,Γ) ∈ Rc

�S
with Γ ∈ Wc

P, there exists a Θ ∈ Wc

s.t. (Σ,Θ) ∈ Rc

�S
and Θ 6∈ Wc

P. Assume the antecedent, we construct the set

Θ. Let Θ− = {¬P} ∪ {φ|�S φ ∈ Σ}. Suppose Θ− is not LMa-consistent. Hence
for some φ1, .., φn ∈ Θ−, we have ⊢LMa φ ∧ ... ∧ φn → P. By LMa we have
⊢LMa �S (φ ∧ ... ∧ φn → P), which implies ⊢LMa �S (φ ∧ ... ∧ φn) → �S P, and so
⊢LMa �S φ∧ ...∧�S φn → ¬ �S ¬P. By monotonicity of LMa, ⊢LMa �S φ∧ ...∧�S φn∧

�S P → ¬ �S ¬P. By assumption �S φ1, ...,�S φn, �S P ∈ Σ and MCS properties, we
have ¬ �S ¬P ∈ Σ. However, since Σ is a LMa-MCS we have �S P → �S ¬P ∈ Σ,
and thus �S ¬P ∈ Σ. Contradiction. Hence, Θ− is LMa-consistent. Let Θ be
the LMa-MCS extending Θ− (Lindenbaum’s lemma). By construction of Mc

we obtain (Σ,Θ) ∈ Rc

�S
and since ¬P ∈ Θ− ⊆ Θ we have Θ 6∈ Wc

P.

(iv) For all Σ,Γ ∈ Wc, if (Σ,Γ) ∈ Rc

�S
with Γ ∈ Wc

t(∆), then there exists a

Θ ∈ Wc s.t. (Σ,Θ) ∈ Rc

�S
and Θ ∈ Wc

t(∆) \W
c
R ∩Wc

P. Assume the antecedents,

we construct such a Θ. Let Θ− = {t(∆)} ∪ {¬R ∨ ¬P} ∪ {φ|�S φ ∈ Σ}. Suppose
Θ− is LMa-inconsistent. Then there are φ1, ..., φn ∈ Θ− s.t. ⊢LMa φ1∧...∧φn →
¬(t(∆)∧(¬R∨P)). Hence, we have ⊢LMa �S φ1∧...∧�S φn → ¬ �S (t(∆)∧(¬R∨P)).
By monotonicity, ⊢LMa �S φ1∧...∧�S φn∧ �S (t(∆)) → ¬ �S (t(∆)∧(¬R∨P)). Since
�S φ1, ...,�S φn, �S (t(∆)) ∈ Σ, we get ¬ �S (t(∆) ∧ (¬R ∨ P)) ∈ Σ. By inclusion of
axiom �S t(∆) → �S (t(∆)∧ (¬R∨¬P)) ∈ Σ, we get a contradiction. Hence, Θ−

is consistent. Let Θ be the LMa-MCS extending Θ−. By construction of Θ we
get (Σ,Θ) ∈ Rc

�S
. Since t(∆) ∈ Θ we have Θ ∈ Wc

t(∆). Last, since ¬R ∨ P ∈ Θ

we get Θ 6∈ Wc
R ∩Wc

P, hence Θ ∈ Wc
t(∆) \W

c
R ∩Wc

P. ✷

Corollary 3.7 (Strong Completeness for LMa) For all φ ∈ LLMa and Γ ⊆

LLMa, we have: if Cf
LMa,Γ |= φ, then Γ ⊢LMa φ.

3.2 Instrumentality and Mı̄mām. sā properties

We introduce Man.d. ana’s notion of instruments, his deontic reduction, and
discuss important Mı̄mām. sā properties and their rendering in Man.d. ana’s logic.

Instruments and Man.d. ana’s deontic reduction. Man.d. ana’s program
consists in reducing all deontic modalities to a uniform notion of instrumen-
tality. Our uniform definition of instrumentality must satisfy the following
Man.d. ana-criteria: First, (i) the instrument relation contains three components:
(a) an action ∆, serving as the instrument; (b) a state-of-affairs ϕ, represent-
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ing the outcome of ∆; and (c) a state-of-affairs χ defining the circumstances
in which ∆ functions as an instrument for bringing about ϕ. Second, (ii) the
circumstances χ must be meaningful, that is, χ must be possible in the broad-
est sense. Last, the agent must have a choice to perform the action ∆ when
circumstances χ occur; (iii) ∆ can be performed and (iv) ∆ can be refrained
from (for (ii–iv) see Śabara on Mı̄mām. sāsūtra 6.1 in [27]). In short, we take
I(∆/ϕ/χ) to read “∆ is an instrument for guaranteeing ϕ in circumstances χ”,
which amounts to:

“(i) Whenever circumstances χ hold, performing ∆ guarantees ϕ, (ii) χ is a
possible circumstance, (iii) at χ, ∆ is possible, and (iv) at χ, ∆ is possible.”

The formal definition of instrumentality, based on (i)-(iv), is given in Def. 3.8.
Man.d. ana’s reduction, that is, the reduction of commands to statements of

instrumentality, is then obtained accordingly: prohibited and obligatory actions
are defined in terms of those actions being instrumental to the outcome of bad
karma (i.e., P) and the reduction of bad karma (i.e., R), respectively. Electives
are those actions instrumental to outcomes that are neither P nor R.

Definition 3.8 Man.d. ana’s notion of instruments in the logic LMa:

I(∆/ϕ/χ) := (i) �U (χ→ �S (t(∆) → ϕ)) ∧
(ii) �U χ ∧
(iii) �U (χ→ �S t(∆)) ∧
(iv) �U (χ→ �S ¬t(∆))

Man.d. ana’s reduction of obligations, prohibitions and elective sacrifices in LMa:

O(∆/χ) := I(∆/R/χ)

F(∆/χ) := I(∆/P/χ)

E(∆/ϕ/χ) := I(∆/ϕ/χ) with ϕ 6⊢LMa P and ϕ 6⊢LMa R

(n.b. we differentiate actions (kill, sacrifice), from results (death, P, R), with
a contrasting font style.)

Recall that for the Mı̄mām. sā school, obligations, prohibitions and electives
cannot be expressed in terms of one another [12,20]. Similarly, Man.d. ana adopts
this irreducibility by limiting the result of the instruments corresponding to
the three norm types. This property is preserved in Def. 3.8. In particular, we
note that the result of an elective sacrifice cannot entail either of the results
identified with obligations or prohibitions. We come back to this in Sect. 3.3,
when we discuss Man.d. ana’s solution to the śyena controversy. Furthermore,
in LMa, the elective operator E has one additional argument. This is because
the instrument notation is more expressive, and there are variables for both
the eligibility condition (the desire) and the purpose (the object of the desire).

Remark 3.9 Now that we have defined instruments, let us go back to axiom
ALMa5 in Def. 3.1. Observe that it limits the interaction between actions and
karma constants. In essence, ALMa5 ensures that an action ∆ cannot be both
obligatory and prohibited, i.e., ∆ cannot at the same time be an instrument
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for the reduction and accumulation of bad karma (n.b. the inconsistent action
∆∩∆ is excluded from being an instrument by Def. 3.8). Nevertheless, we still
allow for singular situations where we end up with both P and R after executing
∆, however ALMa5 guarantees that this must be the result of some other action
Γ executed alongside ∆ (one being a prohibition, the other an obligation).

We show below that the logic LMa is expressive enough to entail other
principles that can be found in Mı̄mām. sā (as LMa-theorems).

Contingency. For the Mı̄mām. sā it is essential that actions in commands are
meaningful (see Śabara on Mı̄mām. sāsūtra 6.1, [27]). For an action to be mean-
ingful, an agent must have the choice to perform it as well as refrain from
performing it:

I(∆/ϕ/χ) → �U (χ→ ( �S t(∆) ∧ �S ¬t(∆))) for ϕ ∈ {P, R} or (ϕ 6⊢ P and ϕ 6⊢ R)

In deontic logic this property is known as the contingency principle [30, p. 11][1].
The above formula is an LMa-theorem, guaranteed solely by our definition of
instruments ((iii) and (iv) in Def. 3.8). However, for obligations and prohibi-
tions the property is also implied in association with axioms ALMa3 and ALMa4.
That is,

I(∆/R/χ) ≡ O(∆/χ) ≡ ( �U χ ∧�U (χ→ �S (t(∆) → R)) ∧�U (χ→ �S t(∆))

and,

I(∆/P/χ) ≡ F(∆/χ) ≡ ( �U χ ∧�U (χ→ �S (t(∆) → P)) ∧�U (χ→ �S t(∆))

are LMa-theorems. These theorems demonstrate that condition (iv) of instru-
ments (Def. 3.8) is admissible in the light of Man.d. ana’s analysis. However, (iv)
is still necessary to ensure meaningfulness of actions for elective duties; i.e.,
6⊢LMa E(∆/ϕ/χ) ≡ ( �U χ ∧�U (χ→ �S (t(∆) → ϕ)) ∧�U (χ→ �S t(∆)).

No impossible commands. Although the logic LMa does not adopt a D-
axiom for deontic consistency, the following formula is in fact an LMa-theorem:

⊢LMa ¬(F(∆/χ) ∧ F(∆/χ))

The theorem corresponds to the Mı̄mām. sā principle: “It is impossible that the
Vedas tell you that you’ll fall (i.e., be reborn in hell) both if you do something
and if you don’t do it” ([29, p. 32]). The quote refers to the impossibility of the
Vedas giving contradictory instruments. The theorem is a direct consequence of
the definition of instrumentality together with axiom ALMa3. In fact, we obtain
a similar theorem for obligations from axiom ALMa4. Clearly, the scheme does
not hold for elective duties (cf. Def. 3.8). Last, the logic LMa satisfies the
Mı̄mām. sā principle that obligations and prohibitions are strictly incompatible
(even on the derived level). That is, the following formula is LMa-valid:

¬(O(∆/χ) ∧ F(∆/χ))
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Mı̄mām. sā principles. The logics for Prabhākara and Kumārila are built
upon principles (P1)-(P3) recalled in Sect. 2. A natural question to ask is
whether these principles are preserved in Man.d. ana’s reduction logic. Their
reformulation in LMa is as follows (notice that (P1)-(P3) were postulated for
commands in particular, not instruments in general):

(p1) (I(∆/ϕ/χ) ∧�U (t(∆) → t(Γ))) → I(Γ/ϕ/χ) such that (⋆)

(p2) (I(∆/ϕ/χ) ∧�U (ϕ→ ¬ψ)) → ¬I(∆/ψ/χ) such that (⋆)

(p3) (I(∆/ϕ/χ) ∧�U (χ′ ≡ χ)) → I(∆/ϕ/χ′) such that (⋆)

(⋆) ϕ ∈ {P, R} or (ϕ 6⊢ P and ϕ 6⊢ R)

(p1)-(p3) deal with instruments that are obligations, prohibitions and elec-
tives.

Principle (p1) is not an LMa-valid formula, (a counter-model is easily ob-
tained), and for good reasons: instrumentality is a notion of sufficient cause.
Man.d. ana knew this, but he had to somehow preserve the property expressed in
(P1). He achieved this by explaining necessity as external to instruments: that
is, Man.d. ana’s account of universally desirable outcomes (i.e., R and P) ensures
that no agent would, from a rational point of view, transgress such commands.
Hence, although necessary conditions of instruments leading to reducing bad
karma are themselves not recognized as instruments, from a meta point of view,
no rational agent would refrain from performing them.

Principle (p2) is LMa-valid and it follows from Man.d. ana property (cf.
Def. 3.8) that actions must be meaningful (thus leading to meaningful out-
comes).

Last, (p3) is LMa-valid and follows from the fact that universal necessity is
a normal modal operator.

3.3 Man.d. ana’s solution

We utilize Man.d. ana’s reduction and demonstrate that, when formalized in
terms of instrumentality, the sentences (A)-(D) from Sect. 1 are satisfiable.
That is, we show the consistency of Man.d. ana’s solution to the śyena contro-
versy by providing an LMa-model satisfying the following:

(AM ) E(Śy/death/des kill) ≡ I(Śy/death/des kill)
≡ �U (des kill → �S (t(Śy) → death)) ∧ �U des kill ∧
�U (des kill → �S t(Śy)) ∧�U (des kill → �S ¬t(Śy))

(BM ) F(harm/⊤) ≡ I(harm/P/⊤) ≡ �U �S t(harm) ∧�U �S (t(harm) → P)

(CM ) �U (t(Śy) → death)

(DM ) �U (death → t(harm))

A model satisfying (AM )-(DM ) is defined as follows: MLMa = 〈FLMa, V 〉
with FLMa = 〈W,WŚy,Wharm,WP,WR, R�U , R�S 〉 s.t.: W = {w1, w2, w3},

WŚy =Wharm =WP = {w2}, WR = ∅, V (des kill) = {w0}, V (death) = {w2},

R�U = W × W , R�S = {(w1, w2), (w1, w3), (w2, w2), (w2, w3), (w3, w2),
(w3, w3)}. Note that MLMa satisfies the properties in Def. 3.2. The model
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w1

des kill

w2

t(Śy),
death,

t(harm),
P

w3

Fig. 2. śyena model in LMa, with the arrows representing the relation R�S .

is represented in Fig. 2.
For all w ∈ {w0, w1, w2}, we have M, w � I(harm/P/⊤) ∧

I(Śy/death/des kill)∧�U (t(Śy) → death)∧�U (death → t(harm)). The model
shows that the śyena example is consistent. Furthermore, it illustrates that,
given our assumptions, one cannot perform the śyena without accumulating
bad karma P. It can easily be verified that I(Śy/P/des kill) is the case (con-
ditions (ii)-(iv) of the definition of instrumentality (Def. 3.8) follow from AM ,
and condition (i) follows from AM , BM and DM ). So, the śyena is an instru-
ment for bad karma. In fact, in the logic LMa, that is on a derived level (see
footnote 5), the śyena sacrifice is prohibited F(Śy/des kill). By contrast, on
the Vedic level śyena is not prohibited. Following Man.d. ana, in LMa something
can be prohibited and elective at the same time, without it being inconsistent.
Man.d. ana’s reasoning for the śyena sacrifice is the following: from a state where
one desires to kill their enemy, it is rationally preferable not to perform the
śyena. Performing it would transgress the prohibition of harming a living be-
ing, with the result of accumulating bad karma. This is necessarily undesirable
for anyone, as discussed in Man.d. ana:

When it comes to pain and its cause, the one who is afflicted by them will
always desire their removal. And the one who desires well-being desires to
destroy the obstacle (bad karma) towards it. Therefore, the destruction of
bad karma, a destruction which is the cause of what is desired, is always
desired. (Vidhiviveka ad 2.8 [26])

4 Discussion of the three śyena solutions

We presented formal models that capture Prabhākara, Kumārila and
Man.d. ana’s responses to the śyena case. Here we compare the different so-
lutions relating them to the history of deontic logic. Recall the main challenge
facing the three authors: how to deal with seemingly conflicting prescriptions
coming from a source that is assumed to be consistent. Prabhākara’s solution
is akin to CTD reasoning in deontic logic, which introduces (sub-ideality) levels
to a normative system, not treating every norm on equal footing. We distin-
guish norms that hold primarily (possibly conditioned on circumstances) from
norms that only arise in case of a norm violation, the latter being CTD obli-
gations. In this case, the prohibition to commit violence is a primary norm,
whereas the prescription of the śyena is an obligation that only comes into
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force once a violation has occurred: for Prabhākara, the intention to kill one’s
enemy amounts to violence. Here, we see a striking similarity with the most
common interpretation of the GMP, namely Chisholm’s paradox [6].

Although Prabhākara and Kumārila agree that the śyena case does not con-
stitute a dilemma, they argue so on different grounds. For Kumārila, prohibi-
tions do not interact with electives in a mutually conflicting way. In particular,
as an elective sacrifice the śyena has no deontic force and is thus overturned
by the Vedic prohibition to commit violence. Despite some shallow similarities
with the deontic logic literature on priority orderings (e.g., [15])—i.e., obliga-
tions and prohibitions being of highest priority for Kumārila—and hierarchies
of different norm systems (e.g., [4])—i.e., obligations and prohibitions forming a
proper norm system in contrast to electives—we note that Kumārila’s approach
is different, in the sense that he assigns no deontic force to elective sacrifices
whatsoever. They are mere sacrificial ways to attain one’s end, without being
compelling, eliminating the controversy altogether.

Man.d. ana preserves Kumārilas distinction between obligatory and elective
sacrifices but offers a different solution: deontic modalities are just variations
of a shared underlying structure, namely, instrument relations. In order to
preserve the appealing distinction between the three norm types, Man.d. ana
relates obligations and prohibitions to the reduction and accumulation of bad
karma. Elective sacrifices are karma-independent. They might have indirect
consequences on the reduction/accumulation of bad karma (e.g., the śyena),
but their direct results are not karma-results. Man.d. ana argues that avoiding
the accumulation of bad karma is a priori desired by all human beings, similarly
its reduction. By reducing the Vedic norm system to notions of instruments
and desires Man.d. ana does not yet resolve the problem, but transforms the
seeming problem of conflicting norms to a problem of conflicting desires instead.
What remains is a conflict between one’s desire to kill an enemy and one’s
“rational” desire to avoid accumulating bad karma. In other words, Man.d. ana
does not address the problem on the command level, but on the instrument
level and, subsequently, solves it on the desire level. Interestingly, Man.d. ana
is the only author that endorses the view that there is a real dilemma or
conflict at stake in the śyena case. Nevertheless, he resolves the dilemma by
arguing that avoiding the accumulation of bad karma is the highest of desires,
which implies that no rational agent would ever perform the śyena. We find
a priority ordering on the level of desires, consequently resolving the implied
commands. There are striking similarities between Man.d. anas approach and
the Kanger-Anderson approach to deontic logic [1,19], by opting for a unifying
approach reducing a variety of modalities to a single (alethic) modality together
with the notions of sanction (accruing bad karma) and goodness (reducing
bad karma). However, Man.d. ana’s final solution to the śyena controversy is a
decision-making problem that occurs on the meta-level, by making an appeal
to rationality and undesirability.

Future work. Our interdisciplinary work only scratches the surface of the
research opportunities offered by formal approaches to Mı̄mām. sā reasoning. As
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illustrated in this work, these approaches can provide a better understanding
of Mı̄mām. sā texts, and may offer new stimuli for the deontic logic community.

Since the logics of the first two authors, Prabhākara and Kumārila, have
been extensively studied elsewhere [7,20], further investigation of the logic of
Man.d. ana and his reduction is planned. For instance, to simplify matters,
in this work we took desires as regular terms of our object language. We
plan to investigate the logical behaviour of desires as an intentional modality
interacting with instruments and norms.

Acknowledgements. Work funded by the projects WWTF MA16-028
and FWF W1255-N23.
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Abstract

In this discussion paper we are interested in anankastic conditionals such as “if you
want to smoke you must buy cigarettes” and near-anankastic conditionals such as
“if you want to smoke, you must not buy cigarettes.” First, we discuss challenges
to representing such conditionals in deontic logic, in particular in relation to the
use of context. We do this through a discussion of the Tobacco shop scenario, an
example dealing with ambiguity of certain deontic conditionals. Second, we illustrate
how ambiguity of natural language can be formally represented through the use of
hyper-modalities, using a minimal modal logic for (near-)anankastic conditionals. We
illustrate how the hyper-modal setting can disambiguate such conditionals. As the
Tobacco shop scenario suggests, in our formalism interaction between antecedent,
consequent, and context can reduce ambiguity in the involved conditionals.

Keywords: anankastic conditionals, deontic logic, desire modalities, hyper modalities

1 Introduction

Natural language offers a wide assortment of sometimes ambiguous deontic
expressions. For example, consider the sentence “if you want to smoke, you
must buy cigarettes.” This natural language sentence can be interpreted in
at least two ways. On the one hand, we may say that the best means to
smoke is to buy cigarettes. On the other hand, we may say that the most
ideal way to satisfy your desire is to buy cigarettes (better than, say, stealing
cigarettes). The former is a teleological interpretation of ‘must’ (i.e., referring
to a goal), and the latter is called a deontic interpretation (i.e., referring to a
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duty). A modality such as ‘must’ has many different interpretations [9,15]. As
a basic example, the utterance ‘it must rain’ may refer to an epistemic necessity
which says that it cannot but rain, but it could also refer to an optimal ideal
expressing that it ought to rain. Often, context may help to disambiguate.
For instance, if it does not rain here and now, then we know ‘must’ cannot
receive an epistemic necessity reading. Hence, different contexts will imply
different logical reasoning with the same modality. For example, epistemic
necessity may be an S5 modality, whereas deontic obligation is a KD modality.
Likewise, the different interpretations of the conditional “if you want to smoke,
you must buy cigarettes” will have distinct logical formalisations. Following
[7], we call modalities that may receive different interpretations in different
contexts hyper-modalities.

In this paper, we discuss hyper-modality through a discussion of a chal-
lenging example concerning anankastic and near-anankastic conditionals: the
Tobacco shop scenario. The anankastic conditional “if you want to smoke, you
must buy cigarettes” is one of the scenario’s central premises. Von Wright is
said to be the first to adopt the term ‘anankastic’ in his philosophy of agency
[15], but thorough investigation of such conditionals began with the work of
Sæbø [12]. In [12], Sæbø points out that the nature of ‘desire’ in the antecedent
generates some challenges when it comes to the interpretation of the modal
‘must’ in the consequent, challenges which are particular to anankastic condi-
tionals. Since then, alternative accounts have been proposed (e.g., [4,13,14]),
properly introducing anankastics to the research agenda of deontic modality.

The contribution of this discussion paper is twofold. First, we argue that the
analysis of deontic modalities—such as ‘must’—in natural language expressions
can bring new challenges to deontic logic. In particular, we discuss how the
consequent plays an important role in evaluating an anankastic conditional, via
interaction with the conditional’s embedded context and antecedent. Second,
we argue that logical techniques can help to bring some aspects traditionally
referred to pragmatics, within the reach of logical analysis. That is, we develop
a hyper-modal setting in which ambiguous (near-)anankastic conditionals—
such as those in the Tobacco shop scenario—can be formally represented and
which facilitates partial disambiguation of such conditionals.

The paper is structured as follows: In Section. 2, we discuss the Tobacco
shop scenario and (near-)anankastic conditionals. Section. 3 contains a modal
logic for the Condoravdi-Lauer analysis of (near-)anankastics and we formalise
four types of such conditionals. Section. 4 extends this logic to the hyper-modal
setting, internalising part of the pragmatics of interpreting (near-)anankastics.
In Section. 5, we provide a hyper-modal analysis of the Tobacco shop scenario.

2 The Tobacco shop scenario

The development of deontic logic has been driven by deontic benchmark ex-
amples [11]. In this paper we are interested in the Tobacco shop scenario, a
scenario which circulates since at least 2016 in various forms [5]:
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Dr. Smoke wanders through the university’s inner courtyard. Prof. Prag-
matics notices a slight disturbance in Dr. Smoke’s mood. She asks him:
“what’s on your mind?” Smoke shares with her his craving for a cigarette.
Prof. Pragmatics replies “if that is so, then you must go to the tobacco shop!”
At that moment, Prof. Restraint crosses the lawn and, by chance, catches
Pragmatics’ last remark. Restraint asks: “what is going on here?” Pragmat-
ics: “He wants a cigarette!” Prof. Restraint looks surprised: “if that is the
case,” she exclaims, “then you surely should not go to the tobacco shop. ”

The Tobacco shop scenario illustrates a scenario in which Dr. Smoke (hence-
forth, S) receives seemingly incompatible advice, conditional on his desire to
smoke. At face value, we have two similar conditional premises (henceforth, P1
and P2) which share the same antecedent:

If S wants to smoke, then S must buy cigarettes. (P1)

If S wants to smoke, then S must not buy cigarettes. (P2)

Provided that the conditionals involved are of the same form ([2] makes a strong
case for uniformity of conditionals), we have to accept the following inference:

If S wants to smoke, then S must buy cigarettes and S must not
buy cigarettes.

(1)

In any deontic logic that allows for factual detachment and monotonicity
of its modal operators, while also adopting a deontic consistency axiom [8] a
logical inconsistency of P1 and P2 arises in the light of S’s actual desire:

S wants to smoke. (2)

Which gives us:

S must buy and not buy cigarettes. (3)

A consequence such as (3) is not just undesirable, it also does not seem to do
justice to the nature of the involved conditionals. Premises P1 and P2 do not
merely express conflicting obligations given a shared antecedent, they convey
additional information: the relation between smoking and buying cigarettes is
clearly of a different nature than the relation between smoking and not buying
cigarettes. For instance, by looking at the antecedent and consequent of P1,
we observe that buying cigarettes, as an activity, may serve as a means for
smoking. This is not the case for P2. In fact, not buying may even prove
obstructive to satisfying one’s desire to smoke. We find that the interpretation
of ‘must’ in P2 differs from the one adopted in P1: ‘must’ is a hyper-modality.
In the case of P2, the consequent suggests the need for additional context in
which the conditional must be embedded. Conditionals that relate statements
of desire to statements of must, are called (near-)anankastic conditionals.

Many of the benchmark examples in deontic logic revolve around challenges
of reasoning with conditionals in normative settings [8]. Likewise, we find
that the Tobacco shop scenario focuses on a specific, yet ubiquitous, type of
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conditionals: anankastic and near-anankastic conditionals. In this section we
will see that, whereas often only the antecedent is considered in evaluating
the consequent [1], the consequent of a (near-)anankastic conditional plays
an important role in evaluating the conditional, through interacting with the
conditional’s embedded context and antecedent.

2.1 Terminology

We first go through some terminological matters. The group of conditionals
we are interested in share the following structure: ‘if you want φ, you must
ψ’. Depending on the disambiguation of the modalities ‘desire’ and ‘must’, but
also on the relation between their internal structure φ and ψ, we may obtain
different conditionals called anankastic and near-anankastic conditionals. We
recall the terminology of Condoravdi and Lauer [4]:

If

antecedent
︷ ︸︸ ︷

S wants to
︸ ︷︷ ︸

desire predicate

[S] smoke
︸ ︷︷ ︸

internal antec.

, then

consequent
︷ ︸︸ ︷

S must
︸ ︷︷ ︸

modal

[S] buy cigarettes
︸ ︷︷ ︸

prejacent

An anankastic conditional transmits that the complement of ‘must’ functions
as a necessary precondition for the realisation of the complement of ‘desire’.
See [4] for a discussion. A near-anankastic conditional, on the other hand, has
the same general structure but lacks the relation between internal antecedent
and consequent as one of necessary precondition.

Given the above distinction, we find that the two central premises P1 and
P2 of the Tobacco shop scenario are, respectively, an anankastic and a near-
anankastic conditional. Namely, P1 expresses a positive relation between the
internal antecedent ‘S smokes’ and the prejacent ‘S buys cigarettes’, i.e., S’s
buying cigarettes is instrumental to S’s smoking. In this particular case, the
relation is a best-means relation which indicates that buying is an optimal
means serving the goal of smoking. When ‘must’ is taken to refer to an optimal
realisation of a goal, we say it receives a teleological reading. Premise P2 does
not express such a relation (in fact, it hints at a relation to the contrary) and
for that reason it is called a near-anankastic conditional. As a first observation
we find that, in order to determine the nature of the conditional we must
thus go into its substructure: to correctly interpret the conditional, we must
(i) determine the relation between the four central components of a (near-
)anankastic conditional and (ii) disambiguate the involved modalities ‘must’
and ‘desire’. Interpreting the substructure of the conditional, subsequently,
often depends on the context in which the statement occurs.

2.2 Two types of desire and two types of obligations

The right interpretation of the ‘desire’ expressed in a (near-)anankastic’s an-
tecedent, plays a central role in correctly interpreting the consequent (and vice
versa). Condoravdi and Lauer [4] distinguish between two types of desires:
mere desires and action-relevant desires. Mere desires are desires that are
‘psychological facts’ (nothing more), whereas action-relevant desires reflect the
agent’s goal and a corresponding intention to realise that goal. We refer to D1
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and D2 as mere desires, respectively, action-relevant desires. Since the latter is
related to action (i.e., a goal), it is subject to additional constraints. Hence, the
two notions have a different logic which will influence the logical behaviour of
conditionals in which they occur. In other words, ‘desire’ in a (near-)anankastic
conditional is a hyper modality too. Disambiguation may give:

D2 smoke ⇒ O buy cigarettes. 2 (p1)

D1 smoke ⇒ O not buy cigarettes. (p2)

Similarly, we can distinguish different kinds of obligation. For instance, O1

may denote a teleological ‘must’, whereas O2 represents a deontic ‘must’:

D smoke ⇒ O1 buy cigarettes. (p1)

D smoke ⇒ O2 not buy cigarettes. (p2)

Given these possible readings of ‘desire’ and ‘must’ we already obtain four
different interpretations of P1 and P2. We come back to this in Section. 3.

2.3 Various deontic contexts

We represent the context of a sentence Pi by ∆i. The context expresses the
conversational background in the light of which a sentence is uttered (cf. [9]).
Such a context may contain facts, beliefs, desires, obligations, and what have
you (from an agentive perspective we may call the context epistemic, in the
sense that it expresses that which is known to the speaker of the sentence).
Thus, we may take P1 and P2 as implicit renditions of:

∆1∧ D smoke ⇒ O buy cigarettes. (p1)

∆2∧ D smoke ⇒ O not buy cigarettes. (p2)

Contexts may change how we interpret the two conditionals and their involved
modalities. In multi-agent scenarios, in which utterances come from different
speakers, different contexts for the individual sentences are likely to occur.
For instance, in the Tobacco shop scenario Prof. Restraint may know of Dr.
Smoke’s desire (or promise) to stop smoking, whereas Prof. Pragmatics does
not. Usually, when the relevant context merely contains facts and common
knowledge, it is left out of the conditional. Think of a case in which you need
to apologise because you did not keep a promise. If it is common knowledge
that “you must keep a promise,” the conditional may be safely abbreviated
to “if you break a promise, you should apologise.” Unfortunately, often such
common knowledge is falsely assumed and this may lead to ambiguity and
miscommunication. In such cases, just as in the Tobacco shop scenario, we
must ask for certain context to be made explicit. For instance, upon inquiry
Prof. Pragmatics may recall that the tobacco shop is just around the corner,
thus making the attainment of Smoke’s goal most optimal. In other cases,
looking at the content of a conditional’s constituents, may help to reconstruct
possible contexts and interpretations.

2 In what follows, we write p1 and p2 to indicate alternative formal readings of P1 and P2.
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To illustrate the above, Prof. Restraint may recall that Dr. Smoke also has
a desire to be healthy, which would be unattainable in the light of smoking:

D smoke ⇒ O buy cigarettes. (p1)

D healthy ∧ D smoke ⇒ O not buy cigarettes. (p2)

Given the additional context, the consequent in p2 above seems to suggest a
priority for health over the desire to smoke. Here, the consequent provides ad-
ditional information about the context too. If Dr. Smoke would buy cigarettes
he would, given his desire to smoke, most likely start to smoke, thus compromis-
ing his health. The consequent seems to suggest that (i) the context contains
an action-relevant desire and (ii) the antecedent contains a mere desire. Other
contexts worth investigating are factual, normative, and intentional contexts.

2.4 Analysis: four observations concerning (near-)anankastics

In conditional logic, it is normally assumed that the context of a conditional
is determined by the antecedent only [1]. One of the interesting aspects of
the Tobacco shop scenario, is that this approach is no longer sufficient: P1

and P2 have the same antecedent but different consequents. In this analysis,
interpreting conditionals such as P1 and P2 depends on the (mutual) interaction
between antecedent, consequent, and context. Ambiguous sentences such as
P1 and P2 may receive their correct interpretation through this interaction
and additional context. Through disambiguation, the antecedents of the two
conditional obligations may no longer be the same. Thus, we find that simple
applications of aggregation to P1 and P2 are not always warranted for (cf.
inference (1)) and consequently the pair of sentences is no longer inconsistent
in standard deontic logic (cf. inference (3)).

In what follows, we adopt an explicit context to specify and investigate pos-
sible interactions between and interpretations of desire and obligation modali-
ties. We have the following general representation of the Tobacco shop scenario:

(∆1, D smoke) ⇒ O buy cigarettes. (p1)

(∆2, D smoke) ⇒ O not buy cigarettes. (p2)

Still, the way in which we interpret these conditionals depends on the possi-
ble interpretations that can be assigned to the ambiguous modalities ‘desire’
and ‘must’. Namely, in the above D and O represent hyper-modalities that
may receive different logical interpretations depending on their appearance in
the conditional (together with their corresponding context ∆i). Several read-
ings of D and O are possible, but in the present work we limit their possible
interpretations to those discussed above, i.e., D1, D2, O1, O2.

We make four key observations about the logic of (near-)anankastics:

Role of consequent The consequents of P1 and P2 must inform us on their
relation with their respective antecedents and contexts.

Ambiguity of modalities The semantic interpretations of ‘desire’ and ‘must’
may vary from context to context. The constituents of the conditional,
together with its context, must aid in determining the appropriate inter-
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pretations of these ambiguous modalities.

Ambiguity of conditionals The semantic interpretation of a conditional,
such as P1 and P2, will likewise vary with its context. This depends
partially on resolving ambiguity of the modalities ‘desire’ and ‘must’.

Aggregation rule The different nature of P1 and P2 suggests that the appli-
cation of aggregation to P1 and P2 may not be warranted for.

Formal analysis of the Tobacco shop scenario must thus explain how the
antecedent together with the consequent receive their interpretation. An imme-
diate question would be: can we still formally reason with (near-)anankastic
conditionals, even if we cannot completely resolve ambiguity? We come back
to this in Section. 5 where we formally discuss the Tobacco shop scenario.

3 Condoravdi-Lauer and (near-)Anankastic conditionals

Anankastic conditionals have been extensively discussed in formal linguistics.
Many authors developed non-standard ways to deal with the relation between
desires and obligations in anankastic conditionals [9,13,14,4]. For example, in
the setting of Kratzer [9], the obligations are based on a so-called ordering
source, and this ordering source is updated by the desire in the antecedent
(i.e., the restrictor analysis). Condoravdi and Lauer [4] provide an account
that does not only address the compositionality problems that arises in previous
approaches, their account is generalised to the inclusion of near-anankastic con-
ditionals (dealing with several natural language examples of (near-)anankastics
which previous accounts could not satisfactorily address). They argue that
better results can be obtained by adopting a standard approach with coun-
terfactual implications and standard dyadic, teleological obligations. Without
taking a stance in this debate, since the Tobacco shop scenario deals with both
types of conditionals, we will base our logic on the Condoravdi-Lauer approach
[4]. In this section, we present the modal logic La, which allows us to formally
represent four different interpretations of (near-)anankastic conditionals. In
Section. 4, we will extend this account to a hyper-modality setting in order to
reason with ambiguity in such conditionals.

3.1 A Modal logic for Anankastic Conditionals

The properties of desire and teleological modalities are taken from Condoravdi
and Lauer [4], and we refer to their paper for an in-depth discussion of these
properties and the various alternatives. The two kinds of desire, D1 and D2—
i.e., mere-desire, respectively action-relevant desire—are differentiated by the
property ‘conjunction introduction’ and a ‘consistency’ requirements (both are
not valid for D1, but are valid for D2). For our purposes, we make a few
modifications and simplifications: The teleological modality O1(φ, ψ) reads ‘φ
holds when ψ is optimally realised’. We adopt a dyadic, deontic obligation
O2(φ, ψ) which reads ‘φ is obligatory given ψ’ and adopt a triadic conditional
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(φ, ψ) ⇒ θ expressing “given context φ, if ψ, then θ”. 3 See [6] for motivating
the use of ternary conditionals. A universal modality ✷ is used to represent
facts rigid across contexts: ✷φ reads ‘φ holds universally’. We do not formalise
desires as priority rankings. The language LLa is defined by the following BNF:

φ ::= p | ¬φ | φ ∨ φ | D1φ | D2φ | O1(φ, φ) | O2(φ, φ) | (φ, φ) ⇒ φ | ✷φ

with p ∈ Atoms. The connectives ¬ and ∨ are read as usual, and other con-
nectives are obtained in the standard way. We use ✷ for the dual of ✷. The
modalities are interpreted as discussed above.

We provide a Hilbert-style axiomatization for the logic of anankastics La.

Definition 3.1 The Logic of anankastics La extends the logic S5 for ✷ with:

A1. (D2φ ∧D2ψ) → D2(φ ∧ ψ) (C)

A2. X(ψ ∧ θ, φ) → (X(ψ, φ) ∧ X(θ, φ)) for X ∈ {O1, O2} (M)

A3. X(ψ, φ) ∧ X(θ, φ)) → X(ψ ∧ θ, φ) for X ∈ {O1, O2} (C)

A4. ¬D2⊥ (P)

A5. ¬(D2φ ∧D2¬φ) (D)

A6. ✷φ→ ¬(X(ψ, φ) ∧ X(¬ψ, φ)) for X ∈ {O1, O2} (D)

A7. ✷φ→ X(φ, φ) for X ∈ {O1, O2} (Id)

A8. ¬X(φ,⊥) for X ∈ {O1, O2} (F)

A9. ✷(φ ∧ ψ) → (φ, ψ) ⇒ (φ ∧ ψ) (Id)

A10. (φ, ψ) ⇒ θ → ( ✷(φ ∧ ψ) ∧ ✷θ) (F)

A11. (φ, ψ) ⇒ (χ ∧ θ) → ((φ, ψ) ⇒ χ ∧ (φ, ψ) ⇒ θ) (M)

A12. ((φ, ψ) ⇒ χ ∧ (φ, ψ) ⇒ θ) ⇒ (φ, ψ) ⇒ (χ ∧ θ) (C)

R1. Congruence rule: holds for D1, D2, O1, O2, and ⇒ (all arguments) (RE)

La-derivability and La-theorems are defined as usual [3].

In Def. 3.1, M and C denote monotonicity, respectively, conjunction introduc-
tion. P and D are consistency constraints on D2, O1, O2. Id is identity for
consistent formulae. F states that no obligation O1, O2 holds given ⊥, and
that the antecedent and consequent of ⇒ are jointly consistent, respectively,
consistent. Since La is a non-normal logic, we use neighbourhood semantics [3]:

Definition 3.2 An La-frame is a tuple F = 〈W,ND1 ,ND2 ,NO1 ,NO2 ,N⇒〉,
where W 6= ∅ is a non-empty set of worlds w, v, u, ... (possibly indexed) and Ni

(i ∈ {D1, D2, O1, O2,⇒}) are neighbourhood functions such that:

• Nj :W 7→ P(P(W )) for j ∈ {D1, D2}

• Nk :W 7→ P(P(W )× P(W )) for k ∈ {O1, O2}

3 Another way to look at (φ, ψ) ⇒ θ is to take ⇒ as a stereotypicality conditional, in line
with the covert outer modal in [4]: ‘in the most stereotypical φ and ψ worlds, θ holds’.
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• N⇒ :W 7→ P(P(W )× P(W )× P(W ))

F satisfies the following constraints, for all w ∈W , and all X,Y, Z, U ⊆W :

(c1) if Z ∈ ND2(w) and Y ∈ ND2(w), then Z ∩ Y ∈ ND2(w);

(m2) i ∈ {O1, O2}, (X ∩ Y, Z) ∈ Ni(w) implies (Y ,Z) ∈ Ni(w) and
(X,Z) ∈ Ni(w);

(c2) i ∈ {O1, O2}, (X,Z) ∈ Ni(w) and (Y, Z) ∈ Ni(w) implies (X ∩
Y, Z) ∈ Ni(w);

(p) ∅ 6∈ ND2(w);

(d1) if X ∈ ND2(w), then X 6∈ ND2(w);

(d2) i ∈ {O1, O2}, if X 6= ∅, (Y,X) ∈ Ni(w), then (Y ,X) 6∈ Ni(w);

(id1) i ∈ {O1, O2}, if X 6= ∅, then (X,X) ∈ Ni(w);

(f1) i ∈ {O1, O2}, if X = ∅, then (Y,X) 6∈ Ni(w);

(id2) if X ∩ Y 6= ∅, then (X,Y,X ∩ Y ) ∈ N⇒(w);

(f2) if X ∩ Y = ∅ or Z = ∅, then (X,Y, Z) 6∈ N⇒(w);

(m3) if (X,Y, Z ∩ U) ∈ N⇒(w), then (X,Y, Z) ∈ N⇒(w) and
(X,Y, U) ∈ N⇒(w);

(c3) if (X,Y, Z) ∈ N⇒(w) and (X,Y, U) ∈ N⇒(w), then (X,Y, Z ∩
U) ∈ N⇒(w);

An La-model is a tupleM = 〈F, V 〉 s.t. F is an La-frame and V is a valuation
function assigning atoms p ∈ Atoms to sets of worlds; i.e. V : Atoms 7→ P(W ).

Last, we semantically evaluate formulae of LLa as usual:

Definition 3.3 Let M be an La-model, w ∈W and ||φ|| = {v ∈W |M, v |= φ}:

• M,w |= p iff w ∈ V (p).

• M,w |= ¬φ iff M,w 6|= φ

• M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ

• M,w |= Xφ iff ||φ|| ∈ NX(w) with X ∈ {D1, D2}

• M,w |= Y(φ, ψ) iff (||φ||, ||ψ||) ∈ NY(w) with Y ∈ {O1, O2}.

• M,w |= (φ, ψ) ⇒ θ iff (||φ||, ||ψ||, ||θ||) ∈ N⇒(w).

• M,w |= ✷φ iff for all v ∈W , M, v |= φ

Satisfiability, validity, and model-validity are defined as usual [3]. (nb. The
operator ✷ expresses model-validity.)

Comparing the axioms of Def.3.1 with the properties of Def.3.2, we see that
La is highly modular. Consequently, completeness is obtained following the
standard approach for neighbourhood semantics [3] (proofs are omitted):

Theorem 3.4 ( soundness and completeness) Let φ ∈ LLa, and let CLa be
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the class of La-frames: CLa |= φ iff ⊢La φ.

3.2 Anankastics and near-anankastics in the logic La

In this section we discuss formalisations of four teleological (near-)anankastic
conditionals. We focus on those that play a role in the Tobacco shop scenario.

The anankastic conditional. Anakastic conditionals are identified by
the fact that both the antecedent and consequent receive an action-relevant
reading of desire [4]. Let ∆ ⊆ LLa be the context representing the finite
knowledge base of the speaker. The formalised anankastic conditional
(∆, D2φ) ⇒ac O

1ψ is informally interpreted as: “(i) all the most stereotypical
worlds consistent with ∆ in which D2φ holds, are such that whenever all the
addressee’s known goals, including φ, are optimally realised, then ψ holds
and (ii) the hypothesised goal φ is compatible with what the speaker knows
∆”. This definition resonates the account provided in [4]. The first conjunct
(i) expresses the teleological optimality of the prejacent with respect to the
internal antecedent. The second conjunct (ii) captures the requirement that
action-relevant desire must be realistic: i.e., the goal must be compatible with
what is known. Given a context of utterance ∆, a speaker may know of some
of the addressee’s actual action-relevant desires, we let ΣD

2

∆ = {θ|D2θ ∈ ∆}
denote the set of the addressee’s actual goals and call θ a goal whenever D2θ.
In what follows, we slightly abuse notation and write ∆ and ΣD

2

∆ for the

conjunction of formulae in ∆ and ΣD
2

∆ , respectively. Let the (teleological)
anankastic conditional (tac) be defined as: 4

(∆, Dφ) ⇒tac Oψ := (∆, D2φ) ⇒ O1(ψ,ΣD
2

∆ ∧ φ) ∧ ✷(∆∧ φ) (4)

Applying (4) to premise P1 of the Tobacco shop scenario (∆, Dsmoke) ⇒tac

Obuy gives us the following formal definition:

(∆, D2smoke) ⇒ O1(buy,ΣD
2

∆ ∧ smoke) ∧ ✷(∆ ∧ smoke) (5)

Informally, (5) reads “in the most stereotypical worlds in which ∆ and
D2smoke are the case, buy proves teleological optimal given the optimal

realisation of the known goals ΣD
2

∆ together with the goal of smoking”. Let us
look at some logical consequences of definition (4).

Conflicting and non-conflicting goals. Conflicting goals relate to a
part of the compositionality problem of anankastics: the addressee’s actual
action-relevant desires should not matter in the analysis, unless these are
known to the speaker, see [4]. In La, the issue is accounted for in the same
manner as in [4]: only when action-relevant desires are known in ∆, they
will be taken into consideration. There are two cases of possible conflict:
First, when the desire D2φ is incompatible with context ∆. For instance,

4 On the left side of (4) we leave D and O underspecified, but the index ‘tac’ on ⇒tac tells
us to interpret the involved modalities as D2 and O1 specified on the right side of (4).
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suppose ∆1 = {D2health,✷(smoke → ¬health)}, then the anankastic
(∆1, Dsmoke) ⇒tac Obuy is not satisfiable (cf. c1 p of Def.3.2). Second,
when the goal φ in D2φ is incompatible with ∆. For instance, when you
know the shops are closed, and the only chance of smoking would be when
the shops are open: given ∆2 = {¬open,✷(smoke → open)}, the second
conjunct ✷(∆2∧smoke) of the anankastic conditional (4) becomes inconsistent.

Failure of strengthening of the antecedent (SA). In line with [4],
there are two ways in which SA may fail: (i) through strengthening that makes
the antecedent inconsistent with what is known, and (ii) through strengthening
that selects other most stereotypical worlds. As an example, suppose we
don’t know whether the shops are open today. By later strengthening the
antecedent with ¬open, we may obtain a different set of most stereotypical
worlds. Failure of SA is guaranteed by the non-monotonic nature of the ⇒
modality and its consistency requirement (cf. f3 of Def.3.2).

The teleological near-anankastic conditional. Near-anankastic con-
ditionals come in different shapes, depending on what readings of the
ambiguous ‘desire’ and ‘must’ modalities are assigned to the conditional’s
antecedent and consequent, respectively. Let the teleological near-anankastic
conditional (tnc) be defined accordingly:

(∆, Dφ) ⇒tnc Oψ := (∆, D1φ) ⇒ O1(ψ,ΣD
2

∆ ∧D1φ) (6)

The formal definition reads: “all the most stereotypical worlds consistent with
∆ in whichD1φ holds are such that the optimal realization of all the addressee’s
known goals, together with D1φ, also realize ψ”. The presence of D1φ in
O1(ψ,ΣD

2

∆ ∧D1φ) is important: We take the mere-desire for ψ as a cause for the
necessitated consequent. In contrast to (4) where optimality is conditioned on
the realization of the antecedent’s goal, we condition (6) on the desire itself. See
[4] for a discussion. The second premise P2 of the Tobacco shop scenario can be
assigned this form. Suppose we know that the addressee has an action-relevant
desire for D2health ∈ ∆, that smoking is not healthy ✷(smoke → ¬health),
and that buying cigarettes together with a mere-desire to smoke will lead to
smoking ✷(buy ∧ D1smoke → smoke). In that case, the antecedent D1smoke

together with buy will lead to a conflict with the optimal realization of the
addressee’s known desire D2health ∈ ∆. We write,

(∆, D1smoke) ⇒ O1(¬buy,ΣD
2

∆ ∧D1smoke) (7)

For teleological near-anakastic conditionals we likewise have failure of SA.
Howevever, note that (6) is not subject to a realism condition due to the
presence of a mere desire D1 in the antecedent.

Deontic near-anankastics with action-relevant desires. We intro-
duce deontic counterparts to the teleological (near-)anankastics. Following [4],
deontic near-anankastics emerge when the conditional does not have a purpose
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reading (e.g., when ‘not buying does not serve the purpose of ‘smoking’),
but a deontic reading of the consequent ‘must’. The structure of the first
deontic conditional, with an action-relevant reading, is similar to that of
the anankastic conditional. The main difference is that in evaluating the
hypothesized goal φ in D2φ, we are not concerned with what is deontically
optimal given the realization of all the agent’s action-relevant desires, but only
with what is deontically implied when the goal φ is actualized given those
stereotypical worlds in which ∆ and D2φ hold (cf. [4]). This is reflected in
how the antecedent influences the consequent in (8). To illustrate, think of
an agent with a desire to smoke who can either buy or steal cigarettes. Since
stealing is forbidden, it must deontically be the case that if she smokes, then
she bought the cigarettes. We formalize deontic near-anankastics (dac) with
action-relevant desires accordingly:

(∆, Dφ) ⇒dac Oψ := (∆, D2φ) ⇒ O2(ψ, φ) ∧ ✷(∆ ∧ φ) (8)

Since we are dealing with action-relevant desires, the realism clause is preserved.

Deontic near-anankastics with mere-desires. This conditional is
similar to (6). The main difference is again that we are not concerned with
what is deontically optimal given the realization of the agent’s action-relevant
desires, but only with what is deontically implied when the agent has the
mere-desire expressed in the antecedent. That is, the occurrence of ‘want’ is
not vacuous but the actual cause of the obligation (cf. [4]). We formalize
deontic near-anankastics (dnc) with mere-desires as:

(∆, Dφ) ⇒dnc Oψ := (∆, D1φ) ⇒ O2(ψ,D1φ) (9)

An example of (9) would be when there is an obligation not to smoke. Then, in
all deontically optimal worlds where you do not smoke, but desire to smoke, you
do not buy cigarettes (since buying, together with a desire to smoke, stereo-
typically implies smoking). Perhaps less common, deontic conditionals with
mere-desires also arise in CTD-scenarios in which desires are forbidden.

For both deontic near-anankastic conditionals (8) and (9) SA fails.

3.3 Ambiguity, (near-)anankastics, and pragmatics

The four readings show that in the consequent, different use is made of the
context and the desire modality occurring in the antecedent. This interaction
between consequent, antecedent, and context is reflected in the different inter-
pretations of (near-)anankastic conditionals. As observed in Section. 2, there
is no difference between the four types of conditionals when we look at “if you
want φ, you must do ψ”. Still, we can differentiate them through linguistic
analysis. In particular, the four definitions are differentiated through (i) the
role of the context and (ii) the interpretation of the involved hyper-modalities.

Note that we take the antecedent to do double duty: it serves as a “re-
strictor” of the modal operator, but also conditionalises the modal claim to
an assumption. The Tobacco shop scenario illustrates that this is not only
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desirable, but even necessary. It is normally assumed that an if-clause either
restricts an operator, or functions as a supposition. However, this would make
P1 and P2 indistinguishable. The double duty of the antecedent is motivated
by the fact that only when we consider the consequent as well, we can properly
distinguish anankastics from near-anankastics. This is in line with [4].

So far we assumed pragmatics: that is, we assumed that we know with which
interpretations of ‘desire’, ‘must’, and the conditional we are dealing, prior to
formalization. Often, we don’t have access to a determined interpretation and
ambiguity remains. The question is, can we reason with such conditionals even
though we don’t have a definite interpretation? In the next section, we provide
a hyper formalism that enables us to represent and reason with ambiguous
conditionals and modalities. By internalizing part of the pragmatics, we may
formally reduce possible interpretations through explicit interaction between
context, antecedent, and consequent in logic.

4 Hyper modalities: interpreting (near-)anankastics

The two conditionals in the Tobacco shop scenario share the general structure
‘if you desire φ, you must ψ’. We have argued that ‘desire’, ‘must’, and the
involved conditional are ambiguous and may receive different readings. Such
modalities are called hyper modalities. In the previous section, we discussed
four possible readings of ‘if you desire φ, you must ψ’. There, we used distinct
modalities for the different readings of ‘desire’ (D1 and D2) and ‘must’ (O1

and O2), and more importantly we assumed access to the correct readings of
these conditionals and their modalities, prior to their formalization.

We present a way to make ambiguity and interpretation part of the logic,
for this we will use the hyper modality framework, as developed in [7]. We
introduce the hyper modalities D and O to represent the ambiguous ‘desire’ and
‘must’. Such hyper modalities may receive different semantic interpretations
depending on their context of evaluation (but under other contexts ambiguity
may persist). In Section. 5, we will deploy the formalism to disambiguate and
reason with the involved modalities in the Tobacco shop scenario. We point
out that the reader may temporarily skip this technical section and first consult
the hyper-modal analysis of the Tobacco shop scenario in Section. 5.

4.1 Preliminaries: a brief introduction to hyper-modalities

Why do we need hyper-modalities? Such modalities occur in natural language:
for example, “soon p will be true”. The reading of ‘soon’ depends on time:
In the 19th century ‘soon’ could have meant within a week, whereas nowadays
‘soon’ would mean within 24 hours. Another example, already discussed, is the
context dependence of the meaning of ‘must’ which may refer (among others)
to logical necessity, epistemic certainty, and deontic optimality. To represent
the linguistic distinctions that may occur in certain contexts, we need to allow
for ‘must’ (and other modalities) to have several semantic interpretations (e.g.,
S5 for epistemic certainty, but KD for deontic optimality). Hence, in contrast
to standard modal logic approaches, we need modalities which do not have a
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fixed meaning, but receive their meaning through evaluation in a context.

4.2 From neighbourhood semantics to hyper modality semantics

Before moving to the multi-modal setting, we introduce the formalism by
considering an example language with a single modality M, for ‘must’. Let
NM be a neighbourhood function from worlds w ∈ W to sets of subsets:
NM : W 7→ P(W ). Semantics of atoms and the connectives ¬ and ∨ are
defined as usual, and for M we adopt w |= Mφ iff ||φ|| ∈ NM(w).

We turnM into a hyper-modality if we allow for each world w ∈W an option
of neighbourhoods functions N 1

M
(w),N 2

M
(w), ...,Nn

M
(w). We call these options

the different modes of modality M and denote them by Ψi(w,M) = N i
M
(w) (for

i ∈ {1, ..., n}). That is, Ψi(w,M) denotes a possible mode for interpreting M at
w. Let Modes be the set of modes Ψi for i ∈ {1, ..., n}. Since a modality may
have various possible modes, we need a table function,

˜
f : Modes 7→ P(Modes).

So, for each Ψi ∈ Modes,
˜
f(Ψi) denotes the set of option modes {Ψk, ...,Ψl}

(with 1 ≤ l ≤ k ≤ n). Last, the semantic clause of a hyper modality M is
relativized to the use of modes Ψi, denoted by |=Ψi . We have, for all w ∈W :

w |=Ψi Mφ iff for some mode Ψj ∈
˜
f(Ψi), {v | v |=Ψj φ} ∈ N i

M
(w) (10)

Hence, Mφ is satisfiable at w at mode Ψi, whenever there is a mode Ψj ∈
˜
f(Ψi)

(possibly several) for M such that {v | v |=Ψj φ} is in the M-neighborhood for
mode Ψj . Note that modes are only relevant for evaluating hyper-modalities.

Let us consider an example. We formalize the utterance “it does not rain,
but it must rain” as ¬rain∧Mrain. Let there be two modes for M: for any w,
let Ψdeo(w,M) = N deo

M
(w) s.t. N deo

M
(w) does not contain ∅ (i.e., Ψdeo interprets

M deontically by excluding inconsistencies) Let Ψepi(w,M) = N epi
M

(w) s.t.

N epi
M

(w) is restricted to all the sets containing the world w (i.e., Ψepi takes
M as some sort of epistemic certainty: ‘if φ is epistemically certain, φ must
be true now’). Let

˜
f(Ψdeo) =

˜
f(Ψepi) = {Ψdeo,Ψepi}, which means that in

both the deontic and epistemic mode, Mφ may be interpreted deontically, as
well as epistemically. How do we evaluate ¬rain ∧Mrain at w? We need to
pick a starting mode. Suppose it is Ψdeo. Hence, w |=Ψdeo ¬rain ∧ Mrain

iff w 6|=Ψdeo rain and w |=Ψdeo Mrain. The last conjunct in equivalent to
{v ∈ W | v |=Ψi Mrain} ∈ N i

M
(w) for some Ψi ∈ {Ψepi,Ψdeo}. If Ψi = Ψepi,

then w ∈ {v ∈ W |v |=Ψepi rain}, but w ∈ {v ∈ W | v |=Ψdeo ¬rain} (modes
do not apply to atoms). We have a contradiction. Hence, the ambiguousMrain

cannot be interpreted epistemically given ¬rain (whether it can be interpreted
deontically, remains to be determined). See [7] for further examples.

4.3 Interpreting (near-)anankastics using hyper-modalities

Since the conditional ‘if you want φ, you must ψ’ depends on the ambiguous
‘want’ and ‘must’, the conditional ⇒ is likewise ambiguous. The hyper modal-
ities that we will consider are thus ‘desire’ D, ‘must’ O and ‘conditional’ ⇒.
We build our hyper modality setting on top of the La-neighbourhood semantics
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of Def.3.2. The hybrid language LLaH is defined through the following BNF:

φ ::= p | ¬φ | φ∨φ | D1φ | D2φ | O1(φ, φ) | O2(φ, φ) | ✷φ | (φ, φ) ⇒ φ | Dφ | Oφ

with p ∈ Atoms. The language La properly extends LLaH for the reason that, in
evaluating a (near-)anankastic, we involve a context ∆ which may contain infor-
mation about unambiguous desires and obligations. Note that Oφ is monadic
but will be interpreted dyadically in the hyper-setting, conditioning it on a
given context (if there is no context we evaluate Oφ conditional on ⊤).

To facilitate readability, we write ||φ||Ψi = {v ∈W | v |=Ψi φ} to indicate the
presence of a mode Ψi for evaluating φ. Furthermore, we explicitly index the
modes Ψi with the formula’s arguments. As an example, w |=Ψi O(φ, ψ) means
O(φ, ψ) is evaluated with respect to the mode Ψiφ,ψ(w,O). Most formulae will
be evaluated with respect to what we call the common mode, denoted by Ψco.

We are interested in mode shifts that occur when evaluating conditionals
of the form (∆,Dφ) ⇒ Oψ. The four interpretations of (near-)anankastic
conditionals (Section. 3) are in fact modes for interpreting “if you want φ, you
must ψ”: i.e., anankastics Ψtac, near-anankastics Ψtnc, deontic anankastics
Ψdac, and deontic near-anankastics Ψdnc. For instance, when evaluating in
anankastic mode Ψtac, Dφ is interpreted as an action-relevant D2, and Oψ via
a teleological optimization O2. Let us make these modes formally precise:

Definition 4.1 A hyper La-frame is a tuple F = 〈W,ND1 ,ND2 ,NO1 ,

NO2N⇒,Modes〉, where W 6= ∅ is a non-empty set of worlds w, v, u, .. and
Ni (i ∈ {D2, D1, O1, O2,⇒}) are neighbourhood functions as defined in
Def.3.2. F satisfies the constraints from Def.3.2. Let the set of modes be
Modes = {Ψco,Ψtac,Ψtnc,Ψdac,Ψdnc} (defined in Def.4.2, Def.4.4, Def.4.3,
resp). The assignment

˜
f i of modes (i ∈ {1, 2, 3}) is defined as:

•

˜
f1 : Modes 7→ P(Modes) (for monadic D)

•

˜
f2 : Modes 7→ P(Modes×Modes) (for dyadic O)

•

˜
f3 : Modes 7→ P(Modes×Modes×Modes) (for triadic ⇒)

A hyper La-model M consists of a hyper -frame F with a valuation V .

The function
˜
f i in Def.4.1 determines, at a given mode, the possible modes

available for evaluating a given modal formula. By default, we take as the
starting mode for evaluating formulae the mode Ψco.

Definition 4.2 Given
˜
f1 of Def.4.1, we specify the following modes for D:

(i) for i ∈ {tac, dac}, Ψiφ(w,D) is ||φ||Ψj ∈ ND2(w) with
˜
f1(Ψi) = Ψj

(ii) for i ∈ {tnc, dnc}, Ψiφ(w,D) is ||φ||Ψj ∈ ND1(w) with
˜
f1(Ψi) = Ψj

(iii) for i = co, Ψiφ(w,D) is ||φ||Ψj∈ND2(w) or ||φ||Ψj∈ND1(w) with
˜
f1(Ψi)=Ψj

With
˜
f1(Ψi) = {Ψco} for each i ∈ {co, tac, tnc, dac, dnc}.

To illustrate, consider (i) of Def.4.2: when evaluating in the teleological
anankastic mode Ψtac, we interpret ‘desire’ Dφ as an action-relevant desire D2
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and interpret the internal goal φ in common mode. Condition (iii) states that,
in the common mode, an ambiguous Dφ is satisfiable whenever it is satisfiable
as a mere-desire or an action-relevant desire (possibly both).

For conditionals of the form (∆,Dφ) ⇒ Oψ we find four possible (near-)
anankastic interpretations of ⇒. When a conditional is of the form (∆, θ) ⇒ χ

such that θ 6= Dφ or χ 6= Oψ, we evaluate ⇒ as a regular conditional.

Definition 4.3 Given
˜
f3 of Def.4.1, we specify the following modes for ⇒.

(i) If φ = Dφ′ and ψ = Oψ′, then Ψco∆,φ,ψ(w,⇒) is (||∆||Ψj , ||φ||Ψk , ||ψ||Ψl) ∈

N⇒(w), for some (Ψj ,Ψk,Ψl) ∈
˜
f3(Ψco) \ {(Ψco,Ψco,Ψco)}

(ii) If φ 6= Dθ or ψ 6= Oχ, then Ψco∆,φ,ψ(w,⇒) is (||∆||Ψco , ||φ||Ψco , ||ψ||Ψco) ∈

N⇒(w), for (Ψco,Ψco,Ψco) ∈
˜
f3(Ψco)

With
˜
f3(Ψi) = {(Ψco,Ψco,Ψco), (Ψco,Ψtac,Ψtac), (Ψco,Ψtnc,Ψtnc),

(Ψco,Ψdac,Ψdac), (Ψco,Ψdnc,Ψdnc)} for i ∈ {co, tac, tnc, dac, dnc}.

Def.4.3 ensures that conditionals are only evaluated in Ψco mode, namely,
(near-)anankastic modes are reserved for the hyper modalities D and O oc-
curring within such a conditional. Only D and O can be evaluated in
(near-)anankastic modes, which are modes that arise by identifying a hyper-
conditional of the form (∆,Dφ) ⇒ Oψ. Hence, when evaluating O in a (near-
)anankastic mode, we come from a mode that interprets a conditional: conse-
quently, we have additional information (an antecedent and a context) at our
disposal that facilitates interpreting O. This is reflected in Def.4.4.

Definition 4.4 Given
˜
f2 of Def.4.1, we specify the following modes for O.

(i) Ψtac∆,Dφ,Oψ(w,O) is (||ψ||Ψj , ||ΣD
2

∆ ∧φ||Ψk) ∈ NO1(w) with (Ψj ,Ψk) ∈
˜
f(Ψtac)

(ii) Ψtnc∆,Dφ,Oψ(w,O) is (||ψ||Ψj , ||ΣD
2

∆ ||Ψk ∩||Dφ||Ψtnc) ∈ NO1(w) with (Ψj ,Ψk) ∈

˜
f(Ψtnc)

(iii) Ψdac∆,Dφ,Oψ(w,O) is (||ψ||Ψj , ||φ||Ψk) ∈ NO2(w) with (Ψj ,Ψk) ∈
˜
f(Ψdac)

(iv) Ψdnc∆,Dφ,Oψ(w,O) is (||ψ||Ψj , ||Dφ||Ψk) ∈ NO2(w) with (Ψj ,Ψk) ∈
˜
f(Ψdnc)

(v) Ψco
⊤,Oψ(w,O) is (||ψ||Ψj , ||⊤||Ψk) ∈ NO1(w) or (||ψ||Ψj , ||⊤||Ψk , ) ∈ NO2(w)

with (Ψj ,Ψk) ∈
˜
f(Ψco)

And
˜
f2(Ψi) = {(Ψco,Ψco} for i ∈ {co, tac, tnc, dac} and

˜
f2(Ψdnc) =

{(Ψdnc,Ψco)}. (Note that for (tnc) and (dnc), we require that Dφ in the
second argument of O is interpreted as D1.)

Consider (i) in Def.4.4, when evaluating O in anankastic mode Ψtac, we
check whether in those cases where the agent’s known action-relevant desires
D2θ ∈ ∆ have been optimally realized, together with the realization of φ,
we find that ψ is the case. Hence, in anankastic mode Ψtac, we treat the
antecedent Dφ as if the agent has an action-relevant desire D2φ, and evaluate
Oψ teleologically as O1ψ, while conditioning it explicitly on the context ∆.
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Last, we define the semantics of hyper modalities D, O, and ⇒. Note that
modes are only activated whenever we encounter a hyper modality in a formula.

Definition 4.5 Let M be a hyper La-model of Def.4.1. For every w ∈ W we
have the regular clauses for non-hyper modalities of Def.3.3, extended with:

• w |=Ψi Dφ iff Dφ is satisfied at w for some Ψj ∈
˜
f1(Ψi) of Def.4.2.

• w |=Ψi O(φ, ψ) iff O(φ, ψ) is satisf. at w for some Ψj ∈
˜
f2(Ψi) of Def.4.4.

• w |=Ψi(θ, φ)⇒ψ iff (θ, φ)⇒ψ is satisf. at w for some Ψj∈
˜
f3(Ψi) of Def.4.3.

A formula is La-satisfiable if there is an La-model M with w ∈ W of M and
there is a mode Ψi ∈ Modes s.t. M,w |=Ψi φ.

For any ambiguous conditional θ = (∆,Dφ) ⇒ Oψ the hyper setting gives
us the following: If only Ψac is satisfiable we say θ is an anankastic conditional.
If only Ψnc is satisfiable θ is a teleological near-anankastic. If only Ψda is satis-
fiable, we say θ is a action-relevant deontic near-anankastic conditional. If only
Ψdn is satisfied θ is called a mere-desire deontic near-anankastic conditional.
If several of (i)-(iv) are satisfied, the resulting interpretation is a disjunction
reflecting the possible readings of (∆,Dφ) ⇒ Oψ given ∆. If neither is sat-
isfiable, we say the (∆,Dφ) ⇒ Oψ has no interpretation given ∆, and hence
is false. In interpreting hyper formulae of the form (∆,Dφ) ⇒ Oψ in modes
Ψac,Ψnc,Ψda, and Ψdn, we employ the same semantic interpretations as used
for the four formally defined conditionals (4), (6), (8), (9), of Section. 3.

The main difference between Section. 3 and the hyper-approach presented
here, is that (a) we internalise the interpretation procedure (i.e., part of the
pragmatics) through using hyper modalities and corresponding modes, and (b)
we leave open the possibility that a conditional remains ambiguous (i.e., several
modes may be satisfiable given a context ∆). As a consequence of (a) and (b),
we can logically reason with ambiguous conditionals, such as P1 and P2 of the
Tobacco shop scenario, without assuming a definite linguistic interpretation.
We can use logic to determine, given a certain context, which interpretations
of ambiguous (near-)anankastic conditionals are excluded, and which are jointly
satisfiable. Let us look at the Tobacco shop scenario again.

5 Disambiguation and the Tobacco shop scenario

For sentences such as “if you want φ, you must ψ” the hyper-setting can help
reducing ambiguity by determining which interpretations (i.e., modes) are ex-
cluded given certain contexts. To illustrate this, we have another look at the
Tobacco shop scenario and consider two possible contexts. First, we recall the
remarks by Prof. Pragmatics and Prof. Restraint, respectively:

If S wants to smoke, then S must buy cigarettes. (P1)

If S wants to smoke, then S must not buy cigarettes. (P2)
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Using the hyper-modalities for ‘desire’ D, ‘must’ O, and the conditional ‘⇒’,
we obtain the following hyper-modal readings (adding ⊤ for an empty context):

(⊤,Dsmoke) ⇒ Obuy (11)

(⊤,Dsmoke) ⇒ O¬buy (12)

Suppose that at this point we do not yet know which readings, or contexts,
Pragmatics and Restraint assign to their utterances. Can we already derive
something from the joint utterance of (11) and (12)? The answer is yes. The
hyper-modal setting tells us that (11) and (12) cannot be jointly satisfied under
the same mode. For instance, if we interpret both formulae as anankastic
conditionals (tac) the conjunction is not satisfiable (models are assumed to be
hyper models from Def.4.1):

For any w ∈ W , w 6|=Ψco (⊤,Dsmoke) ⇒ O¬buy or w 6|=Ψco

(⊤,Dsmoke) ⇒ O¬buy for Ψtac ∈
˜
f(Ψco)

(13)

In short, (13) depends on the consistency requirement on ‘must’ O1 under
consistent conditions, together with the exclusion of impossible conditionals
(d2, f1, and f2 of Def.4.1). Similar reasoning excludes identical interpretations
of (11) and (12) for any of the four modes Ψi, i ∈ {tac, tns, dac, dnc}. (For
space reasons, all semantic proofs will be omitted.) Hence, the formalism allows
us to conclude that P1 and P2 must have distinct (near-)anankastic readings
if they are to be jointly satisfiable.

Recall that P1 is commonly taken as an anankastic conditional, that is,
‘buying’ proves teleologically optimal for realizing the goal of ‘smoking’. If we
take (14) as given, what additional conclusions can we draw concerning P2?

(⊤, D2smoke) ⇒ O1buy (14)

If Pragmatics and Restraint agree on the fact that Smoke has an action-relevant
desire to smoke, the only mode in which (12) may be satisfied is Ψdac. So far,
we were able to draw some minimal conclusions about P1 and P2 without
assuming any additional context, that is, these conclusions were drawn from
the logical behaviour for the different modes of hyper-modalities D and O.

Now, suppose Prof. Pragmatics asks Restraint to to explain herself. The
latter recalls that Dr. Smoke has an action-relevant desire to stay healthy
pointing out that smoking will obstruct that goal. We obtain the context
∆ = {D2health,✷(smoke → ¬health)} and update the formalisation of P2:

(∆,Dsmoke) ⇒ O¬buy (15)

Independent of how we interpret P1, the additional context for P2 excludes
the interpretation that (15) is an anankastic conditional: The action-relevant

desire to be healthy D2health (with health ∈ ΣD
2

∆ ), cannot be realised to-
gether with an action-relevant interpretation of Dsmoke, namely, D2smoke. In
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brief, goals expressed by an agent’s action-relevant desires should be jointly
realisable (cf. f1, f2 of Def. 4.1). The result is expressed in (16).

For any w∈W , w 6|=Ψco (∆,Dsmoke) ⇒ O¬buy, for Ψtac ∈
˜
f(Ψco) (16)

The above does not imply that an action-relevant reading of Dsmoke is
impossible for (12): a deontic reading of the consequent O¬buy interacts dif-
ferently with the context and thus allows for other desire statement in the
antecedent (cf. the discussion of (8) in Section. 3). Furthermore, we find that
given ∆ the realism requirement imposed on action-relevant (near-)anankastics
in general is still satisfiable, i.e., if you smoke, you can still have an action-
relevant desire to be healthy, but the latter goal cannot be attained.

Suppose another context ∆′ in which Prof. Restraint recalls Dr. Smoke’s
promise to buy some cigarettes for a friend. Moreover, suppose she points
out that keeping the promise prom is Smoke’s duty, irrespective of whether he
desires to smoke D1smoke or actually does so, smoke. In other words, if Smoke
keeps his promise, he will buy cigarettes ✷(prom → buy). We obtain the new
context ∆′ = {O2(prom, smoke), O2(prom, D1smoke),✷(prom → buy)}.

For any w ∈W , w 6|=Ψco (∆′,Dsmoke) ⇒ O¬buy, for Ψdac,Ψdnc∈

˜
f(Ψco)

(17)

We find that the conditional expressed in (17) excludes any reading of P2 as
a deontic near-anankastic conditional, i.e., under either desire reading. Namely,
given ∆′, the obligation to keep one’s promise will conflict with the readings
O2(¬buy, smoke) and O2(¬buy, D1smoke) since not buying implies breaking
one’s promise (cf. f1, f2, and d2 of Def. 4.1). Given ∆′ and the anankastic
reading of P1 (14), the only reading of (∆′,Dsmoke) ⇒ O¬buy which is not
necessarily excluded is the teleological near-anankastic reading.

The analysis shows that, through interaction between contexts (such as ∆
and ∆′) and different interpretations of the antecedent and consequent (D1 and
D2, respectively, O1 and O2) we may formally exclude certain interpretations
of ambiguous linguistic expressions such as P1 and P2 of the Tobacco shop sce-
nario. The example shows that certain restrictions on different interpretations
of (near-)anankastics serve to reduce ambiguity, e.g., consistency of goals for
teleological optimality in (16).

The hyper-modal setting enables us to represent ambiguity, and use formal
machinery to (partially) resolve it, thus internalising some of the pragmatics of
linguistic interpretations. Some of the benefits of this approach are that (i) we
do not need to assume prior to formalisation that all ambiguity is resolved, (ii)
we can formalise ambiguous sentences that will receive their interpretation at
a later stage, and (iii) we can study those criteria that function as identifiers
for rightly interpreting hyper-modalities. Still, future work should be devoted
to identifying other conditions that enable us to draw conclusions from hyper-
modal formulae concerning ‘must’, ‘desire’, and (near)-anankastic conditionals.
Another point left unaddressed here is whether the logic of (near-)anankastic
conditionals allows for (certain forms of) detachment (cf. [10]).
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6 Conclusion and future work

In this work, we related semantics of deontic modality and deontic logic. We
discussed the Tobacco shop scenario, highlighting the interaction between con-
sequent, antecedent, and context in interpreting (near-)anankastics. We pre-
sented a logic inspired by [4], capturing four (near-)anankastic conditionals,
while assuming linguistic interpretation of concrete conditionals prior to for-
malisation. We extended the formalism to the hyper setting, where hyper-
modalities bring ambiguity within the reach of logical analysis: i.e., internalis-
ing parts of the interpretation process of modalities, such as ‘must’ and ‘desire’.

Perhaps the most unusual aspect of our approach is that we treat ‘context’
as part of the syntax of a formula. This means that one and the same natural
language conditional must be translated differently in different contexts. This
is unusual, since most approaches aim for a systematic analysis that accounts
for the way in which the content of the sentence depends on context. Moreover,
in Section. 5 we did not fully exploit the additional expressive power that comes
with having the context in the language. We plan to do this in future research.
For example, under suitable conditions, instead of assuming that we have a
prohibition to smoke, we would be able to derive it.

This paper touched on several other points requiring future work: (i) Fur-
ther the analysis of the Tobacco shop scenario, e.g., by relating it to existing
approaches handling contrary-to-duty reasoning, nonmonotonic reasoning, and
dynamic logic. (ii) Extend the analysis of hyper-modality (e.g., in the context
of NLP). (iii) Investigate other aspects of pragmatics that can be studied in
logic (e.g., detachment using nonmonotonic logic).
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Abstract

STIT logic is a prominent framework for the analysis of multi-agent choice-making.

In the available deontic extensions of STIT, the principle of Ought-implies-Can (OiC)

fulfills a central role. However, in the philosophical literature a variety of alternative

OiC interpretations have been proposed and discussed. This paper provides a mod-

ular framework for deontic STIT that accounts for a multitude of OiC readings. In

particular, we discuss, compare, and formalize ten such readings. We provide sound

and complete sequent-style calculi for all of the various STIT logics accommodating

these OiC principles. We formally analyze the resulting logics and discuss how the dif-

ferent OiC principles are logically related. In particular, we propose an endorsement

principle describing which OiC readings logically commit one to other OiC readings.

Keywords: Deontic logic, STIT logic, Ought implies can, Labelled sequent calculus

1 Introduction

From its earliest days, the development of deontic logic has been accompa-
nied by the observation that reasoning about duties is essentially connected to
praxeology, that is, the theory of agency (e.g. [13,31,44]). A prominent modal
framework developed for the analysis of multi-agent interaction and choice is
the logic of ‘Seeing To It That’ [7] (henceforth, STIT), and its potential for
deontic reasoning was recognized from the outset [6]. Despite several philo-
sophical investigations of the subject [5,24], concern for its formal specification
lay dormant until the beginning of this century when a thorough investiga-
tion of deontic STIT logic was finally conducted [23,32]. Up to the present

1 We would like to thank the reviewers of DEON2020 for their useful comments. This work is
funded by the projects WWTF MA16-028, FWF I2982 and FWF W1255-N23. For questions
and comments please contact kees@logic.at.
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day, deontic STIT continues to receive considerable attention, being applied to
epistemic [11], temporal [9], and juridical contexts [28].

The traditional deontic STIT setting [23] is rooted in a utilitarian approach
to agential choice, which enforces certain minimal properties on its agent-
dependent obligation operators. In particular, it implies a version of the em-
inent Ought-implies-Can principle (henceforth, OiC), a metaethical principle
postulating that ‘what an agent ought to do, the agent can do’. OiC has a
long history within moral philosophy and can be traced back to, for example,
Aristotle [2, VII-3], or the “Roman legal maxim impossibilium nulla obligatio
est” [40]. Still, it is often accredited to the renowned philosopher Immanuel
Kant [25, A548/B576]. Aside from debates on whether OiC should be adopted
at all [19,35], most discussions revolve around which version of the principle
should be endorsed. Notable positions have been taken up by Hintikka [22],
Lemmon [27], Stocker [36], Von Wright [43], and, more recently, Vranas [40].
However, most of these authors advocate readings that are either weaker or
stronger than the minimally implied OiC principle of traditional deontic STIT.
In order to formally investigate these different readings, it is necessary to mod-
ify and fine-tune the traditional framework.

The contributions of this work are as follows: First, we discuss, com-
pare, and formalize ten OiC principles occurring in the philosophical literature
(Sect. 2). To the best of our knowledge, such a taxonomy of principles has not
yet been undertaken (cf. [40] for an extensive bibliography). The intrinsically
agentive setting provided within the STIT paradigm will enable us to conduct
a fine-grained analysis of the various renditions of OiC. Still, the available util-
itarian characterization of deontic STIT makes it cumbersome to accommodate
this multiplicity of principles. For that reason, the present endeavour will take
a more modular approach to STIT, adopting relational semantics [14] through
which the use of utilities may be omitted [9] (Sect. 3).

Second, we provide sound and complete sequent-style calculi for all classes
of deontic STIT logics accommodating the various kinds of formalized OiC prin-
ciples (Sect. 4). In particular, we adopt labelled sequent calculi which explicitly
incorporate useful semantic information into their rules [34,39]. A general ben-
efit of using sequent-style calculi [37], in contrast to axiomatic systems, is that
the former are suitable for applications (e.g. proof-search and counter-model
extraction) [29]. Although this work is not the first to address STIT through
alternative proof-systems [4,29,41], it is the first to address both the traditional
deontic setting [23] and a large class of novel deontic STIT logics.

Last, we will use the resulting deontic STIT calculi to obtain a formal tax-
onomy of the OiC readings discussed. The benefit of employing proof theory
is twofold: First, we classify the ten OiC principles according to the respective
strength of the underlying STIT logics in which they are embedded (Sect. 5).
The calculi can be used to determine which logics subsume each other, giving
rise to what we call an endorsement principle; it demonstrates which endorse-
ment of which OiC readings logically commits one to endorsing other OiC read-
ings (from the vantage of STIT). Second, the calculi can be applied to show
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the mutual independence of certain OiC readings through the construction of
counter-models from failed proof-search. This work will lay the foundations
for an extensive investigation of OiC within the realm of agential choice, and
future research directions will be addressed in Sect. 6.

2 A Variety of Ought-implies-Can Principles

The fields of moral philosophy and deontic logic have given rise to a variety
of metaethical principles, such as “no vacuous obligations” [42], “deontic con-
tingency” [3], “deontic consistency” [21], and the principle of “alternate pos-
sibilities” [15]. One of the most prevalent is perhaps the principle of “Ought-
implies-Can”. In fact, we will see that each of the former metaethical canons is
significant relative to different interpretations of OiC. In this section, we intro-
duce and discuss ten such interpretations of OiC and indicate their relation to
the aforementioned metaethical principles. Many philosophers have addressed
OiC, and while earlier thinkers (e.g. Aristotle and Kant) only discussed it im-
plicitly, it was made an explicit subject of investigation in the past century.
We will focus solely on frequently recurring readings from authors that are—in
our opinion—central to the debate. Despite the apparent relationships between
some of the considered OiC readings, a precise taxonomy of their logical in-
terdependencies can only be achieved through a formal investigation of their
corresponding logics. We will provide such a taxonomy in Sect. 5.

One of the allures of OiC is that it releases agents from alleged duties which
are impossible, strenuous, or over-demanding [16,30]. Namely, in its basic
formulation—‘what an agent ought to do, the agent can do’—the principle
ensures that an agent can only be normatively bound by what it can do, i.e.,
‘what the agent can’t do, the agent is not obliged to do’. Most disagreement
concerning OiC can be understood in terms of the degree to which an agent
must be burdened or relieved. In essence, such discussions revolve around the
appropriate interpretation of the terms ‘ought’, ‘implies’, and predominantly,
‘can’. In what follows, we take ‘ought’ to represent agent-dependent obligations
and take ‘implies’ to stand for material implication (for a discussion see [1,40]).
With respect to the term ‘can’, we roughly identify four readings: (i) possibility,
(ii) ability, (iii) violability, and (iv) control. These four concepts give rise to
eight OiC principles. We close the section with a discussion of two additional
OiC principles which adopt a normative reading of the term ‘can’.

Throughout our discussion we introduce logical formalizations of the pro-
posed OiC readings that will be made formally precise in subsequent sections.
Therefore, it will be useful at this stage to introduce some notation employed
in our formal language: we let φ stand for an arbitrary STIT formula. The con-
nectives ¬,∧, and → are respectively interpreted as ‘not’, ‘and’, and ‘implies’.
Let [i] be the basic STIT operator such that, in the spirit of [7], we interpret
[i]φ both as ‘agent i sees to it that φ’ and ‘agent i chooses to ensure φ’. We
use the operator ✷ to refer to what is ‘settled true’, such that ✷φ can be read
as ‘currently, φ is settled true’. The main use of ✷ is to discern between those
state-of-affairs that can become true—i.e. actual—through an agent’s choice
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and those state-of-affairs that are true—i.e. actual—independent of the agent’s
choice. For this reason we will also interchangeably employ the term ‘actual’ in
referring to ✷ (for an extensive discussion see [7]). We take ✷ to be the dual of
✷, denoting that some state of affairs is actualizable, i.e., can become actual.
Last, we read ⊗i as ‘it ought to be the case for agent i that’. 2

1. Ought implies Logical Possibility : ⊗iφ→ ¬⊗i¬φ (OiLP). What is obliga-
tory for an agent, should be consistent from an ideal point of view.

The first principle, which is one of the weakest interpretations of OiC, requires
the content of an agent’s obligations to be non-contradictory. Within the philo-
sophical literature this interpretation has been referred to as “ought implies
logical possibility” [40] and the principle has been generally equated with the
metaethical principle of “deontic consistency” (e.g. [17,27]). 3 As a minimal
constraint on deontic reasoning, the principle is a cornerstone of (standard)
Deontic Logic [3,21,42], though it has been repudiated by some [27].

2. Ought implies Actually Possible: ⊗iφ → ✷φ (OiAP). What is obligatory
for an agent, should be actualizable.

The above principle is slightly stronger than the previous one: it rules out those
conceptual consistencies that might not be realizable at the current moment. 4

That is, the principle requires that norm systems can only demand what can
presently become actual. For example, ‘although it is logically possible to open
the window, it is currently not actualizable, since I am tied to the chair’.

However, both OiLP and OiAP are arguably too weak, and do not involve
the concerned agent whilst interpreting ‘can’. For instance, although ‘a moon
eclipse’ is both logically and actually possible, it should not be considered as
something an agent ought to bring about. For this reason, most renditions of
OiC involve the agent explicitly:

3. Ought implies Ability : ⊗iφ → ✷[i]φ (OiA). What is obligatory for an
agent, the agent must have the ability to see to, i.e. the choice to realize.

The above reading enforces an explicitly agentive precondition on obligations:
it requires ability as the agent’s capacity to guarantee the realization of that
which is prescribed. 5 The concept of ability has many formulations (cf.
[11,12,18,43]); for example, it may denote general ability, present ability, poten-
tial ability, learnability, know-how, and even technical skill (also, see [30,36,40]

2 We stress that OiC is essentially agentive, but not necessarily referring to choice in particu-
lar. For this reason, we distinguish ‘it ought to be the case for agent i that’ from the stronger
‘agent i ought to see to it that’. The latter reading corresponds to the notion of ‘dominance
ought ’ advocated by Horty [23]. Initially, the distinction will be observed for OiC. In Sect. 5
we show how the logics can be expanded to obtain the stronger reading proposed in [23].
3 In [45], Von Wright baptizes OiLP ‘Bentham’s Law’ and points out that the canon was
already adopted by Mally in what is known as the first attempt to construct a deontic logic.
4 In [21], OiC is named ‘Kant’s law’ and OiLP and OiAP are classified as weak versions of
the law. However, it is open to debate which reading of OiC Kant would admit (e.g. [26,38]).
5 Similarly, Von Wright distinguishes between human and physical possibility (cf. OiA and
OiAP, resp.), both implying logical possibility (cf. OiLP) as a necessary condition [44, p.50].
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on the corresponding notion of ‘inability’). In what follows, we take ‘ability’ to
mean a moment-dependent possibility for an agent to guarantee that which is
commanded through an available choice.

Observe that OiA is the principle implied by the traditional, utilitarian
based deontic STIT logic [23,32]. However, this OiC reading does not com-
pletely capture the notion of ‘ability’ as generally encountered in the philo-
sophical literature. That is, OiA merely requires that what is prescribed for
the agent can be guaranteed through one of the agent’s choices, but does not
exclude what is called vacuously satisfied obligations. Agents could still have
obligations (and corresponding ‘abilities’) to bring about inevitable states-of-
affairs, such as the obligation to realize a tautology (cf. [9]). Philosophical
notions of ability regularly ban such consequences by strengthening the con-
cept of ability with either (i) the possibility that the obligation may be violated,
(ii) the agent’s ability to violate what is demanded (i.e. an agent may refrain
from fulfilling a duty), (iii) the right opportunity for the agent to exercise its
ability, or (iv) the agent’s control over the situation (i.e. the agent’s power
to decide over the fate of what is prescribed). All of the above conceptions of
agency are contingent in nature, that is, they range over state-of-affairs which
are capable of being otherwise [24]. Each notion will be addressed in turn.

4. Ought implies Violability : ⊗iφ→ ✷¬φ (OiV). An agent’s obligation must
be violable, that is, the opposite of what is prescribed must be possible.

The above principle corresponds to the metaethical principle of “no vacuous
obligations”, which ensures that neither tautologies are obligatory nor contra-
dictions are prohibited [3,21,43]. However, in OiV a violation might still arise
through causes external to the agent concerned; e.g. ‘the prescribed opening
of a window, might be closed through a strong gust of wind’. 6 The following
principle strengthens this notion by making violability an agentive matter:

5. Ought implies Refrainability : ⊗iφ → ✷[i]¬[i]φ (OiR). An agent’s obliga-
tion must be deliberately violable by the agent, that is, the agent must be
able to refrain from satisfying its obligation.

In the jargon of STIT, we say that refraining from fulfilling one’s duty requires
“an embedding of a non-acting within an acting” [7, Ch.2]. That is, it requires
the possibility to ‘see to it that one does not see to it that’. However, the two
violation principles above are insubstantial when that which is obliged is not
possible in the first place. 7 For instance, it is not difficult for an agent to violate
an obligation to ‘create a moon eclipse’ (it could not be done otherwise). 8 To
avoid such cases, we often find that the ideas from 1−5 are combined:

6 Already in [42] Von Wright posed the ‘no vacuous obligations’ principle as a central prin-
ciple of deontic logic. There, he referred to it as “the principle of contingency”, however,
contingency requires that an obligation is not only violable, but also satisfiable (cf. OiO).
7 We conjecture that this is why Vranas states that OiR is strictly not an OiC principle [40].
8 Observe that violability relates strongly to the metaethical principle of “alternate possibil-
ity”, stating that an agent is morally culpable if it could have done otherwise (e.g. [15,47]).
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6. Ought implies Opportunity (OiO): ⊗iφ→ ( ✷φ∧ ✷¬φ). What is obligatory
for an agent, must be a contingent state-of-affairs.

The above uses the terms ‘opportunity’ and ‘contingency’ intentionally in an
interchangeable manner. Like previous terms, these terms know a variety of
readings in the literature (cf. [15,16,40,42]). Nevertheless, what these readings
share in relation to OiC is that they refer to the propriety of the circumstances
in which the agent is required to fulfill its duty. Minimally, opportunity and
contingency both require that a state-of-affairs within the scope of an active
norm must be presently manipulable; i.e. the state-of-affairs can still become
true or false. 9 This interpretation of OiO is related to what Von Wright has
in mind when he talks about the opportunity to interfere with the course of
nature [43], and to Anderson and Moore’s claim that sanctions (i.e. violations)
must be both provokable and avoidable, viz. contingent [3].

Taking the above a step further, agency can be more precisely described as
the agent’s ability together with the right opportunity. Following Vranas [40],
the latter component specifies “the situation hosting the event in which the
agent has to exercise her ability”. The following principle merges these ideas:

7. Ought implies Ability and Opportunity : ⊗iφ → ( ✷[i]φ ∧ ✷φ ∧ ✷¬φ)
(OiA+ O). What is obligatory for an agent, must be a contingent state-
of-affairs whose truth the agent has the ability to secure. 10

The above is the first completely agentive OiC principle, making that which is
obligatory fall, in all its facets, within the reach of the agent. Such a reading of
OiC can be said to be truly deliberative and both Vranas [40] and Von Wright
[43] appear to endorse a principle similar to OiA+O. However, there is an
even stronger reading which restricts norms to those state-of-affairs within the
agent’s complete control :

8. Ought implies Control : ⊗iφ → ( ✷[i]φ ∧ ✷[i]¬φ) (OiCtrl). What is obliga-
tory for an agent, the agent must have the ability to see to and the agent
must have the ability to see to it that the obligation is violated.

This reading, arguably advocated by Stocker [36], requires that an agent can
act freely : “it has often been maintained that we act freely in doing or not
doing an act only if we both can do it and are able not to do it” [36]. 11 This
last, perhaps too strong, instance of OiC implies that an agent is only subject
to norms whose subject matter is within the power of the agent.

In all its readings, OiC has still been regarded as too strong. For example,

9 A more fine-grained distinction can be made: in temporal settings a state-of-affairs can be
occasionally true and false (i.e. contingent), despite the fact that at the present moment it is
settled true and thus beyond the scope of the agent’s influence (i.e. there is no opportunity).
In the current atemporal STIT setting, this will not be explored.
10 In basic atemporal STIT the occurrence of ✷φ in the consequent of OiA+O can be omitted
since it is strictly implied by ✷[i]φ; that is, if φ can be the result of an agent’s choice, then
by definition it can be actualized. For the sake of completion we leave ✷φ present in OiA+O.
11 In the above quote, ‘able not to do [φ]’ can also be interpreted as ✷[i]¬[i]¬φ, instead of

✷[i]¬φ. The resulting principle would then equate with the weaker OiA+O in basic STIT.
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Label Ought implies... Formalized References

OiLP Logical Possibility ⊗iφ→ ¬⊗i¬φ [3], [17], [42], [45]

OiAP Actually Possible ⊗iφ→ ✷φ [17], [23, Ch.3]

OiA Ability ⊗iφ→ ✷[i]φ [23, Ch.4], [43, Ch.7]

OiV Violability ⊗iφ→ ✷¬φ [3], [16], [18], [43, Ch.8]

OiR Refrainability ⊗iφ→ ✷[i]¬[i]φ [18]

OiO Opportunity ⊗iφ→ ( ✷φ ∧ ✷¬φ) [3], [15], [16], [42], [44]

OiA+O Ability and Opp. ⊗iφ→ ( ✷[i]φ ∧ ✷φ ∧ ✷¬φ) [1], [26], [40], [43]

OiCtrl Control ⊗iφ→ ( ✷[i]φ ∧ ✷[i]¬φ) [16], [36], [30]

OiNC Normatively Can ⊗iφ→ ⊗i ✷φ [1], [22]

OiNA Normatively Able ⊗iφ→ ⊗i ✷[i]φ [1], [22]

Fig. 1. List of the ten OiC principles together with their treatment in the literature.

Lemmon challenged the legitimacy of OiLP in light of the existence of moral
dilemmas [27]. Other philosophers, like Hintikka [22], adopted more modest
standpoints toward OiC, suggesting weaker, normative versions of the princi-
ple. In light of the latter, it has been argued that OiC is dispositional, merely
capturing a normative attitude towards OiC [1]. Two approaches present them-
selves: (i) ‘it ought to be the case that what morality prescribes is possible’ or
(ii) ‘it ought to be possible for an agent to fulfill its obligations’. 12 The for-
mer does not correspond to an OiC principle, but only expresses that OiC
should hold as a metaethical principle (we return to this in Sect. 5). The latter
approach does provide OiC principles—we consider two possible readings:

9. Ought implies Normatively Can: ⊗iφ→ ⊗i ✷φ (OiNC). What is obligatory
for an agent, ought to be actually possible (for the agent).

10. Ought implies Normatively Able: ⊗iφ → ⊗i ✷[i]φ (OiNA). What is oblig-
atory for an agent, ought to be actualizable through the agent’s behavior.

Hence, both OiNC and OiNA require that, ‘if φ ought to be the case for agent
i, it ought to be the case for agent i that φ is actually possible (as a result
of the agent’s choice-making)’. In Fig. 1, the ten principles are collected and
associated with references to the various authors that treat such principles.

It is not our aim to decide which OiC principle should be adopted, as good
cases have been made for each. Instead, our present aim is as follows: first, we
appropriate the framework of STIT such that all ten principles can be explicitly
formulated (Sect. 4). Second, we use the resulting logics to formally determine
the logical relations between the ten principles (Sect. 5). The final result will
be a logical hierarchy of OiC principles, identifying which principles subsume
others and which are mutually independent within the setting of STIT.

3 Deontic STIT Logic for Ought-implies-Can

In this section, we will introduce a general deontic STIT language and semantics
whose modularity enables us to define a collection of deontic STIT logics that

12Hintikka advocates the first possibility; i.e. “O(Oφ → ✷φ)” [22]. However, one could argue
that the first occurrence of O is actually agent-independent, and the latter agent-dependent.
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will accommodate the variety of OiC principles discussed previously. It will
suffice to consider a multi-agent modal language containing the basic STIT

operator (i.e. the Chellas STIT) and the ‘settled true’ operator, extended with
agent-dependent deontic operators.

Definition 3.1 (The Language Ln) Let Ag = {1, 2, ..., n} be a finite set of
agent labels and let Atm = {p1, p2, p3...} be a denumerable set of propositional
atoms. The language Ln is defined via the following BNF grammar:

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | ✷φ | ✷φ | [i]φ | 〈i〉φ | ⊗i φ | ⊖i φ

where i ∈ Ag and p ∈ Atm.

We note that the formulae of Ln are defined in negation normal form. In
line with [8,29], we opt for this notation because it will enhance the readability
of the technical part of this paper. Namely, negation normal form will reduce
the number of logical rules needed in our sequent-style calculi (see Sect. 4), and
will simplify the structure of sequents used in derivations (see Sect. 5). Briefly,
the negation of a formula φ ∈ Ln, denoted by ¬φ, can be obtained by replacing
each positive propositional atom p with its negation ¬p (and vice versa), each
∧ with ∨ (and vice versa), and each modal operator with its corresponding
dual (and vice versa).

The logical connectives ∨ and ∧ stand for ‘or’ and ‘and’, respectively. Other
connectives and abbreviations are defined accordingly: φ → ψ iff ¬φ ∨ ψ, φ ≡
ψ iff (φ→ ψ) ∧ (ψ → φ), ⊤ iff p ∨ ¬p, and ⊥ iff p ∧ ¬p. The modal operators
✷, [i], and ⊗i express, respectively, ‘currently, it is settled true that’, ‘agent i
sees to it that’, and ‘it ought to be the case for agent i that’. We take ✷, 〈i〉,
and ⊖i as their respective duals. Last, we interpret ⊖i as ‘it is not obligatory
for agent i that not’ (a similar interpretation is applied to ✷ and 〈i〉). (NB.
negation normal form requires us to take diamond-modalities as primitive.) 13

3.1 Minimal Deontic STIT Frames

Since we are dealing with an atemporal STIT language, we can forgo the tra-
ditional semantics of branching time frames with agential choice functions [7].
Instead, we adopt a more modular approach using relational semantics [14]. As
shown in [20], it suffices to semantically characterize basic STIT using frames
that only model moments partitioned into equivalence classes, with the latter
representing the choices available to the agents at the respective moment. As
our starting point, we propose the following minimal deontic STIT models:

Definition 3.2 (Frames and Models for DSn) A DSn-frame is defined to
be a tuple F = 〈W,R✷, {R[i] | i ∈ Ag}, {R⊗i

| i ∈ Ag}〉 with n = |Ag|. Let
Rα ⊆W ×W and Rα(w) := {v ∈W | (w, v) ∈ Rα} for α ∈ {✷} ∪ {[i],⊗i | i ∈
Ag}. Let W be a non-empty set of worlds w, v, u... where:

13 In line with [32], we take the concatenation ⊗i[i] to stand for ‘agent i ought to see to it
that’, thus expressing the stronger agentive reading of obligation defended by [23] (also, see
footnote 2). However, whether ⊗i[i] will capture the intended logical behavior of this reading
will depend on the adopted class of STIT-frames. We will discuss this in Sect. 5.
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C1 R✷ is an equivalence relation.

C2 For all i ∈ Ag, R[i] ⊆ R✷ is an equivalence relation.

C3 For all w ∈W and all u1, ..., un ∈ R✷(w),
⋂

i∈Ag R[i](ui) 6= ∅.

D1 For all w, v, u ∈W , if R✷wv and R⊗i
wu, then R⊗i

vu.

A DSn-model is a tupleM = (F, V ) where F is a DSn-frame and V is a valuation
function mapping propositional atoms to subsets of W , i.e. V : Atm 7→ P(W ).

In Def. 3.2, property C1 stipulates that DSn-frames are partitioned into
R✷-equivalence classes, which we will refer to as moments. Intuitively, a mo-
ment is a collection of worlds that can become actual. For every agent in
the language, C2 partitions moments into equivalence classes, representing the
agent’s choices at such moments. The elements of a choice represent those
worlds that can become actual through exercising that choice. C3 captures
the pivotal STIT principle called ‘independence of agents’, ensuring that all
agents can jointly perform their available choices; i.e. simultaneous choices
are consistent (cf. [7]). D1 enforces that ideal worlds do not vary from differ-
ent perspectives within a single moment; i.e. an ideal world is ideal from the
perspective of the entire moment. In addition, D1 states that obligations are
moment-dependent; i.e. obligations might vary from moment to moment. We
emphasize that the class of DSn-frames does not require that worlds ideal at
a certain moment lie within that very moment. Hence, what is ideal might
not be realizable by any of the agents’ (combined) choices, and so, might be
beyond the grasp of agency. 14

Definition 3.3 (Semantics for Ln) Let M be a DSn-model and let w ∈ W

of M . The satisfaction of a formula φ ∈ Ln in M at w is defined accordingly:

1. w  p iff w ∈ V (p)

2. w  ¬p iff w 6∈ V (p)

3. w  φ ∧ ψ iff w  φ and w  ψ

4. w  φ ∨ ψ iff w  φ or w  ψ

5. w  ✷φ iff ∀u ∈ R✷(w), u  φ

6. w  ✸φ iff ∃u ∈ R✷(w), u  φ

7. w  [i]φ iff ∀u ∈ R[i](w), u  φ

8. w  〈i〉φ iff ∃u ∈ R[i](w), u  φ

9. w  ⊗iφ iff ∀u ∈ R⊗i
(w), u  φ

10. w  ⊖iφ iff ∃u ∈ R⊗i
(w), u  φ

Global truth, validity, and semantic entailment are defined as usual (see [10]).
We define the logic DSn as the set of Ln formulae valid on all DSn-frames.

3.2 Expanded Deontic STIT Frames

In order to obtain an assortment of deontic STIT characterizations accommo-
dating the different OiC principles, we proceed in two ways: first, we define
more fine-grained deontic STIT operators capturing deliberative aspects of obli-
gation, and second, we introduce a class of frame properties that change the
behavior of the ⊗i operator when imposed on DSn-frames.

14Traditional deontic STIT confines ideal worlds to moments since it restricts the evaluation
of utilities to moments [23]. Consequently, (⊗iφ → ⊖iφ) ≡ (⊗iφ → ✷φ) is valid for the tradi-
tional approach, and thus, logical and actual possibility coincide. Our alternative semantics
enables us to differentiate between OiLP, OiAP and a variety of other OiC principles.
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Observe that in basic STIT the choice-operator [i] is a normal modal opera-
tor, which implies that [i]⊤ is one of its validities. In contrast, the more refined
deliberative STIT operator—i.e. [i]dφ iff [i]φ ∧ ✷¬φ—is non-normal and, for
this reason, has been taken as defined [24] (with the exception of [46]). (NB.
For deliberative STIT, choices thus range over contingent state of affairs.) For
the same reason that ⊗i⊤ is a validity of basic DSn, we will similarly introduce
two defined modalities for deliberative obligations. Namely, we take

⊗d
i φ iff ⊗i φ ∧ ✷¬φ

to define a weak deliberative obligation, expressing that an agent’s obligations
can be violated (cf. [32,9]). Furthermore, we introduce

⊗c
iφ iff ⊗i φ ∧ ✷[i]¬φ

as defining a strong deliberative obligation, asserting that the obligation is
violable through the agent’s behavior. These operators will be necessary to
formally capture the deliberative versions of OiC in the present STIT setting.

Additionally, we provide four properties that may be imposed on DSn-
frames to change the logical behavior of the ⊗i operator:

D2 For all w ∈W there exists v ∈W s.t. R⊗i
wv.

D3 For all w, v ∈W , if R⊗i
wv then R✷wv.

D4 For all w, v, u ∈W , if R⊗i
wv and R[i]vu, then R⊗i

wu.

D5 For all w ∈W , there exists a v ∈W , such that R⊗i
wv and

for all u ∈W , if R[i]vu, then R⊗i
wu.

Property D2 requires that obligations are consistent; i.e. at every moment
and for every agent, there exists an ideal situation for which the agent should
strive (cf. seriality in Standard Deontic Logic [21]). D3 enforces that ideal
worlds are confined to moments (implying that every ideal world is realizable
at its corresponding moment; cf. footnote 14). Subsequently, D4 expresses
that agent-dependent obligations are about choices, thus enforcing that every
ideal world coincides with an ideal choice (cf. footnote 13): i.e. when ‘it ought
to be the case for agent i that’ then ‘agent i ought to see to it that’ (the other
direction follows from C2 Def. 3.2). Lastly, D5 states that for every agent
i there always exists at least one ideal choice (depending on whether D3 is
adopted, this ideal choice will be guaranteed accessible by an agent or not). It
must be noted that, as shown in [9], all four properties hold for the traditional
approach to deontic STIT [32]. We return to this in Sect. 5.

We define the entire class of STIT logics considered in this paper as follows:

Definition 3.4 (The logics DSnX) Let D = {D2, D3, D4, D5}, n = |Ag|
and X ⊆ D. A DSnX-frame is a tuple F = 〈W,R✷, {R[i] | i ∈ Ag}, {R⊗i

| i ∈
Ag}〉 such that F satisfies all properties of a DSn-frame (Def. 3.2) expanded
with the frame properties X. A DSnX-model is a tuple (F, V ) where F is a
DSnX-frame and V is a valuation function as in Def. 3.2. We define the logic
DSnX to be the set of formulae from Ln valid on all DSnX-frames.
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In the following section we provide sound and complete sequent-style calculi
for all logics DSnX obtainable through Def. 3.4. Together with the defined
deliberative obligation modalities ⊗d

i and ⊗c
i , the resulting class of calculi will

suffice to capture all the deontic STIT logics accommodating the different OiC
principles of Sect. 2. This will be demonstrated in Sect. 5.

4 Deontic STIT Calculi for Ought-implies-Can

This section comprises the technical part of the paper: we introduce sound
and complete sequent-style calculi G3DSnX for the multi-agent logics DSnX

defined in Def. 3.4. In what follows, we build on a simplified version of the
refined labelled calculi for basic STIT proposed in [29]. In the present work,
we modify this framework to include the deontic setting. Due to space con-
straints, we refer to [29] for an extensive discussion on refined labelled calculi.
For an introduction to sequent-style calculi in general see [37], and for labelled
calculi in particular, see [34,39]. Labelled calculi offer a procedural, compu-
tational approach to making explicit semantic arguments. This approach not
only allows for a precise understanding of the logical relationships between the
different OiC readings and corresponding logics, but can additionally be har-
nessed to construct counter-models confirming the independence of certain OiC
principles. We will demonstrate this in Sect. 5.

Definition 4.1 Let Lab := {x, y, z, ...} be a denumerable set of labels. The
language of our calculi consists of sequents Λ, which are syntactic objects of
the form R ⊢ Γ. R and Γ are defined via the following BNF grammars:

R ::= ε | R✷xy | R[i]xy | R⊗i
xy | R,R Γ ::= ε | x : φ | Γ,Γ

with i ∈ Ag, φ ∈ Ln, and x, y ∈ Lab.

We refer to R as the antecedent of Λ and to Γ as the consequent of Λ. We
use R, R′, . . . to denote strings generated by the top left grammar and refer to
formulae (e.g. R[i]xy and R⊗i

xy) occurring in such strings as relational atoms.
We use Γ, Γ′, . . . to denote strings generated by the top right grammar and
refer to formulae (e.g. x : φ) occurring in such strings as labelled formulae. We
take the comma operator to commute and associate in R and Γ (i.e. R and Γ
are multisets) and read its presence in R and Γ, respectively, as a conjunction
and a disjunction (cf. Def. 4.5). We let ε represent the empty string. 15 Last,
we use Lab(R ⊢ Γ) to represent the set of labels contained in R ⊢ Γ.

The calculus G3DSn for the minimal deontic STIT logic DSn (with n ∈ N)
is shown in Fig. 2. Intuitively, G3DSn can be seen as a transformation of the
semantic clauses of Def. 3.3 and DSn-frame properties of Def. 3.2 into inference
rules. For example, the (id) rule encodes the fact that either a propositional
atom p holds at a world in a DSn-model, or it does not (recall that a comma

15The empty string ε serves as an identity element for comma (e.g. R✷xy, ε ⊢ x : p, ε, y : q
identifies with R✷xy ⊢ x : p, y : q). If ε is the entire antecedent or consequent, it is left empty
by convention (e.g. ε ⊢ Γ identifies with ⊢ Γ). In what follows, it suffices to leave ε implicit.
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(id)
R ⊢ x : p, x : ¬p,Γ

R ⊢ x : φ,w : ψ,Γ
(∨)

R ⊢ x : φ ∨ ψ,Γ

R ⊢ x : φ,Γ R ⊢ x : ψ,Γ
(∧)

R ⊢ x : φ ∧ ψ,Γ

R, R[1]x1y, ..., R[n]xny ⊢ Γ
(IOA)†2

R ⊢ Γ

R, R✷xy ⊢ y : φ,Γ
(✷)†1

R ⊢ x : ✷φ,Γ

R ⊢ x : ✸φ, y : φ,Γ
(✸)†3

R ⊢ x : ✸φ,Γ

R, R[i]xy ⊢ y : φ,Γ
([i])†1

R ⊢ x : [i]φ,Γ

R ⊢ x : 〈i〉φ, y : φ,Γ
(〈i〉)†4

R ⊢ x : 〈i〉φ,Γ

R, R⊗i
xy ⊢ y : φ,Γ

(⊗i)
†
1

R ⊢ x : ⊗iφ,Γ

R, R⊗i
xy ⊢ x : ⊖iφ, y : φ,Γ

(⊖i)
R, R⊗i

xy ⊢ x : ⊖iφ,Γ

R, R⊗i
xz,R⊗i

yz ⊢ Γ
(D1i)

†
3

R, R⊗i
xz ⊢ Γ

Fig. 2. The calculi G3DSn (with n = |Ag|). †
1
on (✷), ([i]), and (⊗i) indicates that y

is an eigenvariable, i.e. y does not occur in the rule’s conclusion. †
2
on (IOA) states

that y is an eigenvariable and for all i ∈ {1, . . . , n}, xi ∼R
✸ xi+1 (see Def. 4.3). †

3

on (✸) and (D1i) and †
4
on (〈i〉) state, respectively, that x ∼R

✸ y and x ∼R
i y (see

Def. 4.3 and Def. 4.2). We have ([i]), (〈i〉), (⊗i), (⊖i), and (D1i) rules for each i ∈ Ag.

in the consequent reads disjunctively). The rules (IOA) and (D1i) encode, re-
spectively, condition C3 (i.e. independence of agents) and condition D1 of
Def. 3.2. A particular feature of refinement, is that we can incorporate the
semantic behavior of modalities into their corresponding rules. For instance,
the side condition †

4
of the (〈i〉) rule integrates the fact that 〈i〉 is semanti-

cally characterized as an equivalence relation. These side conditions—including
those for the rules (✸), (〈i〉) and (D1i)—rely on the notion of a ✸- and 〈i〉-path.

Definition 4.2 (〈i〉-path) Let x ∼i y ∈ {R[i]xy,R[i]yx} and Λ = R ⊢ Γ.
An 〈i〉-path of relational atoms from a label x to y occurs in Λ (written as
x ∼R

i y) iff x = y, x ∼i y, or there exist labels zj (j ∈ {1, . . . , k}) such that
x ∼i z1, . . . , zk ∼i y occurs in R.

Definition 4.3 ( ✷-path) Let x ∼
✷
y ∈ {R✷xy,R✷yx} ∪ {R[i]xy,R[i]yx | i ∈

Ag}, and Λ = R ⊢ Γ. An ✷-path of relational atoms from a label x to y

occurs in Λ (written as x ∼R

✷
y) iff x = y, x ∼

✷
y, or there exist labels zj

(j ∈ {1, . . . , k}) such that x ∼
✷
z1, . . . , zk ∼

✷
y occurs in R.

The definition of an 〈i〉- and ✷-path captures a notion of reachability that
simulates the fact that R[i] and R✷ are equivalence relations. Moreover, ✷-
paths also incorporate the fact that choices are subsumed under moments
(cf. C2 of Def. 3.2). Observe that the ✷-path condition on (IOA) indicates
that ‘independence of agents’ can only be applied to choices that occur at the
same moment. One of the advantages of using such paths as side conditions is
that it allows us to reduce the number of rules in our calculi [29].

Fig. 3 contains four additional structural rules with which the base calculi
G3DSn can be extended. As their names suggest, these rules simulate their
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R, R⊗i
xy ⊢ Γ

(D2i)
†
1

R ⊢ Γ

R, R⊗i
xy,R✷xy ⊢ Γ

(D3i)
R, R⊗i

xy ⊢ Γ

R, R⊗i
xy,R⊗i

xz ⊢ Γ
(D4i)

†
2

R, R⊗i
xy ⊢ Γ

R′, R⊗i
xz ⊢ Γ′

(D52i )
†
2

R′ ⊢ Γ′

...
R, R⊗i

xy ⊢ Γ
(D51i )

†
1

R ⊢ Γ

Fig. 3. The Deontic Structural Rules. Condition †
1
on (D2i) and (D51i ) states that y

is a eigenvariable. Condition †
2
on (D4i) and (D52i ) indicates that y ∼R

i z (Def. 4.2).

Last, we let (D5i)
‡ be 〈(D51i ), (D5

2

i )〉 with ‡ the global restriction (mentioned below),

and have (D2i), (D3i), (D4i), (D5i) rules for each i ∈ Ag.

respective frame properties (cf. Def. 3.4). In doing so, we obtain calculi for
the logics DSnX. As an example, the logic DSn{D2,D4} corresponds to the
calculus G3DSn{(D2i), (D4i) | i ∈ Ag} (henceforth, we write G3DSn{D2i,D3i}).

Definition 4.4 (The calculi G3DSnX) Let DSnX be a logic from Def. 3.4.
Let n = |Ag| ∈ N and X ⊆ {D2,D3,D4,D5}. We define G3DSnX to consist of
G3DSn extended with (DKi), if DK ∈ X (with K ∈ {2, 3, 4, 5}) for all i ∈ Ag.

We point out that the first-order condition D5 (Def. 3.2) is a generalized
geometric axiom. In [34], it was shown that properties of this form require
system of rules in their corresponding calculi. We adopt this approach in our
calculi as well and use (D5i) to denote the system of rules 〈(D51i ), (D5

2

i )〉 (see
Fig. 3). The global restriction ‡ imposed on applying (D5i) is that, although we
may use (D51i ) wherever, if we use (D52i ) we must also use (D51i ) further down
in the derivation. In Sect. 5, Ex. 5.1 demonstrates an application of (D5i).

To confirm soundness and completeness for our calculi—thus demonstrating
an equivalence between the semantics (DSnX) and proof-theory (G3DSnX) of
our logics—we need to provide a semantic interpretations of sequents:

Definition 4.5 (Sequent Semantics) LetM be a DSnX-model with domain
W and I an interpretation function mapping labels to worlds; i.e. I: Lab 7→W .
A sequent Λ = R ⊢ Γ is satisfied in M with I (written, M, I |= Λ) iff for all
relational atoms Rαxy ∈ R (where α ∈ {✷} ∪ {[i],⊗i | i ∈ Ag}), if RαI(x)I(y)
holds in M , then there exists a z : φ ∈ Γ such that M, I(z)  φ. Λ is valid
relative to DSnX iff it is satisfiable in any DSnX-model M with any I.

Theorem 4.6 (Soundness and Completeness of G3DSnX) A sequent Λ
is derivable in G3DSnX iff it is valid relative to DSnX.

Proof. Follows from Thm. A.1 and A.3. See the Appendix A for details. ✷

5 A formal analysis of Deontic STIT and OiC

In this section, we put our G3DSnX calculi to work. First, we make use of our
calculi to organize our logics in terms of their strength—observing which are
equivalent, distinct, or subsumed by another. Second, we discuss the logical
(in)dependencies between our various OiC principles by confirming the minimal
logic in which each principle is validated.
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5.1 A Taxonomy of Deontic STIT Logics

In Fig. 4, a lattice is provided ordering the sixteen deontic STIT calculi of
Def. 4.4 on the basis of their respective strength (reflexive and transitive edges
are left implicit). We consider a calculus G3DSnX stronger than another calcu-
lus G3DSnY whenever the former generates at least the same set of theorems
as the latter. Consequently, the lattice simultaneously orders the deontic STIT
logics of Def. 3.4, generated by these calculi, on the basis of their expressivity.
In Fig. 4, the calculi are ordered bottom-up: G3DSn is the weakest system, gen-
erating the smallest logic subsumed by all others, whereas G3DSn{D2i,D3i,D4i}
is the strongest calculus with its logic subsuming all others. Notice that the
latter calculus generates the traditional deontic STIT logic of [23,32]. To de-
termine the existence of a directed edge from one calculus G3DSnX to another
G3DSnY in the lattice, we need to show that every derivation in the former can
be transformed into a derivation in the latter. As an example of this procedure,
we consider the edge from G3DSn{D3i,D5i} to G3DSn{D2i,D3i,D4i}.

Example 5.1 To transform a G3DSn{D3i,D5i}-derivation into a derivation of
G3DSn{D2i,D3i,D4i}, it suffices to show that each instance of (D51i ) and (D52i )
can be replaced, respectively, by instances of (D2i) and (D4i). For example:

R✷xy,R⊗i
xy,R[i]yz,R⊗i

xz ⊢ z : ¬φ, ..., z : φ
(⊖i)

R✷xy,R⊗i
xy,R[i]yz,R⊗i

xz ⊢ x : ⊖i¬φ, ..., z : φ
(D52i )R✷xy,R⊗i

xy,R[i]yz ⊢ x : ⊖i¬φ, ..., z : φ
([i])

R✷xy,R⊗i
xy ⊢ x : ⊖i¬φ, ..., y : [i]φ

(✸)
R✷xy,R⊗i

xy ⊢ x : ⊖i¬φ, x : ✷[i]φ
(D3i) ❀

R⊗i
xy ⊢ x : ⊖i¬φ, x : ✷[i]φ

(D51i )⊢ x : ⊖i¬φ, x : ✷[i]φ
(∨)

⊢ x : ⊖i¬φ ∨ ✷[i]φ. . . . . . . . . . . . . . . . . . . . . . =
⊢ x : ⊗iφ→ ✷[i]φ

R✷xy,R⊗i
xy,R[i]yz,R⊗i

xz ⊢ z : ¬φ, ..., z : φ
(⊖i)

R✷xy,R⊗i
xy,R[i]yz,R⊗i

xz ⊢ x : ⊖i¬φ, ..., z : φ
(D4i)

R✷xy,R⊗i
xy,R[i]yz ⊢ x : ⊖i¬φ, ..., z : φ

([i])
R✷xy,R⊗i

xy ⊢ x : ⊖i¬φ, ..., y : [i]φ
(✸)

R✷xy,R⊗i
xy ⊢ x : ⊖i¬φ, x : ✷[i]φ

(D3i)
R⊗i

xy ⊢ x : ⊖i¬φ, x : ✷[i]φ
(D2i)

⊢ x : ⊖i¬φ, x : ✷[i]φ
(∨)

⊢ x : ⊖i¬φ ∨ ✷[i]φ. . . . . . . . . . . . . . . . . . . . . . =
⊢ x : ⊗iφ→ ✷[i]φ

The non-existence of a directed edge in the opposite direction is implied by the
fact that G3DSn{D2i,D3i,D4i} ⊢ ⊗iφ→ ⊗i[i]φ and G3DSn{D3i,D5i} 6⊢ ⊗iφ→
⊗i[i]φ. The latter is shown through failed proof search (See Ex. 5.2 for an
illustration of how failed proof-search can be used to determine underivability.)

To determine that two calculi G3DSnX and G3DSnY are equivalent (i.e.
G3DSnX ≡ G3DSnY), thus implying that the associated logics are identical,
one shows that every derivation in the former can be transformed into a deriva-
tion in the latter, and vice-versa. Last, to prove that two calculi G3DSnX

and G3DSnY are independent—yielding incomparable logics—it is sufficient to
show that there exist formulae φ and ψ such that G3DSnX ⊢ φ, G3DSnY 6⊢ φ,
G3DSnY ⊢ ψ, and G3DSnX 6⊢ ψ. We come back to this in the following subsec-
tion when we consider an example of an underivable OiC formula.

5.2 Logical (In)Dependencies of OiC Principles

Fig. 4 also represents which deontic STIT calculi should at least be adopted
to make certain OiC principles theorems of the corresponding logics. These
principles were initially formalized in Sect. 2. However, as discussed in Sect. 3,
in order to formally represent deliberative readings of OiC in a normal modal
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G3DSn{D2i,D3i,D4i,D5i}

≡ G3DSn{D2i,D3i,D4i}

≡ G3DSn{D3i,D4i,D5i}

G3DSn{D2i,D4i,D5i}

≡ G3DSn{D2i,D4i}

≡ G3DSn{D4i,D5i}

G3DSn{D2i,D3i,D5i}

≡ G3DSn{D3i,D5i}

⊢ OiA

⊢ OiA+O∗

⊢ OiCtrl∗

G3DSn{D3i,D4i}

G3DSn{D2i,D3i}

⊢ OiAP

⊢ OiO∗

G3DSn{D2i,D5i}

≡ G3DSn{D5i}

⊢ NOiA

G3DSn{D3i}G3DSn{D2i}

⊢ OiLP

G3DSn{D4i}

⊢ OiNA

G3DSn⊢ OiNC

⊢ OiV∗

⊢ OiR∗

Fig. 4. The lattice of deontic STIT calculi. Directed edges point from weaker calculi

to stronger calculi, consequently ordering the corresponding logics w.r.t. their expres-

sivity (reflexive and transitive edges are left implicit). We use ≡ to denote equivalent

calculi. Dotted nodes show which calculi should at least be adopted to make the

indicated OiC principles theorems (for the final OiC formalizations see Fig. 5).

setting, we must replace the initial antecedent ⊗iφ with its deliberative cor-
respondent ⊗d

i φ in OiV,OiR,OiO,OiA+O and with ⊗c
iφ in OiCtrl. The final

list of OiC formalizations is presented in Fig. 5. Although for now the above
suffices—i.e. the approach being in line with the traditional treatment of delib-
erative agency [7,23,24]—the solution may be considered ad hoc. We note that
these deliberative canons may alternatively be captured as follows: (i) through
characterizing deliberation directly in the logic, taking ⊗d

i and ⊗c
i as primitive

operators (cf. [46]), or (ii) through characterizing contingency via the use of
sanction constants (cf. [3]). We leave this to future work.

In Ex. 5.1, we saw that OiA is derivable in both G3DSn{D2i,D3i,D4i} and
G3DSn{D3i,D5i}. What is more, since ⊗i[i]φ → ⊗iφ is already a theorem of
G3DSn, we find that the weaker logic generated by G3DSn{D3i,D5i} already
suffices to accommodate OiC of the traditional deontic STIT setting [23], that
is, G3DSn{D3i,D5i} ⊢ ⊗i[i]φ → ✷[i]φ. We emphasize that only through the
addition of D4i do we restore the position advocated by Horty in [23] (cf.
footnote 2). Namely, by adding D4i to a calculus, the distinction between
⊗i and ⊗i[i] collapses—i.e. G3DSn{D4i} ⊢ ⊗iφ ≡ ⊗i[i]φ—and the agent-
dependent obligation operator will demonstrate the same logical behavior as the
interpretation of obligation restricted to complete choices; i.e. the ‘dominance
ought’. (NB. In [9] it was shown that the relational characterization of ⊗i in
DSn{D2,D3,D4} is equivalent to the logic of ‘dominance ought’ [23,32].)
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G3DSn{D2i} ⊢ ⊗iφ→ ¬⊗i¬φ OiLP G3DSn{D2i,D3i} ⊢ ⊗d

i φ→ ( ✷φ ∧ ✷¬φ) OiO
∗

G3DSn{D2i,D3i} ⊢ ⊗iφ→ ✷φ OiAP G3DSn{D3i,D5i} ⊢ ⊗d

i φ→ ( ✷[i]φ ∧ ✷φ ∧ ✷¬φ) OiA+O
∗

G3DSn{D3i,D5i} ⊢ ⊗iφ→ ✷[i]φ OiA G3DSn{D3i,D5i} ⊢ ⊗c

iφ→ ( ✷[i]φ ∧ ✷[i]¬φ) OiCtrl
∗

G3DSn ⊢ ⊗d

i φ→ ✷¬φ OiV
∗

G3DSn ⊢ ⊗iφ→ ⊗i ✷φ OiNC

G3DSn ⊢ ⊗d

i φ→ ✷[i]¬[i]φ OiR
∗

G3DSn{D4i} ⊢ ⊗iφ→ ⊗i ✷[i]φ OiNA

Fig. 5. STIT formalizations of OiC, with the minimal G3DSnX calculi entailing them.

From a philosophical perspective, Fig. 4 gives rise to what we will call the
endorsement principle of the philosophy of OiC. Namely, the ordering of calculi
tells us which endorsements of which OiC readings will logically commit us to
endorsing other OiC readings (within the logical realm of agential choice). For
instance, endorsing OiA tells us that we must also endorse the weaker OiLP and
OiAP since they are logically entailed in the minimal calculus for OiA.

Furthermore, the taxonomy of deontic STIT logics shows which readings of
OiC are independent from one another. In particular, we note that the norma-
tive principle OiNA is strictly independent of OiA,OiLP,OiAP. An advantage
of the present proof theoretic approach is that we can constructively prove why
certain readings of OiC fail to entail one another (relative to their calculi):

Example 5.2 To show that OiNA is not entailed by OiLP in G3DS1{D21} one
attempts to prove an instance of OiNA via bottom-up proof-search (left):

...
R⊗1

wu,R[1]vz,R⊗1
wv ⊢ w : ⊖1¬p, v : ¬p, u : ¬p, z : p

(⊖1)
R⊗1

wu,R[1]vz,R⊗1
wv ⊢ w : ⊖1¬p, z : p

(D21)
R[1]vz,R⊗1

wv ⊢ w : ⊖1¬p, z : p
([1]) ❀

R⊗1
wv ⊢ w : ⊖1¬p, v : [1]p

( ✷)
R⊗1

wv ⊢ w : ⊖1¬p, v : ✷[1]p
(⊗1)

⊢ w : ⊖1¬p, w : ⊗1 ✷[1]p. . . . . . . . . . . . . . . . . . . . . . . . . . . . =
⊢ w : ⊗1p→ ⊗1 ✷[1]p

w : p

u : p

v : p

z : ¬p

⊗1

⊗1

⊗1

⊗1

⊗1

· · · nodes indicate agent 1’s choices

— nodes indicate moments

In theory, the left derivation will be infinite, but a quick inspection of the rules
of G3DS1{D21} (with Ag = {1}) ensures us that no additional rule application
will cause the proof to successfully terminate: ¬p will never be propagated to
z. The topsequent (left) will give the DS1{D2}-countermodel for OiNA (right),
provided that the model is appropriately closed under D1 and D2: i.e. M,w 6|=
OiNA with W = {w, v, u, z}, R[1] = {(v, z), (z, v)}, R✷ = {(v, z), (z, v)}, R⊗1

=
{(w, u), (w, v), (u, u), (v, v), (z, v)} and V (p) = {w, v, u} (reflexivity is omitted
for R[1] and R✷). We leave development of terminating proof-search procedures
with automated countermodel extraction to future work (cf. [29]).

We close with two remarks: First, recall Hintikka’s position that OiC merely
captures the normative disposition that ‘it ought to be that OiC’. An agent-
dependent variation of this principle (referred to as NOiA in Fig. 4) turns out
to be a theorem of G3DSn{D3i,D4i}; i.e. G3DSn{D3i,D4i} ⊢ ⊗i(⊗iφ→ ✷[i]φ).
Second, we observe that the calculus G3DSn{D5i} gives rise to an interesting,
yet unaddressed, OiC principle which combines the ideas behind OiLP and
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OiNA, namely, G3DSn{D5i} ⊢ ⊗iφ→ ⊖i ✷[i]φ. Loosely, this principle expresses
that ‘ought implies that it is ideally consistent that the agent has the ability to
fulfil its duties’. Future research will be directed toward further investigation of
the philosophical consequences of our logical taxonomy of deontic STIT logics.

6 Conclusion

In this work, we analyzed, formalized, and compared ten distinct readings of
Ought-implies-Can as taken from the philosophical literature. We modified the
deontic STIT setting to accommodate this variety of OiC principles. Sound and
complete deontic STIT calculi were provided of which the aforementioned OiC
principles were shown to be theorems. We used these calculi to determine the
logical interdependencies between these principles, resulting in a logical taxon-
omy of Ought-implies-Can according to each principle’s respective strength. In
particular, we proposed an endorsement principle describing which OiC read-
ings commit one to other readings logically entailed by the former.

Future work will be twofold: First, from a technical perspective, we aim to
provide decision algorithms based on the deontic STIT calculi G3DSnX, follow-
ing the work in [29]. Thus, we will leverage our calculi for the desired automa-
tion of normative reasoning within STIT. Furthermore, we aim to logically
capture the deliberative OiC principles, bypassing the use of defined deliber-
ative operators. Second, from a more philosophical perspective, future work
will be directed toward the identification and analysis of further OiC principles
derived from our logical taxonomy of deontic STIT logics.

Appendix

A Soundness and Completeness Proofs

Theorem A.1 (Soundness) If a sequent Λ is derivable in G3DSnX, then it
is valid relative to DSnX.

Proof. It suffices to show that (id) is valid and each rule of G3DSnX preserves
validity relative to DSnX. With the exception of (D5i) = 〈(D51i ), (D5

2

i )〉, all
cases are relatively straightforward (cf. [8,29]). The (D5i) case follows from the
general soundness result for systems of rules presented in [34]. ✷

Lemma A.2 For any sequent Λ, either Λ is provable in G3DSnX, or there
exists a DSnX-model M with I such that M, I 6|= Λ.

Proof. For the proof we expand on the methods employed in [33]. In brief, we
first (1) define a reduction-tree RT for an arbitrary sequent Λ = R ⊢ Γ. Either
RT terminates and represents a proof in G3DSnX, implying the provability of
Λ, or it does not terminate. In the latter case the tree will be infinite and,
using König’s Lemma, we therefore know that (at least) one of RT’s branches
is infinite. We use this infinite branch to show that (2) a DSnX-model M can
be constructed with an interpretation I such that M, I 6|= Λ.

(1) The inductive construction of RT consists of phases, each phase having
two cases: (i) if every topmost sequent of every branch of RT is an initial se-



74 The Varieties of Ought-Implies-Can and Deontic STIT Logic

quent (id) the construction terminates. (ii) If not, then for those open branches,
the construction proceeds and we continue applying—when possible—the rules
of the calculus in a roundabout fashion. (NB. If no rule can be applied to
a top sequent, yet it is not an initial sequent, then we copy the top sequent
indefinitely.) We show how the (〈i〉) and (D5i) rules are applied (bottom-up)
below; all remaining cases are similar or simple (cf. [8,33]).

We first consider the (〈i〉) case, and suppose thatm top sequents Λj = Rj ⊢
Γj (with 1 ≤ j ≤ m) are open in RT (i.e. no Λj is an instance of the (id) rule).
Let x1 : 〈i〉φ1, ..., xkj

: 〈i〉φkj
be all labelled formulae in Λj prefixed with a 〈i〉

modality. Moreover, let yl,1, . . . , yl,rl ∈ Lab(Λj) s.t. xl ∼
Rj

i yl,s (for 1 ≤ l ≤ kj
and 1 ≤ s ≤ rl). We add Λj+1 = Rj ⊢ y1,1 : φ1, . . . , y1,r1 : φ1, . . . , ykj ,1 :
φkj

, . . . , ykj ,rkj
: φkj

,Γj on top of Λj . We apply this procedure for all i ∈ Ag.

For the (D5i) case, assume that m top sequents Λj = Rj ⊢ Γj (with
1 ≤ j ≤ m) are still open in RT. First, for all x1, ..., xkj

∈ Lab(Λj), we
set Rj+1 := R⊗i

x1y1, ..., R⊗i
xkj

ykj
,Rj , set Γj+1 := Γj , and add Λj+1 =

Rj+1 ⊢ Γj+1 on top of Λj , where y1, ..., ykj
are fresh. (NB. This corre-

sponds to applications of (D51i ).) Second, for all z′
1
, . . . , z′lr ∈ Lab(Λj+1)

such that zr ∼
Rj+1

i z′
1
, . . ., zr ∼

Rj+1

i z′lr and R⊗i
x′rzr was introduced by

an application of (D51i ) at any stage s ≤ j (with 1 ≤ r ≤ h), we add
Λj+2 = R⊗i

x′
1
z′
1
, ..., R⊗i

x′
1
, z′l1 , . . . , R⊗i

x′hz
′
1
, ..., R⊗i

x′h, z
′

lh
,Rj+1 ⊢ Γj+1 on

top of Λj+1. We apply this procedure for all agents i ∈ Ag.
(2) If the construction of theRT for Λ terminates, we know that the topmost

sequents of all branches are initial sequents and hence RT corresponds to a
proof. If RT does not terminate, the tree is infinite and, with König’s Lemma,
we obtain an infinite branch from which we can construct a DSnX counter-
model for Λ. Let R0 ⊢ Γ0, ...,Rj ⊢ Γj , ... be the sequence of sequents from the
infinite branch, such that, (i) Λ = R0 ⊢ Γ0 and (ii) Λ+ = R+ ⊢ Γ+, where
R+ =

⋃

j≥0
Rj and Γ+ =

⋃

j≥0
Γj .

We construct a model M+ = 〈W,R✷, {R[i]|i ∈ Ag}, {R⊗i
|i ∈ Ag}, V 〉 as

follows: W := Lab(Λ+); R✷ := {(x, y) | x ∼R
+

✷
y}; R[i] := {(x, y) | x ∼R

+

i y}

(for all i ∈ Ag); R⊗i
:= {(x, y) | R⊗i

xy ∈ R+} (for all i ∈ Ag); last, x ∈ V (p)
iff x : p ∈ Γ+. It is straightforward to show that M+ is a DSnX-model. We
show that M+ satisfies C2 and D5 (assuming that D5 ∈ X). The cases for all
other conditions C1, C3, D1, and those in X are similar or simple.

To show that M+ satisfies C2 we need to show (i) R[i] ⊆ R✷, and (ii) R[i]

is an equivalence relation. To show (i), assume that (x, y) ∈ R[i]. This implies

that x ∼R
+

i y holds, which further implies that x ∼R
+

✸
y holds by Def. 4.2

and 4.3. Therefore, by the definition of R✷ in M+ above, (x, y) ∈ R✷. To see
that R[i] is an equivalence relation, it suffices to observe that the relation is

defined relative to ∼R
+

i , which is an equivalence relation.
To prove thatM+ satisfies D5, we assume x ∈W . By the definition of RT,

we know that there exists a Λj in the infinite branch such that x ∈ Lab(Λj).
Since the branch is infinite and rules are applied in a roundabout fashion we
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know that at some point k > j the (D5i) step of the RT procedure must have
been applied (and so, (D51i ) must have been applied). Hence, R⊗i

xy ∈ Rk+1

for Λk+1 = Rk+1 ⊢ Γk+1 with y fresh, implying that (x, y) ∈ R⊗i
. We aim to

show that for all z ∈ W , if (y, z) ∈ R[i], then (x, z) ∈ R⊗i
. Take an arbitrary

z ∈ W for which (y, z) ∈ R[i]. By the assumption that (y, z) ∈ R[i] and by
the definition of RT, we know that at some point m ≥ k + 1 that the (D5i)
step of the RT procedure must have been applied (and so, (D52i ) must have
been applied) with y ∼Rm

i z for Λm = Rm ⊢ Γm. Hence, R⊗i
xz ∈ Rm+1 in

Λm+1 = Rm+1 ⊢ Γm+1, implying that (x, z) ∈ R⊗i
.

Let I : Lab 7→ W be the identity function (we may assume w.l.o.g. that
Lab = W ). By construction, M+ satisfies each relational atom occurring in
R+ with I, meaning that M+ satisfies each relational atom in R with I (recall
Λ = R ⊢ Γ). It can be shown by induction on the complexity of φ that for any
x : φ ∈ Γ+, M+, I(x) 6|= φ. Consequently, since Γ ⊆ Γ+, M+, I 6|= Λ. ✷

Theorem A.3 (Completeness) If a sequent Λ is valid relative to DSnX, then
it is derivable in G3DSnX.

Proof. Follows directly from A.2. ✷
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Abstract

Deontic logics are dubbed the logics of normative or prescriptive reasoning. These
logics can roughly be categorized into ought-to-be, dealing with the prescription of
state of affairs, or ought-to-do, dealing with the prescription of actions. An important
family of ought-to-do deontic logics have their origin in Segerberg’s Deontic Action

Logic (DAL, see [23]). In this work, we provide an algebraic characterization of DAL
and some known variants. In brief, we capture actions and formulas as elements of dif-
ferent base algebras, and deontic operators as algebraic operations; different algebras
capture the different variants. This algebraization enables us to obtain complete-
ness results via standard algebraic means. Moreover, we argue that this algebraic
framework offers a natural way of (re-)thinking many deontic logical issues at large.

Keywords: Deontic Action Logic, Algebraic Logic, Normative Reasoning.

1 Introduction

Deontic Logic (DL) is devoted to the study of norms and their logical founda-
tions. The beginnings of DL can be traced back to the pioneer works of G. von
Wright [28], J. Kalinowski [13], and O. Becker [5]. Since then, most deontic
logics have been defined as particular classes of modal logics (see [7,6]). The
most famous among these formal systems is Standard Deontic Logic, SDL for
short. SDL extends the normal modal system K with the extra axiom D for
seriality. An in-depth introduction to diverse formal systems of deontic logic
is provided in [4], together with a historical presentation.
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Deontic logics built on SDL are known as ought-to-be, as they deal with
the prescription of states of affairs, i.e., propositions. However, G. von Wright
pointed out that deontic logics are closely related to the concept of action
(see [28,29]), and furthermore, they should be constructed upon a theory of
actions (see [28,29]). These observations, also shared by other authors (e.g.,
[14,23,19,9,8,26,21]), have led to the development of deontic logics where pre-
scriptions apply to actions instead of propositions. Deontic logics of this kind
are called ought-to-do.

One of the first ought-to-do deontic logics was presented by K. Segerberg
in [23]. Segerberg’s logic formally distinguishes between actions and formulas.
In this formalism, actions are built up from basic action names using action
combinators. Then, deontic connectives apply to actions to yield formulas, and
formulas are obtained from formulas using logical connectives. We illustrate
this by means of a simple example. Let driving and drinking be basic action
names; the formula ¬P(driving ⊓ drinking) states that drinking while driving
is not permitted. In this formula, ⊓ is an action operator that can be un-
derstood as the parallel execution of actions; P is the deontic connective of
permission, and ¬ is logical negation. The obtained logic is extremely sim-
ple and admits a sound and complete proof system. An interesting feature of
Segerberg’s logic is its two tier interpretation structure, i.e., actions are inter-
preted resorting to an algebra of events, whereas formulas are interpreted using
truth values. Segerberg’s initial formalism was revisited by other authors, for
instance: [9] introduces action prescriptions and combines them with modal op-
erators, and [25] investigates several fragments of Segerberg’s logic. We follow
the terminology from [25] and call these formalisms deontic action logics.

In this paper we provide an algebraic formulation of deontic action logics.
More precisely, we develop an abstract view of deontic action logics in terms
of algebraic structures. To this end, we follow some of the main ideas intro-
duced by Halmos in [11], where Boolean algebras serve as an abstraction of
propositions; Venema in [27], who introduced Boolean algebras with operators
as an algebraic counterpart of modal logics; and Pratt in [20], who introduced
dynamic algebras to investigate the theoretical properties of dynamic logics via
many-sorted algebras. Intuitively, in our framework, formulas are captured as
elements of a Boolean algebra, while actions are formalized by means of another
(Boolean) algebra. In this setting, deontic operators are modeled as functions
connecting both algebras. We put forth that the benefits of this algebraic ver-
sion of deontic action logics are twofold. Firstly, algebraic logic has been shown
useful when analyzing theoretical properties of logics and investigating the re-
lations between different formalisms. Secondly, extensions to a deontic action
logic can be obtained by considering different action and predicate algebras.
We explore these ideas in Sec. 4.

Structure. In Sec. 2, we introduce some of the basic definitions of Segerberg’s
deontic action logic, called DAL. In Sec. 3, we present the basic algebraic
framework, and prove an algebraic version of soundness and completeness for
DAL using standard algebraic tools. Preliminary definitions about algebra used
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in that section can be found in Appendix A. In Sec. 4, we discuss variants of
deontic action logics using particular classes of algebras. Lastly, in Sec. 5, we
offer some final remarks and discuss future work.

2 Segerberg’s Deontic Action Logic

We cover the syntax and semantics of the deontic action logic originally intro-
duced by Segerberg in [23]. We refer to this logic as DAL.

Syntax of DAL. The language of DAL is comprised of a set Act of actions and
a set Form of formulas defined on a countable set Act0 = { ai | i ∈ N } of basic
action symbols. The sets Act and Form are given by the grammars in Eq. (1)
and Eq. (2), respectively:

α ::= ai | α ⊔ α | α ⊓ α | ᾱ | 0 | 1 (1)

ϕ ::= Pα | Fα | α = β | ϕ→ ϕ | ¬ϕ. (2)

Intuitively, any ai ∈ Act0 is a basic action; α ⊔ β is the free-choice between
α and β; α ⊓ β is the parallel execution of α and β; ᾱ is the complement of α,
i.e., any action other than α; and 0 and 1 are the impossible and the universal

actions, respectively. Turning to formulas, the connective = indicates equality

of actions. The logical connectives → and ¬ stand for material implication and
negation, respectively. We also consider the derived logical connectives: ∨ for
disjunction, ∧ for conjunction, ⊤ for verum, ⊥ for falsum, and ↔ for material

bi-implication. The derived logical connectives are defined from → and ¬ in
the usual way. The connectives P and F have a deontic reading: (a) P stands
for permitted, i.e., α is allowed to be executed; (b) F stands for forbidden, i.e.,
the execution of α forbidden.

The axioms for DAL are listed in Fig. 1. A Hilbert-style notion of provability
based on these axioms is defined in the usual way using the rule of modus

ponens. More precisely, a proof of ϕ is a finite sequence ψ1, . . . , ψn of formulas
s.t. ψn = ϕ, and for each k ≤ n, ψk is either: (i) an axiom; or (ii) obtained
from two earlier formulas using modus ponens, i.e., there are i, j < k s.t. ψj =
ψi → ψk. We say that ϕ is a theorem of DAL, written ⊢ ϕ, if there is a proof
of ϕ. The set of theorems of DAL is the set: {ϕ | ⊢ ϕ }.

Semantics of DAL. A deontic action model is a tuple M = 〈E,P, F 〉 where:
(a) E is a set of elements; and (b) P and F are subsets of E satisfying P ∩ F =
∅. Intuitively, in a deontic action model M, we can think of the set E the set
of possible outcomes of actions, and of the sets P and F as sets of permitted
and forbidden events. The condition P ∩ F = ∅ in (b) can be understood as
an indication that: only the impossible is both permitted and forbidden.

A valuation on a deontic model M is a function v : Act0 → 2E . Every
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1. The following set of axioms for actions α, β, and γ (see [10]):

(3) α ⊔ 0 = α (4) α ⊓ 1 = α

(5) α ⊔ 1 = 1 (6) α ⊓ 0 = 0

(7) α ⊔ β = β ⊔ α (8) α ⊓ β = β ⊓ α

(9) α ⊔ (β ⊓ γ) = (α ⊔ β) ⊓ (α ⊔ γ) (10) α ⊓ (β ⊔ γ) = (α ⊓ β) ⊔ (α ⊓ γ)

2. The following set of axioms for formulas ϕ, ψ, χ (see [18]):

(11) ϕ→ (ψ → ϕ)

(12) (¬ϕ→ ¬ψ) → ((¬ϕ→ ψ) → ϕ)

(13) (ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ))

3. The following set of axioms for (=):

(14) α = α (15) (α = β) → (β = α) (16) (α = β) ∧ (β = γ) → (α = γ)

4. The substitution axiom:

(17) (α = β) → (ϕ→ ϕβ
α)

where ϕβ
α is the formula obtained from replacing some ocurrences of α with β.

5. The deontic axioms:

(18) P(α ⊔ β) ↔ (Pα ∧ Pβ) (19) F(α ⊔ β) ↔ (Fα ∧ Fβ)

(20) (Pα ∧ Fα) ↔ (α = 0)

Figure 1. Axioms for DAL

valuation v extends uniquely to a function v∗ : Act → 2E defined as

v∗(α ⊔ β) = v∗(α) ∪ v∗(β)

v∗(α ⊓ β) = v∗(α) ∩ v∗(β)

v∗(ᾱ) = E \ v∗(α)

v∗(0) = ∅

v∗(1) = E.

The notion of satisfiability in a deontic action model under a valuation v,
written M, v � ϕ, is inductively defined as:

M, v � α = β ⇐⇒ v∗(α) = v∗(β)

M, v � Pα ⇐⇒ v∗(α) ⊆ P

M, v � Fα ⇐⇒ v∗(α) ⊆ F

M, v � ϕ→ ψ ⇐⇒ M, v 6� ϕ or M, v � ψ

M, v � ¬ϕ ⇐⇒ M, v 6� ϕ.

A formula ϕ is universally valid, written � ϕ, iff for any deontic action model
M and valuation v on M, it follows that M, v � ϕ.
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3 DAL via Algebra

The logical formalism introduced by Segerberg in [23] enjoys some interesting
characteristics. In particular, it is a simple modal logic that provides a well-
executed characterization of deontic operators. Moreover, it enjoys an elegant
semantics via ideals and Boolean algebras, or dually via sets and collections of
sets. Furthermore, Segerberg’s formalism further accommodates for additional
deontic operators to be added sistematically. More importantly, the formalism
is sound and complete (Theorem 3.1 in [23]).

In this section, we revise Segerberg’s formalism from an algebraic perspec-
tive. More precisely, we provide an algebraic generalization of DAL. This
generalization preserves the aforementioned properties of the original system.
In particular, the algebraic theory is simple and uses standard tools of alge-
bras (Boolean algebras, homomorphisms, free generated algebras, etc). It is
modular in the sense that the algebras described below can be straightfor-
wardly extended to support other deontic operators. And it also addresses the
soundness and completeness of DAL using standard algebraic tools. It is worth
remarking that the framework described below is, arguably, mathematically
more abstract that the original DAL. This is one of the characteristics of al-
gebraic logics which can be exploited to discuss some deontic logical issues at
large. We retake this point later on.

3.1 Algebraic Background

In what follows, we assume that the reader is familiar with the following al-
gebraic concepts. A (many-sorted) signature Σ = 〈S,Ω〉 is a pair of a set S
of sort names, or sorts, and a set Ω of function names. Each f ∈ Ω is as-
signed a non-empty sequence of elements of S indicating its type; formally:
type(f) = s0 . . . sn → s. A Σ-Algebra is a structure A = 〈{As}s∈S , {fA}f∈F 〉
where fA : As0 × · · · ×Asn → As iff type(f) = s0 . . . sn → s. Given a family of
(mutually disjoint) sets of variables X = {Xs}s∈S and a signature Σ, TΣ(X)
denotes the term algebra constructed from Σ and X. An interpretation is a ho-
momorphism h : TΣ(X) → A which assigns meaning to the elements of TΣ(X).
A Σ-equation is a pair (t1, t2) of terms of TΣ(X) written as t1 ≈ t2. Given an
algebra A and an interpretation h, we write A, i � t1 ≈ t2 iff h(t1) = h(t2).
Moreover, we write A � t1 ≈ t2 iff A, h � t1 ≈ t2 holds for every interpretation
h. We also assume some basics notions of Boolean algebras. Given a Boolean
algebra A, 4A denotes its underlying partial order. An ideal is a lower sub-
set of A w.r.t. 4A closed under finite joins, and a filter is an upper subset of
4A closed under finite meets. 2 is the Boolean algebra containing exactly two
elements. A Boolean algebra is called concrete if it is a field of sets. We use
Stone’s representation theorem. In particular, for any Boolean algebra A, s(A)
denotes its isomorphic Stone space, and ϕA : A → s(A) is the corresponding
isomorphism. These and other useful notions are introduced in more detail in
Appendix A.
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3.2 Algebraizing DAL

One of the first steps in algebraizing a logic is to view formulas of a logical
language as terms of an algebraic language. We begin by being clear about the
algebraic language that we will use in the rest of this section.

Definition 3.1 The similarity type of DAL is a pair Σ = (S,Ω) where: (a)
S = {a, f} is a set of sort names and (b) Ω = {⊔,⊓,−, 0, 1,∨,∧,¬,⊥,⊤,=,P,F}
is a set of operation names s.t.:

(21) ⊔ : a× a→ a (22) ⊓ : a× a→ a (23) − : a→ a (24) 0 : a

(25) 1 : a (26) ∨ : f × f → f (27) ∧ : f × f → f (28) ¬ : f → f

(29) ⊥ : f (30) ⊤ : f (31) = : a× a→ f (32) P : a→ f

(33) F : a→ f

Intuitively, we think of the elements a and f of S in the signature Σ as
sort names for actions and formulas, respectively. In turn, we think of the
operation names in Ω as names for operators on actions, operators on formulas,
or heterogeneous operators. The algebraic language we will use in the rest of
this section is the freely generated algebra over the similarity type Σ of DAL
w.r.t. the set Act0 of basic action symbols. We refer to this algebra, written T,
as the deontic action term algebra.

Having defined the algebraic language, we turn our attention to the way in
which this language is interpreted in an algebra. In this regard, just as Boolean
algebras are fundamental for the algebraization of Classical Propositional Logic,
what we call deontic action algebras are fundamental for the algebraization of
DAL. We introduce deontic action algebras in Def. 3.2 and discuss the technical
details and the intuitions leading to this definition shortly after. (This notion
borrows ideas and terminology from Pratt’s dynamic algebras [20].)

Definition 3.2 A deontic action algebra is a tuple D = 〈A,F,E,P,F〉 where:
(a) A = 〈A,+A, ∗A,−A, 0A, 1A〉 and F = 〈F,+F, ∗F,−F, 0F, 1F〉 are Boolean
algebras; and (b) E : A×A→ F , P : A→ F , and F : A→ F , are total
functions satisfying:

(34) P(a+A b) =F P(a) ∗F P(b) (35) P(a) ∗F F(a) =F E(a, 0A)

(36) F(a+A b) =F F(a) ∗F F(b) (37) E(a, b) ∗F P(a) 4F P(b)

(38) E(a, b) ∗F F(a) 4F F(b) (39) a =A b iff E(a, b) =F 1F.

From an intuitive point of view, the elements in a deontic action algebra
D may be understood as: (a) A and F correspond to an algebra of actions
and an algebra of formulas, respectively; (b) P and F are abstract versions
of the operations of an action being permitted and an action being forbidden,
respectively; (c) E is an abstract version of the equality on actions at the
level of formulas. From a technical point of view, Eq. (39) occupies a special
place. This equation, in contrast to the others, is not expressed by an identity.
Instead, it is expressed as a pair of conditional identities, or quasi-identities.
This renders the class of deontic action algebras a quasi-variety (see [22]).

Definition 3.3 The quasi-variety of deontic action algebras is denoted by D0.
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Figure 2. A Deontic Action Algebra

We give an example of a deontic action algebra D = 〈A,F,E,P,F〉 in
Fig. 2. In this figure, the graph on the left illustrates the Boolean algebra A

of actions. This algebra is the free Boolean algebra on the set of generators
{a, b}. We use x ≃ y as syntax sugar for (x ∗ y) + (−x ∗ − y). The graph on
the right illustrates the Boolean algebra F of formulas. This algebra is the
Boolean algebra 2. We omitted subscripts on the operations of the Boolean
algebras to improve legibility. The functions P and F are defined in Eqs. (40)
and (41). The area shaded with horizontal lines illustrates the elements of |A|
that P maps to 1, i.e., the elements of |A| that are permitted. Notice that
these elements form an ideal in A. In turn, the area shaded with vertical lines
illustrates the elements of |A| that F maps to 1, i.e., the elements of |A| that
are forbidden. Again, notice that these elements also form an ideal in A. It can
easily be seen in this example that: if P(x) = 1 for all x ∈ |A|, then, F(0) = 1
and F(x) = 0 for all 0 6= x ∈ |A|. Similarly, if F(x) = 1 for all x ∈ |A|, then,
P(0) = 1 and P(x) = 0 for all 0 6= x ∈ |A|. These cases are known as deontic

heaven and deontic hell, respectively. We will briefly discuss them later on.

(40) P(x) =

{

1 if x 4 b

0 otherwise
(41) F(x) =

{

1 if x 4 − b

0 otherwise

We are now in a position to establish the connection between deontic action
algebras and DAL.

Definition 3.4 Let D be a deontic algebra; an assignment on D is a function
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f : Act0 → |A|. An interpretation on D is a homomorphism h : T → D s.t.:

h(α ⊔ β) = h(α) +A h(β) h(φ ∨ ψ) = h(φ) +F h(ψ) h(Pα) = P(h(α))

h(α ⊓ β) = h(α) ∗A h(β) h(φ ∧ ψ) = h(φ) ∗F h(ψ) h(Fα) = F(h(α))

h(ᾱ) = −A h(α) h(¬ϕ) = −F h(ϕ) h(⊤) = 1F

h(0) = 0A h(⊥) = 0F

h(1) = 1A h(α = β) = E(h(α), h(β))

Fact 3.5 Assignments extend uniquely to interpretations. Given an assign-

ment f , f∗ denotes its unique extension.

Definition 3.6 An equation is a pair (τ1, τ2), written τ1 ≈ τ2, where either
τ1, τ2 ∈ Act or τ1, τ2 ∈ Form. An equation τ1 ≈ τ2 is valid under an inter-
pretation h on a deontic algebra D, written D, h |≈ τ1 ≈ τ2, iff h(τ1) = h(τ2).
An equation τ1 ≈ τ2 is universally valid, written |≈ τ1 ≈ τ2, iff for all deontic
algebras D and interpretations h on D, it follows that D, h |≈ τ1 ≈ τ2.

Theorem 3.7 (Soundness) If ⊢ ϕ, then, |≈ ϕ ≈ ⊤.

Proof [Sketch] By induction on the length of a proof of ϕ. We restrict our
attention to some interesting cases. In particular, to the axioms displayed
in Eqs. (17), (18) and (20). Let D be any deontic algebra and h be any
homomorphism on D:

Eq. (17): We need to show that h((α = β) → (ϕ → ϕα
β )) = 1F. The simple

cases in which ϕ = Pα or ϕ = Fα entail all others. Then,

h((α = β) → (Pα→ Pβ)) = h(¬(α = β) ∨ (¬Pα ∨ Pβ))

= −F h(α = β) +F h(¬Pα) +F h(Pβ)

= −F E(h(α), h(β)) +F −F h(Pα) +F P(h(β))

= −F E(h(α), h(β)) +F −F P(h(α)) +F P(h(β))

= −F(E(h(α), h(β)) ∗F P(h(α))) +F P(h(β))

From Eq. (37), P(h(β)) = E(h(α), h(β)) ∗F P(h(α)) +F P(h(β)). From this
fact, −F(E(h(α), h(β)) ∗F P(h(α))) +F P(h(β)) = 1F.

Eq. (18): We need to show that h(P(α ⊔ β) ↔ (Pα ∧ Pβ)) = 1F. Then,

h(P(α ⊔ β) ↔ (Pα ∧ Pβ)) = h((¬P(α ⊔ β) ∨ (Pα ∧ Pβ))

∧ (¬(Pα ∧ Pβ) ∨ P(α ⊔ β)))

= h(¬P(α ⊔ β) ∨ (Pα ∧ Pβ))

∗F h(¬(Pα ∧ Pβ) ∨ P(α ⊔ β))

We continue by cases. Consider first:

h(¬P(α ⊔ β) ∨ (Pα ∧ Pβ)) = h(¬P(α ⊔ β)) +F h(Pα ∧ Pβ))

= −F h(P(α ⊔ β)) +F (h(Pα) ∗F h(Pβ))

= −F(h(Pα) ∗F h(Pβ)) +F (h(Pα) ∗F h(Pβ))

= 1F

Similarly, h(¬(Pα ∧ Pβ) ∨ P(α ⊔ β)) = 1F.
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Eq. (20) We need to show that h((Pα ∧ Fα) → (α = 0)) = 1F. Then,

h((Pα ∧ Fα) → (α = 0)) = h(¬(Pα ∧ Fα) ∨ (α = 0))

= h(¬(Pα ∧ Fα)) +F h(α = 0)

= −F h(Pα ∧ Fα) +F E(h(α), h(0))

= −F(P(h(α)) ∗F F(h(α))) +F E(h(α), 0A)

= −F E(h(α), 0A) +F E(h(α), 0A)

= 1F

2

It is important to notice that, as expected, not every sentence is provable
in DAL. In particular, if ϕ is a theorem, i.e., ⊢ ϕ, then, ¬ϕ is not provable,
i.e., 6⊢ ¬ϕ. This claim is substantiated as follows. Let D = 〈A,F,E,P,F〉 be
the deontic action algebra in Fig. 2, and let h be any interpretation on D; if
ϕ is a theorem, then, h(ϕ) = 1F. Since h is a homomorphism, h(¬ϕ) = 0F.
Therefore, from Thm. 3.7, 6⊢ ¬ϕ.

To prove the converse of Thm. 3.7, our sought after algebraic completeness
result, we need to show that every non-theorem of DAL can be falsified on
some deontic action algebra D (in the sense that there is some homorphism
on D under which the non-theorem does not evaluate to 1F). To this end, we
introduce the notion of a Lindenbaum-Tarski deontic action algebra.

Fact 3.8 Let ∼=a ⊆ Act× Act and ∼=f ⊆ Form× Form be defined as:

α ∼=a β iff ⊢ α = β ϕ ∼=f ψ iff ⊢ ϕ↔ ψ,

then the relations {∼=a,∼=f} form a congruence on the deontic action term al-

gebra T. This congruence is denoted with the symbol ∼=.

Definition 3.9 The Lindenbaum-Tarski deontic action algebra is the structure
L = 〈A,F,E,P,F〉 where:

A = 〈Act/∼=a
,⊔∼=a

,⊓∼=a
,−∼=a , [0]∼=a

, [1]∼=a
〉 E([α]∼=a

, [β]∼=a
) = [α = β]∼=a

F = 〈Form/∼=f
,∨∼=f

,∧∼=f
,¬∼=f

, [⊥]∼=f
, [⊤]∼=f

〉 P([α]∼=a
) = [Pα]∼=f

F([α]∼=a
) = [Fα]∼=f

.

Proposition 3.10 The Lindenbaum-Tarski deontic action algebra L is a de-

ontic action algebra.

Proof [Sketch] That A and F are Boolean algebras is more or less immediate.
We show that the functions E, P, and F satisfy axioms from Eqs. (34), (35)
and (39). The proof for axioms from Eqs. (36) to (38) are similar.

Eq. (34) We need to show that P([α ⊔ β]∼=a
) = P([α]∼=a

)∧∼=f
P([β]∼=a

). Then,

P([α ⊔ β]∼=a
) = [P(α ⊔ β)]∼=f

= [Pα ∧ Pβ]∼=f
see Eq. (18)

= [Pα]∼=f
∧∼=f

[Pβ]∼=f

= P([α]∼=a
) ∧∼=f

P([β]∼=a
)
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Eq. (35) We need to show that P([α]∼=a
)∧∼=f

F([α]∼=a
) = E([α]∼=a

, [0]∼=a
). Then,

P([α]∼=a
) ∧∼=f

F([α]∼=a
) = [Pα]∼=f

∧∼=f
[F(α ⊔ β)]∼=f

= [Pα ∧ Fα]∼=f

= [α = 0]∼=f
see Eq. (20)

= E([α]∼=a
, [0]∼=a

)

Eq. (39) We need to show that [α]∼=a
= [β]∼=b

iff E([α]∼=a
, [β]∼=a

) = [⊤]∼=f
.

Suppose that [α]∼=a
= [β]∼=b

; it follows that ⊢ α = β; and so ⊢ (α = β) ↔ ⊤.
Then, E([α]∼=a

, [β]∼=a
) = [α = β]∼=f

= [⊤]∼=f
. Similarly, if E([α]∼=a

, [β]∼=a
) =

[⊤]∼=f
, then, [α]∼=a

= [β]∼=b
.

2

The following result connects logical deduction in DAL with the
Lindenbaum-Tarski Algebra. Roughly speaking, it says that the Lindenbaum-
Tarski algebra captures DAL theoremhood.

Theorem 3.11 (Completeness) ⊢ ϕ iff L |≈ ϕ ≈ ⊤.

Proof The left to right direction is immediate from Thm. 3.7. For the right
to left direction we show that if 6⊢ ϕ, then L 6|≈ ϕ ≈ ⊤. Suppose that 6⊢ ϕ;
then 6⊢ ϕ↔ ⊤. This means that [ϕ]∼=f

6= [⊤]∼=f
. Construct an assignment

f : Act0 → |L| that sends each ai ∈ Act0 to the equivalence class [ai]∼=a
. Using

induction, we construct a homorphism f∗ which agrees on f that is such that
f∗(ϕ) = [ϕ]∼=f

. Then, from our assumption, we have f∗(ϕ) = [ϕ]∼=f
6= [⊤]∼=f

=
f∗(⊤). Therefore, L 6|≈ ϕ ≈ ⊤. 2

The following corollary can be obtained using a standard argument in alge-
braic logic.

Corollary 3.12 If |≈ ϕ ≈ ⊤, then ⊢ ϕ.

Proof Assume 6⊢ϕ, then by Theorem 3.11, we have that L 6|≈ ϕ ≈ ⊤ and there-

fore 6|≈ ϕ ≈ ⊤. 2

In other words, the Lindenbaum-Tsarski algebra can be thought as a canon-
ical (algebraic) model which provides counterexamples of non-valid formulas.

3.3 Deontic Action Algebras and Deontic Action Models

We connect deontic action algebras and deontic action models via a Stone’s
representation. This gives us another proof of the completeness of Segerberg’s
deduction system w.r.t. the original semantics. Recall that the Stone’s repre-
sentation theorem [24] establishes that every Boolean algebra is isomorphic to
a certain field of sets. We will prove a similar result for deontic action algebras.

We begin by introducing some additional concepts. First, just as Boolean
algebras made of sets (i.e., fields of sets) are sometimes named concrete Boolean

algebras in Algebraic Logic, we define concrete deontic action algebras as deon-
tic action algebras whose action and formula algebras are fields of sets. Concrete
deontic algebras allow us to establish the connection with Segerberg’s original
semantics for DAL.
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Definition 3.13 A deontic action algebra D = 〈F,A,E,P,F〉 is called con-
crete iff F and A are fields of sets. The class of concrete deontic algebras is
denoted by C0.

Using Stone duality we can prove that algebraic validity can be reduced to
validity in concrete deontic algebras.

Theorem 3.14 For any DAL formula ϕ, we have: |≈ ϕ ≈ ⊤ iff C0 |≈ ϕ ≈ ⊤.

Proof The left to right direction is straightforward. For the other direction,
assume that C0 |≈ ϕ ≈ ⊤ and 6|≈ ϕ ≈ ⊤. This means that we have a deontic ac-
tion algebra D = 〈F,A,E,P,F〉 and a valuation v s.t. D, v 6|≈ ϕ ≈ ⊤. Applying
Stone duality we have a concrete deontic action algebra D

′ = 〈F′,A′,E′,P′,F′〉
that is isomorphic to D. On this concrete deontic algebra, we can define val-
uation v′(ai) = ϕA′(v(ai)) (being ϕA′ the Stone isomorphism for A

′). Then,
we have D

′, v′ 6|≈ ϕ ≈ ⊤. From this fact, we obtain a contradiction. 2

We relate Segerberg’s models to concrete deontic action algebras as follows.

Definition 3.15 Let M = 〈E,P, F 〉 and v : Act0 → E be a deontic action
model and a valuation, resp.; we associate with M and v the deontic action
algebra alg(M, v) = 〈Fv

M
,Av

M
,Ev

M
,Pv

M
,Fv

M
〉 where:

(a) FM = 2;

(b) AM is the field of sets generated from { v(ai) | ai ∈ Act0 }.

(c) E
v
M
(x, y) =

{

1 if x = y

0 otherwise
(d) P

v
M
(x) =

{

1 if x ⊆ P

0 otherwise

(e) F
v
M
(x) =

{

1 if x ⊆ F

0 otherwise

Similarly, deontic action models form concrete deontic action algebras.

Definition 3.16 Let D = 〈F,A,E,P,F〉 be a concrete deontic action algebra
and f : Act0 → A an assignment in D; we associate with D and f a deontic
action model mod(D) = 〈ED, PD, FD〉 and a valuation vf : Act0 → ED where:

(a) ED = |A| (b) P =
⋃

{x | D, f |≈ P(x) ≈ ⊤}

(c) F =
⋃

{x | D, f |≈ F(x) ≈ ⊤}

The following are important properties of alg and mod.

Theorem 3.17 D, f |≈ ϕ ≈ ⊤ iff mod(D), vf  ϕ.

Theorem 3.18 M, v |≈ ϕ iff alg(M), fv |≈ ϕ ≈ 1.

Interestingly, when seen as operators, mod and alg are inverses of each other
and therefore the two are isomorphisms.

Theorem 3.19 For all deontic action algebra D and deontic action model M:

alg(mod(D)) = D and mod(alg(M)) = M
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Then, we can prove the completeness of the Segerberg’s deductive system
w.r.t. deontic models in an algebraic way.

Theorem 3.20 ⊢ ϕ iff � ϕ.

Proof Suppose ⊢ ϕ. By algebraic completeness, this is equivalent to |≈ ϕ ≈ ⊤
and, by Thm. 3.14, also to C0 |≈ ϕ ≈ ⊤; by Thm. 3.19 and Thm. 3.17, this is
equivalent to � ϕ. 2

4 Algebraizing Other Deontic Action Logics

The work of Segerberg in [23] gave rise to a family of closely related deontic
logics. The logics DALi for 1 ≤ i ≤ 5 reported in [26] are particularly inter-
esting. Each DALi deals with a particular deontic issue, and is obtained from
DALj (with j < i) by adding additional axioms to those in Fig. 1. Here, we
show how to extend the algebraic framework in Sec. 3 to each of these variants.

The first of these extensions, DAL1, is obtained from DAL by adding, for
each ai ∈ Act0, Fai ∨ Pai to the set of axioms in Fig. 1. Intuitively, these
axioms intend to capture what is called the Principle of Deontic Closure in
deontic logics: what is not forbidden is permitted (alt., every action is either
permitted or forbidden). As noted in [26], these axioms capture closeness only
at the level of action generators, and they are not able to capture closeness
for other (perhaps more fine-grained) actions. The algebraic counterpart of
DAL1 is determined by the class of deontic action algebras: (i) whose algebra
of actions is generated by a set G of generators; and (ii) that satisfy Eq. (42)
below.

F(x) +F P(x) = 1F for every generator x ∈ |A| (42)

In turn, the extension DAL2 is obtained from DAL1 by: (i) requiring the set
Act0 of basic actions to be a finite, i.e., Act0 = { ai | 0 ≤ i ≤ n }; and (ii) adding
the axioms P(a0 ⊓ · · · ⊓ an)∨F(a0 ⊓ · · · ⊓ an). Intuitively, the additional axiom
states that not performing any of the basic actions is permitted or forbidden.
On the algebraic side, by considering a finite set Act0 of basic actions, we obtain
that the algebra A of actions is an atomic Boolean algebra. The atoms in this
algebra allow us to focus on the most basic actions being considered. Then,
the algebraic counterpart of DAL2 is determined by the class of deontic action
algebras: (i) that are finitely generated by a set G = { ai | 0 ≤ i ≤ n }; and
that satisfy Eq. (43) below.

P((−A a1) +A . . .+A (−A an)) +F F((−A a1) +A . . .+A (−A an)) = 1F (43)

The extension DAL3 is obtained from DAL2 by adding the following axiom:
(a1 ⊔ · · · ⊔ an) = 1A. Intuitively, this axiom can be read as stating that the
actions a1, . . . , an are the sole actions that the agent can perform. The algebraic
counterpart of DAL3 is determined by the subclass of deontic action algebras
of DAL2 that further satisfy Eq. (44) below.

a0 +A · · ·+A an = 1A (44)

The extension DAL4 is obtained from DAL by requiring closedness at the
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level of “atomic” actions. Formally, DAL4 considers a finite number of actions
Act0 = { ai | 0 ≤ i ≤ n } and a collection {αi | 0 ≤ i ≤ 2n } of action terms s.t.:
each αi is of the form ∗a0 ⊓ · · · ⊓ ∗an, where ∗ai ∈ {ai, ai}. Syntactically, each
αi represents a possible atomic action. Closedness is then obtained by adding
the following set of axioms to those of DAL: Pαi ∨ Fαi, for all 0 ≤ i ≤ 2n.
The algebraic counterpart of DAL4 is determined by the class of deontic action
algebras: (i) that are finitely generated; and (ii) that satisfy Eq. (45) below.

P(a) +F F(a) = 1F for all atoms a ∈ |A| (45)

Finally, the extension DAL5 is obtained by putting together DAL3 and DAL4.
The algebraic counterpart of DAL5 is obtained from the deontic action algebras
that are deontic action algebras of DAL3 and DAL4.

Following from the above, we obtain for each DALi an associated class Di of
deontic action algebras. Each of these classes accommodates for a correspond-
ing soundness and completeness result. This is made precise in Thm. 4.1. (The
proof of Thm. 4.1 is a routine extension of the proof of Thm. 3.11.)

Theorem 4.1 For every 0 ≤ i ≤ 5, let ⊢DALi be theoremhood relation of DALi

and |≈
Di

equational validity in the class Di; then, ⊢DALi ϕ iff |≈
Di
ϕ ≈ ⊤.

5 Final Remarks

We presented an algebraic treatment of Sergerberg’s deontic action logic and
some of known extensions via deontic action algebras. As is commonly done
in the algebraization of a logic, along the way we discussed concepts such
as: actions and formulas algebras, operators of permission and prohibition,
and Lindenbaum-Tarski algebras. Moreover, we established that the algebraic
characterization is correct by proving soundness and completeness theorems.
In our opinion the overall picture is just as important. Our algebraic treatment
can be thought of as an abstract version of deontic action logics which can be
used to establish connections between deontic action logics and mathematical
areas such as topology, category theory, probability, etc.

In addition to the obvious mathematical benefits of having an algebraiza-
tion of deontic action logics, we believe that the algebraic framework introduced
above paves the way for interesting future work. First, deontic action algebras
are modular in their formulation; i.e., action and formula algebras can be re-
placed to obtain new systems. For instance, by changing the algebra of actions
we can obtain systems where it is possible to reason about other action combi-
nators. Interesting cases are those of: action composition (denoted by ;), and
action iteration (denoted by ∗). In this line, the work of Meyer in [12] was one
of the first in considering a deontic logic containing action composition. Meyer
named the system Dynamic Deontic Logic (DDL). This system is not without
challenges. As observed in [3], one of the main problems of DDL is that ac-
tion composition (and so action iteration) makes it posible to formulate some
paradoxes. Regarding action iteration (∗), in [8], Broersen pointed out that
dynamic deontic logics can be divided into: (i) goal norms, where prescriptions
over a sequence of actions only take into account the last action performed; or
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(ii) process norms, where a sequence of actions is permitted/forbidden iff every
action in the sequence is permittedd/forbidden. It is a matter of discussion
which one of these approaches is better, but both have cons and pros. The in-
terested reader is referred to [8] for an in-depth discussion on this issue. To the
best of our knowledge, we are not aware of any extension of Segerberg’s logic
that provides action composition or action iteration. This said, notice that
deontic action algebras can be straightforwardly modified to admit these op-
erators. More precisely, we may consider deontic action algebras 〈F,A,P,F〉
where F is a Boolean algebra; A = 〈A,+, ; , ∗〉 is a Kleene algebra (see [15]);
and P and F are deontic operators of permitted and forbidden on these alge-
bras. Intuitively, in A, ; captures action composition, + captures action choice,
and ∗ captures the iteration of actions. Kleene algebras enjoy some nice prop-
erties. They are quasi-varieties, and they are complete w.r.t. equality of regular
expressions (see [16]). In this respect, Kleene algebras provide a robust frame-
work for reasoning about action composition and iteration. Similarly, one can
extend deontic action algebras with other interesting algebras; e.g., relation
algebras (see [17]). Relation algebras would provide other action operators,
most notably, action converse. We leave it as further work investigating the
properties the operators P and F in these new algebraic settings.

In turn, another interesting line of research consists in investigating other
algebras for formulas. In this paper, we have used Boolean algebras as an
abstraction of formulas, but there are different kinds of algebras that may
provide alternative ways for reasoning about norms. Some immediate examples
are: Heyting Algebras, semi-lattices, metric spaces, etc. We draw attention to
the fact that changing the algebra of formulas in deontic action algebras may
bridge the way for designing deontic logics that are not logics of normative
propositions. More precisely, von Wright in [29], and Alchourron in [1,2], both
noted the distinction between logics of normative propositions and logics of
norms. The former are Boolean logics where their formulas express assertions
about the existence of norms; i.e., a formula s.t. Pϕ states that there is a

norm allowing the occurrence of ϕ – SDL and DAL fall into this category.
In contrast, logics of norms allow to express prescriptions that, as observed by
von Wright, are not necessarily evaluated to a Boolean value (i.e., true or false).
To deal with logics of norms, we can use other algebras to generalize formulas.
For instance, by taking a meet semi-lattice as the algebra of formulas we can
capture a theory of norms where norms can be put together, and where some
norms are in contradiction with each other (but not necessarily where norms
are true or false). Of course, there are several other appealing algebras that
could play this role as well: metric spaces, rings, etc. We leave all this as a
further work.
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Appendix

A Many Sorted Algebras in a Nutshell

In this section we introduce some basic concepts used in the paper. These serve
as a way to fix terminology and notation. The interested reader is referred to
[10,22] for an in-depth introduction to this topic.

Definition A.1 A many-sorted signature is a pair Σ = 〈S,Ω〉 where: (a) S
is a set of sort names; and (b) Ω = { f : s1 . . . sn → s | si, s ∈ S } is a set of
operation names. A Σ-algebra A consists of: (c) an S-indexed family of sets,
written |A| = {As | s ∈ S }; and (d) for each f : s1 . . . sn → s ∈ Ω a function
fA : As1 . . . Asn → As.

Note that standard algebras can be seen as many-sorted algebras with only
one sort. A special kind of Σ-algebras are the so-called Σ-term algebras.

Definition A.2 Let Σ = 〈S,Ω〉 be a signature and X = {Xs | s ∈ S } be an
S-indexed family of sets; a Σ-term algebra with variables in X is a Σ-algebra
T in which:

(a) |T| = {Ts | s ∈ S } is the ⊆-smallest S-indexed family of sets s.t. for all
x ∈ Xs, the string ‘x’ ∈ Ts; and for all f : s1 . . . sn → s ∈ Ω and strings
ti ∈ Tsi , the string ‘f(t1 . . . tn)’ ∈ Ts;

(b) for each f : s1 . . . sn → s ∈ Ω, there is a function fT : Ts1 . . . Tsn → Ts s.t.
for all strings ti ∈ Tsi , fT(X)(t1 . . . tn) equals the string ‘f(t1 . . . tn)’.

Definition A.3 Let A and B be Σ-algebras; a Σ-homomorphism h : A → B

is an S-indexed family of functions h = {hs : As → Bs | s ∈ S } such that:
for all f : s1 . . . sn → s ∈ Ω and ai ∈ Asi , it follows that hs(fA(a1 . . . an)) =
fB(hs1(a1) . . . hsn(an)).

Definition A.4 Let A be a Σ-algebra; a Σ-congruence ∼= on A is an S-sorted
family of relations ∼= = {∼=s ⊆ As

2 | s ∈ S } such that: each ∼=s is an equiv-
alence relation on A2

s; and for all f : s1 . . . sn → s ∈ Ω and ai, a
′
i ∈ Asi , if

ai ∼=si a
′
i, then fA(a1 . . . an) ∼=s fA(a′1 . . . a

′
n).

Definition A.5 Let A be a Σ-algebra and ∼= be a Σ-congruence on A; the quo-
tient Σ-algebra of A under ∼=, written A/∼=, has: (a) |A/∼=| = {As/∼=s

| s ∈ S };
and (b) for all f : s1 . . . sn → s ∈ Ω and ai ∈ Asi , fA/∼=

([a1]∼=s1
. . . [an]∼=sn

) =
[fA(a1 . . . an)]∼=s

.

We omit making sorts and indices from signatures explicit when they can
easily be understood from the context. We also omit making an explicit distinc-
tion between signatures and algebras. Moreover, making an abuse of notation,
we indicate a Σ-algebras by its signature Σ. By this, we mean a Σ-algebra
which has no other function than those named in Σ. We conclude this section
by recalling some basics definitions of Boolean algebras.

Definition A.6 A Boolean algebra is an algebra A = 〈A,+, ∗,−, 0, 1〉 where:
(a) A = |A| is a non-empty set of elements; and (b) +, ∗ : A2 → A are com-
mutative and associative; − : A→ A is idempotent; and 0, 1 : A, called top
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and bottom, are neutral elements for + and ∗, resp., further satisfying for all
a ∈ A, a+−a = 1 and a ∗ −a = 0.

Definition A.7 Every Boolean algebra A is equipped with a partial order
defined as x �A y iff x = x ∗ y. An ideal is a non-empty subset I ⊆ |A| s.t.:
(a) for all x, y ∈ I, there is z ∈ I s.t. z �A x ∗ y; and (b) for all x ∈ I and
a ∈ |A|, if a �A x, then, a ∈ I. An ideal I is proper if I 6= |A|; otherwise it
is trivial. An ideal I is maximal if there is no other ideal J s.t. I ⊂ J . The
smallest ideal containing an element a ∈ |A|, called a principal ideal, is the
set ↓ a = {x | x �A a }. The dual notion of an ideal is called a filter and is
obtained by reversing 4A and exchanging ∗ with +.

Two other notions that are important in our constructions are: freely gen-
erated and finitely generated algebras.

Definition A.8 Let A = 〈A,+, ∗,−, 0, 1〉 be a Boolean algebra; a subset
E ⊆ A is called a set of generators for A iff the following facts hold: (a)
the intersection of all subalgebras of A including E is a subalgebra; (b) that
intersection is the smallest subalgebra of A including E. Such algebra is called
the generated algebra. It is called finitely generated, if the set of generators E
is finite.

Definition A.9 A set E of generators of a Boolean algebra B is called free if
every mapping from E to an arbitrary Boolean algebra A can be uniquely ex-
tended to an homomorphism h : B → A. An algebra is called freely generated
(or free) if it has a free set of generators.
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Abstract

We introduce a sequent based method for reasoning with deontic assumptions using
specificity and superiority for conflict resolution. Starting from a base logic, we apply
strengthening of the antecedent to the assumptions wherever possible unless this
would yield an inconsistency. The method applies to logics with an arbitrary finite
number of dyadic deontic operators of type MP or MD (in the sense of Chellas) with
inclusions among the operators. We illustrate the method using various examples.
An implementation is also available.

1 Introduction

Legal, ethical, religious and behavioral norms often have a conditional form.
A common way for formalising such conditional norms is via dyadic deontic
operators, historically introduced to represent Contrary-To-Duty (CTD) obli-
gations, i.e. obligations which are applicable only if another norm is violated.
Although the dyadic representation can solve notorious CTD paradoxes, it also
introduces new difficulties; in particular, how to reason on the conditions (i.e.,
the second argument of dyadic operators) without reintroducing possible de-
ontic conflicts. Roughly speaking, a deontic conflict occurs when two or more
obligations/prohibitions cannot be mutually realized.

Various general conflict resolution principles are considered in the litera-
ture. Here we focus on two major ones, widely used in law and AI: specificity
and superiority. The former, known in law as lex specialis derogat legi generali,
states that specific obligations/prohibitions override more general ones, while
the latter refers to prioritized obligations/prohibitions coming from normative
authorities of different strength (lex superior) or, e.g., in a different chronolog-
ical order (lex posterior).

In this article we extend the most basic dyadic deontic logics with a general
and purely syntactic mechanism for reasoning on the conditions of deontic

⋆ This work was partly supported by WWTF Project MA16-28 and by BRISE-Vienna
(UIA04-081), a European Union Urban Innovative Actions project.
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assumptions, resolving conflicts using specificity on conditions and superiority
between assumptions. The mechanism generalizes and extends to superiority
the calculus introduced in [8] for a particular logic (see also Sec. 6.1).

Our starting point are logics based on finite combinations of operators
♥, which are dyadic versions of non-normal (upwards or downwards) mono-
tone modal logic M, extended with the (dyadic versions of) the axioms
P ¬(♥(⊥/B) ∧ ♥(⊤/B)) or D ¬(♥(A/B) ∧ ♥(¬A/B)). For an upwards
monotone, i.e., obligation type, operator this yields, e.g., the dyadic version
of minimal deontic logic MP from [6]. Although well behaved, these log-
ics are not useful for reasoning on the conditions of deontic formulae. E.g,
for a downwards monotone, i.e., prohibition type, operator F we can derive
F(park/⊤) → F(park ∧ ride/⊤), but not F(park/⊤) → F(park/¬permit). The
naive solution of adding unrestricted strengthening of the antecedent, i.e., an
unrestricted downwards monotonicity rule for the second argument, quickly
leads to conflicting norms, and in presence of axiom D to a contradiction. To
avoid this, we consider sequent rules incorporating a limited form of strength-
ening of the antecedent / downwards monotonicity “up to conflicting assump-
tions”. Starting from prima-facie deontic assumptions and propositional back-
ground facts, our sequent rules intuitively permit to derive every formula re-
sulting from strengthening the antecedent, unless this would lead to an incon-
sistency over the base logic. Deontic conflicts are resolved using specificity and
superiority. The resulting system satisfies the disjunctive response of [10], see
Ex. 4.3, and can be used to model permissions as exceptions as well as some
forms of CTD reasoning, see Ex. 4.2, Sect. 6.2 and Rem. 6.3.

As in sequent calculi for non-monotonic logics [3,25], our rules use state-
ments expressing that certain sequents are not derivable. In contrast with other
calculi for non-monotonicity in normative reasoning like [13,29], our calculi en-
joy cut-elimination, which yields decidability and complexity results. A further
corollary is that we can define the set of consequences of deontic assumptions
iteratively, thus avoiding fixed-point constructions like those in [17].

The generality of our system is demonstrated with case studies including the
logic simulating the reasoning of the Mı̄mām. sā school from [7,8], a modelling
of permissions as exceptions, and the operators of sanction and violation.

The system is implemented in the Prolog system deonticProver2.0 (http:
//subsell.logic.at/bprover/deonticProver/version2.0/). For any finite
set of dyadic operators of type M, MP, or MD, with (possible) inclusions, the
system constructs sequent rules to deal with specificity and superiority, and
uses them to answer the question: Given an input of deontic assumptions and
background facts, which conditional norms are in force, i.e., which formulae are
derivable? In addition to a web interface for the prover, the website contains
a number of examples and illustrates the behaviour of the system with respect
to some standard deontic puzzles and paradoxa.
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2 Restricted strengthening of the antecedent

Before delving into the technicalities, we briefly illustrate the intuitions behind
our approach. As mentioned above, given deontic assumptions such as

(i) You ought not to eat with your fingers,

(ii) You ought to put your napkin on your lap,

(iii) If you are served asparagus, you ought to eat it with your fingers,

from the asparagus example (e.g. [31,16]) we would like to be able to apply
strengthening of the antecedent to (ii) to derive “If you are served asparagus,
you ought to put your napkin on your lap”. However, as is well-known, adopting
an unrestricted form of strengthening of the antecedent would also yield “If
you are served asparagus, you ought not to eat with your fingers”. Together
with (iii) this yields a pair of conflicting obligations, and hence an inconsistency
in any logic satisfying the D-axiom for obligations.

Our proposal for dealing with this situation is based on two main aspects:
First, it is parametric in the base logic, and second it follows what could be
called a generous approach towards applying strengthening of the antecedent.
The latter means that given a set of deontic assumptions we apply strength-
ening of the antecedent whenever this is possible without resulting in inconsis-
tencies over the base logic. In particular, this aims at keeping in force as many
prima-facie norms as possible. Conflicts between norms are resolved follow-
ing the specificity principle, i.e., assuming that conditional norms with more
specific conditions like (iii) above overrule those with more general conditions
like (i), and an (optional) superiority relation on the deontic assumptions. Note
that inconsistencies are always evaluated with respect to the base logic. Hence
for logics containing no principles ruling out conflicting or impossible norms
there are no conflicts to avoid, and we obtain unrestricted strengthening of the
antecedent/downwards monotonicity in the second argument.

In the asparagus example above, given a base logic ruling out conflicting
obligations, we thus should derive “If you are served asparagus, you ought to
put your napkin on your lap” as well as, e.g., “If you are served asparagus
at your grandparents’, you ought to eat it with your fingers”: For the former,
there are no assumptions which could yield a conflict; for the latter, the assump-
tion (i) could be used to derive a conflicting obligation, but this assumption is
overruled by the more specific assumption (iii).

The situation becomes more interesting if we consider the following addi-
tional deontic assumption: 1

(iv) If you are at your grandparents’, you ought not to eat with your fingers.

Now neither of the two assumptions (iii) and (iv) is more specific than the
other. Hence, in order to keep the derived obligations consistent over the base
logic we cannot derive the obligation “If you are served asparagus at your

1 We are grateful to the anonymous reviewer for bringing this and the following examples
to our attention.
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grandparents’, you ought to eat it with your fingers” anymore, because then
by symmetry we should also be able to derive the conflicting obligation “If
you are served asparagus at your grandparents’, you ought not to eat it with
your fingers” from assumption (iv). Note that this shows the difference to
credulous approaches, where both the above statements would be derivable.
The situation changes again, however, if we add the permission (see Sect. 6.2):

(v) If you are served asparagus at your grandparents’, you may eat it with
your fingers.

Assuming that the base logic contains the principle that there are no conflict-
ing pairs of obligations and permissions, this assumption would prevent the
derivation of the obligation “If you are served asparagus at your grandparents’,
you ought not to eat it with your fingers” from assumption (iv), since it is
more specific. But then we cannot derive any obligation which would conflict
with “If you are served asparagus at your grandparents’, you ought to eat it
with your fingers”. Hence, following the generous approach towards applying
strengthening of the antecedent, we don’t have any reason to refrain from de-
riving this obligation from assumption (iii). While it has been argued, e.g.,
in [29] that it might be undesired if more specific permissions reinstate less
specific obligations, this is in line with the idea of preventing the derivation of
only those obligations which would result in inconsistencies over the base logic.

The generous approach of deriving every obligation which would not result
in an inconsistency over the base logic further motivates the idea that the
notion of a conflicting assumption is evaluated with respect to the obligation
we want to derive, and not the assumption we want to derive it from. As an
example, consider the additional assumption:

(vi) You ought not to eat with your fingers and not to pick your nose.

While the obligation “If you are served asparagus, you ought not to eat it with
your fingers and not to pick your nose” is in conflict with the more specific
assumption (iii) and hence should not be derivable, the obligation “If you are
served asparagus, you ought not to pick your nose” is not. Thus, we don’t
refrain from deriving the latter, even though the content of the assumption we
derived it from is inconsistent with the content of the more specific applicable
assumption (iii).

This focus on what we want to derive instead of the assumptions we derive
it from has the additional benefit that we do not need to worry about chains
of more and more specific assumptions, each in conflict with the previous one:
Given that the set of deontic assumptions is finite, such a chain will contain
a most specific applicable assumption. To see whether we should refrain from
deriving an obligation which would follow from one of the more general ones,
we thus only need to check the most specific assumption which is in conflict
with what we want to derive. If this one is overruled by an even more specific
assumption, then we can use the latter to derive the obligation in question;
otherwise we refrain from doing so.

We would like to stress again that the approach is parametric in the base
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logic. Hence the resulting systems inherit some of the limitations imposed by
the latter, both in terms of what is removed as inconsistent and of what can be
derived from the assumptions. In this work we consider only relatively weak
base logics. In particular, they neither permit to aggregate obligations, nor
rule out conflicts between more than two obligations, where each pair of these
is nonconflicting. We are, however, confident that the general method can be
extended to stronger base logics as well (see Sec. 7). Note also that since we
only aim to consistently close a set of conditional deontic assumptions under
strengthening of the antecedent with respect to a base logic, the derivable
formulae are still conditional statements, and hence we do not incorporate
factual detachment principles.

3 The base system

Formally, the basic logical systems we consider are propositional deontic log-
ics. Our logics extend the language of classical propositional logic consisting of
variables (p, q, . . . ), falsum (⊥) and implication (→), with dyadic deontic op-
erators ♥(./.) where the first argument represents the content of a conditional
norm, while the second argument represents its condition. We distinguish two
kinds of operators, depending on what it takes to comply with the norm:

• An operator ♥ is of obligation-type if the norm ♥(A/B) is complied with
whenever A is true;

• An operator ♥ is of prohibition-type if the norm ♥(A/B) is complied with
whenever A is false.

Note that this makes our operators upwards monotone in the first argument for
obligation type operators, and downwards monotone for prohibition type ones.
To capture relations between operators and their properties, given a set Op of
deontic operators with associated types, we assume a reflexive and transitive
inclusion relation →, a symmetric conflict relation  , and a unary nontriviality
predicate nt with the following intended meaning:

• If ♥ → ♠ for two operators ♥,♠ ∈ Op of the same type, then complying
with ♥(A/B) implies complying with ♠(A/B).

• If ♥ ♠ for two operators of the same type ♥,♠ ∈ Op, then complying
with one of ♥(A/B),♠(¬A/B) entails violating the other.

• If nt(♥) for an operator ♥ ∈ Op, then ♥ is non-trivial, in that it is logically
possible to comply with it.

For operators ♥,♠ of different type we flip the polarity of A in one of the
assumptions, i.e., we replace ♠(A/B) with ♠(¬A/B) and vice versa. We as-
sume that the relations  and nt are closed under preimages of the implication
relation, i.e., if ♥ ♠ and ♦ → ♥, then also ♦ ♠. In the following, an operator
characterisation is a tupleO = (Op,→, , nt) consisting of a set Op of operators
with types together with inclusion, conflict, and non-triviality relations.

The base logic we will consider then contains the Hilbert-style rules and
axioms of propositional classical logic together with the rules and axioms in
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{

A → C
♥(A/B) → ♥(C/B)

: ♥ obl type

} {

C → A
♥(A/B) → ♥(C/B)

: ♥ proh type

}

{♥(A/B) → ♠(A/B) : ♥ → ♠, same type }

∪ {♥(A/B) → ♠(¬A/B) : ♥ → ♠, different type }

∪ {¬(♥(A/B) ∧ ♠(¬A/B)) : ♥ ♠, same type }

∪ {¬(♥(A/B) ∧ ♠(A/B)) : ♥ ♠, different type }

∪ {¬(♥(⊥/B) ∧ ♥(⊤/B)) : nt(♥)}

Fig. 1. The deontic axioms and rules for O = (Op,→, , nt).

Fig. 1. Note that due to upwards and downwards monotonicity respectively,
for operators ♥ with nt(♥) the axiom ¬(♥(⊥/B) ∧ ♥(⊤/B)) is equivalent to
¬♥(⊥/B) for ♥ of obligation type and to ¬♥(⊤/B) for ♥ of prohibition type.

Example 3.1 (i) Setting Op = {O} with O of obligation type and nt(O)
yields the dyadic version of minimal deontic logic MP from [6].

(ii) Replacing nt(O) with O O in (i) yields the dyadic version of monotone
modal logic M extended with the D axiom ¬(O(A/B) ∧ O(¬A/B)).

(iii) Setting Op = {O,F} with O of obligation type, F of prohibition type,
and O F yields a logic with upwards monotone obligations O, down-
wards monotone prohibitions F , and no conflicts between obligations and
prohibitions, i.e., the axiom ¬(O(A/B) ∧ F(A/B)). Note that this does
not rule out conflicts between obligations or between prohibitions. This
could be added by stipulating O O and F F , respectively.

(iv) Let Op = {must, ought, should} with all operators of obligation type.
Setting must → ought,must → should, ought → should with must must

and nt(ought) illustrates the possibility of using different operators for
analysing different strengths of obligations. The intuition is that must be-
haves like an obligation, while the weaker ought behaves more like a rec-
ommendation, hence satisfies only the P axiom instead of D. See, e.g., [1].

To facilitate automated reasoning and prove useful meta-logical properties,
we switch from Hilbert-style calculi to sequent calculi. As usual, a sequent is a
tuple Γ ⇒ ∆ of multisets of formulae, with formula interpretation

∧

Γ →
∨

∆,
see, e.g., [30]. To write the rules with a coincise notation we introduce the
following two abbreviations:

Impl♥,♠(A,B) :=















A ⇒ B ♥,♠ obligation type
A,B ⇒ ♥ obligation type ,♠ prohibition type
B ⇒ A ♥,♠ prohibition type
⇒ A,B ♥ prohibition type ,♠ obligation type
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{

Impl♥,♠(A,C) B ⇒ D D ⇒ B

Γ,♥(A/B) ⇒ ♠(C/D),∆
Mon♥,♠ : ♥,♠ ∈ Op, ♥ → ♠

}

{

Confl♥,♠(A,C) B ⇒ D D ⇒ B

Γ,♥(A/B),♠(C/D) ⇒ ∆
D♥,♠ : ♥,♠ ∈ Op, ♥ ♠

}

{

Confl♥,♥(A,A)

Γ,♥(A/B) ⇒ ∆
P♥ : ♥ ∈ Op, ♥ ♥ or nt(♥)

}

Γ, p ⇒ p,∆
init

Γ,⊥ ⇒ ∆
⊥L

Γ, B ⇒ ∆ Γ ⇒ A,∆

Γ, A → B ⇒ ∆
→L

Γ, A ⇒ B,∆

Γ ⇒ A → B,∆
→R

Fig. 2. The base calculus for a given operator characterisation O = (Op,→, , nt)

Confl♥,♠(A,B) :=















A,B ⇒ ♥,♠ obligation type
A ⇒ B ♥ obligation type ,♠ prohibition type
⇒ A,B ♥,♠ prohibition type
B ⇒ A ♥ prohibition type ,♠ obligation type

The intuition is that, e.g., for two operators ♥,♠ of obligation type, complying
with ♥(A/C) means that A is true, whereas violating ♠(B/C) means that B
is false. Hence complying with ♥(A/C) implies violating ♠(B/C) if A implies
¬B. This is captured in Confl♥,♠(A,B), i.e., the sequent A,B ⇒ . Using these
abbreviations, converting the Hilbert-style axioms into sequent rules using the
general method from [19] then gives the deontic rules Mon♥,♠,D♥,♠,P♥ of the
base calculus in Fig. 2. Note that since the relation → is reflexive, we have for
every operator ♥ either the upwards or downwards monotonicity rule:

A ⇒ C B ⇒ D D ⇒ B
Γ,♥(A/B) ⇒ ♥(C/D),∆

Mon ↑ C ⇒ A B ⇒ D D ⇒ B
Γ,♥(A/B) ⇒ ♥(C/D),∆

Mon ↓

The resulting calculi are equivalent and admit cut-elimination, see [19].

4 Reasoning from assumptions

To reason on the conditions of norms in the above systems we will introduce
special sequent rules. These allow us to reason from deontic assumptions, i.e.,
a finite set L of deontic formulae ♥(A/B) with ♥ ∈ Op. To ensure well-
definedness and termination of proof search we require that these assumptions
are non-nested, i.e., that A,B are purely propositional. The main idea is to
make the second argument downwards monotone “up to conflicting assump-
tions”. Since a formula A with A → B can be seen as “more specific” than
B, this captures the specificity principle, that more specific conflicting deontic
assumptions overrule less specific ones. Before considering the rules in detail
we mention two more features of the system.

To be able to reason with non-deontic propositions as well, we also consider
propositional facts as assumptions. W.l.o.g. we assume that these are given
in the form of a finite set F of atomic sequents, i.e., sequents of the form



Ciabattoni and Lellmann 101

p1, . . . , pn ⇒ q1, . . . , qm with the pi, qj propositional variables. Since every
purely propositional formula is equivalent to a formula in conjunctive normal
form, this is equivalent to permitting arbitrary purely propositional formulae
as assumptions. The sequent rules for these assumptions then are given by

{

Σ,Γ ⇒ ∆,Π
F
: Γ ⇒ ∆ ∈ F

}

.

Often obligations and prohibitions further come with a priority order. To
capture this, we follow the standard approach and say that a superiority relation
is a binary relation ≻ on the set of deontic assumptions. The intuition is that
for two deontic assumptions A,B with A ≻ B, the former is superior, or has
higher authority, than the latter, and hence A cannot be overruled by B, even
if the latter is more specific. For technical reasons we impose that for every two
assumptions A,B we have A ⊁ B or B ⊁ A. Note that this rules out cycles of
length one or two, but due to lack of transitivity not those of greater length.

Sequent calculus rules: We then extend the base calculus with sequent
rules for capturing the specificity principle in presence of prioritized deontic
assumptions. The idea is that we can use downwards monotonicity in the sec-
ond argument to derive, e.g., ♥(A/B) from a deontic assumption ♥(A/B ∨C)
unless the latter is overruled by a more specific conflicting deontic assumption
or in conflict with the P axiom. In addition, we also need to rule out that there
is another conflicting assumption which is not overruled by a more specific one.
The crucial feature needed for this is the addition of underivability statements
in the premisses of the rules. These are used for stating, e.g., that we cannot
derive a conflict between two formulae. The general conditions for deriving an
obligation or a prohibition from a deontic assumption then are as follows:

Given a list L of deontic assumptions, we can derive ♥(A/B) from the
assumption ♠(C/D) ∈ L with ♠ → ♥ if:

• the assumption ♠(C/D) is applicable, i.e., if we can derive that the con-
dition B implies the condition D; AND

• complying with the assumption ♠(C/D) implies complying with ♥(A/B),
i.e., if we can derive Impl♠,♥(C,A); AND

• there is no conflict with the non-triviality axiom P for ♥, i.e., we cannot
derive Confl♥,♥(A,A) provided that nt(♥); AND

• the assumption ♠(C/D) is neither overruled by a more specific one, nor
in conflict with another assumption which is not overruled. I.e., for every
assumption ♣(E/F ) ∈ L with ♣ ♠ and ♠(C/D) ⊁ ♣(E/F ) we have:
· the assumption ♣(E/F ) is not applicable, i.e., we cannot derive that
the condition B implies F ; OR

· the assumption ♣(E/F ) is not in conflict with what we want to derive,
i.e., we cannot derive Confl♣,♥(E,A); OR

· the assumption ♣(E/F ) is not more specific than ♠(C/D) and it is
not overruled by another more specific one, i.e.:
∗ the assumption ♣(E/F ) is not more specific than ♠(C/D), i.e., we
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B ⇒ D
Impl♠,♥(C,A)
{0 Confl♣,♣(A,A) : nt(♣),♣ = ♥}














































0 B ⇒ F
0 Confl♣,♥(E,A)






















0 F ⇒ D,
B ⇒ Y,
Y ⇒ F,
Impl♦,♥(X,A)















:
♦(X/Y ) ∈ L,

♦ ♣
♣(E/F ) ⊁ ♦(X/Y )

























:
♣(E/F ) ∈ L,

♣ ♠
♠(C/D) ⊁ ♣(E/F )































Γ ⇒ ♥(A/B),∆
♥

♠(C/D)
R

B ⇒ D
Confl♠,♥(C,A)














































0 B ⇒ F
0 Impl♣,♥(E,A)






















0 F ⇒ D,
B ⇒ Y,
Y ⇒ F,
Confl♦,♥(X,A)















:
♦(X/Y ) ∈ L,

♦ ♣
♣(E/F ) ⊁ ♦(X/Y )

























:
♣(E/F ) ∈ L,

♣ ♠
♠(C/D) ⊁ ♣(E/F )































Γ,♥(A/B) ⇒ ∆
♥

♠(C/D)
L

Fig. 3. The deontic assumption rules.

cannot derive that the condition F implies D; AND
∗ there is another more specific applicable assumption ♦(X/Y ), com-
plying with which implies complying with ♥(A/B), i.e., for one of
♦(X/Y ) ∈ L with ♦ ♣ and ♣(E/F ) ⊁ ♦(X/Y ) we have:
- the assumption ♦(X/Y ) applies, i.e., we can derive that the con-
dition B implies Y ; AND
- the condition Y is more specific than the condition of ♣(E/F ), i.e.,
we can derive that the condition Y implies F ; AND

- complying with the assumption ♦(X/Y ) implies complying with
♥(A/B), i.e., we can derive Impl♦,♥(X,A).

In order to formalise this as sequent rules we use the following abbreviation.
Let S = {S1, . . . ,Sn} be a finite set of sets of premisses. Then we write

P ∪ [S]

C
for the set of rules

{

P ∪ S1

C
, . . . ,

P ∪ Sn

C

}

.

The general assumption right rules ♥
♠(C/D)
R are given in Fig. 3, where we write

0 Γ ⇒ ∆ for an underivability statement. Note that in this notation sets essen-
tially correspond to conjunctive conditions on the premisses and capture the
“AND” and “for all” above, while the choice notation [.] essentially corresponds
to disjunctive conditions and captures the “OR” and “there is”. In particular,
the notation [S♦(X/Y ) : ♦(X/Y ) ∈ L] corresponds to the big disjunction over
the ♦(X/Y ) ∈ L of the S♦(X/Y ) and hence the existential quantification over
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the finite set L. To abbreviate the notation we equivalently incorporated the
premiss 0 F ⇒ D into the following choice block.

Remark 4.1 The D axiom is equivalent to ♥(A/B) → ¬♥(¬A/B), and hence
from an assumption ♥(A/B) we should be able to derive ¬♥(¬A/B). The
assumption right rules allow us to do that only if we use the cut rule, see
Sec. 5. As the presence of this rule destroys useful properties of the calculus,

we introduce in the system the corresponding left rules ♥
♠(C/D)
L in Fig. 3,

obtained by absorbing cuts between the assumption right rules ♥
♠(C/D)
R and

the D-rules D♥,♣. As usual, introducing a formula ♥(A/B) on the left hand
side of the sequent, amounts to deriving ¬♥(A/B).

Note that the nonderivability premiss for removing conflicts with the P

axiom is no longer present – if nt(♥) and Confl♥,♥(A,A) is derivable, then we
immediately obtain the conclusion using the rule P♥. The full calculus then
contains the base rules of Fig. 2 together with the rules:

{

♥
♠(C/D)
R : ♠ → ♥,♠(C/D) ∈ L

}

∪
{

♥
♠(C/D)
L : ♠ ♥,♠(C/D) ∈ L

}

.

4.1 Examples

The examples below can be checked at http://subsell.logic.at/bprover/
deonticProver/version2.0/, where also more examples are available.

Example 4.2 Continuing Ex. 3.1.(ii), consider O of obligation type with
O O and the deontic assumptions corresponding to the asparagus exam-
ple [31,16] (see also Sec. 2) given by L = {O(¬fingers/⊤), O(fingers/asparagus),
O(¬asparagus/⊤)}. Since asparagus → ⊤ and there is no conflicting as-
sumption, we can derive O(¬asparagus/asparagus), hence the contrary-to-
duty obligation O(fingers/asparagus) does not override the primary obliga-
tion O(¬asparagus/⊤). However, the more specific obligation (or excep-
tion) O(fingers/asparagus) overrides O(¬fingers/⊤). Moreover, exemplifying
Rem. 4.1, since we can derive O(fingers/asparagus), due to O O and the as-

sumption left rule O
O(fingers/asparagus)
L we also derive ¬O(¬fingers/asparagus).

Example 4.3 Consider the classical drowning twins example, for the
same operator O as in the previous example, deontic assumptions
L = {O(save twin 1/⊤), O(save twin 2/⊤)} and the propositional fact
save twin 1, save twin 2 ⇒ ⊥ which stipulates that saving both twins is im-
possible. Neither of the two assumptions is derivable because it is in conflict
with the other one. However, the formula save twin 1 ∨ save twin 2 is noncon-
tradictory, hence we can derive O(save twin 1 ∨ save twin 2/⊤). This shows
that norms which are nonderivable can still serve to derive other norms, and
in particular that our system satisfies the disjunctive response of [10] for two
conflicting deontic assumptions. Adding superiority between the two assump-
tions, e.g., stipulating O(save twin 1/⊤) ≻ O(save twin 2/⊤), would break the
tie and make the O(save twin 1/⊤) derivable.
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Γ, A,A ⇒ ∆

Γ, A ⇒ ∆
ConL

Γ ⇒ A,A,∆

Γ ⇒ A,∆
ConR

Γ ⇒ ∆
Σ,Γ ⇒ ∆,Π

W

Fig. 4. The structural rules.

Example 4.4 Continuing Ex. 3.1.(iv), with the operator characterisation
given there for the operators must, ought, should and the assumptions
{must(¬murder/⊤), ought(help friend/⊤)} as well as the unfortunate fac-
tual assumption help friend ⇒ murder we can derive must(¬murder/⊤),
ought(¬murder/⊤), should(¬murder/⊤). We also derive ought(murder/⊤) us-

ing ought
ought(help friend/⊤)
R , but since ought behaves like a recommendation and

hence doesn’t satisfy the D axiom, these two are not in conflict.

Example 4.5 Consider the order puzzle from, e.g., [14], with the opera-
tor O as in Ex. 4.2 and deontic assumptions given by the ordered list
O(¬open window/heating) ≻ O(open window/⊤) ≻ O(heating/⊤). For the
situation where the window is open and the heating is off we can derive
O(open window/open window ∧ ¬heating) as well as O(heating/open window ∧
¬heating), but not O(¬open window/open window ∧ ¬heating), since the as-
sumption O(¬open window/heating) does not apply. This illustrates that deon-
tic detachment/transitivity does not hold (since these principles are not present
in the base logic). In particular, there also is no aggregation of priorities along
chains of obligations which could make the assumption O(open window/⊤)
overrule the inferior O(heating/⊤). A similar effect could be achieved, how-
ever, by adding the assumption O(¬heating/open window), since by specificity
this would block the derivation of O(heating/open window ∧ ¬heating).

5 Cut-elimination and Consequences

We now consider the formal details of the introduced calculi. Due to the
underivability statements in the rules we proceed in two stages.

Definition 5.1 We call deontic assumptions a finite set L of non-nested de-
ontic formulae. We further call propositional facts a finite set F of atomic
sequents closed under applications of the cut rule below and the contraction
rules ConL,ConR of Fig. 4.

Γ ⇒ ∆, A A,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π
cut

A normative basis is a triple N = (O,L,≻,F) consisting of an operator charac-
terisation O, deontic assumptions L with a superiority relation ≻, and proposi-
tional facts F. Given a normative basis, the rules of the system GN are those of
the base calculus for O from Fig. 2, the factual assumption rules F, the deontic
assumption rules of Fig. 3 and the structural rules of Fig. 4. The system GNcut

extends GN with the rule cut.

Definition 5.2 Given a normative basis N = (Op,L,≻,F), a proto-derivation
in GN (or GNcut) is a finite labelled tree, with every internal node labelled



Ciabattoni and Lellmann 105

with a sequent which is obtained from the labels of the node’s children using a
rule of GN (or GN plus cut, respectively), and every leaf node labelled with the
conclusion of a zero-premiss rule in GN or an underivability statement 0 Γ ⇒ ∆.
The conclusion of a proto-derivation is the label of its root. A proto-derivation
of rank n is a proto-derivation where the nesting depth of operators from Op

in every formula occurring in it is at most n. A proto-derivation (of rank n) is
a derivation (of rank n), if none of the underivability statements occurring in
it have a derivation in GNcut (of rank n− 1). We write ⊢GN

Γ ⇒ ∆ if there is
a derivation of Γ ⇒ ∆ and ⊢n

GN
Γ ⇒ ∆ if there is a derivation of rank n.

Note that underivability statements always range over GNcut, i.e., the sys-
tem with the cut rule. Since the definition of a derivation refers to itself, we
need to show that it is well-defined. This follows from the observation that
the modal nesting depth of the underivability statements occurring in the pre-
misses of the assumption rules is strictly smaller than that of the conclusion,
together with the main result of this section, stating that cut is admissible.

Before proving this theorem (in its stronger version, namely that the cut
rule is eliminable) we show some preliminary results:

Proposition 5.3 The following rules are derivable in GNcut:

Impl♥,♠(A,B) Impl♠,♣(B,C)

Impl♥,♣(A,C)
cut

Impl♥,♠(A,B) Confl♠,♣(B,C)

Confl♥,♣(A,C)
cut

Proof. By applying cut and spelling out the cases for Impl and Confl. ✷

Lemma 5.4 The generalised initial sequents Γ, A ⇒ A,∆ are derivable.

Proof. By induction on the depth of the derivation, using Mon♥,♥. ✷

The proof of the cut-elimination theorem generalizes the one in [8], which
was tailored to the particular rules of the modalities for the dyadic version of
the non-normal deontic logic MD [6] (see Section 6.1).

Theorem 5.5 (Cut elimination) If ⊢GNcut Γ ⇒ ∆, then ⊢GN
Γ ⇒ ∆.

Proof. By eliminating topmost applications of multicut, i.e., the rule

Γ ⇒ ∆, An Am,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π
mcut

using a double induction on the complexity of the cut formula A and the sum of
the depths of the two premisses of the application of multicut. The interesting
case is for A being a deontic formula, the propositional cases are standard.

The case of the last applied rules being modal is straightforward, e.g., for

Impl♥,♠(A,C) B ⇒ D D ⇒ B

Γ,♥(A/B) ⇒ ♠(C/D),∆
Mon♥,♠

Confl♠,♣(C,E) D ⇒ F F ⇒ D

Σ,♠(C/D),♣(E/F ) ⇒ Π
D♠,♣

we replace the cut on ♠(C/D) by cuts on the premisses and an application of
D♥,♣ using Prop.5.3 and the fact that since ♥ → ♠ and ♠ ♣, also ♥ ♣. The
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case of both rules being Mon is similar. A multicut between the conclusions of

Impl♥,♠(A,C) B ⇒ D D ⇒ B

Γ,♥(A/B) ⇒ ♠(C/D),∆
Mon♥,♠

Confl♠,♠(C,C) D ⇒ D D ⇒ D

Σ,♠(C/D),♠(C/D) ⇒ Π
D♠,♠

is replaced by two cuts of smaller complexity, obtaining first Confl♥,♠(A,C)
and then Confl♥,♥(A,A) using Prop.5.3. Then we apply D♥,♥. The case of a
cut between the conclusions of the rules Mon♥,♠ and P♠ is analogous.

The case involving the right assumption rule and the monotonicity rule is
as follows (strictly speaking, the first denotes a set of rules). Suppose we have

B ⇒ D
Impl♠,♥(C,A)
{0 Confl♣,♣(A,A) : nt(♣),♣ = ♥}














































0 B ⇒ F
0 Confl♣,♥(E,A)

∪























0 F ⇒ D
B ⇒ Y,
Y ⇒ F,
Impl♦,♥(X,A)















:
♦(X/Y ) ∈ L,

♦ ♣
♣(E/F ) ⊁ ♦(X/Y )

























:
♣(E/F ) ∈ L,

♣ ♠
♠(C/D) ⊁ ♣(E/F )































Γ ⇒ ♥(A/B),∆
♥

♠(C/D)
R

(1)
and

Impl♥,♥′(A,G) B ⇒ H H ⇒ B

Σ,♥(A/B) ⇒ ♥′(G/H),Π
Mon♥,♥′

By induction hypothesis on the cut complexity we obtain the premisses of

H ⇒ D
Impl♠,♥′(C,G)
{0 Confl♣,♣(G,G) : nt(♣),♣ = ♥′}














































0 H ⇒ F
0 Confl♣,♥′(E,G)

∪























0 F ⇒ D
H ⇒ Y,
Y ⇒ F,
Impl♦,♥′(X,G)















:
♦(X/Y ) ∈ L,

♦ ♣
♣(E/F ) ⊁ ♦(X/Y )

























:
♣(E/F ) ∈ L,

♣ ♠
♠(C/D) ⊁ ♣(E/F )































Γ,Σ,⇒ ♥′(G/H),∆,Π
♥′♠(C/D)

R

This uses Prop. 5.3 for obtaining Impl♠,♥′(C,G) and Impl♦,♥′(X,G), as well
as obtaining 0 Confl♣,♥′(E,G) from 0 Confl♣,♥(E,A) and Impl♥,♥′(A,G).
Finally, Prop. 5.3 also yields 0 Confl♥′,♥′(G,G) from 0 Confl♥,♥(A,A) and
Impl♥,♥′(A,A) in case we have nt(♥′) and the premiss needs to be present – in
that case we also have nt(♥) and the corresponding premiss is in (1) as well.

The cases involving ♥
♠(C/D)
L and Mon♥,♥′ or ♥

♠(C/D)
R and D♥,♥′ are similar.

For the case of a multicut between ♥
♠(C/D)
R and both principal formulae of

the D rule, we claim that this cannot happen. For suppose we had (1) and

Confl♥,♥(A,A) B ⇒ B B ⇒ B

Σ,♥(A,B),♥(A/B) ⇒ Π
D♥,♥
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If nt(♥) we immediately obtain a contradiction since Confl♥,♥(A,A) is both
derivable and not derivable. Otherwise, since D♥,♥ is in the system, we have

♥ ♥, and since the rule ♥
♠(C/D)
R was used, we have ♠ → ♥. Hence we also

have ♠ ♠. Thus one instance of ♣(E/F ) in the set of premisses of ♥
♠(C/D)
R

is the assumption ♠(C/D). But for this formula the first premiss gives us
B ⇒ D, hence in the choice block the instantiation 0 B ⇒ D of the first
underivability statement 0 B ⇒ F does not hold. Further, from Prop. 5.3 with
the premisses Impl♠,♥(C,A) and Confl♥,♥(A,A) we get Confl♠,♥(C,A), hence
this instantiation of the second underivability statement 0 Confl♣,♥(E,A) of
the choice block also does not hold. Finally, the instantiation 0 D ⇒ D of the
third underivability statement 0 F ⇒ D also does not hold due to Lem. 5.4,
and hence the proto-derivation ending in (1) cannot have been a derivation.

The case involving ♥
♠(C/D)
R and P♥ is completely analogous.

Also in the case of the assumption right rule versus the assumption left rule
we claim that this cannot happen. Suppose we would have (1) and

B ⇒ D′

Confl♠′,♥(C
′, A)















































0 B ⇒ F ′

0 Impl♣′,♥(E
′, A)

{0 F ′ ⇒ D′}

∪











B ⇒ Y ′,
Y ′ ⇒ F ′,
Confl♦′,♥(X

′, A)







:
♦′(X ′/Y ′) ∈ L,

♦′ ♣′

♣′(E′/F ′) ⊁ ♦′(X ′/Y ′)





















:
♣′(E′/F ′) ∈ L,

♣′ ♠′

♠′(C ′/D′) ⊁ ♣′(E′/F ′)































Γ,♥(A/B) ⇒ ∆
♥

♠
′(C′/D′)

L

Since both rules are in the system, we have ♠ → ♥ and ♠′ ♥, and hence
also ♠′ ♠. Further, since the superiority relation is acyclic, we have ei-
ther ♠(C/D) ⊁ ♠′(C ′/D′) or ♠′(C ′/D′) ⊁ ♠(C/D). Suppose ♠(C/D) ⊁

♠′(C ′/D′). Then instantiating ♣(E/F ) in the premisses of ♥
♠(C/D)
R with

♠′(C ′/D′) we have either 0 B ⇒ D′, or 0 Confl♠′,♥(C
′, A) or 0 D′ ⇒ D

together with the choice. The first of these cannot be the case, because from

♥
♠

′(C′/D′)
L we have B ⇒ D′. The second also cannot be the case because again

from ♥
♠

′(C′/D′)
L we get Confl♠′,♥(C

′, A). So assume that 0 D′ ⇒ D and for
some ♦(X/Y ) ∈ L with ♦ ♠′ and ♠′(C ′/D′) ⊁ ♦(X/Y ) we have all three of

B ⇒ Y Y ⇒ D′ Impl♦,♥(X,A) (2)

But then instantiating this assumption ♦(X/Y ) for ♣′(E′/F ′) in the premisses

of ♥
♠

′(C′/D′)
L yields that one of 0 B ⇒ Y or 0 Impl♦,♥(X,A) or 0 Y ⇒ D′

holds. This is clearly in contradiction to (2). Hence every possibility yields a
contradiction, and thus one of the two proto-derivations was not a derivation.
The case of ♠′(C ′/D′) ⊁ ♠(C/D) is analogous, starting with instantiating the

formula ♣′(E′/F ′) in the premisses of the rule ♥
♠

′(C′/D′)
L with the assumption

♠(C/D) and then reasoning as in the first case. ✷

An important corollary of this result is that we can reduce derivability to
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derivability of bounded rank, and hence obtain well-definedness of the former
notion:

Theorem 5.6 (Derivability is well-defined) Let the maximal nesting
depth of operators in Γ ⇒ ∆ be n. Then we have ⊢GNcut Γ ⇒ ∆ iff ⊢GN

Γ ⇒ ∆
iff ⊢n

GN
Γ ⇒ ∆. Hence derivability in GN is well-defined.

Proof. The first equivalence follows straightforwardly from cut elimination
(Thm. 5.5). The proof for the second equivalence is by induction on n. For
n = 0 the sequent is purely propositional. Hence the derivation cannot contain
underivability statements, and the statement is straightforward. Suppose the
statement holds for all m < n. Due to the shape of the rules, every sequent in a
derivation of Γ ⇒ ∆ has nesting depth ≤ n, and the underivability statements
mention sequents of depth ≤ n − 1. Thus by induction hypothesis on the
underivability statements the derivation is of rank n and we have ⊢n

GN
Γ ⇒ ∆.

Similarly, if ⊢n
GN

Γ ⇒ ∆, then by induction hypothesis on the underivability
statements occurring in the derivation we obtain ⊢GN

Γ ⇒ ∆. ✷

As a further corollary we obtain decidability of the system and complexity
results. Notably, the complexity of reasoning from assumptions is the same as
that of reasoning without assumptions in Standard Deontic Logic [18]:

Theorem 5.7 Given N, the problem of deciding whether ⊢GN
Γ ⇒ ∆ is de-

cidable in space polynomial in the size of Γ ⇒ ∆.

Proof. (Sketch) The idea is to perform backwards proof search to find a proto
derivation. For each underivability statement we then recursively call the al-
gorithm and flip the answer. To prevent loops caused by contraction, we copy
the principal formula of the implication rules into the premisses and omit the
weakening and contraction rules. Standard inductions on the depth of the proto
derivation then show admissibility of the contraction and weakening rules. The
proof search procedure existentially guesses the last applied rule, checks that
its application is non-redundant, i.e., introduces at least one new formula, then
universally chooses its premisses and checks derivability. Since each backwards
application of a rule adds at least one new subformula of the conclusion or
reduces the maximal nesting depth of the sequent, the depth of the search
tree is polynomial in the size of the conclusion. Since moreover its branching
factor only depends on the number of rules, i.e., deontic assumptions, it is in-
dependent of the size of the input. Hence the procedure runs in alternating
polynomial time, which is equivalent to polynomial space [5]. ✷

6 Applications

We apply our methodology to the case studies of Mı̄mām. sā-inspired logic,
permissions as exception, and a logic of sanction and violation, showing how
contrary-to-duties can be modeled as instance of defeasible reasoning [26].

6.1 Mı̄mām. sā-inspired logic

The specificity rules in [8] for the Mı̄mām. sā-inspired logic are a particular case
of our general rule schemas. Before showing how to model these rules, and
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how to extend them with prioritized obligations, we briefly recall the logic in
question, introduced to formalize and provide a better understanding of the
deontic reasoning of Mı̄mām. sā authors. Mı̄mām. sā is an ancient influential
school of Indian philosophy mainly focusing on the exegesis of the prescriptive
portions of the Vedas – the Sacred Texts of Hinduism. In order to explain
the deontic content of the Vedas and interpret them in a noncontradictory
way, Mı̄mām. sā authors proposed a rich body of deontic, hermeneutical and
linguistic principles called nyāyas. In [7] some of the deontic nyāyas were
transformed into Hilbert axioms for a non-normal dyadic deontic logic, which
yielded a formal analysis of a famous deontic controversy contained in the
Vedas. Interestingly, this solution coincided with that of Prabhākara, one of
the chief Mı̄mām. sā authors, which previous approaches failed to make sense of.
As shown in [9] the ✷-free fragment of this logic is the dyadic version of the
non-normal deontic logic MD [6].

Not all nyāyas can be converted into Hilbert axioms. These include more
general interpretative principles to resolve apparent contradictions in the Vedas
like the specificity principle, discussed already by Mı̄mām. sā author Śabara
(3rd-5th c. CE) under the name gun. apradhāna. Hence the dyadic version of
MD was extended in [8] with sequent rules for specificity. These rules can be
seen as a particular case of the general scheme described here by considering an
operator characterisation with only one obligation type operator O with O O
and no superiority relation. Going beyond [8], the superiority relation in the
rules of Fig. 3 lets us deal with the Mı̄mām. sā interpretative principle called
hierarchy of sources (śrutismr.tyādibādha). This principle states that out of two
apparently clashing commands, the one issued by a less authoritative source is
to be suspended. Indeed, Mı̄mām. sā author Kumārila describes four sources of
duty, in decreasing order of authority: śruti (the Vedas), smr.ti (the ‘recollected
texts’, based on the Vedas), sadācāra (the behaviour of good people, who are
learned in the Vedas) and ātmatus.t. i (the inner feeling of approval by people
who are learned in the Vedas). Hence, the considered norms can be formalized
by four obligation type operators OV,Ort, Ogp,Oif with ♥ ♠ for each ♥,♠ ∈
{OV,Ort,Ogp,Oif}, with the transitive closure of the priorities OV(A/B) ≻
Ort(C/D), Ort(C/D) ≻ Ogp(E/F ) and Ogp(E/F ) ≻ Oif(G/H) between any
assumptions using these operators.

6.2 Permissions as exceptions

Considered often as the dual of obligation, permission has been treated as
primitive operator as well [22,11]. Here we model the notion of permissions as
exceptions to other deontic operators (compare [2] for an analogous treatment
in the context of input-output logics). Intuitively, a permission P♥(A/B) acts
as an exception to deontic assumptions in ♥, in that it blocks the derivation of a
formula ♥(C/D) whenever A and C are in conflict. To define what “in conflict”
means, we assume that what is permitted is not forbidden, i.e., that given
P♥(A/B) we have not ♥(A/B) if ♥ is of prohibition type and not ♥(¬A/B) for
♥ of obligation type. This suggests that permission operators are of obligation
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type, i.e., upwards monotone in the first argument, in line with the standard
notion that if something is permitted, everything which follows from this is
also permitted. Thus, to model permissions for an operator ♥, we add an
obligation type operator P♥ with ♥ P♥. Note that ♥ could be of obligation
or prohibition type, and it can but does not need to satisfy ♥ ♥ and nt(♥).

Example 6.1 To model the sentence “Parking is forbidden, unless one has
a permit” we use a prohibition-type operator F with F F and the corre-
sponding (obligation type) permission operator PF with F PF . The deon-
tic assumptions are {F(parking/⊤), PF (parking/permit)}. We can then de-
rive, e.g., F(parking/⊤) and F(parking/lazy), but neither F(parking/permit)
nor F(parking/permit∧ lazy). Hence the permission PF (parking/permit) acts as
an explicit exception to the more general prohibition F(parking/⊤).

Note that adding permission operators also makes permission formulae
derivable, e.g., PF (parking/permit ∧ lazy) in Ex. 6.1. These could be read as
“explicit” or “strong” permissions in that they are derived from permissions ex-
plicitly mentioned in the assumptions. To keep them implicit, we can consider
permissions in the assumptions, but not as derived formulae. Note also that
to introduce a more general permission operator P which acts as exception to
several other operators ♥1, . . . ,♥n, it is enough to add ♥i P for every i ≤ n.

6.3 Sanctions and violations

We can also use our approach to differentiate between exceptions to a primary
norm (as above), and secondary norms, which come into effect after a primary
one has been violated. The crucial difference is that for exceptions to a more
general norm there is no violation, whereas for secondary norms the primary
one stays in force, and hence can be violated. This is similar to the distinction
between violations of norms and sanctions as a result of violations. We model
this using two prohibition type operators S and V with corresponding permis-
sion operators PS and PV as in Sec. 6.2. The intuitive reading of S(A/B) is
that A is forbidden given B, and doing A results in a sanction. For V(A/B)
we read that A is forbidden given B, and doing A results in a violation but
not necessarily a sanction. Here we assume that there is no sanction without
violation, S → V, and that V V , V PV , S PS . Closure under → then yields
S V, S S, S PV . The latter means that exceptions to violations can over-
rule sanctions, but in absence of V PS exceptions to sanctions cannot overrule
violations. Hence there might be a violation, even though there is no sanction.

Example 6.2 Consider the assumptions {S(parking/⊤), V(parking/⊤),
PV(parking/permit), PS(parking/fine paid)}, modelling the fact that once a fine
for illegal parking has been paid, there is no further sanction. We derive all
three of S(parking/⊤), V(parking/⊤), V(parking/fine paid). However, we can-
not derive either of S(parking/fine paid), S(parking/permit), V(parking/permit).
The first of these is overruled by PS(fine paid), the second and third ones by
PV(parking/permit). So if there is no permit, but the fine has been paid, there
is no further sanction but still a violation of the prohibition to park.
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Remark 6.3 Similarly, we can model contrary-to-duty (CTD) obligations
while maintaining the distinction between defeasibility and violation of primary
obligations. Indeed, borrowing the example from [26], we can model “There
must be no fence”, as S(fence/⊤)∧V(fence/⊤), and “If there is a fence, it must
be a white fence” as PS(white fence/fence). Then we derive that the primary
obligation is in force (S(fence/⊤) ∧ V(fence/⊤)) and having a white fence re-
sults in a violation of the primary norm (V(white fence/fence)), but does not
violate the secondary norm (0 S(white fence/fence)). This distinction between
violations of primary and secondary norms is somewhat similar to the distinc-
tion between instrumental/actual and proper/ideal obligations in [28] and [4]
respectively: Roughly speaking, proper or ideal obligations, i.e., all obligations
that apply to a context, including violated primary ones, correspond to the
violation operator, while instrumental or actual ones, i.e., those detailing what
to do in a particular situation, correspond to the sanction operator.

In general, CTDs of other CTDs are modeled by as many different operators
as nested CTDs +1. A similar approach is in [13], that employs the (n-ary)
substructural connective ⊗ where A⊗B stands for “the violation of A can be
repaired by B” to reduce CTD to a special kind of normative exception.

7 Conclusions and Related Work

We introduced sequent rules for reasoning with deontic assumptions using speci-
ficity in presence of prioritized deontic operators. The method, which relies on
cut elimination in presence of underivability premisses, captures systems with
an arbitrary finite number of dyadic deontic operators based on M possibly ex-
tended with axioms P or D and inclusions among the operators. The method
is applied to various case studes and implemented in deonticProver2.0.

Related work. The approaches closest to ours are those in the framework
of dyadic deontic logic, e.g., [33,6,32,20,26]. The main difference is that we
consider reasoning from deontic assumptions to be inherently nonmonotonic,
and hence do not attempt to capture it purely axiomatically. Indeed, while
from the assumption O(A/⊤) we derive O(A/⊤), this no longer holds if we
add the conflicting assumption O(¬A/⊤). This aspect cannot be captured in
a purely axiomatic setting, since propositional logic already gives O(A/⊤) ∧
O(¬A/⊤) → O(A/⊤). Additionally, unlike our system, most dyadic deontic
logics derive O(A/A), which rules out, e.g., the derivation of a formula like
O(¬asparagus/asparagus) in Ex. 4.2.

In the nonmonotonic setting, different methods have been introduced to deal
with conflicts using specificity and/or superiority; these are either logic-tailored,
e.g. [29,27], or are handled within general frameworks like the following.

Deontic default logic [15,16] uses semantical extensions to provide a cred-
ulous or skeptical approach (an obligation is derivable if it belongs to at least
one or all extensions, respectively). While our system is heavily influenced by
the notions of specificity and overriding in [15,16], it avoids the fixpoint con-
struction necessary there, accounts for explicit exceptions, and permits nested
obligations on the logic level.
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Defeasible deontic logic (DDL), introduced in [12], uses facts, strict and
defeasible rules, undercutting rules, and a binary superiority relation on the
rules to solve conflicts between defeasible rules. The main differences with our
approach are that in DDL propositional reasoning is defeasible, tractable com-
plexity is paid for by the omission of binary connectives, specificity is handled
“manually” by adding the superiority relation to all rules where it should apply.

A very influential logic expressing conditional norms is Input-Output
Logic [21,23,24]. The main difference w.r.t. our approach is that their base
logic is based fundamentally on (deontic or factual) detachment principles. Per-
haps more in line with the notion of contextual obligations [26], neither of these
holds in our system, nor, e.g., in the Mı̄mām. sā-inspired logic (see Section 6.1).

Limitations and future work. An obvious limitation of our proposal is
that the underlying non-normal deontic logics are rather weak. In particu-
lar, it would be interesting to extend the logic with an aggregation principle
♥(A/C)∧♥(B/C) → ♥(A∧B/C). We anticipate that this is possible by suit-
ably adjusting the assumption rules, albeit at a severe cost to the complexity.
The more interesting question is how to extend the assumption rules to addi-
tional axioms in a general way. We’d also like to solve the limitation mentioned
in [16] and rule out conflicts between more than two deontic assumptions, i.e.,
to incorporate the rules ⊢ ¬(A1∧ · · ·∧An/B)/ ⊢ ¬(♥(A1/B)∧ · · ·∧♥(An/B))
in the base logic. This should be possible using methods similar to those
for aggregation. A perhaps more challenging extension would be to incorpo-
rate principles like deontic detachment / transitivity. It is not entirely clear
whether it is possible to avoid a fixpoint construction in this case. Finally, while
neighbourhood semantics for the base logics as in [6] are reasonably straight-
forward, the big challenge is to find a suitable semantic characterisation for the
assumption rules. These topics are left for future work.
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Abstract

The logic of Bringing-it-About was introduced by Elgesem to formalise the notions
of agency and capability. It contains two families of modalities indexed by agents,
the first one expressing what an agent brings about (does), and the second expressing
what she can bring about (can do). We first introduce a new neighbourhood seman-
tics, defined in terms of bi-neighbourhood models for this logic, which is more suited
for countermodel construction than the semantics defined in the literature. We then
introduce a hypersequent calculus for this logic, which leads to a decision procedure
allowing for a practical countermodel extraction. We finally extend both the seman-
tics and the calculus to a coalitional version of Elgesem logic proposed by Troquard.

Keywords: Logic of agency, logic of ability, coalition logic, sequent calculus,
countermodel extraction, decision procedure.

1 Introduction

The logic of Bringing-It-About was originally proposed by Elgesem [5], and pro-
vides one possible formalisation of agents’ actions in terms of their results: that
an agent “does something” is interpreted as the fact that the agent brings about
something, for instance “John does a bank transfer” is interpreted as “John does
that the bank transfer is done”. The logical system proposed by Elgesem con-
tains two modalities indexed by agents Ei and Ci (this is not his original nota-
tion), the former expressing the agentive modality of bringing-it-about, and the
latter expressing capability, roughly speaking Elucy BankTransfer means that
Lucy makes a bank transfer, whereas Clucy BankTransfer means that Lucy can

make a bank transfer. Elgesem’s logic is then intended to capture the effect of
the action “what is brought about” and the agency relation, abstracting away
from any temporal and game-theoretic aspect. In this way it provides a terse
formalism, that has become a standard, quite simpler than other formalisms
such as STIT-logic [2,8]. Elgesem’s logic is well-suited for expressing notions of
responsibility and formalising notions of control, power, and delegation, for in-
stance: “Sara prevents Lucy from making a bank transfer” will be captured just

1 tiziano.dalmonte@gmail.com, {charles.grellois,nicola.olivetti}@lis-lab.fr. This work has

been partially supported by the ANR project TICAMORE ANR-16-CE91-0002-01.
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by Esara ¬Elucy BankTransfer ; moreover it can be easily combined with deontic
modalities in order to express e.g. that an agent is obliged to do something and
so on.

Elgesem proposed an axiomatisation of his logic and a (almost matching)
semantics based on selection function models. Notice that the intended notion
of capability is rather weak, the only characterising axioms are that (i) agency
implies capability EiA → CiA and (ii) ¬Ci⊤, the latter expressing that an
agent i is not capable of doing anything that is always true, whence also ¬Ei⊤:
an agent cannot do anything that will happen anyway, no matter her own
involvement and responsibility.

Elgesem’s logic was further studied by Governatori and Rotolo [7], who
proposed an alternative semantics in terms of neighbourhood models. In their
semantics, models contain two neighbourhood functions corresponding to the
two operators Ei and Ci assigning for each agent i the propositions (identified
with their truth sets) that the agent i brings/can bring about. They also
proved that Elgesem’s semantics entails the validity of the further axiom ¬Ci⊥
meaning that an agent cannot bring about something which is contradictory.

Elgesem’s logic deals with actions of a single agent, who might be either
a human individual, or an institution, or a group conceived as an indivisible
entity. A natural extension of this logic is to handle groups or coalitions that act
jointly to bring about an action. This has been proposed by Troquard [11] who
has developed an extension of Elgesem logic to handle “coalitions”: individuals
may gather in coalitions to bring about a joint action. In a joint action, each
participant must be involved, so that the logic rejects coalition monotonicity:
EgA → Eg′A whenever g ⊆ g′ is not considered as valid. Troquard provided a
computational analysis of his logic and determined its complexity by providing
a decision procedure for his logic, whence for Elgesem’s.

While the semantics of Elgesem logic, as well as its coalitional extension
are well-understood, its proof-theory is mainly unexplored: the only known
proof system for this logic was proposed by Lellmann [9]. In particular, no
proof system connecting the syntax and the semantics is known. By this we
mean that there is no proof system so far that permits the construction of
countermodels of non-valid formulas. Moreover, no proof system is known at
all for the coalitional extension. In particular, the decision procedure developed
by Troquard [11] computes a reduction of a question about validity in his
coalition logic to a set of SAT problems. This is in the spirit of the approach
of Vardi [12] and Giunchiglia et al. [6] for non-normal modal logics. But this
algorithms based on SAT-reduction does not provide neither derivations, nor
countermodels.

This is precisely the purpose of this work. We take our move by redefining
the semantics of Elgesem logic: we consider bi-neighbourhood models, a variant
of neighbourhood models defined in [7]. Like the models in [7], our models
contain, for each agent i, two neighbourhood functions corresponding to the
two operators Ei and Ci. But contrary to the neighbourhood models of [7],
these functions assign to each world a set of pairs of neighbourhoods (α, β).
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Although it would be pretentious to suggest here a new semantics of actions,
we can suggest some intuitive interpretations of the pairs of neighbourhoods
(α, β): given a proposition A representing the result of an action of an agent
i, the two components (α, β) of the pairs can be understood respectively as
specifying independently a set of situations α enabling i to bring about A and
β preventing i from doing A. An alternative interpretation is as follows: since
A must be true in all worlds (situations) in α and false in all worlds in β, the
former can also be thought as a set of possible outcomes of A and the latter
as a set of impossible outcomes of A. 2 In this second interpretation, each pair
(α, β) can also be thought of as expressing a lower and an upper approximation
of propositions that the agent brings/can bring about given a proposition.

Note that a bi-neighbourhood model can be transformed into a standard
neighbourhood model of [7], and conversely.

No matter its intuitive interpretation, the bi-neighbourhood semantics has
a clear technical advantage as it makes easier to compute countermodels of
non-valid formulas than the standard neighbourhood semantics, by avoiding
the exact determination of the truth sets of formulas.

We next move to proof theory by proposing a hypersequent calculus. A
hypersequent can be thought of as a disjunction of ordinary sequents. While
the hypersequent structure is not needed to obtain a complete calculus (as
witnessed by [9] itself), the use of hypersequents allows us to define a calculus
with invertible rules, as a difference with the one in [9]. The main advantage
is that from one failed hypersequent occurring as a leaf of one derivation tree,
a countermodel can directly be extracted in the bi-neighbourhood semantic of
the formula under verification. In this sense, our calculus provides not only
a decision procedure for this logic, but also the first practical procedure to
compute countermodels. Observe that it is not possible to compute directly
countermodels by ordinary sequent calculi: because the rules are not invertible,
the fact that one specific derivation fails, does not mean that the sequent is
unprovable, so that in order to build a countermodel (for a non-valid formula),
all possible derivations must be attempted and inspected. Another syntactic
feature of our calculi is that hypersequents contain additional structural con-
structs, the blocks, which are necessary for countermodel construction, but also
to capture the logic in a clean and modular way, reflecting its axiomatisation.

The hypersequent calculus has nonetheless good proof-theoretic properties,
as it enjoys a syntactic proof of cut elimination, from which also follows its com-
pleteness with respect to the axiomatisation. We then turn to the coalitional
version of Elgesem’s logic proposed by Troquard [11]: we are able to extend
both the bi-neighbourhood semantics and the calculus to this setting, needing
only to add the rules for handling the empty coalition and coalition fusion. Our
calculus then provides a decision procedure for Troquard coalitional logic, with
derivations and countermodels.

2 We are grateful to one reviewer for suggesting this latter interpretation.
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REE

A ↔ B
EiA ↔ EiB

REC

A ↔ B
CiA ↔ CiB

CE EiA ∧ EiB → Ei(A ∧ B) QC ¬Ci⊤
TE EiA → A PC ¬Ci⊥
IntEC EiA → CiA

Fig. 1. Modal axioms and rules of Elgesem’s logic ELG.

2 Elgesem’s logic and bi-neighbourhood semantics

In this section, we present Elgesem’s agency and ability logic, which we denote
by ELG. Then we define the bi-neighbourhood models for this logic.

Let A = {a, b, c, ...} be a set of agents. The logic ELG is defined on a
propositional language LElg containing, for every i ∈ A, two unary modalities
Ei and Ci, respectively of “agency” and “ability”. The formulas of LElg are
defined by the following grammar:

A ::= p | ⊥ | ⊤ | ¬A | A ∧ B | A ∨ B | A → B | EiA | CiA,

where EiA and CiA are respectively read as “the agent i brings it about that
A”, and “the agent i is capable of realising A”. The logic ELG is defined by
extending classical propositional logic (formulated in language LElg) with the
modal axioms and rules in Fig. 1. 3

Notice that ¬Ei⊥ and ¬Ei⊤ are derivable in ELG. By contrast, the axioms
C and T hold only for the modality E, meaning respectively that if an agent
realises two things, then she realises both, and that if A is brought about by
some agent, then it is actually the case that A.

Semantic characterisations of the logic ELG are provided by Elgesem [5] in
terms of selection function models and by Governatori and Rotolo [7] in terms
of neighbourhood models, the latter having separate neighbourhood functions
for the modalities E and C. Here we propose an alternative semantics based
on bi-neighbourhood models [4]. We explain the advantages of this alternative
semantics just after its definition.

Definition 2.1 A bi-neighbourhood model for ELG is a tuple M =
〈W, N E

i , NC
i , V〉, where W is a non-empty set, V is a valuation function, and

for each agent i, N E
i and NC

i are two bi-neighbourhood functions W −→
P(P(W) × P(W)) satisfying the following conditions:

(CE) If (α, β), (γ, δ) ∈ N E
i (w), then (α ∩ γ, β ∪ δ) ∈ N E

i (w).
(TE) If (α, β) ∈ N E

i (w), then w ∈ α.
(QC) If (α, β) ∈ NC

i (w), then β 6= ∅.
(PC) If (α, β) ∈ NC

i (w), then α 6= ∅.
(IntEC) N E

i (w) ⊆ NC
i (w).

3 A variant of Elgesem’s logic not containing axiom PC is considered in [7,9]. All results

presented in this work can be extended to this variant just by dropping the corresponding

condition in the bi-neighbourhood semantics and the corresponding rule in the calculus.
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The forcing relation  is defined as usual for atomic formulas and boolean
connectives, whereas for E- and C-formulas it is defined as follows:

M, w  EiA iff there is (α, β) ∈ N E
i (w) s.t.

for all v ∈ α, M, v  A, and for all u ∈ β, M, u 6 A.

M, w  CiA iff there is (α, β) ∈ NC
i (w) s.t.

for all v ∈ α, M, v  A, and for all u ∈ β, M, u 6 A.

Notice that if we denote by JAK the set {v | M, v  A}, i.e., the truth set

of A, the above clauses can be rewritten as M, w  EiA if and only if there is
(α, β) ∈ N E

i (w) s.t. α ⊆ JAK and β ⊆ J¬AK, and similarly for C-formulas. As
usual, we omit to specify the model M when it is clear from context, and then
we simply write w  A.

The main reason for considering bi-neighbourhood semantics is that is offers
a much easier and natural way to extract countermodels from failed proofs. To
see this, in the standard neighbourhood semantics, to make w satisfy EiA, ex-

actly the truth set of A must belong to N E
i (w), whereas in the bi-neighbourhood

semantics it is sufficient to find a pair (α, β) such that α ⊆ JAK and β ⊆ J¬AK.
Observe that this condition can be rewritten as α ⊆ JAK ⊆ W \ β: in this way
the pair (α, β) can be thought of as specifying a lower and upper approxima-
tion of the truth set of A. The fact that the exact determination of truth sets
is not needed in the bi-neighbourhood semantics makes countermodels extrac-
tion from failed proofs substantially easier than in the standard semantics: a
failed proof only specifies “partial” information, from which one can directly
compute bi-neighbourhood pairs, but not exact truth-sets. For this reason bi-
neighbourhood semantics is more natural for direct countermodel extraction
than the standard one.

As mentioned in the introduction, bi-neighbourhood semantics can also
have some intuitive meaning in terms of agency, we have suggested two possible
interpretations: a bi-neighbourhood pair can be interpreted as a specification
of enabling and preventing conditions for the realisation of actions, or as a
set of possible/impossible outcomes of an action. In both interpretations, the
conditions (PC) and (QC), i.e., α 6= ∅ and β 6= ∅ have a natural meaning: the
former imposes that an action must be enabled or possible (non-empty possible
outcomes), so that a contradiction cannot be realised; the latter imposes that
an action must be preventable (non-empty impossible outcomes), so that a
tautology cannot be realised.

Notice also that, because of the validity of ¬Ei⊤ and of the axiom TE,
formulas of the form EiA are never valid in models for ELG, this is the semantic
counterpart of the idea that actions can be always prevented.

Theorem 2.2 (Characterisation) A is derivable in ELG if and only if it is

valid in all bi-neighbourhood models for ELG.

Proof. The proof of soundness is easy and amounts to showing that all axioms
are valid and all rules are validity-preserving. Completeness can be proved by
the canonical model construction as it is done in [4] for classical non-normal
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modal logics. Let us call ELG-maximal any set Φ of formulas of LElg such
that Φ 6⊢ELG ⊥ and if A 6∈ Φ, then Φ ∪ {A} ⊢ELG ⊥. We denote by ↑A the
class of ELG-maximal sets containing A, and we define the canonical model
for ELG as the tuple 〈W, N E

i , NC
i , V〉, where W is the class of maximal sets,

V (p) = {Φ ∈ W | p ∈ Φ}, and for every i ∈ A and X ∈ {E,C}, NX
i (Φ) =

{(↑A, W\ ↑A) | XiA ∈ Φ}. We can prove that Φ  A if and only if A ∈ Φ,
(truth lemma, cf. [4]) and that the canonical model is a bi-neighbourhood
model for ELG. We show as an example that it satisfies the conditions (QC)
and (IntEC): (QC) Assume (↑A, W\ ↑A) ∈ NC

i (Φ). Then there is CiB ∈ Φ
such that ↑B =↑A, whence ⊢ B ↔ A. If ↑A = W, then ⊢ A ↔ ⊤. Thus by
REC, ⊢ CiB ↔ Ci⊤, and since Φ is closed under derivation, Ci⊤ ∈ Φ, against
the fact that ¬Ci⊤ ∈ Φ and Φ is ELG-consistent. Therefore ↑A 6= W, that
is W\ ↑A 6= ∅. (IntEC) Assume (α, β) ∈ N E

i (Φ). Then there is EiA ∈ Φ such
that α =↑A and β = W\ ↑A. Since EiA → CiA ∈ Φ and Φ is closed under
derivation, CiA ∈ Φ. Thus (↑A, W\ ↑A) = (α, β) ∈ NC

i (Φ). ✷

Similarly to the transformation described in [3,4], a bi-neighbourhood model
for ELG can be transformed into a neighbourhood model for it as follows (the
proof is easy by induction on A):

Proposition 2.3 (Model transformation) Let Mbi = 〈W, Nbi, V〉 be a bi-

neighbourhood model for ELG, and Mn = 〈W, Nn, V〉 be the neighbourhood

model defined by taking the same W and V and, for all w ∈ W,

Nn(w) = {γ ⊆ W | there is (α, β) ∈ Nb(w) such that α ⊆ γ ⊆ W \ β}.

Then, for every A ∈ LElg and every w ∈ W, Mn, w  A if and only if

Mbi, w  A.

As the above transformation shows, bi-neighbourhood models have in gen-
eral smaller functions than their equivalent neighbourhood models. The reason
is that every bi-neighbourhood pair (α, β) – whose elements can be thought of
as lower and upper bounds of neighbourhoods – might validate more than one
modal formula.

3 Hypersequent calculus

We now focus on proof theory. To our knowledge, the only proof-theoretic
investigation of Elgesem’s logic is carried on in [9], where a cut-free sequent
calculus is defined. That calculus provides a decision procedure for Elgesem’s
logic, but has no link with the semantics.

We propose here a hypersequent calculus (see [1]) for Elgesem’s logic, in
the same style of calculi for basic non-normal modal logics presented in [3].
A hypersequent can be loosely interpreted as a disjunction of sequents. The
hypersequents considered in this article rely on an additional structure, called
blocks. A block is used to collect E- and C-formulas: more precisely it rep-
resents a conjunction of formulas under the scope of the same E or C. Since
neither E, nor C distribute over conjunction, blocks are not an abbreviation,
they are a proper structural construct, and specific structural rules of the calcu-
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lus handle them. Blocks within hypersequents are primarily needed for building
countermodels of non-derivable formulas: as we will see, they are used to de-
fine bi-neighbourhood pairs. Blocks also have two other advantages: by using
blocks we can encode in a clean (close to the axiomatisation) and analytic way
the relation between the modalities E and C; in addition the rules governing
the modalities E and C are independent one of the other, so that the two E

and C-fragments are separated, and the interaction between the two modali-
ties is captured just by a structural rule on blocks. We consider the following
definitions:

Definition 3.1 (Block, sequent, hypersequent) A block is a structure
〈Σ〉Ei or 〈Σ〉Ci , where i is an agent, and Σ is a multiset of formulas of LElg. A
sequent is a pair Γ ⇒ ∆, where Γ is a multiset of formulas and blocks, and ∆ is
a multiset of formulas. We sometimes consider set(Γ), the support of a multiset
Γ, i.e., the set of its elements disregarding multiplicities. A hypersequent is a
multiset S1 | ... | Sn, where S1, ..., Sn are sequents. S1, ..., Sn are called the
components of the hypersequent.

Definition 3.2 (Formula interpretation) Single sequents are interpreted
as formulas of the logic as follows:

i(A1, ..., An, 〈Σ1〉Ea1
, ..., 〈Σm〉Eam

, 〈Π1〉Cb1
, ..., 〈Πk〉Cbk

⇒ B1, ..., Bℓ)
=

∧

i≤n Ai ∧
∧

j≤m Eaj

∧

Σj ∧
∧

s≤k Cas

∧

Πs →
∨

t≤ℓ Bt.

Definition 3.3 (Semantic interpretation) We say that a sequent S is valid

in a bi-neighbourhood model M, denoted M |= S, if for all w ∈ M, M, w 

i(S). We say that a hypersequent H is valid in M, denoted M |= H, if M |= S
for some S ∈ H.

The rules of the hypersequent calculus HSELG are presented in Fig. 2.
They are expressed in the cumulative version: the principal formulas or blocks
are copied into the premiss(es). This allows us to extract a countermodel
from a single saturated hypersequent. The propositional rules are just the
hypersequent versions of the ordinary corresponding sequent rules (we omit
the rules for ¬, ∨, →, which are standard). As usual, initial sequents init are
restricted to propositional variables, but it is easy to see that G | A, Γ ⇒ ∆, A is
derivable for every A. Similarly to propositional connectives, E- and C-formulas
are handled by separate left and right rules. The rules RE and RC have multiple
premisses, but their number is fixed by the cardinality of the principal blocks
〈Σ〉Ei and 〈Σ〉Ci . For every axiom of ELG there is a corresponding rule in the
calculus. Blocks have a central role in all modal rules. Observe in particular
that E-blocks can be merged by means of the rule CE, but there is no analogous
rule for C-blocks. However, once complex E-blocks are created, they can be
converted into C-blocks by means of the rule IntEC. In Fig. 3 we show two
examples of derivation in HSELG.

Proposition 3.4 (Soundness) If H is derivable in HSELG, then it is valid

in all bi-neighbourhood models for ELG.
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init
G | Γ, p ⇒ p, ∆

L⊥
G | Γ, ⊥ ⇒ ∆

R⊤
G | Γ ⇒ ⊤, ∆

G | Γ, A ∧ B, A, B ⇒ ∆
L∧

G | Γ, A ∧ B ⇒ ∆

G | Γ ⇒ A, A ∧ B, ∆ G | Γ ⇒ B, A ∧ B, ∆
R∧

G | Γ ⇒ A ∧ B, ∆

G | Γ,EiA, 〈A〉Ei ⇒ ∆
LE

G | Γ,EiA ⇒ ∆

G | Γ,CiA, 〈A〉Ci ⇒ ∆
LC

G | Γ,CiA ⇒ ∆

G | Γ, 〈Σ〉Ei , 〈Σ〉Ci ⇒ ∆
IntEC

G | Γ, 〈Σ〉Ei ⇒ ∆

G | Γ, 〈Σ〉Ei ⇒ EiA, ∆ | Σ ⇒ A {G | Γ, 〈Σ〉Ei ⇒ EiA, ∆ | A ⇒ B}B∈Σ

RE

G | Γ, 〈Σ〉Ei ⇒ EiA, ∆

G | Γ, 〈Σ〉Ci ⇒ CiA, ∆ | Σ ⇒ A {G | Γ, 〈Σ〉Ci ⇒ CiA, ∆ | A ⇒ B}B∈Σ

RC

G | Γ, 〈Σ〉Ci ⇒ CiA, ∆

G | Γ, 〈Σ〉Ei , 〈Π〉Ei , 〈Σ, Π〉Ei ⇒ ∆
CE

G | Γ, 〈Σ〉Ei , 〈Π〉Ei ⇒ ∆

G | Γ, 〈Σ〉Ei , Σ ⇒ ∆
TE

G | Γ, 〈Σ〉Ei ⇒ ∆

{G | Γ, 〈Σ〉Ci ⇒ ∆ | ⇒ B}B∈Σ

QC

G | Γ, 〈Σ〉Ci ⇒ ∆

G | Γ, 〈Σ〉Ci ⇒ ∆ | Σ ⇒
PC

G | Γ, 〈Σ〉Ci ⇒ ∆

Fig. 2. The calculus HSELG.

EiA, 〈A〉Ei , 〈A〉Ci ⇒ CiA | A ⇒ A EiA, 〈A〉Ei , 〈A〉Ci ⇒ CiA | A ⇒ A
RC

EiA, 〈A〉Ei , 〈A〉Ci ⇒ CiA
IntEC

EiA, 〈A〉Ei ⇒ CiA
LE

EiA ⇒ CiA

..., 〈A, B〉Ei ⇒ Ei(A ∧ B) | A, B ⇒ A ∧ B ... | A ∧ B ⇒ A ... | A ∧ B ⇒ B
RE

EiA ∧ EiB,EiA,EiB, 〈A〉Ei , 〈B〉Ei , 〈A, B〉Ei ⇒ Ei(A ∧ B)
CE

EiA ∧ EiB,EiA,EiB, 〈A〉Ei , 〈B〉Ei ⇒ Ei(A ∧ B)
LE

EiA ∧ EiB,EiA,EiB, 〈A〉Ei ⇒ Ei(A ∧ B)
LE

EiA ∧ EiB,EiA,EiB ⇒ Ei(A ∧ B)
L∧

EiA ∧ EiB ⇒ Ei(A ∧ B)

Fig. 3. Derivations of axioms IntEC and CE in HSELG.

Proof. As usual, we have to show that the initial sequents are valid, and that
whenever the premiss(es) of a rule are valid, so is the conclusion. We show the
following illustrative cases.

(RE) Assume M |= G | Γ, 〈Σ〉Ei ⇒ EiA, ∆ | Σ ⇒ A and M |= G | Γ, 〈Σ〉Ei ⇒
EiA, ∆ | A ⇒ B for all B ∈ Σ. Then (i) M |= G, or (ii) M |= Γ, 〈Σ〉Ei ⇒
EiA, ∆, or (iii) M |= Σ ⇒ A and M |= A ⇒ B for all B ∈ Σ. If (i) or (ii) we
are done. If (iii), then M |=

∧

Σ → A and M |= A → B for all B ∈ Σ, that
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is M |=
∧

Σ ↔ A. Since REE is valid, M |= Ei

∧

Σ → EiA = i(〈Σ〉Ei ⇒ EiA).
Thus M |= Γ, 〈Σ〉Ei ⇒ EiA, ∆.

(IntEC) Assume M |= G | Γ, 〈Σ〉Ei , 〈Σ〉Ci ⇒ ∆. Then M |= G or M |=
Γ, 〈Σ〉Ei , 〈Σ〉Ci ⇒ ∆. In the first case we are done. In the second case, M |=
i(Γ, 〈Σ〉Ei , 〈Σ〉Ci ⇒ ∆), which is equivalent to Ei

∧

Σ ∧ Ci

∧

Σ → i(Γ ⇒ ∆). By
the validity of axiom IntEC, this is in turn equivalent to Ei

∧

Σ → i(Γ ⇒ ∆).
Therefore M |= i(Γ, 〈Σ〉Ei ⇒ ∆). ✷

We now investigate the structural properties of our calculus, and show that
it is complete with respect to the axiomatisation. A purely syntactic complete-
ness proof is significant because it is independent from the choice of any specific
semantics. As usual, this proof requires to show the admissibility of the cut
rule, that we formulate as follows:

G | Γ ⇒ ∆, A G | A, Γ ⇒ ∆
cut

G | Γ ⇒ ∆

This means that whenever the premisses of cut are derivable, the conclusion
is also derivable. In turn, admissibility of cut depends upon the admissibility
of the structural rules of weakening and contraction, that in the hypersequent
framework must be formulated both in their internal and in their external
variants as follows:

Proposition 3.5 (Admissibility of structural rules) The following rules

are admissible in HSELG, where φ is any formula A or block 〈Σ〉Ei or 〈Σ〉Ci :

G | Γ ⇒ ∆
Lwk

G | φ, Γ ⇒ ∆

G | φ, φ, Γ ⇒ ∆
Lctr

G | φ, Γ ⇒ ∆

G | 〈A, A, Σ〉, Γ ⇒ ∆
Bctr

G | 〈A, Σ〉, Γ ⇒ ∆

G | Γ ⇒ ∆
Rwk

G | Γ ⇒ ∆, A

G | Γ ⇒ ∆, A, A
Rctr

G | Γ ⇒ ∆, A

G
Ewk

G | Γ ⇒ ∆

G | Γ ⇒ ∆ | Γ ⇒ ∆
Ectr

G | Γ ⇒ ∆

The proof of admissibility of weakening and contraction is standard by
induction on the derivation of the premisses. Observe that as an immediate
consequence of the admissibility of weakening all rules are invertible, which
means that whenever the conclusion of a rule is derivable, so are the premisses.
This is important because if a formula is derivable we get a derivation no matter
the order in which the rules are applied (see Sec. 4).

By contrast, the proof of admissibility of cut is a bit more intricate and
deserves more attention. We shall prove simultaneously the admissibility of
cut and of the following rule sub, which states that a formula A inside one or
more blocks can be replaced by any equivalent set of formulas Σ:

G | Σ ⇒ A {G | A ⇒ B}B∈Σ G |
−−−−−−→
〈An, Π〉Ei ,

−−−−−−→
〈Am, Ω〉Cj , Γ ⇒ ∆

sub

G |
−−−−−→
〈Σn, Π〉Ei ,

−−−−−−→
〈Σm, Ω〉Cj , Γ ⇒ ∆

where for instance
−−−−−−→
〈An, Π〉Ei stays for 〈An1 , Π1〉Ei1

, ..., 〈Ank , Πk〉Eik
, and Anℓ is a
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compact way to denote nℓ occurrences of A. In the proof we use the following
definition of weight of formulas and blocks.

Definition 3.6 (Weight of formulas and blocks) The weight of formu-
las and blocks is recursively defined as follows: w(⊥) = w(⊤) = w(p) = 0;
w(A ∧ B) = w(A ∨ B) = w(A → B) = w(A) + w(B) + 1; w(〈A1, ..., Ak〉Ei ) =
w(〈A1, ..., Ak〉Cj ) = max1≤n≤k{w(An)} + 1, w(EiA) = w(CiA) = w(A) + 2.

Theorem 3.7 (Cut elimination) The rules cut and sub are admissible in

HSELG.

Sketch of Proof. Let Cut(c, h) mean that all applications of cut of height h
on a cut formula of weight c are admissible, and Sub(c) mean that all appli-
cations of sub where A has weight c are admissible. Then the theorem is a
consequence of the following claims: (A) ∀c.Cut(c, 0); (B) ∀h.Cut(0, h); (C)
∀c.(∀h.Cut(c, h) → Sub(c)); (D) ∀c.∀h. ((∀c′ < c.(Sub(c′) ∧ ∀h′.Cut(c′, h′)) ∧
∀h′′ < h.Cut(c, h′′)) → Cut(c, h)). The proof is in the Appendix. ✷

As a consequence of admissibility of cut we can prove the following com-
pleteness theorem.

Theorem 3.8 (Axiomatic completeness) If A is derivable in ELG, then

⇒ A is derivable in HSELG.

Proof. All modal axioms and rules of ELG are derivable in HSELG. As
examples, in Fig. 3 we have shown the derivations of axioms IntEC and CE.
Moreover, the rule REE (and analogously the rule REC) is derived as follows:

A ⇒ B
Ewk

EiA, 〈A〉Ei ⇒ EiB | A ⇒ B

B ⇒ A
Ewk

EiA, 〈A〉Ei ⇒ EiB | B ⇒ A
RE

EiA, 〈A〉Ei ⇒ EiB
LE

EiA ⇒ EiB

The derivation contains applications of Ewk, which has been proved admissible.
Finally, Modus Ponens is simulated by cut, which has been proved admissible,
in the usual way. ✷

As mentioned, hypersequents are not strictly necessary for making deriva-
tions, and in particular one can show that a hypersequent is derivable in HSELG

if and only if one of its components is derivable. However, the use of hyper-
sequents allows us to obtain a calculus where all rules are invertible, which
entails that the order of rule applications does not matter: essentially, modulo
the order of rule applications, every formula has a single derivation, or a single

failed proof, whence in particular proof search does not require backtracking.
Moreover, hypersequents are crucial for a direct computation of countermod-
els from every single unprovable hypersequent occurring as a leaf of a failed
derivation. We shall see all this in the next section.

4 Proof search and countermodel extraction

In this section, we define a procedure for checking the validity/derivability of
formulas in Elgesem’s logic by means of our hypersequent calculus. The pro-
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cedure is based on a simple root-first proof search strategy. We show that the
strategy always terminates and constructs a derivation for every valid formula.
Moreover, we show that whenever the proof fails it possible to directly extract
a countermodel of the non-valid formula. The strategy is based on the notion
of saturation. Intuitively, a saturated hypersequent is such that the backward
application of any rule to it cannot add any information, in the sense that one
of the premisses of the rule is already included in the hypersequent.

Definition 4.1 (Saturated hypersequent) Let H = Γ1 ⇒ ∆1 | ... | Γk ⇒
∆k be a hypersequent occurring in a proof for H ′. The saturation conditions
associated to each application of a rule of HSELG are as follows:

• Unprovability: (init) Γn ∩ ∆n = ∅. (⊥L) ⊥ /∈ Γn. (⊤R) ⊤ /∈ ∆n.

• Propositional rules: (∧L) If A ∧ B ∈ Γn, then A ∈ Γn and B ∈ Γn. (∧R) If
A ∧ B ∈ ∆n, then A ∈ ∆n or B ∈ ∆n. Analogous for the rules for ¬, ∨, →.

• Modal rules: (LE) If EiA ∈ Γn, then 〈A〉Ei ∈ Γn. (RE) If Γ, 〈Σ〉Ei ⇒ EiB, ∆
is in H, then there is Γ′, Σ ⇒ B, ∆′ in H or there is Γ′, B ⇒ A, ∆′ in H for
some A ∈ Σ. (LC) and (RC) are analogous. (CE) If 〈Σ〉Ei , 〈Π〉Ei ∈ Γn, then
there is 〈Ω〉Ei ∈ Γn such that set(Σ, Π) = set(Ω). (TE) If 〈Σ〉Ei ∈ Γn, then
set(Σ) ⊆ Γn. (QC) If Γ, 〈Σ〉Ci ⇒ ∆ is in H, then there is Γ′ ⇒ B, ∆′ in H for
some B ∈ Σ. (PC) If Γ, 〈Σ〉Ci ⇒ ∆ is in H, then there is Γ′ ⇒ ∆′ in H such
that set(Σ) ⊆ Γ′. (IntEC) If 〈Σ〉Ei ∈ Γn, then there is 〈Ω〉Ci ∈ Γn such that
set(Σ) = set(Ω).

We say that H is saturated with respect to an application of a rule R if it
satisfies the corresponding saturation condition (R) for that particular rule
application, and that it is saturated with respect to HSELG if it is saturated
with respect to every possible application of any rule of HSELG.

The proof search strategy is simple: (i) do not apply any rule to initial se-
quents, and (ii) do not apply a rule to a hypersequent which is already saturated
with respect to that particular application of that rule.

The strategy essentially amounts to avoiding applications of rules that do
not add any additional information to the hypersequents. We can prove that
this strategy leads to a terminating proof search algorithm.

Proposition 4.2 (Termination of proof search) Every branch of a proof

of a hypersequent H built in accordance with the strategy is finite. Thus, the

proof search procedure for H always terminates. Moreover, every branch ends

either with an initial hypersequent or a saturated one.

Proof. Let P be a proof of H. Then all formulas occurring in P (both in-
side and outside blocks) are subformulas of formulas of H, so they are finitely
many. Moreover, saturation conditions prevent duplications of the same formu-
las (both inside and outside blocks) and same blocks. Therefore every branch
of P can contain only finitely many hypersequents. ✷

Hypersequents occurring in a proof of H can be exponentially large with
respect to the size of H. This is due to the presence of the rule CE that,
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given n formulas EiA1, . . . , EiAn, allows one to build a block for every subset
of {A1, ..., An}. In this respect, our decision procedure does not match the
PSPACE complexity upper bound established for Elgesem’s logic by Schröder
and Pattinson [10] and Troquard [11].

An optimal calculus could be obtained either by considering the sequent
calculus in [9], or (similarly to [3]) by reformulating the rules in Fig. 2 in such
a way that the principal formulas are not copied into the premisses. However,
in this way we would lose the invertibility of the rules, whence the possibility
to directly extract countermodels from single failed proofs. The situation is
analogous to the one of modal logic K: while a PSPACE complexity upper
bound can be obtain with the sequent calculus, the same is not possible with a
calculus with only invertible rules allowing for direct countermodel extraction
of non-valid formulas. This essentially shows the existence of a necessary trade-
off in the logic ELG between the optimal complexity of the calculus and the
possibility to directly extract countermodels from failed proofs.

We now show how to directly build a countermodel in the bi-neighbourhood
semantics from a saturated hypersequent.

Definition 4.3 (Countermodel construction) Let H be a saturated hy-
persequent occurring in a proof for H ′. Moreover, let e : N −→ H be
an enumeration of the components of H. Given e, we can write H as
Γ1 ⇒ ∆1 | ... | Γk ⇒ ∆k. The model M = 〈W, N , V〉 is defined as follows:

• W = {n | Γn ⇒ ∆n ∈ H}.

• V(p) = {n | p ∈ Γn}.

• For every block 〈Σ〉Ei or 〈Σ〉Ci occurring in a component Γm ⇒ ∆m of H,

Σ+ = {n ∈ W | set(Σ) ⊆ Γn} and Σ− = {n ∈ W | Σ ∩ ∆n 6= ∅}.

• For every i ∈ A and every n ∈ W,

N E
i (n) = {(Σ+, Σ−) | 〈Σ〉Ei ∈ Γn} and NC

i (n) = {(Σ+, Σ−) | 〈Σ〉Ci ∈ Γn}.

Lemma 4.4 Let M be defined as in Def. 4.3. Then for every A, 〈Σ〉Ei , 〈Π〉Cj
and every n ∈ W, we have: If A ∈ Γn, then n  A; if 〈Σ〉Ei ∈ Γn, then

n  Ei

∧

Σ; if 〈Π〉Cj ∈ Γn, then n  Cj

∧

Π; and if A ∈ ∆n, then n 6 A.

Moreover, M is a bi-neighbourhood model for ELG.

Proof. The first claim is proved by mutual induction on A and 〈Σ〉Ei , 〈Σ〉Ci .
We only consider the inductive cases of modal formulas and blocks.

(〈Σ〉Ei ∈ Γn) By definition, (Σ+, Σ−) ∈ N E
i (n). We show that Σ+ ⊆ J

∧

ΣK

and Σ− ⊆ J¬
∧

ΣK, which implies n  Ei

∧

Σ. If m ∈ Σ+, then set(Σ) ⊆ Γm.
By i.h. m  A for all A ∈ Σ, then m 

∧

Σ. If m ∈ Σ−, then there is
B ∈ Σ ∩ ∆m. By i.h. m 6 B, then m 6

∧

Σ.
(EiB ∈ Γn) By saturation of rule LE, 〈B〉Ei ∈ Γn. Then by i.h. n  EiB.
(EiB ∈ ∆n) Assume (α, β) ∈ N E

i (n). Then there is 〈Σ〉Ei ∈ Γn such that
Σ+ = α and Σ− = β. By saturation of rule RE, there is m ∈ W such that
Σ ⊆ Γm and B ∈ ∆m, or there is m ∈ W such that Σ ∩ ∆m 6= ∅ and B ∈ Γm.
In the first case, m ∈ Σ+ = α and by i.h. m 6 B, thus α 6⊆ JBK. In the second
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case, m ∈ Σ− = β and by i.h. m  B, thus β 6⊆ J¬BK. Therefore n 6 EiB.
For blocks 〈Σ〉Ci and formulas CiB the proof is analogous. Now we prove

that M is a model for ELG.
(CE) Assume that (α, β), (γ, δ) ∈ N E

i (n). Then there are 〈Σ〉Ei , 〈Π〉Ei ∈ Γn

such that Σ+ = α, Σ− = β, Π+ = γ and Π− = δ. By saturation of rule CE,
there is 〈Ω〉 ∈ Γn such that set(Ω) = set(Σ, Π), thus (Ω+, Ω−) ∈ N E

i (n). We
show that (i) Ω+ = α ∩ γ and (ii) Ω− = β ∪ δ. (i) m ∈ Ω+ iff set(Ω) =
set(Σ, Π) ⊆ Γm iff set(Σ) ⊆ Γm and set(Π) ⊆ Γm iff m ∈ Σ+ = α and m ∈
Π+ = γ iff m ∈ α ∩ γ. (ii) m ∈ Ω− iff Ω ∩ ∆m 6= ∅ iff Σ, Π ∩ ∆m 6= ∅ iff
Σ ∩ ∆m 6= ∅ or Π ∩ ∆m 6= ∅ iff m ∈ Σ− = β or m ∈ Π− = δ iff m ∈ β ∪ δ.

(IntEC, TE) If (α, β) ∈ N E
i (n), then there is 〈Σ〉Ei ∈ Γn such that Σ+ = α and

Σ− = β. By saturation of rule TE, set(Σ) ⊆ Γn, then n ∈ Σ+ = α. Moreover,
by saturation of rule IntEC, then there is 〈Ω〉Ci ∈ Γn such that set(Σ) = set(Ω).
Then (Ω+, Ω−) = (Σ+, Σ−) = (α, β) ∈ NC

i (n).
(PC, QC) If (α, β) ∈ NC

i (n), then there is 〈Σ〉Ci ∈ Γn such that Σ+ = α and
Σ− = β. By saturation of rule PC, there is m ∈ W such that set(Σ) ⊆ Γm.
Then m ∈ Σ+ = α, that is α 6= ∅. Moreover, by saturation of rule QC, there is
ℓ ∈ W such that Σ ∩ ∆ℓ 6= ∅. Then ℓ ∈ Σ− = β, that is β 6= ∅. ✷

Observe that since all rules are cumulative, the countermodel M of H is also
a countermodel of the root hypersequent H ′. Then for every hypersequent we
either get a derivation (if the hypersequent is valid) or obtain a countermodel.
This entails the following theorem.

Theorem 4.5 (Semantic completeness) If H is valid in all bi-

neighbourhood models for ELG, then it is derivable in HSELG.

The proof search procedure for the calculus HSELG can be used to au-
tomatically and constructively check the validity/derivability of formulas in
Elgesem logic. For every formula, the proof search procedure either provides a
derivation if the formula is valid, or returns a countermodel if it is not.

Example 4.6 (Failure of delegation) The treatment of delegation repre-
sents a main difference between Elgesem’s account of agency and other ac-
counts, such as for instance the one formalised by STIT logics. It is explicitly
rejected by Elgesem [5]: “a person is normally not considered the agent of some
consequence of his action if another agent interferes in the causal chain.” For
instance, we can say that having the car repaired is not the same as repairing
the car by yourself. Let us represent Anna by a, Beatrice by b, and “repair-
ing the car” by p. Then EaEbp → Eap expresses the sentence “If Anna gets
Beatrice to repair her car, then Anna repairs her car”. By using our calcu-
lus we can automatically obtain a countermodel of EaEbp → Eap. First, in
Fig. 4 we find a failed proof of EaEbp → Eap in HSELG. Then we consider the
following enumeration of the components of the saturated hypersequent: 1 7→
〈Ebp〉Ea, 〈p〉Eb , 〈Ebp〉Ca , 〈p〉Cb , p,Ebp,EaEbp ⇒ Eap; 2 7→ p ⇒ Ebp; and 3 7→ ⇒ p.
We obtain the following countermodels:

Bi-neighbourhood countermodel: By applying the construction in Def. 4.3 we
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init
... | 〈p〉Eb , p,Ebp ⇒ p

TE

... | 〈p〉Eb ,Ebp ⇒ p
LE

... | Ebp ⇒ p

saturated

〈Ebp〉Ea, 〈p〉Eb , 〈Ebp〉Ca , 〈p〉Cb , p,Ebp,EaEbp ⇒ Eap | p ⇒ Ebp | ⇒ p
QC

〈Ebp〉Ea, 〈p〉Eb , 〈Ebp〉Ca , 〈p〉Cb , p,Ebp,EaEbp ⇒ Eap | p ⇒ Ebp
IntEC

〈Ebp〉Ea, 〈p〉Eb , 〈Ebp〉Ca , p,Ebp,EaEbp ⇒ Eap | p ⇒ Ebp
IntEC

〈Ebp〉Ea, 〈p〉Eb , p,Ebp,EaEbp ⇒ Eap | p ⇒ Ebp
TE

〈Ebp〉Ea, 〈p〉Eb ,Ebp,EaEbp ⇒ Eap | p ⇒ Ebp
LE

〈Ebp〉Ea,Ebp,EaEbp ⇒ Eap | p ⇒ Ebp
TE

〈Ebp〉Ea,EaEbp ⇒ Eap | p ⇒ Ebp
RE

〈Ebp〉Ea,EaEbp ⇒ Eap
LE

EaEbp ⇒ Eap

Fig. 4. Failed proof in HSELG.

REE

A ↔ B
EgA ↔ EgB

REC

A ↔ B
CgA ↔ CgB

CE EgA ∧ EgB → Eg(A ∧ B) QC ¬Cg⊤
TE EgA → A PC ¬Cg⊥
Int1

EC EgA → CgA FC ¬C∅A

Int2
EC Eg1

A ∧ Eg2
B → Cg1∪g2

(A ∧ B)

Fig. 5. Modal axioms and rules of Troquard’s logic COAL.

obtain the bi-neighbourhood countermodel M = 〈W, N E
i , NC

i , V〉, where W =
{1, 2, 3}; V(p) = {1, 2}; N E

a (1) = NC
a (1) = {({1}, {2})} – since N E

a (1) =
NC

a (1) = {(Ebp+,Ebp−)}, Ebp+ = {1}, and Ebp− = {2} –; N E

b (1) = NC

b (1) =
{({1, 2}, {3})} – since N E

b (1) = NC

b (1) = {(p+, p−)}, p+ = {1, 2}, and p− = {3}
–; N E

i (n) = NC
i (n) = ∅ for i = a, b and n = 2, 3.

Neighbourhood countermodel: By applying the transformation in Prop. 2.3 we

obtain the neighbourhood countermodel M = 〈W, N E
i , NC

i , V〉, where W =
{1, 2, 3}; V(p) = {1, 2}; N E

a (1) = NC
a (1) = {{1}, {1, 3}}; N E

b (1) = NC

b (1) =
{{1, 2}}; and N E

i (n) = NC
i (n) = ∅ for i = a, b and n = 2, 3.

5 Extension to Troquard’s coalition logic

A coalition version of Elgesem’s logic is proposed by Troquard [11]. In Tro-
quard’s logic, called COAL, single agents are replaced by groups of agents.
The aim is to represent what agents do and can do when acting in coalitions.
The logic COAL is defined by extending classical propositional logic with the
modal axioms and rules in Fig. 5.

Apart from FC and Int2
EC, the axioms and rules of COAL are just the

coalition versions of the corresponding ones in ELG, with agents i replaced
by groups g. The peculiar aspects of group agency are represented in COAL

by the axioms FC and Int2
EC. In particular, the axiom FC expresses that the

empty group cannot realise anything, whereas the axiom Int2
EC says that if a

group realises A and another group realises B, then by joining their forces
they could realise both A and B. Observe that the axiom Int1

EC is derivable
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from Int2
EC. Nevertheless we keep it in the axiomatisation, as in [11], to keep

the correspondence with the calculus where a specific rule for Int1
EC is needed

to ensure the admissibility of contraction. As for ELG, we can define bi-
neighbourhood models for COAL.

Definition 5.1 A bi-neighbourhood model for COAL is a tuple M =
〈W, N E

g , NC
g , V〉, where in particular for every group of agents g, N E

g and NC
g

are two bi-neighbourhood functions satisfying the conditions (CE), (TE), (QC),
and (PC) of Def. 2.1 (but with N E and NC indexed by g instead of i), and also
the following additional conditions:

(FC) NC

∅ (w) = ∅.

(Int2
EC) If (α, β) ∈ N E

g1
(w) and (γ, δ) ∈ N E

g2
(w), then

(α ∩ γ, β ∪ δ) ∈ NC
g1∪g2

(w).

The forcing relation  is defined as in Def. 2.1, in particular:

M, w  EgA iff there is (α, β) ∈ N E
g (w) s.t.

for all v ∈ α, M, v  A, and for all u ∈ β, M, u 6 A.

M, w  CgA iff there is (α, β) ∈ NC
g (w) s.t.

for all v ∈ α, M, v  A, and for all u ∈ β, M, u 6 A.

Similarly to logic ELG we can prove the following completeness theorem.

Theorem 5.2 A is derivable in COAL if and only if it is valid in all bi-

neighbourhood models for COAL.

Moreover, by a transformation analogous to the one in Prop. 2.3 we can
convert the bi-neighbourhood models for COAL into equivalent neighbour-
hood models for it, as they are defined in [11]: it suffices to assign to the
Eg-neighbourhood (resp. the Cg-neighbourhood) of each world w, the subsets
γ such that α ⊆ γ ⊆ W \ β and (α, β) ∈ N E

g (w) (resp. (α, β) ∈ NC
g (w)).

The hypersequent calculus HSCOAL is defined by the propositional rules in
Fig. 2 and the modal rules in Fig. 6. As before, each axiom has a corresponding
rule in the calculus. An example of derivation is the following.

..., 〈A, B〉Cg1∪g2
⇒ Cg1∪g2

(A ∧ B) | A, B ⇒ A ∧ B ... | A ∧ B ⇒ A ... | A ∧ B ⇒ B
RC

Eg1
A ∧ Eg2

B,Eg1
A,Eg2

B, 〈A〉Eg1
, 〈B〉Eg2

, 〈A, B〉Cg1∪g2
⇒ Cg1∪g2

(A ∧ B)
Int

2
EC

Eg1
A ∧ Eg2

B,Eg1
A,Eg2

B, 〈A〉Eg1
, 〈B〉Eg2

⇒ Cg1∪g2
(A ∧ B)

LE × 2
Eg1

A ∧ Eg2
B,Eg1

A,Eg2
B ⇒ Cg1∪g2

(A ∧ B)
L∧

Eg1
A ∧ Eg2

B ⇒ Cg1∪g2
(A ∧ B)

By extending the proofs for HSELG we can obtain the following theorem.

Theorem 5.3 All structural rules including cut are admissible in HSCOAL.

Moreover, HSCOAL is axiomatically complete with respect to COAL, that is,

if A is derivable in COAL, then ⇒ A is derivable in HSCOAL.

Termination of proof search can be obtained by considering a proof search
strategy analogous to the one in HSELG. We only need to consider the fol-
lowing two additional saturation conditions: (FC) 〈Σ〉C∅ /∈ Γn, and (Int

2
EC) if



Dalmonte, Grellois and Olivetti 129

G | Γ,EgA, 〈A〉Eg ⇒ ∆
LE

G | Γ,EgA ⇒ ∆

G | Γ,CgA, 〈A〉Cg ⇒ ∆
LC

G | Γ,CgA ⇒ ∆

G | Γ, 〈Σ〉Eg , 〈Σ〉Cg ⇒ ∆
Int

1

EC
G | Γ, 〈Σ〉Eg ⇒ ∆

G | Γ, 〈Σ〉Eg ⇒ EgA, ∆ | Σ ⇒ A {G | Γ, 〈Σ〉Eg ⇒ EgA, ∆ | A ⇒ B}B∈Σ

RE

G | Γ, 〈Σ〉Eg ⇒ EgA, ∆

G | Γ, 〈Σ〉Cg ⇒ CgA, ∆ | Σ ⇒ A {G | Γ, 〈Σ〉Cg ⇒ CgA, ∆ | A ⇒ B}B∈Σ

RC

G | Γ, 〈Σ〉Cg ⇒ CgA, ∆

G | Γ, 〈Σ〉Eg , 〈Π〉Eg , 〈Σ, Π〉Eg ⇒ ∆
CE

G | Γ, 〈Σ〉Eg , 〈Π〉Eg ⇒ ∆

G | Γ, 〈Σ〉Eg , Σ ⇒ ∆
TE

G | Γ, 〈Σ〉Eg ⇒ ∆

{G | Γ, 〈Σ〉Cg ⇒ ∆ | ⇒ B}B∈Σ

QC

G | Γ, 〈Σ〉Cg ⇒ ∆

G | Γ, 〈Σ〉Cg ⇒ ∆ | Σ ⇒
PC

G | Γ, 〈Σ〉Cg ⇒ ∆

FC

G | Γ, 〈Σ〉C∅ ⇒ ∆

G | Γ, 〈Σ〉Eg1
, 〈Π〉Eg2

, 〈Σ, Π〉Cg1∪g2
⇒ ∆

Int
2

EC
G | Γ, 〈Σ〉Eg1

, 〈Π〉Eg2
⇒ ∆

Fig. 6. Modal rules of HSCOAL.

〈Σ〉Eg1
, 〈Π〉Eg2

∈ Γn, then 〈Ω〉Cg1∪g2
∈ Γn such that set(Ω) = set(Σ, Π). As for

HSELG we can prove that proof search always terminates, whence we obtain
a decision procedure for the logic COAL. Again, proof search is not optimal
since derivation can have an exponential size whereas the logic is in PSPACE,
as proved by Troquard [11].

We can also prove that the calculus is semantically complete. As before,
the proof consists in showing how to extract a countermodel of a non-derivable
hypersequent using the information provided by the failed proof.

Theorem 5.4 If H is valid in all bi-neighbourhood models for COAL, then it

is derivable in HSCOAL.

Proof. Given a saturated hypersequent H we define a model M as in Def. 4.3
(replacing agents i with groups g). We can prove that formulas and blocks in the
left-hand side of the components are satisfied in the corresponding worlds, and
that formulas in the right-hand side are falsified, whence M is a countermodel
of H. Moreover, we can prove that M is a bi-neighbourhood model for COAL.
The proofs are as in Lemma 4.4. We only consider the following two conditions.

(Int2
EC) Assume that (α, β) ∈ N E

g1
(n) and (γ, δ) ∈ N E

g2
(n). If (α, β) 6= (γ, δ)

or g1 6= g2, then there are 〈Σ〉Eg1
, 〈Π〉Eg2

∈ Γn such that Σ+ = α, Σ− = β,

Π+ = γ and Π− = δ. By saturation or rule Int
2
EC, there is 〈Ω〉Cg1∪g2

∈ Γn

such that set(Ω) = set(Σ, Π), thus (Ω+, Ω−) ∈ NC
g1∪g2

(n), where, as shown in
the proof of Lemma 4.4 case (CE), Ω+ = α ∩ γ and Ω− = β ∪ δ. If instead
(α, β) = (γ, δ) and g1 = g2, then there is 〈Σ〉Eg1

∈ Γn such that Σ+ = α
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and Σ− = β. Then by saturation of rule IntEC there is 〈Ω〉Ci ∈ Γn such that
set(Σ) = set(Ω). Then (Ω+, Ω−) = (Σ+, Σ−) = (α, β) ∈ NC

i (n).
(FC) By saturation of FC there is no block 〈Σ〉C∅ ∈ Γn, then NC

∅ (n) = ∅. ✷

We conclude this section by showing that coalition monotonicity is not valid
in COAL. We present the countermodel directly extracted from a failed proof.

Example 5.5 (No coalition monotonicity) We show that the formula
E{a}p → E{a,b}p is not valid in COAL. A failed proof is as follows:

saturated

〈p〉E{a}, 〈p〉C{a}, p,E{a}p ⇒ E{a,b}p | ⇒ p
QC

〈p〉E{a}, 〈p〉C{a}, p,E{a}p ⇒ E{a,b}p
IntEC

〈p〉E{a}, p,E{a}p ⇒ E{a,b}p
TE

〈p〉E{a},E{a}p ⇒ E{a,b}p
LE

E{a}p ⇒ E{a,b}p

Let 1 7→ 〈p〉Ea, 〈p〉Ca , p,E{a}p ⇒ E{a,b}p, and 2 7→ ⇒ p. We obtain the following
countermodels:

Bi-neighbourhood countermodel: M = 〈W, N E
g , NC

g , V〉, where W = {1, 2};

V(p) = {1}; N E

{a}(1) = NC

{a}(1) = {(p+, p−)} = {({1}, {2})}; and N E
g (k) =

NC
g (k) = ∅ for g 6= {a} or k 6= 1.

Neighbourhood countermodel: M = 〈W, N E
g , NC

g , V〉, where W = {1, 2};

V(p) = {1}; N E

{a}(1) = NC

{a}(1) = {{1}}; and N E
g (k) = NC

g (k) = ∅ for g 6= {a}
or k 6= 1.

6 Conclusion

We have presented hypersequent calculi for Elgesem’s logic of agency and abil-
ity and its coalition extension proposed by Troquard. The calculi have good
structural properties, including the syntactical admissibility of cut. Further-
more, we have defined a terminating proof search strategy which ensures that
a derivation or a countermodel will be found for every formula. In particular,
in case of a failed proof it is possible to directly extract a countermodel of
the non-valid formula in the bi-neighbourhood semantics, whence by an easy
transformation in the standard neighbourhood semantics. All in all, the calculi
provide constructive decision procedures for the two logics.

Troquard has proposed several extensions of his coalition logic with further
principles for group agency, such as delegation and strict-joint agency, the
latter stating that if a group brings about that A, then any strict subgroup
of it cannot bring about that A. We plan to extend our calculi to cover also
these extensions, and possibly others. Moreover, our calculi are well-suited
for automatisation. We plan to implement them in order to realise the first
theorem provers for the logics of agency and ability.
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Appendix

Proof of Theorem 3.7. Recall that, for an application of cut, the cut formula

is the formula which is deleted by that application, while the cut height is the
sum of the heights of the derivations of the premisses of cut. We prove that:
(A) ∀c.Cut(c, 0). (B) ∀h.Cut(0, h). (C) ∀c.(∀h.Cut(c, h) → Sub(c)). (D)
∀c.∀h.((∀c′ < c.(Sub(c′) ∧ ∀h′.Cut(c′, h′)) ∧ ∀h′′ < h.Cut(c, h′′)) → Cut(c, h)).

(A) and (B) are trivial. (C) Assume ∀hCut(c, h). The proof is by induc-

tion on the height m of the derivation of G |
−−−−−−→
〈An, Π〉Ei ,

−−−−−−→
〈Am, Ω〉Cj , Γ ⇒ ∆.

We only consider the case where m > 0 and at least one block among
−−−−−−→
〈An, Π〉Ei ,

−−−−−−→
〈Am, Ω〉Cj is principal in the last rule application. We consider as

an example the case where the last rule applied is IntEC:

G | 〈Ank , Πk〉Ei , 〈Ank , Πk〉Ci , Γ ⇒ ∆
IntEC

G | 〈Ank , Πk〉Ei , Γ ⇒ ∆

By applying the inductive hypothesis to the premiss we obtain G |
〈Σnk , Πk〉Ei , 〈Σnk , Πk〉Ci , Γ ⇒ ∆, then by IntEC we derive G | 〈Σnk , Πk〉Ci , Γ ⇒ ∆.

(D) Assume ∀c′ < c. (Sub(c′) ∧ ∀h′. Cut(c′, h′)) and ∀h′′ < h. Cut(c, h′′).
We show that all applications of cut of height h on a cut formula of weight c
can be replaced by different applications of cut, either of smaller height or on
a cut formula of smaller weight. We only consider the cases where h, c > 0 and
the cut formula is EiB, principal in the derivation of both premisses of cut:

G | 〈Σ〉E
i

, Γ ⇒ ∆,EiB | Σ ⇒ B
.
.
. {G | 〈Σ〉E

i
, Γ ⇒ ∆,EiB | B ⇒ C}C∈Σ

RE

G | 〈Σ〉E
i

, Γ ⇒ ∆,EiB

G | 〈B〉,EiB, 〈Σ〉E
i

, Γ ⇒ ∆
LE

G | EiB, 〈Σ〉E
i

, Γ ⇒ ∆

cut
G | 〈Σ〉E

i
, Γ ⇒ ∆

The derivation is converted as follows, with several applications of cut of smaller
height and an admissible application of sub.

G | 〈Σ〉E
i

, Γ ⇒ ∆,EiB | Σ ⇒ B

G | EiB, 〈Σ〉E
i

, Γ ⇒ ∆

Ewk
G | EiB, 〈Σ〉E

i
, Γ ⇒ ∆ | Σ ⇒ B

cut
1© G | 〈Σ〉E

i
, Γ ⇒ ∆ | Σ ⇒ B

G | 〈Σ〉E
i

, Γ ⇒ ∆,EiB
Lwk

G | 〈B〉E
i

, 〈Σ〉E
i

, Γ ⇒ ∆,EiB G | 〈B〉,EiB, 〈Σ〉E
i

, Γ ⇒ ∆

cut
G | 〈B〉E

i
, 〈Σ〉E

i
, Γ ⇒ ∆

Ewk
2© G | 〈Σ〉E

i
, Γ ⇒ ∆ | 〈B〉E

i
, 〈Σ〉E

i
, Γ ⇒ ∆

1©

G | 〈Σ〉Ei , Γ ⇒ ∆,EiB | B ⇒ C

G | EiB, 〈Σ〉Ei , Γ ⇒ ∆
Ewk

G | EiB, 〈Σ〉Ei , Γ ⇒ ∆ | B ⇒ C{

cut

}

C∈ΣG | 〈Σ〉Ei , Γ ⇒ ∆ | B ⇒ C 2©
sub

G | 〈Σ〉Ei , Γ ⇒ ∆ | 〈Σ〉Ei , 〈Σ〉Ei , Γ ⇒ ∆
Lctr

G | 〈Σ〉Ei , Γ ⇒ ∆ | 〈Σ〉Ei , Γ ⇒ ∆
Ectr

G | 〈Σ〉Ei , Γ ⇒ ∆
✷
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The Original Position: A Logical Analysis

Thijs De Coninck 1

Ghent University

Frederik Van De Putte 2

University of Bayreuth

Erasmus University of Rotterdam

Abstract

Rawls famously claimed that choices based on the Difference Principle coincide with
the choices of any rational individual in the Original Position. In this paper, we
develop a logic in which we can express and prove Rawls’ thesis in its object language.
Starting from a standard semantics of choice under uncertainty, we enrich our models
in order to represent uncertainty about one’s position. We then introduce a sound
and strongly complete logic that allows us to speak about agents’ positions and their
derived utilities, and that can express changes in the uncertainty about those positions
using dynamic operators. Finally, we show how this logic allows us to define various
types of obligation based on a Rawlsian notion of procedural fairness.

Keywords: The Original Position, Choice under uncertainty, Deontic logic, Fairness.

1 Introduction

In his Theory of Justice, John Rawls puts forward principles of justice that he
argues should be used to determine the basic structure of society [16]. What
made Rawls innovative, however, were not the principles themselves, but the
way in which he argued for them [15]. Famously, he makes use of a method-
ological device known as the Original Position, which he describes as

[...] a purely hypothetical situation characterized so as to lead to a certain
conception of justice. Among the essential features of this situation is that
no one knows his place in society, his class position or social status, nor does
any one know his fortune in the distribution of natural assets and abilities,
his intelligence, strength, and the like. [16, p. 11]

1 Thijs De Coninck is a PhD fellow of the Research Foundation – Flanders supported by a
fundamental research grant (1167619N).
2 Frederik Van De Putte’s research was funded by a grant from the Research Foundation –
Flanders (FWO-Vlaanderen), by a Marie Sk lodowska-Curie Fellowship (grant agreement ID:
795329), and by a grant from the Dutch Research Council (NWO), no. VI.Vidi.191.105.
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So Rawls’ basic idea is to conceive of a situation in which a person is deprived
of morally irrelevant knowledge and to ask: what would such a person choose?

One of the principles that would characterize the resulting choices, accord-
ing to Rawls, is the Difference Principle, which states that “social and economic
inequalities are to be arranged so that they are to the greatest benefit of the
least advantaged.” [16, p. 266]. Rawls claims that what one ought to choose
according to the Difference Principle coincides with what a rational individual
would choose, if it were fully uncertain about the position it occupies in society.
Henceforth we refer to this claim as Rawls’ thesis. 3

In this paper, we provide a logical analysis of Rawls’ thesis. We first
set out general models of choice under uncertainty and define notions of
individually rational choices and fair choices (Section 2). Next, we refine these
models in such a way that we can verify Rawls’ thesis (Section 3). In Section
4 we introduce a logic that can express key features of those models and has
Rawls’ thesis as a validity. Finally, we show how our logic can handle vari-
ous deontic operators based on Rawls’ notion of procedural fairness (Section 5).

Existing Formal Models Rawls’ publication of A Theory of Justice has
spawned research both of informal and formal nature. Most of the formal
literature is focused on the Rawls/Harsanyi dispute over how exactly to char-
acterize the Original Position and how agents would choose, once placed in
such a situation. John Harsanyi [9] conceives of the situation as one of choice
under risk where, for any given outcome, the agent can reason based on some
probability estimate of how likely it is that that outcome occurs. With this in
place, Harsanyi argues that a rational individual would choose according to the
principles of expected utility theory. In contrast, Rawls thinks of the situation
as one of choice under uncertainty, where no such probabilities are given [16,
p. 134].

Given a great deal of uncertainty and the risks associated with choosing
suboptimal options, Rawls argues that individuals would choose according to
the Maximin rule (cf. Section 2.2). In contrast, most of the formal work on the
Original Position follows Harsanyi’s characterization by relying on a uniform
probability distribution that assigns a chance of 1

n to an individual ending up
in one of the n possible positions (see e.g. [6,8,13,17]).

In the present paper, we bracket the Rawls/Harsanyi dispute and stay as
close as possible to Rawls’ conception of the Original Position as a situation of
non-strategic choice under uncertainty (cf. [7]).

3 Rawls states: “To say that a certain conception of justice would be chosen in the original
position is equivalent to saying that rational deliberation satisfying certain conditions and
restrictions would reach a certain conclusion. If necessary, the argument to this result could
be set out more formally.” [16, p. 120]. What we call Rawls’ thesis is thus the more concrete
version of this claim where the Difference Principle is put forward as the conception of justice
in question.
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2 Choice Under Uncertainty

In this section we present general models of choice under uncertainty and intro-
duce a formal language that can express some of Rawls’s fundamental concepts.

2.1 Models of Choice Under Uncertainty

Our models are inspired by the tradition of STIT logics, i.e. logics that feature
modal operators of the type “agent i sees to it that”, which are interpreted
in terms of the states of affairs that are guaranteed by the (past or current)
choice(s) of i. The classic exposition of STIT logic is Belnap et al. [4]. In [10],
Horty shows that this framework can be combined with utilitarian ideas, in
order to interpret various deontic notions such as individual and group oughts.
Kooi and Tamminga [14,18] use STIT models without a temporal component,
but including agent-relative utilities. Here, we further simplify the models of
[14] by working with a single set of choices and a finite 4 set of utility values.

Fix a finite set Agt of agents, a finite set N = {1, 2, . . .} ⊂ N of utilities,
and a countable set Q = {q, q′, . . .} of propositional variables. We use i, j and
n,m as metavariables for agents and values respectively.

Definition 2.1 A model of choice under uncertainty is a tuple M =
〈S,U,C, V 〉, where S 6= ∅ is a set of states, U : S × Agt → N is a utility
function, C is a partition of S into choices, and V : Q → ℘(S) is a valuation
function.

Each state s ∈ S can be seen as a possible outcome of the choice situation.
The utility function U specifies, for each state s and agent i, the utility U(s, i)
that i receives at s. Note that choices are sets of states X ∈ C. This means
that, as in the traditional STIT-based accounts, we identify choices with the
set of states they leave open. Unlike in STIT, we do not attribute choices to (a)
particular (group of) agents. The focus is rather on how choices affect agents,
not on who is choosing or acting. Depending on the particular perspective we
take, e.g. that of an individual or that of society at large, some of the choices
will be better or worse than others. Correspondingly, one may interpret the
choices as those of a social planner or policy-maker, even if that person is herself
a member of Agt.

If s ∈ X, then s is a possible outcome of choosing X. We write C(s) for the
unique choice X ∈ C such that s ∈ X. Figure 1 represents a simple model of
choice under uncertainty for two agents i and j, with two choices X = {s1, s2}
and Y = {s3, s4}. Here, the couples (n,m) represent the utility function, where
n = U(s, i) and m = U(s, j). For instance, at state s1, agent i receives a utility
of 3 whereas agent j receives a utility of 1.

2.2 Two Standards of Admissibility

Given a model of choice under uncertainty M, the utility function U in-
duces agent-relative preferences over outcomes: i weakly prefers s over s′ iff
U(s, i) ≥ U(s′, i). For example, in Figure 1 agent i weakly prefers s1 over s2

4 The generalization to an infinite set of utility values is left for future work.
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(3, 1) (2, 4) (2, 2) (1, 4)

X Y

s1 s2 s3 s4

Fig. 1. A model of choice under uncertainty.

since U(s1, i) ≥ U(s2, i). However, since we are considering what choices a ra-
tional agent should make, we should specify how preferences over states induce
preferences over choices. In other words, we need to specify a lifting criterion.
Four such lifting criteria are given in Table 1, which is based on [19]. Each of
these lifting criteria give us a weak preference relation over the set of choices
in a model.

Where l ∈ {∀∀, ∀∃, ∃∀, ∃∃} the strict preference relation ⊐
l
i is defined as:

X ⊐
l
i Y iff X ⊒l

i Y and Y 6⊒l
i X. In words, X being strictly preferred to

Y means that X is preferred to Y while Y is not preferred to X. Following
common practice, we assume that it is rational to choose X for an agent i iff
there is no other choice Y such that i strictly prefers Y to X. We call such
rational choices admissible for the agent in question, and treat rationality and
admissibility as interchangeable notions.

Definition 2.2 Where M = 〈S,U,C, V 〉 is a model of choice under uncer-
tainty, i ∈ Agt, and l ∈ {∀∀, ∀∃, ∃∀, ∃∃}: the set of i-admissiblel choices in M

is

Adml
i(M) =df {X ∈ C | for no Y ∈ C : Y ⊐

l
i X}.

l = Preference Relation

∀∀ X ⊒∀∀
i Y =df ∀s ∈ X, ∀s′ ∈ Y : U(s, i) ≥ U(s′, i)

∀∃ X ⊒∀∃
i Y =df ∀s ∈ X, ∃s′ ∈ Y : U(s, i) ≥ U(s′, i)

∃∀ X ⊒∃∀
i Y =df ∃s ∈ X, ∀s′ ∈ Y : U(s, i) ≥ U(s′, i)

∃∃ X ⊒∃∃
i Y =df ∃s ∈ X, ∃s′ ∈ Y : U(s, i) ≥ U(s′, i)

Table 1
Lifting criteria. Here, X and Y are sets of states.

Maximin In what follows, we focus on the Maximin criterion, i.e. the lifting
criterion denoted by ∀∃. We hence take Adm∀∃

i as defining rational choice
under uncertainty. We return to the other lifting criteria in Section 5. Until
then, we omit the superscript l in notation.

The Maximin principle is usually considered typical for risk-averse agents.
Rawls states that “the maximin rule is not, in general, a suitable guide for
choices under uncertainty” while he does defend Maximin in situations “marked
by certain special features” [16, pp. 133]. These features are:
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• knowledge of likelihoods is impossible, or at best extremely insecure;

• the person choosing has a conception of the good such that he cares very
little, if anything, for what he might gain above the minimum stipend that
he can, in fact, be sure of by following the maximin rule;

• the rejected alternatives have outcomes that one can hardly accept.

Rawls concludes that because the Original Position has these three features,
the Maximin criterion is the most appropriate one in this context.

The Difference Principle The principle of justice that we focus on in this
paper is the Difference Principle. Informally, it states that we should maximize
the gains of the least well-off. Rawls warns us that the Difference Principle
should not be mistaken for the Maximin rule [16, p. 72]:

The maximin criterion is generally understood as a rule for choice under
great uncertainty, whereas the difference principle is a principle of justice. It
is undesirable to use the same name for two things that are so distinct.

To define the Difference Principle in exact terms, we need some more nota-
tion. For any state s in a given model, let U(s, ∗) denote the smallest n ∈ N
such that, for some i ∈ Agt, U(s, i) = n. Intuitively, U(s, ∗) is the utility of
the agent that is the least well-off at state s. One may say that, according to
the Difference Principle, a state s is at least as good as a state s′ if and only
if U(s, ∗) ≥ U(s′, ∗), i.e. whenever the least well-off at state s is at least as
well-off as the least well-off at state s′.

Just as before, we need to lift this preference relation on states in order to
obtain preferences over choices. In line with the preceding, we use the Maximin
criterion. 5 This gives us the following definitions:

Definition 2.3 WhereM = 〈S,U,C, V 〉 is a model of choice under uncertainty
and X,Y ∈ C: X ⊒∀∃

∗ Y iff ∀s ∈ X, ∃s′ ∈ Y : U(s, ∗) ≥ U(s′, ∗).

Definition 2.4 Where M = 〈S,U,C, V 〉 is a model of choice under uncer-
tainty, the set of Difference admissible choices in M is

Adm∗(M) =df {X ∈ C | For no Y ∈ C : Y ⊐
∀∃
∗ X}.

In our example from Figure 1, it can be easily verified that X ⊐
∀∃
i Y ,

Y ⊐
∀∃
j X, X ⊒∀∃

∗ Y , and Y ⊒∀∃
∗ X. Hence, Admi(M) = {X}, Admj = {Y },

and Adm∗ = {X,Y }. In other words, both X and Y are difference admissible
in this model, while only X is admissible for i and only Y is admissible for j.

In what follows, we will sometimes use “∗” to denote “the least well-off”
(at a given state in a given model). This convention allows us to present our
results in a compact way.

5 One can define alternative “fairness rankings”, using the other lifting criteria from Table
1. We leave the study of such rankings for future work.
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2.3 Expressing Admissibility in a Formal Language

Here, we introduce a formal language that allows us to express i.a. that the
current choice is i-admissible and/or difference admissible. Let L be defined
by the following Backus-Naur Form (BNF):

ϕ := q | uni | ¬ϕ | ϕ ∨ ϕ | �ϕ | �c ϕ

where q ranges over Q, i over Agt, and n over N . The constant uni expresses
that agent i receives a utility of n. � is a universal modality: �ϕ means that
ϕ is true at all states in the model; � denotes its dual. �c ϕ expresses that the
current choice guarantees that ϕ is the case; the dual of �c is denoted by �c .
�c is a normal modal operator, similar in spirit to the “Chellas STIT” [5,11].
Both � and �c are modal operators of type S5.

Definition 2.5 WhereM = 〈S,C, U, V 〉 is a model of choice under uncertainty
and s ∈ S:

(SC1) M, s |= q iff s ∈ V (q)

(SC2) M, s |= ¬ϕ iff M, s 6|= ϕ

(SC3) M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

(SC4) M, s |= �c ϕ iff for all s′ ∈ C(s), M, s′ |= ϕ

(SC5) M, s |= �ϕ iff for all s′ ∈ S, M, s′ |= ϕ

(SC6) M, s |= uni iff U(s, i) = n.

Let us use the example from Figure 1 to illustrate some of these semantic
clauses. Let M correspond to the model in Figure 1 with V (q) = {s1, s3, s4}.
Since U(s1, i) = 3 and by applying (SC6), we obtain that M, s1 |= u3i . In view
of (SC4) and since U(s2, i) = 2, M, s1 6|= �c u3i . Likewise, since q is false at s2,
M, s1 6|= �c q. However, by (SC6) and since q is true at both s3 and s4, we have
M, s1 |= ��c q.

With the language L, we can express the notions of individual admissibility
and difference admissibility that were introduced in Section 2.2. In order to
explain this, we need some preparatory work. Where † ∈ Agt ∪ {∗} and where
s is a state in some model M, let GM(s, †) be the set of all n ∈ N such that
for all s′ ∈ C(s), U(s′, †) ≥ n. When n ∈ GM(s, †), we say that utility n
is guaranteed for † at s. A little reflection on the Maximin criterion and our
definitions of admissibility gives us:

Lemma 2.6 C(s) ∈ Adm†(M) iff for all s′ ∈ S: GM(s′, †) ⊆ GM(s, †).

Let s be a state in some model of choice under uncertainty, and let X =
C(s). Using the formal language L, we can express that, for any utility n ∈ N
and for any other choice Y in the model, if Y guarantees n, then so does X –
see Table 2. Relying on Lemma 2.6, we immediately obtain:

Theorem 2.7 Where M = 〈S,U,C, V 〉 is a model of choice under uncertainty,
s ∈ S, and † ∈ Agt ∪ {∗}: C(s) ∈ Adm†(M) iff M, s |= Adm†.
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Abbr. Definition Interpretation

u≥n

i

∨

m≥n u
m
i The utility of i is at least n.

un∗ (
∨

i∈Agt u
n
i ) ∧ (

∧

j∈Agt u
≥ n
j ) The utility of the least well-off is n.

u≥n
∗

∨

m≥n u
m
∗ The utility of the least well-off is at

least n.

gni �c u≥n

i A utility of n is guaranteed for i.

gn∗ �c u≥n
∗ A utility of n is guaranteed for the least

well-off.

Admi

∧

n∈N ( �g
n
i → gni ) The given choice is i-admissible.

Adm∗

∧

n∈N ( �g
n
∗ → gn∗ ) The given choice is difference admissi-

ble.

Table 2
Some useful abbreviations. Here, † ranges over Agt ∪ {∗}.

Proof. C(s) ∈ Adm†(M) iff [by Lemma 2.6] for all s′ ∈ S, GM(s′, †) ⊆
GM(s, †) iff for all s′ ∈ S, for all n ∈ N , if n ∈ GM(s′, †) then n ∈ GM(s, †) iff
[in view of Table 2] for all n ∈ N , for all s′ ∈ S, if M, s′ |= gn

†
, then M, s |= gn

†

iff for all n ∈ N , if there is an s′ ∈ S such that M, s′ |= gn
†
, then M, s |= gn

†
iff

[by the semantic clauses] for all n ∈ N , M, s |= �g
n
†
→ gn

†
iff M, s |= Adm†. ✷

Theorem 2.7 tells us that we can express that a given option is individually
admissible (according to the Maximin criterion) or difference admissible in L.
Recall however that, according to Rawls’ thesis, these two notions are only
related given a specific type of uncertainty, viz. uncertainty about the position
one occupies in society. In what follows, we show how our semantics and formal
language can be refined in order to represent such uncertainty.

3 A Semantics for Rawls’ Thesis

The kind of uncertainty we are dealing with in the Original Position is, at
bottom, uncertainty about who gets which position; from that, one then derives
uncertainty about the agent’s utilities. To make this idea precise, we introduce
a more specific class of models of choice under uncertainty in Section 3.1.
Next, we define a type of updates on those models, which capture changes
in position uncertainty (Section 3.2). Finally, we show how, with the formal
instrumentarium thus introduced, we can make Rawls’ thesis exact (Section
3.3).

3.1 Models of Choice Under Position Uncertainty

Fix a finite, non-empty set of positions P = {p, p′, . . .}, with |P | ≤ |Agt|. 6

Here, one should think of a position in rather abstract terms: a position is

6 We require that the number of positions does not exceed that of agents because we will
need the presupposition that every position is occupied by at least one agent for Rawls’ thesis
to hold – see also footnote 8.
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simply that which determines the utility of the agent at a given state.

Definition 3.1 A model of choice under position uncertainty is a tuple M0 =
〈W,Π, C0, U0, V 0〉 where W 6= ∅ is the set of worlds, Π is a non-empty set
of position assignments π : Agt → P that are surjective, C0 is a partition of
W , U0 : W × P → N is a position-utility function, and V 0 : Q → ℘(W ) is a
valuation function.

Definition 3.2 Where M0 = 〈W,Π, C0, U0, V 0〉 is a model of choice under
position uncertainty, the corresponding model of choice under uncertainty is
M = 〈S,C, U, V 〉, where:

• S =df W ×Π

• for all (w, π) ∈W ×Π : U((w, π), i) =df U
0(w, π(i))

• C =df {{(w, π) | w ∈ X,π ∈ Π} | X ∈ C0}

• V (q) =df {(w, π) | w ∈ V 0(q), π ∈ Π}

In a model of choice under position uncertainty, states are made up of two
components: a world w that determines what factual states of affairs obtain and
what utilities each position gets, and a position assignment π that determines
the position of each agent. 7 Note that we require the position assignment
functions to be surjective. This means that every position in society is occupied
by at least one agent. 8

This in turn allows us to decompose the utility function U from Section 2
into two parts. First, U0 specifies the utilities of every position, for every way
the world may end up being. So U0(w, p) = n means that at world w, any
agent with position p receives a utility of n. Second, the position assignment π
specifies the position an agent gets in society. The agent-utility of i at a state
s = (w, π) is then defined as U0(w, π(i)): it is the position-utility at w of the
position to which i is assigned at s.

In view of Definition 3.2, each model of choice under position uncertainty
corresponds to a model of choice under uncertainty. Given this, we can apply
our earlier definitions of individual and difference admissibility to models of
choice under position uncertainty.

Figure 2 represents two models of choice under position uncertainty. In
M0

1, Π is a singleton {π1}. In M0
2, Π consists of two position assignments.

Note that this difference affects which choices are admissible for each of the
agents, though it does not affect which choices are difference admissible. In

7 Here, a warning is in place: since π determines which agent gets which utility, the “factual
states of affairs” are limited to those statements that do not depend, logically speaking, on
who gets what. For instance, “agent 2 gets a utility of 5” is not a “factual state of affairs” on
this reading. In principle, we could also make the truth of propositional variables dependent
on both w and π. This would not affect our main results in this paper.
8 This presupposition is necessary for Rawls’ thesis. Indeed, otherwise the “worst-off” agent
given the current position assignment may be guaranteed to get a higher utility than what
some agents could have in positions that are currently not occupied.
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X Y

w1 w2 w3 w4

(3,1) (2,4) (2,2) (1,4)

(3, 1) (2, 4) (2, 2) (1, 4)

U0

π1

(a) The model M0

1
with Π = {π1}.

X Y

w1 w2 w3 w4

(3,1) (2,4) (2,2) (1,4)

(3, 1) (2, 4) (2, 2) (1, 4)

U0

π1

(1, 3) (4, 2) (2, 2) (4, 1)π2

(b) The model M0

2
with Π = {π1, π2}.

Fig. 2. Two models of choice under position uncertainty. Where (n,m) ∈ N ×N , n
denotes the utility of p1, and m denotes the utility of p2 at the given world. The two
position assignments are: π1(i) = p1, π1(j) = p2 and π2(i) = p2, π2(j) = p1.

particular, Admi(M
0
1) = {X}, Admj(M

0
1) = {Y }, and Adm∗(M

0
1) = {X,Y },

while Admi(M
0
2) = Admj(M

0
2) = Adm∗(M

0
2) = {X,Y }.

3.2 Updates of Position Uncertainty

Given a model M0 = 〈W,Π, C0, U0, V 0〉, the parameter Π specifies our uncer-
tainty about who gets what position in society. Importantly, and in line with
our agent-independent notion of choice, this uncertainty is agent-independent.
For instance, if there are π, π′ ∈ Π and p, p′ ∈ P such that π(i) = p and
π′(i) = p′ (with p 6= p′), then this means that whoever is choosing does not
know whether i occupies position p, or rather position p′.

Consequently, a change in position uncertainty amounts to an update of
the parameter Π. We will define such updates in general, after which we apply
them to Rawls’ thesis. In what follows, let Π∗ denote the set of all position
assignments, i.e. all surjective functions π : Agt→ P .

Definition 3.3 Where M0 = 〈W,Π, C0, U0, V 0〉 is a model of choice under
position uncertainty and where ∅ 6= Π′ ⊆ Π∗, M

0
Π′ = 〈W,Π′, C0, U0, V 0〉.

In other words, all that is changed by an update (if anything) is the set
of position assignments that are considered possible. With this general type
of update, we can model both increasing and decreasing uncertainty about
position assignments. At one end of the spectrum, updates with a singleton {π}
amount to restricting the model to a single position assignment. At the other
end, updates with Π∗ amount to making every position assignment possible.

Returning to our example in Figure 2, it can be easily observed that the
model on the right hand side is obtained by updating the model on the left
hand side with {π1, π2}, and conversely, the model on the left hand side is
obtained by updating the model on the right hand side with {π1}.

3.3 Rawls’ Thesis

Recall that in the Original Position, we do not know anything about our posi-
tion in society. So if, for a given model M0 of choice under position uncertainty,
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we ask what an agent i would choose in the Original Position, we are in fact
asking what i would choose in the updated model M0

Π∗

. On this analysis,
Rawls’ thesis says that a given choice is difference admissible in M0 if and only
if the “corresponding” choice in M0

Π∗

is i-admissible in M0
Π∗

.
In order to make this notion of correspondence precise we need some extra

notation. Given any model M0 = 〈W,Π, C0, U0, V 0〉, we let M0
∗ = M0

Π∗

=
〈W,Π∗, C

0, U0, V 0〉, and we use C∗, U∗, and V∗ to refer to the set of choices,
the agent-utility function, and the valuation function of the model M∗ of choice
under uncertainty that corresponds to M0

∗ (cf. Definition 3.2).
Our proof of Rawls’ thesis crucially relies on the observation that the set of

guaranteed utilities for the least well-off at a given state in the original model
equals the set of guaranteed utilities for any individual i in the corresponding
state in the Original Position. Formally:

Lemma 3.4 Where M0 = 〈W,Π, C0, U0, V 0〉 is a model of choice under posi-

tion uncertainty, s ∈W ×Π, and i ∈ Agt: GM
0

(s, ∗) = GM
0

∗(s, i).

Proof. Let i ∈ Agt and n ∈ N . We have: n ∈ GM
0

(s, ∗) iff [by the definition

of GM
0

(s, ∗)] for all s′ ∈ C(s), U(s′, ∗) ≥ n iff [by the definition of U(∗, s)]
for all i ∈ Agt and s′ ∈ C(s), U(s′, i) ≥ n iff [since every position assignment
is surjective] for all p ∈ P and all w′ ∈ C0(w), U0(w′, p) ≥ n iff [by the

definition of Π∗] for all s
′ ∈ C∗(s), U∗(s, i) ≥ n iff [by the definition ofGM

0

∗(s, i)]

n ∈ GM
0

∗(s, i). ✷

Note also that, whatever utility is guaranteed for i at a state (w, π) in a
model M0, is also guaranteed for i at every state (w, π′) in M0. Formally:

Fact 3.5 Where M0 = 〈W,Π, C0, U0, V 0〉 is a model of choice under posi-

tion uncertainty, w ∈ W , π, π′ ∈ Π, and i ∈ Agt ∪ {∗}: GM
0

((w, π), i) =

GM
0

((w, π′), i).

Theorem 3.6 Where M0 = 〈W,Π, C0, U0, V 0〉 is a model of choice under
position uncertainty, (w, π) ∈ W × Π, and i ∈ Agt: C(w, π) ∈ Adm∗(M

0) iff
C∗(w, π) ∈ Admi(M

0
∗). (Rawls’ Thesis)

Proof. C(w, π) ∈ Adm∗(M
0) iff [by Lemma 2.6] for all (w′, π′) ∈ W × Π,

GM
0

((w′, π′), ∗) ⊆ GM
0

((w, π), ∗) iff [by Lemma 3.4] for all (w′, π′) ∈ W × Π,

GM
0

∗((w′, π′), i) ⊆ GM
0

∗((w, π), i) iff [by Fact 3.5] for all (w′, π′) ∈ W × Π∗,

GM
0

∗((w′, π′), i) ⊆ GM
0

∗((w, π), i) iff [by Lemma 2.6] C∗(w, π) ∈ Admi(M
0
∗). ✷

4 A Logic of Choice Under Position Uncertainty

In order to express Rawls’ thesis syntactically, we enrich the formal language
L from Section 2. First, we define a static modal language in which we can
express position utilities and position assignments, and provide an axiomati-
zation for the resulting logic (Section 4.1). Next, we add dynamic operators
that can express changes in position uncertainty and give reduction axioms for
them (Section 4.2). After this preparatory work, we show that Rawls’ thesis
corresponds to a validity of the resulting logic (Section 4.3).
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4.1 Static Part

Formal Language Let L+ be defined by the BNF:

ϕ := q | aip | unp | ¬ϕ | ϕ ∨ ϕ | �ϕ | �c ϕ | ⊞ϕ

where q ranges over Q, i over N , p over P , and n over N . The constant aip
expresses that agent i occupies position p, while unp expresses that any agent
with position p gets utility n. The only new modality is ⊞. This operator
allows us to talk about all states that have the same world component (see
(SC9) below). In other words, ⊞ϕ expresses that “ϕ is the case, no matter
which position the agents occupy”.

The following definition gives the semantic clauses for aip, u
n
p , and ⊞; note

that the clauses for the variables, connectives, and other operators are exactly
as in Definition 2.5, relying on the fact that every model of choice under position
uncertainty is also a model of choice under uncertainty (cf. Definition 3.2).

Definition 4.1 Where M0 = 〈W,Π, C0, U0, V 0〉 is a model of choice under
position uncertainty and s = (w, π) ∈W ×Π,

(SC7) M0, s |= aip iff π(i) = p

(SC8) M0, s |= unp iff U0(w, p) = n

(SC9) M0, s |= ⊞ϕ iff for all π ∈ Π, M0, (w, π) |= ϕ

The formal language introduced above is an extension of L. The constants
that expressed agent-utilities in L can now be defined:

uni =df

∨

p∈P

(aip ∧ unp )

Consequently, we can reuse all the definitions from Table 2 to express that a
given choice is i-admissible or difference admissible in L+. However, we now
also have the additional expressive power that allows us to talk about position
uncertainty, which is crucial for Rawls’ thesis.

Axiomatization The set of validities in L+ is axiomatized by the axioms
and rules in Table 3. Axiom QW (resp. PW) expresses that the truth of a
propositional variable (resp. the utility of a position) depends only on the world-
component of a state. I1-I3 capture interactions between the various modalities.
I1 is an immediate result of the fact that � is a universal modality. I2 follows
from the fact that choices are defined in terms of the world-components of
states, and hence one cannot choose between two states with the same world-
component. I3 captures the property that, if a certain position assignment π
is possible in the model at hand, then there is some state with the same world
component as the current state and the possition assignment π. Finally, PA1
and PA2 (PU1 and PU2) express that every π (U) is a function; PA3 expresses
that every π is surjective.

Theorem 4.2 ⊢ ϕ iff |= ϕ. (Soundness and Completeness)

Proof. Soundness is a matter of routine. For completeness, observe that every
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CL Classical Logic

S5 S5 for � ∈ {�,�c ,⊞}

QW ⊞q ∨⊞¬q (q ∈ Q)

PW ⊞u
n
p ∨⊞¬unp (p ∈ P, n ∈ N)

I1 �ϕ→ �c ϕ

I2 �c ϕ→ ⊞ϕ

I3 ⊞
∧

i∈Agt,π(i)=p aip → �
∧

i∈Agt,π(i)=p aip (π ∈ Π∗)

PA1
∨

p∈P aip (i ∈ Agt)

PA2 aip → ¬aip′ (i ∈ Agt, p, p

′ ∈ P, p 6= p

′)

PA3
∨

i∈Agt aip (p ∈ P )

PU1
∨

n∈N u
n
p (p ∈ P )

PU2 u
n
p → ¬ump (p ∈ P, n,m ∈ N,n 6= m)

MP if ⊢ ϕ→ ψ and ⊢ ϕ then ⊢ ψ

NEC if ⊢ ϕ then ⊢ �ϕ

Table 3

model M0 of choice under position uncertainty can be rewritten as a Kripke-
model of the type MK = 〈S,∼�c ,∼⊞, V 〉, where S 6= ∅ is a set of states,
∼�c is the equivalence relation that corresponds to the choices in M0, ∼⊞

is the equivalence relation that corresponds to the worlds in M0, and V :
Q ∪ {aip | i ∈ Agt, p ∈ P} ∪ {up = n | p ∈ P, n ∈ N} → ℘(S) is a valuation
function. Conversely, given suitable conditions on such Kripke-models, we can
rewrite them as models of position uncertainty — cf. Table 4. Proving that,
taken jointly, these conditions ensure translatability to a model of choice under
position uncertainty is a tedious but routine job, which we omit for reasons of
space.

Let MCS be the set of all maximal consistent subsets of L+. Where � ∈
{�,�c ,⊞} and ∆ ∈ MCS, let ∆� = {�ϕ ∈ L+ | �ϕ ∈ ∆}. Fix a Γ ∈ MCS. Let
MK

Γ = 〈SΓ,∼
�c

Γ ,∼
⊞
Γ , VΓ〉, where

1. SΓ is the set of all maximal consistent sets ∆ such that ∆� = Γ�

2. Where ∆,Θ ∈ SΓ, ∆ ∼�c

Γ Θ iff ∆�c = Θ�c

3. Where ∆,Θ ∈ SΓ, ∆ ∼⊞
Γ Θ iff ∆⊞ = Θ⊞

4. VΓ(ϕ) = {∆ ∈ SΓ | ϕ ∈ ∆} for all ϕ ∈ Q ∪ {aip | i ∈ Agt, p ∈ P} ∪ {up =
n | p ∈ P, n ∈ N}
The truth lemma is proven for MK

Γ in the standard way. By an induction
on the complexity of formulas, we can moreover prove that for any s, s′ ∈
SΓ, condition (C) is satisfied. For the other conditions, we can rely on the
corresponding axioms to prove they hold for MK

Γ . In sum, MK
Γ satisfies all the

conditions from Table 4. ✷
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(C) if s ∼⊞ s′ and s, s′ ∈
⋂

i∈Agt,π(i)=p V (aip), then s = s′

(CQW) if s ∼⊞ s′, then s ∈ V (q) iff s′ ∈ V (q)

(CPW) if s ∼⊞ s′, then s ∈ V (unp ) iff s
′ ∈ V (unp )

(CI2) ∼⊞ ⊆ ∼�c

(CI3) if s ∈
⋂

i∈Agt,π(i)=p V (aip), then ∀s′ ∈ S, ∃s′′ ∈ S:

s′ ∼⊞ s′′ and s′′ ∈
⋂

i∈Agt,π(i)=p V (aip)

(π ∈ Π∗)

(CPA1) ∀i ∈ Agt, ∃p ∈ P : s ∈ V (aip)

(CPA2) if s ∈ V (aip), then s 6∈ V (aip′) (p 6= p′)

(CPA3) ∀p ∈ P, ∃i ∈ Agt: s ∈ V (aip)

(CPU1) ∀p ∈ P, ∃n ∈ N : s ∈ V (unp )

(CPU2) if s ∈ V (unp ), then s 6∈ V (ump ) (n 6= m)

Table 4

4.2 Dynamic Operators

In order to express what holds given an update of the set of position assign-
ments, we rely on well-known ideas from dynamic epistemic logic [3,20]. In
particular, we consider pointed updates of pointed models. As we will show in
Section 4.3, we can use the resulting dynamic operators to express what holds
in the Original Position.

Henceforth, an update model is a couple (Π, π), where Π ⊆ Π∗ and π ∈ Π.
Intuitively, the update model expresses the new set of position assignments
that become possible, and the specific position assignment that becomes ac-
tual. Update models are used to change a given pointed model of position
uncertainty, i.e. a model together with a given state (w, π) in that model:

Definition 4.3 Where M0 = 〈W,Π, C0, U0, V 0〉, (w, π) ∈W ×Π, and (Π′, π′)
is an update model: the update of (M0, (w, π)) with (Π′, π′) is (M0, (w, π)) ◦
(Π′, π′) =df (M

0
Π′ , (w, π′)).

Given these conventions, we can introduce dynamic operators [Π, π] for
every update model (Π, π), and interpret them using the following standard
clause:

(SC10) M0, s |= [Π, π]ϕ iff (M0, s) ◦ (Π, π) |= ϕ

In dynamic epistemic logic terminology, our updates are a specific type of
(finitary) ontic updates with an empty precondition. Relying on this observa-
tion, we can easily find reduction axioms for the dynamic operators. These are
listed in Table 5. Given these reduction axioms and Theorem 4.2, we obtain a
sound and strongly complete axiomatization for the extension of L+ with all
dynamic operators of the type [Π, π].
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RA1 [Π, π]q ↔ q (for all q ∈ Q)

RA2 [Π, π]unp ↔ unp (for all p ∈ P and n ∈ N)

RA3 [Π, π]aip ↔ ⊤ if π(i) = p

RA4 [Π, π]aip ↔ ⊥ if π(i) 6= p

RA5 [Π, π]¬ϕ↔ ¬[Π, π]ϕ

RA6 [Π, π](ϕ ∨ ψ) ↔ ([Π, π]ϕ ∨ [Π, π]ψ)

RA7 [Π, π]�ϕ↔
∧

π′∈Π �[Π, π′]ϕ (for � ∈ {�,�c ,⊞})

Table 5
Reduction axioms for the dynamic operators.

4.3 Rawls’ Thesis in L+

Recall that Π∗ denotes the set of all position assignments. By means of the
dynamic operators [Π∗, π] we can define an operator that expresses what holds
in the Original Position:

⊞⊠ϕ =df

∧

π∈Π∗

(

∧

i∈Agt,π(i)=p

aip → [Π∗, π]ϕ
)

Theorem 4.4 Where M0 and M0
∗ are models of choice under position uncer-

tainty, we have: M0, (w, π) |= ⊞⊠ϕ iff M0
∗, (w, π) |= ϕ.

Proof. For all π ∈ Π, let aπ =
∧

i∈Agt,π(i)=p aip. We have: M0, (w, π) |= ⊞⊠ϕ iff

[by the definition of ⊞⊠] for all π′ ∈ Π∗, M
0, (w, π) |= aπ′ → [Π∗, π

′]ϕ iff [since
only aπ is true at M0, (w, π)] M0, (w, π) |= [Π∗, π]ϕ iff [by the semantic clause
for [Π, π]] (M0, (w, π)) ◦ (Π∗, π) |= ϕ iff [by the definition of pointed updates
and since M0

∗ = M0
Π∗

] M0
∗, (w, π) |= ϕ. ✷

Theorem 3.6 is now expressible as a formula in the object-language:

Theorem 4.5 |= Adm∗ ↔ ⊞⊠Admi. (Rawls’ Thesis in L+)

Proof. Let M0 = 〈W,Π, C0, U0, V 0〉 and s ∈W ×Π. We have: M0, s |= Adm∗

iff [by Theorem 2.7] C(s) ∈ Adm∗(M
0) iff [by Theorem 3.6] C∗(s) ∈ Admi(M

0
∗)

iff [by Theorem 2.7] M0
∗, s |= Admi iff [by Theorem 4.4] M0, s |= ⊞⊠Admi. ✷

5 Deontic Logics Based on Fairness

In this last, somewhat more programmatic section, we show the potential of
our models and logic from the viewpoint of deontic logic. We first show how
admissibility based on the other lifting criteria can be formalized in L (Section
5.1). This in turn gives us a general recipe for expressing various other notions
of fairness (Section 5.2), and deontic operators based on them (Section 5.3).



De Coninck and Van De Putte 147

5.1 Other Lifting Criteria

In Section 2 we introduced four lifting criteria that can be used to determine
which choices are admissible in a given choice situation. Moreover, we demon-
strated that the current choice being admissible for i according to the Maximin
lifting (∀∃) can be expressed in the language using object-level formulas. In
Table 6, we give an overview of how admissibility of the current choice for i
can be expressed for the other three lifting criteria from Section 2. The logi-
cal relations between these notions are depicted in Figure 3, where the arrows
stand for logical consequence.

Abbreviation Definition

u≤n

i

∨

m≤n u
m
i

Adm∀∀

i

∧

n∈N

(

�c u≤n

i → (( �g
n
i → gni ) ∧�(gni → �c uni ))

)

Adm∃∀

i

∧

n∈N ( � �c u
≥n

i → �c u
≥n

i )

Adm∃∃

i

∧

n∈N ( �g
n
i → �c u

≥n

i )

Table 6

Adm∃∀

i

Adm∀∀

i Adm∀∃

i

Adm∃∃

i

Fig. 3.

5.2 Other Notions of Fairness

Recall that the defined operator ⊞⊠ talks about what holds in the Original
Position (cf. Theorem 4.4). We can use this operator and our l-admissibility
formulas to define three additional, distinct notions of fairness admissibility.
That is, the formula ⊞⊠Adml

i expresses that in the Original Position, if our
standard of rational choice under uncertainty is determined by lifting criterion
l, then the given choice is l-admissible for i. So, if one agrees with Rawls that
fair choices are the choices a rational agent would make in the Original Position,
then ⊞⊠Adml

i expresses that the given choice is fair (modulo l).
The logical relations depicted in Figure 3 immediately transfer to the cor-

responding notions of fairness admissibility, in view of the following:

Theorem 5.1 Where i ∈ Agt and l, l′ ∈ {∀∀, ∀∃, ∃∀, ∃∃}: ⊢ Adml
i → Adml′

i iff

⊢ ⊞⊠Adml
i → ⊞⊠Adml′

i .
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Proof. For left to right, one should show that ⊞⊠ is a normal modal operator.

For the other direction, suppose that 0 Adml
i → Adml′

i . So there is a model

M0 and state s such that M0, s |= Adml
i and M0, s 6|= Adml′

i . Consider the
model M0

e that differs only from M0 in that, at every state, all the agents
receive the utility that i receives in the corresponding state in M0. In this
model, individual admissibility and fairness admissibility coincide, and hence

M0
e, s |= ⊞⊠Adml

i, M
0
e, s 6|= ⊞⊠Adml′

i . ✷

Thus, e.g. fairness admissibility using the Maximin criterion is strictly
stronger than fairness admissibility using criterion ∀∀, which in turn implies
fairness admissibility using ∃∃. In contrast, fairness using ∃∀ is logically in-
comparable to fairness admissibility with Maximin or with ∀∀.

5.3 Deontic Operators

By employing the familiar Kangerian reduction [1,2,12] we can use our admis-
sibility formulas to define two types of deontic operators:

Ol
iϕ =df �(Adml

i → ϕ)

Ol
∗ϕ =df �(⊞⊠Adml

i → ϕ)

The formula Ol
iϕ can be read as “it ought to be that ϕ for i” (where l

determines a particular standard of rational choice under uncertainty). This
contrasts with the formula Ol

∗ϕ which can be read as “from the viewpoint of
fairness, it ought to be that ϕ”. Both Ol

i and Ol
∗ are normal modal operators

in virtue of their definition.
Because the admissibility formulas stand in logical relations with each other,

we can expect there to be logical relations between obligation statements as
well. For example, we have:

Theorem 5.2 ⊢ Adml
i → Adml′

i iff ⊢ Ol′

i ϕ→ Ol
iϕ.

Proof. Left to right of the equivalence is safely left to the reader. For the other

direction, let ϕ = Adml′

i . Then, the right hand side implies that ⊢ �(Adml
i →

Adml′

i ) and hence, by the T-axiom for �, ⊢ Adml
i → Adml′

i . ✷

Consequently, if Adml
i and Adml′

i are incomparable, then Ol
iϕ and Ol′

i ϕ are
incomparable as well. We can also expect there to be logical relations between
the individual oughts and fairness oughts, in line with Rawls’ thesis. For ex-
ample, what ought to be for agent i (given the Maximin criterion) and what
ought to be from the viewpoint of fairness coincide in the Original Position:

Theorem 5.3 ⊢
∧

π∈Π∗
�

∧

i∈Agt,π(i)=p aip → (O∀∃
i ϕ↔ O∀∃

∗ ϕ).

Proof. Note that, if the left hand side of the implication is true in a model
M0 = 〈W,Π, C0, U0, V 0〉, then Π = Π∗. By our earlier results, individual
admissibility and fairness admissibility coincide in such models, and hence so
do the corresponding ought-operators. ✷

To summarize, by using a Kangerian reduction, we obtain various kinds of
deontic logics, based on individual standards of rationality and Rawls’ proce-
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dural account of fairness. All these logics are fragments of the logic presented
in Section 4. Here we merely sketched the various possibilities this generates;
we leave a full investigation for future work.

6 Conclusion

We have given a logical analysis of Rawls’ thesis that choices motivated by the
Difference Principle coincide with the choices of any rational individual in the
Original Position. In particular, we presented models of choice under position
uncertainty, inspired by simple models for STIT logic. With the help of these
models and a suitable formal language, we showed how to capture Rawls’ thesis
both in semantic and in syntactic terms. Finally, we demonstrated the potential
of our logical analysis for the study of deontic notions related to fairness.

Future Work We chose to work with a finite set of utility values as this
removes some complexities. However, one may ask to which extent our results
still go through when working with infinite sets of utility values such as N or
R. While the semantic results (e.g. Theorem 3.3) seem easy to generalize to
such richer settings, this is far less obvious on the syntactic side. In particular,
can the language be modified in order to cope with infinite sets of values,
while keeping the logic well-behaved meta-theoretically (e.g. axiomatizable
and compact)?

We focused on the four lifting criteria from Table 1. An open question is
whether it is possible to express more complex lifting criteria, such as e.g. lexi-
cographic preferences. Finally, both the notion of choice and the notion of un-
certainty are agent-independent in our models. A natural generalization would
be to have models where the choices and/or uncertainty are agent-dependent.
Here again, semantics seem relatively easy to obtain, but complexity grows
rapidly at the syntactic level.
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1 Introduction

Deontic logic is the logic of obligations, permissions, and sometimes other
(primitive or derived) normative notions. What has emerged as the bench-
mark version, a system called Standard Deontic Logic (SDL), is nothing more
than KD, the smallest normal modal logic with the D axiom schema added.
For an introduction and historical overview, see [10].

The D axiom is in place to ensure the consistency of obligations, but can take
different formulations, for instance ¬O⊥, or OA → ¬O¬A, or ¬(OA ∧ O¬A).
In a normal modal logic, all these formulations are provably equivalent, and
therefore it does not matter much which one is chosen. In a non-normal (but
still classical) setting, for instance when an aggregation principle is missing, dif-
ferent versions of D are not interderivable, and it therefore matters which one
is chosen, both for philosophical and for technical reasons (for deontic logic in
a paraconsistent setting, see e.g. [7]). One might want to distinguish, concep-
tually, between an obligation for an impossible or logically contradictory state
of affairs (O⊥) on one hand, and multiple obligations for jointly inconsistent
states of affairs (OA∧O¬A) on the other, because the former might thought to
be self-defeating or conceptually impossible, whereas the latter can derive from
different background or contingent normative systems (e.g. ethics and the law)
and are only practically unenforceable, but logically possible. Moreover, SDL
and its variants in the standard modal language lack the power to distinguish
the source of one situation (an obligation for the impossible) from the source
of the other (inconsistent obligations), or to exclude one situation for logical
reasons and admit the other for contingent reasons.

Justification logic [2,17] is an explicit version of modal logic originally de-
veloped to provide a logic of proofs [1,16]. Instead of formulas such as ✷A,
the language of justification logic includes formulas such as t : A saying, for
instance, that t justifies knowledge of A or A is obligatory because of reason
t, where t is a term representing the reason. Systems of justification logic
are parameterized by a so-called constant specification that states which log-
ical axioms do have a justification. Hence the constant specification can be
used to calibrate the strength of a justification logic. Of particular interest
are axiomatically appropriate constant specifications where every axiom has a
justification. In that case the justification logic enjoys a constructive analogue
of the modal necessitation rule. (See Sect. 3 for a formal definition of constant
specification).

The explicit counterpart in justification logic of one version of D (in stan-
dard modal logic) was first formulated by Brezhnev [3] as axiom jd, i.e. ¬(t : ⊥).
This axiom turned out to be rather notorious. Usually one can establish com-
pleteness of a justification logic for an arbitrary constant specification. How-
ever, in the presence of jd this is not the case. Systems that include jd usu-
ally need an axiomatically appropriate constant specification in order to be
complete. Kuznets [12] defined M-models for justification logics with jd and
Pacuit [24] presented F-models for jd. Modular models for jd have been studied
in [15] and subset models for jd are introduced in [18]. For all these different
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semantics, an axiomatically appropriate constant specification is required in
order to obtain a completeness result. Notable exceptions to this phenomenon
are M-models (defined in [12]) and Fk-models (defined in [13]) for which com-
pleteness holds for arbitrary constant specifications.

The requirement of an axiomatically appropriate constant specification is
often overlooked. In particular, this requirement is omitted in the completeness
theorems given in [9] and [18] (although for the latter paper it seems that it
has been corrected later [19]). In the case of [9] the appropriateness require-
ment is important since the solution to avoid some of the known paradoxes,
such as Ross’, is to restrict the constant specification. But then the resulting
justification logic is not complete anymore.

In this paper we study in detail the jd axiom and related principles. We
compare their logical strength and we investigate the role of the constant spec-
ification. After an informal discussion in Section 2, in Sections 3 and 4 we
present the basic syntax and semantics of system JD (with axiom jd). In Sec-
tion 5 we propose a novel semantics for which justification logics with jd are
complete for arbitrary constant specifications. In Section 6, we consider system
JNoC, which has a different version of the consistency axiom, noc. In Section 7,
we establish that various formulations of consistency are equivalent only with
an axiomatically appropriate constant specification.

Acknowledgements. We are grateful to the anonymous reviewers of
DEON 2020 for many helpful comments.

2 Impossible vs Inconsistent Obligations: An Overview

Standard (implicit) systems of deontic logic conflate impossible and conflict-
ing obligations. One thing is to say that nothing logically impossible can be
obligatory, i.e. ¬O⊥, another to say that there are not (or there should not be)
conflicting provisions that are obligatory, i.e. ¬(OA∧O¬A). Standard systems
can derive O⊥ from OA ∧ O¬A and vice versa, thus suffering a collapse. One
way to see the difference is that the former might be argued to be unacceptable
for conceptual or logical reasons (e.g. that such an obligation would be concep-
tually self-defeating), whereas the latter might be argued to be unacceptable
for contingent reasons (e.g. that such obligations cannot be fulfilled in reality,
although can potentially still arise in real-life situations). [5,6] use minimal
models, [25] uses multiple accessibility relations in the disjunctive truth con-
dition of the ought operator: in such ways the authors avoid aggregation and
therefore the collapse of impossible to inconsistent obligations (multi-relational
semantics has also been used more recently, cf. e.g. [4]).

In justification logic we have the explicit counterparts jd: ¬(t : ⊥) and
noc: ¬(t : A ∧ t : ¬A), respectively, of the above implicit principles, giving rise
to systems we call JD and JNoC (respectively). Corollary 7.2 establishes that
the former implies the latter. Lemma 7.5 shows that the converse direction
holds in the presence of an axiomatically appropriate constant specification. In
this situation we have the same collapse as in the standard implicit systems.
There are two options to avoid this consequence:
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• In justification logic we can use the constant specification to adjust the power
of the logical systems and thus avoid the collapse. Lemma 7.6 shows that
¬(t : A ∧ t : ¬A) does not imply ¬(t : ⊥) if the constant specification is not
axiomatically appropriate. Theorems 5.3 and 6.3 prove that JD and JNoC

with an arbitrary constant specification are complete with regard to a novel
semantics we develop.

• As explained in Remark 7.7, we can avoid the collapse even in the presence of
an axiomatically appropriate CS. It suffices to consider a language without
the + operation. We denote this system JNoC−.

Avoiding this collapse is important in situations with conflicting obligations.
Let us look at Sartre’s Dilemma [22] as presented in [23]:

(i) It is obligatory that I now meet Jones (say, as promised to Jones, my
friend).

(ii) It is obligatory that I now do not meet Jones (say, as promised to Smith,
another friend).

In implicit standard deontic logic featuring the principle ¬(OA∧O¬A), we
immediately get a contradiction if we represent (1) and (2) as OA and O¬A,
respectively. However, in a system such as JNoC−, there is no conflict as there
are two different reasons in (1) and (2). Hence (1) and (2) are represented
by s : A and t : ¬A for two different terms s and t, which is consistent with
axiom noc.

Moreover, in normal deontic logic, one can pass from two inconsistent obli-
gations to one impossible obligation. This is dubious on philosophical grounds:
we have pointed out that one may argue that one impossible obligation is con-
ceptually self-defeating, whereas two inconsistent obligations may be in place
for contingent reasons (e.g. different promises).

Justification logic gives us the means to not conflate the two, without loos-
ing too much reasoning power. Even more, one can do justice to the background
philosophical intuitions to exclude impossible obligations for logical reasons, for
instance by focusing on the system JNoC and calibrating the constant specifica-
tion. Keeping track of the source of obligations, for instance through reasons,
opens up the possibility to solve conflicts if one has a priority ordering on
reasons (see for instance [11], and [8] for an implementation in justification
logic).

In the rest of the paper we present the formal results starting from the basic
syntax and semantics of system JD (with axiom jd).

3 Syntax

Justification terms are built from countably many constants ci and variables xi

according to the following grammar:

t ::= ci | xi | t · t | (t+ t) | !t

The set of terms is denoted by Tm.
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Formulas are built from countably many atomic propositions Pi and the
symbol ⊥ according to the following grammar:

F ::= Pi | ⊥ | F → F | t : F

The set of atomic propositions is denoted by Prop and the set of all formulas
is denoted by LJ . The other classical Boolean connectives ¬,⊤,∧,∨,↔ are
defined as usual, in particular we have ¬A := A → ⊥ and ⊤ := ¬⊥. Informally,
+ mimics the aggregation of reasons, · embodies modus ponens reasoning, and
! is positive introspection. We keep ! for ease of exposition, but it can be
dispensed with. For a discussion on the interpretation of the operations in a
deontic context, see [9].

The axioms of JD are the following:

cl all axioms of classical propositional logic;
j+ s : A ∨ t : A → (s+ t) : A;
j s : (A → B) → (t : A → s · t : B);
jd ¬(t :⊥).

Note that since ¬ is a defined notion, jd actually stands for t :⊥→⊥.
Justification logics are parameterized by a so-called constant specification,

which is a set

CS ⊆ {(c, A) | c is a constant and A is an axiom of JD}.

Our logic JDCS is now given by the axioms of JD and the rules modus ponens:

A A → B (MP)
B

and axiom necessitation

(AN!) ∀n ∈ N, where (c, A) ∈ CS
!...!
︸︷︷︸

n

c : !...!
︸︷︷︸

n−1

c : ... : !!c : !c : c : A

Definition 3.1 [Axiomatically appropriate CS] A constant specification CS is
called axiomatically appropriate if for each axiom A, there is a constant c with
(c, A) ∈ CS.

Axiomatically appropriate constant specifications are important as they
provide a form of necessitation [1,2,17].

Lemma 3.2 Let CS be an axiomatically appropriate constant specification. For
each formula A with

JDCS ⊢ A,

there exists a term t such that

JDCS ⊢ t : A.
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4 Semantics

We recall the basic definitions and results about subset models for justification
logic [18,20,21].

Definition 4.1 [General subset model] Given some constant specification CS,
then a general CS-subset model M = (W,W0, V, E) is defined by:

• W is a set of objects called worlds.

• W0 ⊆ W and W0 6= ∅ .

• V : W × LJ → {0, 1} such that for all ω ∈ W0, t ∈ Tm, F,G ∈ LJ :
· V (ω,⊥) = 0;
· V (ω, F → G) = 1 iff V (ω, F ) = 0 or V (ω,G) = 1;
· V (ω, t : F ) = 1 iff E(ω, t) ⊆ { υ ∈ W | V (υ, F ) = 1 }.

• E : W × Tm → P(W ) that meets the following conditions where we use

[A] := {ω ∈ W | V (ω,A) = 1}. (1)

For all ω ∈ W0, and for all s, t ∈ Tm:
· E(ω, s+ t) ⊆ E(ω, s) ∩ E(ω, t);
· E(ω, s · t) ⊆ {υ ∈ W | ∀F ∈ APPω(s, t)(υ ∈ [F ])} where APP contains all
formulas that can be justified by an application of s to t, see below;

· ∃υ ∈ W0 with υ ∈ E(ω, t);
· for all n ∈ N and for all (c, A) ∈ CS : E(ω, c) ⊆ [A] and

E(ω, !...!
︸︷︷︸

n

c) ⊆ [ !...!
︸︷︷︸

n−1

c : ....!c : c : A].

The set APP is formally defined as follows:

APPω(s, t) := {F ∈ LJ | ∃H ∈ LJ s.t.

E(ω, s) ⊆ [H → F ] and E(ω, t) ⊆ [H]};

W0 is the set of normal worlds. The set W \ W0 consists of the non-
normal worlds. Moreover, using the notation introduced by (1), we can read
the condition on V for justification formulas t : F as:

V (ω, t : F ) = 1 iff E(ω, t) ⊆ [F ]

In subset semantics terms are not treated only syntactically (as in most
other semantics for justification logics), but they get assigned a set of worlds.

E(ω, t) tells us the states that are ideal according to t from ω’s perspective.
Then t : F at ω is true just in case F is true at those ideal states. We have
seen that a formula of the form t : F is true at a world w just in case the
interpretation of t at w (a set of worlds) is a subset of the truth set of F (the
set of worlds where F is true). However, take two axioms A and B. They
are true in all possible worlds. Therefore, every term that is a reason for the
former will also be a reason for the latter (if terms get assigned sets of possible
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worlds). But in this way, there is no control on the constant specification. Using
impossible worlds, however, lets us solve this problem, because at impossible
worlds classical logically equivalent propositions can differ in truth value, and
a justification for one may not be a justification for the other. This makes the
semantics able to capture hyperintensionality.

Since the valuation function V is defined on worlds and formulas, the defi-
nition of truth is standard.

Definition 4.2 [Truth] Given a subset model

M = (W,W0, V, E)

and a world ω ∈ W and a formula F we define the relation  as follows:

M, ω  F iff V (ω, F ) = 1.

Validity is defined with respect to the normal worlds.

Definition 4.3 [Validity] Let CS be a constant specification. We say that a
formula F is general CS-valid if for each general CS-subset model

M = (W,W0, V, E)

and each ω ∈ W0, we have M, ω  F .

As expected, we have soundness [18].

Theorem 4.4 (Soundness) Let CS be an arbitrary constant specification.
For each formula F we have that if JDCS ⊢ F , then F is general CS-valid.

However, completeness only holds if the constant specification is axiomati-
cally appropriate [19].

Theorem 4.5 (Completeness) Let CS be an axiomatically appropriate con-
stant specification. For each formula F we have that if F is general CS-valid,
then JDCS ⊢ F .

One might need more control on the constant specification, e.g. by relin-
quishing the requirement that each axiom be justified. For instance, [9] argued
that restricting the constant specification is one way to avoid certain deontic
paradoxes, such as Ross’. In the next section, we prove soundness and com-
pleteness with regard to an arbitrary constant specification.

5 D-arbitrary subset models

We present a novel class of subset models for JD and establish soundness and
completeness.

Definition 5.1 [D-arbitrary subset model] A D-arbitrary CS-subset model
M = (W,W0, V, E) is defined like a general CS-subset model with the con-
dition

∃υ ∈ W0 with υ ∈ E(ω, t)
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being replaced with
∃υ ∈ W 6⊥ with υ ∈ E(ω, t)

where W 6⊥ := {ω ∈ W | V (ω,⊥) = 0}.

The notion of D-arbitrary CS-validity is now as expected.

Definition 5.2 [D-arbitrary validity] Let CS be a constant specification. We
say that a formula F is D-arbitrary CS-valid if for each D-arbitrary CS-subset
model M = (W,W0, V, E) and each ω ∈ W0, we have M, ω  F .

We have soundness and completeness with respect to arbitrary constant
specifications.

Theorem 5.3 (Soundness and Completeness) Let CS be an arbitrary
constant specification. For each formula F we have

JDCS ⊢ F iff F is D-arbitrary CS-valid.

The completeness proof is by a canonical model construction as in the case of
general subset models [18]. We will only sketch main steps here. The canonical
model is given as follows.

Definition 5.4 [Canonical Model] Let CS be an arbitrary constant specifica-
tion. We define the canonical model MC = (WC ,WC

0 , V C , EC) by:

• WC = P(LJ).

• WC
0 =

{

Γ ∈ WC
∣

∣ Γ is maximal JDCS-consistent set of formulas
}

.

• V C(Γ, F ) = 1 iff F ∈ Γ;

• EC(Γ, t) =
{

∆ ∈ WC
∣

∣ ∆ ⊇ Γ/t
}

where

Γ/t := {F ∈ LJ | t : F ∈ Γ}.

The essential part of the completeness proof is to show that the canonical
model is a D-arbitrary CS-subset model.

Lemma 5.5 Let CS be an arbitrary constant specification. The canonical
model MC is a D-arbitrary CS-subset model.

Proof. Let us only show the condition

∃υ ∈ WC
6⊥ with υ ∈ E(ω, t) (2)

for all ω ∈ W0 and all terms t.
So let t be an arbitrary term and Γ ∈ WC

0 . Since Γ is a maximal JDCS-
consistent set of formulas, we find ¬(t : ⊥) ∈ Γ and thus t : ⊥ /∈ Γ. Let
∆ := Γ/t. We find that ⊥ /∈ ∆ and by definition V C(∆,⊥) = 0. Thus ∆ ∈ WC

6⊥
.

Moreover, again by definition, ∆ ∈ EC(Γ, t). Thus (2) is established. ✷

Now the Truth lemma and the completeness theorem follow easily as in [18].

Remark 5.6 In subset models, it is possible to reduce application to sum by
introducing a new term c⋆, see [18]. Our completeness result also holds in the
setting with c⋆. However, the proof that the canonical model is well-defined is
a bit more complicated as one has to consider the case of c⋆ separately.
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6 No conflicts

So far, we have considered the explicit version of ¬O⊥. In normal modal logic,
this is provably equivalent to ¬(OA ∧ O¬A). In this section we study the
explicit version of this principle, which we call NoC (No Conflicts), saying that
reasons are self-consistent. That is A and ¬A cannot be obligatory for one
and the same reason. The axioms of JNoC are the axioms of JD where jd is
replaced with:

noc ¬(t : A ∧ t : ¬A).

Accordingly, a constant specification for JNoC is defined like a constant
specification for JD except that the constants justify axioms of JNoC.

Given a constant specification CS for JNoC, the logic JNoCCS is defined by
the axioms of JNoC and the rules modus ponens and axiom necessitation.

Definition 6.1 [NoC subset model] A NoC CS-subset model

M = (W,W0, V, E)

is defined like a general CS-subset model with the condition

∃υ ∈ W0 with υ ∈ E(ω, t)

being replaced with
∃υ ∈ Wnc with υ ∈ E(ω, t)

where Wnc := {ω ∈ W | for all formulas A (V (ω,A) = 0 or V (ω,¬A) = 0)}.

The notion of NoC CS-validity is now as expected.

Definition 6.2 [NoC validity] Let CS be a constant specification. We say
that a formula F is NoC CS-valid if for each NoC CS-subset model M =
(W,W0, V, E) and each ω ∈ W0, we have M, ω  F .

Theorem 6.3 (Soundness and Completeness) Let CS be an arbitrary
constant specification. For each formula F we have

JNoCCS ⊢ F iff F is NoC CS-valid.

Again the completeness proof uses the canonical model construction from
Definition 5.4 except that we set

• WC
0 =

{

Γ ∈ WC
∣

∣ Γ is maximal JNoCCS-consistent set of formulas
}

.

Now we have to show that the defined structure is an NoC CS-subset model.

Lemma 6.4 Let CS be an arbitrary constant specification. The canonical
model MC is an NoC CS-subset model.

Proof. As before, we only show the condition

∃υ ∈ WC
nc with υ ∈ E(ω, t) (3)
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for all ω ∈ W0 and all terms t.
So let t be an arbitrary term and Γ ∈ WC

0 . Let A be an arbitrary formula.
Since Γ is a is maximal JNoCCS-consistent set of formulas, we find

¬(t : A ∧ t : ¬A) ∈ Γ

and thus t : A ∧ t : ¬A /∈ Γ. Thus, again by maximal consistency,

t : A /∈ Γ or t : ¬A /∈ Γ.

Let ∆ := Γ/t. We find that

A /∈ ∆ or ¬A /∈ ∆

and hence, by definition,

V C(∆, A) = 0 or V C(∆,¬A) = 0.

Thus ∆ ∈ WC
nc . Moreover, again by definition, ∆ ∈ EC(Γ, t). Thus (3) is

established. ✷

Again the Truth lemma and the completeness theorem follow easily.

7 Formal comparison

The following lemmas establish the exact relationship between JD and JNoC.
First we show that JDCS proves that reasons are consistent among them,
i.e. that ¬(s : A ∧ t : ¬A) holds for arbitrary terms s and t, which is the
consistency principle used in [9].

Lemma 7.1 Let CS be an arbitrary constant specification. Then JDCS proves
¬(s : A ∧ t : ¬A) for all terms s, t and all formulas A.

Proof. Suppose towards a contradiction that s : A ∧ t : ¬A. Thus we have
s : A and t : ¬A where the latter is an abbreviation for t : (A → ⊥) (by the
definition of the symbol ¬). Thus using axiom j, we get t·s : ⊥ and by axiom jd
we conclude ⊥. ✷

Corollary 7.2 For any constant specification CS, JDCS proves every instance
of noc.

Remark 7.3 It is only by coincidence that Lemma 7.1, and thus also Corol-
lary 7.2, hold for arbitrary constant specifications. If we base our propositional
language on different connectives (say ∧ and ¬ instead of → and ⊥), then
Lemma 7.1 and Corollary 7.2 only hold for axiomatically appropriate constant
specifications.

The proof of Lemma 7.1 is as follows. Since CS is axiomatically appropriate,
there exists a term r such that

r : (¬A → (A → ⊥)) (4)
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is provable where ⊥ is defined as P ∧ ¬P (for some fixed P ) and F → G is
defined as ¬(F ∧ ¬G). From (4) and axiom j we get

t : ¬A → r · t : (A → ⊥).

Thus from s : A ∧ t : ¬A, we obtain (r · t) · s : ⊥, which contradicts axiom jd
as before.

Next we show that also JNoCCS proves that reasons are consistent among
them.

Lemma 7.4 Let CS be an arbitrary constant specification. Then JNoCCS

proves ¬(s : A ∧ t : ¬A) for all terms s, t and all formulas A.

Proof. Suppose towards a contradiction that s : A ∧ t : ¬A holds. Using
axiom j+ we immediately obtain s + t : A ∧ s + t : ¬A. By axiom noc we
conclude ⊥, which establishes ¬(s : A ∧ t : ¬A). ✷

Next we show that JNoCCS with an axiomatically appropriate constant spec-
ification proves ¬(t : ⊥).

Lemma 7.5 Let CS be an axiomatically appropriate constant specification.
Then JNoCCS proves ¬(t : ⊥) for each term t.

Proof. Because CS is axiomatically appropriate, there are terms r and s such
that

r : (⊥ → P ) and s : (⊥ → ¬P ).

Therefore, we get

t : ⊥ → r · t : P and t : ⊥ → s · t : ¬P.

Thus we have t : ⊥ → (r · t : P ∧ s · t : ¬P ). Together with the previous lemma,
this yields t : ⊥ → ⊥, which is ¬(t : ⊥). ✷

Here the requirement of an axiomatically appropriate constant specification
is necessary.

Lemma 7.6 There exists a NoC CS-subset model M = (W,W0, V, E) with
some ω ∈ W0 such that

M, ω  t : ⊥

for some term t.

Proof. Consider the empty CS and the following model:

(i) W = {ω, ν} and W0 = {ω}

(ii) V (ν,⊥) = 1 and V (ν, F ) = 0 for all other formulas F

(iii) E(ω, t) = {ν} for all terms t.

We observe that ν ∈ Wnc. So the model is well-defined. Further, we find
E(ω, t) ⊆ [⊥]. Since ω ∈ W0, we get V (ω, t : ⊥) = 1. We conclude

M, ω  t : ⊥.

✷
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Remark 7.7 For Lemmas 7.4 and 7.5, the presence of the + operation is
essential. Consider a term language without + and the logic JNoC− being
JNoC without j+. Let CS be an axiomatically appropriate CS for JNoC−.
There is a NoC CS-subset model M for JNoC−

CS
with a normal world ω such

that
M, ω  s : P ∧ t : ¬P

for some terms s and t and some proposition P .
Hence if we drop the + operation, we can have self consistent reasons with-

out getting reasons that are consistent among them even in the presence of an
axiomatically appropriate constant specification.

Instead of using an axiomatically appropriate constant specification, we
could also add the schema s : ⊤ to JNoCCS in order to derive jd.

Lemma 7.8 Let CS be an arbitrary constant specification. Let JNoC+
CS

be
JNoCCS extended by the schema s : ⊤ for all terms s. We find that

JNoC+
CS

⊢ ¬(t : ⊥) for each term t.

Proof. The following is an instance of axiom noc

¬(t : ⊥ ∧ t : ¬⊥).

Using the definition ⊤ := ¬⊥ and propositional reasoning, we obtain

t : ⊤ → ¬(t : ⊥).

Using t : ⊤ and modus ponens, we conclude ¬(t : ⊥). ✷

8 Remarks

There are two main advantages in using the justification logic framework to
deal with deontic matters. First, one can explicitly track which reasons are
reasons for what and perform operation on them, thus having a higher degree
of accuracy in formal representations of normative reasoning: every obligation
has a source. Puzzles and paradoxes such as Ross’ are very easy to identify and,
under a plausible set-up, disappear. In the present paper we have seen how
justification logic provides a means to keep track of the source of impossible
and inconsistent obligations, thus helping not to conflate the two.

Second, the framework allows for the hyperintensionality of obligation,
namely that logically equivalent contents may not be normatively equivalent.
In general it is not the case that if t : F and F ≡ G, then t : G. This also
ensures a finer-grained formal approach to everyday normative reasoning that
is currently unavailable in more standard approaches.

When we come to the specific topic of the present paper, however, we have
to remark that it is possible to distinguish between ¬O⊥ and ¬(OA ∧ O¬A)
also in some non-normal implicit modal systems, as we noted in Sect. 2, and in
particular in Chellas’ system D (cf. [5,6]), which dispenses with axiom schema
M: O(A ∧B) → OA ∧ OB.
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Chellas minimal monadic deontic logic D builds as usual on PC, adds ¬O⊥
as an axiom, and has rule ROM: A → B/OA → OB. In Chellas’ logic the
collapse is indeed avoided, because ¬(OA ∧ O¬A) is not derivable from ¬O⊥.

How does Chellas’ approach compare to the one developed in the present
paper? Given the apparent similarities, let’s focus on the differences, both tech-
nical and philosophical. Rule ROM could be questioned in a deontic context:
however, this rule is fundamental in Chellas’ system, therefore one cannot ig-
nore it (selectively or not); whereas in a justification logic context we can have a
finer-grained control on which axioms get an “automatic”, as it were, normative
justification, by fine-tuning the constant specification.

Philosophically, we can start from the semantic interpretation of the obli-
gation operator. For Chellas, “OA is true at a possible world just in case the
world has a non-empty class of deontic alternatives throughout which A is true.
The picture is one of possibly empty collections of non-empty classes of worlds
functioning as moral standards: what ought to be true is what is entailed by
one of these moral standards [5, p.24]”. Chellas uses a neighborhood semantics.
A standard, for him, is a collection of propositions. A term, in the context of
the present paper, is instead interpreted as a set of worlds.

Moreover, Chellas’ system is still an implicit modal logic, so it cannot keep
track and reason with the sources of obligations. And indeed this reading
is consistent with Chellas’ intended interpretation of the obligation operator:
What ought to be true is what is entailed by one of these moral standards.
But which? In a justification logic context, for instance, if one wants to retain
Chellas’ ideas to interpret terms as moral standards, one can keep track of
which moral standard requires what.

9 Conclusion

We provided a novel semantics for justification logics with axiom D that does
not require an axiomatically appropriate constant specification, i.e. not every
axiom needs to be justified by a constant. This can be crucial to have more
control on the logic and solve some traditional puzzles such as Ross’. Axiom D
can be formulated in at least two equivalent ways in normal modal logic, either
with inconsistent obligations (¬(OA∧O¬A)) or with one impossible obligation
(¬O⊥). We proved that their explicit versions are interderivable in JD and
JNoC only when the constant specification is axiomatically appropriate. In
particular, our technical results are:

(i) JDCS proves noc for axiomatically appropriate CS and vice versa

(ii) JNoCCS proves jd for axiomatically appropriate CS.

(iii) JDCS proves noc for arbitrary CS only if the language is based on the
Boolean connectives → and ⊥.

(iv) JNoCCS does not prove jd for arbitrary CS.

(v) JNoC−

CS
does not prove jd for axiomatically appropriate CS.

Having more control not only on how to formulate D, but also on how to specify
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the constant specification is philosophically perspicuous: it avoids conflating
impossible and conflicting obligations and can encode why this is the case, e.g.
for conceptual (logical) or contingent reasons.

Recently, it was shown that principle noc is also very useful for analyzing
epistemic situations in the context of quantum physics [26].
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Abstract

Term-modal logic uses modal operators that are indexed with terms of the language,
which allows for quantification over these operators. Term-modal deontic logics
(TMDL) can capture reasoning with rules, directed, and undirected obligations. Us-
ing the rich language of TMDL, we identify different types of deontic conflicts between
directed obligations and describe reasoning in the face of these conflicts. We develop
several monotonic logics in the TMDL family and show that none is capable of cap-
turing all plausible deontic principles, while also being conflict-tolerant. To remedy
this we develop several non-monotonic extensions in the format of adaptive logics.
We end by isolating one of these, TMDL

m, and commenting on it.

Keywords: Conflict-tolerant deontic logic, term-modal logic, first-order, undirected
obligations, directed obligations.

1 Introduction

In deontic reasoning, one often encounters conflicting obligations. These con-
flicting obligations do not always result from conflicting moral theories or legal
systems. Take, for example, the commonly accepted general rule: ‘Doctors
have an obligation to their patients to benefit the health of these patients’. 3

Taken on its own, this rule is perfectly consistent. However, in certain specific

1 stef.frijters@kuleuven.be This paper was written while Stef Frijters held a PhD grant of the
Research Foundation - Flanders on the research project “Towards a more integrated formal
account of actual ethical reasoning, with applications in medical ethics.” (G0D2716N).
2 thijs.deconinck@ugent.be Thijs De Coninck holds a PhD grant fundamental research of
the Research Foundation - Flanders (1167619N).
3 We have a distributive reading of this rule, instead of a collective one. Thus we interpret it
as “Every individual doctor has an obligation to each of their patients to benefit the health
of that patient.” and not as “The group of all doctors have an obligation . . . ” or “Each
doctor has an obligation to the group of all of his/her patients . . . ”. This sentence is also
not meant to be interpreted as a generic sentence.
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situations it can lead to deontic conflicts. Let us illustrate this with an example
loosely based on the Manchester twins case [14,11], summarised by Kaveny: 4

A pair of conjoined twins, known by the pseudonyms of “Jodie” and “Mary,”
were born in Manchester, England, hospital in August 2000. Mary’s heart
and lungs were essentially non-functioning; she was entirely dependent upon
her connection with her stronger sister for survival. But Jodie’s cardiovascu-
lar system could not continue to do the work necessary to support both ba-
bies indefinitely. Physicians predicted that without an operation to separate
the twins, both babies soon would die, probably before their first birthday.
Unfortunately, however, the surgical separation would be able to save only
Jodie. Although likely to need several reconstructive operations, she was
predicted to live a long and virtually normal life once her body was liberated
from the burden of providing life support to her sister. Mary’s fate would be
very different; she was predicted to die in the course of the procedure. [11,
p. 115]

In this specific situation, benefitting Jodie’s health implies performing the
operation, while benefitting Mary’s health implies refraining from it. Both
Jodie and Mary are patients of the same physician. 5 Thus, this physician has
an obligation to Jody to perform the operation, and an obligation to Mary not
to do so: a genuine deontic conflict [7].

We define a deontic conflict as a situation in which multiple obligations hold
that are individually, but not jointly fulfillable. In our example, the physician
can perform the surgery, or she can refrain from it, but she cannot do both.
Thus, these two obligations are individually fulfillable, but not jointly. This
differs from a situation in which one is faced with multiple obligations none of
which is fulfillable. These are excluded by our definition of a deontic conflict.

We can be more precise about the kind of deontic conflict with which the
physician is faced. This is a conflict between directed obligations. A directed
obligation is characterized by the fact that it has both a bearer and a counter-
party. The bearer of an obligation is the person who is (in principle) blamed
if the obligation is not fulfilled. In the Manchester Twins case, the physician
is the bearer of both conflicting obligations. A counterparty is the person to
whom the bearer has the obligation [10,5]. In the Manchester twins case, Jodie
is the counterparty to the directed obligation that the physician has to operate.
Mary is the counterparty to the directed obligation that the physician has to
not operate.

Under normal circumstances, i.e. at least when there are no conflicts, it
is plausible that directed obligations imply undirected obligations. With undi-
rected obligations, we mean obligations that are only tied to a bearer and not
to a counterparty [10,5]. In this paper we consider undirected obligations to be

4 We say that this example is ‘loosely based on’ the case, as the actual case was much more
complicated than this summary suggests [14,11].
5 In reality there was a team of physicians, all responsible for both Jodie and Mary, but we
make abstraction of this.
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action guiding in the sense that they should not offer contradictory demands
[20]. Suppose that a has an obligation toward b to tutor b’s daughter c (as a has
promised b to do so). This directed obligation normally implies the undirected
obligation on the part of a to tutor c. Such an implication is, however, not so
straightforward in cases with a deontic conflict between directed obligations.

In this paper we develop several logics with the aim of capturing reasoning
with possibly conflicting directed obligations. The logics should enable us to
derive conflicts from general premise sets, while at the same time being weak
enough not to trivialize these conflicts. Specifically, we will develop term-modal
deontic logics (TMDL) in the vein of [5], based on the more general framework
of term-modal logics [4].

Term-modal logics are first-order modal logics with modal operators that
are indexed by terms of the language (variables and constants). This allows
one to quantify over (the indexes of) modal operators. In [5], these term-modal
operators are given a deontic interpretation, to allow for the formalisation of
general deontic rules, directed, and undirected obligations. However, the logic
presented in [5] is not conflict-tolerant. To develop conflict-tolerant TMDL,
we will use the neighborhood semantics for term-modal logics developed in [6],
instead of the relational semantics of [4] and [5].

The paper is organised as follows. We begin in Section 2 by setting out
DE, a very weak term-modal deontic logic. In the same section, we also dis-
cuss a number of monotonic extensions of DE. These logics all allow us to
derive directed obligations from more general premises and to capture differ-
ent principles of reasoning with both directed and undirected obligations. The
next section is devoted to deontic conflicts. We distinguish two kinds of con-
flicts between directed obligations and then describe reasoning in the face of
these conflicts. We show that the monotonic logics of Section 2 cannot at the
same time capture all plausible principles, while also tolerating conflicts. To
remedy this, Section 4 is devoted to defeasible versions of two principles of
deontic logic. We show how we can use these to extend the monotonic logics
to non-monotonic adaptive logics [1,2,3,19]. We end the paper by presenting
some avenues of future research (Section 5).

2 A family of monotonic term-modal deontic logics

This section is divided into four subsections. The first of these presents the
formal language that will be used in all of the logics in this article. Section
2.2 is dedicated to a semantic characterization of the weakest logic that we
present: DE. A sound and complete axiomatisation of DE is given in Section
2.3. After this we discuss some other plausible principles of deontic logic and
the ways in which we can extend DE to obtain these.

2.1 The formal language and its interpretation

Let C = {a, b, . . .} be a countable set of constants and V = {x, y, . . .} a count-
able set of variables. We let α, β, α1, . . . range over C and ν, ξ, ν1, . . . over V .
Let T = C ∪ V be the set of terms and let θ, κ, θ1, . . . be the metavariables
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ranging over it. For each n ∈ N, let Pn be a countable set of n-ary predicate
symbols and let P denote the union of all Pn. Note that our language includes
propositional variables, i.c. the 0-ary predicate symbols.

The formal language L is defined by the following Backus-Naur form, where
Π ∈ Pn, θ, κ ∈ T and ν ∈ V :

ϕ ::= Π(θ1, . . . , θn) | θ = κ | ¬ϕ | ϕ ∨ ϕ | Oθϕ | Oθ
κϕ | (∀ν)ϕ | [U]ϕ

The other Boolean connectives are defined in the standard way. Additionally,
(∃ν)ϕ =df ¬(∀ν)¬ϕ, Pθϕ =df ¬Oθ¬ϕ, P

θ
κϕ =df ¬Oθ

κ¬ϕ and 〈U〉ϕ =df ¬[U]¬ϕ.
We will write θ 6= κ instead of ¬(θ = κ). 6

The notions of free and bound variables are as usual, with two additions
(cf. Fitting et al. [4]): (1) The free occurrences of variables in Oθϕ are all free
occurrences of variables in ϕ and in addition θ if θ is a variable, and (2) the free
occurrences of variables in Oκ

θϕ are θ, if θ is a variable, κ, if κ is a variable, and
all free occurrences of variables in ϕ. A wff ϕ is a sentence iff all the variables
in ϕ are bound. Let S be the set of sentences of L.

We interpret Ob
aϕ as the directed obligation ‘a has an obligation towards b

that ϕ’ and Oaϕ as the undirected obligation ‘a has an obligation that ϕ’. We
will only use terms to refer to agents, and not to other objects, such as apples.
In this way we can avoid being able to express sentences such as ‘this apple has
an obligation’.

[U] is a universal modal operator and we interpret [U]ϕ as ‘ϕ is settled
true’. This operator allows us to express more conflicts. As an example, we
can look back at the tutoring case. Here, a had promised b to tutor c, say at
three in the afternoon. As a result, a has an obligation towards b that a tutors
c at three in the afternoon. Suppose that a has also promised their friend d
to meet for an afternoon of playing computer games. The resulting (directed)
obligation conflicts with the obligation that a has towards c, but only because
it is impossible to fulfill both obligations. This is not a logical impossibility,
but for all intents and purposes it is settled true that b does not both tutor c
at three and also meets d for an afternoon of playing computer games. We can
express this with the [U]-operator.

L allows for a great deal of precision. Let Sx be interpreted as ‘x performs
the surgery’. In L we can express that it is obligatory for our physician (a),
to perform the surgery, OaSa, or that she has this obligation towards Jodie
(j), Oj

aSa. L also has the expressive power to formalise sentences where the
agent of the obligatory action is not the bearer of the obligation, such as in
‘it is obligatory for the head of the hospital, b, that someone else performs
the surgery’: Ob(∃x)(x 6= b ∧ Sx). 7 It is also possible to distinguish ‘there is
someone for whom it is obligatory to perform the surgery’, (∃x)OxSx, from ‘it

6 Note that the brackets around (θ = κ) are strictly speaking unnecessary.
7 The sentence ‘it is obligatory for the head of the hospital, b, that someone else performs
the surgery’ should not be confused with ‘it is obligatory for the head of the hospital, b,
that b brings it about that someone else performs the surgery’. In the second sentence the
agent of the obligatory action is also the bearer of the obligation, whereas that is not the
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is obligatory for someone that someone performs the surgery’, (∃x)Ox(∃y)Sy.
Finally, we can express general rules such as the one from the introduction, i.e.
that if x is a patient of y (Pxy), then y has an obligation towards x to benefit
the health of x (Byx): (∀x)(∀y)(Pxy → Ox

yByx).

2.2 DE, the weakest logic

We now present a semantic characterization of DE, the weakest logic in the
TMDL-family. These semantics are based on the neighborhood semantics for
term-modal logics in [6]. A DE-model is a tuple M = 〈W,A, NP , ND, I, wa〉.
W is a state domain, consisting of possible worlds w,w1, . . . and A is an agent-
domain, consisting of agents p, p1, p2, . . .. Both are non-empty and are allowed
to be at most countably infinite. I is an interpretation function. The actual
world wa is used to determine validity in the model (Definition 2.6, this becomes
important in Section 4).

Definition 2.1 A DE-model is a tuple M = 〈W,A, NP , ND, I, wa〉, where:
1. W 6= ∅
2. A 6= ∅
3. NP :W ×A → ℘(℘(W )) is a neighborhood function of M
3.1 for all w ∈ W and p ∈ A: if X ∈ NP (w, p) and X ⊆ Y ⊆ W , then

Y ∈ NP (w, p)
3.2 for all w ∈W and p ∈ A: W ∈ NP (w, p)
3.3 for all w ∈W and p ∈ A: ∅ /∈ NP (w, p)
3.4 for all w ∈W and p ∈ A: if X,Y ∈ NP (w, p), then X ∩ Y ∈ NP (w, p)
4. ND :W ×A×A → ℘(℘(W )) is a neighborhood function of M
4.1. For all w ∈W and p1, p2 ∈ A: ∅ /∈ ND(w, p1, p2)
5. I is an interpretation function such that:
5.1. I : T → A
5.2. I : Pn ×W → ℘(An) for every natural number n ∈ N such that 1 ≤ n
5.3. I : P0 → ℘(W )
6. wa ∈W .

The neighborhood function NP assigns to each world-agent pair a set of
propositions that are obligatory for this agent (each proposition being a set
of worlds). This will be used to interpret the undirected obligation operator.
NP has a number of conditions. The first of these ensures inheritance: if a
proposition is obligatory, then what necessarily follows from this proposition
will also be obligatory. The second condition ensures that what is necessary is
obligatory, and the third ensures that what is impossible cannot be obligatory.
The final condition corresponds to aggregation: if two propositions are obliga-
tory, then their conjunction is obligatory as well. Taken together, this means

case in the first sentence. That obligations exist where the bearer is not the agent of the
obligatory action has been argued in [5,12,10]. To properly express the second sentence,
we could extend our language with a term-modal ‘bring it about’-operator. The technical
results in [6] combined with the neighborhood semantics of [9] allow one to give a sound and
complete logic for this extended language. However, since this extension is not essential for
what follows, we leave a development of this approach for future work.
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that the undirected obligation operator behaves in much the same way as the
obligation operator of standard deontic logic.

The neighborhood function ND assigns to every triple consisting of a world
and two agents a set of propositions that are obligatory for the first agent
towards the second agent. Condition 4.1. ensures that what is obligatory, is
also possible. The reason for this condition is that we do not want the logic
to model unfulfillable directed obligations. We defined a conflict as a situation
in which multiple (directed) obligations hold that can each be individually
fulfilled, but which are not jointly fulfillable. The ought-implies-can principle
for directed obligations that is expressed by condition 4.1. ensures that all
directed obligations can indeed be individually fulfilled.

To interpret quantifiers, we define ν-alternatives, before we give the
semantic clauses. As usual, for any ϕ ∈ L and DE-model M =
〈W,A, NP , ND, I, wa〉, JϕKM =df {w ∈W |M,w � ϕ}.

Definition 2.2 [ν-alternative] For any ν ∈ V , M ′ = 〈W,A, NP , ND, I ′, wa〉 is
a ν-alternative to M = 〈W,A, NP , ND, I, wa〉 iff I ′ differs at most from I in
the member of A that I ′ assigns to ν.

Definition 2.3 [Semantic Clauses] For any DE-model M =
〈W,A, NP , ND, I, wa〉:
SC1 M,w |= P (θ1, . . . , θn) iff 〈I(θ1), . . . , I(θn)〉 ∈ I(P,w)
SC1’ M,w |= P iff w ∈ I(P )
SC2 M,w |= ¬ϕ iff M,w 6|= ϕ
SC3 M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ
SC4 M,w |= θ = κ iff I(θ) = I(κ)
SC5 M,w |= Oθϕ iff JϕKM ∈ NP (w, I(θ))
SC6 M,w |= Oκ

θϕ iff JϕKM ∈ ND(w, I(θ), I(κ))
SC7 M,w |= (∀ν)ϕ iff for every ν-alternative M ′: M ′, w |= ϕ
SC8 M,w |= [U]ϕ iff M,w′ |= ϕ for all w′ ∈W .

In the following three definitions we define semantic consequence, validity
and validity in a model. In this last definition, we use the actual world.

Definition 2.4 Where Γ ⊆ S and ϕ ∈ S, ϕ is a semantic consequence of
Γ, Γ  ϕ, iff for every DE-model M = 〈W,A, NP , ND, I〉 and w ∈ W : if
M,w |= ψ for all ψ ∈ Γ, then M,w |= ϕ.

Definition 2.5 Where Γ ⊆ S and ϕ ∈ S, DE validates ϕ iff for every DE-
model M = 〈W,A, NP , ND, I, wa〉 and w ∈W : M,w |= ϕ.

Definition 2.6 Where ϕ ∈ S, ϕ is valid in a model M , M |= ϕ, iffM,wa |= ϕ

2.3 Axiomatisation of DE

A sound and strongly complete axiomatisation of DE is obtained by closing a
complete axiomatisation of classical propositional logic (CL) with all instances
of the axiom schemata in Table 1 under the rules of Table 2. 8 ϕ(θ/κ) is

8 Soundness and completeness follow from previous results in [6]. See also [4,17,5].
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the result of replacing all free occurrences of κ in ϕ by θ, relettering bound
variables if necessary to avoid rendering new occurrences of θ bound in ϕ(θ/κ).
ϕ(θ//κ) is the result of replacing various (not necessarily all or even any) free
occurrences of θ in ϕ by occurrences of κ, again relettering if necessary [18, p.
57].

(UK) [U](ϕ→ ψ) → ([U]ϕ→ [U]ψ) (UI) (∀ν)ϕ→ ϕ(α/ν)
(UT) [U]ϕ→ ϕ (REF) α = α
(U5) 〈U〉ϕ→ [U]〈U〉ϕ (SUB) (α = β) → (ϕ→ ϕ(α//β))
(UBF) (∀ν)[U]ϕ→ [U](∀ν)ϕ (ND) α 6= β → [U]α 6= β

(DREU) (Oβ
αϕ ∧ [U](ϕ↔ ψ)) → Oβ

αψ
(DIC) Oβ

αϕ→ 〈U〉ϕ
(PK) Oα(ϕ→ ψ) → (Oαϕ→ Oαψ)
(PIC) Oαϕ→ 〈U〉ϕ
(PN) [U]ϕ→ Oαϕ

Table 1
Axiom schemata

(MP) if ϕ→ ψ and ϕ, then ψ
(UG) if ⊢ ϕ→ ψ(α/ν) and α not in ϕ or ψ, then ⊢ ϕ→ (∀ν)ψ.

(UNEC) if ⊢ ϕ, then ⊢ [U]ϕ

Table 2
Rules

There is little that is surprising in this axiomatisation. [U] is an S5-operator,
Oα is a normal modal operator satisfying the ought-implies-can principle and
Oβ

α is a classical modal operator with the ought-implies-can principle. The other
schemes are familiar from first-order modal logic. What might be surprising
is that we do not have the Barcan formula for the obligation-operators even
though we work with a constant domain semantics. This is a result of using
neighborhood semantics instead of relational semantics [6].

2.4 Some further principles for the directed obligation operator

In this section we discuss four more logical principles for the directed obligation
operator: (DP), necessitation, inheritance and aggregation. Standard deontic
logic (SDL) satisfies the last three, but each of these can also be given up
(see for example [19]). By adding any combination of the four conditions to
Definition 2.1, we can define extensions of DE. We do so in Table 3 on page
175. The first column gives the name of the logic, the next four columns the
conditions that it satisfies.

As we stated in the introduction, under normal circumstances directed and
undirected obligations are related to each other in a natural way. If a has
towards b a directed obligation to tutor c, then a has an undirected obligation
to tutor c. This principle, stating that directed obligations imply undirected
obligations, will be called (DP): Oβ

αϕ → Oαϕ. We can validate it easily by
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adding the following condition (that we call (dp)): for all w ∈ W , p1, p2 ∈ A
and X ⊆W : if X ∈ ND(w, p1, p2) then X ∈ NP (w, p1).

Necessitation is the principle that anything that is settled true, is also oblig-
atory: [U]ϕ → Oβ

αϕ. We can validate it by adding the condition (n) to our
models: for all p1, p2 ∈ A and w ∈W : W ∈ ND(w, p1, p2).

Inheritance is the principle: Oβ
α(ϕ ∧ ψ) → (Oβ

αϕ ∧ Oβ
αψ). It is validated

by models satisfying the condition (m): for all w ∈ W and p1, p2 ∈ A, if
X ∈ ND(w, p1, p2) and X ⊆ Y ⊆ W , then Y ∈ ND(w, p1, p2). Note that any
models satisfying condition (m) also validates the principle that we will call
inheritance∗: (Oβ

αϕ ∧ [U](ϕ→ ψ)) → Oβ
αψ.

Finally, aggregation (between directed obligations with the same bearer)
says that if ϕ and ψ are obligatory, then their conjunction is also obligatory:
(Oβ

αϕ∧Oβ
αψ) → Oβ

α(ϕ∧ψ). It corresponds to the condition (c): for all w ∈W ,
p1, p2 ∈ A and X,Y ∈ ND(w, p1, p2), X ∩ Y ∈ ND(w, p1, p2).

3 Deontic conflicts

We distinguish two different types of conflicts between directed obligations,
before discussing the kind of reasoning that is employed when encountering
such conflicts.

3.1 Types of deontic conflict

In the introduction we distinguished deontic conflicts from situations in which
an impossible proposition is obligatory. We see a deontic conflict as a situation
in which two or more obligations hold that are not jointly fulfillable, but neither
of which is impossible to fulfill on its own. In the Manchester twins case, the
doctor has an obligation towards Jodie to perform the surgery, and another
obligation towards Mary not to perform the surgery. In this article, we focus
on such conflicts between directed obligations with the same bearer.

We distinguish two kinds of deontic conflicts between directed obligations
with the same bearer: bilateral and multilateral conflicts. Multilateral conflicts
are conflicts between directed obligations with distinct counterparties (for ex-
ample {Ob

aQa,O
c
a¬Qa} or {Ob

aPa,O
b
aQa,O

c
a¬(Qa ∧ Pa)} in a context where

b 6= c). In the Manchester twins case there is such a multilateral conflict:
Mary is the counterparty of one obligation, and Jodie of the other obligation.
Bilateral conflicts are conflicts where all the obligations involved are directed
and where the counterparty is the same for all those obligations (for example
{Ob

aQa,O
b
a¬Qa}).

9

Consider the following case of a bilateral conflict: A patient w with cystic
fibrosis is in need of a life-saving blood transfusion by doctor b. However, w
is a Jehovah’s witness, and refuses the transfusion on religious grounds [15,
pp. 34-35]. The same general rule holds as in the Manchester twins case:
‘Doctors have an obligation to their patients to benefit the health of these

9 In this paper we will not consider conflicts between directed obligations with different
bearers, but it is possible to make analogous constructions for these.



174 The Manchester Twins: Conflicts Between Directed Obligations

patients’. From this rule and the information at hand it follows that ‘Doctor b
has an obligation towards w to administer a blood transfusion to w’. However,
this time there is also a second rule in play: ‘Doctors have an obligation to
their patients to respect the autonomy of these patients’. Since patient w
refuses a blood transfusion, respecting the autonomy of w necessarily implies
not administering a blood transfusion to w. Hence, b is faced with a bilateral
conflict: b has an obligation towards w to administer the blood transfusion, and
b has another obligation towards w not to administer the blood transfusion.

Not every conflict is a conflict between the obligatoriness of a proposition
and its negation. Sometimes, as in the tutoring and gaming example above,
the incompatibility of obligatory propositions is not due to logical impossibility,
but due to contingent circumstances. We can use the [U]-operator to express
that two propositions are mutually incompatible. At other times, we will have
conflicts between three or more obligations, e.g. {Oa

d(P ∨ Q),Ob
d¬P,O

c
d¬Q}.

Finally, it is also possible to have existentially quantified formulas as part of a
conflict. Thus, we consider (∃x)(Oa

xPx ∧ Ob
x¬Px) to be a multilateral conflict

as well.
Premise sets will usually not explicitly contain formulas that fit neatly into

the definition of deontic conflicts above. Instead, we have to deduce these by
means of deontic reasoning. In the Manchester twins case, the premises are:
(1) all doctors have an obligation to their patients to benefit the health of these
patients, (2) Jodie and Mary are patients of physician a, (3) it is necessary that
if physician a acts to benefit Jodie, then she does perform the surgery and (4)
if physician a acts to benefit Marie, then she does not perform the surgery. We
can express these premises in the language as follows:

(i) (∀x)(∀y)(Pxy → Ox
yByx)

(ii) Pja ∧ Pma

(iii) [U](Baj → Sa)

(iv) [U](Bam→ ¬Sa)

No combination of these formulas fits the definition of a deontic conflict. We
need a logic that is strong enough to derive a conflict from such a premise
set, but does not lead to triviality once it does so. DE allows us to derive
the conflict {Oj

aBaj,O
m
a ¬Bam,¬〈U〉(Baj ∧Bam)} (by (UI), (MP), (UK) and

(UNEC)). 10

3.2 Reasoning in the face of deontic conflicts

When we are faced with a deontic conflict, we do not throw our hands up in the
air and forego any further reasoning. We also do not conclude that everything
is suddenly obligatory. This leads us to our first desideratum: deontic conflicts
should not be trivialized. This means that if we have a deontic conflict in our
premises, we should not be able to derive ⊥.

10With any of the logics in Table 3 that validate inheritance, we can derive {O
j
aSa,O

m
a ¬Sa}

as well.
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Any extension of DE that validates aggregation trivialises bilateral con-
flicts. Consider, for example, the premise set {Ob

aQa,O
b
a¬Qa}. By aggrega-

tion, we can derive Ob
a(Qa∧¬Qa). By the ought-implies-can principle, we can

derive 〈U〉(Qa ∧ ¬Qa). By CL and the S5 properties of [U], we derive ⊥.
When an extension of DE validates (DP), then it tolerates none of the

conflicts identified above. From a conflict between directed obligations, we can
derive a conflict between undirected obligations. Since Oα is a normal modal
operator, DE trivialises such conflicts.

Name (m) (c) (n) (dp) bilateral multilateral

DE X X

DM x X X

DC x X

DR x x X

DN x X X

DMN x x X X

DCN x x X

DK x x x X

DE+DP x
DM+DP x x
DC+DP x x
DR+DP x x x
DN+DP x x

DMN+DP x x x
DCN+DP x x x
DK+DP x x x x

Table 3
The different monotonic logics

However, there are other possible desiderata than conflict-tolerance that we
must take into account. For obligations that are not tainted by conflicts we
want to be able to apply all the principles from Section 2.4 that we deem to
be plausible. However, since (DP) and aggregation are incompatible with a
logic that is conflict-tolerant, this means that we need defeasible versions of
these principles. 11 If we find the principle (DP) plausible, then we should, for
example, be able to derive OaQa from {Ob

aQa} or from {Ob
aQa,O

c
aPa,O

d
a¬Pa},

but not from {Ob
aQa,O

b
a¬Qa}. Similarly, if one finds aggregation of directed

obligations plausible, but also wants the logic to be conflict-tolerant, then one
would want to be able to derive Ob

a(Qa ∧ Pa) from {Ob
aQa,O

b
aPa}, but not

Ob
a(Qa ∧ ¬Qa) from {Ob

aQa,O
b
a¬Qa}. This is the second desideratum.

11This kind of problem is typical for the type of solution to normative conflicts that we
propose here. Goble notes the same problem for conflict-tolerant variants of SDL [7, p. 297]:
if the logic is weak enough to be conflict-tolerant, then it does not validate all principles of
SDL, and if the logic does validate all principles of SDL, then it is not conflict-tolerant.
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Finally, we should note that we do not want conflicts between undirected
obligations to be derivable from conflicting directed obligations. In this paper
we are only concerned with conflicts between directed obligations. Our undi-
rected obligations should be action guiding in the sense that they should not
offer contradictory demands [20]. All undirected obligations of an agent should
be jointly fulfillable. Therefore we are only concerned with logics that satisfy
ought-implies-can and aggregation for undirected obligations.

4 Adaptive extensions

The principles (DP) and aggregation seem incompatible with tolerating the
conflicts between directed obligations. Nevertheless, one can argue that these
principles are plausible for obligations not involved in a conflict (cf. the second
desideratum). In this section we develop adaptive logics that take this idea into
account. These logics allow us to apply (DP) or aggregation in unproblematic
cases, but block the application of the same principles for obligations that are
in conflict. 12

In Section 4.1 we explain the basic ideas of adaptive logics, using a toy logic.
Section 4.2 sets out two problems with this toy logic. The last two sections,
4.3 and 4.4, develop adaptive logics based on the conflict-tolerant logics that
were presented in Section 3, while taking the two problems of the toy logic into
account.

4.1 Adaptive logic, a toy example

To explain adaptive logics, we will use a running toy example of such a logic.
The motivating idea behind this toy logic is that we would like to have a logic
where the principle (DP) is blocked only in case the obligations involved are in
conflict with other obligations. For example, we should be able to derive Oaϕ
from {Ob

aϕ}, but not from {Ob
aϕ,O

c
a¬ϕ}. In this last premise set, Ob

aϕ is part
of a conflict and so applying (DP) would lead to triviality.

Our toy logic uses the standard format of adaptive logics [19]. Every logic
in the standard format is defined by a lower limit logic (LLL), a set of abnor-
malities and an adaptive strategy. For our present purposes the LLL can be
any of the logics in Table 3 that does not validate (DP). The adaptive logic
validates all of the valid formulas of the LLL, so taking a logic that validates
(DP) as LLL will result in an adaptive logic that does not block (DP) in any
circumstance. For this toy example, we will use DK as the LLL.

Abnormalities are those formulas that we want the logic to falsify as often
as possible. How this ‘as often as possible’ is interpreted exactly is determined
by the adaptive strategy. In our case we want all negations of instances of
(DP) to be falsified as long as this does not lead to triviality. So we use
Ω = {Oβ

αϕ ∧ ¬Oαϕ | α, β ∈ C and ϕ ∈ L} as the set of abnormalities.

12The main advantage of adaptive logic over other non-monotonic formalisms is that adaptive
logics (in the standard format) give us a dynamic proof theory [19, p. 528]. This dynamic
proof theory “explicates the dynamics of defeasible reasoning” [16, p. 9]. (Another advantage
is the transparent handling of premise sets [16, pp. 87-88].)
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For all logics in this section, including our toy logic, we will use the adaptive
strategy known as ‘minimal abnormality’ [19]. To explain this strategy, we first
need some preliminary definitions. We say that a model M is a model of Γ iff
for all ϕ ∈ Γ, M |= ϕ. For any model M , Ab(M) =df {ϕ | ϕ ∈ Ω and M |= ϕ}.

Definition 4.1 An LLL-model M of Γ is minimally abnormal iff there is no
LLL-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

The models of our adaptive logic are those models of the LLL that are
minimally abnormal. Take our toy logic and the premise set {Ob

aQ}. There are
DK models M of this premise set such that Ab(M) = ∅. In all of these models
M |= OaQ (otherwise Ob

aQ ∧ ¬OaQ ∈ Ab(M) and thus Ab(M) 6= ∅). Hence,
OaQ is a semantic consequence of {Ob

aQ} in our toy logic. However, if we take
the premise set {Ob

aQ,O
b
a¬Q}, then for all LLL-models M : M |= Ob

aQ∧¬OaQ
or M |= Ob

a¬Q ∧ ¬Oa¬Q. So OaQ is not a consequence of this premise set.
The standard format of adaptive logic also gives us a proof theory, and

soundness and completeness for our adaptive logic. Due to space constraints
we will not elaborate on this here. Instead, we refer interested readers to [19].

4.2 Two problems with the toy logic

In the previous section, we presented a toy logic that gives us an adaptive
version of (DP). In this section, we present two problems of this toy logic.
Then, in the next section, we will present an adaptive logic that solves these
problems.

The first problem with the toy logic is that it is what adaptive logicians call
a flip-flop. An adaptive logic is a flip-flop iff, for all premise sets from which
an abnormality is derivable, the formulas that are derivable with the adaptive
logic are the same as those derivable with the LLL [19]. In other words, in the
presence of an abnormality, the adaptive logic collapses into the LLL.

To illustrate this, let us take the premise set {Ob
aPa,O

c
a¬Pa,O

d
aQa} as an

example. Here there is a conflict between the obligations that a has towards
b and c. So we would want to block the derivation of OaPa and Oa¬Pa.
However, Od

aQa is unproblematic and so we do want OaQa to be derivable.
Sadly, this is impossible in the toy logic. To see this, consider the follow-

ing three abnormalities: Ob
a(Pa ∨ ¬Qa) ∧ ¬Oa(Pa ∨ ¬Qa), Oc

a(¬Pa ∨ ¬Qa) ∧
¬Oa(¬Pa ∨ ¬Qa) and Od

aQa ∧ ¬OaQa. Each minimally abnormal model val-
idates at least one of these abnormalities and every one of these formulas is
validated in at least one of the minimally abnormal models. Since the last
formula is validated in some minimally abnormal models, one cannot derive
OaQa in the toy logic.

A second problem with the abnormalities of the toy logic can be illustrated
by taking as a premise set {(∃x)Oa

xPb}. From this, we would want to be
able to derive (∃x)OxPb. However, there are minimally abnormal models of
{(∃x)Oa

xPb} that do not validate {(∃x)OxPb}.
Take, for instance, a DK-model M = 〈W,A, NP , ND, I, wa〉 where W =

{wa, wb, wc} and A = {p1, p2}. For every w ∈ W and p ∈ A, let NP (w, p) =
{wc}. Let ND(wa, p1, p2) = {wb} and for every 〈w, p, p′〉 ∈ {〈w, p, p′〉 | w ∈
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W and p, p′ ∈ A} \ 〈wa, p1, p2〉, let N
D(w, p, p′) = {wc}. Let I be such that

for all θ ∈ T , I(θ) = p2, I(P,wb) = {p2} and I(P,w1) = I(P,w2) = ∅. M
validates (∃x)Ob

xPb∧¬(∃x)OxPb, but this formula is not an abnormality. M is
a minimally abnormal model of {(∃x)Oa

xPb} and does not validate (∃x)OxPb,
thus we cannot derive this in our toy logic.

4.3 Adaptive (DP)

The problem of flip-flops is well-known in the study of adaptive logics. We can
use the following solution, taken from [13]. 13

Let La be the literals in L. Where Θ ⊆ La is finite and non-empty, we
define σκ

θ (Θ) as follows:

σκ
θ (Θ) =df {O

κ
θ (
∨

Θ′) ∧ ¬Oθ(
∨

Θ′) | Θ′ ⊆ Θ and Θ′ 6= ∅}

We define the set of abnormalities, ΩI , as follows:

ΩI =df {
∨

(σβ
α(Θ)) | Θ ⊆ La,Θ 6= ∅,Θ is finite and α, β ∈ C}

This approach gets rid of our flip-flop problem. Recall our example premise
set from above: {Ob

aPa,O
c
a¬Pa,O

d
aQa}. We could not derive OaQa, since there

were minimally abnormal models validating Ob
aQa ∧ ¬OaQa, as every model

validated at least one of Ob
a(Pa ∨ ¬Qa) ∧ ¬Oa(Pa ∨ ¬Qa), Oc

a(¬Pa ∨ ¬Qa) ∧
¬Oa(¬Pa ∨ ¬Qa) and Od

aQa ∧ ¬OaQa. However, with the new definition of
abnormalities, the first two of these three formulas are no longer abnormalities,
while the last still is. Thus, models that validate Ob

aQa∧¬OaQa are no longer
minimally abnormal. Hence, we can derive OaQa.

The second problem with the abnormalities of the toy logic (that is not
solved by taking ΩI as abnormalities) was illustrated by the premise set
{(∃x)Oa

xPb}. From this, we would want to be able to derive (∃x)OxPb. How-
ever, there are minimally abnormal models of {(∃x)Oa

xPb} that do not validate
{(∃x)OxPb}. To solve both the first and second problem of the toy logic, we
define the following two sets of abnormalities:

Ω1 =df {(∃ν)
∨

(σν
α(Θ)) | Θ ⊆ La,Θ 6= ∅,Θ is finite, α ∈ C and ν ∈ V }

Ω2 =df {(∃ν)(∃ξ)
∨

(σξ
ν(Θ)) | Θ ⊆ La,Θ 6= ∅,Θ is finite and ν, ξ ∈ V }

Let ΩDP = Ω1 ∪ Ω2. Models that validate {(∃x)Oa
xPb}, but not {(∃x)OxPb}

are no longer minimally abnormal with these new abnormalities. Hence,
{(∃x)OxPb} is derivable.

If we had taken only Ω2 as our set of abnormalities, then we could not
derive Oaϕ from {Ob

aϕ}, but only (∃x)Oxϕ. By taking only Ω1, we run into the
opposite problem: not being able to derive (∃x)Oxϕ from {(∃x)Oa

xϕ}. Thus,
we need the union of both.

13See also [8,19].
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Taking the set ΩDP as the abnormalities solves both problems. We can use
this set to get a defeasible form of (DP) for any of the logics in Table 3 that
do not validate (DP). We simply take the selected monotonic logic from Table
3 as LLL, ΩDP as the set of abnormalities and minimal abnormality as the
strategy. Each of these logics is tolerant to the same conflicts as its LLL, but
is stronger than its LLL. In particular, it satisfies the second desideratum for
(DP): when there are no conflicts, then we are able to apply (DP).

4.4 Adaptive aggregation

To satisfy desideratum 2 for aggregation of directed obligations, we need an
adaptive form of this aggregation. A first suggestion might be to use as abnor-
malities the set of all formulas of the form Oβ

αϕ∧Oβ
αψ∧¬Oβ

α(ϕ∧ψ). However,
this leads to similar problems as the two we identified in Section 4.2. Luckily,
the solution of these problems is analogous to those presented in Section 4.3
for the adaptive form of (DP).

Again let La be the literals in L and let Θ ⊆ La be finite and non-empty.

τκθ (Θ,K) =df {O
κ
θ (
∨

Θ′) ∧O
κ
θ (
∨

K ′) ∧ ¬Oκ
θ (
∨

Θ′ ∧
∨

K ′) | Θ′ ⊆ Θ,K ′ ⊆ K

and Θ′,K ′ 6= ∅}

Ω1
C =df {

∨

(τβα (Θ)) | Θ ⊆ La,Θ 6= ∅,Θ is finite and α, β ∈ C}

Ω2
C =df {(∃ν)(∃ξ)

∨

(τ ξν (Θ)) | Θ ⊆ La,Θ 6= ∅,Θ is finite and ν, ξ ∈ V }

Ω3
C =df {(∃ν)

∨

(τβν (Θ)) | Θ ⊆ La,Θ 6= ∅,Θ is finite, ν ∈ V and β ∈ C}

Ω4
C =df {(∃ν)

∨

(τνα(Θ)) | Θ ⊆ La,Θ 6= ∅,Θ is finite, α ∈ C and ν ∈ V }

ΩC =df Ω
1
C ∪ Ω2

C ∪ Ω3
C ∪ Ω4

C

The flip-flop problem would already have been solved by only taking Ω1
C as

our set of abnormalities. This solution is analogous to the one in [13, p. 10]
and can be seen as an adaptation to aggregation of the solution to the flip-flop
problem in Section 4.3.

To solve the second problem we need all four of Ω1
c-Ω

4
C . Without Ω4

c we
would not be able to derive (∃x)Ox

a(Pa ∧ Qa) from {(∃x)(Ox
aPa ∧ Ox

aQa},
i.e. we would not be able to apply aggregation to formulas with existential
quantification over the counterparty. Similarly, without Ω3

C we would not be
able to apply aggregation to formulas with existential quantification over the
bearer, without Ω2

C we would have trouble with existential quantification over
both the bearer and the counterparty, and without Ω1

C we would have problems
with formulas without existential quantification.

Now we can take any of the monotonic logics from Table 3 that do not
validate aggregation for directed obligations and use this logic as the LLL
of an adaptive logic. We take ΩC as the set of abnormalities and minimal
abnormality as the strategy. The resulting adaptive logic satisfies desideratum
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2 for aggregation and does not suffer from the two problems from Section 4.2.
In addition, it is tolerant to the same conflicts as its LLL.

Let us illustrate that desideratum 2 is satisfied by taking DMN as the LLL.
If we take as premises the set {Ob

aQa,O
b
aPa}, then we can derive Ob

a(Qa∧Pa).
Any models that do not validate Ob

a(Qa ∧ Pa) are not minimally abnormal,
as they validate the abnormality Ob

aQa,∧O
b
aPa ∧ ¬Ob

a(Qa ∧ Pa). Similarly,
from {Ob

aQa,O
b
aPa,O

c
a¬Pa} we can derive Ob

a(Qa ∧ Pa). All models of the
premise set that do not validate Ob

a(Qa ∧ Pa), do validate the abnormality
Ob

aQa ∧ Ob
aPa ∧ ¬Ob

a(Qa ∧ Pa) and are therefore not minimally abnormal. 14

4.5 Combining adaptive (DP) and aggregation

We can also combine adaptive aggregation and adaptive (DP). Take as LLL
any logic from Table 3 that does not validate (DP) nor aggregation for directed
obligations, take as abnormalities ΩC ∪ΩDP and as a strategy minimal abnor-
mality. The resulting logic is tolerant to both kinds of conflicts (as its LLL is
tolerant to both) and satisfies desideratum 2 for both aggregation and (DP).
We consider for a moment the strongest of these logics, the one with DMN as
its LLL. For ease of reference, we will call it TMDLm.

Imagine an extension of the Manchester Twins case where it is necessary
for performing the surgery to prepare surgical equipment, [U](Sa→ Ea). With
TMDLm we can derive from this and the premises (i)-(iv) from Section 3.1 that
a has an obligation towards Jodie to prepare the surgical equipment: By (UI)
and (MP), we can derive Oj

aBaj from (i). By two applications of inheritance∗

(see Section 2.4), we first derive Oj
aSa and then Oj

aEa. This seems appropriate
for cases of multilateral conflicts where it is not clear which obligation (if any)
should be given up. When there is only a multilateral conflict, then we can still
derive the obligations that the bearer has towards each counterparty. However,
when we decide for some extra-logical reason that the obligation not to perform
the surgery prevails, then we might no longer be willing to make this derivation.

5 Conclusion

In this article we distinguished bilateral and multilateral conflicts. We devel-
oped a number of monotonic extensions of the term-modal deontic logic DE,
and showed which of these tolerate what kinds of conflicts. We then noted
that none of the conflict-tolerant extensions validate aggregation of directed
obligations with the same bearer, or the derivation of undirected obligations
from directed obligations. They did not even validate these for obligations that
were not involved in any conflict. Since these principles are arguably plausi-
ble, we developed defeasible versions of (DP) and aggregation. This allows us
to construct non-monotonic logics that validate these principles as much as
possible.

All of this gives us a broad range of logics that tolerate bilateral and mul-
tilateral conflicts. Whatever combination of the principles discussed in Section

14Naturally, any logics whose LLL validates (DP) will trivialise this last premise set.
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2.4 one finds plausible can be used to construct a conflict-tolerant logic. If one
finds inheritance, necessitation, both or neither plausible, then one can use the
conflict-tolerant logic in Table 3 that validates exactly these principles. If, in
addition, one finds aggregation, (DP) or both plausible, then one can add these
as defeasible principles, as was described in Section 4. We see this as the main
result of the present paper.

This opens the door to different avenues of future research. One can also
consider conflicts between directed or undirected obligations with different
bearers. Another option is to involve impersonal obligations, i.e. obligations
not tied to any bearer or counterparty. One could ask whether, in a conflict be-
tween an impersonal obligation and an undirected obligation, one of the kinds
prevails over the other.

It is also possible to consider more involved formalisations of general rules,
based on a more in depth account of conditional obligations. For this article
we have used the material implication to interpret both general rules and con-
ditional obligations. However, this does not take into account the possibility
of exceptions to general rules, nor the problem of contrary-to-duty obligations.
Integrating a richer account of conditional obligations with term-modal deontic
logics might open the way to different conflict-tolerant deontic logics. This is
especially interesting in conjunction with a point made in Section 4.5, that in
the case of a multilateral conflict, TMDLm allows one to derive the obligations
of every bearer-counterparty pair as if there was no conflict. 15
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Abstract

This paper introduces a system of deontic logic based on the idea that obligations
are grounded on reasons. A reason-based deontic system is worth considering for at
least three reasons: it may shed light on the way in which obligations are generated;
it allows us to cope with conflicts between reasons while avoiding conflicts between
obligations; finally, it may help us to assess the question as to whether standard
deontic logic is appropriate to model basic deontic reasoning. The system I propose
is developed in a framework that combines standard and neighborhood semantics and
it is proved to be sufficiently powerful to represent ordinary deontic reasoning and to
successfully address some significant problems in deontic logic.

Keywords: practical reasons, pro tanto obligations, all things considered obligations.

1 Introduction

The aim of this paper is to develop a modal system of deontic logic based on
the idea that consistent obligations are grounded on possibly inconsistent rea-
sons. 1 This project, whose significance is due to the prominent role currently
attributed to reasons in the study of normative concepts and normative sys-
tems, 2 has to address two general issues: (i) from the philosophical side, to
devise what basic principles about reasons are to be assumed to deduce consis-
tent oughts without incurring in counter-intuitive consequences; (ii) from the
logical side, to construct a system of deontic logic characterized by those prin-
ciples in a suitable semantic framework. These issues are taken into account
in the following three sections. In section 2 the basic principles underlying the
system are proposed, as emerging from the recent debate on the connections
between reasons and obligations. In section 3, after having characterized the
system both from a semantic and from an axiomatic point of view, it is shown
that it can be exploited to solve some interesting deontic problems and that it

1 The notions of reason and obligation we will cope with are the notions of pro tanto objective
normative reason and pro toto objective normative obligation [7, ch.1 and ch.4].
2 See [7], [19, part I], [20, ch.1], [21, ch.4], and [22, ch.4] for extensive and insightful presen-
tations of the topic. See [25, especially part III and V] for an up-to-date discussion of the
structure and the role played by reasons in practical argumentation and deliberation.
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enables us to vindicate standard deontic logic as the logic of basic deontic rea-
soning. In the final section two recent accounts, similar in scope, are considered
and compared with the present one, and it is shown that the basic intuitions
on which those accounts rely can be appropriately interpreted in it.

2 Intuitive principles

We want to be able to capture basic forms of deontic reasoning involving connec-
tions between reasons and obligations. In this respect, two inference schemata
are considered as highly desirable in the literature [11,16,17]: a schema for im-
plicative reasoning (IR) and a schema for disjunctive reasoning (DR). These
schemata can be shown to be valid if we assume two intuitive principles concern-
ing why certain reasons follow from the presence of other reasons: Consistent
Closure and Consistent Conjunction. However, the assumption of these princi-
ples generates a problem of deontic explosion. What we want is then a system
of deontic logic enabling us both to derive IR and DR, given an appropriate
interpretation of Consistent Closure and Consistent Conjunction, and to avoid
undesired consequences. 3 The idea underlying the system here developed is
that obligations are based on reasons, which are distinguished into three kinds:
basic reasons, which are the central elements of deontic reasoning; combined
reasons, which allow for a principle of Consistent Conjunction, but are not
closed under consistent closure; and derivative reasons, which allow for a prin-
ciple of Consistent Closure, but are not closed under consistent conjunction.
As we will see, in such system, besides solving paradigmatic cases of deontic
dilemmas, we can derive specific versions of IR and DR (theorem 3.15 below),
while avoiding explosions (theorem 3.13 below).

Let us begin with presenting IR and DR. Let a be a generic agent.

(i) Implicative reasoning (IR):
(a) it is obligatory for a to do φ;
(b) φ entails ψ;
(c) therefore, a has a reason to do ψ.

(ii) Disjunctive reasoning (DR):
(a) it is obligatory for a to do φ ∨ ψ;
(b) a has a reason to do ¬φ;
(c) therefore, a has a reason to do ψ.

Both kinds of reasoning are acceptable, provided we assume that obligations are
based on reasons and that some intuitive closure principles concerning reasons
are logically valid. Specifically, as to IR, suppose that obligations are based
on reasons and that it is obligatory for a to do φ; then a has a reason to do φ;
thus, if having a reason to do φ implies having a reason to do all that φ entails,
then a has a reason to do ψ. Similarly, as to DR, suppose that obligations are
based on reasons and that it is obligatory for a to do φ∨ψ; then a has a reason

3 See [16] for an exposition of the current debate and an analysis of the analogies between
cases of conflicting reasons and cases of conflicting obligations.
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to do φ ∨ ψ; thus, if a has a reason to do ¬φ and having reasons to do two
conjuncts implies having a reason to do the conjunction, then a has a reason
to do (φ ∨ ψ) ∧ ¬φ; hence, if having a reason to do something entails having a
reason to do all that is entailed by that thing, a has a reason to do ψ.

In sum, if we allow for principles like:

(Closure) if ψ is a necessary condition of φ, then having a reason to do φ
implies having a reason to do ψ;

(Conjunction) having a reason to do φ and having a reason to do ψ implies
having a reason to do φ ∧ ψ;

then we are able to account for the validity of IR and DR. Similarly, condi-
tioned versions of these schemata, involving the possibility of φ and φ ∧ ψ, are
derivable from the following conditioned versions of Closure and Conjunction:

(Consistent Closure) if φ is possible and ψ is a necessary condition of φ,
then having a reason to do φ implies having a reason to do ψ;

(Consistent Conjunction) having a reason to do φ and having a reason to
do ψ implies having a reason to do φ ∧ ψ, if it is possible to do φ ∧ ψ.

Hence, conditioned versions of IR and DR turn out to hold under very mild
assumptions.

2.1 Problems

When considering the consequences of adopting IR and DR, we encounter
two basic problems [11]. The first and lighter one is that, under the intuitive
assumption that reasons can conflict and that there is no reason for doing
something impossible, Conjunction is untenable. To be sure, it is impossible
to allow for conflicts of reasons, since having a reason for φ and a reason for
¬φ would immediately entail having a reason for φ∧¬φ. Thus, Conjunction is
to be abandoned. The second problem is more pressing. Suppose that we have
a reason to do φ and a reason to do ¬φ, and that both φ and ¬φ are possible.
Suppose also that something, say doing ψ, does not entail doing φ, so that we
can do ψ without doing φ. Since φ entails φ∨ψ, we have a reason to do φ∨ψ,
by Consistent Closure. Since it is possible to do ¬φ ∧ ψ, it is also possible to
do ¬φ ∧ (φ ∨ ψ), by standard modal logic. Hence, by Consistent Conjunction,
we have a reason to do ¬φ ∧ (φ ∨ ψ). Still, ¬φ ∧ (φ ∨ ψ) entails ψ, and so, by
Consistent Closure we have a reason to do ψ. Thus, assuming that reasons can
conflict, these two principles allow us to derive the following

Principle of Explosion. If we have conflicting reasons, then we have reasons
to do anything independent of the content of the conflict.

The key problem to be addressed, in a framework allowing for rules corre-
sponding to IR and DR, is then the following

Problem of Explosion. How to avoid that conflicting reasons generate ex-
plosions.
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2.2 Strategies of solution

In light of the current debate on conflicts in deontic logic and the logic of
reasons, two main strategies can be pursued in order to solve this problem. 4

According to the first one, we can put into question the validity of Consistent
Closure and adopt a more limited principle to the effect that, if ψ is a necessary
condition of φ, then having a reason to do φ entails having a reason to do ψ
provided that we have no reason to avoid to do φ. It is not difficult to see that
limiting the application of Consistent Closure this way blocks the possibility of
inferring that we have a reason to do φ∨ψ if we have a reason to do φ since, in
the case we have considered, we also have a reason to do ¬φ. According to the
second strategy, we can put into question the validity of Consistent Conjunction
and limit the application of the principle to a certain class of reasons, typically
basic reasons, thus blocking the possibility of inferring that we have a reason
to do ¬φ∧ (φ∨ψ) if we have a reason to do ¬φ and a reason to do φ∨ψ, given
that having a reason to do φ ∨ ψ derives from having a reason to do φ. While
both strategies are effective in preventing the derivation of explosions, the first
one can do that only at a high cost, due to the fact that it prevents us from
deriving that we have a reason to do φ ∨ ψ if we have a reason to do φ and a
reason to do ψ. In fact, when we have a reason to do φ and a reason to do ψ,
we would like to accept that we also have a reason to do one of φ and ψ, even
though φ and ψ cannot be done together. 5

The system we are going to introduce is designed, among other things, to
allow for rules like IR and DR and to provide a solution to the problem of
explosion along the lines of the second strategy.

3 A system of reason-based deontic logic

In this section system RDL of reason-based deontic logic is introduced. Its
language should be rich enough to describe different ways of operating with
reasons. In particular, when arguing about what to do, we typically combine
reasons and infer the existence of reasons from the presence of other reasons.
Then, if we become aware that some reasons generate conflicts, we select the
strongest ones, or the ones that seem to be the strongest in the circumstances,
and combine them to identify a definite course of action. In addition, when
assessing our actions, we discern things which are done for a reason and things
done without reason. To take into account these distinctions, modal operators
are introduced for saying that a reason to do something is basic (RB), obtained
by aggregation (RC), by derivation (RD), or by aggregating selected reasons
(SC). Furthermore, I introduce two modal operators for saying that something
which is the case is supported by a reason (R) or by a selected reason (S).
Finally, two deontic operators are considered, for obligations based on generic
reasons (OR) and obligations based on selected reasons (OS).

4 See [17] and [10,11,12] for comprehensive presentations.
5 This point is cogently defended in [6,13,14,16,17].
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Definition 3.1 The language LRDL of RDL is based on a set {pi}i∈N of propo-
sitional variables and is defined according to the following grammar.

φ ::= pi | ¬φ | φ ∧ φ | �φ | RBφ | RCφ | RDφ | Rφ | ORφ | Sφ | SCφ | OSφ

LRDL is a powerful language. This notwithstanding it can be interpreted
in a very intuitive fashion on the basis of appropriate modal frames. Let us
first present the intended meaning of the modal formulas. �φ states that φ is
an unavoidable state of affairs under the circumstances. RBφ states that there
is a basic reason to do φ. The notion of basic reason is here introduced as a
primitive notion. 6 RCφ states that there is a combined reason to do φ, i.e.,
that φ is supported by a set of basic reasons opportunely combined, while RDφ
states that there is a derivative reason to do φ, i.e., that φ is a consequence of
something that is supported by a set of basic reasons opportunely combined.
Rφ states that φ is the case in accordance with a reason, i.e., in typical cases,
that the agent has seen to it that φ based on a certain reason. SCφ states
that there is a strong combined reason to do φ, viewed as a reason that has
passed a process of deliberation and selection run by the agent under specific
circumstances, and Sφ states that φ is the case in accordance with a strong
reason. Finally, a formula like ORφ states that φ is obligatory given the set of
available reasons, while OSφ states that φ is obligatory given the set of available
strong reasons. I will refer to ORφ and OSφ as reason-based obligations.

Remark 3.2 Intuitively, we can use RB RC, RD to model different kinds of
pro tanto practical reason, OR to model the notion of pro toto practical reason
and OS to model the notion of pro toto or all things considered obligation.

3.1 Semantics

The semantics for RDL builds on suitable combinations of neighborhood and
standard semantics recently proposed in epistemic logic 7 and incorporates both
a distinction between non-derivative and derivative reasons and a distinction
between reasons and strong reasons. 8

6 This notion is widely used in epistemology, where a basic reason is associated with a basic
source of justification, as acknowledged by standard foundationalist accounts. See [9] for
an introduction and [1, ch.1 and ch.3] for further discussion. It is also becoming popular in
ethics, where it parallels the notion of basic obligation: in some approaches, basic reasons are
assumed to be primitive [7,16,21,22]; in others they are identified either with basic intrinsic
desires and values [2] or with propositions constituting the antecedents of basic rules of action.
In particular, the last interpretation is consistent both with the approach proposed in [21]
and with the one developed in [13,14].
7 Specifically, these semantics are used in evidence-based epistemic logic [26,27,28] and topo-
logical epistemic logic [3,4,5]. See [8,18] for an introduction to neighborhood semantics.
8 The distinction between non-derivative and derivative reasons is the key element that
will allow us to separate Closure, which is valid with respect to derivative reasons, from
Consistent Conjunction, which is valid with respect to non-derivative combined reasons. A
strategy based on this distinction is pursued in [16] to address the problem of explosion
relative to reasons. The distinction between reasons and strong reasons is a version of the
distinction between defeasible and defeasible but undefeated reasons [12,13,14].



188 Reason-Based Deontic Logic

Definition 3.3 A frame for LRDL is a tuple (W,R,R+,S+), where
R,R+,S+ ⊆ ℘(W ) and W , R, R+, S+ satisfy the following conditions

1. ∅ 6=W ;
2. W ∈ R;
3. R ⊆ R+;
4. if X ∈ R+, then X 6= ∅;
5. if X ∈ R+ and Y ∈ R+ and X ∩ Y 6= ∅, then X ∩ Y ∈ R+;
6. if r(P ) 6= ∅, then r(P ) ∈ R+, where r(P ) =

⋃

{X ∈ R+ : X ⊆ P};
7. if X ∈ S+ and Y ∈ S+ and X ∩ Y 6= ∅, then X ∩ Y ∈ S+;
8. if s(P ) 6= ∅, then s(P ) ∈ S+, where s(P ) =

⋃

{X ∈ S+ : X ⊆ P};
9. W ∈ S+ ⊆ R+.

In light of conditions 5, 6, we say that R+ is closed under consistent aggre-
gation and conditioned addition. Let us comment on these elements in turn.

W is a set of states, viewed as the set of scenarios that are consistent with
the background situation in which an agent is located, that is the set of scenarios
that are possible given what is settled in the background. Condition 1 ensures
that the background itself is consistent, so that there are indeed possible states.

R is a set of elements related to the basic reasons of an agent. In this
framework R is sufficiently abstract to allow for different interpretations. In
more detail, R can be interpreted in at least two different ways.

(i) As a set of values identified with the agent’s basic reasons. The intuitive
sense of X ∈ R is then that X is a basic reason viewed as an intrinsic value
to be realized, so that X is the set of states where that value is actually
realized. Accordingly, the interpretation of X ⊆ P is that P is implied by
one of the agent’s basic reasons.

(ii) As a set of propositions supported by the agent’s basic reasons. The intu-
itive sense of X ∈ R is then that there is a basic reason to do X, so that X
is a proposition supported by the agent’s basic reasons. Accordingly, the
interpretation of X ⊆ P is that P is indirectly supported by the agent’s
basic reasons, being entailed by X, which is directly supported by them.

Here I assume the second interpretation, under the general proviso that having
a reason to do something, say P , is to be understood as having a reason (i) to
do P , if P is not settled given the background and not realized, (ii) to preserve
P , if P is not settled but realized, or (iii) to take P into account, if P is settled
given the background. Hence, in light of (iii), condition 2, stating that W is
in R, captures the intuitive principle that an agent has always to take into
account what is settled given the background.

R+ is the set of propositions supported by the combined reasons available
to an agent, that is the set containing the propositions that an agent can sup-
port by combining basic reasons. Condition 3 states that R is a subset of R+,
which corresponds to the requirement that taking a reason as it stands is a
way of combining reasons. Condition 4 states that propositions supported by
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combined reasons, and so also by basic reasons, are consistent. The underly-
ing idea is that an agent is able to combine reasons in a consistent way, and
so that no combination of basic reasons supports a contradiction. Crucially,
the fact that combined reasons are consistent in themselves does not exclude
the possibility of conflicting reasons, that is of reasons supporting inconsistent
propositions. To be sure, the fact that X ∈ R+ implies X 6= ∅ does not
exclude the possibility that, for some X,Y ∈ R+, X ∩ Y = ∅; what is ex-
cluded is only that X ∩ Y can be supported by a combined reasons, i.e., that
X ∩ Y ∈ R+. Finally, conditions 5 and 6 specify what kinds of operation of
combination are available to an agent. Condition 5 underpins a principle that
allows for operations of consistent aggregation, on the basis of which reasons
that support two mutually consistent propositions are aggregated into a reason
supporting their conjunction. Condition 6 allows for operations of conditioned
addition, on the basis of which all the reasons supporting propositions that
entail a proposition P can be added to obtain a new reason, which is in fact
the most stable reason that supports P . This follows from the fact that r(P )
is the union of all propositions that entail P and that are supported by some
available reasons. Therefore, all the reasons supporting r(P ) provide support
for propositions that are stronger than P , and so are less stable, being reasons
that can be attacked with less difficulty.

Remark 3.4 I will refer to R+ as the set of all reasons and to S+ as the set
of all strong reasons, thus identifying the concepts of reason and strong reason
with the concept of combined reason and combined strong reason.

Finally, S+ is the set of propositions supported by the strong combined reasons
available to an agent. Conditions 7 and 8 are analogous to the corresponding
conditions on R+ and ensure that the operations of composition available to
the agent are operative with respect to the reasons in S+ as well. Condition
9 states that S+ is a subset of R+, which follows from the definition of S+,
and that W is in S+, which is intuitive given the characterization of the notion
of reason. The idea behind the introduction of S+ is that, given a certain
background and a certain set of initial reasons, and given the possibility of
conflicts, an agent has to weigh up the reasons that are stronger under the
circumstances and arrive at a decision based on them. In this respect, let us
note that the present framework is not committed to a specific procedure for
weighing reasons, since what is important for our purposes is just the outcome
of the process, that is the set of reasons that are eventually selected.

Definition 3.5 A model for LRDL is a tuple M = (W,R,R+,S+, V ), where
(W,R,R+,S+) is a frame for LRDL and V : {pi}i∈N → ℘(W ) is a modal
valuation assigning propositions to propositional variables.

The notion of truth is defined as follows.

Definition 3.6 Let M = (W,R,R+,S+, V ) be a model for LRDL. The truth
of φ at a world w ∈W in M is defined through the following conditions, where
[φ]M = {w :M,w |= φ}.
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M,w |= pi ⇔ w ∈ V (pi)
M,w |= ¬φ⇔M,w 6|= φ
M,w |= φ ∧ ψ ⇔M,w |= φ and M,w |= ψ
M,w |= �φ⇔ [φ]M =W
M,w |= RBφ⇔ [φ]M ∈ R
M,w |= RCφ⇔ [φ]M ∈ R+

M,w |= RDφ⇔ ∃X ∈ R+(X ⊆ [φ]M )
M,w |= Rφ⇔ w ∈ r([φ]M )
M,w |= ORφ⇔ ∀X ∈ R+∃Y ∈ R+(Y ⊆ X ∩ [φ]M )
M,w |= SCφ⇔ [φ]M ∈ S+

M,w |= Sφ⇔ w ∈ s([φ]M )
M,w |= OSφ⇔ ∀X ∈ S+∃Y ∈ S+(Y ⊆ X ∩ [φ]M )

The notion of logical consequence is defined as usual. So, ∆ RDL φ iff
M,w |= ∆ entails M,w |= φ for all w ∈W and models M for LRDL.

Definition 3.7 RDL is the logic of the class of models for LRDL.

The truth conditions reflect the intended meaning of the modal formulas.
As expected, �φ is true just in case φ is true at all the states in W , RBφ is true
just in case φ is supported by a basic reason in R, and RCφ is true just in case
φ is supported by a combined reason in R+. As to RD, the definition clarifies
the distinction between non-derivative and derivative reasons in terms of the
distinction between directly and indirectly supported propositions. 9 Thus,
RDφ is true iff φ is supported by a derivative reason, i.e., iff φ is entailed by a
proposition supported by a non-derivative reason in R+, i.e., iff φ is indirectly
supported by a non-derivative reason in R+. Rφ is true just in case φ is true in
a state in which what is supported by the most stable reason for φ is realized:
φ is the case and that φ is the case is in accordance with a reason, since φ is
supported by its most stable reason. Similarly, Sφ is true just in case φ is true
in a state in which what is supported by the most stable strong reason for φ
is realized, while SCφ is true just in case φ is supported by a strong combined
reason in S+. Lastly, ORφ is true just in case every reason in R+ can be
strengthened to a reason for φ. Hence, being obligatory given the whole set of
available reasons is interpreted as being supported in a set of reasons that do
not conflict on what is obligatory. 10 Similarly, OSφ is true just in case every
reason in S+ can be strengthened to a strong reason for φ.

It is worth noting that RDL models are generalizations of uniform models
in standard deontic logic, which are models of the form (W, Ideal). Indeed,
let M = (W,R,R+,S+, V ) be such that R = R+ = S+ = {W, Ideal}, where
∅ 6= Ideal ⊆ W . Then Ideal ⊆ [φ]M iff ∀X ∈ S+∃Y ∈ S+(Y ⊆ X ∩ [φ]M ).

9 In accordance with this definition, both basic and combined reasons count as non-derivative
reasons, since both provide direct support to a proposition.
10 It is not difficult to see that ∀X ∈ R+∃Y ∈ R+(Y ⊆ X ∩ [φ]M ) if and only if ∀X ∈

R+∃Y ∈ R+(Y ∩ X 6= ∅ and Y ⊆ [φ]M ). Thus, every reason in R is consistent with a
reason for φ, and so φ is supported by reasons that are not in conflict relative to φ itself.
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Thus, uniform standard deontic logic can be viewed as the logic determined by
the class of models like M , where the standard notion of obligation is captured
by OS or, equivalently, by OR. The underlying assumption in this case is that
there is only one normative reason to be considered, namely the reason that is
encoded in a consistent deontic code.

3.2 All things considered obligations

A standard approach for generating all things considered obligations from a set
of available reasons has it that φ is obligatory when there is a good reason to
perform φ, where the notion of good reason is defined in terms of an ordering
relation on the set of reasons. 11 As an alternative, in line with the approach
developed in [3,4,5,26,27,28], we may assume that it is obligatory to do φ when
every reason can be strengthened to a reason for φ, that is when every reason is
part of a set of reasons supporting φ. If every available reason can be strength-
ened to a reason for φ, then no available reason for φ can be outweighed by
a stronger reason, and so the second approach is stricter than the first and
generates less obligations. The approach I propose here is a combination of the
ones just sketched and can be divided into two ideal stages. Suppose an agent
is confronted with a deontic problem, e.g. whether she should do p. In the
first stage, the agent implements the first approach by selecting within the set
R+ of available reasons the set S+ of strong reasons, to be identified with the
good reasons obtained after a process of deliberation. In the second stage, she
checks whether every reason in S+ can be strengthened to a reason for p. If
so, then she concludes that p is all things considered obligatory. Here, S+ can
be thought of as generated from R+ by virtue of a suitable choice function,
along the lines originally proposed in [23,24]. The reason why this procedure is
adopted, instead of introducing an ordering relation on R+, is that it provides
us with a more flexible device for modeling the outcome of a process of delib-
eration. In a more general setting, this approach can be developed in such a
way that a set of triggered reasons T +

w = τ(w) ⊆ R+ is assigned to each state
w by a specific function τ , and then a set of strong reasons S+

w = σ(w) ⊆ T +
w

is selected by a choice function σ. In such a setting, various σ can be defined
based on different properties of a choice function and the connections between
the corresponding notions of all things considered obligation can be explored.

3.3 Axiomatization

Let us consider the following groups of axioms and rules.

Group 1: KT5 axioms and rules for �.

Group 2: KT axioms and rules for R and S.

11This approach can be implemented in different ways. A common option is to assume that
there is a good reason to perform φ iff there is an undefeated reason for φ, i.e., iff there is a
reason for φ and there is no stronger reason, given the ordering, against the performance of
φ. A more sophisticated option, which incorporates the notion of undefeated reasons, is put
forward in [13,14]. Section 4.2 gives a hint of how this option can be handled in RDL.
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Group 3: minimal axioms for RB, RC, SC, RD.

BN: �(φ↔ ψ) ∧ RBφ→ RBψ Consistent conjunction for RC and SC:
RN: �(φ↔ ψ) ∧ RCφ→ RCψ RC: RCφ ∧ RCψ ∧ ♦(φ ∧ ψ) → RC(φ ∧ ψ)
SN: �(φ↔ ψ) ∧ SCφ→ SCψ SC: SCφ ∧ SCψ ∧ ♦(φ ∧ ψ) → SC(φ ∧ ψ)
DN: �(φ→ ψ) ∧ RDφ→ RDψ

Group 4: inclusions between modalities.

B1: RBφ→ �RBφ

B2: �φ→ RBφ

R1: RCφ→ �RCφ S1: SCφ→ �SCφ I1: Sφ→ Rφ

R2: �φ→ RCφ S2: �φ→ SCφ I2: SCφ→ RCφ

R3: RCφ ∧ φ→ Rφ S3: SCφ ∧ φ→ Sφ I3: RBφ→ RCφ

R4: ♦Rφ→ RCRφ S4: ♦Sφ→ SCSφ I4: RCφ→ RDφ

R5: ORφ↔ �¬R¬Rφ S5: OSφ↔ �¬S¬Sφ I5: RDφ↔ ♦Rφ

Theorem 3.8 Axioms and rules in groups 1 – 5 are sound and complete with
respect to the class of all models for LRDL.

The proof is rather long and is presented in the extended version of the paper.

Fact 3.9 ORφ→ RDφ and OSφ→ RDφ.

It follows from R5 and S5 by factivity of R and S, the logic of �, I5 and I1.

Fact 3.10 RC is not closed under necessary implication.

To provide a counter-model for �(φ → ψ) ∧ RCφ → RCψ let M be such that
W = {w1, w2, w3}, R = R+ = S+ = {W, {w1}}, V (p1) = {w1} and V (p2) =
{w2}. Then, for all w ∈ W , M,w |= �(p1 → p1 ∨ p2), by the truth conditions
of �, and M,w |= RCp1, since [p1]

M = {w1} ∈ R+. Still, M,w |= RC(p1 ∨ p2)
for no w ∈W , since {w1, w2} /∈ R+.

Fact 3.11 RD is not closed under consistent conjunction.

To provide a counter-model for RDφ∧RDψ∧♦(φ∧ψ) → RD(φ∧ψ) letM be such
that W = {w1, w2, w3}, R = R+ = S+ = {W, {w1}, {w2, w3}}, V (p1) = {w1}
and V (p2) = {w2}. Then, for all w ∈ W , M,w |= RC(p1 ∨ p2), since [p1]

M =
{w1} ∈ R+ and [p1]

M ⊆ [p1 ∨ p2]
M , and M,w |= RD¬p1, since [¬p1]

M =
{w2, w3} ∈ R+ andM,w |= ♦((p1∨p2)∧¬p1), since [(p1∨p2)∧¬p1]

M = {w2}.
Still, M,w |= RD((p1 ∨ p2) ∧ ¬p1), for no w ∈W : X ⊆ {w2} for no X ∈ R+.

Fact 3.12 Basic reasons do not entail obligations.

To provide a counter-model for RBφ→ ORφ let M be such that W = {w1, w2},
R = R+ = S+ = {W, {w1}, {w2}}, V (p1) = {w1}. Then, for all w ∈ W ,
M,w |= RBp1, since [p1]

M = {w1} ∈ R. Still, M,w |= ORp1 for no w ∈ W ,
since there is no Y ∈ R+ such that Y ⊆ {w2} ∩ [φ], given that {w2} ∩ [φ] = ∅.

By I3 and I4 we obtain that neither derivative nor non-derivative reasons
entail obligations. Furthermore, in accordance with the intuitive interpretation
given in remark 3.2, we conclude that pro tanto obligations do not entail pro
toto obligations, as it should be.
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3.4 Solving a paradigmatic dilemma

In order to show how deontic reasoning is modeled in the present framework
let us provide a solution to two versions of a paradigmatic dilemma.

Alice promised both Bob and Carl that she would dine with them. The
promises are equally important, but she prefer not to dine with them to-
gether, given that Bob doesn’t like Carl.

In the first version Alice has no particular preference, while in the second
version she would prefer to dine with Bob, since she is interested in him. In-
tuitively, we would like to derive that, in the first version, Alice ought to dine
with one of them and that, in the second version, she ought to dine with Bob.

Model 1 W = {w1, w2, w3}, R = {W, {w1, w2}, {w1, w3}, {w2, w3}}, R
+ =

S+ = ℘(W ) − {∅}. Set V (p1) = {w1, w2} and V (p2) = {w2, w3}, where p1
stands for dining with Bob and p2 stands for dining with Carl.

Model 1: only reasons different from W are represented

S+

R

R+

p1 ¬(p1 ∧ p2) p2

p1 ∧ ¬p2 p1 ∧ p2 ¬p1 ∧ p2

There is a reason for dining with Bob and a reason for dining with Carl,
but there is no obligation for dining with one of them in particular, or with
both, since the reasons in R+ cannot be strengthened to a reason for one of
p1 ∧¬p2, p1 ∧ p2, ¬p1 ∧ p2. Still, there is an obligation to do p1 ∨ p2, since any
reason in S+ = R+ can be strengthened to a reason for doing p1 ∨ p2.

Model 2 LetM be as before except that S+ = {W, {w1, w2}, {w1, w3}, {w1}}.

Model 2: only reasons different from W are represented

S+

R

R+

p1 ¬(p1 ∧ p2) p2

p1 ∧ ¬p2 p1 ∧ p2 ¬p1 ∧ p2



194 Reason-Based Deontic Logic

Again, there is a reason for dining with Bob and a reason for dining with
Carl, but now there is an obligation to dine with Bob, since any reason in S+

can be strengthened to a reason for doing p1 ∧ ¬p2, which is {w1}.

3.5 Solving the problem of explosion

The present framework allows for a solution of the problem of explosion based
on the distinction between non-derivative and derivative reasons. 12 In partic-
ular, in our system we can prove that there is no valid principle of explosion of
the following form, where C(φ1, φ2) stand for RBφ1 ∧ RBφ2 ∧ ¬♦(φ1 ∧ φ2)

13

E1: RBφ ∧ RB¬φ→ RDψ GE1: C(φ1, φ2) → RDψ
E2: RBφ ∧ RB¬φ ∧ ♦ψ → RDψ GE2: C(φ1, φ2) ∧ ♦ψ → RDψ
E3: RBφ ∧ RB¬φ ∧ ¬RD¬ψ → RDψ GE3: C(φ1, φ2) ∧ ¬RD¬ψ → RDψ

E2 entails E1, by propositional logic, and E3 entails E2, since ♦ψ follows
from ¬RD¬ψ, by B2, I3, I4. In addition, the invalidity of the basic principles
Ei entails the invalidity of the corresponding generalized principles GEi, and
therefore it is sufficient to prove the following

Theorem 3.13 RDψ is not a logical consequence of {RBφ,RB¬φ,¬RD¬ψ}.
Hence, basic reasons can conflict without implying that anything independent
of the content of the conflict be supported by a reason.

Let W = {w1, w2, w3, w4}, R = R+ = S+ = {W, {w1, w2}, {w3, w4}}. Set
V (p1) = {w1, w2} and V (p2) = {w1, w3}, so that p2 is independent of the
content of p1. Then, for all w ∈ W , M,w |= RBp1 ∧ RB¬p1, by the definition
of truth, and M,w |= ¬RD¬p2, since X ∩ [p2]

M 6= ∅ for all X ⊆ R+. Still,
M,w |= RDp2 for no w ∈W , since X ⊆ [p2]

M for no X ⊆ R+.

Corollary 3.14 None of RBψ,RCψ,RDψ follows from one of the sets obtained
by substituting one of {RCψ,RDψ} for RBψ in {RBφ,RB¬φ,¬RD¬ψ} or from
one of the antecedents of GE1, GE2, GE3.

Next, we show that RDL is powerful enough to derive IR and DR.

Theorem 3.15 In RDL the rules corresponding to schemata IR and DR are
derivable, when the reasons are interpreted as derivative reasons.

Suppose M,w |= ORφ and M,w |= �(φ → ψ). Then ∀X ∈ R+∃Y ∈ R+(Y ⊆
X ∩ [φ]M ) and [φ]M ⊆ [ψ]M , so that ∀X ∈ R+∃Y ∈ R+(Y ⊆ X ∩ [ψ]M ). Thus
∃Y ∈ R+(Y ⊆ [ψ]M ); so M,w |= RDφ. Hence ORφ,�(φ→ ψ) RDL RDψ, and

ORφ,�(φ→ ψ) ⊢RDL RDψ, by theorem 3.8.

Suppose now M,w |= OR(φ ∨ ψ) and M,w |= RC¬φ. Then ∀X ∈ R+∃Y ∈
R+(Y ⊆ X∩[φ∨ψ]M ) and R ⊆ [¬φ]M for some R ∈ R+. Thus Y ⊆ R∩[φ∨ψ]M

12See [16]. Since the present problem (involving conflicting reasons) has the same structure
as the deontic problem of explosion (involving conflicting obligations), the solution in [16]
is based on solutions for the deontic problem put forward e.g. in [14,15,29,30]. All these
solutions share the idea of distinguishing two kinds of obligations.
13See [11] and [12, sec.5] for an in-depth discussion of the deontic versions of these principles.
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for some Y ∈ R+; Y ⊆ [¬φ]M ∩ [φ∨ψ]M for some Y ∈ R+; Y ⊆ [ψ]M for some
Y ∈ R+, and so M,w |= RDφ. Hence OR(φ ∨ ψ),RB¬φ RDL RDψ, so that

OR(φ ∨ ψ),RB¬φ ⊢RDL RDψ, by theorem 3.8.

A similar theorem can be proved when OS is substituted for OR.

3.6 Logic of obligation

Finally, it can be proved that OR and OS are KD45 modalities, so that the
logic of obligation is the system SDL of standard deontic logic.

Theorem 3.16 The logic of OR, respectively OS, is KD45.

It is sufficient to show that, for all sets ∆∪{φ} of formulas in the sublanguage
of LRDL containing OR, respectively OS, as the only modality, ∆ ⊢KD45 φ ⇒
∆ RDL φ ⇒ ∆ KD45 φ, where KD45 is the relation of logical consequence
based on the class of models M = (W,R, V ) in which R : W → ℘(W ) is such
that v ∈ R(w) ⇒ R(v) = R(w). The proof is based on the fact that, as said
above, uniform models for standard deontic logic can be viewed as specific RDL
models, together with the fact that RDL models validates all KD45 axioms
and rules. The full proof is included in the extended version of the paper.

As OR and OS are KD45 modality, obligations cannot conflict, while con-
flicts between reasons are allowed (theorem 3.13). This result is of interest
inasmuch as it allows us to interpret SDL plus axioms 4 and 5 as the logic
concerning consistent obligations selected on the basis of deliberation, and so
to vindicate this extension of SDL as apt to model deontic reasoning about
this kind of obligations. Note that, in the present context, axioms 4 and 5 are
not problematic once properly understood. In fact, as per axioms R2 and S2,
we have reasons to take into account what is settled given the background; but
what is supported by a reason, and therefore also what is all things considered
obligatory and permitted, is settled given the background. As a consequence,
we have reasons to take into account our all things considered obligations and
permissions, and this is what axioms 4 and 5 state.

4 Comparison with two related accounts

In this section I consider two versions of the systems put forward by McNamara
and Horty to deal with conflicting obligations and reasons and show how they
can be interpreted in the present framework. The choice of these systems is
due to the fact that they inspired me in the construction of RDL.

4.1 McNamara’s two-level system

This system accounts for the possibility of aggregating obligations in conflict-
tolerant contexts. 14 The key idea is to introduce a distinction between basic,
derived and unproblematic derived obligations, with corresponding operators

14See [15]. I will be only interested in the final part, which presents a distinction between
different kinds of obligation in a minimal setting.
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O0, O1, OU. In this framework a two-level model can be defined as a triple
(W,Φ, V ) where W 6= ∅, Φ is a finite set of formulas, and V is a modal
valuation. To simplify the comparison, the truth conditions for modal formulas
are given as follows, where ⊆Fin is set-theoretical inclusion of a finite set. 15

M,w |= �φ iff [φ]M =W ;
M,w |= O0φ iff ∃φi ∈ Φ([φ]M = [φi]

M );
M,w |= O1φ iff ∃∆ ⊆Fin Φ(∅ 6= [∧∆]M ⊆ [φ]M );
M,w |= OUφ iff ∃∆ ⊆Fin Φ(∅ 6= [∧∆]M ⊆ [φ]M ) and M,w |= ¬O1¬(∧∆)).

As we can see, being unproblematically obligatory entails being obligatory.

Interpreting the two-level framework The connection between the two-
level framework and the present one is the following. Let M = (W,Φ, V )
be a two-level model and define M∗ = (W ∗,R,R+,S+, V ∗) so that W ∗ = W ,
R = {[φ]M : φ ∈ Φ}, S+ = R+ is the closure of R under consistent aggregation
and conditioned addition; V ∗ = V .

Proposition 4.1 M,w |= O0φ iff M∗, w |= RBφ.

Proof. M,w |= O0φ iff ∃φi ∈ Φ([φ]M = [φi]
M ); iff [φi]

M
∗

∈ R. ✷

Proposition 4.2 M,w |= O1φ iff M∗, w |= RDφ.

Proof. M,w |= O1φ
iff ∃∆ ⊆Fin Φ([∧∆]M 6= ∅ and [∧∆]M ⊆ [φ]M )
iff ∃X ⊆ R(

⋂

X 6= ∅ and
⋂

X ⊆ [φ]M
∗

), by def. R
iff ∃X ∈ R+(X ⊆ [φ]M

∗

), by def. R+, since X is finite ✷

As a corollary we get that M,w |= ¬O1¬φ iff ∀X ⊆ R+(X ∩ [φ]M
∗

6= ∅).

Proposition 4.3 M,w |= OUφ iff M∗, w |= ORφ.

Proof. M,w |= OUφ
iff ∃∆ ⊆Fin Φ([∧∆]M 6= ∅, [∧∆]M ⊆ [φ]M and M,w |= ¬O1¬(∧∆))
iff ∃∆ ⊆Fin Φ([∧∆]M 6= ∅, [∧∆]M ⊆ [φ]M , ∀X ⊆ R+(X ∩ [∧∆]M

∗

6= ∅))
iff ∃Y ⊆ R(

⋂

Y 6= ∅ and
⋂

Y ⊆ [φ]M and ∀X ⊆ R+(X ∩
⋂

Y 6= ∅))
iff ∃Y ∈ R+(Y ⊆ [φ]M and ∀X ⊆ R+(X ∩ Y 6= ∅)), since X is finite
iff ∃Y ∈ R+∀X ∈ R+(X ∩ Y 6= ∅ and Y ⊆ [φ]M ), by logic
iff ∀X ∈ R+(X ∩ r([φ]M )) by the definition of r ✷

As a consequence, obligations turn out to coincide with derivative reasons, while
unproblematic obligations coincide with reason-based obligations. Hence, Mc-
Namara’s two-level framework can be interpreted as the fragment of RDL
dealing with derivative reasons and reason-based obligations.

15This is a semantic version of the truth conditions proposed in [15, 148-150]. See [15, sec.2]
for a detailed presentation of the system and a justification of the truth conditions.
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4.2 Horty’s default system

Let (L,⊢) be a system of classical propositional logic. 16 A default rule r is
a pair (a[r], c[r]), where a[r], c[r] ∈ L are the antecedent and the consequent
of r. In terms of reasons, r states that a[r] is a reason to do c[r]. A default
theory is a triple (W,D, <) where ∅ 6= W ⊆ L is a consistent set of background
information, D 6= ∅ a set of default rules and < an irreflexive and transitive
relation on D. A scenario is a set of rules. If S is a scenario, then a[S] = {a[r] :
r ∈ S} and c[S] = {c[r] : r ∈ S}. If S is a scenario and r ∈ D, we say that

(i) Tr[S] = {r ∈ D : W, c[S] ⊢ a[r]}
is the set of rules that are triggered in S.

(ii) Cr[S] = {r ∈ D : W, c[S] ⊢ ¬c[r]}
is the set of rules that are conflicted in S.

(iii) Dr[S] = {r ∈ D : ∃d ∈ Tr[S](r < d and r ∈ Cr[d])}
is the set of rules that are defeated in S.

If S is a scenario, then S is consistent iff S = S − Cr[S] and S is proper iff
S = Tr[S] − Cr[S] −Dr[S]. Thus, a scenario is consistent provided that it is
conflict free and it is proper provided that it contains all and only the triggered
rules that are not conflicted or defeated in it.

Remark 4.4 Say that a default theory is basic when ∀φ(W, c[D]  φ⇔ W 

φ). Then, Tr[S] = Tr[D] and Dr[S] = Dr[D] for all S ⊆ D. Thus, there is a
unique set Tr[D]−Dr[D] of undefeated rules and S is proper iff S is consistent,
that is if and only if S = S − Cr[S] ⊆ Tr[D]−Dr[D]. 17

Let D∗ be the union of the set of proper scenarios, c[D∗] be the set of conse-
quents of rules in D∗, and E [c[D∗]] be the set of maximal consistent subsets of
c[D∗]. The elements of E [c[D∗]] are then the most inclusive objectives available
to an agent given the reasons in D and the background information W. 18

Definition 4.5 Let (W,D, <) be a default theory. Then, we can define two
operators, Sh and Oh, corresponding to derivative reason and obligation a là
Horty, by introducing the following truth conditions.

1. (W,D, <) |= Shφ iff ∆  φ for some ∆ ∈ E [c[D∗]].
2. (W,D, <) |= Ohφ iff ∆  φ for every ∆ ∈ E [c[D∗]].

Hence, there is a derivative reason to do φ iff φ is entailed by some objective
and there is an obligation to do φ iff φ is entailed by every objective.

Interpreting the default framework To provide a representation of a de-
fault theory in the framework of RDL, I assume that the theory we want to
represent contains a finite number of rules and a rule to the effect that agents
have to take into account the background information, so that what is set-

16See [13,14]. In [16] a version of this system is used to model the connection between reasons
and obligations. Here I will only consider fixed priority default versions.
17The system in [16] is essentially a basic default theory.
18Here it is assumed that D∗ 6= ∅. This entails that there is a proper scenario in D.



198 Reason-Based Deontic Logic

tled given W is something that cannot be contrasted. A rule of this kind is
(⊤,∧{W}) and requires that W be finite. So, let us say that a default theory
(W,D, <) is suitable when W and D are finite and (⊤,∧{W}) is contained
in every proper scenario. Let [φ] be the set of maximal RDL-consistent sets
containing φ and M = (W,R,R+,S+, V ) be such that

W is the set of maximal RDL-consistent sets including W;
R = {[φ] : φ ∈ c[D]};
R+ is the closure of R under combinations of reasons;
S+ is the closure of {[φ] : φ ∈ c[D∗]} under combinations of reasons.

W 6= ∅, since W is consistent, and is to be identified with the set of states that
are possible in light of what is settled given the background information. It is
evident that M = (W,R,R+,S+, V ) is a model for RDL. Now, let (W,D, <)
be suitable.

Proposition 4.6 If no modality is in φ, then (W,D, <) |= Shφ iff M |= ♦Sφ.

Proof. M,w |= ♦Sφ iff ∃X ∈ S+(X ⊆ [φ]M )
iff ∃θ1, ..., θN ∈ c[D∗](∅ 6= [θ1]

M ∩ ... ∩ [θN ]M ⊆ [φ]M )
iff [∆]M ⊆ [φ]M for some ∆ ∈ E [c[D∗]], since D is finite
iff W,∆ ⊢RDL φ for some ∆ ∈ E [c[D∗]], by the definition of W
iff ∆ ⊢RDL φ for some ∆ ∈ E [c[D∗]], since ∧{W} is in every ∆
iff ∆ ⊢ φ for some ∆ ∈ E [c[D∗]], since φ ∈ L
iff (W,D, <) |= Shφ ✷

Proposition 4.7 If no modality is in φ, then (W,D, <) |= Ohφ iff M |= OSφ.

Proof. M,w |= OSφ iff ∀X ∈ S+∃Y ∈ S+(Y ⊆ X ∩ [φ]M ); by the definition
of S+ and the finiteness of D, this is equivalent to [∆]M ⊆ [φ]M for all ∆ ∈
E [c[D∗]]; the rest of the proof is then similar to the previous one. ✷

Models for RDL can be regarded as semantic generalizations of default
theories. 19 To be sure, the notions of being conflicted and being defeated are
definable in terms of the consequents of the rules in D: two rules conflict when
their consequents cannot be realized together, while the ordering on D can be
based on an ordering on consequents, which are the items that are assessed as to
their practical weight. In RDL we abstract both from the structure of the rules
and from the specific procedure used to identify what scenarios are proper. This
is a benefit in terms of flexibility, but a cost in terms of transparency, since the
work done by the ordering relation is completely incorporated in the implicit
choice function that allows us to pick out S+ from R+.

5 Conclusion

Consider the following core principles of standard deontic logic.

19Since reasons derive from triggered rules, we are also able to interpret conditional rules
like (a[r], c[r]) in terms of conjunctive reasons W − (X ∩ −Y ), where X is the set of states
where a[r] is realized and Y is the set of states where c[r] is realized.
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1. �(φ↔ ψ) ∧ Oφ→ Oψ;
2. �φ→ Oφ;
3. Oφ→ ♦φ;
4. Oφ→ ¬O¬φ;
5. Oφ ∧ Oψ → O(φ ∧ ψ);
6. �(φ→ ψ) ∧ Oφ→ Oψ;
7. Oφ ∧ Oψ ∧ ♦(φ ∧ ψ) → O(φ ∧ ψ).

Systems including {3, 5} or {4, 6} do not allow for conflicts, while systems
including {5, 6} or {6, 7} do not avoid explosions. So, in order to allow for
conflicts and avoid explosions one principle in each of {3, 5}, {4, 6}, {5, 6},
{6, 7} is to be discarded. In reason-based deontic logic, the picture is as follows.

1. 2. 3. 4. 5. 6. 7.
RB X X X

RC X X X X

RD X X X X

OR and OS X X X X X X X

OR and OS are conflict-free operators, given that they model kinds of all things
considered obligation resulting from agent deliberation. In addition, since prin-
ciples 4, 5, 6 are invalid relative to RB and RC and 4, 5, 7 are invalid relative to
RD, all of RB, RC, RD are conflict tolerant operators that enable us to avoid
explosions (theorem 3.13) and to construct arguments based on IR and DR
(theorem 3.15). Thus, RDL provides us with an intuitive way to integrate
reasons and obligations in a coherent system. This integration is based on the
notion of combined reason, which is worth considering both from a philosoph-
ical point of view (it allows us to focus on two basic operations characterizing
practical reasoning, namely consistent aggregation and conditioned addition)
and from a logical point of view (it allows us to connect the logic of reasons
with the logic of obligation and to develop a complete system of reason-based
deontic logic). Also, RDL gives us a principled framework for addressing issues
concerning deontic principles. Indeed, RDL was not obtained by constraining
some deontic principles in order to avoid counter-intuitive conclusions. 20 To
the contrary, we have first introduced elementary principles on how to combine
reasons, and then demonstrated how solutions to pressing deontic problems
follow from these principles, given suitable definitions of the deontic operators.
Finally, RDL is connected with evidence-based systems of epistemic logic, thus
providing us with a helpful basis for developing a unified account of reasons in
deontic and epistemic contexts.

20This complaint is expressed in [12, p. 311]: “The kind of neighborhood semantics described
above, while valuable for establishing results about the logics, such as determining what is
derivable from what within the systems, do not yield much illumination into the concepts
being formalized. The conditions on the neighborhoods that validate the various principles
merely mimic, at the level of propositions, the principles being validated”.
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[5] Baltag, A., N. Bezhanishvili, A. Özgün and S. Smets, A topological approach to full
belief, Journal of Philosophical Logic, 48 (2019), pp. 205–244.

[6] Brink, D., Moral conflict and its structure, Philosophical Review, 103 (1994), pp. 215–
247.

[7] Broome, J., Rationality Through Reasoning, Blackwell, Oxford, 2013.
[8] Chellas, B., Modal logic. An Introduction, Cambridge University Press, Cambridge, 1980.
[9] Fumerton, R., Epistemology, Blackwell, Oxford, 2006.

[10] Goble, L., A Logic for Deontic Dilemmas, Journal of Applied Logic, 3 (2005), pp. 461–
483.

[11] Goble, L. Normative conflicts and the logic of ‘ought’, Nous, 43 (2009), pp. 450–489.
[12] Goble, L., Prima facie norms, normative conflicts, and dilemmas, in: D. Gabbay, J.

Horty, X. Parent, R. van der Meyden and L. van der Torre, editors, Handbook of deontic
logic and normative systems, College Publications, Milton Keynes, 2013, pp. 241–352.

[13] Horty, J., Reasoning with moral conflicts, Nous, 37 (2003), pp. 557–605.
[14] Horty, J., Reasons as defaults, Oxford University Press, Oxford, 2012.
[15] McNamara, P., Agential obligation as non-agential personal obligation plus agency,

Journal of Applied Logic, 2 (2004), pp. 117–152.
[16] Nair, S., Conflicting reasons, unconflicting ‘ought’s, Philosophical Studies, 173 (2016),

pp. 629–663.
[17] Nair, S. and J. Horty, The logic of reasons, in: D. Star, editor, The Oxford Handbook of

Reasons and Normativity, Oxford University Press, Oxford, 2018, pp. 67–85.
[18] Pacuit, E., Neighborhood Semantics for Modal Logic. Springer, Berlin, 2017.
[19] Parfit, D., On what matters, Volume 1, Oxford University Press, Oxford, 2011.
[20] Raz, J., Practical reasoning and norms, Oxford University Press, Oxford, 1999.
[21] Raz, J., Engaging Reason: On the Theory of Value and Action, Oxford University Press,

Oxford, 2002.
[22] Scanlon, T. M., What we owe to each other, Harvard University Press, Cambridge, 1998.
[23] Sen, A., Choice Functions and Revealed Preference, The Review of Economic Studies,

38 (1971), pp. 307–317.
[24] Sen, A., Collective Choice and Social Welfare. An Expanded Edition, Harvard University

Press, Cambridge, 2017.
[25] Star, D., editor, The Oxford Handbook of Reasons and Normativity, Oxford University

Press, Oxford, 2016.
[26] van Benthem, J. and E. Pacuit, Dynamic logics of evidence-based beliefs, Studia Logica,

99 (2011), pp. 61–92.
[27] van Benthem, J., D. Fernández-Duque and E. Pacuit, Evidence Logic: A New Look at

Neighborhood Structures, Advances in modal logic, 9 (2012), pp. 97–118.
[28] van Benthem, J., D. Fernandez-Duque and E. Pacuit, Evidence and plausibility in

neighborhood structures, Annals of Pure and Applied Logic, 165 (2014), pp. 106–133.
[29] van der Torre, L., and Y. H. Tan, Two phase deontic logic, Logique et Analyse, 171–172

(2000), pp. 411–456.
[30] van Fraassen, B., Values and the heart’s command, Journal of Philosophy, 70 (1973), pp.

5–19.



Axiomatizing Norms Across Time and the

‘Paradox of the Court’

Daniela Glavaničová
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Abstract

In normative reasoning one typically refers to intervals of time across which norms

are intended to hold, as well as to alternative possibilities representing hypothetical

developments of a given scenario. Thus, deontic modalities are naturally intertwined

with temporal and metaphysical ones. Furthermore, contemporary debates in philos-

ophy suggest that a proper understanding of fundamental ethical principles, such as

the Ought-Implies-Can thesis, requires a simultaneous analysis of these three families

of concepts. In the present article we propose a general formal framework which al-

lows for fine-grained multimodal reasoning in the normative domain. We provide an

axiomatization for a novel system of propositional logic encoding the way in which

possibilities and norms arising from different sources change over intervals of time.

The usefulness of our framework is illustrated by analysing an ancient and particu-

larly challenging ‘cold case’, the Paradox of the Court.

Keywords: Multimodal Reasoning, Norms Across Time, Ought-Implies-Can,

Paradox of the Court, Temporal Opportunities.

1 Introduction

One of the most frequently debated principles in moral philosophy, the Ought-
Implies-Can thesis (OIC), suggests that deontic modalities are essentially con-
nected with other families of modalities. The naive formulation of OIC is the
following: if an agent A is obliged to bring about φ, then it is possible that
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A brings about φ. But what kind of possibility is here involved? Logical or
metaphysical possibility is too broad for the message that one wants to convey
in terms of OIC. Indeed, what really matters is whether A has a certain ability
and an opportunity of acting in appropriate circumstances to bring about φ.
While there is a considerable amount of work in the literature focusing on the
role played by agents’ abilities in normative reasoning (see, for instance, [6], [7],
[15] and [13]), much less has been said on the role played by agents’ opportuni-
ties (see, for instance, [28], [21] and the analysis of spatial opportunities in [5]).
It seems that both ability and opportunity involve many conceptual dimensions
which would be very hard to represent in a single formal framework. In the
present article we deal with opportunities from the perspective of time: norms
are usually expected to apply to specific temporal intervals and the possibility
of acting in appropriate circumstances to bring about something can be gained
or lost during an interval.

For instance, consider the following scenario, adapted from [29]: at 9:00 a
student received an order to write a five-page paper by 17:00 as part of an exam.
Time passed by and it is now 16:57. The student has not started writing the
paper yet. Is there an obligation which applies to the interval between 16:57
and 17:00? At first glance, one would be tempted to give a positive answer,
since the student should not be able to justify the outcome of her behaviour
by just relying on the flow of time. However, after a closer look at the problem
one could argue that the student has actually no obligation to write a five-page
paper between 16:57 and 17:00, namely that her original obligation expired.
The reason is that the student does not have an opportunity of exercising her
ability to write such a long paper in such a short amount of time.

This example shows that an obligation applying to a certain interval of
time I is not automatically inherited by all subintervals of I; not even by those
subintervals having the same final point as I (e.g., 17:00), namely those subin-
tervals by which I is finished, according to the terminology in [1]. Therefore,
the fact that at 16:57 it is no longer possible to fulfil the obligation is not a
counterexample to OIC; as it is claimed in [30], “obligations that become in-
feasible at a given time are lost at that time”. This does not mean that no
trace of an obligation is left once new conditions make its fulfilment impossible.
After 17:00 the student will be blamed and she will not pass the exam, since an
obligation applying to a past interval of time, the one between 9:00 and 17:00,
will have been violated due to her behaviour.

Furthermore, losing the opportunity to behave in a certain way is often not
due to the flow of time per se; it is rather due to the fact that new norms become
effective over time. A norm applying to an interval I may be overridden by a
new norm that is introduced within I when it is not possible to comply with
both. Therefore, normative sources can play a relevant role in determining
when a norm expires. For instance, we can imagine a variation of the scenario
above in which the student received a phone call at 9:10 and the person on the
phone urgently asked her to go home and assist a family member, thus making
impossible for her to write the paper by 17:00. The new obligation clearly takes
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priority over the old one.
The conclusion we draw from such discussion is that a fine-grained analysis

of OIC and other philosophical problems requires making reference not only
to deontic and metaphysical modalities, but also —and at least— to temporal
ones. In the first part of the present article we will develop a very general
formal framework to represent the way in which the three families of modalities
at issue are intertwined in normative reasoning. More precisely, we provide an
axiomatization for a new logic over a multimodal language making reference
to temporal intervals across which norms arising from different sources are
expected to hold, as well as to alternative possibilities. Our contribution can be
located within the rich and long-lasting tradition of studies on the foundations
of multimodal reasoning with deontic modalities (some examples are [26], [4],
[3] and [24]).

In the second part of the article we will put our framework at work by
discussing the Paradox of the Court, which is arguably the oldest puzzle for
normative reasoning. Such puzzle is described, for instance, in [12]. In Ancient
Greece a wealthy young man, Euathlus, became a student of Protagoras, paying
him a half of the cost of teaching, and promising to pay him the remaining
half on the day he would win his first case. After the end of his education,
however, Euathlus changed his mind and decided not to undertake the career
of a lawyer. What remained then of the original agreement? Was a payment
of the education fee still due? Clever Protagoras thought that there was a way
to make sure that the payment would take place. He decided to sue Euathlus,
arguing in the following manner ([12], 407):

Let me tell you, most foolish of youths, that in either event you will have to
pay what I am demanding, whether judgment be pronounced for or against
you. For if the case goes against you, the money will be due me in accordance
with the verdict, because I have won; but if the decision be in your favour,
the money will be due me according to our contract, since you will have won
a case.

Euathlus, being a clever pupil himself, was not willing to let Protagoras win
the argument. He rather saw this as an occasion to make sure that no payment
would take place. He argued for the opposite conclusion as follows ([12], 409):

I shall not have to pay what you demand, whether judgment be pronounced
for or against me. For if the jurors decide in my favour, according to their
verdict nothing will be due you, because I have won; but if they give judgment
against me, by the terms of our contract I shall owe you nothing, because I
have not won a case.

Prima facie, it seems that both Protagoras and Euathlus are right; despite
this, their arguments lead to mutually contradicting conclusions: if Protagoras
is right, Euathlus should pay the promised amount of money whether he wins
or loses. If Euathlus is right, he is not obliged to pay the promised amount
of money whether he wins or loses. This short presentation reveals that the
Paradox of the Court is a paradigmatic problem of normative reasoning rooted
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in the connection between deontic, temporal and metaphysical modalities.
The structure of our article is as follows. In Section 2 we introduce the

formal language and the axiomatic basis of our logic DTM for reasoning with
Deontic, Temporal and Metaphysical modalities; in Section 3 we provide a
semantic analysis of DTM and a characterization result in terms of a class
of intended models, discussing also how the principle OIC can be represented
within it. In Section 4, we review some accounts of the Paradox of the Court
proposed in the literature. Subsequently, in Section 5, we present our analysis
of the paradox in terms of the new logical framework introduced. The article
is concluded with an overview of possible applications of DTM.

2 Syntax

In this section we describe the multimodal logic DTM for reasoning with
Deontic, Temporal and Metaphysical modalities. We start by introducing
the formal language L on which the logic is based.

Definition 2.1 (Primitive symbols) The language L contains the following
primitive symbols:

• a countable set of propositional variables V AR, denoted by p, q, r, etc.;

• a countable set of normative sources SOU , denoted by s1, s2, s3, etc.;

• a countable set of temporal indices IND, denoted by i, j, k, etc.;

• the monadic modal operators �∞, �[i,j], �⇐i and �i⇒, for i, j ∈ IND;

• the monadic modal operator L;

• the monadic modal operator Os, for s ∈ SOU ;

• the binary predicate E taking temporal indices as arguments;

• the boolean connectives ¬ (negation) and → (material implication);

• round brackets.

A temporal index can be conceived of as a non-indexical temporal reference,
namely a particular date or time. For instance, “11 January 2020” or “three
days after 5 February 2020” or “Christmas 2020 at 3pm”. The intended reading
of the primitive symbols in L will be clarified below, after having specified the
set of well-formed formulas.

Definition 2.2 (Well-formed formulas) The set WFF of well-formed for-
mulas of L is defined by the grammar below (where p ∈ V AR, i, j ∈ IND and
s ∈ SOU), provided that the following two restrictions apply:

• in formulas of kind Osφ, φ neither contains occurrences of the predicate E
nor of any modal operator different from ✷∞, ✷[i,j], ✷⇐i and ✷i⇒;

• formulas of kind ✷∞φ, ✷[i,j]φ, ✷⇐iφ and ✷i⇒φ do not include occurrences
of operators of kind Os.

φ ::= p|E(i, j)|¬φ|φ→ φ|✷∞φ|✷[i,j]φ|✷⇐iφ|✷i⇒φ|Lφ|O
sφ

Let ATO = V AR ∪ {E(i, j) : i, j ∈ IND} be the set of propositional atoms
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in WFF ; elements of ATO will be denoted by a, a′, a′′, etc. Furthermore, we
will denote by WFFO the subset of WFF including only formulas in which
the predicate E never occurs and where the only modal operators (if any) are
�∞, �[i,j], �⇐i and �⇒i (this set includes precisely the formulas that can be
in the scope of an operator Os, according to the first restriction in Definition
2.2).

A formula of kind E(i, j) means “temporal index i is earlier than tempo-
ral index j”; for instance, 11 January 2020 is earlier than 12 January 2020.
A formula of kind �∞φ means “it is always the case that φ”; �[i,j]φ means
“throughout the interval between i and j it is always the case that φ”; �⇐iφ
means “φ is always the case until i”; �i⇒φ means “φ is always the case start-
ing from i”; Osφ means “according to normative source s it is obligatory that
φ”; finally, Lφ means “it is necessarily the case that φ”. 3 The following for-
mulas can be used as abbreviations, according to usual definitions of boolean
and modal operators: φ ∧ ψ, φ ∨ ψ, φ ≡ ψ, ♦∞φ (“it is sometimes the case
that φ”), ♦[i,j]φ (“throughout the interval between i and j it is sometimes the
case that φ”), ♦⇐iφ (“it is sometimes the case that φ until i”), ♦i⇒φ (“it is
sometimes the case that φ starting from i”), P sφ (“according to normative
source s it is permitted that φ”) and Mφ (“it is possibly the case that φ”).
For instance, ♦[i,j]φ := ¬�[i,j]¬φ and P sφ := ¬Os¬φ. The fact that i is the
left index and j the right index in �[i,j]φ does not bear any consequence on
whether i is earlier than j; indeed, �[j,i]φ is a well-formed formula as well. The
relation earlier/later is rather associated with the predicate E. We will use the
expressions �i and ♦i as abbreviations for �[i,i] and ♦[i,i].

We will now provide a step by step presentation of the axiomatic basis for
DTM, assuming some familiarity with correspondence theory for modal logic
(see, e.g., [27]). First of all, DTM is an extension of the classical propositional
calculus (PC); therefore, we can start developing the axiomatic basis with the
following set of principles: 4

A0+RX All WFF -substitution instances of axioms and rules of PC.

Then, we add the following two axioms for the predicate E, which will make
the relation of temporal precedence a strict partial order:

3 The expression “until” in the reading of �⇐iφ has an inclusive sense: φ is expected to
hold also at instant i. For such reason, this operator is more closely related to the “release”
operator than to the “until” operator in temporal logics of computation (see, e.g., [9]).
Analogously, in a formula of the form �⇐iφ (respectively, �[i,j]φ) the interval considered is
inclusive with respect to index i (and index j).
4 For the sake of brevity, a label of kind An, where n is a natural number, may denote a
set of distinct axioms (more precisely, axiom-schemata) and a label of kind Rλ, where λ is
an upper case letter, may denote a set of distinct rules. A label of kind An+Rλ denotes the
union of all axioms associated with An and all rules associated with Rλ.
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A1 E(i, j) → (E(j, k) → E(i, k));
A2 ¬E(i, i).

A1 and A2 can be used to introduce functions specifying the first and the last
temporal index in an interval (analogous functions can be found in a logic for
characterizing deadlines in [14]). We use the expression S(i, j) (‘i and j are
simultaneous’) as an abbreviation for ¬E(i, j) ∧ ¬E(j, i). Thus, the predicate
S will satisfy the property: S(i, j) ≡ S(j, i).

Definition 2.3 (First and last index in an interval) Given i, j ∈ IND,
let α[i, j] (“the first index in the interval [i, j]”) be:

• i if E(i, j) holds;

• j if E(j, i) holds;

• both i and j otherwise (that is, if S(i, j) holds).

Furthermore, let ω[i, j] (“the last index in the interval [i, j]”) be:

• i if E(j, i) holds;

• j if E(i, j) holds;

• both i and j otherwise (that is, if S(i, j) holds).

We can now define additional relations among intervals in a very simple way,
exploiting the functions α and ω, the predicates E and S, and boolean con-
nectives. The labels for these relations are: Ide (“is identical with”), Bef (“is
before than”), Mee (“meets”), Ove (“overlaps”), Fin (“is finished by”), Con
(“contains”) and Sta (“is started by”).

Definition 2.4 (Allen-style interval algebra) Given two intervals [i, j]
and [k, l], we have the following fundamental relations among them:

Ide([i, j], [k, l]) := S(α[i, j], α[k, l]) ∧ S(ω[i, j], ω[k, l])

Bef([i, j], [k, l]) := E(ω[i, j], α[k, l])

Mee([i, j], [k, l]) := E(α[i, j], ω[i, j]) ∧ E(α[k, l], ω[k, l]) ∧ S(ω[i, j], α[k, l])

Ove([i, j], [k, l]) := E(α[i, j], α[k, l]) ∧ E(α[k, l], ω[i, j]) ∧ E(ω[i, j], ω[k, l])

Fin([i, j], [k, l]) := E(α[i, j], α[k, l]) ∧ S(ω[i, j], ω[k, l])

Con([i, j], [k, l]) := E(α[i, j], α[k, l]) ∧ E(ω[k, l], ω[i, j])

Sta([i, j], [k, l]) := S(α[i, j], α[k, l]) ∧ E(ω[k, l], ω[i, j])

Furthermore, for any interval relation R defined above, one can denote by R−1

its converse relation. For instance, Sta−1([i, j], [k, l]) = Sta([k, l], [i, j]). Thus,
one can represent within DTM all thirteen relations described by Allen in [1].
Notice that the following property holds in DTM, due to A0+RX, A1 and A2:
Ide−1([i, j], [k, l]) ≡ Ide([i, j], [k, l]).

Then we move to the analysis of the deductive properties of the operators L
and �∞, which are intended to represent metaphysical necessity and temporal
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necessity (in the sense of truth over any interval of time), respectively. As it is
argued in [22], logics of metaphysical necessity should be in the range between
KT and S5; we opt for the strongest logic in this range, since it is a very
common choice in approaches combining metaphysical and temporal modalities
(see, for instance, the approaches to the Paradox of the Court discussed in
Section 4). 5 We choose to adopt an S5 basis for �∞ as well, in order to
treat this operator as an interval-based analogue of the notion of Aristotelian
necessity defined over linear and transitive temporal structures (see, e.g., [20]).
The axiomatic basis is thus extended with the principles below:

A3+RY All axioms and rules of S5 for L and �∞.

Operators of kind �⇐i, �i⇒ and �[i,j], instead, do not satisfy the axiom T ,
since they may concern intervals of time to which the current time does not
belong. Therefore, we add:

A4+RZ All axioms and rules of KD45 for operators of kind �[i,j], �⇐i

and �i⇒.

Now, we need to ensure that modal operators can capture all intended prop-
erties of temporal intervals. One of these properties is that there is only one
point in an interval of kind [i, i]. Therefore, we add the following principle:

A5 ♦iφ→ ✷iφ.

Then, we need to ensure that [i, j] and [j, i] are two ways of looking at the same
interval, and this is a consequence of adding the principle below:

A6 ✷[i,j]φ ≡ ✷[j,i]φ.

After this, we encode the temporal algebra over the set of intervals via the
following axioms:

A7 Ide([i, j], [k, l]) → (✷[i,j]φ→ ✷[k,l]φ);
A8 Ove([i, j], [k, l]) → (�[i,j]φ→ �α[k,l]φ) ∧ (�[k,l]ψ → �ω[i,j]ψ);
A9 Mee([i, j], [k, l]) → (♦ω[i,j]φ ≡ ♦α[k,l]φ);
A10 Con([i, j], [k, l]) → (✷[i,j]φ→ ✷[k,l]φ);
A11 Sta([i, j], [k, l]) → ((✷[i,j]φ→ ✷[k,l]φ) ∧ (✷[k,l]ψ → ♦α[i,j]ψ));
A12 Fin([i, j], [k, l]) → ((✷[i,j]φ→ ✷[k,l]φ) ∧ (✷[k,l]ψ → ♦ω[i,j]ψ)).

For instance, A7, together with the fact that DTM is closed under the schema

5 Names of systems and axioms of modal logic adhere to the presentation in [8].
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Ide([i, j], [k, l]) ≡ Ide−1([i, j], [k, l]), says that two identical temporal intervals
are indistinguishable with respect to the truth of formulas in states they con-
tain: if something is always the case between February 14 (i) and December
25 (j) of a particular year, then it is always the case between Valentine’s Day
(k) and Christmas (l) of that year, and vice versa.

The next step is making sure that operators of kind �∞, �[i,j], �⇐i and
�i⇒ are related in an appropriate way. This requires also principles combining
them with the predicate E. Thus, we add: 6

A13 �∞φ ≡ (�⇐iφ ∧�i⇒φ);
A14 (�⇐iφ ∧ ¬E(i, j) ∧ ¬E(i, k)) → �[j,k]φ;
A15 (�i⇒φ ∧ ¬E(j, i) ∧ ¬E(k, i)) → �[j,k]φ.

Furthermore, let int and int′ be arbitrary intervals, that is, strings of any of
the following kinds: either ∞ or [i, j] or ⇐ i or i⇒; we add to the axiomatic
basis the following bridge-axioms connecting different modalities:

A16 �intφ ≡ �int′�intφ;
A17 E(i, j) → L�intE(i, j);
A18 �intLφ ≡ L�intφ.

Finally, given that DTM is intended to capture minimal relations among deon-
tic, temporal and metaphysical modalities, and that there are several arguments
in the literature supporting the idea that deontic modalities are hyperinten-
sional (see, e.g., [10] and [11]), we do not impose any deductive property on
operators of kind Os, except for the following bridge-axiom:

A19 Osφ→Mφ.

In the end, we get the following definition:

Definition 2.5 (Axiomatic basis) The axiomatic basis for the logic DTM
corresponds with the list of axioms A0-A19 and the rules RX, RY and RZ.

The principle A19 can be taken as the formal analogue of the naive formu-
lation of the Ought-Implies-Can thesis. However, in the present framework we
can provide a more-fine grained analysis of OIC, taking into account temporal
intervals. For instance, as the example from [29] that we discussed in Section
1 shows, one could say that if it is obligatory that φ occurs within a certain
interval [i, j] and we are at a point k within [i, j], then there is a possible devel-
opment of the world in which φ occurs within the interval [k, j]. This is a way
of explicitly taking into account the temporal opportunity of bringing about

6 Axiom A13 can be also taken as a definition. This allows one to remove �∞ from the
set of primitive symbols, provided that some changes in the axiomatic basis are made; for
instance, A17 becomes E(i, j) → L(E(i, j) ∧ �intE(i, j)).
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φ between k and the time in which the obligation was originally supposed to
expire (j). Thus, we can formulate this version of OIC as follows:

(Os♦[i,j]φ ∧ E(i, k) ∧ ¬E(j, k)) → (Os♦[k,j]φ→M♦[k,j]φ)

One can use this schema to distinguish between those obligations that are still
in effect at a time and those that are not: even if an obligation concerning
a temporal interval I is assumed for deductive reasoning, this does not entail
that that obligation is effective when we reason about some point within I.

3 Semantics

In this section we describe the intended class of frames and models to interpret
the logic DTM. Let R be the set of all relations Rint such that int is an
interval. In analogy with what we did in the syntactic part, we will use Ri as
a shorthand for R[i,i].

Definition 3.1 (Frames) The language L is interpreted on relational frames
of kind F = 〈W,R, A,<〉 where:

• W is a set of states denoted by w, v, u, etc.;

• for any Rint ∈ R, Rint ⊆W ×W is a “temporal inspection” relation;

• A ⊆W ×W is a “metaphysical inspection” relation;

• < ⊆W × IND × IND is a “temporal precedence” relation.

For any w ∈ W , we have Rint(w) = {v : wRintv} and this can be called the
Rint-sphere of w. An analogous notation can be used with reference to the
other relations in a frame.

Definition 3.2 (Models) A model over a frame F is a structure of kind M =
〈F, V,N〉 such that:

• V : ATO −→ ℘(W ) is a valuation function;

• for any s ∈ SOU , Ns : W −→WFFO is a norm assignment with respect to
source s.

For any s ∈ SOU and w ∈ W , Ns(w) ⊆ WFFO is the Ns-sphere of w. We
want to highlight the fact that the Ns-sphere of a state is model-dependent,
whereas any Rint-sphere of a state is frame-dependent. Furthermore, in a frame
the <-sphere of a state w can be different (in general) from the <-sphere of
a state v; therefore, we will speak of the Allen relation between two intervals
[i, j] and [k, l] as seen from a state w.

Definition 3.3 (Truth-conditions) The truth of a formula with reference to
a state w in a model M is defined below, where a ∈ ATO and s ∈ SOU :

• M, w � a iff w ∈ V (a);

• M, w � ¬φ iff M, w 2 φ;

• M, w � φ→ ψ iff either M, w 2 φ or M, w � ψ;

• M, w � �intφ iff M, v � φ for all v ∈ Rint(w);
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• M, w � Osφ iff φ ∈ Ns(w);

• M, w � Lφ iff M, v � φ for all v ∈ A(w).

A formula φ is valid in a model M iff φ is true at all states in the domain of
M; φ is valid in a frame F iff it is valid in all models over F. Validity in a class
of frames/models is validity in all frames/models of the class.

We will denote by R ◦R′ the composition or two relations R and R′.

Definition 3.4 (Intended frames) The class of intended frames for DTM,
denoted by Cf , is the class of all frames such that:

Πa for every i, j ∈ IND, R[i,j], R⇐i and Ri⇒ are serial, transitive and
euclidean relations;

Πb A and R∞ are equivalence relations;
Πc < is a strict partial order;
Πd for any i ∈ IND, if v, u ∈ Ri(w), then u = v;
Πe for any i, j ∈ IND, R[i,j] = R[j,i];
Πf for any i, j, k, l ∈ IND, the following properties are associated with

the Allen relation among [i, j] and [k, l] as seen from w:
- if [i, j] and [k, l] are identical, then R[i,j](w) = R[k,l](w)
- if [i, j] overlaps with [k, l], then Rω[i,j](w) ⊆ R[k,l](w)

and Rα[k,l](w) ⊆ R[i,j](w)
- if [i, j] meets [k, l], then Rω[i,j](w) = Rα[k,l](w)
- if [i, j] is finished by [k, l], then R[k,l](w) ⊆ R[i,j](w)

and Rω[i,j](w) ∩R[k,l](w) 6= ∅
- if [i, j] is started by [k, l], then R[k,l](w) ⊆ R[i,j](w)

and Rα[i,j](w) ∩R[k,l](w) 6= ∅
- if [i, j] contains [k, l], then R[k,l](w) ⊆ R[i,j](w);

Πg for any i ∈ IND, R∞ = R⇐i ∪Ri⇒;
Πh for any i, j, k ∈ IND, if (i, j), (i, k) /∈< (w) then R[j,k](w) ⊆ R⇐i(w);
Πi for any i, j, k ∈ IND, if (j, i), (k, i) /∈< (w) then R[j,k](w) ⊆ Ri⇒(w);
Πj Rint ◦Rint′ = Rint;
Πk < (w)=< (v) whenever v ∈ (A ◦Rint)(w) (for some Rint);
Πl Rint ◦A = A ◦Rint.

Definition 3.5 (Intended models) The class of intended models for DTM,
denoted by Cm, is the class of all models over frames in Cf such that: 7

Πx for any i, j ∈ IND, w ∈ V (E(i, j)) iff (i, j) ∈< (w);
Πy for any s ∈ SOU , φ ∈ Ns(w) only if there is v ∈ A(w) s.t. M, v � φ.

7 Due to the syntactic restrictions specified in Definition 2.2, the Ns-sphere of a state w (for
every s ∈ SOU) includes only formulas where deontic operators never occur, and the truth
of such formulas at a state v of a model M can be established without any reference to the
Ns-sphere of w. This ensures that property Πy is not defined in a circular way.
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Before moving to the semantic characterization of DTM, we would like to
briefly comment on some philosophical points. In the present logical framework
the interaction between truth of formulas, states in a model and temporal
indices captures the relation between the flow of time and change along the
following lines. First, we can say that a maximal and DTM-consistent set of
formulas in WFF constitutes a configuration of the world. Second, states in
a model can be said to be pictures of a configuration of the world, since each
of them is associated with a maximal and DTM-consistent set of formulas
(though, this is not in general a one-to-one correspondence, since there are
models in which two states are associated with the same configuration). Third,
according to property Πd, exactly one picture of a configuration of the world
is associated with each temporal index. However, the same picture can be
associated with successive temporal indices, since this depends on the level of
temporal granularity of a representation (for instance, one might have a new
picture of a configuration of the world every second day, every second month,
etc.).

Proposition 3.6 The system DTM is sound w.r.t. the class Cm.

Proof. An induction on the length of derivations. First we consider axioms:
in the case of A0-A6, A13, A16, A18 and A19 the proof is a standard procedure
in propositional (multimodal) reasoning; we here illustrate the other cases.

Consider A7. Assume that we have a model M in Cm and a state w in
its domain s.t. M, w � Ide([i, j], [k, l]) and M, w � �[i,j]φ but M, w 2 �[k,l]φ.
Thus, (I) for all states v ∈ R[i,j](w), we have M, v � φ and (II) there is a
state u ∈ R[k,l](w) s.t. M, u 2 φ. However, the intervals [i, j] and [k, l] are
identical as seen from w and so, due to property Πf , R[i,j](w) = R[k,l](w) and
a contradiction can be obtained.

Consider A8. Assume that M, w � Ove([i, j], [k, l]) but M, w 2 (�[k,l]φ →
�ω[i,j]φ) ∧ (�[i,j]ψ → �α[k,l]ψ), for some φ, ψ ∈ WFF . Let M, w 2 �[k,l]φ →
�w[i,j]φ. We know that (I) [i, j] overlaps [k, l] as seen from w, and (II) for all
v ∈ R[k,l](w) we have M, v � φ. Due to properties Πa and Πf , there is some
state u ∈ Rω[i,j], and u ∈ R[k,l](w). Therefore, M, u � φ. Furthermore, due to
Πd, u is the only state in Rω[i,j](w), so M, w � �ω[i,j]φ: contradiction. The
argument for M 2 �[i,j]ψ → �α[k,l]ψ is analogous.

Consider A9. Assume that M, w � Mee([i, j], [k, l]) but M, w 2 ♦ω[i,j]φ ≡
♦α[k,l]φ for some φ ∈ WFF . We can focus, without loss of generality, on
the case in which M, w � ♦ω[i,j]φ and M, w 2 ♦α[k,l]φ. Thus, (I) there is
v ∈ Rω[i,j](w) s.t. M, v � φ, and (II) for all u ∈ Rα[k,l](w) we have M, u 2 φ.
However, since [i, j] meets [k, l] as seen from w, then Rω[i,j](w) = Rα[k,l](w)
and we get a contradiction.

Consider A10. Assume M, w � Con([i, j], [k, l]) and M, w 2 �[i,j]φ →
�[k,l]φ for some φ ∈WFF . From this one can infer that (I) for all v ∈ R[i,j](w),
we have M, v � φ, and (II) for some u ∈ R[k,l](w), we have M, u 2 φ. However,
since [i, j] contains [k, l] as seen from w, then R[k,l](w) ⊆ R[i,j] and we get a
contradiction.
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Consider A11. Assume that M, w � Sta([i, j], [k, l]) and M, w 2 (�[i,j]φ→
�[k,l]φ) ∧ (�[k,l]ψ → ♦α[i,j]ψ), for some φ, ψ ∈ WFF . Let M, w 2 �[i,j]φ →
�[k,l]φ. Therefore, (I) for all v ∈ R[i,j](w), we have M, v � φ, and (II) there
is some u ∈ R[k,l](w) s.t. M, u 2 φ. However, since [i, j] is started by [k, l]
as seen from w, then R[k,l](w) ⊆ R[i,j](w) and we get a contradiction. Let
M, w 2 �[k,l]ψ → ♦α[i,j]ψ. Therefore, (I) for all v ∈ R[k,l](w) we have M, v � ψ,
and (II) there is no u ∈ Rα[i,j](w) s.t. M, u � ψ. However, since [i, j] is started
by [k, l] as seen from w, then Rα[i,j](w) ∩ R[k,l](w) 6= ∅ and this leads to a
contradiction. The argument for A12 is analogous.

Consider A14. Assume M, w � (�⇐iφ ∧ ¬E(i, j) ∧ ¬E(i, k)) and M, w 2
�[j,k]φ for some φ ∈ WFF . Then, for all v ∈ R⇐i(w) we have M, v � φ;
furthermore, (i, j), (i, k) /∈< (w). Due to property Πh we have that R[j,k](w) ⊆
R⇐i(w) and we get a contradiction. The argument for A15 is analogous.

Consider A17. Assume M, w � E(i, j) but M, w 2 L�intE(i, j) for some
interval int. Then, (i, j) ∈< (w) and there is v ∈ (A ◦ Rint)(w) s.t. M, v 2
E(i, j). However, by property Πk, < (w)=< (v), and we get a contradiction.

The fact that rules RX, RY and RZ preserve validity in every model in Cm

is straightforward. ✷

Proposition 3.7 The system DTM is complete w.r.t. the class Cm.

Proof. The canonical frame F for DTM can be built following the usual steps
for systems of modal logic, with the only difference that for every maximal
consistent set of formulas w, every i, j ∈ IND and every s ∈ SOU we have:

• < (w) = {(i, j) : E(i, j) ∈ w};

• Ns(w) ⊆WFFO.

The canonical model M over F is such that, for every maximal consistent set
of formulas w, and every a ∈ ATO, we have:

• V (a) = {w : a ∈ w}.

We now illustrate that the canonical model belongs to the class Cm.
The proof that M satisfies properties Πa–Πe, Πg and Πj–Πl relies on stan-

dard arguments in completeness results for modal propositional logic (in the
case of Πc only basic propositional reasoning with A1 and A2 is needed). We
will analyse how the remaining properties of models in Cm (and of the under-
lying frames) are satisfied.

In the case of Πf we illustrate one example. Assume that the interval [i, j]
contains the interval [k, l] as seen from a state w but R[k,l](w) * R[i,j](w).
Then there is a state v ∈ W s.t. v ∈ R[k,l](w) and v /∈ R[i,j](w). From this
one can infer that {φ : �[k,l]φ ∈ w} ⊆ v and that there is some ψ ∈ WFF s.t.
�[i,j]ψ ∈ w and ψ /∈ v. However, since [i, j] contains [k, l] as seen from w, then
(α(i, j), α(k, l)), (ω(k, l), ω(i, j)) ∈ <(w) and this entails Con([i, j], [k, l]) ∈ w.
Furthermore, since w is closed under A10, then �[k,l]ψ ∈ w, whence ψ ∈ v:
contradiction.

In the case of Πh, assume that (i, j), (i, k) /∈ <(w) but R[j,k](w) * R⇐i(w).
Then there is some state v ∈ R[j,k](w) such that v /∈ R⇐i(w). From this one
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can infer that {φ : �[j,k]φ ∈ w} ⊆ v and that there is ψ s.t. �⇐iψ ∈ w and
ψ /∈ v. However, since ¬E(i, j) ∧ ¬E(i, k) ∈ w and w contains all instances of
A14, then �[j,k]ψ ∈ w and ψ ∈ v: contradiction.

Property Πx is satisfied due to the definition of F and M. Finally, consider
property Πy. Suppose there are s ∈ SOU and φ ∈WFFO s.t. φ ∈ Ns(w), and
that for no v ∈ A(w) we have M, v � φ. Then, for any such v we have φ /∈ v,
whence Mφ /∈ w; however M, w � Osφ, so Osφ ∈ w and we get a contradiction
in the light of A19.

✷

4 The Paradox of the Court: Proposed Solutions

Many formal accounts of the Paradox of the Court, also known as Protagoras v.
Euathlus, have been provided in the literature. In [16] Lenzen offers an analysis
within a so-called base logic. As [18] neatly puts it, this logic “is defined by the
axioms of the classical sentence calculus, axioms of necessity operator of the
modal system S5, and axioms of identity predicate. The only inference rule
is Modus Ponens.” This approach is improved by Åqvist in [2], in terms of
temporal deontic logic and the definition of several interesting notions, such as
(in)validity as applied to an agreement, (in)correctness as applied to a verdict,
or the import of an agreement (what follows from it). Both Lenzen and Åqvist
aim at solving the paradox by deriving in their formal systems a way of getting
paid the established fee.

Smullyan in [25] proposes an informal solution, which is suggested to him
by “a lawyer” and goes as follows:

The court should award the case to the student —the student shouldn’t have
to pay, since he hasn’t yet won his first case. After the termination of the
case, then the student owes money to Protagoras, so Protagoras should then
turn around and sue the student a second time. This time, the court should
award the case to Protagoras, since the student has now won his first case.

Rescher [23] agrees with Smullyan that the two-trials solution appears to have
the strongest claim.

 Lukowski summarizes and criticizes various solutions to the Paradox of the
Court, proposing his own solution, in [17] and [18]. He objects that many
accounts available in the literature, including the logical reconstructions by
Lenzen and Åqvist, substitute a legal pseudo-problem (getting paid the es-
tablished fee) for the ancient logical dilemma. The original logical problem
consists in the contradiction resulting from putting the conclusions of two ar-
guments that are equally plausible —one formulated by Protagoras, another
one by Euathlus. The legal pseudo-problem can be managed only within the
second case mentioned by Smullyan. But  Lukowski notes that no second case
is mentioned in the original paradox, and that the real problem clearly pertains
to the first (and only) case.

We partly agree with  Lukowski’s criticism. However, we are also afraid that
his own solution is open to similar objections as those he raises. He argues as
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follows:

Let us use two expressions: ‘pay the agreed fee’ and ‘pay the court ordered
damages’ rather than ‘pay for the education’. It is easy to see that such a
simple operation eliminates the unwanted contradiction. If Euathlus wins
the court case, he must pay the agreed fee, even though he does not pay
the damages. If Protagoras is the winner, the situation will be quite the
opposite.

The conclusion of the argument is that Euathlus has to pay the fee in both cases,
and the contradiction thus vanishes. The problem with this account is that, just
as the second case has not been mentioned in the original paradox, damages
have not been mentioned either. Because of this, while  Lukowski’s solution
appears to be on the right track, it is not entirely satisfactory. Lenzen and
Åqvist importantly show that the temporal aspect is important to understand
the paradox;  Lukowski shows that an ambiguity of a certain kind is lurking
behind the paradox. We will combine these intuitions by proposing a novel
account of the paradox within the formal framework introduced in this article.

5 Representing the Paradox of the Court in Our

Framework

Where is the ambiguity at the basis of the Paradox of the Court to be located,
exactly? In the original formulation, there is no ambiguity in what should be
paid, that is, there is no distinction between the fee versus the court ordered
damages. Damages are not mentioned at all, it is all about the money for
education (the fee). The ambiguity is rather rooted in different sources of
norms. 8 Recall this passage from [12] (italics added): “For if the case goes
against you, the money will be due me in accordance with the verdict, because
I have won; but if the decision be in your favour, the money will be due me
according to our contract, since you will have won a case.” We thereby suggest
that the difference is between being obliged (or not being obliged) to pay the
fee in accordance with the verdict versus to pay the fee in accordance with the
agreement.

Euathlus might not be obliged to pay the fees on the basis of the court
decision (if he wins the court case); but it does not follow that there is no other
obligation - on the basis of the agreement - to pay Protagoras for his teaching.
And the other way around, Euathlus might not be obliged to pay the fee on
the basis of the agreement (if he loses the court case), but it does not follow
that there is no other obligation to pay Protagoras for his teaching.

Let us now capture these intuitions in the proposed formal language. To
begin with, we need to distinguish five different things surrounding the paradox:

• the agreement between Protagoras and Euathlus;

8 Given that the promise or the agreement in question is sufficient for generating the obli-
gation; cf. [19] for a more complex procedural treatment of promises.
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• the argument by Protagoras leading to the conclusion that Euathlus is
obliged to pay;

• the argument by Euathlus leading to the conclusion that Euathlus is not
obliged to pay;

• the scenario that (apparently) took place;

• the scenario that should have taken place.

Let p be the proposition that Euathlus wins the first court case and let q be
the proposition that Euathlus pays the fee. In addition, let Oa represent an
obligation on the basis of the agreement between Protagoras and Euathlus and
Oc represent an obligation on the basis of the court decision. Let i be the date
when the education terminated.

The Agreement. In the proposed language, the agreement can be analysed
by saying that in all possible courses of events, if there is a case that Euathlus
wins at a time j after i, then Euathlus is obliged to pay the fee starting from
j. Thus, we have the following schema, for all j ∈ IND:

E(i, j) → L(♦jp→ Oa♦j⇒q)

The Argument Formulated by Protagoras. Protagoras breaks down the
possible outcomes of his trial against the former scholar into two options:

• Euathlus wins the case.

• Euathlus does not win the case.

Let r stand for the proposition that Euathlus wins the case and let k be the
date of the court decision. Thus, at k, either r holds or ¬r holds. If r holds,
Protagoras argues, Oa♦k⇒q holds too, since the conditions of the agreement are
satisfied. If, on the other hand, ¬r holds, Oc♦k⇒q holds too, because the court
decided in favour of Protagoras. We can immediately identify one mistake in
the argument formulated by Protagoras: If Euathlus does not win, it does not
follow that the court ordered Euathlus to pay (i.e., that Protagoras wins), as
it will be clear in the description of the scenario that (apparently) took place.

The Argument Formulated by Euathlus. Euathlus too, breaks the pos-
sible outcomes of the trial into two options. If r holds, Euathlus argues, the
jurors decided in his favour, so he does not have to pay; i.e., ¬Oc♦k⇒q. If,
on the other hand, ¬r holds, then he has not won any case yet, so he is not
obliged to pay according to the agreement; i.e., ¬Oa♦k⇒q. Here we can again
spot a mistake: it does not follow from not being obliged to pay on the basis
of one normative source that there is no other normative source that obliges
one to pay. In other words, if r holds, then really ¬Oc♦k⇒q holds, but also
Oa♦k⇒q holds. And if ¬r holds, then really ¬Oa♦k⇒q holds, but it can be
that Oc♦k⇒q holds too (i.e., that Protagoras wins).
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The Actual Scenario. In the actual scenario (as presented by Gellius; [12],
409), “the jurors, thinking that the plea on both sides was uncertain and in-
soluble, for fear that their decision, for whichever side it was rendered, might
annul itself, left the matter undecided and postponed the case to a distant
day.” At k, the conditions that there is some j such that E(i, j) and ♦jp are
not satisfied, because Euathlus has not won the given case (no one has), nor
has he won any other case yet. He is thus not obliged to pay the fees —neither
on the basis of the court decision nor on the basis of the agreement. We thus
have ¬Oc♦k⇒q, but also ¬Oa♦k⇒q.

The (Legally) Ideal Scenario. In the legally ideal scenario described above
by Smullyan, Euathlus wins the first case because, till the court decision, he has
not won any case, and thus is not obliged to pay. However, after this victory
he can be sued another time and be obliged to pay. In other words, until k,
the conditions that there is some j such that E(i, j) and ♦jp are not satisfied.
However, after k, those conditions can be satisfied.

6 Final Remarks

This paper proposed a fine-grained formal framework for normative reasoning
that combines deontic, temporal, and metaphysical modalities. The main mo-
tivation for this choice is the fact that in normative reasoning, as well as in
fundamental ethical principles, such as the Ought-Implies-Can principle (OIC),
modalities of these three kinds are intertwined. Admittedly, OIC is a rather
complex principle; in the present paper, we have dealt with only one aspect of
OIC – the agent’s need of a temporal opportunity to fulfil an obligation.

Furthermore, we illustrated how the framework works in formalizing a trou-
blesome ancient paradox, the Paradox of the Court. We proposed a new ac-
count of the paradox, which takes some inspiration from existing accounts and
highlights the following aspects: the temporal dimension; the presence of am-
biguity; the hidden mistakes of the two arguments leading to contradictory
results.

There are several interesting directions for future research. One direction
is exploring how the families of modalities in question are intertwined in other
issues related to ethics and morality; for instance, in debates around moral
or legal responsibility, where reference to alternative possibilities and temporal
opportunities is fundamental to evaluating the behaviour of a normative party.
Exploring these issues in a formal framework that is very simple (being based
on a propositional multimodal language), but rich enough to specify how obli-
gations and possibilities are lost or gained across intervals of time, could be
very useful. Yet another direction would be developing axiomatic extensions of
the minimal logic DTM presented here in order to encode further principles of
normative reasoning. For instance, in order to account for an agent’s freedom,
one could extend the formal representation of OIC with a condition making
reference to the metaphysical possibility of violating obligations.
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Abstract

Formalising adequately normative logical reasoning with deontic logic has been no-

toriously problematic. Here I argue that one of the major reasons is that a typical

deontic inference combines different types of sentences, expressing (inter alia) proposi-

tions, norms, and actions. These have different logical properties and formally mixing

them can leads to unnatural (or, plainly absurd) conclusions, of which deontic logic

abounds. Thus, I argue that deontic logical reasoning is inherently many-sorted and

that an adequate logical formalisation of such reasoning ought to involve separate, yet

inter-related syntactic sorts, at least including norms, actions, and propositions. Here

I propose such formal logical framework, illustrate its use for formalising common-

sense normative reasoning, and provide formal semantics for a large fragment of it.
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1 Introduction

The questions of how logic-based normative reasoning should be formalised,
and what it should apply to, have permeated the entire history of deontic logic
and have been driving much of its agenda, ever since (and even before) G.H.
von Wright’s seminal 1951 paper [40]. Von Wright himself struggled with these
questions for over 50 years and changed his views and opinions more than once
meanwhile. His original system of deontic logic proposed in [40] was not a
logic of propositions, but a logic of norms over actions (‘acts’) 2 , to which the
deontic operators apply, thus producing normative propositions. That led to
various problems, both formal and conceptual, which von Wright tried hard
to resolve over the following years, meanwhile gradually moving towards the

1 Email: valentin.goranko@philosophy.su.se
2 Von Wright wrote there “First a preliminary question must be settled. What are the

“things” which are pronounced obligatory, permitted, forbidden, etc.? We shall call these

“things” acts.”
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(so called) ‘standard deontic logic’ of propositions, cf. [42,43,44]. This was a
shift, in von Wright’s terms, from an ought-to-do (“Tun-sollen”) approach to
an ought-to-be (“Sein-sollen”) approach to Deontic logic (cf. [47]). That shift
was also motivated by the vigorous development of modal logic in the 1960s
and von Wright (as he himself admits, e.g. in [48]) was strongly influenced
by some leading logicians of the time and proponents of the possible worlds
semantics, incl. Anderson, Prior, and others.

The so-called ‘standard’ propositional deontic logics emerging as a result
of that shift not only did not resolve the fundamental problems of logical for-
malisation of normative reasoning, but actually aggravated some of them, by
bringing to the surface numerous formalised versions of deontic paradoxes and
puzzles, such as Ross’ paradoxes, Prior’s paradoxes of derived obligations, etc.
Much of the mainstream research in deontic logic has been devoted to attempt-
ing to resolve these paradoxes, either one at a time, or “all of them in one fell
swoop” [4]. Indeed, much progress has been made over the years, but also
many problems arising in the area have not been resolved yet in a satisfac-
tory way, and more have arisen meanwhile. In particular, the fundamental
question “(how) is formal logic applicable to normative reasoning?” remains, I
would argue, not definitively resolved yet. Just one very telling fact about the
long-lasting drama around that question is that 40 years after his original 1951
paper in Mind von Wright published in 1991 the paper [46] titled “Is there a
logic of norms?.” In the abstract he wrote “If norms are neither true nor false,
can logical relations such as contradiction and entailment obtain between them?
Earlier logical positivists [...] have answered the question with No. While ap-
preciating the seriousness of the problem, the author of the present paper makes
a fresh attempt to answer the question with Yes. [...]”

Arguably, most of the problems with formalising normative reasoning are
inherent in its very nature, which combines usual propositional reasoning
with reasoning about norms, about agents’ actions, and judgements about the
agents’ compliance with norms while performing these actions. It is also widely
acknowledged that it is quite challenging (if possible at all) to capture all these
in ‘traditional’ logical systems, involving a single sort of formal expressions,
viz. formulae expressing propositions. Numerous attempts have been made to
develop more elaborated such systems that would capture better the essence of
normative reasoning. In particular, several systems of deontic logic have been
proposed (see notes on related work in Section 6) putting together actions and
norms, or actions and normative propositions. Still, it appears that these at-
tempts have not yet led to a full and seamless integration of various deontic
logics of norms, logics of propositions, and logics of actions, into a deontic logic
combining reasoning about norms, propositions and actions on a par. This, in
a nutshell, is the essence of this paper’s proposal.

Here I argue that such more elaborated approach is not optional, but nec-
essary for the design of adequate logical systems for normative reasoning. In
particular, I claim that adequate logical formalisation of normative reasoning
ought to be many-sorted, involving separate syntactic sorts, at least for norms,
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actions, and propositions. Then I propose a concrete, yet generic such new
logical framework, for which I present here the basic building blocks of its lan-
guage, provide formal semantics for a large fragment of it, and illustrate its use
for formalising ‘everyday’ normative reasoning.

2 Some fundamental issues of deontic logic revisited

2.1 Jørgensen’s dilemma: is there a deontic logical consequence?

As noted in the introduction, a fundamental question arising even before the
birth of formal deontic logic is “What do deontic sentences express: norms or
propositions?” It has been widely assumed that these two uses are mutually ex-
clusive. The traditional logical positivism view was definite: deontic sentences
expressing norms can be neither true nor false, so they are not propositions
and cannot be treated with formal logic. One of the leading representatives of
that view, the Danish philosopher J. Jørgensen, stated that issue – now known
as Jørgensen’s dilemma – in his 1937 paper [20] essentially as follows:

- either the notion of logical consequence is defined in terms of truth, in which
case there can be no deontic logical consequence, hence no possibility for
deontic logic;

- or a logic of norms is possible, but the notion of logical consequence should
not be defined in terms of truth, which contradicts a fundamental assumption
in logic (according to the logical positivism).

Von Wright’s position (cf. e.g. [41]) was strongly in favour of the latter:
“Yes, logic of norms is possible, as logic has a wider reach than truth!”.

Let me also note that the question whether there can be a coherent notion
of respective logical consequence is not exclusive to normative reasoning. Such
questions arise, on similar grounds, for instance regarding reasoning about
imperatives, as well as about interrogatives 3 .

2.2 Norms vs normative propositions

One of the fundamental issues arising in normative reasoning is the important
distinction that is to be made between a norm and a normative proposition,
perhaps first explicitly pointed out (according to von Wright) by I. Hedenius
[17]. What makes this distinction so subtle is that it is often noted only on level
of pragmatics. For instance, a normative sentence such as “Parking here is for-
bidden” may have a prescriptive (norming) meaning, if stated by an authority
(parking attendant or traffic police), or a descriptive (informative) meaning,
if uttered by a possibly informed passer-by. The former case yields a norm,
whereas the latter – a (normative) proposition. That makes a major difference,
as norms prescribe what should, or may (or not) be done, whereas normative
propositions describe the normative status of actions according to the existing

3 However, it should also be noted that there has been a significant recent progress on the
latter issue, by means of the so called inquisitive semantics and logics, cf. [6]. Compared to
that development, formalising logical normative reasoning is now lagging behind.
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norms. Thus, norms can be obeyed, fulfilled or violated, but cannot be true or
false, whereas normative propositions are naturally assigned truth values.

According to von Wright, the appearance of many paradoxes (such as Ross’
letter paradox) arises from a confusion between norms and norm-propositions,
as norms do not satisfy some basic logical laws, e.g.:
“A norm to the effect of ‘p’ does not imply a norm to effect that ‘p or q’”.

Several scholars on normative reasoning, incl. C. Alchourrón and E. Bulygin
[2], kept raising the question Is Deontic Logic a logic of norms or a logic of
normative propositions?. According to the early von Wright, the ‘real deontic
logic’ is the former. But, as noted earlier, he changed his views more than once
over time, cf. [45], and later he took the view that logic of norms is impossible
and deontic logic can only be a logic of propositions about (the existence of)
norms 4 – from which he backtracked again still later, cf. e.g. [48] 5 .

The answer advocated in the present work is that Deontic Logic ought
to be both a logic of norms and a logic of normative propositions. Also, in
my view, Deontic Logic should combine the Sein-sollen and the Tun-sollen
perspectives 6 , rather than opposing them to each other.

2.3 Can there be formal logical deontic reasoning? Yes, there can,
and there is!

Jørgensen’s dilemma raises the existential for deontic logic question: can there
be deontic logical consequence, at all?. As already noted, von Wright’s position,
albeit sometimes shrouded in doubts, was positive. This view is shared by most
(if not all) formal deontic logicians, and even by those who view the so called
‘standard systems of deontic logic’ to be a failed attempt to adequately for-
malise deontic reasoning. For the present author, the question is but rhetoric,
because deontic logical reasoning does exist in real life and we do make deontic
logical inferences on a daily basis, even though usually without realising that.
The real question is: how to formalise properly deontic logical reasoning? In
several papers von Wright explored the notions of consistency and entailment
between norms, but (for all I know) stopped short of putting them on a par
with normative propositions. As I argued above, a major problem arising with
normative logical reasoning is that it is intrinsically many-sorted, combining

4 As he confessed in [46]: “Over the years my view became more “radical”, and I came

to think that logical relations such as contradiction and entailment could not hold between

(genuine) norms and that therefore, in a sense, there could be no such thing as a “logic of

norms.” ” [...] “The notion of rationality came to my help and so I arrived at a position

according to which deontic logic is neither a logic of norms nor a logic of norm-propositions

but a study of conditions which must be satisfied in rational norm-giving activity”.
5 von Wright adds there in a footnote: “This was what I thought initially to be the lesson of

the coming into existence of deontic logic. Later I thought differently. In the end, it seems,

I have gone full circle back to my original position. But I still think the journey was worth

making.”
6 This alternative is distinct, but in my view essentially related to the previous one, as
deontic logic of norms links more naturally with the ought-to-do approach, whereas a logic
of normative propositions is closer to the ought-to-be perspective.
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propositions, norms, actions, and that only many-sorted formalisms for norma-
tive reasoning can captured it adequately.

Let us consider a few simple examples of what one can call ‘everyday nor-
mative reasoning’ to see the issue at hand.

(i) Pippi is buying beer from the local liquor store. (action; fact)

(ii) Everyone 7 of age over 20 is allowed to buy alcohol from liquor stores.
(norm (permission))

(iii) Pippi is 21 years old. (fact)

(iv) Therefore, Pippi is allowed to buy alcohol at liquor stores.
(conclusion: derived individual norm? normative proposition? both?)

(v) Therefore, Pippi’s buying beer from the local liquor store is legal.
(conclusion: a normative proposition, stating compliance with a norm)

Another example:

(i) Smoking in the building is forbidden. (common norm (prohibition))

(ii) Chuck Norris is in the building. (fact)

(iii) Therefore, Chuck Norris is not allowed to smoke.
(derived individual norm (prohibition))

(iv) Chuck Norris is smoking. (action; fact)

(v) Therefore, Chuck Norris is violating the non-smoking rule.
(fact; normative proposition, stating a norm violation)

(vi) Chuck Norris may violate any rule. (???... ok, a Chuck Norris joke)

Clearly, these are proper logical inferences (skipping a few trivial steps).
Yet, they are not instances of traditional logical reasoning, because they involve
not only propositions (facts), but also actions and (common and individual)
norms, and these do not necessarily obey the rules of propositional reasoning,
at least because they cannot be assigned truth values. Still, we should all agree
that these inferences are – intuitively – logically correct, in a sense that ought
to be made precise.

The logical inference problems get amplified when conditional norms are
involved, often leading to non-monotonic reasoning, as in the following example.

(i) To be allowed to drive a car, one must have a valid driving licence.
(norm (conditional obligation))

7 This sentence formally requires universal quantification over agents. However, a language
with full-fledged quantification over agents is hardly necessary for normative reasoning, as
norms usually involve universal quantification over agents and very seldom existential quan-
tification (e.g. as in “at least one author of each accepted paper must register for the confer-
ence”). The universal quantification over agents can thus be omitted and assumed implicitly.
So, to avoid such quantification and keep the arguments propositional, I will use in the formal
framework so called ‘common norms’, applying by default to all agents.
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(ii) Noone under the age of 18 may have a driving licence.
(norm (prohibition))

(iii) Tommy is 16 years old. (fact)

(iv) Therefore, Tommy is not allowed to drive a car.
(conclusion 1: a norm and a normative proposition)

(v) A person aged between 16 and 18 may practice driving, but only if accom-
panied by a licensed driver. (norm (conditional permission))

(vi) So, Tommy may drive a car, if accompanied by a licensed driver.
(conclusion 2: a conditional norm, and a normative proposition)

(vii) Noone is allowed to drive under the influence of alcohol.
(norm (prohibition))

(viii) Tommy has just had two beers and is a little dizzy. (fact)

(ix) Therefore, Tommy is not allowed to drive a car (now) 8 .
(conclusion 3: a norm and a normative proposition)

(x) Tommy is driving his dad’s Volvo back home.
(action; fact; norm violation)

Note that some of the expressions in the inference above can be classified
in more than one way, e.g. the last one is an action, but also a fact, and a
proposition implying a violation of the prohibition norm stated in (g). In order
to treat properly these type-sharing phenomena we need syntactic mechanisms
that generically transform one type of statement into another.

3 MS-Deon: a multi-sorted logical language for

normative reasoning

As discussed earlier, initially von Wright conceived deontic logic as a logical
theory of ought-to-do. However, he and others gradually transformed it into a
logical theory of ought-to-be. I argue that neither of these approaches suffices
alone to capture the distinction and interaction between actions, norms and
normative propositions, but they must be combined in a more sophisticated and
versatile language, with different syntactic sorts of formal expressions, involving
(at least) each of these. Furthermore, agentivity should be brought to the fore
of normative reasoning, as norms should (primarily) apply to agents and their
actions, not to propositions, i.e. von Wright’s original idea was the right one!
Importantly, existence and validity of norms should be separated already on
syntactic level from statements about agents’ compliance with norms, as truth
values apply to the latter, but not the former. Eventually, both validity and
compliance with norms should be postulated for the basic norms, and then
computed, or deductively derived for complex norms.

Before introducing the formal language, here are some guiding principles

8 This example raises more issues, such as the role of time and temporality in normative
reasoning, which I will not discuss further here.
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followed in its construction.

• Norms are constructs applying deontic operators D (Obligatory, Permitted,
Forbidden) to actions, to produce D-to-do expressions. Norms can be applied
to actions of specific agents, or universally, to all agents. The latter can
be done generically (“smoking is forbidden”) or by explicit quantification
(“no passenger is allowed to smoke”). I will follow the former approach (cf.
footnote 7). Furthermore, often norms are conditional (e.g. “persons of age
below 18 are not allowed to buy alcohol”).

• Norms can be combined by boolean and other operations to produce complex
norms. More generally, a norm-building sub-language emerges.

• Actions can be atomic, primitive entities, or can be built in a compositional
style of dynamic logic, from (names of) atomic actions, by using operations
on actions. Thus, an action-building sub-language emerges, too.

• Actions also involve specific STIT-like constructions, where only the required
effect of the action, and possibly the agent executing that action, are speci-
fied, thus relating D-to-be and D-to-do expressions.

• Propositions can be of different sub-sorts, too, including factual, normative,
and performative (explained further). They are built separately, by imposing
suitable restrictions on the language, but can be eventually combined by
applying standard logical connectives.

3.1 The formal 3-sorted deontic language MS-Deon

Here I present a generic multi-sorted language of Deontic Logic for Norms,
Actions, and Propositions, hereafter denotedMS-Deon, with the three main
sorts defined by mutual recursion, along with the intuitive semantics of the
respective language constructs. This language will generically involve various
possible constructs and sub-sorts, but these need not all be included in any
concrete instantiation of it, which would only select the constructs that are
naturally needed for the concrete purpose of specific normative reasoning.

To define the language, I first fix sets of atomic propositions PROP, atomic
actions ACT, and agents Agt.These will usually (though, not necessarily) be
assumed finite and common for all formal models that will be defined further
and can be thought as specifying the signature of a concrete instantiation of
MS-Deon, analogously to the non-logical symbols in a concrete first-order lan-
guage. I will use specific names for agents, for which I will use metavariables
such as a,b,c. I also use agent parameters, i.e., free variables ranging over
agents, typically denoted by a, b, c. These parameters will only play an auxil-
iary role, to avoid explicit universal quantification over agents (cf. footnote 7)
which is typically needed for common or conditional norms.

• Actions. The sort for actions is built compositionally, generally following
the style of Propositional Dynamic Logic PDL, by this inductive definition:

α := αat | ᾱ | α;α | α ∪ α | α ∩ α | · · · | ϕ? | [stit]ϕ
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Here αat are atomic actions and ,̄ ; ,∪,∩ are respectively the operations of
‘negation’, sequential composition, choice, and parallel execution of actions,
whereas ϕ? is the action ‘test’ applied to a formula ϕ. Intuitively, the action
ϕ? succeeds without changing the current state if ϕ is true in it, else it fails,
leading to no outcome state (‘crashes’). Lastly, [stit]ϕ is an action 9 which
is only described by its effect, viz. ‘bringing about (the truth of) ϕ’. Note
that actions are so far agent-less, but in the context of the full language they
will be usually attributed to agents.

• Norms. I consider three sub-sorts of norms: common (applicable gener-
ically to any agent), individual agentive (applicable to an explicitly speci-
fied agent), and conditional agentive (applicable to all agents satisfying the
given condition). In the definitions below: α is an action; ϕ(a) is a propo-
sition (possibly) containing an agent parameter a; a is (a generic name of)
an agent; a is a parameter ranging over agents; Oughtdo,Permdo,Prohdo are
the main deontic to-do operators, viz. ‘ought-to-do’, ‘permitted-to-do’, and
‘prohibited-to-do’; and ,̄©∨ ,©∧ are the respective boolean operations on
norms, the precise meaning of which can vary (cf. e.g. [42,45,34,37,38] for
possible interpretations) and will not be fixed here. Formally:

Common norms:

N := Oughtdoα |Permdoα |Prohdoα | N̄ | N©∨N | N©∧ N

Individual agentive norms:

N := Oughtdo
a
α |Permdo

a
α |Prohdo

a
α | N̄ | N©∨N | N©∧ N

Conditional agentive norms:

N := Oughtdo(ϕ(a), α) |Permdo(ϕ(a), α) |Prohdo(ϕ(a), α) | N̄ | N©∨N | N©∧ N

Intuitively, Oughtdo(ϕ(a), α) says that doing α is obligatory for every agent
a satisfying the condition ϕ(a); likewise for Permdo and Prohdo.

These sub-sorts of norms can be combined further by using the boolean
operations on norms.

• Propositions. I consider 3 most sub-sorts of propositions that naturally
and most commonly occur in normative reasoning.

Factual propositions:

φ := p | pa | pa | ¬φ | φ ∧ φ | [α]aϕ | [α]aϕ | [α]ϕ

Factual propositions are built up from atomic propositions to describe facts
of the world. They can be agent-less, or referring to a specific agent (pa,

9 NB: even though the idea comes from STIT theories, there is a fundamental difference:
here [stit]ϕ is an action, not a formula.
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meaning that the agent a satisfies a property p), or agent-parameterised (pa,
with likewise meaning). Factual propositions can also express statements
about facts holding after executions of actions, such as [α]aϕ, meaning to
say that ‘after the agent a executes the action α (the fact expressed by) ϕ
will hold ’; likewise for [α]aϕ; respectively, [α]ϕ means ‘after any execution of
the action α, ϕ holds’.

Performative propositions:

ψ := Performa(α) | Performa(α) | Perform(α) | ¬ψ | ψ ∧ ψ

Performative propositions express claims about actions being performed, by
specific agents, or in general. Optionally, they can also involve propositions
expressing abilities of agents to perform actions, e.g. Ableaα, etc., as well as
other attitudes towards actions (desires, intensions, etc.).

Normative propositions:

θ := InForce(N) | Sata(N) | Sat(N) | Legala(α) | ¬θ | θ ∧ θ

Normative propositions express claims about the validity of norms, where
InForce(N) means to say that “the norm N is (currently) ‘in-force’ ”, as well
as claims about the compliance or violation of norms, by specific agents or
generally. For instance, Sata(N) means to say that ‘the agent a is complying
with the norm N’ and Legal

a
(α) says that ‘the performance of action α by

agent a legal (norm-compliant)’.

Inter-sort propositions can be combined freely by applying boolean con-
nectives to these sorted propositions.

3.2 Some notes on the expressiveness and use of MS-Deon

Inter-sort transitions. MS-Deon allows for seamless transitions from one
sort to another, whenever that makes good sense. For instance, an action α
transforms to norms Oughtdoα,Oughtdo

a
α and likewise to Permdoα and Prohdoα,

as well as to propositions like Perform(α). A norm N transforms to norma-
tive propositions InForce(N) and Sat(N), whereas a normative proposition
InForce(N) can be tested with a test action InForce(N)?. Further, Sat(N)
can be transformed to an action [stit] Sat(N), which can then produce a per-
formative proposition Performa([stit] Sat(N)), etc. All that enables natural
formalisation of informal normative inferences, like the examples in Section
2.3, into formal propositional logical inferences in a MS-Deon-based deductive
system (see Section 4).

Expressing ’To-Be’ norms. MS-Deon can express uniformly both agentive
(indicated by the optional index a) and non-agentive ’To-Be’ norms and nor-
mative propositions from the respective ‘To-Do’ norms and propositions:
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Norms Norm-propositions

Oughtbe(a)ϕ := Oughtdo(a)[stit]ϕ InForce(Oughtdo(a)[stit]ϕ)

Permbe
(a)ϕ := Permdo

(a)[stit]ϕ InForce(Permdo
(a)[stit]ϕ)

Prohbe(a)ϕ := Prohdo(a)[stit]ϕ InForce(Prohdo(a)[stit]ϕ)

These apply likewise to produce normative propositions like Sat(Oughtbeϕ).

Expressing individual conditional norms. Individual conditional norms,
e.g. of the type “if agent a satisfies property φ then a ought to do α” can be
expressed as the agentive conditional norm Oughtdo(φ(a) ∧ ψa(a), α) if ψa is a
characteristic property that is satisfied by a and by no other agent. Otherwise,
expressing that is still possible, but in a somewhat cumbersome roundabout
way: first, take the proposition ψ = φ(a) → InForce(Oughtdo

a
α) which can

then be turned into a norm by using the construct Oughtbe(ψ).

Adding imperatives. MS-Deon can be extended with a sort for imperatives,
which can be both individual (referring to a specific agent, indicated below by
the optional index (a)) and common, involving for instance constructs like:

[stit (a)]!ϕ | Do(a)α | Don′t(a)α | MayDo(a)α

The construct [stit ]!ϕ intuitively means to express the common imperative
‘See to it that φ! ’, whereas [stit a]!ϕ means the same, but addressing only
the agent a; the rest are self-explanatory. The idea of adding imperatives is
that they can be applied by authorities or agents for producing new norms, i.e.
bringing about obligation, permission, or prohibition requirements in force,
thus enabling the expression of norm creation. This idea will be explored
further in a follow-up work.

Expressing some deontic principles and relationships. MS-Deon en-
ables expressing various to-do norms in a uniform way, by translating them to
seeing-to-it norms, whenever appropriate, following the scheme:

‘Agent a ought-to-do X’ ⇒
‘Agent a ought to see-to-it-that (or, ought to bring-it-about-that) a does X.

Respectively,
‘X ought-to-be-done’ ⇒
‘It ought-to-be-seen-to-it-that (ought-to-be-brought-about-that) X is done.

On the other hand, MS-Deon also enables expressing the agentive stit action
by the non-agentive one:

[a stit]ϕ := Performa([stit]ϕ)

Further, the agentive to-do norms can be reduced to non-agentive to-be ones
by using the well-known Meinong-Chisholm Reduction principle:

‘Agent a ought to see to it that p holds iff
it ought to be that agent a sees to it that p holds’.
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or,
‘Agent a is obliged to bring it about that p holds iff
it is obligatory that agent a brings it about that p holds’.

The Meinong-Chisholm reduction principle is simply formalised in MS-Deon:

Oughtdo
a
[stit]ϕ ≡ Oughtbe[a stit]ϕ

which, when translated back becomes:

Oughtdo
a
[stit]ϕ ≡ Oughtdo[stit]Performa([stit]ϕ)

(Note the two different uses of ‘stit’ above.)

On the other hand, intuitively, the following equivalence should hold:

Oughtdo
a
α ≡ Oughtbe[a stit]Performa(α).

This and other such intuitive validities impose natural requirements on the
formal semantics.

4 Towards a system of deduction for MS-Deon

The main purpose of a logic-based framework is to provide a platform for logical
deduction. This is especially the case for MS-Deon. Indeed, the full language
seems too rich and generic to build a complete, yet feasible logical system
for it. So, in reality only suitable fragments of MS-Deon would be formalised
deductively and used for specific purposes.

The many-sortedness of MS-Deon suggests two different approaches to
building systems of deduction for it:

(i) many-sorted deduction, involving inter-sort inference rules and allowing for
the derivation of logical consequences not only in terms of propositions,
but also in terms of norms. That, inter alia, resolves the dilemma of
‘deontic logic of norms’ vs ‘deontic logic of normative propositions’, by
putting both together.

(ii) ‘flat’ single-sort deduction, where reasoning about actions and norms is
transformed to reasoning about performative and normative propositions.

The ‘flat’, proposition-based approach is more traditional and can be natu-
rally based on any standard logical deductive system, e.g., a suitably enriched
system of natural deduction, sequent calculus, or even a Hilbert-style system for
axiomatic deduction 10 , also involving intermediate steps of inter-sort transfor-
mations. A system of many-sorted deduction would necessarily be rule-based 11

10Hilbert-style systems are of limited practical use. Still, a provably complete such system
can be used as a basis for building a more efficiently structured deductive systems, involving
mechanisms for goal-oriented proof search. Resolution based proof systems are case in point.
11The rules are needed to avoid the clash of sorts that would occur if these were replaced by
implications within formulae.



230 How Deontic Logic Ought to Be: Towards a Many-Sorted Frameworkfor Normative Reasoning

and closer to a natural deduction style, which I find more practically useful,
though also perhaps more challenging. Thus, both approaches have pros and
cons, but, eventually, due to the inter-sort reductions, both should yield the
same deductive power.

In either case, building a practically useful system of deduction which is
sound, both with respect to the prevailing common sense and (when the com-
mon sense is inconclusive) with respect to the formal semantics provided fur-
ther, and is also sufficiently rich to capture non-trivial normative inferences,
is a big and long-term project which goes beyond the limitations of this pa-
per. Still, here are some initial construction steps for a rule-based system of
deduction for MS-Deon, with some relevant references:

• To begin with, such system should contain as a core a system of deduction
(e.g., natural deduction or sequent calculus) 12 for the underlying classical
logical reasoning. That could be a version or a fragment of some complete
system of natural deduction for first-order logic, cf. e.g. [29,39], or [12].

• In addition, it should contain subsystems of rules capturing the logical prop-
erties of each of the other two main sorts, viz. actions and norms. To build
the sub-system of reasoning about actions compositionally, in PDL style,
possibly suitable deductive systems to base it on are [19], [18], [9] and par-
ticularly [11], which explicitly incorporates the many-sorted approach. As for
logics of norms, I am aware of few works on structured, rule-based deduction
systems, starting with the pioneering [10], the non-technical but conceptually
very relevant to the present work [13], [15] and the more recent [30], [8].

• The most challenging task is to develop a sufficiently rich system of inter-sort
rules that enable truly many-sorted reasoning. Some of the earlier mentioned
works enable structured multi-sorted deductive reasoning, but very few works
that I am aware of, incl. [7] and [11], focus on that issue, and none of them
on many-sorted normative reasoning.

Here are a few samples of many-sorted rules needed for formalising deductive
reasoning in MS-Deon:

• If any agent a satisfying the condition ϕ ought to perform the action α and
the agent a satisfies the condition ϕ, then a ought to perform the action α:

InForce(Oughtdo(ϕ(a), α)), ϕ(a)

InForce(Oughtdo
a
α)

Hereafter, to keep the rules simpler, I will omit the construct InForce(·) but
will just write the norm N itself as a premise or conclusion of a rule, meaning
that it represents the normative proposition InForce(N). An advantage of

12 I do not mention here tableaux-based systems, as they are based on proofs by contra-
diction, which only applies when one already knows what conclusion one wants to prove,
whereas practical normative reasoning is often open-ended. However, I should at least men-
tion tableaux-based systems for deontic and other related logics by Rönnedal, cf. [31], [33],
[32].
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the many-sorted framework is that it allows such freedom of expression with-
out formally producing the sort mismatch that would occur if N itself, rather
than InForce(N), is used in a formula in a flat language of propositions.

• If any agent a is permitted to perform the action α and a performs α then
a’s performing that action is legal 13 :

Permdo
a
α, Performa(α)

Legal
a
(α)

• If an agent a is prohibited from (respectively, obliged to) performing the
action α and a performs (respectively, does not perform) α then a is violating
that prohibition (respectively, obligation) norm:

Prohdo(a)α, Performa(α)

¬Sata(Proh
do
(a)α)

,
Oughtdoa α, ¬Performa(α)

¬Sata(Ought
do
(a)α)

• If any agent a is prohibited from seeng to it that ϕ, and if ϕ obtains for sure
after a performs the action α, then a is prohibited from performing α:

Prohdo(a)[stit]ϕ, [α]aϕ

Prohdoa α

A stronger rule is obtained by replacing the premise [α]aϕ with 〈α〉aϕ.

To illustrate how theMS-Deon framework can be used to formalise common-
sense normative reasoning, consider the first example from Section 2.3. Let

• β be the action “buying beer from the liquor store.”

• o(a) be the agent-parameterised atomic proposition “a is over 20 years old.”

Here is a formalised many-sorted derivation of that example, skipping a few
trivial steps. Note the use of the (ad hoc introduced) inter-sort inference rules.

(i) PerformPippi(β) (action performative proposition)

(ii) Permdo(o(a), β) (norm (permission))

(iii) o(Pippi) ((essentially given) fact)

(iv) Inter-sort inference rule:

o(a), Permdo(o(a), β)

Permdo
a
β

(v) Permdo
Pippiβ (individual norm, derived from i-iv)

(vi) Inter-sort inference rule:

Permdo
a
β

Legal
a
(β)

13We implicitly assume here that the permission excludes the possibility of a conflicting
prohibition. In general, that may not be the case, so such proviso is to be added to the rule.
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(vii) LegalPippi(β) (normative proposition, derived from v-vi)

The inference above can be transformed to a flat propositional inference, by
using the InForce(N) construct to convert norms to normative propositions.
Then, the inter-sort inference rules can be transformed to axiom schemes.

I leave the systematic development of a suitable full-fledged system of de-
duction for MS-Deon as an open challenge.

Lastly, I just note here that many well-known deontic paradoxical infer-
ences, such as Prior’s paradoxes of derived obligations, are naturally blocked
in a many-sorted inference system for MS-Deon because of involving disallowed
inter-sort inferences; again, this is to be discussed in a future work.

5 Semantics for MS-Deon

Designing adequate formal semantics for such rich language as MS-Deon is not
less challenging task than designing an adequate system of deduction for it.
That semantics is still partly under construction, as some clauses depend on
resolving quite non-trivial questions beyond the scope of this paper, e.g., of
how norms extend from atomic over to composite actions. I will first present
some underlying principles of the semantics, then will define the proposed for-
mal models, and then will give the semantic clauses for a large fragment of
the language, leaving some clauses subject to additionally specified conditions
resolving the issues mentioned above.

5.1 Semantics intuitively: main features

The semantics proposed here is influenced by several related works mentioned
earlier and blends features from several semantics of well-known logics, incl.
PDL, STIT, and the Coalition Logic CL, with some key new ideas:

• Models consist of states, describing snapshots of the world. Each state has:
– a propositional label, being the set of atomic propositions true there;
– a normative label, describing the atomic actions that are obligatory, per-
mitted, or forbidden (commonly, or for a given agent) to perform from that
state.

• Agents act concurrently from states of the model, each choosing indepen-
dently to perform a set of atomic actions available to her at that state.
(Such multiple actions are often referred to by norms, e.g. ‘do not drink
while driving’.) The result is an action choice set profile. Then, every agent
performs independently all actions in her choice set (and only them).

• Transitions between states occur in a discrete manner and are determined
by all agents performing ‘simultaneously’ their choices of actions. Sequences
of states and transitions between them form histories.

• The composite actions are computed over histories, like in PDL.

• Norms are evaluated for validity (being in-force) at states, and for agents’
compliance at histories and current transitions, in terms of the choice profile
labels, inductively on their structure.
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• Factual propositions are evaluated at states. Normative and performative
propositions are evaluated at histories and current transitions.

5.2 Multi-agent deontic models

Given fixed (and usually assumed finite) sets of atomic propositions PROP,
atomic actions ACT, and agents Agt, a multi-agent deontic (MAD) model
over these is a structure

M = 〈St, act, π, δ,∆, τ〉, where:

• St is a set of states.

• act : St× Agt → P(ACT) is a mapping assigning to every state s and agent
a a set act(s,a) of actions available to a at s.

• π : St → P(PROP) is a state description function, assigning to each state s
its propositional label π(s).

• δ : St×Agt → P(ACT)×P(ACT)×P(ACT) is a normative function, such that
δ(s,a) = (δo(s,a), δp(s,a), δf (s,a)) is the normative label of s, consisting of
the sets of obligatory, permitted and forbidden actions for each agent a at
state s. These satisfy the following natural constraints 14 :
δo(s,a) ⊆ δp(s,a),
δp(s,a) ∩ δf (s,a) = ∅, and
δp(s,a) ∪ δf (s,a) ⊆ act(s,a).

• a general normative function ∆ : St → P(ACT) × P(ACT) × P(ACT) is
defined likewise, to specify the general normative label of s, applying to all
agents 15 .

• τ : St × P(ACT)
Agt → St is the transition function, which for every s ∈ St

and a choice of actions profile σ determines the successor state τ(s, σ) of s,
where a choice of actions profile at a state s is a mapping σ : Agt → P(ACT)
such that σ(a) ⊆ act(s,a) for each a ∈ Agt, representing the selection of
available actions that the agent chooses to perform at the current state.
Thus, the mapping σ is not part of the description of the model, but is a
component of the context of evaluation of norms and propositions.

A history 16 in M is a finite sequence of states and the transitions between
them. The last state of the history h will be denoted by l(h), and h ◦ s will
denote the history h extended with the state s.

14The semantics presented here only handles norms that are applied in a particular situation
(state), but not norms that are not applied because of being in conflict with higher priority
norms applied at that state. Thus, the issue of conflicting norms and mechanisms for their
resolution arises here, which will not be addressed in the present work.
15Of course, ∆ can be subsumed in all individual normative labels, but that would lead to
an unnecessary repetition of all common norms for all existing and newly appearing agents.
16NB: this is distinct from the notion of ‘history’ in STIT models, where it is a primitive
abstract entity, representing a potentially infinite possible course of events.
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5.3 Truth, norm validity, norm compliance, performance values

Given a MAD model M = 〈St, act, π, δ,∆, τ〉 we define truth of propositions
|=, validity of norms |⋍, and then compliance with norms, with respect to pairs
(history, choice profile) 17 in M by a mutual induction as follows (omitting the
standard boolean cases, and given here only for atomic actions):

• M, h, σ |= p iff p ∈ π(l(h)).
(Here l(h) is the current state of the evolution of the system with history h.)

• M, h, σ |⋍ Oughtdoα iff α ∈ ∆o(l(h),a); likewise for Permdoα and Prohdoα.

M, h, σ |⋍ Oughtdo
a
α iff α ∈ δo(l(h),a); likewise for Permdo

a
α and Prohdo

a
α.

We read M, h, σ |⋍ N as “The norm N is in force at M, h, σ”.
Thus, the normative labels at the current state determine the norms re-

garding atomic actions that are in force at that state 18 .

• M, h, σ |⋍ Oughtdo(ϕ(a), α) iff α ∈ δo(l(h),a) holds for all agents a such that
M, h, σ |= ϕ(a) (assuming that each ϕ(a) is already evaluated).
Likewise for Permdo(ϕ(a), α) and Prohdo(ϕ(a), α).

• |⋍ is extended to all norms inductively on the construction of norms, follow-
ing additionally specified semantics of the norm-building operations.

• Now, we define M, h, σ |= InForce(N) iff M, h, σ |⋍ N,

• M, h, σ |= Sata(Ought
do
a
α) iff α ∈ σ(a) 19 ;

M, h, σ |= Sata(Perm
do
a
α) iff α ∈ δp(s,a);

M, h, σ |= Sata(Proh
do
a
α) iff α 6∈ σ(a);

Analogously for Sat(Oughtdoα), Sat(Permdoα), Sat(Prohdoα).
The clauses for compliance with composite actions, providing semantics of
Legal

a
(α), are to be given inductively on the definition of actions, according

to externally specified conditions. These are generally non-trivial and subject
to ongoing research and debate, so they will not be provided here.

• M, h, σ |= Performa(αat) iff αat ∈ σ(a);

• M, h, σ |= Performa([stit]φ) iff M, h, σ′ |= φ for every σ′ with σ′(a) = σ(a)

• The clauses for performance of composite actions are given inductively on
their structure, according to their operational semantics, as in PDL.

17The truth of some propositions, e.g. the factual ones, would only depend on the current
state, but others – typically normative and performative – also depend on the history and
the choice profile.
18An essential point, raised by Karl Nygren: there is a difference between “existence” of
norms and norms being “in force”. The former typically refers to laws or other agentless and
timeless norms, whereas the latter apply locally, at ”states” possibly involving both a time
instant and a location, i.e. apply “here and now”. Ideally, both types of norms should be
included and treated on a par in the formal framework. However, to keep it simple, here I
will assume that globally existing norms are included in all normative labels of states.
19This definition makes the provision that one can comply with a norm even if it is not
“in force” (by being in the current normative label). Thus, we can keep the judgment of
compliance/non-compliance separate from the validity of norms. That may be useful e.g. for
counterfactual normative reasoning.
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• M, h, σ |= [α]a(φ) iff M, h ◦ τ(l(h), σ′), σ′′ |= φ for every σ′ such that α ∈
σ′(a) and every choice of actions profile σ′′ at τ(l(h), σ′).
Likewise for M, h, σ |= [α](φ).

• The cases of agent-parameterised propositions will not be treated in full
generality here, to avoid having to deal with assignments over agents. So
far, we will only be interested in formulae where all agent-parameterised
propositions are in the scope of conditional agentive norms, where their use
is reduced to checking their truth for each agent in Agt.

This completes the semantics, modulo the mentioned externally specified
mechanisms, e.g., for the extension of deontic operators to composite actions.

6 Some related work

In addition to the earlier cited works by von Wright, here is a selective and
inevitably incomplete list of earlier publications, some of which have inspired,
and others just anticipated, some ideas in the present work.

• In [1] C. Alchourrón proposed a “normative logic”, viz. a logic of normative
propositions (rather than a deontic logic of norms). These are propositions
stating that an agent has ‘issued a norm’. The logic has two sorts of formulae,
building on top of a modal deontic logic in early von Wright style, by applying
a ‘norm issuing’ operator N to deontic formulae. A couple of years later,
Alchourrón and Bulygin proposed in their 1971 book [2] another two sorted
deontic language, involving a ‘universe of actions’ and ‘universe of properties’,
with deontic operators applying to the former, to build normative systems,
all in a semi-formal style.

• Castañeda proposes in [4] a ‘calculus containing proposition-practition dis-
tinction’, where he distinguishes ought-to-do norms applying to actions
(‘practitions’), from those applying to ‘action propositions’, but without pro-
viding formal semantics or a system of deduction for these.

• Several researchers have proposed (with different motivations) and devel-
oped essentially two sorted deontic logics of actions, by analogy with the
(propositional) dynamic logic of programs PDL. In particular:
· K. Segerberg [34,35,36] developed a ‘dynamic deontic logic’ of actions,
involving formulae and event (action) terms, evaluated over histories of
events. Norms are defined only in the semantics, as functions N such that
for any history h, N(h) selects a set of extensions of h considered normal
(legal) according to that norm. Still, Segerberg’s system is closer to a logic
of normative propositions, than to a logic of norms.

· J.-J. Meyer proposed in [27] a different approach to two-sorted deontic logic
as a variant of dynamic logic. He revisited ‘Segerberg style’ of dynamic
deontic logic in [28].

· P. Kulicki and R. Trypuz have developed in a series of papers [22,37,38,23]
‘deontic action logics’, based on algebraic approach to actions. These are
formally logics of normative propositions about actions, not logics of norms.
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· Other two-sorted deontic action logics were proposed by J. Broersen [3]
and P. Castro and T. Maibaum [5].

• J. Hage has proposed and developed rule-based methodology and systems for
normative and legal reasonings in a series of non-technical but conceptually
close to the present proposal works 20 , including [14] (summarized in [13]),
[15], and the more recent [16], amongst others.

• Motivated by the study of conditional norms, D. Makinson and L. van der
Torre, proposed the “Input-Output Logic” framework [24,25,26]. Notably,
they develop an inference mechanism not based on transfer of truth-values.

• M. Knobbout, M. Dastani and J.-J. Meyer introduce in [21] a deontic logic
for distinct types of norms, viz. state-based and action-based, with semantics
based on formally defined normative systems.

7 Concluding remarks

This paper stemmed from my (growing over the years) dissatisfaction with how
modal logic – in the guise of ‘standard deontic logic’ – handles normative rea-
soning. I have argued here that a more elaborated formal framework for deontic
logic is needed for adequately formalising (especially, multi-agent) normative
reasoning. I have then proposed such a many-sorted 21 formal framework, have
outlined its language and formal semantics, and indicated briefly how it could
be used for formalising normative reasoning. This work is still in progress and
some features are still under construction, in particular the formal semantics
for the full language and the development of adequate deductive systems for it.

I emphasise again that the proposed framework is generic and includes
many syntactic features and constructs on actions, norms and propositions,
only some of which would be applicable to any concrete instantiation of the
framework. On the other hand, I also admit that a truly adequate logical
formalisation of normative reasoning would require much more than what the
proposed framework offers. It should also involve, inter alia:

• a full-fledged first-order (or higher-order) language for the domain of norma-
tive discourse, including constant, function, and predicate symbols, as well
as quantification over individuals.

• an elaborated multi-agent framework, involving individual, as well as group
and collective actions and respective deontic operators for individual, group,
and collective obligations, permissions, and prohibitions, in their interaction;
possibly, also explicit quantification over agents.

• multi-agent knowledge: individual, common and distributed, as well as be-
liefs. These are crucial for realistic and meaningful normative reasoning.

20 I have only discovered these publications during the last days of work on the final version
of this paper, hence my comments are brief and more superficial than deserved.
21As noted by a reviewer, the virtues of using sorted/typed logical formalisms for knowledge
representation and reasoning go well beyond normative reasoning and deontic logics.
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Further, a more refined theory of agency, that relates the deontic attitudes
with agents’ knowledge, beliefs, and abilities to act is needed.

• explicit temporality, as norms exist and agents act over time; so, judging norm
compliance and violation must take temporality and timing into account.

All these are inherent aspects of adequate normative reasoning and should
all be brought together, under one (enormous, but necessary) formal umbrella.
That is a long-term (and multi-agent) endeavour, left to future ought-to-do’s.
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Abstract

We introduce a variant of Deontic Defeasible Logic to handle the issue of Pragmatic

Oddity. The key idea is that a conjunctive obligation is allowed only when each in-

dividual obligation is independent from the violation of the other obligations. The

solution makes essential use of the constructive proof theory of the logic while main-

taining a feasible computational complexity.

Keywords: Pragmatic Oddity, Defeasible Deontic Logic

1 Introduction

A differentiator between norms and other constraints is that, typically, (legal)
norms can be violated. Moreover, normative systems contain provisions about
other norms that become effective when violations occur. Since the seminal
work by Chisholm [3] the obligations in force triggered by violations have been
dubbed contrary-to-duty obligations (CTDs). The treatment of CTDs has
proven problematic for formal (logical) representations of normative systems.
Accordingly, CTDs are the source for many paradoxes and the driver for the
development of many formalisms and deontic logics. The contribution in this
paper follows the tradition: we are going to propose an extension of a logic
(Defeasible Deontic Logic) that addresses the Pragmatic Oddity CTD paradox.

The problem of Pragmatic Oddity, introduced by Prakken and Sergot [12],
is illustrated by the scenario that when you make a promise, you have to keep
it. But if you do not, then you have to apologise. The oddity is that when you
fail to keep your promise, you have the obligation to keep the promise and the
obligation to apologise. In our view, what is odd, is not that the two obligations
are in force at the same time, but that if one admits for form a conjunctive
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obligation from the two individual obligations then we get an obligation that
is impossible to comply with. In the scenario, when the promise is broken, we
have the conjunctive obligation obligation to keep the promise and to apologise
for not having kept the promise.

The Pragmatic Oddity arises when we have a conjunctive obligation, i.e.,
O(a∧ b), derived from the two individual obligations (Oa and Ob) where one of
the conjuncts is a contrary-to-duty obligation triggered by the violation of the
other individual obligation, for example when ¬a entails that Ob is in force.

Most of the work on Pragmatic Oddity (e.g., [12,2]) focuses on the issue
of how to distinguish the mechanisms leading to the derivation of the two
individual obligations, and create different classes of obligations. Consequently,
the solution to the Pragmatic Oddity problem is to prevent the conjunction
when the obligations are from different classes. Accordingly, if the problem is to
prevent that a conjunctive obligation is in force when the individual obligations
are in force themselves, the simplest solution is to have a deontic logic that does
not support the aggregation axiom 1 :

(Oa ∧ Ob)→ O(a ∧ b)

However, a less drastic solution, advocated by Parent and van der Torre [10,11],
is to restrict the aggregation axiom to independent obligations (meaning that
one obligation should not depend on the violation of the other obligation).

We are going to take Parent and van der Torre’s suggestion and propose
a simple mechanism in Defeasible Deontic Logic to guard the derivation of
conjunctive obligations. The mechanism guarantees that the obligations of a
conjunctive obligation are independent from the violations of the individual
obligations. The mechanism is founded on the proof theory of the logic.

2 Defeasible Deontic Logic

Defeasible Deontic Logic [6] is a sceptical computationally oriented rule-based
formalism designed for the representation of norms. The logic extends De-
feasible Logic [1] with deontic operators to model obligations and (different
types of) permissions and provides an integration with the logic of violation
proposed in [8]. The resulting formalism offers features for the natural and
efficient representation of exceptions, constitutive and prescriptive rules and of
compensatory norms. The logic is based on a constructive proof theory that
allows for full traceability of the conclusions, and flexibility to handle and com-
bine different facets of non-monotonic reasoning. In the rest of this section we
are going to show how the proof theory can be used to propose a simple and
(arguably) elegant treatment of the issue of Pragmatic Oddity.

We restrict ourselves to the fragment of Defeasible Deontic Logic that ex-
cludes permission and permissive rules, since they do not affect the way we han-
dle Pragmatic Oddity: Definitions 2.12 and 2.13, the definitions that describe
the mechanisms we adopt for a solution to Pragmatic Oddity, are independent

1 See, among others, [4].
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from any issue related to permission. The definitions can be used directly in
the full version of the logic. Accordingly, we consider a logic whose language is
defined as follows.

Definition 2.1 Let PROP be a set of propositional atoms, O the modal op-
erator for obligation.

• The set Lit = PROP ∪ {¬p | p ∈ PROP} is the set of literals.

• The complement of a literal q is denoted by ∼q; if q is a positive literal p,
then ∼q is ¬p, and if q is a negative literal ¬p, then ∼q is p.

• The set of deontic literals is DLit = {Ol,¬Ol | l ∈ Lit}.

• If c1, . . . , cn ∈ Lit, then O(c1 ∧ · · · ∧ cn) is a conjunctive obligation.

In the rest of the paper, when relevant to the discussion, we will refer to
elements of Lit as plain literals, and often we will use the unmodified term
‘literal’ to indicate either a plain literal or a deontic literal.

We introduce the compensation operator ⊗. This operator is used to build
chains of compensation called ⊗-expressions. The formation rules for well-
formed ⊗-expressions are:

(i) every literal l ∈ Lit is an ⊗-expression;

(ii) if c1, . . . , ck ∈ Lit, then c1 ⊗ · · · ⊗ ck is an ⊗-expression;

(iii) nothing else is an ⊗-expression.

In addition we stipulate that ⊗ obeys the following property (duplication and
contraction on the right):

n
⊗

i=1

ai =
(

k−1
⊗

i=1

ai

)

⊗
(

n
⊗

i=k+1

ai

)

where there exists j such that aj = ak and j < k.
Given an ⊗-expression A, the length of A is the number of literals in it.

Given an ⊗-expression A⊗ b⊗C (where A and C can be empty), the index of
b is the length of A⊗ b. We also say that b appears at index n in A⊗ b if the
length of A⊗ b is n.

The meaning of a compensation chain

c1 ⊗ c2 ⊗ · · · ⊗ cn

as proposed by [8]and further discussed in [5], is that Oc1 is the primary obliga-
tion, and when violated (i.e., ¬c1 holds), then Oc2 is in force and it compensates
for the violation of the obligation of c1. Moreover, when Oc2 is violated, then
Oc3 is in force, and so on until we reach the end of the chain when a violation of
the last element is a non-compensable violation where the norm corresponding
to the rule in which the chain appears is not complied with.

We adopt the standard DL definitions of strict rules, defeasible rules, and
defeaters [1]. However, for the sake of simplicity, and to better focus on the
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non-monotonic aspects that DL offers, in the remainder we use only defeasible
rules and defeaters. Also, we have to take the obligation operator into account.

Definition 2.2 Let Lab be a set of arbitrary labels. Every rule is of the type

r : A(r) →֒ C(r)

where

(i) r ∈ Lab is the name of the rule;

(ii) A(r) = {a1, . . . , an}, the antecedent (or body) of the rule, is the set of the
premises of the rule (alternatively, it can be understood as the conjunction
of all the elements in it). Each ai is either a literal, a deontic literal or a
conjunctive obligation;

(iii) →֒∈ {⇒,⇒O,❀,❀O} denotes the type of the rule. If →֒ is ⇒, the rule
is a defeasible rule, while if →֒ is ❀, the rule is a defeater. Rules without
the subscript O are constitutive rules, while rules with such a subscript
are prescriptive rules.

(iv) C(r) is the consequent (or head) of the rule. It is a single literal for
defeaters and constitutive rules, and an ⊗-expressions for prescriptive de-
feasible rules.

As we will see, prescriptive rules are used to derive obligations.
Given a set of rules R, we use the following abbreviations for specific subsets

of rules:

• Rd denotes the set of defeasible rules in the set R;

• R[q, n] is the set of rules where q appears at index n in the consequent.
The set of rules where q appears at any index n is denoted by R[q];

• RO denotes the set of prescriptive rules in R, i.e., the set of rules with O

as their subscript;

• RC denotes the set of constitutive rules in R, i.e., R \RO.

The above notations can be combined. Thus, for example, RO

d [q, n] stands for
the set of defeasible prescriptive rules such that q appears at index n in the
consequent of the rule.

Definition 2.3 A Defeasible Theory is a structure D = (F,R,>), where F ,
the set of facts, is a set of literals and deontic literals, R is a set of rules and
>, the superiority relation, is a binary relation over R.

A theory corresponds to a normative system, i.e., a set of norms, where every
norm is modelled by some rules. The superiority relation is used for conflicting
rules, i.e., rules whose conclusions are complementary literals, in case both
rules fire. We do not impose any restriction on the superiority relation: it just
determines the relative strength between two rules.

Definition 2.4 A proof (or derivation) P in a defeasible theory D is a linear
sequence P (1) . . . P (z) of tagged literals in the form of +∂q, −∂q, +∂Oq, −∂Oq,
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+∂Oc1 ∧ · · · ∧ cm and −∂Oc1 ∧ · · · ∧ cm where P (1) . . . P (z) satisfy the proof
conditions given in Definitions 2.8–2.13.

The tagged literal +∂q means that q is defeasibly provable as an institutional
statement, or in other terms, that q holds in the normative system encoded by
the theory. The tagged literal −∂q means that q is defeasibly refuted by the
normative system. Similarly, the tagged literal +∂Oq means that q is defeasibly
provable in D as an obligation, while −∂Oq means that q is defeasibly refuted as
an obligation. For +∂Oc1∧ · · ·∧ cm the meaning is that the conjunctive obliga-
tion O(c1 ∧ · · · ∧ cm) is defeasibly derivable; and that a conjunctive obligation
O(c1 ∧ · · · ∧ cm) is defeasibly refuted corresponds to −∂O(c1 ∧ · · · ∧ cm). The
initial part of length i of a proof P is denoted by P (1..i).

The first thing to do is to define when a rule is applicable or discarded. A
rule is applicable for a literal q if q occurs in the head of the rule, all elements
in the antecedent have been defeasibly proved (eventually with the appropriate
modalities). On the other hand, a rule is discarded if at least one of the modal
literals in the antecedent has not been proved. However, as literal q might not
appear as the first element in an ⊗-expression in the head of the rule, some
additional conditions on the consequent of rules must be satisfied. Defining
when a rule is applicable or discarded is essential to characterise the notion of
provability for constitutive rules and then for obligations (±∂O).

Definition 2.5 Given a proof P , a rule r ∈ R is body-applicable at step P (n+1)
iff for all ai ∈ A(r):

(i) if ai = Ol then +∂Ol ∈ P (1..n);

(ii) if ai = ¬Ol then −∂Ol ∈ P (1..n);

(iii) if ai = O(c1 ∧ · · · ∧ cm) then +∂Oc1 ∧ · · · ∧ cm ∈ P (1..n);

(iv) if ai = l ∈ Lit then +∂l ∈ P (1..n).

A rule r ∈ R[q, j] is body-discarded at step P (n+ 1) iff ∃ai ∈ A(r) such that

(i) if ai = Ol then −∂Ol ∈ P (1..n);

(ii) if ai = ¬Ol then +∂Ol ∈ P (1..n);

(iii) if ai = O(c1 ∧ · · · ∧ cm) then −∂Oc1 ∧ · · · ∧ cm ∈ P (1..n);

(iv) if ai = l ∈ Lit then −∂l ∈ P (1..n).

Definition 2.6 Given a proof P , a rule r ∈ RO[q, j] such that C(r) = c1⊗· · ·⊗
cm is applicable for literal q at index j at step P (n+ 1) (or, simply, applicable
for q), with 1 ≤ j < m, in the condition for ±∂O iff
(i) r is body-applicable at step P (n+ 1); and
(ii) for all ck ∈ C(r), 1 ≤ k < j, +∂Ock ∈ P (1..n) and +∂∼ck ∈ P (1..n).

Conditions (i) represents the requirements on the antecedent stated in Defini-
tion 2.5; condition (ii) on the head of the rule states that each element ck prior
to q must be derived as an obligation, and a violation of such obligation has
occurred.
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Definition 2.7 Given a proof P , a rule r ∈ RO[q, j] such that C(r) = c1⊗· · ·⊗
cm is discarded for literal q at index j at step P (n + 1) (or, simply, discarded
for q), with 1 ≤ j ≤ m, in the condition for ±∂O iff
(i) r is body-discarded at step P (n+ 1); or
(ii) there exists ck ∈ C(r), 1 ≤ k < l, such that either −∂Ock ∈ P (1..n) or

+∂ck ∈ P (1..n).

In this case, condition (institutional) ensures that an obligation prior to q in
the chain is not in force or has already been fulfilled (thus, no reparation is
required).

We now introduce the proof conditions for ±∂ and ±∂O:

Definition 2.8 The proof condition of defeasible provability for an institu-
tional statement is
+∂: If P (n+ 1) = +∂q then
(1) q ∈ F or

(2.1) ∼q 6∈ F and
(2.2) ∃r ∈ Rd[q] such that r is applicable for q, and
(2.3) ∀s ∈ R[∼q], either

(2.3.1) s is discarded for ∼q, or
(2.3.2) ∃t ∈ R[q] such that t is applicable for q and t > s.

As usual, we use the strong negation to define the proof condition for −∂

Definition 2.9 The proof condition of defeasible refutability for an institu-
tional statement is
−∂: If P (n+ 1) = −∂q then
(1) q /∈ F and

(2.1) ∼q ∈ F or
(2.2) ∀r ∈ Rd[q]: either r is discarded for q, or
(2.3) ∃s ∈ R[∼q], such that

(2.3.1) s is applicable for ∼q, and
(2.3.2) ∀t ∈ R[q] either t is discarded for q or not t > s.

The proof conditions for ±∂ are the standard conditions in defeasible logic, see
[1] for the full explanations.

Definition 2.10 The proof condition of defeasible provability for obligation is

+∂O: If P (n+ 1) = +∂Oq then
(1) Oq ∈ F or

(2.1) O∼q 6∈ F and ¬Oq 6∈ F and
(2.2) ∃r ∈ RO

d [q, i] such that r is applicable for q, and
(2.3) ∀s ∈ RO[∼q, j], either

(2.3.1) s is discarded for ∼q, or
(2.3.2) ∃t ∈ RO[q, k] such that t is applicable for q and t > s.

To show that q is defeasibly provable as an obligation, one must show either
that: (1) the obligation of q is a fact, or (2) q must be derived by the rules
of the theory. In the second case, three conditions must hold: (2.1) q does
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not appear as not obligatory as a fact, and ∼q is not provable as an obligation
using the set of deontic facts at hand; (2.2) there must be a rule introducing the
obligation for q which can apply; (2.3) every rule s for ∼q is either discarded
or defeated by a stronger rule for q.

The strong negation of Definition 2.10 gives the negative proof condition
for obligation.

Definition 2.11 The proof condition of defeasible refutability for obligation is

−∂O: If P (n+ 1) = −∂Oq then
(1) Oq 6∈ F and either

(2.1) O∼q ∈ F or ¬Oq ∈ F or
(2.2) ∀r ∈ RO

d [q, i] either r is discarded for q, or
(2.3) ∃s ∈ RO[∼q, j] such that

(2.3.1) s is applicable for ∼q, and
(2.3.2) ∀t ∈ RO[q, k], either t is discarded for q or t 6> s.

Notice that, given the intended correspondence between Ol and +∂Ol, see Def-
inition 2.5, we will refer to “the derivation of Ol” when, strictly speaking, we
should use “the derivation of +∂Ol.

We are now ready to provide the proof condition under which a conjunctive
obligation can be derived. The condition essentially combines two require-
ments: the first that a conjunction holds only when all the conjuncts hold
(individually). The second requirement is that the derivation of one of the in-
dividual obligations does not depend on the violation of the other conjunct. To
achieve this, we determine the line of the proof when the obligation appears,
and then we check that the negation of the other elements of the conjunction
does not occur in the previous derivation steps.

Definition 2.12 The proof condition of defeasible provability for a conjunctive
obligation is

If P (n+ 1) = +∂Oc1 ∧ · · · ∧ cm, then
∀ci, 1 ≤ i ≤ m,
(1) +∂Oci ∈ P (1..n) and
(2) if P (k) = +∂Oc1 ∧ · · · ∧ cm, k ≤ n, then

∀cj , 1 ≤ j ≤ m and cj 6= ci, +∂∼cj /∈ P (1..k).

Again, the proof condition to refute a conjunctive obligation is obtained by
strong negation from the condition to defeasibly derive a conjunctive obligation.

Definition 2.13 The proof condition of defeasible refutability for a conjunctive
obligation is
If P (n+ 1) = −∂Oc1 ∧ · · · ∧ cm, then
∃ci, 1 ≤ i ≤ m, such that either
(1) −∂Oci ∈ P (1..n) or
(2) if P (k) = +∂Oc1 ∧ · · · ∧ cm, k ≤ n, then

∃cj , 1 ≤ j ≤ m such that cj 6= ci and +∂∼cj ∈ P (1..k).

In case of a binary conjunctive obligation the positive proof condition boils
down to
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+∂O∧: If P (n+ 1) = +∂Op ∧ q then
(1) +∂Op ∈ P (1..n) and
(2) +∂Oq ∈ P (1..n) and
(3) if P (k) = +∂Op (k ≤ n),then +∂∼q /∈ P (1..k) and
(4) if P (k) = +∂Oq (k ≤ n), then +∂∼p /∈ P (1..k).

Similarly, for the condition for −∂O∧.

Before moving on proving some theoretical results about the logic defined
we give some examples that illustrate the behaviour of the logic. In what
follows we use · · · ⇒ c to refer to an applicable rule for c where we assume that
the elements are not related (directly or indirectly) to the other literals used
in the examples.

Compensatory Obligations The first case we want to discuss is when the
conjunctive obligation corresponding to the Pragmatic Oddity has as conjuncts
an obligation and its compensation. This scenario is illustrated by the rule:

· · · ⇒O a⊗ b

In this case, it is clear that we cannot derive the conjunctive obligation of a and
b, since the proof condition that allows us to derive +∂Ob explicitly requires
that +∂∼a has been already derived (condition 2 of Definition 2.6). In this
case, it is impossible to have the obligation of b without the violation of the
obligation of a.

Contrary-to-duty The second case is when we have a CTD. The classical
representation of a CTD is given by the following two rules:

· · · ⇒O a ¬a⇒O b

In this case, it is possible to have situations when the obligation of b is in
force without having a violation of the obligation of a, namely, when a is not
obligatory. However, as soon as we have Oa, we need to derive ¬a to trigger
the derivation of Ob (Definition 2.5).

Pragmatic Oddity via Intermediate Concepts The situations in the pre-
vious two cases can be easily detected by a simple inspection of the rules in-
volved; there could be more complicated cases. Specifically, when the second
conjunct does not immediately depends on the first conjunct, but it depends
through a reasoning chain. The simplest structure for this case is illustrated
by the following three rules:

· · · ⇒O a

¬a⇒ b

b⇒O c

Here to derive Oc, we need first to prove b. To prove b we require that ¬a has
already been proved.
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Negative Support In the previous case the support was through an interme-
diate concepts. However, given the non-monotonic nature of Defeasible Deontic
Logic, we can have cases where the support is not to directly derive the other
obligation from the violation, but the violation prevents the derivation of the
prohibition (or the permission of the opposite) of the other conjunct. This
situation is illustrated by the following set of rules: 2

· · · ⇒O a

· · · ⇒O b

c⇒O ¬b

· · · ⇒ c

¬a ❀ ¬c

To derive Ob, we have to ensure that the rule for O¬b is discarded. This means
that c should be rejected (i.e., −∂c). We have two options, either the rule for c
is discarded, or the rule for ¬c is applicable. This implies that to prove +∂Ob
we have to prove first +∂¬a. Thus, one of the two elements of the conjunctive
obligation O(a ∧ b) depends on the violation of the other.

Pragmatic Un-pragmatic Oddity What about when there are multiple
norms both prescribing the contrary-to-duty obligation, and at least one of the
norms is not related to the violation of the primary norm?

r1 : · · · ⇒O a⊗ b

r2 : · · · ⇒O b

¬a

In this situation you can have a derivation:

(1) + ∂¬a fact

(2) + ∂Oa from r1
(2) + ∂Ob from r1 and (1) and (2)

where the derivation of Ob (+∂Ob) depends on the violation of the primary
obligation of r1. In this case, we cannot derive the conjunctive obligation of a
and b. However, there is an alternative derivation, namely:

(1) + ∂Oa from r1
(2) + ∂Ob from r2
(3) + ∂¬a fact

(4) + ∂Oa ∧ b from (1) and (2)

that demonstrates the independence of Ob from ¬a, given that the derivation
of ¬a occurs in a line after the line where +∂Ob is derived.

2 It is worth noting that, in the theory below, the rules for ¬b and ¬c can be either defeasible
rules or defeaters producing the same result as far as the derivation of O(a∧ b) is concerned.
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3 Independence

As we have discussed the idea of the proof conditions above is to ensure that
the individual obligations do not depend on the violations of the others. Ac-
cordingly, the question now is what does it mean that a formula is independent
from another formula. In classical logic, given a theory T , a formula A depends
on the formula B if T ∪B ⊢ A, but T \B 6⊢ A. In Defeasible Deontic Logic, we
have to remove all possible reasons to conclude the literal; this means we have
to remove it from the facts and we have to remove the rules where it appears
in the head of the rule. Since we are interested in removing only non deontic
literals we can restrict the removal to the constitutive rules whose head is the
literal to be removed. Accordingly, we can define the following transformation.

Definition 3.1 Given a defeasible theory D = (F,R,>) and a literal l, the
Pragmatic Oddity Transformation of D based on l, noted as pot(D, l) is the
defeasible theory D′ = (F ′, R′, >′) satisfying the following conditions:

(i) F ′ = F \ {l};

(ii) R′ = R \R[l];

(iii) >′=> \ {(r, s) : r /∈ R′ ∨ s /∈ R′} .

The transformation is to create a theory similar to the original theory but,
as we said, without l. The condition on F is obvious. The second condition
ensures that the rules that can derive the literal are removed. Then the literal
is no longer derivable, since the resulting theory does not contain rules for the
literal anymore. Given that R′[l] = ∅, the following result is immediate.

Observation 1 Given a Defeasible Theory D and a literal l, −∂l is not deriv-
able in pot(D, l) .

It worth noting that we do not have to remove rules where the literal appears
in the antecedent of the rule. Such rules are immediately discarded. Similarly,
for prescriptive rules where the complement of the removed literal appears in
the head of the rules. Such rules are no longer applicable for any elements
appearing after the complement of the removed literal. Thus if you have a rule
with the ⊗-chain c1 ⊗ · · · ⊗ cn ⊗ ¬l ⊗ cn+1 · · · , the rules in RO[c,m] for any
m ≥ n+ 1 are not applicable. Remember, that to derive +∂Ocn+1 we have to
prove both +∂O¬l and +∂l. The transformation pot is then extended to the case
of a (finite) set of literals L = {l1, . . . , ln} by applying the transformation to
all the literals in L; thus pot(D,L) = pot(· · · (pot(D, l1), · · · ln) for an arbitrary
sequence of all the elements in L.

We can now specify when a (deontic) literal is independent from a set of
plain literals in Defeasible Deontic Logic

Definition 3.2 Given a defeasible theory D, a set L of plain literals and a
literal m, m is independent from L iff m is defeasibly provable in D and in
pot(D,L).

We can now show that the condition (2) in the proof conditions for a con-
junctive obligation ensures the independence of the obligations from the viola-
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tions. However, before proving this result we have to recall a general property
about Defeasible (Deontic) Logic: First of all a defeasible theory is consis-
tent if F does not contain a literal l and its complement ¬l. Second, given
a logical formula expressing a proof condition the strong negation of the for-
mula/conditions is obtained by replacing every occurrence of a positive proof
tag with the corresponding negative proof tag, replacing conjunctions with dis-
junctions, disjunctions with conjunctions, existential with universal and univer-
sal with existential. It is immediate to observe that all negative proof conditions
given in this section are the strong negation of the corresponding positive one
(and the other way around). If corresponding proof conditions are defined us-
ing the principle of strong negation outlined above, then, given a derivation, it
is not possible to have that the literal (conjunctive obligation) is both derivable
and refutable in the same derivation.

Proposition 3.3 [7] Given a consistent defeasible theory D, a derivation P ,
a literal l, and proof tag # ∈ {∂, ∂O} it is not possible that +#l,−#l ∈ P .

Armed with this result we can prove the result linking independence and
the proof conditions for conjunctive obligations.

Proposition 3.4 Given a consistent defeasible theory D, a deontic literal m
and a set L of plain literals. m is independent from L iff there is a derivation
P in D such that

• P (n) = +∂Om and

• ∀l ∈ L, +∂l /∈ P (1..n).

4 Complexity

In this section, we are going to study the computational complexity of the
problem of computing whether a conjunctive obligation is derivable from a
given defeasible theory. To this end, we adapt the algorithm proposed in [6]
to compute the extension of a defeasible theory, where the computation of the
extension is linear in the size of the theory. The algorithm is based on a series
of transformations that reduce the complexity of the theory, by either removing
elements from rules when some elements are provable, and removing rules when
they become discarded (and so no longer able to produce positive conclusions).
Using the idea in [6] the extension of a defeasible theory D is defined as follows:

Definition 4.1 Given a theory D, the literal extension of D is the tuple

〈∂+(D), ∂−(D), ∂+
O
(D), ∂−

O
(D)〉

where

• ∂+(D) is the set of literals appearing in D that are defeasibly provable as
institutional statements;

• ∂−(D) is the set of literals appearing in D that are defeasibly refutable as
institutional statements;
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• ∂+
O
(D) is the set of literals appearing in D that are defeasibly provable as

obligations;

• ∂−
O
(D) is the set of literals appearing in D that are defeasibly refutable as

obligations;

The aim of the paper is to determine when conjunctive obligations are
either provable or discarded. Accordingly, we have to extend the definition to
account for conjunctive obligation. However, if we want to maintain a feasible
computational complexity we have to limit the conjunctions we are going to
consider: given a set of n literals the set of all possible non logically equivalent
conjunctions that can be formed by the n literals contains 2n conjunctions;
hence, we cannot compute in polynomial time for such a set if any element is
derivable or refuted by the theory. However, we are going to show that for
each individual conjunction we can compute in polynomial time whether it is
derivable or refuted.

Definition 4.2 Given a defeasible theory D the conjunctive extension of the
theory is the tuple:

〈∂+(D), ∂−(D), ∂+
O
(D), ∂−

O
(D), ∂+

∧ (D), ∂−∧ (D)〉

where ∂+(D), ∂−(D), ∂+
O
(D) and ∂−

O
(D) are as in Definition 4.1 and

• ∂+
∧ (D) is the set of conjunctive obligations appearing in D (i.e., c = O(c1∧
· · · ∧ cn) and ∃r ∈ R such that c ∈ A(r)) that are defeasibly provable in
D (Definition 2.12);

• ∂−∧ (D) is the set of conjunctive obligations appearing in D that are defea-
sibly refutable in D (Definition 2.13).

The algorithm to determine the conjunctive extension of a theory is based
on the following data structure (for the full details we refer the reader to [6]).
We create a list of the atoms appearing in the theory. Every entry in the
list of atoms has an array associated to it. The array has ten cells, where
every cell contains pointers to rules depending on whether and how the atom
appears in the rule. The first cell is where the atom appears in the head of
a constitutive rule, the second where the negation of the atom appears in the
head of a constitutive rule, the third where the atom appears in the head of a
prescriptive rule, the fourth where the negation of atom appears in the head
of a prescriptive rule, the fifth where the atom appears in the body of a rule,
the sixth where the negation of the atom appears in the body of a rule, the
seventh where the atom appears as an obligation in the body of a rule, the
eighth where the negation of the atom appears as an obligation in the body of
a rule, the ninth where the atom appears as a negative obligation in the body
of a rule, and the tenth where the negation of the atom appears as a negative
obligation in the body of a rule. In addition, we maintain a list of conjunctive
obligations occurring in the theory, and for every conjunction we associate it
to the rules where it appears in the body.
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The algorithm works as follows: at every round we scan the list of atoms.
For every atom (excluding the entries for the conjunctions) we look if the atom
appears in the head of some rules. If it does not appears in any of the cells for
the heads, we can set the corresponding literals as refuted; and we can remove
rules, from corresponding cells. So, for example, given an atom p, if there are no
prescriptive rules for ¬p, then, we can conclude that the theory proves −∂O¬p;
accordingly, all rules where ¬O¬p occurs in the body are (body)-discarded,
and we can remove them from the data structure. Similarly, if there are no
constitutive rules for ¬p, then we can prove −∂¬p, and, then (i) all the rules
where it appears in the body are body-discarded, but also, for each rule r in
whose head p appears as an obligation, no elements following p in r can any
longer be derived using r and such elements are removed from the appropriate
cells. If an atom appears in the head of a rule, we determine (i) if the body of
the rule is empty, and (ii) for prescriptive rules, if the atom is the first element
of the head. If this is the case, then, the rule is applicable, and we check if there
are rules for the negation. If there are no rules for the negation, or the rules are
weaker than applicable rules, then the atom/literal is provable with the suitable
proof tag, and then we remove the atom/literal from the appropriate rules. We
repeat the above steps until we are no longer able to obtain new conclusions.
When, we are no able to derive new conclusion we turn our attention to the list
of the conjunctive obligations, where we invoke the following (sub)algorithm for
every conjunction c = O(c1 ∧ · · · ∧ cn) in the list (where C = {∼ci, 1 ≤ i ≤ n})

Algorithm 1 Evaluate Conjunctive Obligation

1: for i ∈ 1..n do
2: if ci ∈ ∂−

O
(D) then

3: c ∈ ∂−∧ (D) remove all rules r where c ∈ A(R)
4: Exit
5: end if
6: if ci ∈ ∂+

O
(D) then

7: if ∀cj¬ci,∼cj ∈ ∂+(D) then
8: if ci ∈ +∂+

O
(pot(D,C \ {∼ci}) then

9: i := i+ 1
10: else c ∈ ∂−∧ (D) remove all rules r where c ∈ A(R)
11: Exit
12: end if
13: if ∃cj 6= ci,∼ci ∈ ∂−(D) then
14: i := i+ 1
15: end if
16: end if
17: end if
18: Exit
19: end for
20: c ∈ ∂+

∧ (D), remove c from all rules r where c ∈ A(r)
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For every conjunction the algorithm iterates over the conjuncts. If a con-
junct is not provable as an obligation the conjunction is not provable (line 2–4).
If the conjunct is provable as an obligation, it checks whether the violations of
the other obligations are provable; if so, it has to check whether the obligation
of the conjunct is independent from the violations. To determine this, we can
repeat the whole algorithm with the the sub-theory obtained by the transfor-
mation pot(D,C \{ci}). If it is independent we continue with the next element
of the conjunction; otherwise, the conjunction is not derivable. Similarly, if
some of violations are not derivable we continue with the iteration. The con-
junction is provable when the iteration is successful for all the elements of the
conjunction.

At the end of the sub-routine, we return to the main algorithm, if there are
changes in the rules we repeat the process, otherwise the process terminates.

The algorithm outline above is sound and complete; hence, we can state the
following proposition. Essentially, the correctness of the algorithm depends on
Proposition 3.4.

Proposition 4.3 Given a defeasible theory D

• +∂l is defeasibly provable in D iff l ∈ ∂+(D);

• −∂l is defeasibly provable in D iff l ∈ ∂−(D);

• +∂Ol is defeasibly provable in D iff l ∈ ∂+
O
(D);

• −∂Ol is defeasibly provable in D iff l ∈ ∂−
O
(D);

• +∂Oc1 ∧ · · · ∧ cn is defeasibly provable in D iff c1 ∧ · · · ∧ cn ∈ ∂+
∧ (D);

• −∂Oc1 ∧ · · · ∧ cn is defeasibly provable in D iff c1 ∧ · · · ∧ cn ∈ ∂−∧ (D).

As far as the computational complexity, [6] proves that the complexity of
computing the extension of a defeasible theory without conjunctive obligation
is linear in the size of the theory, where the size of the theory is determined
by the number of symbols in the theory, and hence if n and r stand for, re-
spectively, the number of atoms and the number of rules in the theory, the
complexity is in O(n ∗ r). For the complexity of computing the conjunctive
extension of a defeasible theory we have to take into account the complexity
of the Evaluate Conjunctive Obligation algorithm and the number of times we
have to compute it. This can be determined as follows: let m be the number
of conjunctive obligations in the theory, and k the number of conjuncts in the
longest conjunctive obligation. For each of them we have to compute the ex-
tension of pot(D,C), thus we have to perform O(m∗k ∗O(n∗r)) computations
on top of the computation of the extension (i.e., O((m+ n) ∗ r)).

Proposition 4.4 The conjunctive extension of a theory can be computed in
polynomial time.

Notice that the algorithm Evaluate Conjunctive Obligation can be use the
evaluate any conjunctive obligation not only the conjunctive obligations occur-
ring in a theory. All we have to do is to compute the conjunctive extension of
the theory and then evaluate the single conjunctive obligation, and as we have
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just seen this can be computed in polynomial time.

5 Summary

We have proposed an extension of Defeasible Deontic Logic able to handle the
so called Pragmatic Oddity paradox. The mechanism we used to achieve this
result was to provide a schema that allows us to give a guard to the derivation
of conjunctive obligations ensuring that each individual obligation does not
depend on the violation of the other obligation. The mechanism is given by
the proof theory of defeasible logic.

While the complexity of the logic is polynomial and hence feasible the al-
gorithm we propose is not optimal. Nonetheless, this is practical for most real
life applications, in which it is likely there will be few conjunctive obligations,
each with only a small number of conjuncts; however, the next step is to to
devise an optimal algorithm to implement the novel proof conditions.
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[2] José Carmo and Andrew JI Jones. Deontic logic and contrary-to-duties. In Handbook

of philosophical logic, pages 265–343. Springer, 2002.
[3] Roderick M Chisholm. Contrary-to-duty imperatives and deontic logic. Analysis,

24(2):33–36, 1963.
[4] Lou Goble. A logic for deontic dilemmas. Journal of Applied Logic, 3(3-4):461–483,

2005.
[5] Guido Governatori. Thou shalt is not you will. In Katie Atkinson, editor, Proceedings of

the Fifteenth International Conference on Artificial Intelligence and Law, pages 63–68,
New York, 2015. ACM.

[6] Guido Governatori, Francesco Olivieri, Antonino Rotolo, and Simone Scannapieco.
Computing strong and weak permissions in defeasible logic. Journal of Philosophical

Logic, 42(6):799–829, 2013.
[7] Guido Governatori, Vineet Padmanabhan, Antonino Rotolo, and Abdul Sattar. A

defeasible logic for modelling policy-based intentions and motivational attitudes. Logic

Journal of the IGPL, 17(3):227–265, 2009.
[8] Guido Governatori and Antonino Rotolo. Logic of violations: A Gentzen system for

reasoning with contrary-to-duty obligations. Australasian Journal of Logic, 4:193–215,
2006.

[9] Guido Governatori and Antonino Rotolo. A computational model for pragmatic oddity.
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Abstract

We explore how, and if, free choice permission (FCP) can be accepted when we

consider deontic conflicts between certain types of permissions and obligations. FCP

can license, under some minimal conditions, the derivation of an indefinite number

of permissions. We discuss this and other drawbacks and present four Hilbert-style

classical deontic systems admitting a guarded version of FCP. The systems that

we present are not too weak from the inferential viewpoint, as far as permission is

concerned, and do not commit to weakening any specific logic for obligations.

Keywords: Free Choice Permission, Weak and Strong Permission

1 Introduction and Background

A significant part of the literature in deontic logic revolves around the discussions
of puzzles and paradoxes which show that certain logical systems are not
acceptable—typically, this happens with deontic KD, i.e., Standard Deontic
Logic (SDL)—or which suggest that obligations and permissions should enjoy
some desirable properties.

One well-known puzzle is the the so-called Free Choice Permission para-
dox, which was originated by the following remark by von Wright in
[vonWright1968-VONAEI-3]:

“On an ordinary understanding of the phrase ‘it is permitted that’, the
formula ‘P(p ∨ q)’ seems to entail ‘Pp ∧Pq’. If I say to somebody ‘you may
work or relax’ I normally mean that the person addressed has my permission
to work and also my permission to relax. It is up to him to choose between
the two alternatives.”

Usually, this intuition is formalised by the following schema:

P(p ∨ q) → (Pp ∧Pq) (FCP)
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Many problems have been discussed in the literature around FCP: for a com-
prehensive overview, discussion, and some solutions, see [Hansson:PERM,
Dong:2017, sep-logic-deontic].

Three basic difficulties can be identified, among the others [Dong:2017]:

• Problem 1: Permission Explosion Problem – “That if anything is
permissible, then everything is, and thus it would also be a theorem that
nothing is obligatory,” [sep-logic-deontic], for example “If you may order a
soup, then it is not true that you ought to pay the bill” [Asher2005];

• Problem 2: Closure under Logical Equivalence Problem – “In its
classical form FCP entails that classically equivalent formulas can be substi-
tuted to the scope of a permission operator. This is also implausible: It is
permitted to eat an apple or not iff it is permitted to sell a house or not”;

• Problem 3: Resource Sensitivity Problem – “Many deontic logics
become resource-insensitive in the presence of FCP. They validate inferences
of the form ‘if the patient with stomach trouble is allowed to eat one cookie
then he is allowed to eat more than one’ ”.

We focus on another basic problem: how, and if, FCP can be accepted
when we have incompatibilities between certain varieties of permissions and
prohibitions/obligations. The issue is that since Problem 1 licenses the
derivation that anything is permitted provided that something is permit-
ted, no prohibition/obligation is allowed, otherwise we get an inconsistency
[sep-logic-deontic]. In doing so, we offer simple logics that take two of the
three problems above into account.

The layout of the paper is as follows. The remainder of this section briefly
comments on the three major problems mentioned above: the Permission Ex-
plosion Problem (Section 1.1), the Closure under Logical Equivalence Problem
(Section 1.2), and the Resource Sensitivity Problem (1.3). Section 2 illustrates
the theoretical intuitions and assumptions that we adopt to analyse free choice
permission. In particular, we assume the distinction between norms and obliga-
tions/permissions, and we study the role of deontic incompatibilities, the duality
principle, and why free choice permission is strong permission. Section 3 quickly
reviews some work that have direct implications for our proposal. Finally,
Section 4 presents some minimal deontic systems, four Hilbert-style deontic
systems admitting guarded variants of FCP: the systems that we present are
not too weak from the inferential viewpoint, as far as permission is concerned,
and do not commit to weakening any specific logic for obligations. Some con-
clusions end the paper. An appendix offers proofs of the formal properties of
the proposed systems presented in Section 4.

1.1 Problem 1: Permission Explosion Problem

One of the most acute problems springing from FCP is obtained in SDL, where,
if at least one obligation Op is true, then by necessitation and propositional
logic, we get O(p ∨ q). Since axiom D is in SDL, i.e Op→ ¬O¬p is valid, we
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trivially obtain ¬O¬(p ∨ q), thus, assuming the Duality principle

P =def ¬O¬ (Duality)

we derive through FCP that Pq. Hence, SDL licenses that, if something is
obligatory, then everything is permitted.

However, a careful analysis shows that this undesired result is not strictly
due to SDL as such, but to adopting any monotonic modal deontic logic
[Chellas1980], i.e. any system just equipped with inference rule RM:

⊢ p→ q

⊢ Op→ Oq
(RM)

or, alternatively with
⊢ p ≡ q

⊢ Op ≡ Oq
(RE)

plus the following axiom schema

O(a ∧ b) → (Oa ∧Ob). (M)

Indeed, assume Classical Propositional Logic (CPL), FCP, and RM for
P 1 and consider the following derivation:

1. p→ (p ∨ q) CPL
2. Pp→ P(p ∨ q) 1,RM
3. Pp→ (Pp ∧Pq) 2,FCP,CPL
4. Pp→ Pq 3,CPL.

In this context, it is enough if we have that Pp is true to derive that any other
permission Pq is true as well, i.e., Pp ⊢ Pq for any p, q. Whenever FCP is
accepted, such a problem strictly depends on the characteristic schemata and
inference rules of monotonic modal logics, as the above derivation—or a simple
semantic analysis—shows. Hence, permission explosion is not a problem of
SDL, but of any weaker modal deontic logic which is at least closed under
classical implication or which is closed under logical equivalence and allows for
the distribution of P over implication. Notice that Duality plays no substantial
role. Accordingly, we can have that RM is valid for permission, if P and O are
duals and the logic for O is a monotonic modal logic, or P is independent of O
and RM is assumed for P.

In conclusion, if we want not to completely reject the intuition behind
FCP, we have two non-exclusive options to be explored in order to avoid the
Permission Explosion Problem:

1 With RM-P we mean the inference rule ⊢ p → q/ ⊢ Pp → Pq. Indeed, it is standard result
that every system closed under RM for an operator is closed under the rule of the dual of the
operator [Chellas1980]. We will use RM to refer in general to the rule ⊢ p → q/ ⊢ ✷p → ✷q

for any modal operator ✷.



258 Is Free Choice Permission Admissible in Classical Deontic Logic?

No-CPL: abandon CPL and adopt suitable non-classical logical connectives;

No-RM: abandon inference rule RM (or schema M) and endorse very weak
modal logics (i.e., the classical ones [Chellas1980]). 2

Our paper aims at exploring under what conditions No-CPL can be avoided
by accepting at least a restricted version of FCP. Hence, it seems that No-RM
thesis must be accepted.

1.2 Problem 2: Closure under Logical Equivalence Problem

In the previous section we mentioned that RM must be weakened. Hence, we
can also drop RE and keep axiom schema M. This choice could look satisfactory
for those who consider problematic the fact that the logic for P is closed under
logical equivalence.

We take here another route. Incidentally, one can argue that the implau-
sibility of “It is permitted to eat an apple or not iff it is permitted to sell
a house or not” does not depend on RE, but rather on the fact that “It is
permitted to eat an apple or not” is P⊤, which looks quite odd. However,
besides this problem—which would lead us to commit to specific philosophical
views—dropping RE has in general two controversial technical side effects:

• it rejects standard semantics for modal logics, since the class of all neigh-
bourhood frames validate RE: [Chellas1980] argued in fact that classical
systems (i.e., containing RE but not RM) are the minimal modal logics;

• it fails to make, for instance, Op and P¬p logically incompatible under the
Duality Principle (while Op and ¬Op of course are); similarly, O¬p and
O¬¬p, or O(p ∨ q) and O(¬p ∧ ¬q), are not incompatible too (while they of
course should be).

In conclusion, we standardly assume that RE holds both for permissions
and obligations, which means that any logic for free choice permission must
be a classical system of deontic logic in [Chellas1980]’s sense, i.e., any modal
deontic logic closed under logical equivalence and not under logical consequence.

1.3 Problem 3: Resource Sensitivity Problem

It has been noted [Lokhorst] that from “You may eat an apple or a pear”, one
can infer “You may eat an apple and that You may eat a pear”, but not “You
may eat an apple and a pear” [barker:2010:permission].

We simply observe that the systems proposed in Section 4 do not license in
general the inference above. However, a thoughtful treatment of this problem—
the Resource Sensitivity Problem—goes beyond the scope of this paper. In fact,
it has been widely discussed in the literature that it is strictly related to consid-
erations from action theory, which have often found solutions shifting from CPL
to non-classical logics such as the substructural ones [barker:2010:permission,
RoyDeon, Dong:2017]. In conclusion, we do not commit here to find any
suitable solution to such a problem.

2 We state in Section 1.2 why it is convenient not to drop RE.
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2 Three Basic Intuitions

We are going to present some deontic systems that accommodate restricted
variants of FCP. This is done under some minimal philosophical assumptions,
which can in principle be compatible with several deontic theories. In this
section, we illustrate such fundamental intuitions and assumptions.

2.1 The Distinction between Norms and Obligations

We assume in the background a conceptual distinction between norms, on one
side, and obligations and permissions, on the other side. The general idea of
norms is that they describe conditions under which some behaviours are deemed
as ‘legal’. In the simplest case, a behaviour can be qualified by an obligation (or
a prohibition, or a permission), but often norms additionally specify the conse-
quences of not complying with them, and what sanctions follow from violations
and whether such sanctions compensate for the violations. The scintilla for this
idea is the very influential contribution [alchourron71normative], which is
complementary to the (modal) logic-based approaches to deontic logic. The
key feature of this approach is that norms are dyadic constructs connecting
applicability conditions to a deontic consequence. A large number of such
pairs would constitute an interconnected system called a normative system
[Makinson:1999, makinson-torre:2003, ajl:ctd, deon:2016].

To be clear, this paper does not present any logic of norms, but our proposal
for a logic of obligations and permissions—with restricted variants of FCP—can
be better understood if one keeps in mind some intuitions about how norms
should logically behave and about the relation between the logic of norms and
deontic logic. In particular, our assumptions are:

• obligations and permissions exist because norms generate them when applica-
ble;

• once obligations and permissions are generated from norms—which requires
us to reason about norms—we can still perform some reasoning with the
resulting obligations and permissions—this is the task of deontic logic in a
strict sense, i.e., the logic of obligations and permissions;

• norms can be in conflict—without being inconsistent— but this does not hold
for obligations and permissions.

Hence, we distinguish two levels of analysis: a norm-logic level and a resulting
deontic-logic level . This paper only technically deals with the second level of
analysis.

Assume for example that we have two norms n1 : p ⇒ O¬q and n2 : p ⇒
Pq, where ⇒ is any if-then suitable logical relation connecting applicability
conditions of norms and their deontic effects. We can indeed have them—for
example, in a legal system—but the point is what obligations/permissions
we can obtain from them. A rather standard assumption is that in order to
correctly derive deontic conclusions we need to solve the conflict between n1

and n2. Specifically, our general view is prudent (or skeptical, as one says
in non-monotonic logics), because, unless we know how to solve the conflict
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(typically, by establishing that n1 is stronger than n2 or vice versa), we do not
know if O¬q or Pq holds. Since we do not accept that both can hold, it is
pointless to consider at the deontic level that O¬q and Pq are true—while any
logic of norms can have both n1 and n2.

In conclusion, we impose deontic consistency at the deontic-logic level, i.e.,
Op ∧O¬p→ ⊥.

2.2 Deontic Incompatibilities, Duality, and FCP

With the above said, the issue is whether FCP is an appropriate principle
to adopt for normative reasoning. Our view is that this principle in general
is not, even when Problem 1 and 2 above are solved. We provide below a
simple counterexample to it, which considers the interplay between free choice
permissions and prohibitions.

Example 2.1 When you have dinner with guests the etiquette allows you to
eat or to have a conversation with your fellow guests. However, it is forbidden
to speak while eating.

The full representation of the example is that each choice is permitted when
one refrains from exercising the other one. In a situation when one eats, there
is the prohibition to speak, while when one speaks, there is the prohibition
to eat. Hence, it means that we can detach any single permission only if the
content of such permission is not forbidden. Given that Example 2.1 provides
a counterexample to FCP, the question is whether we want to derive the
individual permissions when one of the two disjuncts holds and we already
satisfy the disjunctive permission. The reason is that the individual permissions,
each on its own, can trigger other obligations or permissions. The following
example illustrates this scenario.

Example 2.2 Suppose a shop has the following policy for clothes bought online.
If the size of an item is not a perfect fit, then the customer is entitled to either
exchange the item for free or to keep the item and receive a 10$ refund. However,
customers electing to keep the item are not entitled to the refund, and customers
opting for the refund are not entitled to exchange the item for free. Furthermore,
customers who elect to exchange the item (when entitled to do so) have to
return it with the original package.

The example can be formalised as follows:

online ∧ ¬fit → P(exchange ∨ refund)

exchange → O¬refund

refund → O¬exchange

Pexchange ∧ exchange → Ooriginal

Suppose that a customer elects to exchange an item bought online that is
not a perfect fit instead of asking for the refund. Intuitively, given that we
cannot derive that exchanging is not forbidden (O¬exchange) at least the
weak permission of exchanging the item should hold. However, in a deontic
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logic without FCP (or a restricted version of it) we are not able to derive the
permission, and then we are not able to derive other obligations or permissions
depending on it: in the example, the obligation to return the item with the
original package.

We will return in Section 2.3 to the logical import of the above scenarios in a
classical system of deontic logic. For the moment, taking stock of the examples
we just notice that FCP could be reformulated as follows:

(P(p ∨ q) ∧ (¬O¬p ∧ ¬O¬q)) → (Pp ∧Pq). (1)

However, assuming Duality, ¬O¬p is equivalent to Pp, thus (1) reduces to

(P(p ∨ q) ∧ (Pp ∧Pq)) → (Pp ∧Pq). (2)

(2) is a propositional tautology. Thus, (1) does not extend the expressive power
of the logic unless one assumes a logic where obligation and permission are not
the duals.

2.3 Strong Permission, Classical Systems, and FCP

When permission is no longer the dual of obligation, we enter
the territory of strong permission [vonwright:1963, AB:1981,
alchourron-bulygin:1984] 3 . As is well-known, while it is sufficient
to show that O¬p is not the case to argue that p is weakly permitted, this does
not hold for strong permission, for which the normative system explicitly says
that there exists at least one norm permitting p [alchourron-bulygin:1984].

In order to keep track of these two cases at the deontic-logic level, we can
standardly distinguish in the deontic language two permission operators, Pw

for weak permission (such that Pwp =def ¬O¬p) and Ps for strong permission
(where Duality does not hold).

What is the minimal logic of strong permission at the deontic level in which
some reasonable version of free choice permission can be accepted?

We mentioned that RM must be rejected. In fact, besides the Permission
Explosion Problem, one may also argue that it is reasonable not to derive
Ps(p ∨ q) from any Psp because we could have in the background that the
normative system consists just of an explicit norm a⇒ Psp. If we have that, in
presence of some version of free choice permission, you may also detach Psq,
which is against the above-mentioned intuition that the strong permission should
follow from explicit norms, or from combinations of them in normative systems
where all disjuncts are explicitly considered [alchourron-bulygin:1984].

Second, as said above, deontic consistency should be ensured:

Op ∧Ps¬p→ ⊥ (Ds)

Op ∧O¬p→ ⊥ (Dw)

3 Besides von Wright’s theory [vonwright:1963], there is another sense in the literature of
strong permission [Kamp:1973].
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Notice that Dw is the standard D axiom of Standard Deontic Logic establishing
the so called external consistency of obligations that, in turn, implies consistency
among obligations and (weak) permissions. From Ds we obtain, as expected,
that strong permission entails weak permission [alchourron-bulygin:1984],
but not the other way around:

Psp→ Pwp.

This is reasonable because the fact that at the norm-level we derive that p is
permitted using an explicit permissive norm n means that no prohibitive norm
n′ (forbidding p) successfully applies or prevails over n.

What about free choice permission? Coupling Assumptions 1 and 2 with the
distinction between weak and strong permission allows us to identify a guarded
variant of FCP for strong permission, consisting of two schemata:

(Ps(p ∨ q) ∧O¬p) → Psq (FCPO)

(Ps(p ∨ q) ∧Pwp ∧Pwq) → (Psp ∧Psq) (FCPP)

These schemata take stock of what we said: you can detach from a disjunc-
tive strong permission any single strong permission only if this last is weakly
permitted.

The idea of the combination of the two axioms is that from repeated
applications of FCPO and from a disjunctive permission, we can obtain the
maximal sub-disjunction such that no element is forbidden, and then, the
application of the FCPP allows us to derive the individual strong permissions
that are not forbidden. Notice that we cannot assume the following formula as
the axiom for free choice permission.

Ps

( n
∨

i=1

pi

)

∧

(m<n
∧

j=1

O¬pj

)

→
n
∧

k=m+1

Pspk

The problem is that we do not know in advance how many elements of the
disjunctive permission are (individually) forbidden. Consider for example, a
theory consisting of the following formulas:

Ps(p ∨ q ∨ r ∨ s ∨ t) O¬p O¬q O¬r

Here, one could use the conjunction O¬p∧O¬q to obtain Psr, Pss and Pst, but
then we have a contradiction from Psr and O¬r (from axiom Ds). Notice, that
in general, we are not able to use FCPO to detach a single (strong) permission,
but a disjunction corresponding to the “remainder” of the disjunction, that is,
in the case above, Ps(s∨ t). Then, we can use the FCPP to “lift” the remaining
elements from weak permissions to strong permissions. The only case when
we can obtain an individual strong permission from a permissive disjunction is
when the remainder is a singleton; but this means, that all the other elements of
the permissive disjunction were forbidden. This further means that a disjunctive
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strong permission holds if at least one of its elements can be legally exercised.
Going back to the example, if one extends the theory with O¬s, then we can
derive Pst.

Consider the situation described in Example 2.1. The scenario can be
formalised as follows (where e and s stand for “to eat” and “to speak”):

Ps(e ∨ s)

s→ O¬e

e→ O¬s

In a logic endorsing the unrestricted version of free choice permission, we have
Pse and Pss. This means that as soon as one exercises one of the choices, we get
that the other choice is at the same time permitted and forbidden, a situation
that is either paradoxical or contradictory. Thus, the only way to avoid this
kind of conflict is to refrain from exercising any of the two choices. However, this
means that one is not really free to choose between the two options. Accordingly,
either one has to adopt a restricted version of the free choice permission or
abandon it. Notice, that axiom FCPO allows us to conclude that given e, s
is forbidden (O¬s), and thus that e is permitted (Pse); similarly, one gets Pss
from s, which implies O¬e. Similarly, for Example 2.2 when we formalise it
using strong permission Ps instead of P, Axiom FCPO allows us to derive
Psexchange from which we can conclude Ooriginal .

Consider FCPP. One may argue why, in symmetry with FCPO, we cannot
rather have

(Ps(p ∨ q) ∧Pwp) → Psp (FCP2P)

Technically, it is obvious that FCP2P implies FCPP but not the other way
around, so both options are available. The variant FCPP is more prudent in
that it licenses the detachment of an individual strong permission only if the
normative system explicitly deals with that specific disjunct, while the second
allows for the derivation in a slightly more relaxed way. So, if one wants to
strictly reframe the structure of standard FCP in a guarded version but does
not want FCP2P, then FCPP is the right option.

We should notice that the above schemata for free choice permission do
not necessarily require the technical idea of deontic consistency, unless we
assume—but we don’t—that obligation implies strong permission, and despite
the fact that the consistency problem can occur if we endorse Ds—as we do—
and so that strong permission implies weak permission.

3 Related Works

Most of the work on the development of logical systems related to the problem
of Free Choice Permission concentrate on logics accepting the FCP principle.
Some work focus on the resource aspects and propose the use of substructural
logics to address the problem, see for example [barker:2010:permission].
Similarly to our work, in the sense of a non-normal deontic logic, is the proposal
in [Asher2005, anglberger˙gratzl˙roy˙2015]. In fact, even though they
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have a different philosophical backgrounds based on the of open reading of
permissions [Lewis:1979, Broersen:2004], they propose simple non-normal
axiomatisations for obligation and permission—as we do—which avoid, e.g.,
Problem 1 and which are based on the concept of free choice permission as
strong permission or, anyway, as a type of permission without Duality.

The scenario in Example 2.2 indicates that Deontic Logic should accept FCP,
but at the same time Example 2.1 points out that it cannot accept in an unre-
stricted form. In this regard, the proposal by Asher and Bonevac [Asher2005]
shares with us the idea of limiting the applicability of FCP. Their solution
is based on a deontic logic taking a non-monotonic logic as the underlying
reasoning mechanism instead classical propositional logic as we do. Accordingly,
in their system instances of FCP are derivable unless they are defeated. In
addition, their logic is not closed under logical equivalence.

4 Four Minimal Deontic Axiomatisations with Guarded

Free Choice Permission

Finally, we present some minimal deontic systems, four Hilbert-style deontic
systems admitting a guarded version of FCP. The systems that we present are
not too weak from the inferential viewpoint, as far as permission is concerned,
and do not commit to weakening any specific logic for obligations.

4.1 Language, Axioms and Inference Rules

The modal language and the concept of well formed formula are defined as usual
[Chellas1980, Blackburn2001]. We just recall that we have three modal
operators, two ✷ operators, O for obligations and Ps for strong permissions,
and Pw for weak permission. As usual, we assume Pw to be an abbreviation for
¬O¬.

For convenience, let us synoptically recall below all relevant schemata and
inference rules, where ✷ ∈ {O,Ps}.

Inference Rules:

RE := ⊢ A ≡ B ⇒ ⊢ ✷A↔ ✷B

RM := ⊢ A→ B ⇒ ⊢ ✷A→ ✷B

Schemata:

M := ✷(p ∧ q) → (✷p ∧✷q)

FCPO := (Ps(p ∨ q) ∧O¬p) → Psq

FCPP := (Ps(p ∨ q) ∧Pwp ∧Pwq) → (Psp ∧Psq)

FCP2P := (Ps(p ∨ q) ∧Pwp) → Psp

Ds := Op ∧Ps¬p→ ⊥

Dw := Op ∧Pw¬p→ ⊥

PsPw := Psp→ Pwp.

Given the discussion of Section 2, we can identify some deontic systems, as
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Deontic System Properties Derivable

E := RE
Min := RE⊕Ds ⊕Dw PsPw

FCP1 := Min⊕ FCPO ⊕ FCPP PsPw

FCP2 := FCP1 ⊕M FCP1 ⊂ FCP2 PsPw

FCP3 := Min⊕ FCPO ⊕ FCP2P FCP1 ⊂ FCP3 PsPw, FCPP

FCP4 := FCP3 ⊕M FCP2 ⊂ FCP4 PsPw, FCPO

FCP3 ⊂ FCP4 FCPP, FCP2P

Table 1

Deontic Systems

specified in Table 1. Notice that we consider also systems FCP2 and FCP4,
which are monotonic, so they contain RM. Strictly speaking, this is the limit
which we cannot trespass, since we have restricted forms of Permission Explosion.
We will return on this in the concluding section of the paper.

4.2 Semantics and System Properties

Let us begin with standard concepts. Assume that PROP is the set of atomic
sentences.

Definition 4.1 A deontic neighbourhood frame F is a structure 〈W,NO,NP〉
where

• W is a non-empty set of possible worlds;

• NO and NP are functions W 7→ 22
W

.

Definition 4.2 A deontic neighbourhood model M is a structure
〈W,NO,NP, V 〉 where 〈W,NO,NP〉 is a deontic neighbourhood frame
and V is an evaluation function PROP 7→ 2W .

Definition 4.3 [Truth in a model] Let M be a model 〈W,NO,NP, V 〉 and
w ∈W . The truth of any formula p in M is defined inductively as follows:

(i) standard valuation conditions for the boolean connectives;

(ii) M, w |= Op iff ||p||M ∈ NO(w),

(iii) M, w |= Psp iff ||p||M ∈ NP(w),

(iv) M, w |= Pwp iff W − ||p||M 6∈ NO(w),

where, as usual, ||p||M is the truth set of p wrt to M

||p||M = {w ∈W : M, w |= p} .

A formula p is true at a world in a model iff M, w |= p; true in a model M,
written M |= p iff for all worlds w ∈W , M, w |= p; valid in a frame F , written
F |= p iff it is true in all models based on that frame; valid in a class C of
frames , written C |= p, iff it is valid in all frames in the class. An inference rule
P1, . . . Pn ⇒ C (where P1, . . . Pn are the premises and C the conclusion) is valid
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in a class C of frames iff, for any F ∈ C, if F |= P1, . . . ,F |= Pn then F |= C 4 .
We can now characterise different classes of deontic neighbourhood frames

that are adequate of the deontic systems in Table 1.

Definition 4.4 [Frame Properties] Let F = 〈W,NO,NP〉 be a deontic neigh-
bourhood frame.

• ✷-supplementation : F is ✷-supplemented , ✷ ∈ {O,P}, iff for any w ∈W
and X,Y ⊆W , X ∩ Y ∈ N✷(w) ⇒ X ∈ N✷(w) &Y ∈ N✷(w);

• Pw-coherence : F is Pw-coherent iff for any w ∈ W and X ⊆ W , X ∈
NO(w) ⇒W −X 6∈ NO(w);

• Ps-coherence : F is Ps-coherent iff for any w ∈ W and X ⊆ W , X ∈
NP(w) ⇒W −X 6∈ NO(w);

• FCPO-permission : F is FCPO-permitted iff for any w ∈W and X,Y ⊆W ,
X ∪ Y ∈ NP(w) &W − Y ∈ NO(w) ⇒ X ∈ NP(w);

• FCPP-permission : F is FCPP-permitted iff for any w ∈W and X,Y ⊆W ,
X ∪Y ∈ NP(w) &W −X 6∈ NO(w) &W −Y 6∈ NO(w) ⇒ X ∈ NP(w) &X ∈
NP(w);

• FCP2P-permission : F is FCP2P-permitted iff for any w ∈W and X,Y ⊆
W , X ∪ Y ∈ NP(w) &W −X 6∈ NO(w) ⇒ X ∈ NP(w);

Below are some relevant characterisation results. All the proofs for this section
are in the Appendix.

Lemma 4.5 For any deontic neighbourhood frame F ,

(i) Ds is valid in the class of Ps-coherent frames;

(ii) Dw is valid in the class of Pw-coherent frames;

(iii) FCPO is valid in the class of FCPO-permitted frames;

(iv) FCPP is valid in the class of FCPP-permitted frames;

(v) FCP2P is valid in the class of FCP2P-permitted frames;

Completeness results for the four deontic systems are ensured.

Theorem 4.6

(i) E is sound and complete w.r.t. the class of deontic neighbourhood frames;

(ii) Min is sound and complete w.r.t. the class of Ps- and Pw-coherent frames;

(iii) FCP1 is sound and complete w.r.t. the class of FCPO- and FCPP-
permitted frames;

(iv) FCP2 is sound and complete w.r.t. the class of P-supplemented, FCPO-
and FCPP-permitted frames;

(v) FCP3 is sound and complete w.r.t. the class of FCPO- and FCP2P-
permitted frames;

4 Of course, if any Pk has the form ⊢ p then F |= P1 trivially means F |= p.
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(vi) FCP4 is sound and complete w.r.t. the class of P-supplemented, FCPO-
and FCP2P-permitted frames.

Next, a corollary showing the relative strength of the four deontic systems.

Corollary 4.7

(i) FCP1 ⊂ FCP2 ⊂ FCP4 and
FCP1 ⊂ FCP3 ⊂ FCP4.

(ii) Let L1,L2 ∈ {FCPi, 1 ≤ i ≤ 4}, and let C1 and C2 be classes of frames
adequate for L1 and L2. If L1 ⊂ L2 then C2 ⊂ C1.

Finally, we are going to examine the issue of decidability. To this end we recall
the result by lewis [lewis], who proved that every intensional logic that is
axiomatisable by axioms that do not contain iterative operators (non-iterative
axioms) has the finite model property; A formula (axiom) A is non-iterative iff
for every subformula ✷iB/✸iB of A, B does not contain a modal operator. It is
immediate to verify that the axioms Ds, Dw, M, FCPO, FCPP and FCP2P

are non-iterative, hence we have the following theorem.

Theorem 4.8 The logics FCP1, FCP2, FCP3 and FCP4 have the finite
model property, and hence are decidable.

5 Conclusions

In this paper we have investigated how, and if the notion of free choice permission
is admissible in modal deontic logic. As is well known, several problems can
be put forward in regard to this notion, the most fundamental of them being
the so-called Permission Explosion Problem, according to which all systems
containing FCP and closed under RM and RM-P license the derivation of
any arbitrary permission whenever at least one specific permission is true.

We argued (Section 1.1) that a plausible solution to this problem is to jump
from monotonic into classical deontic logics, i.e., systems closed under RE but
not RM. This solution does not necessarily mean that the resulting deontic
system is very weak, as far as permission is concerned, if further schemata are
added (Sections 2.3 and 4.2).

The basic intuitions for extending classical deontic logics are the following:

(i) We assume in background the distinction between norms and obliga-
tions/permissions. While we conceptually accept that the normative system
may contain conflicting norms, it is logically inadmissible that such norms
generate actual conflicting obligations/permissions since conflicts must
be rationally solved, otherwise no obligation/permission can be obtained;
hence, we validate schemata Ds and Dw;

(ii) Free choice permission is strong permission, meaning that it is a permission
generated by explicit permissive norms;

(iii) The possibility of detaching single strong permissions from disjunctive
strong permissions, i.e., Psq from Ps(p ∨ q) strictly depends on the fact
that O¬p is not the case.



268 Is Free Choice Permission Admissible in Classical Deontic Logic?

Taking the above points into account, we thus proposed different guarded
variants of FCP that significantly increase the inferential power of the logic. In
particular, four Hilbert-style classical deontic systems were presented.

We observed that two of these systems are classical modal systems, while we
can have other two acceptable systems which are monotonic. In fact, the fact
that those two systems are closed under RM does not lead to full Permission
Explosion, but only to a “controlled” version of it: indeed, in systems like
FCP2 any permission is obtainable via free choice permission only if it is not
incompatible with existing prohibitions.

Some directions for future work can be identified. In particular:

• It is still an open issue to fully discuss the Resource Sensitivity Problem in
our setting. In fact, while we argued that this problem goes beyond our paper,
there are scenarios where our intuitions are relevant for this problem as well.
For example, suppose that there is a fruit basket in the kitchen containing
a banana and an apple. Bob and Alice are permitted to eat the banana or
the apple and Alice first eats the former. Bob cannot do anything but take
the apple. However, if Bob is allergic of apples, so no permission can be
reasonably derived because it is forbidden for him to eat the apple.

• Our idea of free choice permission relies on the fact that no strong permission
can be detached from a disjunctive permissive expression if another norm
allows for deriving a conflicting obligation. Hence a full understanding
of schemata such as FCPO or FCPP may benefit for an explicit logical
treatment of the logic of norms adopting defeasible reasoning [Dong:2017];
we plan to investigate how to integrate the approach presented in the paper
and the computationally oriented approach offered by Defeasible Deontic
Logic [jpl:permission].
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A Basic Properties of the Deontic Systems

Let us start by proving Lemma 4.5.

Lemma 4.5 For any deontic neighbourhood frame F ,

(i) Ds is valid in the class of Ps-coherent frames;

(ii) Dw is valid in the class of Pw-coherent frames;

(iii) FCPO is valid in the class of FCPO-permitted frames;

(iv) FCPP is valid in the class of FCPP-permitted frames;

(v) FCP2P is valid in the class of FCP2P-permitted frames;

Proof. The proof for case (i) is straightforward. The proof of (ii) is trivial and
standard. Both are omitted.

Case (iii) – Consider any frame F that is FCPO-permitted but such that
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F 6|= FCPO. This means that there exists a model M = 〈W,NO,NP, V 〉 based
on F such that M 6|= FCPO, i.e., there is a world w ∈W where

M, w |= Ps(p ∨ q) ∧O¬p (A.1)

M, w 6|= Psq (A.2)

By construction, from (A.2) we have ||q||M 6∈ NP(w), while from (A.1) we have
||p||M∪||q||M ∈ NP(w) and W−||p||M ∈ NO(w), so F is not FCPO-permitted .

Cases (iv) and (v) – The proofs are similar to the one for Case (iii) and are
omitted. ✷

The definitions of some basic notions and of canonical model for the classical
bimodal logic E (just consisting of RE for O and Ps) are standard.

In the rest of this section when we refer to a Deontic System S we mean
one the logic axiomatised in Section 4.

Definition A.1 [S-maximality] A set w is maximal iff it is S-consistent and
for any formula p, either p ∈ w, or ¬p ∈ w.

Lemma A.2 (Lindenbaum’s Lemma) For any Deontic System S, any con-
sistent set w of formulae can be extended to an S-maximal set w+.

Definition A.3 [Canonical Model [Chellas1980, Pacuit:2017]] A canonical
neighbourhood model M = 〈W,NO,NP, V 〉 for any system S in our language
L (where S ⊇ E) is defined as follows:

(i) W is the set of all the S-maximal sets.

(ii) For any propositional letter p, ‖p‖M := |p|S, where |p|S := {w ∈W | p ∈
w}.

(iii) If ✷ ∈ {O,Ps}, let N✷ :=
⋃

w∈W N✷(w) where for each world w, N✷(w) :=
{‖ai‖M | ✷ai ∈ w}.

Lemma A.4 (Truth Lemma [Chellas1980, Pacuit:2017]) If M =
〈W,NO,NP, V 〉 is canonical for E, then for any w ∈W and for any formula p,
p ∈ w iff M, w |= p.

Thus, we have as usual basic completeness result for E. To cover the other
systems, it is enough to prove that all frame properties for the relevant schemata
and rules are canonical.

Lemma A.5 The frame properties of Definition 4.4 are canonical.

Proof. The proofs for ✷-supplementation , Pw-coherence , and Ps-
coherence are standard.

FCPP-permission – Let us consider a canonical model M for FCPP, any
world w in it, and any truth sets such that ||p||M ∪ ||q||M ∈ NP(w) and
W − ||q||M ∈ NO(w). Clearly, ||p ∨ q||M ∈ NP(w). Since FCPP is valid
(Lemma 4.5), then Psp ∈ w. By construction, this means that ||p||M ∈ NP(w),
thus the model is FCPP-permitted.
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FCPO-permission and FCP2P-permission– Similar to the case above.
✷

Hence, the following result is ensured.

Theorem 4.6

(i) E is sound and complete w.r.t. the class of deontic neighbourhood frames;

(ii) Min is sound and complete w.r.t. the class of Ps- and Pw-coherent frames;

(iii) FCP1 is sound and complete w.r.t. the class of FCPO- and FCPP-
permitted frames;

(iv) FCP2 is sound and complete w.r.t. the class of P-supplemented, FCPO-
and FCPP-permitted frames;

(v) FCP3 is sound and complete w.r.t. the class of FCPO- and FCP2P-
permitted frames;

(vi) FCP4 is sound and complete w.r.t. the class of P-supplemented, FCPO-
and FCP2P-permitted frames.

Finally, let us prove Corollary 4.7.

Corollary 4.7

(i) FCP1 ⊂ FCP2 ⊂ FCP4 and
FCP1 ⊂ FCP3 ⊂ FCP4.

(ii) Let L1,L2 ∈ {FCPi, 1 ≤ i ≤ 4}, and let C1 and C2 be classes of frames
adequate for L1 and L2. If L1 ⊂ L2 then C2 ⊂ C1.

Proof. Case (i) – For FCP1 ⊂ FCP2 the inclusion is trivial given that every
axiom of FCP1 is also an axiom of FCP2. To show that the inlcusion is strict
consider the model M = 〈W,NO,NP, V 〉, where:

• W = {w1, w2, w3, w4, w5};

• V (a) = {w1, w4, w5}, V (b) = {w2, w3, w4} and V (c) = {w1, w2};

• NO(w1) = {{w4}}; and

• NP(w1) = {{w1, w2, w3} , {w1, w2}}.

It is easy to verify that the model is FCPO-permitted, Ps(¬a∨ c) and O(a∧ c)
are true in w1: ||¬a ∨ c||M = {w1, w2, w3} ∈ NP(w1) and ||a ∧ c||M = {w4} ∈
NO(w1). However, the model is not O-supplemented: ||a ∧ c||M = {w4} ∈
NO(w1), {w4} = ||a||M ∩ ||c||M, but ||a||M, ||c||M /∈ NO(w1), falsifying the
following instance of M: O(a ∧ c) → Oa ∧Oc.

For FCP1 ⊂ FCP3 it is immediate to verify that FCP2P implies FCPP

in CPL but not the other way around, and the same relationship holds for the
corresponding semantic conditions.

For FCP2 ⊂ FCP4, the result follows from FCP1 ⊂ FCP3.
For FCP3 ⊂ FCP4, the inclusion is trivial and we can reuse the model to

show the strictness of the inclusion between FCP1 and FCP2.
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Case (ii) – The result follows from Case (i) above and Theorem 4.6. ✷
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Abstract

It’s natural to think that the principles expressed by the statements “Promises ought

to be kept” and “We ought to help those in need” are defeasible. But how are we

to make sense of this defeasibility? On one proposal, moral principles have hedges

or built-in unless clauses specifying the conditions under which the principle doesn’t

apply. On another, such principles are contributory and, thus, do not specify which

actions ought to be carried out, but only what counts in favor or against them.

Drawing on a defeasible logic framework, this paper sets up three models: one model

for each proposal, as well as a third model capturing a mixed view on principles that

combines them. It then explores the structural connections between the three models

and establishes some equivalence results, suggesting that the seemingly different views

captured by the models are closer than standardly thought.
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1 Introduction

Consider the following moral principles:

(Promise-keeping) If an agent has promised to X, then she ought to X.

(Beneficence) If an agent can help someone in need by X-ing, then she
ought to X. 2

It’s natural to think that these principles—or something in their vicinity—are
getting at important truths, and that they should have some role to play in
our accounts of morality. However, anyone who accepts them—in fact, anyone
who thinks that there are some principles like them—faces a challenge: They
must explain what happens in cases where such principles come into conflict,
such as:

Drowning Child. You have promised a friend to meet her for dinner. En route
to the restaurant, you come across a child who has fallen in a shallow pond.
The child is crying in distress, and all the evidence suggests that she is going

1 aleks.knoks@uni.lu
2 Both principles are mentioned in W. D. Ross’ list of “basic duties”—see [25, pp. 21–2].
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to drown, unless you help her. However, if you rescue the child, you will get
your clothes wet and muddy, and won’t make it to the dinner

Applying the two rules to this case leads to the conclusion that you ought to
both have dinner with your friend and save the child. Taking this at face value
means classifying the scenario as a tragic dilemma, or a situation where the
agent can’t do what she ought to no matter how she acts. 3 And this in spite
of the strong intuition that the right thing for you to do is to save the child.

There seem to be two plausible things to say about cases involving conflicts
between Promise-keeping and Beneficence, and other principles like them. Both
imply that these principles are defeasible. 4 First, one could hold that moral
principles are contributory or that they do not (by themselves) specify which
actions ought to be carried out, but only what counts in favor or against them.
Applying this view to the scenario, one could say that, even though there’s a
genuine conflict between the two principles, it’s not a dilemma, because Benef-
icence outweighs or overrides Promise-keeping. So what you ought to do all-
things-considered is save the child. Alternatively, one could hold that moral
principles have implicit hedges or unless clauses that specify the circumstances
under which they don’t apply. Applying this view to the Drowning Child, one
could say that the conflict between Beneficence and Promise-keeping is only
apparent because, say, Promise-keeping doesn’t apply when helping those in
need means saving their lives. So, on this view too, what you ought to do
all-things-considered is save the child. 5

We will state these views on principles more precisely in later sections. For
now simply note that they are naturally thought of and usually presented as
distinct, even rival. 6 My aim in this paper is to contribute to a systematic
theory of moral principles by exploring the relations between these two views
and a mixed view combining them. I will devise a formal model of each, drawing
on a simple defeasible logic framework, and establish some results, suggesting
that the views modeled are closer than one may think.

The remainder of this paper is structured as follows. Section 2 sets up the
stage by formally stating the problem that conflicts between principles give rise
to. Sections 3–5 present the models of, respectively, the view on which rules are
contributory, the view on which they are hedged, and the mixed view. Section
6 establishes the main results of this paper: The model of the view on which
rules are contributory turns out to be equivalent to a fragment of the model on
which rules are hedged, and the latter turns out to be equivalent to a restricted
fragment of the model of the mixed view. Section 7 concludes and discusses

3 This is how dilemmas are usually characterized—see, e.g., [5].
4 I’m using the term defeasible loosely here, meaning that a principle can engender an ought
in a situation and then fail to engender it in a slightly different situation.
5 For views on which moral principles have hedges see [6], [27], see also [1], [3], and [31] for
kindred views in epistemology. For a classical defense of contributory moral principles see the
work of W. D. Ross [25]. Views that are naturally thought of as ones on which principles are
contributory, but can also have hedges include [11], [15], and [32].
6 See, for instance, [2, Sec. 1.2] in ethics and [1] in epistemology.
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some directions for future research.

2 Preliminaries and the naive view

As our background, we assume the language of propositional logic with the stan-
dard connectives. The turnstile ⊢ will stand for classical logical consequence. To
avoid unnecessary clutter when formalizing particular cases, we assume that
our background language allows for materially inconsistent atomic formulas
that can’t jointly be true, representing such statements as “It’s Friday” and
“It’s Monday.” All the formulas we’ll encounter should be thought of as rela-
tivized to an agent in a situation. Also, we make use of the customary deontic
operator. A formula of the form ©X should be read as saying that it ought to
be the case that X, or that morality requires that X. Also, the ought here is
all-things-considered and not pro tanto.

As a first stab, we represent moral principles as (vertically ordered) pairs

of formulas of the form
X
©Y

, where X and Y are formulas of propositional

logic. 7 The first expresses a descriptive feature of the situation, the second
a normative one, an ought. Now think back to the Drowning Child. Letting
p and d stand for the propositions, respectively, that you’ve made a promise
to your friend to dine with her, and that you dine with her, we could rep-

resent the relevant instance of Promise-keeping as
p

©d
. Think of this pair

of formulas by analogy with (indefeasible) inference rules of logical systems.
The idea is that it lets you infer ©d whenever p obtains. From now on, then,
we’ll often refer to our formal representations of principles as rules. We de-
note them with the Greek letter δ, with subscripts, and also introduce two
functions Premise[·] and Conclusion[·] for selecting their elements: Where δ

stands for
X
Y

, the expression Premise[δ] will stand for the proposition X

and Conclusion[δ] for Y . Also, where D is a set of rules, we let Conclusion[D]
stand for {Conclusion[δ] : δ ∈ D}.

We represent particular cases with the help of the notion of a context.

Definition 2.1 [Contexts] A context c is a structure of the form 〈W,D〉, where
W is a set of propositional formulas—capturing the normatively-relevant de-
scriptive features of the scenario and called the hard information—and D is a

set of rules of the form
X
©Y

.

To see the notion in play, let’s use it to formalize our running example: Let p
and d be as before, and let c and s stand for the propositions that a child is
drowning, and that you save the child. (We assume that d and s are materially
inconsistent.) The scenario can then be captured in the context c1 = 〈W,D〉

where W is the set {c, p} and D contains the familiar rule
p

δ1 =
©d

, as well

as the relevant instance of Beneficence, namely, the rule
cδ2 =

©s , which says

7 Principles are often formalized as pairs of formulas—see, e.g., [7,8,13,14].
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that you ought to save the child in case she is drowning.
Why does it seem like Promise-keeping and Beneficence reveal important

truths about morality? Well, one possible answer is that their instances—
together with instances of all other principles—are what link the descriptive
features of situations to the normative ones, or, roughly, what happens to
what ought to happen. 8 It seems natural to explicate this intuitive idea in the
present framework as follows: There’s a context standing for every situation,
and the (infinite) set of all contexts shares a common set of rules D, containing
every instance of Promise-keeping, Beneficence, and other schemas capturing
moral principles. Now, one might hope that the logic governing the interaction
between these principles is just the good old classical logic. 9 We can capture
this view—the naive view alluded to in this section’s title—in our framework
in two steps. The first is to introduce the notion of triggered rules:

Definition 2.2 [Triggered rules] Let c = 〈W,D〉 be a context. The rules from
D that are triggered in c are those that belong to the set Triggered(c) = {δ ∈
D : W ⊢ Premise[δ]}.

And the second is to specify which ought formulas follow from a context:

Definition 2.3 [Consequence, first pass] Let c = 〈W,D〉 be a context. Then
©X follows from c just in case ©X follow from Conclusion[Triggered(c)] by
standard deontic logic. 10

Now let’s apply these definitions to the context capturing the Drowning Child.
It’s easy to see that both δ1 and δ2 are triggered in c1, and that both ©d
and ©s follow from it. And in light of the fact that d and s are materially
inconsistent, a formula of the form ©X follows from c1 for any X whatsoever.
This, of course, is no good. So we have to abandon the naive view and change
either the way we think about moral principles, or the logic governing their
interaction, or both.

3 Contributory principles

According to one prominent view, there is no real problem here because the
moral principles in play in the Drowning Child and other scenarios like it are
contributory: They do not—not by themselves anyway—specify which actions
ought to be carried out, but only what speaks in favor or against carrying them
out. 11 This section sets up a simple model of this view, drawing on the work
of Horty [7,8]. 12

We represent contributory principles as default rules of the form
X
Y

. Intu-

itively, a rule of this form can be thought of as saying that X exerts some sort

8 This idea is widely shared among ethicists.
9 Again, the idea that moral principles (whatever their shape) are governed by classical logic
is widespread among ethicists—see, e.g., the remarks in [6].
10For a nice presentation of standard deontic logic, see [16, Sec. 2].
11See footnote 5 for references.
12The model presented here is a fragment of the model set up in [8].
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of normative pressure that Y obtains. Functionally, it will let us infer Y from
X by default.

Contributory rules are usually associated with relative weights, and it’s
standard to represent these weights formally by means of a priority relation.
So where δ and δ′ are (contributory) rules, a statement of the form δ ≤ δ′ will
mean that δ′ has at least as much weight as δ, or that δ′ is at least as strong as
δ. Following standard practice, we assume that the relation ≤ is reflexive and
transitive, as well as write δ < δ′ when δ ≤ δ′ and not δ′ ≤ δ.

The next natural step would be to adapt the notion of a context to the idea
that rules are contributory. Before taking it, however, we need to introduce the
notion of contrary rules. Our definition will draw on the concept of minimal
inconsistency:

Definition 3.1 [Minimally inconsistent subsets of contrary rules] Let D be a
set of contributory rules and D′ ⊆ D. Then D′ is a minimally inconsistent
subset of D just in case Conclusion[D′] ⊢ ⊥ and there’s no D′′ ⊂ D′ with
Conclusion[D′′] ⊢ ⊥.

Definition 3.2 [Contrary contributory rules] Let D be a set of contributory
rules and δ, δ′ two rules from D. Then δ and δ′ are contrary against the back-
ground of D, written as contraryD(δ, δ

′), if and only if there’s a minimally
inconsistent subset D′ of D with δ, δ′ ∈ D′.

Notice that Definitions 3.1 and 3.2 capture and generalize the intuitive idea that
two rules are contrary when their conclusions are inconsistent. The recourse to
minimally inconsistent subsets is needed to account for cases where there’s a
set of rules the conclusions of which are pairwise consistent, but jointly incon-

sistent. As an example, consider the rules ⊤
a ,

⊤
b
, and

⊤
¬(a&b)

. Were we to

say that two rules are contrary just in case their conclusions are inconsistent,
the inconsistency of these three rules would slip through. And we don’t want
that to happen.

Now we can adjust our notion of a context, and we call contexts that rep-
resent moral principles as contributory rules weighted :

Definition 3.3 [Weighted contexts] A weighted context c is a structure of
the form 〈W,D,≤〉, where W is a set of propositional formulas, D is a set of
contributory rules, and ≤ is a reflexive and transitive relation (a preorder) on
D. We assume that weighted contexts are subject to the following constraint:

No Dilemmas : For any δ, δ′ ∈ D with contraryD(δ, δ
′), either δ ≤ δ′, or

δ′ ≤ δ.

The Drowning Child can, then, be captured by the weighted context c2 =

〈W,D,≤〉 where W is the set {p, c}, where D contains the rules
p

δ3 =
d

and
cδ4 = s , and where δ3 < δ4. Intuitively, δ3 says that your having made a

promise to dine with your friend speaks in favor of you dining with her, while
δ4 says that the child’s drowning (and needing your help) speaks in favor of
you saving the child. The relation between the rules, δ3 < δ4, expresses the
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idea that the latter has strictly more weight, or is strictly stronger, than the
former. Notice that this doesn’t mean that Beneficence always has more weight
than Promise-keeping—there will be many other contexts in which instances of
the latter take precedence over the instances of the former. The No Dilemmas
constraint captures the following assumption: Moving to contributory principles
in response to the problem that conflicts between moral principles give rise to
suffices to show that such conflicts aren’t tragic dilemmas. The assumption
seems to me to be fully justified in the context of this paper.

Now we specify which ought statements follow from a context, relying on
three simple definitions.

Definition 3.4 [Outweighed rules] Let c = 〈W,D,≤〉 be a weighted context.
The rules from D that are outweighed in c are those that belong to the set

Outweighed(c) = {δ ∈ D : there is some δ′ ∈ Triggered(c) such that
(1) δ ≤ δ′ and (2) contraryD(δ, δ

′)}.

So a rule is outweighed in a context just in case there’s another rule that’s
triggered, contrary to it, and at least as strong. Notice that this formal notion
doesn’t match the intuitive sense of outweighed perfectly, since it qualifies a
rule δ as outweighed if there’s another rule that’s strictly stronger than δ, as
well as if there’s another rule that’s only as strong as δ. In the latter case, it’d
be more fitting to say that δ is counterbalanced. If there was a word in English
covering the senses of both outweighed and counterbalanced, it’d be perfect for
our purposes. But given that there isn’t one, we work with what we have.

Our next definition combines the notions of triggered and outweighed rules:

Definition 3.5 [Binding rules] Let c = 〈W,D,≤〉 be a weighted context. The
rules from D that are binding in c are those that belong to the set

Binding(c) = {δ ∈ D : δ ∈ Triggered(c) and
δ /∈ Outweighed(c)}.

So a rule is binding just in case it is triggered and not outweighed. Such binding
rules are just what will give us the ought statements:

Definition 3.6 [Consequence, weighted] Let c = 〈W,D,≤〉 be a weighted con-
text. Then ©X follows from c just in case Conclusion[Binding(c)] ⊢ X.

Returning to the Drowning Child scenario, it’s easy to see that, on Definition
3.6, ©s follows from c2. Both δ3 and δ4 get triggered, but only the latter
qualifies as binding. Given that δ4 is strictly stronger than δ3, δ3 < δ4, and that
the two are contrary, contraryD(δ3, δ4), the rule δ3 comes out outweighed in
c2. Since Binding(c2) = {δ4}, we have it that Conclusion[Binding(c2)] = {s}
and, therefore, that ©s follows from c2. Thus, we get the intuitive result that
you ought to save the child.

It’s worth noting that our model of the view on which moral principles are
contributory gives rise to consistent oughts: 13

13Many thanks to an anonymous reviewer for pressing me to prove this fact. Among other
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Fact 3.7 Let c = 〈W,D,≤〉 be a weighted context. Then ©⊥ follows from c
only if there’s a rule δ in D with Conclusion[δ] = ⊥.

Proof. Suppose that ©⊥ follows from the context c. This means that
Conclusion[Binding(c)] ⊢ ⊥. Now let’s zoom in on some minimally incon-
sistent subset D′ of Binding(c). (It is guaranteed to exist.) If D′ is a singleton,
we’re done. So suppose that it isn’t. Since D′ is a minimally inconsistent sub-
set of Binding(c) and Binding(c) ⊆ D, Definition 3.2 entails that, for any
δ, δ′ ∈ D′, we have contraryD(δ, δ

′). Now zoom in on two such rules δ, δ′. Since
δ, δ′ ∈ Binding(c), we have δ, δ′ ∈ Triggered(c) and δ, δ′ 6∈ Outweighed(c).
In light of the No Dilemmas constraint, we can be sure that either δ ≤ δ′,
or δ′ ≤ δ. Without loss of generality, we assume that δ ≤ δ′. Now notice
that we have δ′ ∈ Triggered(c), δ ≤ δ′, and contraryD(δ, δ

′). This entails
δ ∈ Outweighed(c), giving us a contradiction. ✷

Even though the model we just set up is very simple, it’s expressive enough
to capture some of the reasons talk that’s so pervasive in contemporary ethical
and meta-normative debates. 14 More specifically, the notion of a normative
reason can be specified as follows:X is a normative reason for Y in the weighted

context c if and only if there’s a rule δ of the form
X
Y

that’s triggered in c.

When there is such a rule, we say that X’s being a reason for Y depends on
it. 15 We say that X is outweighed as a reason for Y in c just in case the rule
δ that X’s being a reason for Y is triggered, but not binding in c. And we say
that X is outweighed—or, more precisely, outweighed or counterbalanced—as
a reason for Y by the consideration Z in c just in case the rule δ that X’s being
a reason for Y depends on is outweighed by some contrary rule δ′ that has Z
as a premise.

4 Hedged principles

On an alternative view, situations where moral principles seem to support con-
flicting recommendations are cases of only apparent conflicts, because principles
have built-in hedges guaranteeing that at most one principle applies in any such
situation. 16 This section sets up a model of this view.

In Section 2, we expressed principles as rules of the form
X
©Y

. Now we

do so using the slightly more complex
X : {¬Z1,¬Z2, . . .}

©Y
. The new element

{¬Z1,¬Z2, . . .} is a set of negated propositional formulas standing for the rule’s
hedge—note that we will often abbreviate it as Z. A hedged principle of this
form should be read as, “IfX obtains, then it ought to be the case that Y , unless
either Z1 obtains, or Z2 obtains, or . . ..” Alternatively, it can be read as, “If X

things, this saved me from an embarrassing mistake.
14See, e.g., [20,23,26,28,29,30], and [7,8,18] for modeling reasons talk using defeasible logics.
15Compare to [8, Section 2.1].
16See footnote 5 for references.
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obtains, and not-Z1, not-Z2, . . ., then it ought to be the case that Y .” 17 We
retain the functions for selecting rule premises and conclusions. Additionally,
we introduce a function for selecting a given rule’s hedge: If δ is a rule of the

form
X : Z
Y

, let Hedge[δ] = Z, and if δ is of the form
X
Y

, let Hedge[δ] = ∅.

Like we did in the previous section, here too we make use of the idea of
contrary rules: 18

Definition 4.1 [Minimally inconsistent subsets of hedged rules] Let D be a
set of hedged rules and D′ ⊆ D. Then D′ is a minimally inconsistent subset of
D just in case ©⊥ follows from Conclusion[D′] in standard deontic logic and
there’s no D′′ ⊂ D′ such that ©⊥ follows from Conclusion[D′′] in standard
deontic logic.

Definition 4.2 [Contrary hedged rules] Let D be a set of hedged rules and
δ, δ′ two rules from D. Then δ and δ′ are contrary against the background of
D, written as contraryD(δ, δ

′), if and only if there’s a minimally inconsistent
subset D′ of D with δ, δ′ ∈ D′.

With the notion of contrary rules in hand, we can adjust the definition of
a context from Section 2 to the idea that rules expressing principles can have
hedges:

Definition 4.3 [Hedged contexts] A hedged context is a structure of the form
〈W,D〉, where W is a set of propositional formulas and D is a set of rules,
possibly hedged. We assume throughout that hedged contexts are subject to
two constraints:

No Dilemmas: For any δ, δ′ ∈ D with contraryD(δ, δ
′), either

¬Premise[δ] ∈ Hedge[δ′], or ¬Premise[δ′] ∈ Hedge[δ].
No Deviant Pairs of Rules: For any δ, δ′ ∈ D, in case Premise[δ] =

Premise[δ′] and Conclusion[δ] = Conclusion[δ′], then δ = δ′.

As an illustration, the Drowning Child can be represented as the hedged con-
text c3 = 〈W,D〉 where W = {p, c} and where D is comprised of the rules

p : ¬c
δ5 =

©d
and

cδ6 =
©s . The first rule says that you ought to dine with

your friend if you’ve promised to dine with her, unless a child needs help; the
second says that you ought to save the child, if the child needs help. 19 Now
for the two constraints: No Dilemmas amounts to, again, the assumption that

17Compare to Reiter’s default rules [24].
18You may wonder if I shouldn’t use indices to keep track of the difference between Defini-
tions 3.2 and 4.2. My reason for not using indices here and elsewhere is to avoid notational
clutter. I think that the context always makes it clear whether we’re discussing the view on
which principles are hedged or the one on which they are contributory, helping disambiguate
between the two notions of contrary rules. Parallel considerations apply to the notions of
outweighed rules, Definitions 3.4 and 5.4, and undercut rules, Definitions 5.2 and 5.3.
19 It’s natural to wonder if the hedge of the rule δ5 shouldn’t also list the other circumstances
in which this rule wouldn’t apply—and similarly for δ6. While I do think that this is a natural
consequence of the view, nothing hinges on us working with simplified examples here. For
more on the worry that hedged rules might end up being incredibly complex see, e.g., [1].
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appealing to hedges succeeds as a response to the problem of conflicting moral
principles. No Deviant Pairs of Rules, in turn, rules out pairs of principles that
apply in the same circumstances and prescribe the same course of action, but
have different hedges: It seems natural to think that any pair of such principles
is deviant and should be substituted by one principle with a single hedge.

Our next two definitions determine which ought statements follow from
hedged contexts.

Definition 4.4 [Admissible rules] Let c = 〈W,D〉 be a hedged context. The
rules from D that are admissible in c are those that belong to the set

Admissible(c) = {δ ∈ D : δ ∈ Triggered(c) and, for no
¬Z ∈ Hedge[δ], W ⊢ Z}.

Definition 4.5 [Consequence, hedged] Let c = 〈W,D〉 be a hedged
context. Then ©X follows from c just in case ©X follows from
Conclusion[Admissible(c)] by standard deontic logic.

Notice that δ6 does, while δ5 does not qualify as admissible in c3. The latter rule
gets triggered, but the fact that ¬c ∈ Hedge[δ5] and W ⊢ c precludes it from
being added to Admissible(c3). And given that Conclusion[Admissible(c3)] =
{©s}, we get the intuitive result that ©s does, while ©d does not follow from
c3: What you ought to do is save the child.

Let’s also note that this model too gives rise to consistent oughts:

Fact 4.6 Let c = 〈W,D〉 be a hedged context. Then ©⊥ follows from c only if
there’s a rule δ in D with Conclusion[δ] = ©⊥.

Proof. Suppose that ©⊥ follows from the hedged context c. This means that
©⊥ follow from Conclusion[Admissible(c)] in standard deontic logic. Now con-
sider some minimally inconsistent subset D′ of Admissible(c). In case D′ is a
singleton, we have a δ ∈ D′ ⊆ Admissible(c) ⊆ D with Conclusion[δ] = ©⊥,
which would establish the fact. So suppose, toward a contradiction, that D′

is not a singleton set. Given that D′ is a minimally inconsistent subset of
Admissible(c) and Admissible(c) ⊆ D, Definition 4.2 tells us that, for any
δ, δ′ ∈ D′, we have contraryD(δ, δ

′). Now consider two such rules δ, δ′. Since
δ, δ′ ∈ Admissible(c), we know that δ, δ′ ∈ Triggered(c), that there’s no
¬Z ∈ Hedge[δ] with W ⊢ Z, and that there’s no ¬Z ∈ Hedge[δ′] with
W ⊢ Z. Given the No Dilemmas constraint, we can be sure that either
¬Premise[δ] ∈ Hedge[δ′] or ¬Premise[δ′] ∈ Hedge[δ] holds true. Without
loss of generality, we suppose it is the former. Since δ ∈ Triggered(c), we have
it that W ⊢ Premise[δ]. Then, however, we have ¬Premise[δ] ∈ Hedge[δ′] and
W ⊢ Premise[δ], which contradicts the claim that there’s no ¬Z ∈ Hedge[δ′]
with W ⊢ Z. ✷

Unlike the view on which moral principles are contributory, the view on
which they are hedged is usually taken to be less congenial to reasons talk. 20

20See, e.g., Dancy’s [2, pp. 22–9] where it’s argued that the view has no hope to account for
the phenomena of residual reasons and reason aggregation. If the results established below
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However, nothing stands in the way of using the model we just set up to talk
and reason about reasons. Thus, we say that X is a normative reason for Y in

the hedged context c if and only if there’s a rule δ of the form
X : Z
©Y

that’s

triggered in c. When there is such a rule δ, we say that X’s being a reason
for Y depend on δ. We say that X is defeated as a reason for Y in c just in
case the rule δ that X’s being a reason for Y in c depends on is triggered, but
not admissible in c. And we say that X is defeated as a reason for Y by the
consideration Z in c = 〈W ,D〉, or, alternatively, that Z is a defeater of X as
a reason for Y in c, if and only if the rule δ that X’s being a reason for Y
depends on is triggered in c, has ¬Z in its hedge, and W ⊢ Z. So our some
reason talk can be captured in our model of the hedged-principles view too.

Now we have two models of two seemingly very different views on moral
principles and conflicts between them. But it turns out to be possible to es-
tablish a type of equivalence result between these models. More concretely,
there’s a many-one equivalence between weighted contexts and a special class
of hedged contexts I call simple. The special character of these simple contexts
has to do with the shape of the hedges of their rules:

Definition 4.7 [Simple hedged contexts] Let c = 〈W,D〉 be a hedged context.
We say that c is simple just in case, for any rule δ in D, the hedge of δ is the
set {¬Premise[δ′] : δ′ ∈ D′} where D′ ⊆ {δ′ ∈ D : contraryD(δ, δ

′)}.

On the intuitive level, this simplicity condition can be thought of as a restriction
on what rule hedges can do: They can refer only to the premises of contrary
rules, and, thus, all they can do is resolve conflicts between rules supporting
conflicting recommendations.

And I call a weighted context c and a hedged one c′ equivalent if and only if
X is a reason for Y in c just in case X is a reason for Y in c′; X is outweighed
as a reason for Y by Z in c just in case X is defeated as a reason for Y by Z in
c′; and ©X follows from c just in case ©X follows from c′. So the connection
between weighted and simple hedged contexts is very close. We’ll state the
result more precisely in Section 6, along with some other equivalences. Now we
turn to a combination of the two views on principles we have discussed.

5 Mixed principles

There’s a well-known objection to the views on which principles are contribu-
tory: They entail that the moral valences of features are fixed, or, roughly, that
if a feature constitutes a reason for some type of action in one situation, then
it’s always a reason for that type of action. This, however, appears to be too
strong. Suppose that you’ve made a promise to meet someone for dinner, but
they extracted this promise from you by threat of force. A proponent of the
contributory view is forced to think of this case as one where Promise-keeping
yields to a weightier principle saying something along the lines of, “If a promise
to X was extracted by threat of force, then that speaks against X-ing.” And

are correct, Dancy’s arguments can’t work—see [9, Ch. 2] for more on this.
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this implies that there’s some reason for you to keep the promise. But, intu-
itively, the moral force that normally comes with promise-making is invalidated
or voided in this situation, and there’s absolutely no reason for you to keep the
promise. 21

Some philosophers take this objection to be fatal to the contributory view,
and it does seem that this view can’t handle cases involving what we could
call principle-invalidating conditions adequately. However, there’s a view that’s
naturally thought of as its extension that can, namely, the mixed view on which
principles are contributory, but can also have hedges. 22 In the remainder of
this section, we set up a model of this view.

We use rules of the form
X : {¬Z1, . . . ,¬Zn}

Y
to express mixed principles.

A rule having this form should be read as, “IfX obtains, then there’s normative
pressure that Y obtains, unless either Z1, or Z2, or, . . ., Zn obtain.” Adapting
the by now familiar notion of contrary rules to the mixed setting is a trivial
exercise: All we need to do is substitute mixed rules for contributory rules in
Definitions 3.1 and 3.2 from Section 3. We won’t do this explicitly, proceeding
directly to the next step, that is, to defining mixed contexts:

Definition 5.1 [Mixed contexts] A mixed context c is a structure of the form
〈W ,D,≤〉, where W is a set of propositional formulas, D is a set of mixed
rules, and ≤ is a preorder on D. Yet again, we assume that mixed contexts are
subject to two familiar constraints:

No Dilemmas : For any δ, δ′ ∈ D with contraryD(δ, δ
′), either δ ≤ δ′, or

δ′ ≤ δ.
No Deviant Pairs of Rules: For any δ, δ′ ∈ D, in case Premise[δ] =

Premise[δ′] and Conclusion[δ] = Conclusion[δ′], then δ = δ′.

To see the notion at work, we formalize the case sketched above. Let p and
d stand for the propositions that they stood for before, namely, that you’ve
made a promise to dine with your friend, and that you dine with her. And let
t express the proposition that the promise was extracted from you by threat
of force. We can then express the case as the context c4 = 〈W,D,≤〉, where

W = {p, t}, where D is a singleton set containing the rule
p : ¬t

δ7 =
d

, and

where ≤ is empty.
Next, we introduce a new notion that operates on the information stored

in the hedges of mixed rules: 23

Definition 5.2 [Undercut rules] Let c = 〈W,D,≤〉 be a mixed context. The
rules from D that are undercut in it are those that belong to the set

21Particularists are particularly fond of raising this objection, in both moral and epistemic
domains—see, e.g., [1,2,10]. Also, the ideas that duress and deceit invalidates promises, and
that a promise’s getting invalidated is very different from it being outweighed is widespread
among moral philosophers—see, e.g., [4,19].
22Again, see footnote 5 for references.
23The term undercut comes from epistemology where it’s customary to distinguish between
rebutting and undercutting defeat—see, e.g., [21] and [22].
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Undercut(c) = {δ ∈ D : there’s a ¬Z ∈ Hedge[δ] such that W ⊢ Z}.

This definition might remind you of the way we got to consequences of hedged
contexts. However, the notion of undercutting is meant to serve a more specific
function here, namely, to get certain rules completely out of play in determining
which ought statements follow from a context. What’s more, it can be defined
in our model of the hedged-principles view too, as follows:

Definition 5.3 [Undercut rules, hedged] Let c = 〈W,D〉 be a hedged context.
The rules from D that are undercut in it are those that belong to the set

Undercut(c) = {δ ∈ D : there’s some ¬Z ∈ Hedge[δ] with W ⊢ Z and
there is no δ′ ∈ D such that
(1) Z = Premise[δ′] and (2) contraryD(δ, δ

′)}.

Notice that, on this definition, a hedge rule can be undercut only by a consid-
eration that is not a premise of some rule that’s contrary to it.

The addition of undercut rules means that we need to modify the notion of
outweighed rules slightly. More specifically, we need to make sure that the rule
that’s responsible for outweighing is not itself undercut:

Definition 5.4 [Outweighed rules, mixed] Let c = 〈W,D,≤〉 be a mixed con-
text. The rules from D that are outweighed in it belong to the set

Outweighed(c) = {δ ∈ D : there is some δ′ ∈ Triggered(c) such that
(1) δ ≤ δ′, (2) contraryD(δ, δ

′), and
(3) δ′ /∈ Undercut(c)}.

With this, the model is pretty much set up. We only need to combine the
above definitions in the analogue of admissible/binding rules for mixed context
and define consequence.

Definition 5.5 [Optimal rules] Let c = 〈W,D,≤〉 be a mixed context. The
rules from D that are optimal in it are those that belong to the set

Optimal(c) = {δ ∈ D : δ ∈ Triggered(c),
δ /∈ Outweighed(c),
δ /∈ Undercut(c)}.

Definition 5.6 [Consequence, mixed] Let c = 〈W,D,≤〉 be a mixed context.
Then ©X follows from c just in case Conclusion[Optimal(c)] ⊢ X.

Returning to the context c4, it’s easy to see that the statement ©d doesn’t
follow from it. This is as it should be. What’s more, we also get the intuitive
result that there’s no reason for you to meet with the person for dinner—that
is, as soon as we specify how reasons are to be identified in the model. Here we
reuse the idea from Section 3, with a small twist to it: X is a reason for Y in c

if and only if there’s a rule of the form
X : Z
Y

that’s triggered in c and not

undercut. And X is outweighed as a reason for Y by the consideration Z in c
just in case the rule δ that X’s being a reason for Y depends on is outweighed
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by a contrary rule δ′ that has Z as a premise. With this, p, that you’ve made a
promise to meet your friend for dinner, doesn’t qualify as a reason for d, to have
dinner with her, in c4. So the mixed view can account for the case adequately.

We close the section by noting that the oughts that the model of the mixed
view gives rise to are also consistent:

Fact 5.7 Let c = 〈W,D,≤〉 be a mixed context. Then ©⊥ follows from c only
if there’s a rule δ in D with Conclusion[δ] = ⊥.

Proof. Similar to the proof of Fact 3.7. ✷

6 Relations

Having laid out the models of the three views on principles, we can explore the
relations between them. This is the goal of this section.

First off, it should be clear that our model of the view on which principles
are contributory corresponds to a fragment of the model of the mixed view: It’s
easy to see that there’s a one-one correspondence between weighted contexts
and a special class of mixed contexts, namely, those the hedges of all rules of
which are empty.

More surprisingly, it’s possible to establish a many-one correspondence be-
tween a special class of mixed contexts and hedged contexts. It’s natural to
think of this correspondence as the main result of this paper. 24 As a first step,
we introduce an auxiliary notion that will help us avoid clutter in proofs:

Definition 6.1 [Rule counterparts] Let δ be of the form
X : Z
©Y

and c =

〈W,D,≤〉 some mixed context. If there’s a rule δ′ ∈ D with Premise[δ′] = X
and Conclusion[δ′] = Y , we say that δ′ is the (mixed) counterpart of δ in the
context c, written as counterpartc(δ) = δ′. Similarly, in case δ is of the form
X : Z
Y

and the set of rules of some hedged context c = 〈W,D〉 contains some

rule δ′ with Premise[δ′] = X and Conclusion[δ′] = ©Y , we say that δ′ is the
(hedged) counterpart of δ in c, written as counterpartc(δ) = δ′.

Now notice that there’s a natural procedure for transforming mixed contexts
into hedged ones:

Definition 6.2 [Derived hedged contexts] Let c = 〈W,D,≤〉 be a mixed con-
text. We construct a hedged context c′ from it as follows. Let c′ = 〈W ′,D′〉,
where W ′ = W and D′ is acquired from 〈D,≤〉 by the following procedure:
For every rule δ ∈ D,

A. Let Dδ = {δ′ ∈ D : δ ≤ δ′ and contraryD(δ, δ
′)};

B. set Z = {¬Premise[δ′] : δ′ ∈ Dδ};

C. finally, replace δ ∈ D with the rule
Premise[δ] : Hedge[δ] ∪ Z

©Conclusion[δ]
.

We call the class of mixed contexts that have hedged counterparts regular :

24 I structure the presentation of the result after Lewis’ [12, Sec. 4]. Thanks to Paolo Santorio
for pointing me to Lewis’ paper.
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Definition 6.3 [Regular mixed contexts] Let c = 〈W,D,≤〉 some mixed
context. We say that c is regular if and only if, for any δ, δ′ ∈ D with
contraryD(δ, δ

′), neither ¬Premise[δ′] ∈ Hedge[δ], nor ¬Premise[δ] ∈
Hedge[δ′].

What does this regularity condition do? Well, first, notice that the No Dilem-
mas constraint on mixed contexts guarantees that any two contrary rules are
related by ≤, and, thus, that all conflicts between them get resolved. The regu-
larity condition, then, ensures that rule hedges do not interact with this in any
way. So it can be thought of as enforcing continuity between the view on which
principles are contributory and the mixed one: What accounts for the resolu-
tion of conflicts between conflicting principles is their contributory character,
not their hedges.

Either way, if a hedged context is acquired from a regular mixed context by
Definition 6.2, they are equivalent:

Theorem 6.4 (Mixed-to-Hedged) Let c = 〈W,D,≤〉 be some regular
mixed context and c′ = 〈W ′,D′〉 a (hedged) context derived from c by the pro-
cedure specified in Definition 6.2. Then c and c′ are equivalent, that is:

1. X is a reason for Y in c if and only if X is a reason for Y in c′;
2. X is outweighed as a reason for Y by a consideration Z in c if and only

if X is defeated as a reason for Y by Z in c′; and
3. ©X follows from c if and only if ©X follows from c′.

Proof. As a first step, we establish the following claim: δ ∈ Undercut(c) if
and only if counterpartc′(δ) ∈ Undercut(c′). ⇒ Consider an arbitrary δ ∈
Undercut(c). There must be some Z with W ⊢ Z and ¬Z ∈ Hedge[δ]. Since c
is regular, there’s no δ∗ ∈ D with both contraryD(δ, δ

∗) and Z = Premise[δ∗].
Now consider counterpartc′(δ) = δ′. In light of Definition 6.2, there’s no δ′′ ∈
D′ with both contraryD′(δ′, δ′′) and ¬Premise[δ′′] in Hedge[δ′]. Yet ¬Z ∈
Hedge[δ′] and W ′ ⊢ Z (since W ′ = W). So δ′ ∈ Undercut(c′). ⇐ Consider
an arbitrary δ ∈ Undercut(c′). This means that there’s some ¬Z ∈ Hedge[δ]
such that W ′ ⊢ Z and there’s no δ∗ ∈ D′ with both Z = Premise[δ∗] and
contraryD′(δ, δ∗). Now refocus on counterpartc(δ) = δ′. Either ¬Z ∈ Hedge[δ′]
or not. If yes, we’re done. So suppose not. Then, in light of Definition 6.2, there
has to be some δ′′ ∈ D such that Z = Premise[δ′′], contraryD(δ

′, δ′′), and
δ′ ≤ δ′′. Then, however—again, by Definition 6.2—there must be a δ∗ ∈ D′

with Z = Premise[δ∗] and contraryD′(δ, δ∗), which gives us a contradiction.
1. The first clause follows directly from the above claim and the definitions

of reasons in the two models.
2. Without loss of generality, we prove only the the left-to-right direction

of the second clause: Suppose X is outweighed as a reason for Y by Z in c.

This entails that there are rules
X : Z

δ =
Y

and Z : Z ′

δ∗ =
W

in D such that

contraryD(δ, δ
∗), δ ≤ δ∗, δ, δ∗ ∈ Triggered(c), and δ, δ∗ /∈ Undercut(c). By

the construction of c′, there are rules δ′, δ′′ ∈ D′ such that counterpartc(δ
′) = δ,

counterpartc(δ
′′) = δ∗, and ¬Premise[δ′′] ∈ Hedge[δ′]. Since Premise[δ′′] = Z

and W ′ ⊢ Z, the rule δ′ gets defeated by Z in c′. Since δ /∈ Undercut(c), we
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can be sure that δ′ /∈ Undercut(c′). Thus, X is defeated as a reason for Y by
Z in c′.

3. Instead of proving the third clause directly, we prove a claim from
which it quickly follows, namely, {©X : X ∈ Conclusion[Optimal(c)]} =
Conclusion[Admissible(c′)].

⊆ Consider some formula ©X in the set on the left hand side. Clearly,
X ∈ Conclusion[Optimal(c)], and so there’s a rule δ in Optimal(c) such
that Conclusion[δ] = X. Definitions 6.2 and 5.5 (Optimal rules) entail that
there’s a δ′ in D′ such that counterpartc(δ

′) = δ, δ′ ∈ Triggered(c′) and
there’s no δ′′ ∈ Triggered(c′) with ¬Premise[δ′′] ∈ Hedge[δ′]. The fact that
δ ∈ Optimal(c) also entails that δ /∈ Undercut(c), whence δ′ /∈ Undercut(c′).
This is actually enough to conclude that δ′ ∈ Admissible(c′). And given
that Conclusion[δ′] = ©Conclusion[δ] = ©X, we’re done. ⊇ Take an
©X ∈ Conclusion[Admissible(c′)]. Clearly, there’s a rule δ ∈ Admissible(c′)
such that Concluson[δ] = ©X. Now, δ ∈ Triggered(c′) and for no ¬Z ∈
Hedge[δ] do we have W ⊢ Z. By Definition 6.2, there must be δ′ ∈ D with
counterpartc′(δ

′) = δ. It’s easy to see that δ′ ∈ Triggered(c), δ′ /∈ Undercut(c),
and that δ′ /∈ Outweighed(c′)—otherwise, δ wouldn’t be admissible. From here,
δ′ ∈ Optimal(c), and so ©Conclusion[δ′] = Conclusion[δ] = ©X is in the set
{©X : X ∈ Conclusion[Optimal(c)]}. ✷

Although every regular mixed context is equivalent to some hedged context,
two regular mixed contexts can be equivalent to the same hedged context. As
an example, take the toy contexts c5 = 〈W,D,≤〉 where W = {a, b}, D = {

a : ∅
δ8 = c

,
b : ∅

δ9 =
d

}, and δ8 < δ9, and c6 which is like c5, except for, in

its case, the ordering on rules is δ9 < δ8. Since c and d here are consistent (by
assumption), the ordering on rules has no bearing on which ought statements
follow from these contexts. So it seems natural to think of it as providing
surplus information. It’s not difficult to see that applying Definition 6.2 to c5
and c6 results in the same hedged contexts, from which the surplus information
is absent. (Notice that a similar pair of contexts shows that the correspondence
between weighted and simple hedged contexts is many-one.)

For the other direction, we can, again, define a procedure for transforming
hedged contexts into mixed ones:

Definition 6.5 [Derived mixed contexts] Let c = 〈W,D〉 be a hedged context.
We construct a mixed context c′ from it as follows. First, we define an ordering
on the rules from D, using their hedges: For any two rules δ, δ′ ∈ D, let

δ � δ′ if and only if ¬Premise[δ′] ∈ Hedge[δ] and contraryD(δ, δ
′).

Now let c′ be the mixed context 〈W ′,D′,≤〉, where
1. W ′ = W;

2. D′ is the set of rules δ′ obtained thus: For every rule
X : ZOld

δ =
©Y

in D,

A. Let Dδ = {δ′′ ∈ D : δ � δ′′};
B. let P = {¬Premise[δ′′] : δ′′ ∈ Dδ};
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C. set δ′ to be
X : ZOld\P

Y
;

3. δ ≤ δ′ if and only if
Premise[δ] : Z

©Conclusion[δ]
�

Premise[δ′] : Z ′

©Conclusion[δ′]
.

Any mixed context constructed by this procedure turns out to be equivalent to
the hedged context it’s constructed from:

Theorem 6.6 (Hedged-to-Mixed) Let the context c′ = 〈W ′,D′,≤′〉 be de-
rived from some hedged context c = 〈W,D〉 by the procedure specified in Defi-
nition 6.5. Then c′ and c are equivalent.

Proof. Let c′′ = 〈W ′′,D′′〉 be the result of applying Definition 6.2 to c′. By
Theorem 6.4, the contexts c′ and c′′ are equivalent. What we need to do is show
that c = c′′. It’s obvious that W = W ′′. So it remains to show that D = D′′:

Without loss of generality, we establish only D ⊆ D′′: Consider an ar-
bitrary rule δ from D. By Definition 6.5, there must be some rule δ′ in D′

such that counterpartc(δ
′) = δ. By Definition 6.2, there must be a rule δ′′

in D′′ such that counterpartc′(δ
′′) = δ′. Clearly, Premise[δ′′] = Premise[δ]

and Conclusion[δ′′] = Conclusion[δ]. Now we need to show that Hedge[δ′′] =
Hedge[δ].

Hedge[δ] ⊆ Hedge[δ′′]: Consider an arbitrary ¬Z ∈ Hedge[δ]. Either there’s
some rule δ∗ such that contraryD(δ, δ

∗) and Z = Premise[δ∗], or there isn’t. If
yes, then, by Definition 6.5, there’s a rule δ† ∈ D′ such that counterpartc(δ

†) =
δ∗ and δ′ ≤ δ†. Also, notice that contraryD′(δ′, δ†). By Definition 6.2, δ† is in
D′

δ′ , and so ¬Premise[δ†] ∈ Hedge[δ′′]. But Premise[δ†] = Premise[δ∗] = Z.
So, ¬Z ∈ Hedge[δ′′]. If there’s no rule δ∗ with contraryD(δ, δ

∗) and Z =
Premise[δ∗], then, by Definition 6.5, ¬Z ∈ Hedge[δ′], and, from this and
Definition 6.2, ¬Z ∈ Hedge[δ′′].

Hedge[δ′′] ⊆ Hedge[δ]: Take some ¬Z ∈ Hedge[δ′′]. Either there is a rule
δ∗ ∈ D′′ with contraryD′′(δ′′, δ∗) and Premise[δ∗] = Z, or not. If yes, then,
by Definition 6.2, there’s a rule δ† ∈ D′ such that counterpartc′′(δ

†) = δ∗,
contraryD′(δ′, δ†), and δ′ ≤ δ†. In light of Definition 6.5, δ′ ≤ δ† is enough to
conclude that δ† ∈ D′

δ′ , and so that counterpartc(δ
′) = δ � counterpartc(δ

∗).
This latter fact means that ¬Premise[counterpartc(δ

∗)] is in Hedge[δ]. But
Premise[counterpartc(δ

∗)] = Premise[δ∗], and so ¬Z ∈ Hedge[δ]. In case
there’s no rule δ∗ ∈ D′′ with contraryD′′(δ′′, δ∗) and Premise[δ∗] = Z, Defini-
tion 6.5 entails that ¬Z ∈ Hedge[δ′], and this fact together with Definition 6.2
entail that ¬Z ∈ Hedge[δ]. ✷

So there’s a close connection between regular mixed and hedged contexts.
But what about irregular mixed contexts that have no hedged counterparts?
Notice that any such context will contain at least one pair of contrary rules δ, δ′

with δ ≤ δ′ and either ¬Premise[δ] ∈ Hedge[δ′], or ¬Premise[δ′] ∈ Hedge[δ].
The former type of pattern, that is, one where ¬Premise[δ] ∈ Hedge[δ′], strikes
me as borderline incoherent: The principle instantiated by δ′ is stronger than
the one instantiated by δ, and yet the feature that makes the weaker principle
apply is also what undercuts the stronger one. But the latter type of pattern
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Fig. 1. Relations between various types of contexts

is a different matter; and if there are clear cases exhibiting it, the mixed view
has an upper hand over the view on which principles are hedged. Why? Well,
because only the mixed view has the resources to distinguish such cases from
the mundane ones where the stronger principle outweighs the weaker one. 25

In Section 4, we already discussed the relation between the model on which
principles are contributory and the one on which they are hedged. Here we
state it in the form of a corollary to Theorems 6.4 and 6.6: 26

Corollary 6.7 (Contributory is simple hedged) For every weighted con-
text c, there’s a (simple) hedged context c′ such that c and c′ are equivalent,
and, for every simple hedged context c′, there’s a weighted context c such that
c and c′ are equivalent.

The relations between all three types of contexts—mixed, weighted, and
hedged—are summarized in Figure 1.

7 Conclusion and outlook

The main goal of this paper was to explore the connections between three
different takes on moral principles. On the first, they are contributory; on
the second, they are hedged; on the third, they are contributory, but can
also have hedges. We saw that there are close connections between the models
of these views. This strongly suggests that the views themselves are much
closer than standardly thought. And while it might be obvious that the mixed
view extends the contributory-principles view, it would be quite surprising

25Unfortunately, all the examples I could think of here are quite controversial. Here’s one
such, coming from the epistemic domain. First, notice that the rules “If an agent perceives
that X, then that perception speaks in favor of believing that X” and “If an agent has
outstanding testimony that X, then it speaks in favor of believing that X” are the epis-
temic analogues of contributory/mixed moral principles. Epistemologists sometimes invoke
an infallible Epistemology Oracle reporting the truth to the agent—see, e.g., [34]—and we
might imagine a situation where some agent sees a red-looking object, but is also told, by
this Oracle, that the object is blue. One could hold that, in this case, the Oracle’s testimony
doesn’t simply outweigh, but also undercuts the Perception rule.
26The proof runs parallel to those of the theorems. It’s also simpler.
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if it turned out that the contributory-principles view was only as expressive
as the hedged-principles view, or if the differences between the mixed view
and the hedged-principles view were only cosmetic. It may be too early to
claim that the correspondence results established here show that, since the
models we set up here are very simple. So one direction for future research
is to extend the correspondence results established here to more expressive
models of the views. Another one is to explore the ramifications of this result for
claims about views on principles advanced in the philosophical literature. 27 Yet
another is to explore the connections between hedged rules and ”exclusionary
rules” discussed in [8, Sec. 6], or, roughly, rules that take other rules out of
consideration. On the face of it, having an exclusionary rule δ that gets triggered
when X obtains, taking some other rule δ′ out of consideration, isn’t all that
different from thinking of δ′ as having ¬X listed in its hedge. Finally, it would
be interesting to explore how the models and results presented here might be
relevant in the context of the debate between generalists and specificationists
about rights. 28
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Abstract

Using proof theoretic methods, we show that a substantial fragment of violation logic

as developed by Governatori, Rotolo et al. can be translated into classical modal logic.

A number of consequences of this result are discussed. Furthermore, we present a

new criterion for axiomatizations of violation logic and comment on the definability

of the ⊗-operator.

Keywords: deontic logic, contrary to duty reasoning.

1 Introduction

In a series of works [7,2,5,6,3] Governatori, Rotolo et al. introduced a family of
logics intended to model contrary-to-duty reasoning. To this end they extend
classical modal logic E (which features the operator O, for ‘obligation’) by an
additional operator ⊗ with the intended meaning that [5]

[t]he interpretation of a chain like a ⊗ b ⊗ c is that a is obligatory, but if it
is violated (i.e., ¬a holds), then b is the new obligation (and b compensates
for the violation of a); again, if the obligation of b is violated as well, then c
is obligatory [. . .]

For these so-called ⊗-chains a variety of rules and axioms are proposed, result-
ing in a number of different systems of violation logic. One therefore has two
levels of obligations, one stemming from the ⊗-chains, and the other one from
the O modality of the underlying logic E. As the authors put it in [5] regarding
their semantics for the ⊗-operator,

We [. . .] split the treatment of ⊗-chains and obligations; the intuition is that
chains are the generators of obligations and permissions [. . .]

In the present paper, we investigate this role of ⊗-chains as generators of
obligations using proof theoretic methods. Our main result is that ⊗-chains
can be replaced by formulas in the underlying logic E which generate exactly
the same obligations. This yields a translation of a large fragment of violation
logic into the base logic E. As a consequence, tools available for E – such

1 Research supported by FWF Project W1255-N23.
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as neighbourhood semantics on the model theoretic side, or cutfree Gentzen
systems on the proof theoretic side – can be used to study violation logics. We
establish coNP-completeness of the ‘translatable’ fragment of violation logic,
and close with some remarks on the choice of axioms for ⊗-chains.

2 Preliminaries

Classical Modal Logic

The deontic logic underlying the treatment of ⊗-chains is given by axiomatic
extensions of the classical non-normal modal logic E (see [4]). We have a
language with a countably infinite set V ar of propositional variables (denoted
a, b, c, . . .), a constant ⊥ (falsum) and the following connectives:

∧,→ (binary) and O (unary)

Any formula built from variables, constants and the above connectives will be
called a deontic formula and denoted by uppercase letters A,B. Additional
connectives are defined as abbreviations: ¬A := A → ⊥ (negation), ⊤ := ¬⊥
(verum), A ≡ B := (A → B)∧ (B → A) (equivalence). For a set Γ of formulas,
∧

Γ denotes the conjunction of all formulas in Γ, with the convention that
∧

∅ := ⊤. We call classical any formula not containing O, and CL denotes the
sets of those classical formulas which are theorems of classical logic.

The logic E is defined to be the smallest logic of deontic formulas containing
CL and closed under the rules

A A → B
B

(MP)
and

A ≡ B
OA ≡ OB

(O-RE)
.

It will be convenient for our purposes to have a notion of derivations from
assumptions in an axiomatic extension of E. Here a set Γ will play the role of
local assumptions, whereas a set ∆ plays the role of additional axioms.

Definition 2.1 Let ∆∪Γ∪{A} be a set of deontic formulas. A (E+∆)-proof
of A from Γ is a tree of deontic formulas built from rules (MP) and (O-RE), and
which is rooted in A. Its leaves are either substitution instances of formulas
from CL ∪ ∆, or formulas from Γ. The latter type of leaves are called local
assumptions. 2We impose the following locality condition: No instance of (O-
RE) appears below a local assumption in the proof.

We write Γ ⊢E+∆ A, and say that A is derivable from Γ in E + ∆, if there
is a (E + ∆)-proof of A from Γ. Finally, we identify the logic E + ∆ with its
derivability relation ⊢E+∆.

The locality condition reflects the well-known fact that modal rules such
as (O-RE) should not be applied to local assumptions in modal logic, cf. the
chapter on proof theory in [1]. The following Deduction Theorem holds:

Fact 2.2 (Deduction Theorem) Γ ∪ {B} ⊢E+∆ A ⇐⇒ Γ ⊢E+∆ B → A.

Proof. See [1]. ✷

2 More precisely, we call local assumptions only those leaves which are not at the same time
instances of formulas from ∆ or classical theorems.
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We write C(A) for a formula in which some occurences of a subformula A
are distinguished, and subsequently C(B) for the result of replacing in C all
these distinguished occurences of A by B. Then:

Fact 2.3 (Uniform Substitution) For any formula C(A), the following rule
is admissible in E+∆:

A ≡ B
C(A) ≡ C(B)

(O-RE’)

Proof. See [1]. ✷

Neighbourhood semantics We review the notion of neighbourhood models,
which form the standard semantics of classical modal logics. A neighbourhood
model W = 〈W,N , V 〉 is composed of the following elements:

• a nonempty set W of worlds

• a neighbourhood function N :W → P(P(W ))

• a valuation function V : V ar → P(W )

By abuse of notation, we write w ∈ W for worlds w instead of w ∈ W . Given
e neighbourhood model W, we can define the notion 〈W, w〉 |= A of truth
at a world w ∈ W by induction on the deontic formula A: 〈W, w〉 2 ⊥,
〈W, w〉 |= a :⇔ w ∈ V (a), 〈W, w〉 |= A ∧ B :⇔ 〈W, w〉 |= A and 〈W, w〉 |= B,
〈W, w〉 |= A → B :⇔ 〈W, w〉 2 A or 〈W, w〉 |= B, and finally

〈W, w〉 |= OA :⇔ [A]W ∈ N (w)

where [A]W := {w ∈ W | 〈W, w〉 |= A}. The part FW = 〈W,N〉 of a neigh-
bourhood model W is called a neighbourhood frame, and conversely 〈W,N , V 〉
is called a neighbourhood model based on F . Truth on a frame is defined
as follows: F |= A if for all models W based on F and all worlds w ∈ W,
〈W, w〉 |= A. For a set Γ∪∆∪{A} of deontic formulas, we define the following
semantic consequence relation:

Γ |=∆ A iff for all neighbourhood models W and w ∈ W, if
FW |=

∧

∆ and 〈W, w〉 |=
∧

Γ, then 〈W, w〉 |= A.

Fact 2.4 (Soundness and Completeness) Γ |=∆ A ⇐⇒ Γ ⊢E+∆ A.

Proof. This follows from the strong completeness theorem for E with respect
to neighbourhood models (see [4]) and the Deduction Theorem. ✷

Local assumptions in E +∆ therefore correspond to truths at a certain world.

Violation Logics

We now discuss a family of logics which were originally introduced in [7], and
then developed in a series of subsequent article (e.g., [2,5,6]). On the syntactic
level, they extend classical modal logics by an operator ⊗, which comes in any
arity n > 0. A formula

A1 ⊗A2 ⊗A3 ⊗ . . .⊗An
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is meant to model a chain of obligations and corresponding compensations: A1

is obligatory, but if A1 is violated, then the new (secondary) obligation is A2;
the fulfillment of A2 compensates the violation of A1; if however A2 is violated
as well, then there is a new (ternary) obligation A3, and so on.

Example 2.5 Consider three propositional variables w, p and f with meaning
w=‘it is the weekend’, p=‘parking downtown’ and f=‘paying a fine’. Then the
intended meaning of the formula

AEx = w → (¬p)⊗ f

taken from [6] is: On weekends it is forbidden to park downtown; but if one does
so, one has to pay a fine. The formula AEx will serve as a running example
throughout this article.

We will call various systems for logics with ⊗ violation logics, a term coined
in [7]. A formula of violation logic (henceforth just called a formula) is any
expression A built from ⊥,∧,→,O and ⊗ obeying the following nesting con-
dition: No pair of operators from {O,⊗} appears nested in A. For example,
¬(Oa ∧ (b ⊗ c ⊗ d)) is a formula of violation logic, whereas ¬O(a ∧ (b ⊗ c)) is
not. A formula of the form A1 ⊗ . . .⊗ An (n > 0) is called a ⊗-chain. Due to
the nesting condition, every formula Ai occuring in a ⊗-chain is classical.

Concerning rules and axioms for ⊗, the literature contains a large variety
of different systems, with no optimal candidate singled out. For the sake of the
present article, we pick a system which is close to the one described in [5]; But
we remark already here that our results apply to different systems as well, an
observation which will be made precise later (Corollary 4.4). That being said,
we will have the following two rules for ⊗:

A ≡ B
ν ⊗A⊗ ν′ ≡ ν ⊗B ⊗ ν′

(⊗-RE)

A ≡ B
ν ⊗A⊗ ν′ ⊗B ⊗ ν′′ ≡ ν ⊗A⊗ ν′ ⊗ ν′′

(⊗-contraction)

Here, a string such as ν ⊗A⊗ ν′ stands symbolically for a ⊗-chain containing
the (classical) formula A at some position. It is allowed that ν or ν′ are empty,
so that A is the first or last element of the chain. The rule (⊗-RE) is the
generalization of (O-RE) to the language of violation logic, and (⊗-contraction)
is a principle of redundancy elimination.

As axioms, we take the following set Σ of formulas:

a1 ⊗ . . .⊗ an ∧
k
∧

i=1

¬ai → Oak+1 (O-detachment)

a1 ⊗ . . .⊗ an ⊗ an+1 → a1 ⊗ . . .⊗ an (⊗-shortening)

a1 ⊗ . . .⊗ an+1 ∧ ¬a1 → a2 ⊗ . . .⊗ an+1 (⊗-detachment)
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Here, n ≥ 1 and 0 ≤ k < n. 3 The axiom (O-detachment) captures the intended
meaning of ⊗-chains as descriptions of compensatory obligations: If the first k
obligations expressed in a ⊗-chain a1 ⊗ . . . ⊗ ak ⊗ ak+1 ⊗ . . . ⊗ an have been
violated, then the next obligation ak+1 comes into effect. We refer the reader
to [5] for an extensive discussion of the system.

We again define a notion of derivations from assumptions.

Definition 2.6 Let ∆ ∪ Γ ∪ {A} be a set of formulas. A (VΣ +∆)-proof of A
from Γ is a tree of formulas built from the rules (MP), (O-RE), (⊗-RE) and
(⊗-contraction), and which is rooted in A. Its leaves are either substitution
instances of formulas from CL ∪ ∆ ∪ Σ, or formulas from Γ. The latter type
of leaves are called local assumptions. We impose the following locality condi-
tion: No instance of (O-RE), (⊗-RE) or (⊗-contraction) appears below a local
assumption.

We write Γ ⊢VΣ+∆ A, and say that A is derivable from Γ in VΣ + ∆, if
there is a (VΣ +∆)-proof of A from Γ. Finally, we identify the violation logic
VΣ +∆ with its derivability relation ⊢VΣ+∆.

Fact 2.7 (Deduction Theorem) Γ∪{B} ⊢VΣ+∆ A ⇐⇒ Γ ⊢VΣ+∆ B → A.

Proof. By induction on the height of proofs. ✷

The Deduction Theorem equips us with the following mode of inference in vio-
lation logic: If we can prove A from assumption B without using rules (O-RE),
(⊗-RE) or (⊗-contraction) below the assumption B, then we can infer B → A.

Example 2.8 We look again at the formula AEx from Example 2.5. The
following proof shows that {AEx, w, p} ⊢VΣ

Of , which means that park-
ing downtown on a weekend leads to the obligation of paying a fine:

(local assumption)
w

(local assumption)

w → (¬p)⊗ f

(¬p)⊗ f
(MP)

(local assumption)
p

¬¬p

¬¬p ∧ ((¬p)⊗ f)
(instance of O-detachment)

¬¬p ∧ ((¬p)⊗ f)→ Of

Of
(MP)

A double line abbreviates some steps of ‘classical reasoning’, i.e. the use
of classical theorems and (MP). Since none of the rules (O-RE), (⊗-RE) or
(⊗-contraction) are applied in the proof above, we can also conclude, e.g.,
{AEx, w} ⊢VΣ

p → Of .

3 A Reduction Theorem

Throughout this section, we work in violation logics VΣ +∆ where ∆ consists
of deontic axioms only, and hence the meaning of the ⊗-chains is given by the
axiom set Σ. The set ∆ might for example consist of the single axiom

Oa → ¬O(¬a) (D)

3 By the convention on empty conjunctions, it follows that a1 ⊗ . . . ⊗ an ∧ ⊤ → Oa1 is an
instance of (O-detachment).
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in which case VΣ +∆ is the logic D⊗ from [5].
The technical results we are going to present apply to a fragment of violation

logic that we will call the chain negative fragment.

Definition 3.1 (Chain Negative Fragment) An occurence of a ⊗-chain in
a formula A is called positive if there is an even number (including zero) of
implicational subformulas B → C of A such that the chain appears in B. 4

Otherwise, the occurence is called negative. We call a formula chain negative
(resp. chain positive) if all occurences of ⊗-chains in it are negative (resp.
positive).

For example, the chain a⊗b appears positively in the formulas a⊗b, ¬¬(c∧
a⊗ b) and c → a⊗ b, and negatively in ¬(a⊗ b), (a⊗ b)→ Oc and (a⊗ b)∧ c →
Od. 5 The simplest nontrivial example of a chain positive formula is a ⊗-chain.
Intuitively, a chain negative formula is a formula in which ⊗-chains appear only
as assumptions, but not as conclusions.

As our main result, we will now show that questions about the chain nega-
tive fragment of violation logic can be answered without using the machinery
of violation logic, but with a suitable reduction to the underlying deontic logic
E + ∆ instead. To this end, we first give a meaning to ⊗-chains as deontic
formulas.

Definition 3.2 (π-translation) The translation π from ⊗-chains to deontic
formulas is inductively defined as follows:

π(⊗A) := OA 6

π(A1 ⊗ . . .⊗An ⊗An+1) := π(A1 ⊗ . . .⊗An) ∧

(

(
n
∧

i=1

¬Ai)→ OAn+1

)

As an example, we have π(a⊗ b⊗ c) = Oa ∧ (¬a → Ob) ∧ (¬a ∧ ¬b → Oc).
In the following we will write π in closed form as

π(A1 ⊗ . . .⊗An) =

n
∧

i=1



(

i−1
∧

j=1

¬Aj)→ OAi





where by a harmless abuse of notation, we identify the conjunct ⊤ → OA1,
corresponding to the index i = 1, with the formula OA1. We extend π to
arbitrary formulas by letting it commute with ∧,→ and O, so that for example

π(AEx) = π(w → (¬p)⊗ f) = w → O(¬p) ∧ (¬¬p → Of).

Given a set Γ of formulas, π(Γ) denotes {π(A) | A ∈ Γ}.

4 This is the standard notion of a positive/negative occurence of a subformula, see e.g.
Definition 24.18 in [9].
5 Recall that ¬A = A → ⊥ by definition.
6

⊗A denotes a ⊗-chain of length 1.
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We point out that the meaning given to ⊗-chains by the translation π is
quite close to the intuitive interpretation of ⊗-chain from [5], which was already
quoted in the introduction:

[t]he interpretation of a chain like a ⊗ b ⊗ c is that a is obligatory, but if it
is violated (i.e., ¬a holds), then b is the new obligation (and b compensates
for the violation of a); again, if the obligation of b is violated as well, then c
is obligatory [. . .]

As a first observation, the axioms for ⊗-chains remain true if translated via π:

Lemma 3.3 (Axiom Soundness) For any axiom A ∈ Σ, ⊢E π(A).

Proof. Below are the three axioms schemes and their respective π-translations:
(O-detachment) a1 ⊗ . . .⊗ an ∧

∧k

i=1
¬ai → Oak+1

∧n

i=1

(

(
∧i−1

j=1
¬aj)→ Oai

)

∧ (
∧k

i=1
¬ai)→ Oak+1

(⊗-shortening) a1 ⊗ . . .⊗ an ⊗ an+1 → a1 ⊗ . . .⊗ an
∧n+1

i=1

(

(
∧i−1

j=1
¬aj)→ Oai

)

→
∧n

i=1

(

(
∧i−1

j=1
¬aj)→ Oai

)

(⊗-detachment) a1 ⊗ . . .⊗ an+1 ∧ ¬a1 → a2 ⊗ . . .⊗ an+1
∧n+1

i=1

(

(
∧i−1

j=1
¬aj)→ Oai

)

∧ ¬a1 →
∧n+1

i=2

(

(
∧i−1

j=2
¬aj)→ Oai

)

It is cumbersome but easy to check that the translations are provable in E. In
fact, they are all instances of classical theorems. ✷

We now want to argue that in some sense, A1⊗ . . .⊗An and its translation
π(A1⊗ . . .⊗An) are equivalent. One half of this claim holds in the literal sense:

Lemma 3.4 (Chain Soundness) ⊢VΣ
A1 ⊗ . . .⊗An → π(A1 ⊗ . . .⊗An).

Proof. Let 1 ≤ i ≤ n. From local assumptions A1⊗. . .⊗An and
∧i−1

j=1
¬Aj , we

can infer OAi using the axiom (O-detachment). So by the Deduction Theorem,

we can infer (
∧i−1

j=1
¬Aj) → OAi for each 1 ≤ i ≤ n, and by further classical

reasoning we obtain
∧n

i=1

(

(
∧i−1

j=1
¬Aj)→ OAi

)

which is precisely π(A1 ⊗ . . .⊗An). ✷

Corollary 3.5 For every chain negative formula N , ⊢VΣ
π(N)→ N.

Proof. By induction on the structure of N . Simultaneously, one has to prove
that ⊢VΣ

P → π(P ) for chain positive P . Both statements are trivially true if
the formula does not contain ⊗. Furthermore, if P is a ⊗-chain we can use the
Chain Soundness Lemma.

As an example for the inductive step, assume that a chain negative formula
N is of the form A → B. Then A is chain positive and B is chain negative. By
induction hypothesis, we therefore have ⊢VΣ

A → π(A) and ⊢VΣ
π(B) → B.

From this and classical reasoning we obtain

⊢VΣ
(π(A)→ π(B))→ (A → B)

which is what we need since π(A → B) = π(A)→ π(B).
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The other cases are similar. We note that the induction step for formulas
beginning with O is trivial, since by the nesting condition, such formulas do
not contain the ⊗-operator. ✷

Remark 3.6 The converse of Lemma 3.4 does not hold, i.e. in VΣ we cannot
prove A1 ⊗ . . . ⊗ An from its π-translation. The intuitive reason for this is
that in Σ, we do not have any axiom at hand which creates ⊗-chains from
deontic formulas. For a formal argument, consider an alternative translation τ
of formulas which replaces all ⊗-chains in a formula by ⊥. For any axiom
A ∈ Σ, an easy inspection shows that ⊢VΣ

τ(A). In words: The axioms of
violation logic remain true if ⊗-chains are interpreted as contradictions.

By a simple induction on proof length it follows that ⊢VΣ
τ(A) for any

theorem A of VΣ. Hence if π(A1⊗. . .⊗An)→ A1⊗. . .⊗An was provable for all
⊗-chains A1⊗. . .⊗An, then so would be its τ -translation π(A1⊗. . .⊗An)→ ⊥,
which cannot be the case.

Nevertheless, we will see that the deontic formula π(A1 ⊗ . . . ⊗ An) is as
strong as the ⊗-chain A1 ⊗ . . .⊗An when it comes to the derivation of deontic
formulas: In particular, the obligations arising from A1 ⊗ . . .⊗An are exactly
the obligations arising from π(A1 ⊗ . . .⊗An).

This follows from the Reduction Theorem below, which is our main technical
result in this article. We first state and prove the theorem and then discuss its
technical and conceptual ramifications.

Theorem 3.7 (Reduction Theorem for the chain negative fragment)
For any chain negative formula N , the following holds:

⊢VΣ+∆ N if and only if ⊢E+∆ π(N).

Proof. The direction from right to left is easy: If ⊢E+∆ π(N), then obviously
also ⊢VΣ+∆ π(N) since violation logic has all the axioms and rules of E. But
then ⊢VΣ+∆ N follows from Corollary 3.5, since N is chain negative.
For the direction from left to right, we argue by induction on the length of a
proof δ witnessing ⊢VΣ+∆ N .

(i) Assume first that δ has height 1, i.e. N is an axiom of VΣ +∆.
(a) If N is a substitution instance of a classical theorem, then π(N) is

again a substitution instance of the the same classical theorem, since
π commutes with boolean connectives. Hence ⊢E+∆ π(N).

(b) Similarly, if N is a substitution instance of a formula in ∆, then π(N)
is again a substitution instance of the the same formula in ∆, since π
commutes with boolean connectives and O. Hence ⊢E+∆ π(N).

(c) If N is a substitution instance of a formula in Σ, then ⊢E+∆ π(N) by
the Axiom Soundness Lemma (Lemma 3.3).

(ii) If the last step in δ is an instance of (MP) A,A → B/B, then by induction
hypothesis ⊢E+∆ π(B) and ⊢E+∆ π(A → B). Since π(A → B) equals
π(A)→ π(B), we can conclude ⊢E+∆ π(B) by applying (MP) in E.

(iii) If the last step in δ is an instance of (O-RE) A ≡ B/OA ≡ OB, then by



Lang 299

induction hypothesis ⊢E+∆ π(A ≡ B). Since π(A ≡ B) equals π(A) ≡
π(B), we can conclude ⊢E+∆ Oπ(A) ≡ Oπ(A) by applying (O-RE) in E,
and Oπ(A) ≡ Oπ(B) equals π(OA ≡ OB).

(iv) Assume that the last step in δ is an inference

A ≡ B
ν ⊗A⊗ ν′ ≡ ν ⊗B ⊗ ν′

(⊗-RE).

By induction hypothesis ⊢E+∆ π(A ≡ B). Since A,B occur in a ⊗-
chain, they must be classical formulas by the nesting condition, and so
the premise π(A ≡ B) equals A ≡ B. Now the deontic formula π(ν ⊗A⊗
ν′) arises from replacing some occurences of B in π(ν ⊗ B ⊗ ν′) by the
formula A. Hence

A ≡ B
π(ν ⊗A⊗ ν′) ≡ π(ν ⊗B ⊗ ν′)

is an instance of (O-RE’) (cf. Lemma 2.3), and so ⊢E+∆ π(ν ⊗ A ⊗ ν′ ≡
ν ⊗B ⊗ ν′) as desired.

(v) Assume that the last step in δ is an inference (⊗-contraction). We only
consider a characteristic case:

A ≡ B
X ⊗A⊗ Y ⊗B ⊗ Z ≡ X ⊗A⊗ Y ⊗ Z

(⊗-contraction)

Again A and B must be classical, and so we have ⊢E+∆ A ≡ B by in-
duction hypothesis. Now arguing in E +∆, we can use (O-RE’) to derive
from A ≡ B the equivalence

π(X ⊗A⊗ Y ⊗B ⊗ Z) ≡ π(X ⊗A⊗ Y ⊗A⊗ Z)

Written verbosely, the formula π(X ⊗A⊗ Y ⊗A⊗ Z) equals

OX ∧ (¬X → OA) ∧ (¬X ∧ ¬A → OY ) ∧ (¬X ∧ ¬A ∧ ¬Y → OA)

∧ (¬X ∧ ¬A ∧ ¬Y ∧ ¬A → OZ).

By using classical reasoning we see that the fourth conjunct can be omit-
ted since it is implied by the second conjunct. Furthermore, the second
¬A in the last conjunct can be removed. The above formula is therefore
equivalent to

OX ∧ (¬X → OA) ∧ (¬X ∧ ¬A → OY ) ∧ (¬X ∧ ¬A ∧ ¬Y → OZ)

which is precisely π(X ⊗ A ⊗ Y ⊗ Z). Hence we have ⊢E+∆ π(X ⊗ A ⊗
Y ⊗B ⊗ Z ≡ X ⊗A⊗ Y ⊗ Z) as desired.

This concludes the proof of the Reduction Theorem. ✷

It is instructive to single out a special case of Theorem 3.7.
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Theorem 3.8 (Reduction Theorem, Special Case) Let Γ ∪ {D} be a set
of deontic formulas. Then for any chain positive formula P , the following are
equivalent:

(i) Γ ∪ {P} ⊢VΣ+∆ D

(ii) Γ ∪ {π(P )} ⊢E+∆ D

(iii) Γ ∪ {π(P )} ⊢VΣ+∆ D

In particular, this holds if P is a ⊗-chain.

Proof. Γ ∪ {P} ⊢VΣ+∆ D is equivalent to ⊢VΣ+∆

∧

(Γ ∪ {P}) → D by the
Deduction Theorem. Since

∧

(Γ ∪ {P}) → D is chain negative, its provability
is equivalent to ⊢E+∆ π(

∧

(Γ ∪ {P}) → D) by the Reduction Theorem. Now
π(
∧

(Γ∪{P})→ D) equals
∧

(Γ∪{π(P )})→ D) since neither Γ nor D contain
⊗-chains by assumption. So by the Deduction Theorem, we obtain equivalence
with Γ ∪ {π(P )} ⊢E+∆ D. We have thus established (i)↔(ii), and applying
(i)↔(ii) to π(P ) instead of P yields (ii)↔(iii). ✷

Conceptually, of most importance is the equivalence (i)↔(iii) in the case
that P is a ⊗-chain C, and its meaning can then be described as follows:

Within a context of deontic formulas, using a ⊗-chain C as an assumption
has exactly the same effect as using its translation π(C).

In other words, as long as we are only interested in the role of ⊗-chains as gener-
ators of obligations (under some circumstances described by deontic formulas),
then we may as well replace all chains by their π-translations.

The questions which are not covered by the Reduction Theorem are those
about the generation of ⊗-chains from deontic assumptions as well as those
about relations between different ⊗-chains, such as the question when one ⊗-
chain implies another one. We will come back to this in Section 5.

Example 3.9 Recall the formula AEx = w → (¬p)⊗f from Example 2.5. For
any set Γ of deontic formulas, we may ask whether

{AEx} ∪ Γ ⊢VΣ+∆ Of

holds, i.e. whether under the assumption of AEx, the deontic circumstances
expressed in Γ lead to the obligation of paying a fine. By the (special case of
the) Reduction Theorem, this question is equivalent to asking whether

{π(AEx)} ∪ Γ ⊢E+∆ Of

holds, where π(AEx) = w → (O(¬p) ∧ (¬¬p → Of)).

Remark 3.10 The Reduction Theorem is formulated relative to violation log-
ics VΣ +∆ with a fixed axiomatization

Σ = {(O-detachment),(⊗-contraction),(⊗-shortening)}

of ⊗-chains (whereas the deontic axioms ∆ can be anything). Nevertheless,
the proof is modular and can be adapted to violation logics VΠ +∆ where Π
is a different axiomatization of chains: We only have to check that the Axiom
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Soundness Lemma (Lemma 3.3) and the Chain Soundness Lemma (Lemma 3.4)
hold for the axiomatization Π, and then the proof of the Reduction Theorem
goes through. Note in particular that the Chain Soundness Lemma holds for
any Π which contains (O-detachment).

Remark 3.11 An easy example demonstrating that the Reduction Theorem
does not hold for the full language of violation logic is the following. Consider
the (chain positive!) formula P = π(a ⊗ b) → (a ⊗ b). P is not provable in
VΣ: Recall Remark 3.6, where it is argued that if P was provable in V , then
so would be τ(P ) = π(a ⊗ b) → ⊥ = ¬(Oa ∧ (¬a → Ob)). But this is not a
theorem of VΣ, since it is easily seen to be falsifiable in E. On the other hand
π(P ) = π(a⊗ b)→ π(a⊗ b) is obviously a theorem of E.

4 Applications of the Reduction Theorem

Throughout this section, ∆ denotes a set of deontic formulas.

Corollary 4.1 The violation logic VΣ +∆ is conservative over E+∆.

Proof. Let D be a formula without ⊗-chains. Then D is in the chain negative
fragment and furthermore π(D) = D, and so we have ⊢VΣ+∆ D iff ⊢E+∆ D by
the Reduction Theorem. ✷

This conservativity result also follows from the sequence semantics for vio-
lation logic, see e.g. [5].

The main point of a reduction as expressed in Theorem 3.7 is that the logic
E+∆ one reduces to is well studied, and one can transfer results about it back
to the ‘new’ logic VΣ +∆. Let us see some examples.

Corollary 4.2 The validity problem for the chain negative fragment of the
violation logic VΣ is coNP-complete.

Proof. By the Reduction Theorem, ⊢VΣ
D is equivalent to ⊢E π(D) for a

chain negative D, and the mapping D 7→ π(D) is computable in polynomial
(in fact, quadratic) time. Since theoremhood in E is coNP-decidable ([10],
Theorem 3.3), the same therefore holds for VΣ. On the other hand the chain
negative fragment of VΣ is a conservative extension of CL, which is coNP-
hard. ✷

By the same argument, complexity (or just decidability) results can be
obtained for other violation logics VΣ+∆: We only have to know the complexity
of the underlying deontic logic E+∆. As far as we know, no decidability results
for violation logics have been established so far.

It also follows from the Reduction Theorem that the neighbourhood se-
mantics of classical modal logics provides a complete semantics for the chain
negative fragment of violation logic. This semantics is simpler than the se-
quence semantics proposed in [5,6].

Corollary 4.3 Let Γ ∪ {D} be a set of deontic formulas. Then for any chain
positive formula P , Γ ∪ {P} ⊢VΣ+∆ D iff for every neighbourhood model W
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with FW |= ∆ the following is true: For any world w ∈ W, if 〈W, w〉 |=
∧

Γ
and 〈W, w〉 |= π(P ), then 〈W, w〉 |= D.

Proof. By the Reduction Theorem, Γ ∪ {P} ⊢VΣ+∆ D is equivalent to Γ ∪
{π(P )} ⊢E+∆ D, which in turn is equivalent to Γ∪{π(P )} |=∆ D by Fact 2.4.✷

So within a context of deontic formulas, having a ⊗-chain C = a⊗ b⊗ c as
a local assumption amounts to assuming the truth of

π(a⊗ b⊗ c) = Oa ∧ (¬a → Ob) ∧ (¬a ∧ ¬b → Oc)

at a world of a neighbourhood model W.

Corollary 4.4 Let Π 6= Σ be any alternative axiomatization of ⊗-chains con-
taining at least (O-detachment), and such that ⊢E π(A) for every A ∈ Π. Then
for any set of deontic formulas ∆, the chain negative fragments of VΣ+∆ and
VΠ +∆ coincide.

Proof. By Remark 3.10, the proof of the Reduction Theorem goes through for
VΠ +∆ under the given assumptions. But then VΣ +∆ and VΠ +∆ have the
same characterization of their chain negative fragment (which does not depend
on Σ or Π), namely

⊢VΣ+∆ N iff ⊢E+∆ π(N) iff ⊢VΠ+∆ N .
✷

An immediate consequence of Corollary 4.4 is that the axioms (⊗-
shortening) and (⊗-detachment) are never needed for proving formulas in the
chain negative fragment of VΣ + ∆. As another consequence, consider the
axiom (⊗-I)
(

a1 ⊗ . . .⊗ an ∧

(

(
n
∧

i=1

¬ai)→ b1 ⊗ . . .⊗ bm

))

→ a1⊗ . . .⊗an⊗ b1⊗ . . .⊗ bm

for creating ⊗-chains which is considered in [7,3], but not in [5,6]. It is easy to
see that its π-translation is a theorem of E, and so by Corollary 4.4 its inclusion
as an additional axiom has no effect on the chain negative fragment.

An axiomatization of ⊗-chains to which the Reduction Theorem does not
apply is the one given in [2], where axioms such as a⊗ (¬a) ≡ ⊤ are included.
Indeed, the π-translation of the latter axiom is Oa ∧ (¬a → O¬a) ≡ ⊤, which
does not hold in E.

Another consequence of the Reduction Theorem is that questions in viola-
tion logic can be tackled using the proof theory of classical modal logics. For
example, [8] presents cutfree Gentzen systems for the logics

E, EC = E+Oa ∧Ob → O(a ∧ b) and M = E+O(a ∧ b)→ Oa ∧Ob

which are called Eseq, ECseq and Mseq respectively.

Corollary 4.5 Let ∆ be ∅ (or {Oa∧Ob → O(a∧b)}, or {O(a∧b)→ Oa∧Ob}).
Then for any chain negative formula N , ⊢VΣ+∆ N iff there is a cutfree proof
of π(N) in Eseq (or ECseq, or Mseq).
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Example 4.6 Here is a Gentzen-style proof establishing {AEx, w, p} ⊢VΣ
Of

by means of the π-translation (cf. Example 2.8):

w ⇒ w

p ⇒ p
p,¬p ⇒ (¬L)

p ⇒ ¬¬p (¬R) Of ⇒ Of

¬¬p → Of, p ⇒ Of
(→L)

O(¬p) ∧ (¬¬p → Of), p ⇒ Of
(∧L)

w → (O(¬p) ∧ (¬¬p → Of)), w, p ⇒ Of
(→L)

5 More on the interpretation of ⊗-chains

Arguably, the formalization of many contrary-to-duty reasoning scenarios in
the framework of violation logic remains in the chain negative fragment. Recall
that in particular all questions of the form

Given some (deontic) circumstances, which obligations arise from a ⊗-chain?

are expressible. The Reduction Theorem then suggests that in the chain nega-
tive fragment, the ‘meaning’ of a⊗-chain can be identified with its π-translation
(assuming, of course, one believes that the meaning of ⊗-chains is given by their
proof-theoretic behaviour). Furthermore, we have seen (Corollary 4.4) that this
identification is to some extent independend of the exact axiomatization Σ of
⊗-chains.

If we move beyond the chain negative fragment, the precise axiomatization
of ⊗-chains matters more. So let us now consider an arbitrary violation logic
VΠ + ∆ where Π satisfies the premises of Corollary 4.4, and for which there-
fore the Reduction Theorem holds (∆ is again any set of deontic axioms). A
typical question outside the chain negative fragment is: When does a ⊗-chain
C imply another ⊗-chain C ′, i.e. when does ⊢VΠ+∆ C → C ′ hold? A good
axiomatization Π should give a tangible meaning to the notion of implication
between chains. Hence, the question we have to ask is:

When should a ⊗-chain C imply another ⊗-chain C ′?

Here is one possible proposal. We say that a chain C deontically subsumes
another chain C ′ over VΠ + ∆ if for every deontic formula D, ⊢VΠ+∆ C ′ →
D implies ⊢VΣΠ+∆ C → D. In words: C deontically subsumes C ′ if every
obligation arising from C ′ already arises from C.

Definition 5.1 The violation logic VΠ +∆ is faithful if it proves C → C ′ for
every pair C,C ′ of chains where C deontically subsumes C ′.

So in a faithful violation logic, the meaning of an implication C → C ′

between chains is that of deontic subsumption. From the Reduction Theorem
arises a simple characterization of deontic subsumption:

Lemma 5.2 C deontically subsumes C ′ iff ⊢E+∆ π(C)→ π(C ′).

Proof. Assume that C deontically subsumes C ′. Since ⊢VΠ+∆ C ′ → π(C ′)
(Lemma 3.4), we also have ⊢VΠ+∆ C → π(C ′) by deontic subsumption. But
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then ⊢E+∆ π(C) → π(C ′) by the Reduction Theorem. Conversely, if ⊢E+∆

π(C)→ π(C ′) andD is a deontic formula implied by C ′, then ⊢E+∆ π(C ′)→ D
by the Reduction Theorem, and so ⊢E+∆ π(C) → D. Then again by Lemma
3.4, ⊢VΠ+∆ C → D follows. ✷

For our basic violation logic VΣ, we can show the following:

Theorem 5.3 VΣ is not faithful.

Proof. (Sketch) Let a, b be two distinct variables. The counterexample will
be the two chains

C = a⊗ (¬a) and C ′ = a⊗ (¬a)⊗ b.
Their respective π-translations are π(C) = Oa ∧ (¬a → O(¬a)) and π(C ′) =
Oa ∧ (¬a → O(¬a)) ∧ (¬a ∧ ¬¬a → Ob). Since π(C) implies π(C ′), we know
by Lemma 5.2 that C deontically subsumes C ′. However, while C ′ → C is
an instance of (⊗-shortening), VΣ fails to prove C → C ′. We show this by
providing a countermodel in the sequence semantics of [5]. A sequence model
extends a neighbourhood model W = 〈W,N , V 〉 by a function C which maps
each world w to a set Cw of finite nonempty sequences 〈X1, . . . , Xn〉 of sets of
worlds, and which obeys the following closure conditions:

(i) If 〈X1, . . . , Xn〉 ∈ Cw and n > 1, then 〈X1, . . . , Xn−1〉 ∈ Cw

(ii) Let L ∈ Cw be a list in which a set of worlds X occurs at a certain position.
Then Cw must contain also all lists arising from removing or introducing
copies of X at a later position in L.

(iii) If 〈X1, . . . , Xn〉 ∈ Cw and for some 0 ≤ k < n, w /∈ X1 ∪ . . . ∪ Xk, then
Xk+1 ∈ N (w) and 〈Xk+1, . . . , Xn〉 ∈ Cw

The satisfaction clauses of the standard neighbourhood semantics are then
extended by setting 〈W, C, w〉 |= A1 ⊗ . . . ⊗ An :⇔ 〈[A1]W , . . . , [An]W〉 ∈ Cw.
It is proved in [5] that ⊢VΣ

A iff A holds in all sequence models. So our task
is to construct a sequence model in which C holds, but C ′ fails. It will suffice
to have two worlds w, v. Assume that V (a) = {w, v} and V (b) = {w}. We let
N (w) = {{w, v}}. The value of N on other worlds is not relevant. Neither is
the choice of Cv, which can be set to ∅ to trivially satisfy the closure conditions.
We let Cw consist of all sequences of the form

〈{w, v}, . . . , {w, v}〉 or 〈{w, v}, ∅, X1, . . . , Xn〉
where n ≥ 0 and eachXi is either {w, v} or ∅. Then Cw satisfies the closure con-
ditions, and 〈[a]W , [¬a]W〉 = 〈{w, v}, ∅〉 ∈ Cw, whereas 〈[a]W , [¬a]W , [b]W〉 =
〈{w, v}, ∅, {w}〉 /∈ Cw, and so 〈W,N , w〉 2 a⊗ (¬a)→ a⊗ (¬a)⊗ b. ✷

We have already seen in Remark 3.6 that ⊗-chains are not equivalent to
their π-translation over VΣ. From the above theorem, we can conclude that no
translation with that property exists:

Corollary 5.4 (Undefinability of ⊗-chains over VΣ) There is no trans-
lation π∗ from ⊗-chains to deontic formulas such that

⊢VΣ
A1 ⊗ . . .⊗An ≡ π∗(A1 ⊗ . . .⊗An)
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for all ⊗-chains A1 ⊗ . . .⊗An.

Proof. Assume that such a translation exists, and let C,C ′ be the two ⊗-
chains from the proof of Theorem 5.3. Since C deontically subsumes C′ and
⊢VΣ

C ′ → π∗(C ′), we have ⊢VΣ
C → π∗(C ′). Now because ⊢VΣ

π∗(C ′) → C ′,
we can conclude ⊢VΣ

C → C ′, contradiction. ✷

From the proof of Corollary 5.4, we can extract the following observation:
If in a violation logic every ⊗-chain is definable by a deontic formula, then the
violation logic is faithful. However it is not so clear if definability of ⊗-chains
is desirable. On a technical level, it trivializes the treatment of ⊗-chains, and
in some sense deprives the ⊗-chains of their status as logical entities in their
own right. If on the other hand definability does not hold, one has the burden
of finding an intuition about ⊗-chains which is robust enough to allow for
the acceptance and rejection of the principles proposed for them (such as the
principle of faithfulness).

We remark that it is possible to have faithfulness without having definability
of ⊗-chains: We obtain such a logic by formally adding to VΣ the rule

π(C)→ π(C ′)

C → C ′ .

(To show that ⊗-chains are not definable in the resulting logic, the argument
in Remark 3.6 can be applied.)

Earlier on, we already mentioned the axiom (⊗-I)

(

a1 ⊗ . . .⊗ an ∧

(

(
n
∧

i=1

¬ai)→ b1 ⊗ . . .⊗ bm

))

→ a1⊗ . . .⊗an⊗ b1⊗ . . .⊗ bm

which appears in [3]. From (⊗-I) we can prove a ⊗ (¬a) → a ⊗ (¬a) ⊗ b, the
implication which was used as a counterexample to faithfulness in Theorem 5.3.
This suggests the following question, to which we do not know the answer:

Is the extension of VΣ by (⊗-I) a faithful violation logic?

Finally, let us comment on the definability of ⊗-chains again. The easiest,
but also the least illuminating way of achieving this is to add a scheme like
A1 ⊗ . . . ⊗ An ≡ π(A1 ⊗ . . . ⊗ An) to the violation logic at hand. It might
also be of interest to have a ‘natural’ axiomatization of ⊗-chains which implies
definability. For example, consider the following axiomatization of ⊗-chains:

Σ∗ = (O-detachment) + (⊗-I) + (O⊗): Oa → ⊗a

Theorem 5.5 The violation logics VΣ∗ +∆ and VΣ+∆ coincide on the chain
negative fragment, and in VΣ∗ +∆ every ⊗-chain is definable via

A1 ⊗ . . .⊗An ≡ π(A1 ⊗ . . .⊗An).

In particular, VΣ∗ +∆ is faithful.
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Proof. VΣ∗+∆ satisfies the premises of Corollary 4.4, and so its chain negative
fragment coincides with that of VΣ + ∆. The Chain Soundness Lemma is
satisfied in VΣ∗ because Σ∗ contains (O-detachment). Hence for definability,
it suffices to show by induction on n that

⊢VΣ
∗+∆ π(A1 ⊗ . . .⊗An)→ A1 ⊗ . . .⊗An.

The base case n = 1 is precisely the axiom (O⊗). For the induction step, we
first note that the assumption π(A1 ⊗ . . .⊗An ⊗An+1) equals

π(A1 ⊗ . . .⊗An) ∧

(

(
n
∧

i=1

¬Ai)→ OAn+1

)

by the definition of π. Now by the induction hypothesis, we can replace π(A1⊗
. . .⊗An) by A1⊗ . . .⊗An and OAn+1 by ⊗An+1. The axiom (⊗-I) then yields
A1 ⊗ . . .⊗An ⊗An+1 as desired. ✷

Hence if one accepts (O-detachment) and (⊗-I) as true principles for ⊗-
chains but rejects their definability, one must argue against the validity of the
axiom (O⊗).

6 Conclusion

We have isolated the ‘chain negative fragment’ of violation logic, and showed
how questions in this fragment can be systematically reduced to questions in
the underlying classical modal logic. This made it possible to use results about
classical modal logic to reason in violation logic. On top of that, we have seen
that truth in the chain negative fragment is to some extent independent of the
axiomatization of ⊗-chains. Concerning future work, we believe that the main
challenge for violation logic lies in the search for intuititive, yet sufficiently
formal criteria which discriminate between different possible axiomatizations
of ⊗-chains. One such criterion called ‘faithfulness’ was suggested here.
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Abstract

We provide a formal definition of normative systems, which is compatible with dif-

ferent conceptions of the relation between law and morality. We embed a model for

balancing values into an architecture of i/o logics representing conceptual, deontolog-

ical and axiological rules. In particular, we provide a formal representation of three

versions of the so-called Radbruch’s formula, according to which legal obligations hold

unless they reach a certain degree of immorality. Accordingly, we define eight differ-

ent entailment relations, which correspond to eight different legal theories concerning

the relation between law and morality.

Keywords: normative systems, input/output logics, balancing values.

1 Introduction

The regulation of human action has two sides. On the one side it aims to achieve
certain values, i.e., goals that are socially desirable. Such values may consist
in individual entitlements or rights (e.g. freedom of speech, property, privacy)
or collective/social objectives (e.g. public health, national security, etc.). On
the other side, the regulation specifies that certain actions may or may not be
accomplished under certain antecedent conditions. The first is the dimension of
consequentialism (also called teleology or axiology), according to which actions
are evaluated according to their future impact on the relevant values: they are
prohibited if they have a negative aggregated impact on the relevant values
and they are permitted otherwise. The second is the dimension of deontology,
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according to which actions are evaluated according to the context in which
they were accomplished: they are impermissible (or respectively permissible)
if they are accomplished under conditions that trigger, through a rule, their
prohibition (respectively permission).

The two dimensions should ideally be aligned, since the deontological rules
in the regulation are meant to serve the values aimed at by the regulation.
The alignment is successfully achieved when the circumstances under which
rules prohibit (permit) an action correspond to the circumstances under which
the action would be detrimental (favourable) to the relevant values. However,
a mismatch is also possible: what is deontologically prohibited may be axio-
logically required (having a positive impact on the relevant values) and what
is deontologically permitted may be axiologically prohibited. For simplicity’s
sake, we assume that axiological components only pertain to political morality,
while deontological components only pertain to positively enacted law. How-
ever, as we shall remark later, our approach can also deal with the incorporation
of axiological components in the positively enacted law.

A long standing problem in legal theory concerns exactly the criteria for the
identification of valid law in case of mismatch between law and morality. In
the contemporary debate, the difficulty rests on how to sustain the authority
of legal rules while excepting their application when it would lead to morally
unacceptable results.

Non-positivist theories, such as those put forward by R. Dworkin [5] and R.
Alexy [2], affirm a necessary but nuanced relation between law and moralty:
on the one hand legal interpretation and argumentation may include evaluative
efforts meant to align deontology and axiology; on the other hand, in some
cases, immorality may entail legal invalidity. In particular, Alexy refers to
the formula originally proposed by Gustav Radbruch [13] to determine the
(in)validity of Nazi’s laws: laws enacted by proper authority and power are
legally valid unless they reach an unbearable degree of immorality or injustice.

Positivist theories on the other hand, reject the view that the identification
of law is necessarily dependant on moral considerations, while accepting that
the immorality of a law may justify its modification or even the refusal to apply
it, when this would lead to morally unacceptable consequences [8].

In our framework, the identification of the obligations and permissions de-
rived from the normative system vary according to the version of the Rad-
bruch’s formula assumed, which, in its turn, reflects a particular conception
about the morality of Law.

Our effort has not only a theoretical import for legal philosophy, but also
a practical import for the design of intelligent normative agents. In a human-
centered AI, artificial agents must not blindly apply predefined rules, but also
be able to determine how best to apply such rules and even refrain from com-
plying with them when that might offend the underlying social values and
individual rights.

In Section 2 we introduce the normative sets of conceptual, modulation,
deontological and axiological rules. In Section 3 we introduce a logical archi-
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tecture of i/o logics based on our concept of Normative Systems. In Section
4 we define an operator of axiological entailment. In Section 5 we introduce
the concept of normative theories and we identify eight different legal theories
regarding the relations between law and morality, based on three versions of
Radbruch’s formula.

2 Normative Sets

We shall use the term “normative set” to refer to sets of different kinds of
rules: (i) a set of conceptual rules; (ii) a set of modulation rules; (iii) a set of
deontological rules (iv) a set of axiological rules.

Conceptual rules consist in the ascription of a legal meaning or concept,
i.e. they state that the entities described by certain factors count as (are to be
classified as) instances of the ascribed concept (see [7]). We represent concep-
tual rules in the form (a, c) where a is the triggering factor (or conjunction of
factors) and c is the ascribed concept. For instance, a conceptual rule stating
that a message exchange stored in a mobile phone (sms) counts as “data” can
be represented as (sms, dat).

Modulation rules specify the extent to which the presence of a factor affects
the impact of actions on values. Such modulations reflect both causal connec-
tions (that the action, given the factor is likely to produce a certain individual
or social outcome) and evaluative assessments (that the outcome of the action
will count as an impact on the value). The values may consist in individual or
social rights, moral principles, or collective goals.

We distinguish three kinds of modulation rules: baseline, intensifier and
attenuator rules (following [4]). A baseline rule specifies that an action has a
certain impact on a value, in the absence of relevant circumstances. That is,
baseline modulation rules are those pairs where the body is a tautology, while
intensifiers and attenuators are rules where the body is non-tautological. An
intensifier rule specifies that the presence of a factor (the intensifier) increases
the action’s impact on the value (its index is positive). An attenuator rule
specifies that the presence of a factor (the attenuator) decreases the action’s
impact on the value (its index is negative). We represent modulation rules in
the form (a, V x)i, where a is the triggering factor, V is the affected value, x
is the action at stake, and i is the extent of the modulation. For a baseline
example, consider the rule specifying that the action consisting in the access
to any item in a search by the police demotes the value of Privacy to the
extent 0.2, which we model as (⊤, P rivacyacc).2. For an intensifier, consider
the rule that the impact of this action on privacy is increased if the item is a
mobile phone (mob, Privacc).8. For an attenuator, consider that the impact is
decreased if the mobile phone is not personal (¬pers, Privacc)−.4.

We distinguish two kinds of rules establishing obligations or permssions,
deontological and axiological ones. Such rules lead to deontic conclusions which
may be in conflict.

Deontological rules link the (deontological) prohibition or permission of a
given action to the presence of certain antecedent conditions. We model deon-
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tological rules in the form (a, x), where a is the triggering factor (or concept)
and x is the obligatory or permitted action. For instance, we represent as
(¬sord,¬acc) the rule prohibiting police officers from accessing personal docu-
ments without a search & seizure order.

Axiological rules make the (axiological) obligation or permission of an action
dependant on on the action’s impact on a value. They are partitioned into two
sets: those linking the prohibition of an action to a value demoted by that
action; and those linking the permission of an action to a value promoted by
that action. We represent axiological prohibitions in the form (V x,¬x)i, where
V is the value demoted by action x, which is consequently prohibited, and i
is the weight of the value. We represent axiological permissions as (V x, x)i
where V is the promoted value, and x is the consequently permitted action.
For instance, let us assume that access to a mobile phone by police officers
demotes privacy, which is a reason for prohibiting it, while it promotes public
safety, which is consequently a reason to permit it. We can model these rules
as (Privacc,¬acc).4 and (Safacc, acc).6.

3 Normative systems

Reasoning with each kind of rules (conceptual, modulation, deontological, or
axiological) has different logical properties and therefore requires a different
output operator in an architecture of i/o logics (for an introduction to i/o
logics see [9] and [12]).

Let L be a standard propositional language with propositional variables and
logical connectives: ¬, ∧, ∨, →, ⊥, ⊤. Let V al = {V x

1 , V x
2 , ...V y

1 , V
y
2 , ...} be a

set of values. We say that N ⊆ G×G, where G ∈ {L, V al} is a normative set
and that each r ∈ N is a rule. For any A ⊆ G, N(G) is the image of N under
G, that is N(G) = {x : (a, x) ∈ N , for some a ∈ G}. We write simply N(a) to
abbreviate N({a}). To state that x is the output of input a to normative set
N , we may write x ∈ outi(N, a), or (a, x) ∈ outi(N). For any normative set N
we define body(N) = {a : (a, x) ∈ N}.

Therefore, normative sets contain pairs of propositions or pairs linking a
proposition or value to another proposition or value. In order to simplify
the exposition, we shall consider actions as propositions (action-propositions),
which will be the scope of deontic operators. We shall employ the classical
consequence operator Cl. In this paper, it is possible that an action impacts
different values. However possible combinations of values will be assessed in
the balancing model, so we do not need to consider conjunctions of values or
logical inferences among them. Given that we consider values as primitive en-
tities, which are logically independent of each other and that no consequence
relations among them are of interest, we shall consider weaker versions of i/o
logics, where no consequence operator is applied to the output (of the set of
modulation rules). We shall use the following i/o operators:

Definition 3.1 Let N be a normative set, A ⊆ L and V the set of all maximal
consistent sets v in classical propositional logic. Then, we define the following
output operators:
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(i) simple minded : out1(N,A) = Cl(N(Cl(A)))
(ii) weak : out1−(N,A) = N(Cl(A))
(iii) basic: out2(N,A) =

⋂

{out1(N, v) : A ⊆ v, for v ∈ V or v = L }
(iv) weak basic: out2−(N,A) =

⋂

{out1−(N, v) : A ⊆ v, for v ∈ V or v = L}
(v) basic reusable: out4(N,A) =

⋂

{out1(N, v) : A ⊆ v and out1(N, v) ⊆ v, for
v ∈ V or v = L}

Definition 3.2 Let N be a normative set and P ⊆ (L × L) a set of explicit
permissions. Then, (a, x) ∈ permi(P,N) iff (a, x) ∈ outi(N ∪ Q), for some
singleton or empty Q ⊆ P .

One may combine normative sets N1 and N2 and output operators outi,
outj , by making the output of a normative set (possibly joined with the in-
put set) the input of the output operation on the other normative set, that
is outi,j(N1, N2, A) = outi(N1, outj(N2, A) ∪ I), where I ∈ {A, ∅}. We call
sequence a chain of combinations of normative sets.

Definition 3.3 (Normative System) Let A, I ⊆ L. Let N1, ..., Nn, N be nor-
mative sets and r ∈ {0, 1}.
Then (Nout1,r1

1 , ..., Noutn,rn
n ), where outj is the output operator asso-

ciated to set Nj is a sequence of normative sets iff for all Nj ,
1 ≤ j ≤ n, it holds that outj , . . . outn(Nj , Nj+1, ..., Nn, A) =
outj(Nj , outj+1, ..., outn(Nj+1, ..., Nn, A) ∪ I), where Nj ⊆ N and I = A, if
ri = 1, or I = ∅, if ri = 0. A normative system is a class of sequences of
normative sets.

We shall write N i,r1 as an abbreviation of Nouti,r1 and outk,l(N,M,A) to
abbreviate outk, outl(N,M,A).

Our model constructs a particular structure or architecture of normative
systems, where the set of conceptual rules (box C) contributes to the deter-
mination of which deontological rules and which value assessments are trig-
gered. Following [10] we assume that the set of conceptual rules is governed
by a basic reusable output operator and the set of deontological rules is gov-
erned by a basic output operator. Their combination is given by the iden-
tities: out2,4(Od, C,A) = out2(Od, out4(C,A) ∪ A) and perm2,4(Pd, C,A) =
perm2(Pd, out4(C,A) ∪A).

From now on, we may write O/Pd or O/Pv for referring to both obligation
and permission rules, Od/v and Pd/v for both deontological and axiological rules
and O/Pd/v to include all modalities. The value assessment employs the set of
modulation rules and two sets of axiological rule. The set of modulation rules
(M) links facts and concepts to the value-impacts of the action in the presence
of such fact and concepts. It is governed by a weakened basic output operator.
One set of axiological rules (Pv) links each value to the permission of the action
that promotes it, and the other (Ov) links each value to the prohibitions of the
action that demotes it. Both are governed by the axiological output operator
out≻, defined in Section 4.

The combination of these normative sets is given by the following identity:
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out≻,2−,4(O/Pv,M,C,A) = out≻(O/Pv, out2−(M, out4(C,A) ∪A))

Hence our discussion shall involve the following structures:

〈O/Pd, C〉 = {(O
2,0
d , C4,1), (P 2,0

d , C4,1)}

〈O/Pv,M,C〉 = {(O≻,0
v ,M2

−,0, C4,1), (P≻,0
v ,M2

−,0, C4,1)}
〈O/Pd/v,M,C〉 = 〈O/Pd, C〉 ∪ 〈O/Pv,M,C〉

The normative system is specified by indicating the rules of each normative
set in the corresponding structure. The structure 〈O/Pd/v,M,C〉 of normative
systems is represented in the figure below. The arrows indicate the direction
of the outputs and inputs of each normative set.

A

M
Ov

Pv

out
2−,4

(M,C,A) out
≻,2−,4

(O/Pv,M,C,A)

out4(C,A) ∪ A

C
out4(C,A)∪A Od

Pd

out2,4(O/Pd, C,A)

4 Axiological entailment

An axiological entailment presupposes a determination of the comparative
moral merits of the choice of performing an action rather than abstaining
from it. The action may consist in any behaviour, e.g., having an abortion
rather that continuing the pregnancy or accessing an sms message, rather than
respecting its confidentiality.

The comparison depends on the evaluations expressed by the quantitative
indexes of modulation rules (for influence on impact on values) and axiological
rules (for weighs of values). For generality’s sake we assume that such indexes
can take arbitrary numerical assignments within given ranges. These numbers
can be restricted to any scales that may be convenient for the chosen domain
of application. Here we shall use the positions (0,.2,.4,.6,.8,1) in the exam-
ples. What matters is that the numerical assignments reflect some relative
importance of the elements at stake, as part of a reasoning with dimensions
and magnitudes, and how such assessment of relative importance affects the
outputs of the systems and its overall coherence.

4.1 Evaluation of axiological rules

The entailment of axiological rules may involve three kinds of rules –conceptual,
modulation, and axiological ones–, so that their evaluation depends on the
intensity of factors and the weights of values.

The evaluation model basically compares, for each given action, its impact
on the set of values it promotes against its impact on the set of values it
demotes, given the constellation of factors, i.e the context in which the action
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is performed. Two clarifications are of central importance to understand the
model here proposed.

First, we only consider the assessment of impact of a single action on values
and therefore we only compare the values promoted against the values demoted
by that specific action, so that a decision takes place whether that action should
or should not be performed on moral grounds. There is no room in this model
to compare and decide among different and logically independent actions in
terms of their impacts on values. Typically, a claim before a court questions
the legality of a particular action and the court must decide whether that
action under evaluation should be performed or not (should be forbidden or
permitted, should be punished or not be punished). So we keep the same
structure regarding its axiological evaluation. We acknowledge that there may
be contexts where a judicial decision compares and chooses among alternative
courses of action, for instance, between the consumer’s right to receive a new
product or to have his money back. However we shall leave this kind of value
assessment to future work.

Second, we assume that the direction of impact of an action on a value –i.e.,
whether the action promotes or demotes the value– is invariant, although the
extent of the promotion or demotion may be intensified or attenuated by the
presence of factors in the context of performance. By saying that the direction
of impact is invariant, we mean that irrespective of how many attenuating
factors are taken into account, the impact of an action in the promotion of a
particular value never shifts to the demotion of that value. And vice-versa the
impact of the action at stake on the demotion of a value never shifts to its
promotion.

Let us illustrate the rationality behind the model with an example. Suppose
the rules of a condominium forbid people to take the elevator during the pan-
demics. Suppose now that one inhabitant has a medical emergency. Then one
could evaluate whether following the rule would lead to immoral results. The
factor “medical emergency” is an intensifier w.r.t the promotion of the value of
the patient’s health, which would lead to a permission to use the elevator. But
now consider that the emergency does not hinder the patient’s ability to walk
(for instance, it is a toothache) and that she lives in the second floor. So the
proportional influence of the set of factors on the promotion of the patient’s
health may become null or negative, but one would not say that the action of
taking the elevator would now demote her health in that particular context.
Actually the action still promotes health even in presence of those attenuating
factors. But in such cases the proportional impact of the action is so low that
it becomes morally irrelevant to legal considerations, that is, it will not play a
role in a consideration whether to follow the rule or not. Hence, in the model
here proposed, attenuating factors only affects the degree of moral impact of
the action on a value.

Considering that the direction of impact of the action on a value is invariant,
then for a given an action x, the set V al of values may be partitioned into the
set of values V alxDem which are demoted by the action and a set of values
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V alxProm which are promoted by the action. The relative importance or weight
of each value, denoted by wV , is given by a weight function w : V al −→ [0, 1].

Both features, i.e. the direction of impact of the action on a value and the
weight of the value may be directly represented in our architecture by defining
the Ov box and Pv box respectively as Ov = {(V x,¬x)wV

: V ∈ V alxDem} and
Pv = {(V x, x)wV

: V ∈ V alxProm}.
Let us now move to modulation rules. As noted in Section 2, the extent to

which an action promotes or demotes the relevant values is determined by the
baseline impact of the action and by the context (the constellation of factors)
in which the action takes place. The influence of a factor on the action’s impact
on a value is given by the modulation function ∆ : L2 × V al −→ [−1, 1]. We
denote by ∆m

V (x) the influence of the modulating factor m ∈ body(M) on the
impact of the action x ∈ L on the value V x ∈ V al.

Considering that we shall not model the evaluation of sets of different ac-
tions, but only the impact of a single action on the promotion against the
demotion of given values, we shall omit the reference to the action at stake
in the indication of its impact on a value, i.e., we shall indicate such impact
with (V,¬x)w ∈ Ov and (V, x)w ∈ Pv , rather than (V x,¬x)w ∈ Ov and
(V x, x)w ∈ Pv.

If the influence of a factor m on a value V is positive (∆m
V > 0), m is an

intensifier of the impact of the action at stake on value V . If the influence is
negative (∆m

V < 0), then m is an attenuator of its impact on V . If there is no
influence (∆m

V = 0), m is neutral.
By a λ-evaluation we mean an evaluation assignment λi = [∆i, wi], where

∆i is a modulation function and wi is a weight function, and we denote by Λ
the set of all λ-evaluations. The proportional influence of a modulating factor
m on value V , denoted by φm

V , is the product of the index of the modulation
rule (indicating the intensification or attentuation due to the factor) and of the
index of the axiological rule (indicating the weight of the value), that is:

Definition 4.1 (Proportional influence of a modulating factor on a value)
Let (m,V )∆m

V
∈M and (V, x)wV

∈ O/Pv. Then: φ
m
V = ∆m

V × wV

Now we extend the definition of proportional influence to cover the impact
of a set of factors B on a set of values W , such an impact being the sum of the
proportional influences of each factor.

Definition 4.2 (Proportional influence of factors on values) Let Q =
{(m1, V1)i1 , ..., (mn, Vk)in} ⊆ M and U ⊆ O/Pv such that U =
{(V1, x)j1 , ..., (Vk, x)jk}. Then, for factors B = body(Q) and values W =
body(U) we have:

ΦB
W =

1≤j≤k
∑

1≤i≤n

φmi

Vj

4.2 Axiological Output

Given the above definitions, we are able to define the axiological output (out≻)
operator. The idea is to compare the proportional impact of an action on the
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values it demotes vis-à-vis its impact on the values it promotes, considering only
those values which are triggered by the input. The set M(A) of the modulating
factors involved in the comparison is the subset of body(M), which is triggered
by the input A ⊆ L, that is, M(A) = Cl(A) ∩ body(M). Since the normative
system used in our model also includes conceptual rules in the sequence, we
have M(A) = (out4(C,A) ∪ A) ∩ body(M). In their turn, the sets of values
involved in the comparison are those subsets of body(Ov) and of body(Pv),
which are triggered by the output of the set of modulation rules. That is, we
are going to compare set of demoted values triggered by input A, i.e., Ov(A) =
outi(M,A)∩body(Ov), against the set of promoted values triggered by input A,
i.e., Pv(A) = outi(M,A) ∩ body(Pv). In our architecture, where the sequence
includes conceptual rules, we compare Ov(A) = out2−,4(M,C,A) ∩ body(Ov)
against Pv(A) = (out2−,4(M,C,A) ∩ body(Pv).

If, for a given constellation of factors, the proportional impact of the action
on the demoted values is positive and stronger than its proportional impact on
the promoted values, then there is an overall axiological prohibition to do it.
On the other hand, if the proportional impact of the action on the promoted
values is positive and stronger that its proportional impact on the demoted
values, then there is an axiological explicit permission to do it. Hence, we
have the following definition of the value output operator out≻. We may write

simply O/Pv(A) to abbreviate Φ
M(A)

O/Pv(A)
.

Definition 4.3 [Axiological output ] Consider NS = 〈O/Pv,M〉, A ⊆ L and
x ∈ L. Then x ∈ out≻(Ov,M,A) iff: (i) y ∈ Ov(out(M,A))), (ii) x ∈ Cl(y)
and (iii) 0 < Ov(A) > Pv(A). The same holds, mutatis mutandis, for
out≻(Pv,M,A).

It is worth mentioning that, contrary to all the other output operators
discussed so far, the axiological output is defeasible, i.e. it does not satisfy
the property of Strengthening the Input, according to which if b ⊢ a, and
(a, x) ∈ out(N), then (b, x) ∈ out(N) (see example 4.4).

When assessing whether there is convergence of axiological and deontolog-
ical outputs we need to compare the intensity of the action’s impact on each
value, relatively to given contexts (constellations of input factors).

A modulating factor may trigger more than one value (directly or indirectly,
i.e. by detaching other modulating factors) and the impact on a single value
may be affected by different modulating factors. Therefore it is interesting to
compare modulating factors in terms of the influence of each on the impact on
the aggregate of values, as well as to observe how much each value is impacted
by the action in a given context.

In order to compare modulating factors, we call the quantity Φ
{m}

O/Pv(m)
,

where O/Pv(m) = {V : V ∈ out2−(M,m)}, the strength of the modulating
factor m ∈ body(M). It represents the sum of the all impacts of the action
(on the promoted values or on the demoted values), which are triggered by the
modulating factor m. We are going to abbreviate by m1 > m2 the comparison

of strengths of different modulating factors Φ
{m1}

O/Pv(m1)
> Φ

{m2}

O/Pv(m2)
.
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In order to compare how much different values are impacted by a given
input, we shall use M(a) to denote the set of modulating factors triggered by
input a, that is M(a) = out4(C, a) ∩ body(M), and we are going to abbreviate

the quantity Φ
M(a)

{V }
by V (a), which represents the extent of the action’s impact

on a single value V , given input a. So, given a, b ∈ L, the expression V1(a) >

V2(b) denotes Φ
M(a)

{V1}
> Φ

M(b)

{V2}
.

Let us illustrate these notations with a hypothetical λ- evaluation, which
represents the Riley vs California case, where the values of privacy, public
safety, and property rights were affected. The US case law before that decision
included a rule according to which an officer could access personal property
when arresting an individual due to a criminal offense. This rule could be
explained by the following considerations on the underlying value impacts: the
modulating factor ”arrest” intensifies the promotion of public safety (through
the action search) so as to outweigh the extent to which the factors property and
“personal data” intensify the demotion (through the same action) of property
rights and privacy respectively. However, as considered by the court, if the item
collected is a mobile phone, then the negative impact on privacy is intensified
to the extent that the promotion of public safety is outweighed. This led the
court to introduce an exception for searches involving mobile phones.

Example 4.4 [Riley vs California] Consider NS = 〈O/Pv,M,C〉:
Ov = {(Priv,¬acc).4, (Pright,¬acc).4}, Pv = {(Saf, acc).6}
M = {(⊤, P riv).2, (⊤, P right).0, (⊤, Saf).2, (dat, Priv).6, (prop, Pright).4,
(arrest, Saf).8, (mob, Priv)1}, C = {(mob, data), (mob, prop)}
We have that Saf(arrest) = 0.6, Pright(prop) = 0.16, Priv(data) = 0.32
and the factor mobile played a strong intensifying role with Priv(mob) = 0.72.
The strength of factors each factor is mob = 0.88, arrest = 0.6, dat = 0.32
and prop = 0.16. So, we have mob > arrest > dat > prop and, comparing the
values, it holds that Saf(arrest) > Pright(prop)+Priv(dat), but Priv(mob)+
Pright(mob) > Saf(arrest).

Hence, the balancing above explains the shift in the U.S case
law given the factor “mobile phone”, as we have that acc ∈
out≻(Pv,M,C, {arrest, prop, data}), but it also holds that ¬acc ∈
out≻(Ov,M,C, {arrest,mob}). That is, it is morally admissible for the po-
lice to access property items and personal data in an arrest, but it is immoral
to access the content of a mobile phone, for the impact on privacy, in that case,
is severely intensified (a mobile phone is conceptually both property and data).

Based on the strength of the impacts on the values triggered by an input,
we define the proportional impact of an entailed axiological rule as the differ-
ence between the values promoted (demoted) and demoted (promoted) in the
entailment.

Definition 4.5 (Proportional impact of a rule) Consider a normative system
NS = 〈O/Pv,M,C〉, and (a, x) ∈ out≻(Ov,M,C). Then, σ(a, x) = Ov(a) −
Pv(a) is the proportional impact of the rule (a, x). The same holds, mutatis
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mutandis, for (a, x) ∈ out≻(Pv,M,C).

In Example 4.4, the proportional impact of prohibiting access to the content
of a mobile phone in an arrest is σ(mob ∧ arrest,¬acc) = 0.28.

5 Normative theories

A normative system is the object of assertions by jurists (legal doctrine) who de-
scribe the systems through normative propositions, i.e., statements that certain
obligations and permissions hold given certain factors, according to a normative
system.

Normative propositions, while being descriptive of a given normative sys-
tem (as viewed by the interpreter), also reflect the evaluative aspects of the
described system, namely, the ascription of intensities of influence (to modu-
lation rules) or the ascription of weights of values (to axiological rules). Such
λ-evaluations contribute to determine the axiological obligations/permissions
delivered by the system, and consequently, what normative propositions would
be true about it.

Definition 5.1 LetNS = 〈O/Pd/v,M,C〉 be a normative system and b, x ∈ L.
The for a given λ evaluation:
NS |=λ

Od(x/b) iff x ∈ out2,4(Od, C, b)
NS |=λ

P
−
d(x/b) iff ¬x /∈ out2,4(Od, C, b)

NS |=λ
P
+
d(x/b) iff x ∈ perm2,4(Od, Pd, C, b)

NS |=λ
Ov(x/b) iff x ∈ out>,2−,4(Ov,M,C, b)

NS |=λ
P
−
v(x/b) iff ¬x /∈ out>,2−,4(Ov,M,C, b)

NS |=λ
P
+
v(x/b) iff x ∈ out>,2−,4(Pv,M,C, b)

Each normative proposition describes an entailed deontological or axiologi-
cal rule, with the exception of negative permissive propositions, which describe
the non-derivability of such a rule. Thus, following Alchourrón [1], we distin-
guish a negative sense of permission P

−
d/v(x/b), as the absence of prohibition,

from a positive sense of permission as an entailed deontological or axiological
permission P

+
d/v(x/b).

A normative theory Thλ
NS about a normative system NS is the set of all

normative propositions describing the rules entailed by that normative system
based on the λ-evaluation, that is on given modulation and weight functions:
Thλ

NS = {α : NS |=λ α}. We say that a normative system leads to a conflict,
relatively to a certain input factors when, given that input, the systems delivers
the prohibition and the permission of the same action. We distinguish conflicts
of normative propositions according to the kind of rules which contribute to
produce the conflict:

Definition 5.2 (Consistency, Coherence and Stability of normative theories)
For any given b ∈ L, a normative theory is:
b-inconsistent iff ⊥ ∈ out2(O/Pd, b); b-incoherent iff ⊥ ∈ out2,4(O/Pd, C, b);
b-λ-unstable iff there is x ∈ L for which {Ov(¬x/b),Pd(x/b)} ⊆ Thλ

NS or
{Od(¬x/b),Pv(x/b)} ⊆ Thλ

NS
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In other words, inconsistency captures cases in which deontological rules
directly deliver incompatible conclusions, proper incoherence the case in which
the conflict of deontological rules is triggered by a conceptual classification, and
proper instability the case in which deontological rules are in conflict with axi-
ological rules. We also may say that a normative theory is strongly stable, rela-
tively to an input, if the corresponding deontological normative propositions are
matched by corresponding axiological proposition, and that it is weakly stable,
if the deontological propositions are not conflicted by axiological propositions.

We propose here an interpretation of Radbruch’s formula, based on the con-
cept of “proportional impact” of a rule, as the key to define different entailment
relations and, accordingly, different legal theories.

Definition 5.3 (Negative Radbruch’s Formula) Let NS = 〈O/Pd/v,M,C〉 be
a normative system, b, x ∈ L and λ an evaluation, then:
(i) NS |=λ

rad−
P
+(x/b) iff NS |=λ

P
+

d (x/b) and it is not the case that NS |=λ

Ov(¬x/b) and σ(b, x) ≥ r, where r is a treshold index;
(ii) NS |=λ

rad−
O(x/b) iff NS |=λ

Od(x/b) and it is not the case that NS |=λ

P
+
v (¬x/b) and σ(b, x) ≥ r.

According to Definition 5.3, morality only has a censorial role: it produces
no legal conclusions and only excludes the application of highly immoral deon-
tological rules.

Definition 5.4 (Positive Radbruch’s Formula) Let NS = 〈O/Pd/v,M,C〉 be
a normative system, b, x ∈ L and λ an evaluation, then:

(i) NS |=λ
rad+ P

+/−(x/b) iff NS |=λ
P
+/−

d (x/b) and it is not the case that both
NS |=λ

Ov(¬x/b) and σ(b, x) ≥ r; otherwise NS |=λ
O(¬x/b)

(ii) NS |=λ
rad+ O(x/b) iff NS |=λ

Od(x/b) and it is not the case that both
NS |=λ

P
+
v (¬x/b) and σ(b, x) ≥ r; otherwise NS |=λ

P
+(¬x/b)

According to Definition 5.4, morality has both a censorial role and a gener-
ative one, delivering outputs with high moral merit (proportional impact above
threshold).

Definition 5.5 (Dual Radbruch’s Formula) Let NS = 〈O/Pd/v,M,C〉 be a
normative system, b, x ∈ L and λ an evaluation, then:
(i) NS |=λ

dual P
+/−(x/b) iff NS |=λ

P
+/−

v(x/b) and it is not the case that
both NS |=λ

Od(¬x/b), and σ(b, x) ≤ r; otherwise NS |=λ
O(¬x/b)

(ii)NS |=λ
dual O(x/b) iff NS |=λ

Ov(x/b) and it is not the case that both
NS |=λ

P
+
d(¬x/b) and σ(b, x) ≤ r; otherwise NS |=λ

P
+(¬x/b)

According to Definition 5.5, morality has both a censorial role and a genera-
tive one. The difference from Definition 5.4 lies in those cases where axiological
outputs are not conflicted by deontological rules. By the Dual Radbruch’s for-
mula all such axiological outputs are delivered by the legal system, while in
the Positive Radbruch Formula an axiological output is only delivered when it
exceeds the moral threshold.

Our definitions of the Radruch formulas also cover the limit cases when
the threshold is null (r = 0) or infinite (r = ∞). This allows us to capture
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eight different legal theories, which differs with respect to the specific question
whether external considerations of morality may generate valid law.

Definition 5.6 Let NS = 〈O/Pd/v,M,C〉 be a normative system, b, x ∈ L, λ
an evaluation and r a given threshold in a Radbruch’s formula. Then:

• Closed Positivism 3 : NS |=λ
cpos O/P(x/b) iff NS |=λ

rad O/P(x/b) and r =∞

• Open Positivism: NS |=λ
opos O/P(x/b) iff NS |=λ

dual O/P(x/b) and r =∞

• Strong Censorial Non-Positivism: NS |=λ
scnp O/P(x/b) iff NS |=λ

rad−

O/P(x/b) and r = 0

• Weak Censorial Non-Positivism: NS |=λ
wcnp O/P(x/b) iff NS |=λ

rad−

O/P(x/b) and 0 < r <∞

• Strong Generative Non-Positivism: NS |=λ
sgnp O/P(x/b) iff NS |=λ

rad+

O/P(x/b) and r = 0

• Weak Generative Non-Positivism: NS |=λ
wgnp O/P(x/b) iff NS |=λ

rad+

O/P(x/b) and 0 < r <∞

• Absolute Natural Law: NS |=λ
anl O/P(x/b) iff NS |=λ

dual O/P(x/b) and
r = 0

• Relative Natural Law: NS |=λ
rnl O/P(x/b) iff NS |=λ

dual O/P(x/b) and 0 <
r <∞

For Closed Positivism only deontological outputs are delivered, while axi-
ological outputs are irrelevant to legal validity. For Open Positivism all deon-
tological outputs are delivered together with the axiological outputs that are
consistent (not conflicting) with them. For Strong Censorial Non-Positivism,
only those deontological outputs are valid, which are consistent with all axio-
logical outputs. For Weak Censorial Non-Positivism, the deontological outputs
are delivered, which are not inconsistent with those highly ranked axiological
outputs above the assumed threshold. For Strong Generative Non-Positivism,
all axiological outputs are delivered plus those deontological outputs that are
consistent with them. For Weak Generative Non-Positivism, those axiological
outputs with high proportional impact (above the threshold) are delivered to-
gether with those deontological outputs which are consistent with them. For
Absolute Natural Law, only axiological outputs are delivered. For Relative Nat-
ural Law, axiological outputs of high proportional impact are delivered inde-
pendently of consistency with deontological outputs, while axiological outputs
of lesser impact are delivered only if consistent with delivered deontological out-
puts. One could say, in a theory resembling Finnis’ [6], that Relative Natural
Law would contend that matters with low moral significance (e.g. coordination
problems) could be left to discretionary choices by authorities, while sensitive
matters should be ruled by moral reasoning.

In the table below we present the output of the normative systems for

3 using the rad
− or the rad

+ entailment relation results in the same positivist theory of
validity.
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Riley v California
Output of the normative

system

Explanation of court de-

cision

Closed Positivism Permitted Change the Law

Open Positivism Permitted Change the Law

Strong Censorial Non-Positivism Gap Fill

Weak Censorial Non-Positivism Gap/Permitted Fill/Change the Law

Strong Generative Non-Positivism Forbidden Apply the Law

Weak Generative Non-Positivism Forbidden / Permitted Apply/Change the Law

Absolute Natural Law Forbidden Apply the Law

Relatve Natural Law Forbidden/ Permitted Apply/Change the Law

each legal theory concerning the Riley case and the corresponding theoretical
explanation for the court’s decision to prohibit access to the mobile phone.
Notice that the positively enacted law provides the deontological output that
P
+
d(acc/mob∧ arrest), while the axiological output is Ov(¬acc/mob∧ arrest)

with a proportional impact σ(mob ∧ arrest,¬acc) = 0.28, according to the
assumed λ-evaluation. The normative propositions describing the content of
the normative system would be either a positive permission, a prohibition or
a negative permission (a gap). According to these theories the decision of the
U.S court –forbidding access to the content of the mobile phone– would have
different explanations: that the court changed the existing law (contra legem),
that it applied the existing law (secundum legem), or that it filled a gap by
discretion creating new law (extra legem).

With respect to the weak versions of non-postivism, the outcome of the nor-
mative systems and the corresponding explanations would depend on whether
the theory assumes a Radbruch’s threshold above or below 0.28. Suppose the
theory assumed a threshold r = 0.6. Then the weak non-positivist theory
would maintain that it is permitted to access the content of a mobile phone
in an arrest, since the reached level of immorality is below the threshold. But
now suppose that that positive law authorized the search of an individual’s mo-
bile phone independently of any arrest. Then the axiological output would be
Ov(¬acc/mob) with a proportional impact σ = 0.76 (thus above the 0.6 thresh-
old). Therefore the final outcome, for accessing the content of the mobile phone
independently of an arrest would be either a gap (weak non-positivism) or a
prohibition to access (strong non-positivism).

6 Final Remarks

By combining an architecture of i/o logics and a model of balancing values, we
have proposed a formal concept of normative system, where obligations and
permissions may be assessed in terms of their impact on the promotion or de-
motion of moral values. Based on this concept and on three interpretations
of the so-called Radbruch’s formula, we have formally defined eight different
conceptions of the connection between law and morality. The above analysis as-
sumes that axiological consideration are external to the positively enacted law,
pertaining to political morality. However, our approach is also compatible with
the assumption that axiological considerations are internal to the positively en-
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acted law, as legal principle o fundamental rights, in particular those enshrined
in a Constitution. In future investigations, following the latter approach, we
may define corresponding versions of Constitutionalism from classical negative
(censorial) constitutionalism to different generative forms of neo-constitutional
moralism and principialism.

The framework here proposed brings together two parallel lines of research
in AI & law: on the one hand the study of the role of values in case-based
legal argumentation ([14] and [15]), and on the other hand the study of statu-
tory interpretation as the dynamical modification of combined normative sets,
including conceptual qualification, conditional rules and values ([3], [10] and
[11]). One of the difficulties in the last approach is how to set up and formal-
ize criteria for the choice between alternative normative systems that satisfy
a revision function. This paper offers a conceptual and formal basis for the
balancing of values that may be used as criteria both to trigger and to choose
between possible results of revisions of normative systems. The modelling of
constructive legal interpretation by revision functions based on the framework
here proposed will be left to future work, as well as the effort to characterize
the axiological output operator here advanced.
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Abstract

This paper studies the logical form and properties of one prominent category of epis-

temic rights: the freedom of thought and belief. We do so in the broadly Hohfeldian

formalization of rights developed by [Markovich, 2020,Markovich, 2019], but extended

with tools from doxastic logic. The resulting analysis reveals subtle differences in the

way freedom of thought can be analyzed, and how these differences affect the logical

properties of this doxastic right and the normative positions it incorporates.
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1 Introduction

The freedom of thought and belief is one of the most fundamental and intimate
human rights declared not only by the United Nations’ Universal Declaration of
Human Rights, but also by the European Convention of Human Rights and the
vast majority of western constitutions. This paper studies freedom of thought
and belief from a logical point of view.

We investigate freedom of thought as an epistemic right. According to
a new approach in philosophy, an epistemic right is one that protects and
governs the distribution and accessibility of epistemic goods [Watson, 2021].
For the development of a formal analysis within the theory of the normative (or
Hohfeldian) positions (see Section 2), we assume that an epistemic right, in the
narrow sense, is a right pertaining to a certain state of knowledge or belief of the
right holder. 2 Next to the freedom of thought, such rights include someone’s
right to know—or to not know—her medical test’s result, the citizens’ right

1 This work was supported by the Fonds National de la Recherche Luxembourg through the
project Deontic Logic for Epistemic Rights (OPEN O20/14776480).
2 In a broader sense, rights, where not the right-holder’s, but the duty-bearer’s
epistemic state is concerned by the right, can also be considered as epistemic
rights, such as the right to be forgotten, or the right to privacy, studied in e.g.
[Aucher et al., 2011,Aucher et al., 2010,Cuppens and Demolombe, 1996].
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to know the declaration of assets of members of parliament, the consumers’
right to not be misled by advertisements, or, for example, the right to truth:
the right, in the case of grave violations of human rights, of the victims and
their families or societies to have access to the truth of what happened. In this
paper, we focus on freedom of thought and belief, and investigate its content
and logical properties through an analysis using Hohfeldian conceptions.

While many systems at the intersection of epistemic logic, deontic logic, and
the logic of agency have been developed e.g. [Broersen, 2011], the notion of epis-
temic rights as normative positions has not yet been investigated in logic. The
deontic logic literature has been mostly concerned with epistemic obligation,
Åqvist’s paradox [Åqvist, 1967,Hulstijn, 2008], and the theory of knowledge-
based obligations [Pacuit et al., 2006]. In their work on privacy policies, Aucher
et al. [Aucher et al., 2011,Aucher et al., 2010] investigated both the obligation
and the permission to know something, differentiating between obligatory and
permitted knowledge and obligatory and permitted messages.

The notion of epistemic rights per se is not completely new to the philo-
sophical literature, but so far it has been restricted to the right to believe when
discussing justification in epistemology, see for instance [Dretske, 2000], or fo-
cused on epistemic obligation [Feldman, 1988,Stapleford, 2012]. It is a recent
development that epistemic rights are discussed as a group of legal rights by
Watson [2018, 2019, 2020], a categorization with which we agree. Before, if
epistemic rights were discussed together with normative positions, it was al-
ways in comparison or contrast with them [Wenar, 2003,Altschul, 2021]. Wenar
even claims that the “epistemic (...) realms contain no claims, powers, or im-
munities” [Wenar, 2015]. This paper can be seen as challenging that view, by
showing that analyzing the epistemic rights using Hohfeldian categories yields
interesting insights.

The paper is structured as follows. In section 2, we briefly introduce the
theory of normative positions that we will use, and section 3 presents the details
of the language and semantics, including the doxastic operators. In section 4
we turn to freedom of thought proper, and section 5 concludes by pointing to
directions for future work. The contribution of this paper is conceptual, and the
mathematical observations we make are elementary. The proofs are thus omit-
ted, and we leave aside the study of the meta-logical properties (completeness,
decidability and tracktability) of the systems that we are using.

2 The Theory of Normative Positions

The theory of normative positions goes back to Hohfeld’s typol-
ogy [Hohfeld, 1923] and its seminal formalizations in [Kanger, 1971]
and [Lindahl, 1994]. See [Makinson, 1986] and [Sergot, 2013] for a
critical assessment of this tradition. New formal approaches to Ho-
hfeldian rights have been developed and presented by several au-
thors, for instance [Sartor, 2005], [Gelati et al., 2004,Gelati et al., 2002],
[Governatori and Rotolo, 2008], and more recently in [Dong and Roy, 2017],
and [Markovich, 2020,Markovich, 2019]. The work in this paper builds on the
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latter, but we change the semantics somewhat and extend it with tools from
epistemic logic.

Hohfeld proposed to distinguish between four types of atomic right-positions
(Claim, Privilege, Power, Immunity) and their correlative duty positions (Duty,
No-claim, Liability, Disability). See Figure 1, taken from [Markovich, 2020].
The right-positions in the left square are claim-right and privilege. A claim-
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Fig. 1. The Hohfeldian atomic types of rights, and their correlative

right of an agent concerns the counter-party’s actions. The counter-party has
an obligation to do the certain thing, and this obligation is directed to the right-
holder. Hohfeld calls this a duty, in the narrow sense. The seller’s right against
the buyer that the latter pays the purchase price, for instance, is a claim-right.
The freedom or privilege 3 to do something, on the other hand, is understood
as not being the subject of a claim-right coming from the counter-party. A
land owner’s right to use her own land refers to her privilege in the sense that
the counter-party does not have the claim-right against her to refrain from that
use. 4 Privilege can thus be seen as a directed version of the standard (weak)
permission in deontic logic.

The normative positions in the right square capture the agent’s abil-
ity to change an (other) agent’s normative positions. For that rea-
son, they have been called “higher order” or capacitative [Fitch, 1967].
They thus capture the norm-changing potential, or lack thereof, of an
agent [Dong and Roy, 2017,Markovich, 2020]. A land owner, for instance, has
a right—here a power—to sell her land and the other agent(s), for instance, the
one who so far has rented a house on it, is (are) exposed, that is, liable (in the
Hohfeldian sense), to this change: his relevant normative positions will change.
The land owner has immunity, though, regarding her neighbor selling the land:
the neighbor is unable to change the owner’s normative positions concerning
the land. This counts as a disability, meaning that he does not have a power
to do that.

3 ‘Freedom’ is an often used alternative for ‘privilege’ in the literature dealing with Hohfeld.
4 In this particular case the owner has, in fact, such a privilege against any counter-party.
The owner’s position is a so-called absolute position or a multital (vs paucital) right. Her
property rights, thus this privilege of hers too, are to be considered against every other agent.
[Simmonds, 2001] and [Markovich, 2020].
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While it can be argued that the type of deontic actions—changing some-
one’s normative positions—that are involved in the capacitative square is
of a different kind than the actions that claim-rights and privileges con-
cern [Jones and Sergot, 1996,Dong and Roy, 2017,Markovich, 2020], here we
analyze them using a simple combination of alethic and agentive modalities.
We do so because these are actually actions whose execution is possible if and
only if the actor has the power to do so. This simplification allows us to focus
on the formalization of freedom of thought while keeping our logical language
and its interpretation relatively simple. In the Conclusion we briefly discuss
the consequences of adopting a more dynamic modeling of actions for some of
the results presented below.

The main characteristic of Hohfeldian theory is that the normative positions
are inherently relational. Not only duties are directed, but also all the other
positions: for instance, the dual 5 of a duty, a privilege (or freedom) is to
be interpreted as being free from a given other agent’s, the counterparty’s
claim-right. One can, however, also express the idea of an absolute duty in
this relational framework. Hohfeld himself differentiated between paucital and
multital positions: in the former we consider one given relation between two
parties, while in the latter one agent is a party in a series (conjunction) of
such relations [Simmonds, 2001,Markovich, 2020]. We will formalize freedom
of thought as such a multital right: we have it against/with regard to everyone
else. 6

Hohfeld’s theory identifies four atomic types of rights to resolve the ter-
minological confusion arising from (over)using the word ‘right’ while meaning
different concepts. Legal language, though, still uses the word ‘right’ or some-
times, as in our case, ‘freedom’, to refer to different positions, or, often, their
complex combinations. As we argue below, this is indeed the case for free-
dom of thought. It consists of a combination of at least three atomic types: a
multital privilege, a multital claim-right, and a multital immunity.

3 Language and Semantics

We analyze freedom of thought using a combination of standard deontic logic
augmented with directed operators [Markovich, 2020], and epistemic/doxastic
logic.

Definition 3.1 Let A be a finite set of agents and Φ a set of propositional
letters. The language L is defined as follows:

p ∈ Φ | ϕ ∧ ψ | ¬ϕ | {Eaϕ | Oa→bϕ | Baϕ}a,b∈A | ✷ϕ

L thus extends the propositional logic with four modalities. Ea is the
agency modality and should be read as ”agent a sees to it that...”. Oa→b

5 Or ”opposite” in the less precise Hohfeldian term.
6 As a matter of fact, everyone has it against everyone else (which would be a complete
directed graph from the graph-theoretical point of view [Markovich, 2019]), but for the sake
of simplicity, here we analyze one’s freedom of thought.
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is a directed obligation modality, and should be read as ”agent a has a duty
towards b that...”. Ba, on the other hand, is a doxastic modality, to be read
as ”agent a believes that...”. The ✷ modality is the universal, alethic modality
”it is necessary that.” All these modalities have duals: the weak permissions
operator, i.e. Pa→b..., which stands for ¬Oa→b¬...; 〈Ba〉... which stands for
¬Ba¬...; and ✸..., which stands for ¬✷¬....

We make the following assumptions regarding the logical behavior of these
modalities. We take the deontic modalities Oa→b to be normal modalities val-
idating the D axiom, i.e. Oa→bϕ → Pa→bϕ. So the deontic fragment of our
language is standard deontic logic. For the agentive modalities Ea, we take
them to be non-normal, validating only substitution under logical equivalence
and the T axiom (Eaϕ→ ϕ). As it turns out the logical behavior of freedom of
thought will be strongly influenced by what additional assumptions are made
about the logic of Ea, for instance that the agents always see to it that nec-
essarily true formulas hold (✷ϕ → Eaϕ), or that the operator is regular (if
✷(ϕ → ψ) then Eaϕ → Eaψ). Observe that from the T axiom it also follows
that no agent can see to it that a contradiction holds. The doxastic modalities
Ba are assumed to be normal modalities validating D (Baϕ → 〈Ba〉ϕ). We
do not, in particular, assume that the belief modalities are either positively or
negatively introspective.

Given these assumptions, the language L is interpreted over frames contain-
ing a neighborhood function for each Ea, a deontic ideality relation for each
Oa→b, and a doxastic accessibility relation for each Ba.

Definition 3.2 Let A be a finite set of agents. A frame F is a tuple of the
following form:

F = 〈W, {fa, R
B
a , R

O
a,b}a,b∈A〉

Here W is set of possible worlds. The function fa :W → ℘℘(W ) is a neighbor-
hood function such that, for all w ∈W and X ∈ fa(w), we have w ∈ X. Both
RB

a ⊆ W 2 and RO
a,b ⊆ W 2 are serial, binary relations. A model M is a frame

F together with a valuation function V : Φ → ℘(W ).

With this in hand the truth conditions of formula of our language is defined in
the standard way. We have only defined explicitly the case for the modalities.

Definition 3.3 Let ||ϕ|| = {w : M, w |= ϕ}. Then:

• M, w |= Eaϕ⇔ ||ϕ|| ∈ fa(w)

• M, w |= Oa→bϕ⇔ ∀w′(wRO
a,bw

′ ⇒ M, w′ |= ϕ)

• M, w |= Baϕ⇔ ∀w′(wRB
a w

′ ⇒ M, w′ |= ϕ)

• M, w |= ✷ϕ⇔ ∀w′,M, w′ |= ϕ

When a formula of the form ✷ϕ is true in a model we will say that ϕ is
necessarily true, and similarly for ✷¬ϕ and ”necessarily false”. Otherwise we
will say that ϕ is contingent in a model. Validity in models, frames, and classes
thereof, are defined as usual.
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Since we do not make any specific assumptions regarding the interaction
between these modalities, the set of validities over our intended class of frames
is completely axiomatized by all propositional tautologies, the logic ET for
the agentive modality Ea, KD for Oa→b and Ba, S5 for ✷, and the standard
inclusion axioms relating the universal modality ✷ to the other operators in
the language.

4 Freedom of Thought

We are now ready to address freedom of thought. We first provide some legal
foundation for our analysis, and then move to the formalization itself.

4.1 Legal Foundations

The United Nation’s document, The Universal Declaration of Human Rights 7 ,
as its name says, declares what are the human rights. 8 Article 18 is about
freedom of thought: ”Everyone has the right to freedom of thought, conscience
and religion; this right includes freedom to change his religion or belief (...).”
Article 19 says: ”Everyone has the right to freedom of opinion (...); this right
includes freedom to hold opinions without interference (...).” 9 10 The United
Nation’s Office of the High Commissioner for Human Rights’ (OHCHR) general
Comment Nr. 22 interpreting Article 18 and 19 says: 11

The right to freedom of thought, conscience and religion (which includes
the freedom to hold beliefs) in article 18.1 is far-reaching and profound;
it encompasses freedom of thought on all matters, personal conviction and
the commitment to religion or belief (...). [Article 18] does not permit any
limitations whatsoever on the freedom of thought and conscience or on the
freedom to have or adopt a religion or belief of one’s choice. These freedoms
are protected unconditionally, as is the right of everyone to hold opinions

7 The document was proclaimed by the United Nations General Assembly in Paris on 10
December 1948 (General Assembly resolution 217 A) as a common standard of achievements
for all peoples and all nations. https://www.un.org/en/universal-declaration-human-rights/
8 We do not go into the philosophical discussion on where these rights come from (natural
law vs. legal positivism), nor on what political or legal legitimacy the UN has. We only
analyze formally what the declared human rights’ content and implications are based on
the official interpretation. The reader unwilling to accept the Declaration as a legal source
because of the legitimacy questions regarding international law can instead consider a national
constitution’s relevant article, the wording of which is very much alike the Declaration.
9 While Article 19 is about freedom of opinion and its expression, we believe that its internal
part—freedom of opinion—is to be discussed together with the internal part of freedom of
thought referring to the same thing as far as the formalization is concerned.
10The freedom of thought, conscience and religion has an internal and an external realm: the
internal concerns the beliefs without concerning their expression, while the external concerns
the manifestation of beliefs, such as religious practices—just like the separation between
freedom of opinion and its expression. We intentionally cite only the parts of the Declaration
concerning the internal realm, as our current investigation is only concerned with this.
11General Comment No. 22: The right to freedom of thought, conscience and religion
(Art. 18): . 30/07/93. CCPR/C/21/Rev.1/Add.4, General Comment No. 22. (General
Comments) https://bit.ly/37T15Uc
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without interference in article 19 (...) The Committee observes that the
freedom to ”have or to adopt” a religion or belief necessarily entails the
freedom to choose a religion or belief, including the right to replace one’s
current religion or belief with another or to adopt atheistic views, as well
as the right to retain one’s religion or belief. Article 18 bars coercion that
would impair the right to have or adopt a religion or belief, including the
use of threat of physical force or penal sanctions to compel believers or non-
believers to adhere to their religious beliefs and congregations, to recant their
religion or belief or to convert.

In the terminology of normative positions, freedom of thought, as its name
suggests, includes a freedom (or privilege), but a multital one. There is no
duty of ours toward anyone regarding our beliefs’ content. But this privilege
in itself would be a rather weak position, so freedom of thought also involves
protections, in two ways. On one hand, it means a claim-right against everyone
else not to interfere with it. What interfering with practicing a freedom of
thought would be is, of course, debatable. One might raise the question whether
it is really possible at all, for example, to force someone to believe in something.
The common reference in this regard is Orwell’s dystopia, 1984, and its thought
police and thought crime concepts. 12 Whether forcing someone to adopt or
change a belief is possible in reality is rather a question that psychology or
neuroscience could answer; we do not need to commit ourselves in this matter,
we only need to represent that it is forbidden. A freedom and a joint claim-
right against everyone else is a frequent combination: these are what are usually
called civil liberties. 13 On the other hand, the Declaration, according to its
official interpretation, is also ruling out the possibility of changing this freedom
(for example, by a country introducing penal sanctions, that is, duties to accept
some specific view). This is what Hohfeld identifies as immunity: the other
party’s inability to change our normative positions (for example, in this case,
imposing a duty as to what to believe in).

4.2 Formalization

Three components have, thus, to be analyzed: the freedom, the claim-right,
and the immunity components of freedom of thought. We look at them in
turn. Throughout we assume that the right-holder is a given agent a, and that
the right bears on a’s doxastic attitudes towards a given proposition ϕ.

12 In [Hulstijn, 2008], when combining deontic and epistemic logics, the possible need for
the—as Hulstijn refers to it—‘freedom of thought’ axiom Kiϕ → PKi is raised ”to exclude
the definition of ‘thought crimes’ in Orwell’s 1984” (the author then recants this as it would
go against the purpose of access control policies). We don’t think knowledge would be a good
description of thought, especially in the context of this freedom. We, therefore, will use a
belief operator.
13 In the reception of Hohfeld, it was raised that he missed identifying this kind of liberty
as an atomic type of right, but as is shown in [Markovich, 2020], this combination of Ho-
hfeldian notions expressing what a civil liberty is rejects these opinions: a civil liberty (that
[Bentham, 1843] calls vested liberty, while [Wright, 1963] calls simply as ‘right’), is not an
atomic, but a compositional or molecular type of right.
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4.2.1 Freedom

As observed in the previous section, freedom of thought consists partly in being,
indeed, a freedom in the Hohfeldian sense. One has no duty towards anybody
else not to believe ϕ:

∧

b∈A

¬Oa→b¬Baϕ

For readability we will use the dual Pa→b... instead of ¬Oa→b¬...:

∧

b∈A

Pa→bBaϕ (FoT-F-Baϕ)

This formulation does not rule out that a is in fact under the obligation to
believe ϕ, i.e. that she is not permitted not to believe it. This privilege is
indeed consistent with an(y) agent b having a claim-right against a that she
(a) believes ϕ. To rule that out one can instead require that a has a multital
privilege to hold any of the three possible attitudes towards ϕ: belief, disbelief,
or suspending judgment.

∧

b∈A

(Pa→bBaϕ ∧ Pa→bBa¬ϕ ∧ Pa→b(〈Ba〉ϕ ∧ 〈Ba〉¬ϕ)) (FoT-F-a-ϕ)

Semantically, this condition restricts the application of freedom of thought to
propositions that are contingent in a particular model. 14 We have indeed
assumed that the doxastic modalities Ba are normal and that beliefs are con-
sistent, i.e. they validate the D axiom. Under these assumptions about the
belief modalities, (FoT-F-a-ϕ) predicts that freedom of thought does not apply
to necessary truths or necessary falsities.

This restriction to contingent formulas is a consequence of the idealiza-
tions that we have made regarding the belief operators. The standard log-
ical models of belief assume that the logic of modalities is either KD45 or
K4.3 [Fagin et al., 2003,Stalnaker, 2006,Pacuit, 2013]. Here the modalities Ba

are weaker. Yet, they still represent the agents as consistent and logically om-
niscient. This has the direct consequence that agents do not have the freedom
to, for instance, suspend judgment about necessary truth or necessary falsities.
A number of solutions to the logical omniscience problem have been proposed
(c.f. [Hawke et al., 2019] and references therein), but introducing them here
would go beyond the scope of this paper. This is a question of the adequate
model of belief, not primarily of the logical form of freedom of thought. Even
if we were to decide to adopt a weaker doxastic logic, this would arguably not
affect the logical form of (FoT-F-a-ϕ). What this would change is its logical
behavior.

14 It furthermore imposes a richness condition on the set of states that are normatively ideal
from the perspective of a towards b. This richness assumption appears less controversial than
the restriction to the contingent formula that we discuss this the main text.



331

4.2.2 Claim-right

Freedom of thought also consists of a multital claim-right to refrain from in-
terfering with us practicing our freedom, that is, forcing us to not hold certain
beliefs. As with freedom, we will first consider this claim-right as bearing
on simply believing ϕ, and consider later on the consequences of extending it
simultaneously to disbelief and suspending judgment.

A first attempt at capturing this claim-right is in terms of the others’ cor-
related duty to refrain:

∧

b∈A

Ob→a¬Eb¬Baϕ (FoT-C1)

This first attempt is, perhaps, overly strong. It rules out any attempt to
convince someone, or simply teaching or instructing. This is not what freedom
of thought forbids. It is rather the forceful intervention into someone’s beliefs.
The idea that someone is forced or prevented, against her will, to hold or form
certain beliefs is beyond the scope of the language and the models that we are
working with. Something which is, however, within the expressive power of our
language is the idea that interventions which not only result in a not believing
something, but rather make this impossible, are forbidden.

∧

b∈A

Ob→a¬Eb¬✸Baϕ (FoT-C-a-✸)

The logical behavior of this formalization of the claim-right turns out to be not
completely satisfactory, and it depends heavily on the assumptions that one
makes regarding the logic of Ea. Recall that the T axiom for Ea rules out that
a does the impossible. On the other hand, since ✷ is the universal modality,
we get M, w |= ✸Baϕ implies M, v |= ✸Baϕ for any v in W . In other words,
M, w |= ✸Baϕ implies that ¬✸Baϕ is true nowhere in M. But then it is also
impossible for b to actively rule out that possibility, which in turn entails that
a has a (trivial) claim-right against b regarding a’s belief in ϕ.

Observation 1 For any model M and state w, if M, w |= ✸Baϕ, then for all
v we have M, v |=

∧

b∈A

Ob→a¬Eb¬✸Baϕ.

Perhaps surprisingly, the other direction of the implication is also valid, pro-
vided that one makes the additional assumption that in any state there is at
least something trivial that a does. Recall that this additional assumption
translates syntactically to ✷ϕ → Eaϕ, which semantically corresponds to the
fact that W is an element of fa(w) for any a and w. 15 This is a property
that some agency operators satisfy, notably any normal ones like the ”Chel-
las stit” [Belnap et al., 2001]. We do not need full normality, though. It is
sufficient that fa ”contains the unit” [Pacuit, 2017].

15 In standard neighborhood semantics without the universal modality the syntactic corre-
spondent of this condition is Ea⊤.
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Observation 2 For any model M where all fa contain the unit, and state w,
if M, w |=

∧

b∈A

Ob→a¬Eb¬✸Baϕ then M, w |= ✸Baϕ .

FoT-C-a-✸ and ✸Baϕ thus become equivalent when we assume that agents can
always see to it that necessary truths hold. This is a form of deontic collapse:
the claim-right component of freedom of thought, an ”ought”, collapses to a
modal fact about a’s belief, an ”is”. To the extent that one sees this as an un-
desirable consequence of this particular model, this can be used as yet another
argument against assuming that ✷ϕ → Eaϕ. Classical agency operators, e.g.
in [Kanger and Kanger, 1966] or the dstit and the astit [Belnap et al., 2001]
also invalidate this principle. On the other hand, the culprit is not only the
assumption that necessary truths are always (trivially) seen to it that. For
one thing the direction from Baϕ to FoT-C-a-✸ follows just from assuming
that agents are not doing impossible things, which is a plausible and in any
case much more common assumption. Furthermore, the full equivalence follows
rather from the combination of assuming ✷ϕ→ Eaϕ and the fact that ✸Baϕ,
given a model, is never contingent. This suggests that FoT-C-a-✸ might not
be quite the right analysis of this claim-right.

As an alternative to (FoT-C-a-✸) we could instead express the claim-right
not as bearing on the sheer possibility of holding a particular belief, but instead
on being forced to adopt a particular belief, here viewed as something that the
agent actively does. 16 This would give the following:

∧

b∈A

Ob→a¬Eb¬EaBaϕ (FoT-C-a-E)

FoT-C-a-E is logically independent both from FoT-C1 and FoT-C-a-✸. It fur-
thermore avoids the ought-is collapse that we observed for the latter. As before,
however, we gain some logical interactions between these different formaliza-
tions of the claim-right by assuming ✷ϕ → Eaϕ. Indeed, with that additional
assumption FoT-C-a-E implies FoT-C-a-✸:

Observation 3 For any model M where all fa contain the unit, and state w,
if M, w |=

∧

b∈A

Ob→a¬Eb¬EaBaϕ then M, w |=
∧

b∈A

Ob→a¬Eb¬✸Baϕ .

The converse direction still fails, however, even when all fa contains the unit.
So even in this case FoT-C-a-E avoids the ought-is collapse.

As we did for the privilege to believe, the claim-right component of freedom
of thought can of course be expanded to the three possible attitudes that an

16Using an action operator in front of the belief operator to refer to some kind of agency
regarding one’s own belief, on the one hand, accords well with the phrasing of the OHCHR
comment on the Declaration talking about to have or adopt a belief; and, on the other hand,
has its epistemological foundations in the view of doxastic voluntarism [Chignell, 2018].
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agent can hold with respect to a particular formula ϕ.

∧

b∈A

Ob→a(¬Eb¬EaBaϕ ∧ ¬Eb¬EaBa¬ϕ ∧ ¬Eb¬Ea(〈Ba〉ϕ ∧ 〈Ba〉¬ϕ))

(FoT-C-a-ϕ)
As before, this expansion also restricts the claim-right to consistent formulas,
even without the assumption that agents always see to it that necessary propo-
sitions hold. Indeed, if ϕ is necessary in a particular model then the second
and the third conjuncts become false because ¬ϕ becomes necessarily false. If
ϕ is instead necessarily false, then it is the first and the third conjuncts that
become false.

Another notable fact regarding FoT-C-a-ϕ, is that this formula is consistent
even in the case that a and b are the same agent. So imposing the claim-right
in that case boils down to saying that everyone has a duty towards herself not
to force herself to hold a particular belief regarding ϕ. From the legal point
of view, this is rather questionable. This conclusion follows from the fact that
we do not make any assumptions regarding the iteration of agency operators,
so it could of course be avoided by, for instance, assuming that refraining from
refraining, i.e. ¬Ea¬Ea..., is equivalent to doing Ea...—c.f. again the discussion
in [Belnap et al., 2001]. On the other hand, this conclusion could be avoided
without entering this substantial debate about doing and refraining, by simply
restricting the multitality to all agents b 6= a.

4.2.3 Immunity

The last component of freedom of thought is the immunity it involves. As we
observed above, freedom of thought is viewed as inalienable and indispensable.
No legal statement nor legislative act could take that freedom away. Any act
entailing the negation of freedom of thought would turn out to be an invalid law.
In other words, such action is not possible, which translates into an Hohfeldian
immunity.

∧

b∈A

¬✸(Eb(¬(FoT-F-a-ϕ)) ∨ Eb(¬(FoT-C-a-ϕ))) (FoT-I-a-ϕ)

Unlike our first formulation of the freedom and the claim-right constituents of
freedom of thought, (FoT-I-a-ϕ) implicitly covers the three possible attitudes
that a can take towards ϕ (believing, disbelieving, and suspending judgment).

This formulation of immunity behaves differently from its freedom and
claim-right components when it comes to ϕ being necessarily true or necessar-
ily false. Recall that if ϕ is necessarily true or necessarily false in a particular
model then both the freedom and the claim-right become necessarily false. This
is not the case for (FoT-I-a-ϕ). This formula is satisfiable even when ϕ is not
contingent. If, however, we assume ✷ϕ → Eaϕ, then, as before, (FoT-I-a-ϕ)
becomes always false when ϕ is not contingent.

There is one important aspect which is not covered, however,
by (FoT-I-a-ϕ), namely that this immunity might apply recursively, so to speak,
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to limit everyone’s powers to change that very immunity. One could indeed in-
terpret the wide-ranging character of freedom of thought in that sense, i.e.
that it also protects itself. 17 The expressive power of our language is too weak
to capture such cases of self-reference, so we limit ourselves to some general
observations.

The self-referential character of this immunity could be captured by more
expressive languages containing fixed-points operators, for instance the modal
mu-calculus [Pratt, 1981,Kozen, 1983]. This language extends basic modal
ones like ours with the smallest and largest fixpoint operators µ and ν, as
well as propositional variables, here simply x. One can use these additional
resources to capture the self-reference in the immunity as follows:

µx.
∧

b∈A

¬✸(Eb¬(FoT-F-a-ϕ) ∨ Eb¬(FoT-C-a-ϕ) ∨ Eb¬x)

This formula should be interpreted as saying that it is impossible for any agent b
to either negate the freedom, the claim-right, or this very immunity, expressed
by the variable x, here bound by the operator µ. The scope of this opera-
tor indicates what the variable x implicitly refers to. So once unpacked, this
self-reference through x contains another self-reference, which needs to be un-
packed, and so on, creating an ascending hierarchy of higher-order immunities
regarding lower-order ones.

Without going into the details of this potential fixed-point extension of our
language, we can already observe that the variable x is in the scope of an
even number of negations, which means that the formula itself semantically
corresponds to a monotone operator, which in turns guarantees the existence
of smallest and largest fixpoints. So this formulation would be recursive, but
not viciously circular.

4.2.4 Logical properties of freedom of thought

We are now in position to put together the three components of freedom of
thought, and highlight some of their logical properties. First, to recast, our
proposal for the formalization of a’s freedom of thought regarding proposition
ϕ is the following.

(FoT-F-a-ϕ) ∧ (FoT-C-a-ϕ) ∧ (FoT-I-a-ϕ) (FoT-a-ϕ)

17While we intentionally refrained from becoming involved in the natural law–positive law
debate, here we need to mention that considering the UN Declaration’s article to be self-
referential might greatly depend on what philosophical assumptions one has: according to
a natural law approach, the whole Declaration can be considered as merely descriptive; it
might be said, therefore, that the impossibility of changing or taking away freedom of thought
doesn’t come from this very article, it comes because of people’s inability to intervene with
what is there by nature (which is often referred to as the inalienability of human rights).
This way, the point of regarding the immunity not to be self-referential is that whatever is
written in the Declaration does not change people’s immunity concerning any change in their
human rights, with their freedom of thought among them. We leave the discussion of this
approach and its logical consequences, though, to future work.
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That is, we analyze freedom of thought as a conjunction of three different
multital, complex normative positions. These constituting normative positions
are themselves complex because they cover all three possible doxastic attitudes
that a can hold towards ϕ.

This complex right can be reformulated as a conjunction of three corre-
sponding statements of freedom of thought regarding believing ϕ, disbelieving
ϕ, and suspending judgment. In other words, (FoT-a-ϕ) is equivalent to the
conjunction of a freedom, a claim-right and an immunity regarding a believing
ϕ, a freedom, a claim-right and an immunity regarding disbelieving ϕ, and
similarly for suspending judgment. Indeed, the freedom part of this right is
simply a conjunction of three freedoms, one for each doxastic attitude. One
obtains a similar conjunction for the second part, the claim-right, by observ-
ing that these are conjunctions of normal obligation operators, which of course
distribute over conjunctions. Finally, the immunity can be rewritten with a
✷ operator scoping over a conjunction of negated agency statements, and this
✷ is also a normal modality. This observation is important to the extent that
some of the atypical logical behavior that we have observed in the previous
sections, for instance regarding necessary truths or falsities, can be avoided, if
one wishes, by formulating restricted versions of freedom of thought, applicable
for instance only to one of the three possible doxastic attitudes.

The logical behavior of (FoT-a-ϕ) is otherwise very limited. Necessary
truth can be substituted in its scope, but otherwise all three properties that
constitute normal modalities fail for this formula.

Observation 4

(i) Substitution under logical equivalence holds: ✷(ϕ ↔ ψ) and (FoT-a-ϕ)
together imply (FoT-a-ψ).

(ii) Closure under Conjunction fails: (FoT-a-ϕ) and (FoT-a-ψ) together do
not imply (FoT-a-ϕ ∧ ψ).

(iii) Regularity fails: ✷(ϕ→ ψ) and (FoT-a-ϕ) together do not imply (FoT-a-
ψ)

(iv) Necessitation fails: ϕ being valid in our class of models does not entail
(FoT-a-ϕ).

5 Conclusion

We analyzed the logical structure and properties of freedom of thought. We
argued, contra [Wenar, 2015], that there is a theoretical basis for viewing this
right as a particular case of Hohfeldian positions, i.e. a combination of freedom,
claim-right and immunity, and that these can be analyzed using a combination
of deontic logic, doxastic logic, and logic of agency. We then proceeded to study
the logical behavior of these rights, and showed how this behavior depends on
making particular assumptions on its constitutive belief, obligation, and agency
operators. This logical analysis has also allowed to show an ought-is collapse for
one formalization of the claim-right, and highlighted the potential recursivity
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of so-called inalienable immunities. This last point constitutes a natural next
step to extend our analysis, both from a legal and a logical point of view.

One important modeling choice that should be revisited in future work
is to capture the agency operator in a “static” way, following the tradition
in the theory of normative positions [Kanger, 1971,Sergot, 2001] or in stit the-
ory [Belnap et al., 2001], for instance. This choice turns out to be crucial in ex-
plaining the ought-is collapse for (FoT-C-a-✸). We conjecture that this collapse
would have not occurred had we used dynamic modalities in the style of Dy-
namic Epistemic Logic [Pacuit, 2013], as we do in [Markovich and Roy, 2021]
for the right to know, or update semantics [Klein and Marra, 2020], to study
the effect of the agents’ actions.

Another important point that we have not touched on is the relation be-
tween freedom of thought and so-called conscientious objections. The OHCHR
comment writes:

The Covenant does not explicitly refer to a right to conscientious objection,
but the Committee believes that such a right can be derived from article 18,
inasmuch as the obligation to use lethal force may seriously conflict with the
freedom of conscience and the right to manifest one’s religion or belief.

The possibility to decline an otherwise existing duty is a power in Hohfeldian
terms. We already showed that a (multital) claim-right, a (multital) freedom
and a (multital) immunity are all part of the freedom of thought, so having
this power would mean that all the four atomic right positions are incorporated
in this one human right. Aiming at the formal representation of this power’s
derivability from the freedom brings up some considerations that we haven’t
made, though. On the one hand, the OHCHR interpretation talks about a very
special duty that can be refused: using lethal force, but there are other cases
in the legal literature where the notion of conscientious objection comes up, for
instance medical practitioners not providing certain treatments to their patients
[Shanawani, 2016], so the crucial point in formalization should be the reason
of a “serious conflict” with beliefs, which refers to a supposed possibility of
incompatibility between given beliefs and given actions. This brings us—as the
comment also refers to it—to the external realm of the freedom of thought that
we have intentionally omitted from our investigation so far: the manifestation,
the freedom of choosing one’s actions accordingly. There the immunity, for
instance, is not absolute: duties can be imposed regarding our actions even
if these have something to do with the (otherwise) free manifestation of our
beliefs. Also the power we discuss here is not absolute: while one could make
up a religion declaring paying taxes incompatible with one’s innermost beliefs,
courts would hardly accept rejection of paying taxes counting as a conscientious
objection. This, of course, can be interpreted also not as defeasibility of the
power to reject actions being in serious conflict with our conscience, but a need
to define the notions of conscience and serious conflict more precisely. We leave
this investigation to later papers.
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Abstract

This paper introduces deontic logic based on inquisitive semantics. A semantics

for action formulas is introduced where each action formula is associated with a

set of alternatives. Deontic operators are then interpreted as quantifying over all

alternatives associated with the action formulas within their scope. It is shown how

this construction provides solutions to problems related to free choice permissions

and obligations, including issues concerning Hurford disjunctions. The main technical

result is a complete axiomatization of the logic.

Keywords: Alternatives, free choice, inquisitive semantics, permission.

1 Introduction

The aim of this paper is to introduce deontic logic based on inquisitive seman-
tics. I define deontic operators that take actions, rather than propositions, as
arguments; actions are then given an interpretation based on inquisitive seman-
tics. I will show that this provides solutions to various problems concerning
free choice inferences, including problems related to Hurford disjunctions.

Inquisitive semantics originated as a framework aiming to provide a uniform
account of both statements and questions. In recent years, the framework
of inquisitive semantics has evolved into a full-fledged theory with associated
logic; for an overview, see [10] and [12]. Inquisitive semantics has been applied
in several different areas moving beyond the original motivation, e.g. epistemic
logic [14], dependency [9], and semantics for imperatives [2,11]. Inquisitive
semantics moves beyond standard truth-conditional semantics by interpreting
sentences as sets of sets of information states, where an information state is
modeled as a set of possible worlds. The idea is that the meaning of a question
can be given in terms of the information needed to resolve the question, whereas
the meaning of a statement is given in terms of the information needed to
establish the statement.

The main source of inspiration for this paper is the semantics of imperatives
presented by Ciardelli and Aloni [11] (an earlier account is presented in [2]).
They provide an action-theoretic interpretation of inquisitive semantics, and

1 karl.nygren@philosophy.su.se
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show how it can be used to give a semantics for imperatives. The logic intro-
duced in this paper is naturally seen as the deontic counterpart of Ciardelli and
Aloni’s account of imperatives [11], as their notion of imperative entailment can
be simulated in it.

The paper is structured as follows. Section 2 introduces the problems of free
choice inferences, discuss solutions suggested in the literature, and discuss the
role of Hurford disjunctions. In Section 3 I introduce the logic IDL, discuss how
it handles free choice problems, and show that Ciardelli and Aloni’s [11] notion
of imperative entailment can be simulated in IDL. A complete axiomatization
of IDL is introduced in Section 4. Section 5 concludes the paper.

2 Free choice inferences

Free choice inferences are inferences involving choice-offering permissions and
obligations, i.e. permissions and obligations that offer a choice between two
or more possible options. Typically, free choice is introduced by the use of
disjunction in the scope of deontic operators. Consider the following sentences:

(i) Jane may buy the green car or the blue car.

(ii) Jane may buy the green car and Jane may buy the blue car.

Arguably, the most natural interpretation of sentence (i) is that it conveys
an offer to choose between two individually permitted options: Jane is both
permitted to buy the green car, and permitted to buy the blue car. Hence,
one expects sentence (ii) to be entailed by (i). In general, one expects the
following Free Choice Principle (FCP) to be valid, where P is a modal operator
expressing permission:

P (ϕ ∨ ψ) |= Pϕ ∧ Pψ

The standard account of deontic modalities interprets sentences like the ones
above in a modal framework consisting of a set of possible worlds together
with a relation associating each world w with those worlds that are considered
ideal from the point of view of w (the ‘ideal-at-w’ worlds). In this framework,
permission has the following truth conditions: Pϕ is true in w if and only if ϕ
is true in some ideal-at-w world. The standard account fails to validate FCP,
since P (ϕ∨ψ) simply says that there is some ideal world where ϕ or ψ is true;
not that there is an ideal world where ϕ is true and an ideal world where ψ is
true.

Even more problematic is the fact that adding FCP as an axiom to an
otherwise normal modal logic with permission analyzed as a diamond modality
trivializes permission in the sense that any permission is equivalent to any
other permission [23]. If one assumes that P is upwards monotonic (i.e. ϕ |= ψ
implies Pϕ |= Pψ) and that disjunction introduction holds (i.e. ϕ |= ϕ ∨ ψ),
then FCP together with the transitivity of entailment implies that Pϕ |= Pψ.

Problems with free choice inferences also arise in the analysis of obligation.
On the standard account, obligation is analyzed as a normal box operator O
with the following truth conditions: Oϕ is true in w if and only if ϕ is true
in all ideal-at-w worlds. This makes the O operator upwards monotonic. This
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property, together with disjunction introduction, allows for the inference of an
obligation over a disjunction from the obligation of one of the disjuncts, an
inference known as Ross’ paradox [26]:

Oϕ |= O(ϕ ∨ ψ).

This property allows for several problematic instances, for example the infer-
ence of (iv) from (iii):

(iii) Jane is obliged to post the letter.

(iv) Jane is obliged to post the letter or burn it.

The problem here is that sentence (iv) seems to offer more choice than (iii).
If Jane is obliged to post the letter or burn it, it clearly seems that she can
fulfil her obligation by burning the letter; an option which is not offered to her
in (iii). The standard approach to obligation fails to account for the choice-
offering aspect of certain obligations. In particular, an obligation applied to a
disjunction seem to imply that each disjunct is permitted:

O(ϕ ∨ ψ) |= Pϕ ∧ Pψ.

2.1 Proposed solutions

There are many proposed solutions to the problems of free choice inferences in
the literature; here, I review some of them.

Several approaches adopt variants of the ‘open reading’ of permission,
where an action is permitted if every way of performing it is normatively
okay [5,6,25,27,30,31]. FCP comes out as valid under this interpretation of
permission if disjunctive actions are interpreted as the sum of the ways to per-
form each disjunct. However, this approach is problematic as an explication of
free choice permission. For one thing, it is very strong to require that every
way of performing an action is normatively okay for it to be permitted. As
Giordani and Canavotto point out: “ordinary choices can be risky: we are or-
dinarily allowed to choose between alternative actions even if there are ways of
performing such actions that lead to a violation of the law.” [18, p. 89]. In addi-
tion, given a classical underlying logic, the approach suffers from what is known
as the ‘vegetarian free lunch problem’ [21]. When the underlying propositional
logic is classical and the permission operator allows for substitution of classical
logical equivalents within its scope, FCP makes the following a theorem:

Pϕ |= P (ϕ ∧ ψ) ∧ P (ϕ ∧ ¬ψ).

To see why this is problematic, consider the following example [21, p. 208]: ‘If
you may order a vegetarian meal, then you may order a vegetarian meal and
pay for it, and you may order a vegetarian meal and not pay for it’. Hansson
takes the free lunch problem, together with other problems that crop up when
FCP is combined with substitution of classical equivalents within the scope of
deontic operators (see [21, pp. 214–217]), to indicate that the single sentence
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assumption is incorrect. According to the single sentence assumption, “[f]free
choice between a and b can be represented as a property of a single sentence,
namely a ∨ b.” [21, p. 218]. Instead, Hansson suggests,

... (free choice) permission to perform either a or b is not a function of a single
sentence a∨ b but a function of the two sentences a and b. It is a function of
two variables, not one. Similarly, (free choice) permission to perform either
a, b, or c is a function of three variables, etc. [21, p. 218].

Another way to react to free lunch problems is to give up substitution of
classical logical equivalents in the scope of deontic operators. In the formal
semantics literature, alternative semantics has been put to use in the analy-
sis of deontic modalities and imperatives [1,2,3,29]. In alternative semantics,
disjunctions are interpreted as sets containing the alternatives of the disjunc-
tion. Different versions of alternative semantics differ in how they construe
alternatives, but the standard approach is to use an exact semantics, where
alternatives of a disjunction are identified with the classical propositions ex-
pressed by each disjunct. Thus, a sentence such as p ∨ q is interpreted as the
set {|p|, |q|}, where |p| is the classical proposition expressed by p and |q| is
the classical proposition expressed by q. Deontic operators are then taken to
quantify over all alternatives associated with their arguments: P (p∨ q) is true
in a world w if some ideal-at-w world is contained in |p|, and some ideal-at-w
world is contained in |q|; O(p∨ q) is true in a world w if every ideal-at-w world
is contained in either |p| or |q|, and there are ideal-at-w worlds in both |p| and
|q|.

Other approaches in the same style as the alternative semantics ones are
based on truthmaker semantics [4,16,17]. In exact truthmaker semantics, the
exact truthmakers of a sentence are sensitive to the syntactic structure of the
sentence. The interpretation of a disjunctive sentence p ∨ q is the sum of the
exact truthmakers of p and the exact truthmakers of q, and the interpretation of
a conjunctive sentence p ∧ q generally has a different set of exact truthmakers
than those associated with p and q. As shown by Anglberger, Faroldi and
Korbmacher [4], giving truth conditions to permissions and obligations in terms
of properties of exact truthmakers makes it possible to validate FCP while
avoiding free lunch problems.

The approach considered in this paper is similar to the alternative semantics
approach and the truthmaker approach. An important difference, however, is
that the inquisitive semantics used in this paper is not exact in the above
sense. In inquisitive semantics, there is not in general a one-to-one connection
between the disjuncts and the alternatives of a disjunctive sentence. As I will
argue in the next section, exact approaches to alternative semantics fail to give
a satisfactory account of certain types of disjunctions where one disjunct entails
another.

2.2 Hurford’s constraint

Hurford disjunctions are disjunctive sentences where one of the disjuncts entails
the other, either logically or locally in relation to a context. Consider the
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following sentences [22, p. 410]:

(v) John is an American or a Californian.

(vi) The painting is of a man or a bachelor.

(vii) The value of x is different from 6 or greater than 6.

Hurford’s constraint is the following principle, stating that sentences such as
the ones above are always infelicitous:

The joining of two sentences by or is unacceptable if one sentence entails the
other; otherwise the use of or is acceptable. [22, p. 410]

Hurford style disjunctions have also been observed to be present in interrogative
contexts [15], as well as in deontic and imperative contexts [11,15,29]. Simons
notes the infelicity of the following sentence [29, p. 303]:

(viii) Jane may/must wear a dress or a red dress.

In the context of imperatives, Ciardelli and Aloni [11] argue that the following
sentence is infelicitous:

(ix) Get an American or a Californian to do this job!

A corresponding equally infelicitous obligation sentence can be formed:

(x) Jane is obliged to hire an American or a Californian.

A standard explanation of the infelicity of Hurford disjunctions is that they
involve redundancy in the sense that the whole disjunction is equivalent to
one of the disjuncts [15,24,28]. A speaker uttering a Hurford disjunction could
have conveyed the same information by simply using the weaker disjunct. The
general idea behind the redundancy explanation is to derive Hurford’s con-
straint from a more general ban on redundant operations. For example, Katzir
and Singh [24, p. 210] propose a local redundancy principle, here quoted from
Ciardelli, Groenendijk and Roelofsen [12, p. 171]:

Local redundancy: A sentence is deviant if its logical form contains a
binary operator ◦ applying to two arguments A and B, and the outcome
A ◦B is semantically equivalent to one of the arguments.

It has been pointed out that there are several apparent counterexamples to
Hurford’s constraint [15]. Consider for example the following sentences, which
do not appear infelicitous:

(xi) Jane is having dinner with John, with James, or with both.

(xii) Jane is obliged to have dinner with John, with James, or with both.

The redundancy based explanation is therefore extended with the notion of
exhaustive strengthening [7,8,15]. The idea is that the weaker disjuncts in (xi)
and (xii) receive an exhaustive interpretation. Thus, ‘Jane is having dinner
with John’ and ‘Jane is having dinner with James’ are interpreted, in the
relevant context, as ‘Jane is having dinner with John, and not with James’
respectively ‘Jane is having dinner with James, and not with John’. Under
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this interpretation, neither disjunct entails the other. This kind of exhaustive
interpretation is not available for the weaker disjuncts in e.g. (v) and (x):
‘American’ cannot be strengthened to ‘American and not Californian’.

Ciardelli and Roelofsen [15] argue that in approaches to alternative se-
mantics where the alternatives of a disjunction are the classical propositions
expressed by each disjunct, the explanation of Hurford disjunctions using a
general ban on redundancy fails. The reason for this is that alternative se-
mantics construes the meaning of a disjunction as the set containing exactly
the propositions corresponding to each disjunct. Thus, the meaning of p ∨ q
is construed as the set {|p|, |q|}, which is distinct from the meaning of each of
the two disjuncts. Hence, even when one of p or q entails the other, the logical
form of (p∨q) does not exhibit any redundancy in the relevant sense. This fail-
ure of the redundancy explanation carries over to deontic Hurford disjunctions.
Under the alternative semantics analysis of deontic modalities, the meaning of
D(p∨q), where D is a deontic operator, crucially depends on properties of both
|p| and |q|, even when |p| ⊂ |q|, i.e. p strictly entails q. Hence, no redundancy
is involved in the derivation of the meaning of D(p ∨ q). Without any further
stipulations, the redundancy explanation of deontic Hurford disjunctions does
not work for the standard alternative semantics analysis. A similar argument
can be made against the exact truthmaker approach as well. In the approach of
Anglberger, Faroldi and Korbmacher [4] or Fine [16,17], the truth conditions of
D(p∨q) depend on the exact truthmakers of p∨q, which equals the sum of the
exact truthmakers of p and the exact truthmakers of q. Even if one of p and q
entails the other, the truth of D(p∨ q) depends on both the exact truthmakers
of p and the exact truthmakers of q. Hence, no redundancy is involved when
the meaning of D(p ∨ q) is derived.

Thus, while the exact alternative semantics approach solves the problems
with free choice permissions, it does not provide a satisfactory account of de-
ontic Hurford disjunctions.

3 The deontic logic IDL

In this section, I will define the logic IDL, show how it provides solutions to the
problems of free choice inferences, and argue that it provides a better account
of deontic Hurford disjunctions than the approaches based on exact alternative
semantics or truthmaker semantics. I will also show that imperative entailment
of [11] can be simulated in IDL.

3.1 Inquisitive semantics for action formulas

In this section, I will introduce inquisitive semantics for a language of action
expressions. This action language is in fact a fragment of the language of
basic inquisitive logic InqB [10], and the semantics I will use is derived from
the semantics of InqB. For a review of InqB, see Chapters 2 and 3 of [10].
The action-theoretic interpretation of the semantics is largely based on the
interpretation of [11] (see also [2]).

Let Π be a set of atomic action formulas. The set of action formulas LA is
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defined by the following grammar, where a ranges over Π:

α ::= a | ¬α | α ∧ α | α ∨∨ α.

I use α, β, δ as symbols ranging over action formulas. The intended reading
of action formulas are as follows: ¬α denotes the action of not doing α, α ∧ β
denotes the action of doing both α and β, and α∨∨β denotes the action of doing
either α or β. 2 An action formula without any occurrences of ∨∨ is called a
classical action formula. The set of classical action formulas is denoted Lcl

A and
I use γ, τ as symbols ranging over elements of Lcl

A. Note that L
cl
A ⊂ LA.

The semantics of action formulas is given in terms of action models of the
formM = (W,V ), whereW is taken to be a set of conducts, and V : Π→ P(W )
is a valuation function. Intuitively, a conduct represents the actions performed
by an implicit agent over some relevant stretch of time. The valuation function
V assigns sets of conducts to atomic action formulas, so that if a conduct w is in
V (p), it means that the conduct w encodes the performance of a p-action, and
if w is not in V (p), then the conduct w encodes that no p-action is performed.
On this picture, a model (W,V ) can be seen as a decision situation for the
implicit agent. Following Aloni and Ciardelli [2], a conduct w is said to execute
a basic action formula a if w ∈ V (a). Execution conditions for general action
formulas are recursively defined as follows, where M is an action model:

|a|M = V (a)

|¬α|M =W \ |α|M
|α ∧ β|M = |α|M ∩ |β|M
|α ∨∨ β|M = |α|M ∪ |β|M.

Note that |α| is the equivalent of the standard truth set of propositional logic.
A key observation is that some action formulas can be executed in different

ways. Typically, an action formula of the form a ∨∨ b can be executed either
by executing a or by executing b. Now, to arrive at a semantics for action
formulas that allows distinguishing different ways to execute them, I will use
the notion of alternatives as defined in inquisitive semantics. Say that a set
X ⊆ W of conducts is an option. As a first step, action formulas are given
an interpretation in terms of choice sets, which are collections of options. For
each action formula α, its associated choice set in a model M, denoted [[α]]M,
is recursively defined by the following clauses (cf. [2]):

[[a]]M = {V (a)}

[[¬α]]M = {W \
⋃

[[α]]M}

[[α ∧ β]]M = {X ∩ Y | X ∈ [[α]]M, Y ∈ [[β]]M}

[[α ∨∨ β]]M = [[α]]M ∪ [[β]]M.

2 I use the symbol ∨∨ to denote disjunction, since it will be given an interpretation that
differs from the interpretation of classical disjunction ∨.
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The alternatives of a choice set are the maximal options included in it. For-
mally, the alternative closure of a choice set A, denoted alt(A), is defined
by

alt(A) = {X ∈ A | for all Y ∈ A, if X ⊆ Y then X = Y }.

Given an action formula α, its alternative set relative to a model M is denoted
altM(α), and defined by alt([[α]]M). 3 Intuitively, one may understand X ∈
altM(α) as saying that α is executed in a uniform way across the conducts in
X. I will refer to the options in altM(α) as the alternatives for α in M.

The execution conditions of an action formula α can be recovered from the
set of alternatives for α in the sense that a conduct w executes α if and only
if w is included in one of the ways of executing α. For any model M and any
action formula α,

w ∈ |α|M if and only if w ∈ X for some X ∈ altM(α).

In other words, |α|M =
⋃

altM(α) for all models M and action formulas α.
Two action formulas α and β are said to be equivalent if for all models M,

altM(α) = altM(β).
Say that an action formula α is basic if altM(α) is a singleton for any M.

If α is not basic, it is said to be choice-offering. If α is a basic action formula,
then the only alternative for α is |α|M: that is, altM(α) = {|α|M}. It is
easily verified that all classical action formulas are basic. On the other hand,
not all basic action formulas are classical; for example, every negated action
formula is basic, but not necessarily classical. However, every basic formula
is equivalent to a classical one [10, p. 54]. Hence, basic action formulas in LA

can be characterized as precisely those action formulas that are equivalent to
a classical action formula.

An important feature of the inquisitive semantics for action formulas is that
for any action formula α, one can recursively compute a set of formulas called
the resolutions of α, which can roughly be taken to denote the alternatives for
α. Formally, the set of resolutions of α, denoted R(α), is defined as follows
(cf. [10]):

• R(α) = {α}, if α is an atomic action formula or a negated action formula;

• R(α ∧ β) = {α′ ∧ β′ | α′ ∈ R(α), β′ ∈ R(β)};

• R(α ∨∨ β) = R(α) ∪R(β).

By definition, each resolution in R(α) is a basic action formula, although not
necessarily classical. As already noted, every basic action formula is equivalent
to a classical formula, and there is a translation cl from LA to Lcl

A such that if α
is a basic action formula, then α is equivalent to cl(α). 4 Since every resolution

3 By Proposition 2.2.7. in [10, p. 52], every action expression has a non-empty set of alter-
natives. This property does not hold in first-order inquisitive semantics.
4 cl commutes with ∧, and ¬, and replaces ∨∨ with the classical disjunction ∨, which can be
defined in terms of ¬ and ∧.
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is a basic formula, it is natural to define the set of classical resolutions of a
formula ϕ as

Rcl(α) = {cl(α′) | α′ ∈ R(α)}.

Classical resolutions provide a normal form for action formulas [10, p. 54]:

Proposition 3.1 (Normal form) For any action formula α of LA, α is
equivalent ot

∨∨

Rcl(α).

In other words, any action formula α is equivalent to a disjunction of clas-
sical action formulas. In particular, this observation provides a handle on the
alternatives for action formulas, in the sense that any alternative for an action
formula α equals the set |γ| for some γ ∈ Rcl(α). For any model M and any
action formula α, assuming Rcl(α) = {γ1, . . . , γk},

altM(α) = altM(γ1 ∨∨ · · · ∨∨ γk) = alt({|γ1|M, . . . , |γk|M}).

3.2 Language and semantics of IDL

The language LIDL of IDL is defined by the following grammar, where a ranges
over Π and α ranges over LA:

ϕ ::= a | Pα | ¬ϕ | ϕ ∧ ϕ | ✷ϕ.

Formulas of the form Pα are used to express that α is permitted. ✷ expresses
‘it is settled that...’ and is included in order to talk about properties that hold
regardless of what conduct is executed. The propositional connectives ∨, →
and ↔ are defined in the usual way, as is the dual ✸ of ✷. Note that iteration
of deontic operators is not allowed: for example, formulas of the form PPα are
not well-formed. This is motivated by the idea that deontic operators attach
to action formulas to form deontic sentences, which express true or false facts
about the normative status of actions. Note also that Lcl

A ⊂ LIDL, whereas ∨∨
is only allowed within the scope of P .

Formulas are interpreted on deontic action models M = (W,D, V ), where
(W,V ) is an action model, and D ⊆ W ×W is a binary relation over W . By
D(w) I mean the set of all conducts v such that (w, v) ∈ D Intuitively, D
associates each conduct w with the set D(w) of conducts that are legal given
that w is performed. 5 Formulas are evaluated at pairs consisting of a deontic
action model and a conduct in that model:

M, w |= a iff w ∈ V (a);
M, w |= Pα iff for all X ∈ altM(α), X ∩D(w) 6= ∅;
M, w |= ¬ϕ iff not M, w |= ϕ;
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ;
M, w |= ✷ϕ iff for all v ∈W , M, v |= ϕ.

5 It is natural to assume that the set of legal conducts is constant in the model: for all
w, v ∈ W , D(w) = D(v). Say that models satisfying this property are uniform. In uniform
models, what is legal to do for the agent does not depend on what the agent actually does.
While uniformity is a natural property in the present context, one might still argue that some
decision situations are non-uniform. For example, Anglberger, Gratzl and Roy mention cases
of moral hazards or state-act-dependence [5].



348 Deontic Logic Based on Inquisitive Semantics

Validity in a model (notation M |=IDL ϕ) is defined as truth at all conducts
in the model. Validity (notation |=IDL ϕ) and semantic consequence (notation
Φ |=IDL ϕ) are defined as truth respectively preservation of truth at all conducts
in all models. I will drop the subscript IDL whenever there is no risk for
confusion.

The most interesting semantic clause is of course the clause for formulas
of the form Pα, which states that all alternatives for α, i.e. every possible
way to execute α, contains some legal conduct. This operator is essentially the
same as the one suggested by Ciardelli [10, pp. 247–249] in the context of modal
inquisitive logic. The clause for ✷ makes it a universal modality [19]. Note that
for any classical action formula γ, the set {w ∈W | M, w |= γ} coincides with
the execution conditions |γ|M. Intuitively, if γ is a classical action formula,
then M, w |= γ means that α is executed at w.

An operator for expressing obligation is defined from the permission oper-
ator as follows:

Oα
def
= ¬P¬α ∧ Pα.

Definitions of obligation along these lines are suggested by Gustafsson [20] and
Castro and Maibaum [6]. The following clause can be derived:

M, w |= Oα iff D(w) ⊆ |α|M, and
for all X ∈ altM(α), X ∩D(w) 6= ∅.

That is, α is obligatory if each legal conduct executes α, and for each possible
way to execute α, there is a corresponding legal conduct. 6

3.3 Reasoning with permissions and obligations

If γ is a classical action formula, then the following clause can be derived:

M, w |= Pγ iff |γ|M ∩D(w) 6= ∅.

Hence, P behaves like a normal modal diamond when there is a classical action
formula within its scope. Things become more interesting when the formula
within the scope of the permission operator is choice-offering.

Let γ and τ be two classical action formulas. If γ and τ are independent in
the model M, in the sense that neither |γ|M nor |τ |M is properly included in
the other, then the following implication is valid in M (cf. [10, p. 249]):

M |= P (γ ∨∨ τ)→ Pγ ∧ Pτ.

In the general case of two arbitrary action formulas α and β, it may happen
that some alternative for α is properly contained in some alternative for β, or
vice versa. Hence, in general it cannot be assumed that alt(α) ∪ alt(β) ⊆
alt(α ∨∨ β), and quantifying over the alternatives for α and the alternatives

6 One may argue that obligation should not imply permission, for example by appealing to
conditional obligations: ‘If Smith murders Jones he ought to do so gently’ intuitively does not
imply ‘If Smith murders Jones he may do so gently’. In the present approach, such derivations
can be blocked by introducing O as a primitive operator, and extending the models with an
additional relation associating each conduct with a required option.
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for β cannot always be reduced to quantifying over the alternatives for α ∨∨ β.
Hence, FCP does not hold in general:

6|= P (α ∨∨ β)→ Pα ∧ Pβ.

Similarly, it can be shown that the definition of obligation does not allow
inferring the permission of each disjunct from an obligatory disjunction. In
general,

6|= O(α ∨∨ β)→ Pα ∧ Pβ.

However, FCP does hold under suitable assumptions. Let α and β be any
action formulas, and let M be any model. α is alternative to β in M, denoted
α⋊M β, if for all X ∈ altM(α), for all Y ∈ altM(β), X 6⊂ Y .

Proposition 3.2 Let α and β be any action formulas and M any model. Then
α⋊M β if and only if altM(α) ⊆ altM(α ∨∨ β).

Proof. Suppose that α ⋊M β is not the case. Then there are X ∈ altM(α)
and Y ∈ altM(β) such that X ⊂ Y . Since X,Y ∈ [[α]]M ∪ [[β]]M = [[α ∨∨ β]]M,
it must hold that X 6∈ altM(α ∨∨ β). Hence, altM(α) 6⊆ altM(α ∨∨ β).

Suppose that altM(α) 6⊆ altM(α∨∨ β). Then there is X ∈ altM(α) such
that X 6∈ altM(α∨∨β). Then there is Y ∈ [[α∨∨β]]M = [[α]]M∪ [[β]]M such that
X ⊂ Y . Since X ∈ altM(α), it must hold that Y ∈ [[β]]M. But then there is
Z ∈ altM(β) such that X ⊂ Y ⊆ Z, and so it is not the case that α⋊M β.✷

Using Lemma 3.2, it is readily verified that for all action formulas α and β,
the following guarded version of FCP is valid for any model M:

α⋊M β implies M |= P (α ∨∨ β)→ Pα.

To see this, assume M, w |= P (α ∨∨ β); then any member of altM(α ∨∨ β)
contains some legal conduct. If α ⋊M β, then Lemma 3.2 implies that
altM(α) ⊆ altM(α ∨∨ β). Hence, each member of altM(α) must contain
some legal conduct, and so M, w |= Pα.

By the definition of obligation, it also holds that for all action formulas α
and β and all models M,

α⋊M β implies M |= O(α ∨∨ β)→ Pα.

As argued by Ciardelli and Roelofsen [15], the way alternatives are construed
in inquisitive semantics provides a nice way of deriving the infelicity of Hur-
ford disjunctions using the redundancy explanation, both in declarative and
interrogative contexts. Basically, a disjunction a∨∨ b, where e.g. |a| is properly
included in |b|, is semantically equivalent to b. Since alt(a ∨∨ b) = {|b|}, the
option set |b| is the only alternative, and so the disjunction a ∨∨ b is redundant
in the relevant sense. Ciardelli and Aloni [11] extend this account to impera-
tive Hurford disjunctions. It is straightforward to adapt the account to deontic
Hurford disjunctions as well. Let D(a ∨∨ b) be a deontic disjunction, where
D expresses either permission or obligation, and let |a| be properly included
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in |b|. Since the logical form of D(a ∨∨ b) involves a ∨∨ b, which is semanti-
cally equivalent to b, the whole deontic disjunction is redundant in the relevant
sense. These considerations provides a justification for the conditional version
of FCP: one is only allowed to infer the permission of each disjunct from a
permitted disjunction P (α ∨∨ β) or an obligatory disjunction O(α ∨∨ β) when
both disjuncts are independent from each other in the relevant sense, i.e. when
α⋊ β and β ⋊ α.

The inclusion of the universal modality ✷ in the language of IDL in com-
bination with the fact that any action formula is equivalent to the disjunc-
tion of its classical resolutions, makes it possible to capture variants of the
above guarded versions of FCP as IDL-validities. Recall the definition of
Rcl(α) from Section 3.1. Let γ be a classical action formula, let α be any
action formula and let M be any model. Since altM(γ) = {|γ|M} and
altM(α) = alt({|τ1|M, . . . , |τk|M}), assuming Rcl(α) = {τ1, . . . , τk}, it fol-
lows that γ ⋊M α if and only if for all 1 ≤ i ≤ k, if |γ|M ⊆ |τi|M then
|γ|M = |τi|M. Thus, if γ is a classical action formula, α is any action formula
and M any model, then

γ ⋊M α if and only if M |=
∧

τ∈Rcl(α)

(✷(γ → τ)→ ✷(γ ↔ τ)).

As a consequence, the following validities hold, where γ is a classical action
formula and α is any action formula:

|=



P (γ ∨∨ α) ∧
∧

τ∈Rcl(α)

(✷(γ → τ)→ ✷(γ ↔ τ))



 → Pγ,

and

|=



O(γ ∨∨ α) ∧
∧

τ∈Rcl(α)

(✷(γ → τ)→ ✷(γ ↔ τ))



 → Pγ.

Hence, if γ is alternative to α, it is possible to detach the permission Pγ from
the permission P (γ ∨∨ α) or the obligation O(γ ∨∨ α).

While FCP only holds in a guarded version since the alternatives for α and
β are not necessarily included in the alternatives for α∨∨β, it is readily verified
that altM(α ∨∨ β) ⊆ altM(α) ∪ altM(β) for any model M. Based on this
observation, it follows that

|= Pα ∧ Pβ → P (α ∨∨ β).

It can also be shown that the vegetarian free lunch problem is avoided:

6|= Pα→ P (α ∧ β) ∧ P (α ∧ ¬β).

Let a express the action of ordering a vegetarian meal, and let b express the
action of paying for the meal. Consider the model M = (W,D, V ) where
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W = {w1, w2, w3}, D(wi) = {w1, w3} for i = 1, 2, 3, V (a) = {w1, w2} and
V (b) = {w1}. In this model, the legal conducts are those where a vegetarian
meal is not ordered at all (conduct w3) or where a vegetarian meal is ordered
and payed for (conduct w1). The conduct where a vegetarian meal is ordered
but not payed for (conduct w2) is not legal. Clearly M, w |= Pa, but M, w 6|=
P (a ∧ ¬b) for any conduct w.

Using the definition of obligation, it is easily verified that Ross’ paradox is
blocked:

6|= Oα→ O(α ∨∨ β).

Let a mean that the letter is posted, and let b mean that the letter is burnt.
Let M = (W,D, V ) be a model such that W = {w1, w2}, D(wi) = {w1}
for i = 1, 2, V (a) = {w1}, and V (b) = {w2}. In this model, the only legal
conduct is the one where the letter is posted. Then clearly M, w |= Oa for
any w. However, one alternative for a∨∨ b contains a non-legal conduct, and so
M, w 6|= O(a ∨∨ b) for all w. Hence, M is a countermodel to the Ross formula.
In fact, burning the letter is clearly incompatible with posting the letter, in
the sense that one cannot do both; hence, one would expect that the obligation
to post the letter contradicts the obligation to post or burn the letter. The
present account makes the correct prediction in this case. Consider any model
where a and b are incompatible, i.e. |a| ∩ |b| = ∅. If Oa holds at a conduct w
in the model, then D(w) ⊆ |a|, and so D(w)∩ |b| = ∅. Hence, O(a∨∨ b) fails at
w in the model.

3.4 Imperative entailment

Ciardelli and Aloni [11] suggest an account of imperative entailment based
on inquisitive semantics. In their framework, an imperative is a sentence of
the form !α, where α is an action formula. Action formulas are defined and
interpreted as in Section 3.1. Imperatives are then given a semantics in terms of
compliance conditions. Intuitively, an option X (i.e. a set of conducts) complies
with an imperative !α if all conducts in X execute α, and for each possible way
to execute α, there is a corresponding conduct in X. Formally, the following
clause is defined, where M = (W,V ) is an action model and X ⊆W :

M, X |= !α iff X ⊆ |α|M, and for all Y ∈ altM(α), X ∩ Y 6= ∅.

Imperative entailment is then defined as a relation on the set of imperatives
as follows. Let !α and !β be two imperatives. Then !α entails !β, notation
!α |=I !β, if for all action models M and all options X of M, M, X |= !α
implies M, X |= !β.

Clearly, the semantic clause for imperatives is very similar to the semantic
clause for the obligation operator O in IDL. Let M = (W,V ) be an action
model and let MD = (W,D, V ) be a deontic action model based on M. The
following equivalence is easily verified:

MD, w |= Oα iff M, D(w) |= !α.
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With this equivalence at hand, the following result can be proved: 7

Proposition 3.3 !α |=I !β if and only if Oα |=IDL Oβ.

4 Axiomatization of IDL

In this section, I propose an axiomatization of IDL, and prove soundness and
completeness. The axiomatization utilizes the fact that the language for action
formulas LA is a fragment of the language of basic inquisitive logic InqB [10,13],
which has a complete axiomatization.

4.1 The logic InqB

The language LInqB of InqB is defined by the following grammar:

α ::= a | ⊥ | α→ α | α ∧ α | α ∨∨ α,

where p ranges over a set of atomic formulas. Negation is defined by ¬α
def
=

α → ⊥. Note that by letting LInqB be constructed from the set Π of atomic
action formulas, one can consider LA as a fragment of LInqB.

The language of InqB is interpreted on information models M = (W,V ),
where W is a set of possible worlds and V is a valuation function for atomic
formulas. Formulas are interpreted at a pair consisting of a modelM = (W,V )
and a set X ⊆W , according to the following clauses:

M, X |= a iff X ⊆ V (a);
M, X |= ⊥ iff X = ∅;
M, X |= α→ β iff for all Y ⊆ X, M, Y |= α implies M, Y |= β;
M, X |= α ∧ β iff M, X |= α and M, X |= β;
M, X |= α ∨∨ β iff M, X |= α or M, X |= β.

Let α and β be two formulas. α entails β (notation α |=InqB β) if for all models
M = (W,V ) and all X ⊆W , if M, X |= α, then M, X |= β.

The axiomatization of InqB from [13] extends intuitionistic logic with the
following axiom schemas:

(i) (¬α→ β ∨∨ δ)→ (¬α→ β) ∨∨ (¬α→ δ)

(ii) ¬¬a→ a, for any atomic formula a.

Derivability in this system is denoted by ⊢InqB, and α ⊣⊢InqB β is shorthand
for α ⊢InqB β and β ⊢InqB α. The following result is proved by Ciardelli and
Roelofsen [13] (see also [10, Chapter 3]):

Theorem 4.1 (Soundness and completeness of InqB) For any α and β
of LInqB, α |=InqB β if and only if α ⊢InqB β.

For the purposes of this paper, it suffices to note the following corollary:

Corollary 4.2 For any action formulas α and β in LA, α and β are equivalent
if and only if α ⊣⊢InqB β.

7 Fine [17, p. 641] proves a similar link between his logic of imperatives and his logic of ‘free
choice obligation’.
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In particular, it holds that for any action formula α, α ⊣⊢InqB

∨∨

Rcl(α).

4.2 Axiomatization of IDL

I will use the completeness of InqB to define a sound and complete axiom
system for IDL. This axiom system consists of axioms for propositional logic,
S5 axioms for ✷, and all instances of the below axiom schemas, where α, β
range over LA and γ, τ range over Lcl

A:

A1 ¬P¬(γ → τ)→ (¬P¬γ → ¬P¬τ)

A2 Pγ → ✸γ

A3 P (γ ∨∨ α) ∧✷(τ → γ)→ P (τ ∨∨ γ ∨∨ α)

A4 P (α) ∧ P (β)→ P (α ∨∨ β)

A5
(

P (γ1 ∨∨ · · · ∨∨ γk) ∧
∧

1≤i≤k(✷(γ1 → γi)→ ✷(γ1 ↔ γi))
)

→ Pγ1, for any

k ≥ 2

The rules of inference are modus ponens, necessitation for ✷, and replacement
of equivalent action formulas within the scope of P :

RE From α ⊣⊢InqB β, infer Pα↔ Pβ.

Theorem 4.3 (Soundness) The axiom system for IDL is sound.

The proof of the soundness result is straightforward and omitted. Here, I
sketch the completeness proof.

Let α be any action formula in LA. Let M be a model. Define the M-
filtering of α as follows:

FM(α) = {γ ∈ Rcl(α) | for all τ ∈ Rcl(α), if |γ|M ⊆ |τ |M then |γ|M = |τ |M}.

Let Γ be a maximally consistent set. Define the Γ-filtering of α as follows:

FΓ(α) = {γ ∈ Rcl(α) | for all τ ∈ Rcl(α), if ✷(γ → τ) ∈ Γ then ✷(γ ↔ τ) ∈ Γ}.

The proof of the following lemma is straightforward using the definitions of
altM(α) and FM(α).

Lemma 4.4 Let α be any action formula and let M be a model. Then
altM(α) = {|γ|M | γ ∈ FM(α)}.

Lemma 4.5 Let α be any action formula and let Γ be a maximally consistent
set. Then Pα ∈ Γ if and only if Pγ ∈ Γ for all γ ∈ FΓ(α).

Proof. (⇒). Suppose that there is γ ∈ FΓ(α) such that Pγ 6∈ Γ. By construc-
tion of FΓ(α), for all τ ∈ Rcl(α), if ✷(γ → τ) ∈ Γ then ✷(γ ↔ τ) ∈ Γ. Since
Γ is maximally consistent, ✷(γ → τ) → ✷(γ ↔ τ) ∈ Γ for all τ ∈ Rcl(α).
Assume Rcl(α) = {γ1, . . . , γk} with γ = γ1. Since Γ is maximally con-
sistent,

∧

1≤i≤k(✷(γ → γi) → ✷(γ ↔ γi)) ∈ Γ. Hence, by Axiom A5,
P (γ1 ∨∨ · · · ∨∨ γk) 6∈ Γ. Since α ⊣⊢InqB γ1 ∨∨ · · · ∨∨ γk, it follows by RE that
Pα↔ P (γ1 ∨∨ · · · ∨∨ γk) ∈ Γ, and so Pα 6∈ Γ.
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(⇐). Suppose Pγ ∈ Γ for all γ ∈ FΓ(α). Let FΓ(α) = {γ1, . . . , γk}. By
repeated use of Axiom A4, P (γ1∨∨· · ·∨∨γk) ∈ Γ. Let A be the set of all classical
action formulas occurring in Rcl(α) that are not members of FΓ(α). Assume
A = ∅. Then α ⊣⊢InqB γ1∨∨· · ·∨∨γk, and so by RE, Pα↔ P (γ1∨∨· · ·∨∨γk) ∈ Γ.
Hence, Pα ∈ Γ. Assume A = {τ1, . . . , τl} 6= ∅. Then by construction of
FΓ(α), for each τ ∈ A, there is γ ∈ FΓ(α) such that ✷(τ → γ) ∈ Γ. Using
Axiom A3 and RE, it can be shown that P (γ1 ∨∨ · · · ∨∨ γk ∨∨ τ1 ∨∨ · · · ∨∨ τl) ∈ Γ.
Since Rcl(α) = FM(α) ∪ A and α ⊣⊢InqB

∨∨

Rcl(α), RE implies that Pα ↔
P (γ1 ∨∨ · · · ∨∨ γk ∨∨ τ1 ∨∨ · · · ∨∨ τl) ∈ Γ. Hence, Pα ∈ Γ. ✷

Define the modal depth of a formula ϕ, denoted md(ϕ), as follows:

• md(a) = 0

• md(¬ϕ) = md(ϕ)

• md(ϕ ∧ ψ) = max(ϕ, ψ)

• md(Pα) = 1

• md(✷ϕ) = md(ϕ) + 1

Say that a formula ϕ is strictly less complex than ψ, denoted ϕ ≺ ψ, if either ϕ
is a proper subformula of ψ, or md(ϕ) < md(ψ). It can be verified that ≺ is a
well-founded strict partial order on LIDL, and hence an ordering that is suitable
for inductive proofs.

If Γ is a maximally consistent set, then Γ✷ = {ϕ | ✷ϕ ∈ Γ}. Fix a maximally
consistent set Γ0. Define the canonical model M = (W,D, V ) for Γ0 as follows:

• W is the set of maximally consistent sets Γ such that Γ✷ = Γ✷

0 ;

• w ∈ D(v) if and only if {Pγ | γ ∈ Lcl
A and γ ∈ w} ⊆ v;

• V (a) = {w ∈W | a ∈ w}.

Lemma 4.6 (Truth lemma) For any formula ϕ, M, w |= ϕ if and only if
ϕ ∈ w.

Proof. The proof is by induction on the complexity of ϕ in terms of ≺. The
cases for the propositional connectives and formulas of the form ✷ψ are omitted.
I will here sketch the proof for the case where ϕ = Pα.

(⇒). Suppose M, w |= Pα.
Suppose that γ 6∈ FM(α). Then there is τ ∈ Rcl(α) such that |γ|M ⊂ |τ |M.

This implies that M, v |= γ → τ for all v ∈ W and there is u ∈ W such that
M, u 6|= γ ↔ τ . Since γ → τ ≺ Pα and γ ↔ τ ≺ Pα, by the induction
hypothesis γ → τ ∈ v for all v ∈ W and there is u ∈ W such that γ ↔ τ 6∈ u.
By construction of the canonical model, ✷(γ → τ) ∈ w and ✷(γ ↔ τ) 6∈ w.
Hence, γ 6∈ Fw(α). Hence, Fw(α) ⊆ FM(α).

Suppose that γ ∈ Fw(α). Then γ ∈ FM(α). By Lemma 4.4, |γ|M ∈
altM(α). By the initial assumption, for all X ∈ altM(α), X ∩D(w) 6= ∅, and
so |γ|M ∩D(w) 6= ∅. Then there is u ∈W such that M, u |= γ and u ∈ D(w).
By the induction hypothesis γ ∈ u. By construction of the canonical model,
Pγ ∈ w.
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Since γ ∈ Fw(α) was chosen arbitrarily, Pγ ∈ w for all γ ∈ Fw(α). By
Lemma 4.5, Pα ∈ w.

(⇐). Suppose Pα ∈ w.
Suppose that γ 6∈ Fw(α). Then there is τ ∈ Rcl(α) such that ✷(γ → τ) ∈ w

and ✷(γ ↔ τ) 6∈ w. By construction of the canonical model, γ → τ ∈ v for
all v ∈ W and there is u ∈ W such that γ ↔ τ 6∈ u. Since γ → τ ≺ Pα and
γ ↔ τ ≺ Pα, by the induction hypothesis it follows that M, v |= γ → τ for all
v ∈W and there is u ∈W such that M, u 6|= γ ↔ τ . Hence, |γ|M ⊂ |τ |M, and
so γ 6∈ FM(α). It follows that FM(α) ⊆ Fw(α).

Assume X ∈ altM(α). By Lemma 4.4, X = |γ|M for some γ ∈ FM(α).
Then γ ∈ Fw(α). By Lemma 4.5 and the initial assumption, Pγ ∈ w. By
construction of the canonical model, there is u ∈ W such that γ ∈ u and
u ∈ D(w). By the induction hypothesis, M, u |= γ, and so u ∈ |γ|M. Hence,
X ∩D(w) 6= ∅. Since X was chosen arbitrarily, M, w |= Pα. ✷

Having established the truth lemma, the completeness follows.

Theorem 4.7 (Completeness) The axiom system for IDL is complete.

5 Conclusion

In this paper, I introduced and studied the logic IDL. In this logic, deontic
operators attach to action formulas, and action formulas are given interpre-
tations based on inquisitive semantics. I showed that IDL solves many of the
various problems related to free choice inferences, including Hurford style dis-
junctions. In particular, the logic validates guarded versions of the free choice
principle, which I argued is a natural consequence of how Hurford disjunctions
are handled. I also showed that the notion of imperative entailment defined by
Ciardelli and Aloni [11] can be simulated in IDL. Finally, I supplied IDL with
a complete axiomatization.

The approach presented in this paper is only one step towards solving the
problems of free choice inferences. For example, the approach in this paper can-
not account for the intuition that free choice effects disappear under negation
(see e.g. [1,3]). A sentence such as ‘Jane may not have soup or salad’ typically
entails ‘Jane may not have soup’ and ‘Jane may not have salad’. However, in
the present approach, ¬P (α∨∨β) does not imply ¬Pα∧¬Pβ. This is a natural
topic for further research. Another topic for further research is to consider the
permission operator of IDL in a general modal inquisitive logic setting (cf. [10,
pp. 247–249]).
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Presuppositions and Implicatures, MIT Press, Cambridge, MA, 2009 pp. 47–62.

[8] Chiercia, G., D. Fox and B. Spector, Scalar implicatures as grammatical phenomenon, in:
P. Portner, C. Maienborn and K. von Heusinger, editors, Semantics: An international

handbook of natural langauge meaning, Vol. 3, Mouton de Gruyter, Berlin, 2012 pp.
2297–2331.

[9] Ciardelli, I., Dependency as question entailment, in: S. Abramsky, J. Kontinen,
J. Väänänen and H. Vollmer, editors, Dependence Logic: theory and applications,
Springer International Publishing Switzerland, 2016 pp. 129–181.

[10] Ciardelli, I., “Questions in Logic,” Ph.D. thesis, ILLC University of Amsterdam, the
Netherlands (2016).

[11] Ciardelli, I. and M. Aloni, Choice-offering imperatives in inquisitive and truth-maker

semantics, Presented at ‘Imperatives: worlds and beyond’, Hamburg University (2016).
[12] Ciardelli, I., J. Groenendijk and F. Roelofsen, “Inquisitive Semantics,” Oxford University

Press, Oxford, 2018.
[13] Ciardelli, I. and F. Roelofsen, Inquisitive logic, Journal of Philosophical Logic 40 (2011),

pp. 55–94.
[14] Ciardelli, I. and F. Roelofsen, Inquisitive dynamic epistemic logic, Synthese 192 (2015),

pp. 1643–1687.
[15] Ciardelli, I. and F. Roelofsen, Hurford’s constraint, the semantics of disjunction, and

the nature of alternatives, Natural Language Semantics 25 (2017), pp. 199–222.
[16] Fine, K., Compliance and command I – categorical imperatives, The Review of Symbolic

Logic 11 (2018), pp. 609–633.
[17] Fine, K., Compliance and command II, imperatives and deontics, The Review of

Symbolic Logic 11 (2018), pp. 634–664.
[18] Giordani, A. and I. Canavotto, Basic action deontic logic, in: O. Roy, A. Tamminga and

M. Willer, editors, Deontic Logic and Normative Systems, College Publications, London,
2016 pp. 80–92.

[19] Goranko, V. and S. Passy, Using the universal modality: Gains and questions, Journal
of Logic and Computation 2 (1992), pp. 5–30.

[20] Gustafsson, J. E., Permissibility is the only feasible deontic primitive, Philosophical
Perspectives 34 (2020), pp. 117–133.

[21] Hansson, S. O., The varieties of permission, in: D. Gabbay, J. Horty, X. Parent,
R. van der Meyden and L. van der Torre, editors, Handbook of Deontic Logic and

Normative Systems, College Publications, 2013 pp. 195–240.
[22] Hurford, J., Exclusive or inclusive disjunction, Foundations of Language 11 (1974),

pp. 409–411.
[23] Kamp, H., Free choice permission, Proceedings of the Aristotelian Society 74 (1973),

pp. 57–74.
[24] Katzir, R. and R. Singh, Hurford disjunctions: Embedded exhaustification and structural
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1 Introduction

The aim of this paper is to analyse three kinds of permission operations, derived
from the Input/output (I/O) logics O1 and O3, introduced by Parent and
van der Torre [17]. The analysis looks at negative permission, positive static
permission and positive dynamic permission, such as Makinson and van der
Torre have done in 2003 for the unconstrained I/O logics out1 − out4 [13]. 4

There are two main differences between the older and the newer systems. The
newer systems are augmented with a consistency check. It is this property
which puts these logics at the level of constrained output, which can deal
with contrary-to-duty (CTD) reasoning. They also lack the weakening of the
output (WO) rule. (WO allows to infer (a, y) from (a, x) and x ⊢ y, where
(a, x) represents the norm that if a, then x ought to be the case, and x ⊢ y
means that y logically follows from x). We analyse the differences that these
changes cause to the different kinds of permissions and try to get rule-sets that
fully characterize the permission operations. This leads us to introduce the
first proof systems for positive permission in terms of constrained output.

With permission being far less studied than obligation, we see it as impor-
tant to give it its fair share of spotlight. In practice, normative codes such
as traffic rules often include both obligatory and permissive norms, and so it
is vital when modeling such rules to have a good understanding of the choice
of permission at hand as well as of the underlying (input/output) logic. As
they lack WO, we argue that O1 and O3 can be better suited for modelling
normative reasoning compared to the out logics. We briefly recall below the
argument given in [14,15] against WO.

WO yields as a special case the principle of conjunction elimination, war-
ranting the move from (a, x ∧ y) to (a, x). As suggested for example by Ham-
blin [7], Goble [6] and Hansen [8, p. 91], such a principle is counter-intuitive in
those cases where x and y are not separable, so that (to quote Hansen) “fail-
ing a part [of the order] means that satisfying the remainder no longer makes
sense. E.g. if I am to satisfy the imperative ‘buy apples and walnuts’, and
the walnuts [...] and the apples [are meant to] land in a Waldorf salad, then it
might be unwanted and a waste of money to buy the walnuts if I cannot get
the apples” [8, p. 91].

WO is also undesirable with respect to the issue of deontic detachment.
Deontic detachment (DD) is the law : from (⊤, x) and (x, y) infer (⊤, y), where
⊤ denotes a tautology. It is a special case of the law known as cumulative
transitivity (CT): from (a, x) and (a∧x, y) infer (a, y). Counter-examples have
been given to deontic detachment (see, e.g. [11,3]). They can be blocked by
replacing CT with the following variant rule− we call it “aggregative cumulative
transitivity” (ACT): from (a, x) and (a ∧ x, y) infer (a, x ∧ y). This substitute
rule makes sense only in a system without WO. Here is an example. The
Luxembourgish traffic laws [1] say that if one wants to park one’s car at a

4 Hansson [10] provides an enlightening overview of the major issues in deontic logic that
are specific for permission.
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parking spot having a park meter during the times specified on the street
sign, then one should buy a ticket. They also say that, if a parking ticket is
purchased, then it should be put on display inside the vehicle. The obligation
to put the ticket on display no longer holds, if the obligation to pay is violated
(for instance the ticket has been forged). Thus, the correct conclusion is: one
should pay-and-display the ticket.

We believe that the permission operations defined in terms of O1 and O3

are worth studying as well. Similarly to the logics O1 and O3, the permission
operations underlying those new logics also lack the WO rule. They also have
a consistency proviso restraining the application of two rules, one of them
being AND and the other being ACT. This is needed to block the well-known
pragmatic oddity from [18] among other things.

Regarding WO, the same situation can be expected to arise with “may” as
with “must”. And indeed it does. For illustration’s sake, consider the following
example. Restaurants often have a lunch-menu (l), and typically they have the
option to order a starter (s), a main course (m) and a dessert (d), a starter and
a main course or a main course and a desert. However it is not generally allowed
to order a starter and a desert, without there being a formal prohibition, but
there is a lack of a positive permission. Let (a, x)p denote the conditional
permission to do x given a. We have (l, s ∧m ∧ d)p but not (l, s ∧ d)p. As a
second case, consider a modified version of Feldman’s medication example [5,
p. 87]. Let a and b be two medicines such that medicine a needs medicine b
in order to be safe for use in the treatment of disease d. In that case we have
that (d, a ∧ b)p but not (d, a)p.

There is another class of I/O logics to compare to O1 and O3, namely con-
strained I/O logics [12]. They are better suited for normative reasoning than
unconstrained I/O logics, as they are capable of handling CTD reasoning. We
could, in principle, define the three kinds of permission using constrained I/O
logic as the underlying logic for obligation, similarly as they are defined for
unconstrained I/O logic. The main downside to this approach is that (to our
knowledge) there is no axiomatic characterization of constrained I/O logic that
is “intrinsic”. Straßer et al. [22] provide a dynamic proof theory of constrained
I/O logics−it is that of the adaptive logic (AL) framework (see e.g. [21] for
a general introduction). First, unconstrained and constrained I/O logics are
embedded within some suitable modal logics. Next, the adaptive counterparts
of all the constrained I/O operations are given. Representation results are pro-
vided for the modal characterizations in both the unconstrained setting and the
constrained setting. It would be interesting to investigate the relationship be-
tween their account and ours. We leave this issue as a topic for future research.
One would need to go beyond their framework in its current form, which does
not cover the new I/O logics from [14,16,17] yet, and has no apparatus for
handling positive permissions.

As mentioned above, there are important differences between the classical
I/O logics and the operations O1 and O3. Because of these differences, the
proofs given by Makinson and van der Torre [13] do not always go through.
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The formal challenge thus consists in finding alternative proofs to the ones
Makinson and van der Torre give, taking into consideration the nature of the
new logics. We prove the characterization of the positive static permission
operation by its subverse rule-set by showing that a result called the non-
repetition property holds, such as Makinson and van der Torre did. However
since intermediary results do not hold, the proof of the non-repetition property
for O1 is different. For O3, the result is somewhat similar, as it also uses phasing
of the derivation. In the present case the whole derivation cannot be phased,
and one can phase only certain sub-parts of derivations, which is enough to
prove the non-repetition property.

This paper is structured as follows. Section 2 gives the required background
on I/O logic, section 3 outlines the differences between the classical and the
new I/O logics, sections 4, 5 and 6 present respectively the negative permission,
the static positive permission and the static dynamic permission. Finally, in
section 7 we outline a few directions for future research.

2 Background

This section gives a brief review of the basic notions of I/O logic that are used
throughout this work.

2.1 Semantics

I/O logic uses conditional norms, which are pairs of the form (a, x), where a is
called the body of the norm and x the head of the norm. The norm (a, x) can
be read as if a, then x is obligatory. For a set of norms G, h(G) is the set of all
heads of elements of G and b(G) the set of all bodies of elements of G. G(A)
is defined as {x : (a, x) ∈ G for some a ∈ A}.

The four unconstrained output operations of I/O logic that have first been
introduced are the following, where G is a set of norms, A a set of formulae of a
propositional language, Cn the consequence operation of classical propositional
logic and L the set of all boolean formulae:

Definition 2.1 (Classical unconstrained I/O operations [12])

• Simple-minded output : out1(G,A) = Cn(G(Cn(A)))

• Basic output : out2(G,A) = ∩{Cn(G(V )) : A ⊆ V, V complete}

= ∩{out1(V ) : A ⊆ V, V complete}
A set V is complete iff V = L or V ⊆ L is maximally consistent.

• Reusable simple-minded output :
out3(G,A) = ∩{Cn(G(B)) : A ⊆ B = Cn(B) ⊇ G(B)}

• Reusable basic output :
out4(G,A) = ∩{Cn(G(V )) : A ⊆ V ⊇ G(V ), V complete}

Parent and van der Torre have introduced new logics O1 and O3 correspond-
ing to out1 and out3 with an additional consistency check and without the rule
WO [17]. They solve a problem that was present in the earlier systems: How
to prevent the pragmatic oddity and the drowning problem? The pragmatic
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oddity [18] arises from the possibility of detaching a CTD obligation in a vio-
lation context, and aggregating it with its associated primary obligation. The
following is a typical example: “you should keep your promise and apologize
for not keeping it” can be derived from “you should keep your promise”, “if
you do not keep your promise you should apologize” and “you do not keep
your promise” [16]. The drowning problem arises when a primary obligation
no longer holds after a violation has occurred. 5

Let x ⊣⊢ y stand for (x ⊢ y) and (y ⊢ x). Then the systems Parent and van
der Torre present are defined in the following way:

Definition 2.2 (New I/O logics [17])

• Single-step detachment : x ∈ O1(G,A) iff there exists some finiteM ⊆ G and
a set B ⊆ Cn(A) such that M 6= ∅, B = b(M), x ⊣⊢ ∧h(M) and {x} ∪B is
consistent. O1(G) = {(A, x) : x ∈ O1(G,A)}.

• Iterated detachment : x ∈ O3(G,A) iff there exists some finite M ⊆ G and a
set B ⊆ Cn(A) such that M(B) 6= ∅, x ⊣⊢ ∧h(M) and
· ∀B′(B ⊆ B′ = Cn(B′) ⊇M(B′)⇒ b(M) ⊆ B′)
· {x} ∪B is consistent.
O3(G) = {(A, x) : x ∈ O3(G,A)}.

M is called the witness of (A, x).

2.2 Proof Theory

Each of the previously defined output operations have their associated proof
system, called derivi, for i ∈ {1, ..., 4} for the classical I/O logics and Di for
i ∈ {1, 3} for the new ones, each of which consists of the following sets of rules:

• deriv1 = {TAUT, SI, WO, AND}

• deriv2 = {TAUT, SI, WO, AND, OR}

• deriv3 = {TAUT, SI, WO, AND, CT}

• deriv4 = {TAUT, SI, WO, AND, OR, CT}

• D1 = {EQ, SI, R-AND}

• D3 = {EQ, SI, R-ACT}

Where the rule names have the following meaning:

• TAUT - tautology

• SI - strengthening of the input

• WO - weakening of the output

• AND - conjunction of the output

• OR - disjunction of the input

• CT - cumulative transitivity

• EQ - equivalence

• R-AND - restricted AND

• R-ACT - restricted aggregative cu-
mulative transitivity

5 Other approaches are possible. It is often thought that the CTD scenarios involve two
kinds of obligations, prima facie (ideal, etc) obligations vs. all-things-considered (actual, etc)
obligations. [4,20] are two examples of a formal setting articulating such a distinction. Our
take is different. We are interested in obligations which still hold even if violated, as opposed
to obligations satisfying ought-implies-can.
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Those rules are the following:
−

(⊤,⊤)
TAUT

(a, x) b ⊢ a

(b, x)
SI

(a, x) x ⊢ y

(a, y)
WO

(a, x) (a, y)

(a, x ∧ y)
AND

(a, x) (b, x)

(a ∨ b, x)
OR

(a, x) (a ∧ x, y)

(a, y)
CT

(a, x) (a, y) a ∧ x ∧ y 6⊢ ⊥

(a, x ∧ y)
R-AND

(a, x) x ⊣⊢ y

(a, y)
EQ

(a, x) (a ∧ x, y) a ∧ x ∧ y 6⊢ ⊥

(a, x ∧ y)
R-ACT

We say that (a, x) ∈ derivi(G) (or Di(G)) iff (a, x) is derivable from G
using the rules of derivi (or Di). We say that (A, x) ∈ derivi(G) (or Di(G))
iff (a, x) ∈ derivi(G) (or Di(G)), where a is a conjunction of formulas in A.
Equivalently, we say that x ∈ derivi(G,A) (or Di(G,A)).

Looking at the proof systems another difference between the classical and
the new systems becomes apparent: the latter lack WO, whereas it is present
in the former ones.

For simplifying derivation representations, let us define a generalized
version of R-AND:

(a, x1) ... (a, xn) a ∧ x1 ∧ ... ∧ xn 6⊢ ⊥

(a, x1 ∧ ... ∧ xn)
G-R-AND

which is a short version of n consecutive R-AND applications.
D1 and D3 are sound and complete w.r.t. the semantics [17], i.e.

(A, x) ∈ Oi(G) iff (A, x) ∈ Di(G) and so Oi and Di can be interchanged when
needed for i ∈ {1, 3}.

We use the notation of O and D when we talk about the output operations
with the consistency check O1 and O3, and out and deriv for the classical
output operations out1-out4.

Parent et al. [14] define the notion of derivation as follows.

Definition 2.3 (Derivation)
Let D be a proof system. A derivation of (a, x) from a set of norms G is a finite
sequence of pairs ending with (a, x), each of which is either an element of G or
follows from earlier pairs in the sequence using the rules of D. The elements
of G being used in a derivation are called the leaves of the derivation, and it
is required that all leaves have a consistent fulfilment, i.e. for all leaves (a, x),
a ∧ x is consistent. The length of a derivation is the length of the sequence.

In this work we mostly represent derivations graphically using proof trees.
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3 O versus out

Already at this point there is one significant difference when it comes to O
versus out: whereas out is a closure operation [13], O is not, as it does not
satisfy inclusion: take G = {(x,¬x)}, ¬x 6∈ O(G, x) so G 6⊆ O(G). However
monotony (G ⊆ H ⇒ O(G) ⊆ O(H)) and idempotence (O(O(G)) = O(G))
both hold, as shown below. (Note that one half of idempotence is established
for O1 only.)

Proposition 3.1 (Monotony)
Let O = O1, O3 be an output operation, G,H be sets of norms with G ⊆ H
and let (a, x) ∈ O(G). Then (a, x) ∈ O(H).

Proof. Assume (a, x) ∈ O(G). By the definitions of O1 and O3, there exists
a witness M for (a, x), with M ⊆ G. As G ⊆ H, one can take the same M as
witness to get that (a, x) ∈ O(H). ✷

The following sequence of results leads to showing that the left-in-right
direction of idempotence holds for O1 :

Lemma 3.2 Let O = O1 be an output operation, G be a set of norms. Let M
be the witness for (a, x). Then M does not contain a pair of the form (ai, xi)
with ai ∧ xi ⊢ ⊥.

Proof. Suppose M contains a pair of the form (ai, xi) with ai ∧ xi ⊢ ⊥. We
know, by definition of O1 that x ⊣⊢ ∧h(M), so x ⊢ xi, thus ai ∧ x ⊢ ⊥.
But ai ∈ b(M), so b(M) ∪ {x} ⊢ ⊥ by monotony for ⊢, which contradicts the
definition of the witness M . ✷

Lemma 3.3 Let O = O1 be an output operation, G be a set of norms. Let
(a, x) ∈ O(G) and M be the witness for (a, x). Then M ⊆ O(G).

Proof. Let O = O1, (ai, xi) ∈ M . {(ai, xi)} is finite and non-empty, ai ⊢ ai,
xi ⊢ xi and {xi, ai} 6⊢ ⊥ by Lemma 3.2. So (ai, xi) ∈ O(G). ✷

Proposition 3.4 (Idempotence, left-to-right)
Let O = O1 be an output operation, G be a set of norms. Then

(a, x) ∈ O(G)⇒ (a, x) ∈ O(O(G)).

Proof. Let (a, x) ∈ O(G) and M = {(a1, x1), ..., (an, xn)} be the witness for
(a, x). By Lemma 3.3, M ⊆ O(G). So (a, x) ∈ O(O(G)). ✷

Proposition 3.5 (Idempotence, right-to-left)
Let O = O1, O3 be an output operation, G be a set of norms.
Then (a, x) ∈ O(O(G))⇒ (a, x) ∈ O(G).

Proof. Take (a, x) ∈ O(O(G)). By completeness, there exists a derivation of
(a, x) from O(G) in the corresponding proof system D. We have that every leaf
(ai, xi) ∈ O(G). Let {(a1, x1), ..., (an, xn)} ⊆ O(G) be the enumeration of the
leaves of that derivation. Then there also exists a derivation of (ai, xi) from
G in the corresponding proof system D. Let {(ai1 , xi1), ..., (aim , xim)} ⊆ G
be the enumeration of the leaves of that derivation. We have that every
leaf (aij , xij ) ∈ G for j such that 1 ≤ j ≤ m. Putting those derivations
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together, we can get a derivation of (a, x) from G where the leaves are
{(a11 , x11), ..., (anm

, xnm
)} ⊆ G. By soundness, (a, x) ∈ O(G). ✷

4 Negative Permission

Negative permission is the most straightforward permission of the three kinds
we are going to discuss. Something is said to negatively permitted if it is not
prohibited.

Definition 4.1 (Negative permission [13])
Let G be a set of norms and O an output operation. Then (a, x) ∈ negperm(G)
iff (a,¬x) 6∈ O(G).

We will now discuss if the results on negative permission from Makinson and
van der Torre’s work [13] still hold in this new setting. Let us first look at what
Horn rules the negative permission operation satisfies. In Makinson and van der
Torres’s fashion let us call the premises of the rules of the form (α,ϕ) ∈ O(G) a
substantive premise and the premises of the form θ ∈ Cn(γ) and

∧

(α∧ϕ) 6⊢ ⊥
auxiliary premise. The idea behind the inverse of a Horn rule is the following:
having one or more substantive premises, one takes one of them, negates its
head and puts it as permitted in the conclusion. In retribution one takes the
conclusion, negates its head and puts it as permitted in the premises. The other
premises are left unchanged. Intuitively it says that if a group of conditional
obligations imply some conclusion, which is also a conditional obligation, then
taking all the premises in this group with the exception of one and combining
it with the permission to not do the conclusion, then this implies that we also
have the permission to not do what the excluded obligation stated (otherwise
we would have the obligation of the conclusion). The updated Horn rules fit
rules such as R-AND and R-ACT and their inverses. A Horn rule has the form:

(HR): (αi, ϕi) ∈ O(G) (i ≤ n) & θj ∈ Cn(γj) (j ≤ m)

&
n
∧

k=0

(αk ∧ ϕk) 6⊢ ⊥ ⇒ (β, ψ) ∈ O(G)

Its inverse has the form:

(HR)
−1

: (αi, ϕi) ∈ O(G) (i < n) & (β,¬ψ) ∈ negperm(G)

& θj ∈ Cn(γj) (j ≤ m) &

n
∧

k=0

(αk ∧ ϕk) 6⊢ ⊥

⇒ (αn,¬ϕn) ∈ negperm(G)

The inverses of each rule are given in Table 1.

Proposition 4.2 Let O = O1, O3 be an output operation. If O satisfies a
rule of the form (HR), then the corresponding negperm operation satisfies the
inverse(s) (HR)−1.
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Proof. The proof of EQ is trivial and the proof of SI is similar to the original
paper by Makinson and van der Torre, so we omit them here.
Let G be a set of norms.

• Let O satisfy R-AND, (a, x) ∈ O(G), (a,¬(x ∧ y)) ∈ negperm(G) and
a ∧ x ∧ y 6⊢ ⊥. Then (a, x ∧ y) 6∈ O(G) by definition of negperm. As
(a, x) ∈ O(G) and a∧x∧ y 6⊢ ⊥, by R-AND for O we have (a, y) 6∈ O(G). So
(a,¬y) ∈ negperm(G).

• (i) Let O satisfy R-ACT, (a, x) ∈ O(G), (a,¬(x ∧ y)) ∈ negperm(G) and
a ∧ x ∧ y 6⊢ ⊥. Then (a, x ∧ y) 6∈ O(G) by definition of negperm.
As (a, x) ∈ O(G) and a ∧ x ∧ y 6⊢ ⊥, by R-ACT for O we have that
(a ∧ x, y) 6∈ O(G), so (a ∧ x,¬y) ∈ negperm(G).

(ii) Let O satisfy R-ACT, (a ∧ x, y) ∈ O(G), (a,¬(x ∧ y)) ∈ negperm(G)
and a ∧ x ∧ y 6⊢ ⊥. Then (a, x ∧ y) 6∈ O(G) by definition of negperm.
As (a ∧ x, y) ∈ O(G) and a ∧ x ∧ y 6⊢ ⊥, by R-ACT for O we have that
(a, x) 6∈ O(G), so (a,¬x) ∈ negperm(G).

✷

5 Static Positive Permission

The static positive permission takes into account two explicit sets of norms. A
set G of explicit obligations and a set P of explicit permissions. Something is
said to be statically permitted if one can get it as output from the obligation
set together with a single permission.

Definition 5.1 (Static positive permission [13])
Let G be a set of explicit obligations and P a set of explicit permissions and
O an output operation. Then (a, x) ∈ statperm(P,G) iff (a, x) ∈ O(G ∪Q) for
some Q = {(c, z)} ⊆ P or Q = ∅.

For static permission, the definition yields that O(G) ⊆ statperm(P,G)
as O is monotone. What is different with O than with out is that
statperm is no longer a closure operation in its argument P as inclusion
does not hold: take P = {(x,¬x)}, G = ∅. Then (x,¬x) ∈ P but
(x,¬x) 6∈ statperm(P,G), so P 6⊆ statperm(P,G). However, monotony holds
(P ⊆ Q implies statperm(P,G) ⊆ statperm(Q,G)) as O is monotonous and
idempotence (statperm(P,G) = statperm(statperm(P,G), G)) also holds.

Proposition 5.2 (Idempotence)
Let O = O1, O3 be an output operation.
Then statperm(P,G) = statperm(statperm(P,G), G).

Proof. To show the inclusion from right to left, one can take the same approach
as for Proposition 3.4, using proof theory.

For the other way, assume (a, x) ∈ statperm(P,G), let M be the witness
for (a, x), and B = b(M). By definition, since {x} ∪ B is consistent, M is
also a witness for (B, x) and so (B, x) ∈ statperm(P,G). Now one can take
M ′ = {(B, x)} to be the witness for (a, x) in statperm(statperm(P,G), G), and
thus (a, x) ∈ statperm(statperm(P,G), G). ✷
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statperm also is not a closure operation in its argument G, as inclu-
sion does not hold: take G = {(x,¬x)}, P = ∅. Then (x,¬x) ∈ G but
(x,¬x) 6∈ statperm(P,G), so G 6⊆ statperm(P,G). Monotony holds as O is
monotonous, but here idempotence fails: take G = ∅, P = {(a, x), (a, y)} such
that a∧x∧y 6⊢ ⊥. Then (a, x∧y) 6∈ statperm(P,G) = O({(a, x)})∪O({(b, y)})
but (a, x ∧ y) ∈ statperm(P, statperm(P,G)) = O({(a, x), (a, y)}).

Let us define the subverse of Horn rules, which are the rules satisfied by
statperm. Here, one of the substantive premises as well as the conclusion of
the Horn rule are changed from being an obligatory norm to being a permis-
sive norm. This simply says that if we have a set of obligations that imply
another obligation, then having the same set of obligation with the exception
of one premise, which now is a permission, will change the conclusion from an
obligation into a permission:

(HR)
↓
: (αi, ϕi) ∈ O(G) (i < n) & (αn, ϕn) ∈ statperm(P,G)

& θj ∈ Cn(γj) (j ≤ m) &

n
∧

k=0

(αk ∧ ϕk) 6⊢ ⊥

⇒ (β, ψ) ∈ statperm(P,G)

The subverses of each Horn rule for O1 and O3 are given in Table 1. We
will now prove a series of results leading up to the proof that the subverse set
is sufficient to characterize the static permission operation statperm. The way
to get there mimics the way Makinon and van der Torre took in 2003 [13].

Proposition 5.3 Let O be O1 or O3. If O satisfies a rule of the form (HR),
then the corresponding statperm operation satisfies the subverse(s) (HR)↓.

We omit the proof, as it is virtually the same as the original one [13].
Makinson and van der Torre have shown that for O the subverse set of

a Horn rule is sufficient to characterize the corresponding static permission
operation [13]. They have established that the problem reduces to showing that
the non-repetition property holds. The non-repetition property is satisfied if for
any (b, y) ∈ O(G ∪ {(c, z)}) there exists a derivation of (b, y) from G ∪ {(c, z)}
using the rules of the corresponding proof system, such that (c, z) is attached
to at most one leaf node.

Proposition 5.4 Consider O1 and D1. Let D be a derivation of (b, y) with a
leaf-set L, in which some leaves are used more than once. Then there exists a
derivation D′ of (b, y) from a leaf-set L′ ⊆ L where every leaf is used at most
once.

The proof given by Makinson and van der Torre [13] in the original frame-
work does not work in the new setting, because of the consistency proviso
restraining the application of AND. We provide an alternative proof, which
also would have worked for the original framework.

Proof. D is a derivation from L to (b, y), so by soundness and completeness,
it holds that y ∈ O1(N, b) for N consisting of the norms present in the leaf-set
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L. By definition of O1, ∃M ⊆ N and B ⊆ Cn(b) with B = b(M) and M 6= ∅,
y ⊣⊢ ∧h(M) and {y} ∪B 6⊢ ⊥.

Let {(a1, x1), ..., (an, xn)} =M .
Then a1 ∧ ... ∧ an ∧ x1 ∧ ... ∧ xn ⊣⊢

∧

B ∧ y 6⊢ ⊥.
As B ⊆ Cn(b), b ⊢ a1 ∧ ... ∧ an =

∧

B. We can thus build the following
derivation. For visual effect we omit the auxiliary premises in the proof tree.

(a1, x1)
SI

(a1 ∧ ... ∧ an, x1) ...

(an, xn)
SI

(a1 ∧ ... ∧ an, xn)
G-R-AND

(a1 ∧ ... ∧ an, x1 ∧ ... ∧ xn)
SI

(b, x1, ...xn)
EQ

(b, y)

Put L′ = M ⊆ N . This derivation uses all elements of L′ only once, so all
norms of the initial leaf-set L are used at most once. ✷

Corollary 5.5 O1 satisfies the non-repetition property.

Corollary 5.6 The subverse set of EQ, SI, R-AND suffices to characterize the
static permission operation based on O1.

Let us look at O3 now. The following result has been adapted from the
original framework [13] to fit O3. This proof is inspired by the work of Makinson
and van der Torre. Similarly to their proof, we are phasing the derivation a
certain way. The difference is that, given the nature of the output operations
we are considering, we are not able to phase the full derivation, and restrict
ourselves to certain sub-derivations.

Lemma 5.7 Let D be a derivation using the rules EQ, SI, R-ACT. Then at
any line l : (a, x) of the derivation:

• the head of l, x, classically implies the head of any line above it in D that l
is based on

• the conjunction of body and head of l, a∧ x, both classically implies the body
and the head of any line above it in D that l is based on

The proof is a straightforward proof by induction on the length of the
derivation, and is omitted here.

Lemma 5.8 Let D = {l1, ..., ln} be a derivation of (b, y) from leaf-set L using
the rules EQ, SI, R-ACT, and let li be a line where R-ACT is applied. Then
there exists a derivation D′ of (b, y) from leaf-set L, which is alike D, except for
the fact that the two sub-derivation above line li follow the order SI, R-ACT,
EQ.

Proof. Consider the derivation D.
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. . . (ai, xi) . . . . . . (aj , xj) . . .

(a, x′) (a ∧ x′, x′′) a ∧ x′ ∧ x′′ 6⊢ ⊥

li : (a, x
′ ∧ x′′)

R-ACT

(b, y)

. . . . . .

Let li be a line of the conclusion of an R-ACT rule. Let d1 be the left sub-
derivation, and d2 the right sub-derivation, with (a, x′) and (a∧x′, x′′) as their
respective roots and L(d1), L(d2) as leaf-sets. The rule EQ is invertible both
with SI and R-ACT, it can be applied at any point in the derivation. Without
loss of generality assume that EQ is applied at the bottom of the derivations
d1 and d2. This leaves rules SI and R-ACT above in the upper parts of d1 and
d2. By Lemma 5.7, it holds that a∧ x′ ∧ x′′ ⊢ ak and a∧ x′ ∧ x′′ ⊢ xk for every
norm (ak, xk) from which (a, x′ ∧ x′′) follows in the derivation D, so for all the
lines in d1 and d2. This gives that in d1 and d2, R-ACT followed by SI can be
inverted to SI followed by R-ACT; the following derivation

(b, y1) (b ∧ y1, y2) b ∧ y1 ∧ y2 6⊢ ⊥
R-ACT

(b, y1 ∧ y2) c ⊢ b
SI

(c, y1 ∧ y2)

can be transformed into:

(b, y1) c ⊢ b
SI

(c, y1)

(b ∧ y1, y2) c ∧ y1 ⊢ b ∧ y1
SI

(c ∧ y1, y2) c ∧ y1 ∧ y2 6⊢ ⊥

(c, y1 ∧ y2)

The fact that c ∧ y1 ∧ y2 6⊢ ⊥ follows from

• a ∧ x′ ∧ x′′ ⊢ c

• a ∧ x′ ∧ x′′ ⊢ y1

• a ∧ x′ ∧ x′′ ⊢ y2
• a ∧ x′ ∧ x′′ 6⊢ ⊥

So the derivations d1 and d2 can be phased to SI, R-ACT, EQ. ✷

Theorem 5.9 In a derivation using at most the rules EQ, SI, R-ACT and
having two leaves (a, x) and root (b, y), one of those leaves can be eliminated.

Proof. Looking at derivations having two leaves labelled with (a, x), we are
in the following scenario, with the depicted R-ACT node n being the meeting
point of two sub-derivations both containing (a, x):
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. . . (a, x) . . . . . . (a, x) . . .

p : (a1, x1) q : (a1 ∧ x1, x2) a1 ∧ x1 ∧ x2 6⊢ ⊥

n : (a1, x1 ∧ x2)
R-ACT

(b, y)

. . . . . .

By Lemma 5.8, we know that those two sub-derivations can be replaced by
derivations where the order of the rules is SI, R-ACT, EQ. Call n the meeting
node of the two sub-trees d1 and d2 containing (a, x), and such that the sub-tree
with n as root is phased SI, R-ACT, EQ.

The rest of the proof is very similar to the proof Observation 3 (c) done by
Makinson and van der Torre [13]. The rule R-ACT goes from (a, x), (a ∧ x, y)
with a∧ x∧ y 6⊢ ⊥ to (a, x∧ y). We call (a, x) the minor premise and (a∧ x, y)
the major premise. The succession of R-ACT can be written in a way where
no major premise of an application of R-ACT is the conclusion of another
application of R-ACT. This has been shown for ACT [13] (from (a, x) and
(a ∧ x, y) to (a, x ∧ y)), and it still holds for its restricted version.

As node q is a major premise of R-ACT, it is not the conclusion of another
R-ACT application, which means that the sub-tree d2 has as only leaf (a, x)
and root q and uses only one SI. The sub-tree d1 which has p as root uses SI
and R-ACT. By this and by Lemma 5.7, it holds that x2 ⊣⊢ x and x1 ⊢ x. So
x1 ⊣⊢ x1 ∧ x, and one can delete from the tree the sub-tree d2 with root q as
well as node n, leaving a derivation with a single (a, x) node:

(a, x)

(a2, x)
SI

. . .

. . .
SI

...
(a1, x1)

R-ACT

✟
✟✟❍
❍❍

(a, x)

✘✘✘✘✘✘❳❳❳❳❳❳
(a1 ∧ x1, x)

SI

✘✘✘✘✘✘❳❳❳❳❳❳
(a1, x1 ∧ x)

R-ACT
x1 ⊣⊢ x3

(a1, x3)
EQ

(b, y)

. . . . . .

✷

Corollary 5.10 In a derivation using at most the rules EQ, SI, R-ACT and
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having multiple leaves (a, x) and root (b, y), all but one of those leaves can be
eliminated.

Corollary 5.11 O3 satisfies the non-repetition property.

Corollary 5.12 The subverse set of EQ, SI, R-ACT suffices to characterize
the static permission operation based on O3.

6 Dynamic Positive Permission

Similarly to the static positive permission, the dynamic positive permission
takes into account a set of obligations G and a set of permissions P . However,
the static positive permission is not a straightforward result of an output oper-
ation. The main idea is that (a, x) is dynamically permitted if adding (a,¬x)
to the set of obligations causes a conditional prohibition of something that is
permitted under that same condition for the set G. This can be understood
as a form of conflict resolution; one allows something, if allowing the opposite
causes conflicts with the already existing permissions. The definition as found
in the original framework [13] had to be adapted slightly, as there, exact op-
posites are used in order to detect conflicts ((a, x) and (a,¬x)). In the old
systems out1 − out4 this was not a problem, as WO was always present. The
WO rule allowed to include any norm derivable from the exact opposite in this
conflict resolution. In the new systems this can no longer be used as is, because
of the lack of WO. Instead we have to work with collectively inconsistent pairs
so that all those norms that are no longer derivable via WO are still considered
explicitly.

Definition 6.1 (Dynamic positive permission)
Let G be a set of explicit obligations and P a set of explicit permis-

sions and O an output operation. Then (a, x) ∈ dynperm(P,G) iff ∃c, u, v
s.t. (c, u) ∈ O(G ∪ {(a,¬x)}) and a pair (c, v) ∈ statperm(P,G) with u ∧ v
inconsistent and c consistent.

To get a better understanding of how the dynamic permission works and
how it detects conflicts, let us look at the following example.

Example 6.2 Let f denote eating with fingers. c denote clean and e denote
eat. Let us assume that it is always permitted to eat something, but that if
something is not clean, then we should not eat it. So let G and P be such
that (¬c,¬e) ∈ O(G) and (⊤, e) ∈ statperm(P,G). Then it is dynamically
permitted to not eat with fingers, because adding (⊤, f) to the obligation set
would allow us to derive (¬c, f) which is in conflict with (¬c,¬e):

(¬c, f) ∈ O(G ∪ {(⊤, f)}) for (¬c,¬e) ∈ statperm(P,G) with f ∧ ¬e ⊢ ⊥.
So (⊤,¬f) ∈ dynperm(P,G).

Makinson and van der Torre give a general proof that if an output operation
satisfies a Horn rule, then the dynamic permission operation satisfies its inverse.
We cannot follow the same path as they did, as they use certain properties that
do not hold, such as inclusion. We do not give a general proof, but we show
that for the systems O1 and O3 specifically this holds.
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Proposition 6.3 Let O = O1, O3 be an output operation. If O satisfies a Horn
rule of the form (HR), then the corresponding dynamic permission satisfies the
inverse of the Horn rule (HR)−1.

Proof. This proof makes use of the proof theory, as D1 and D3 are sound and
complete w.r.t. O1 and O3 respectively. The relevant Horn rules and their
inverses are given in Table 1.

• EQ is straightforward. Details are omitted.

• Suppose O satisfies SI. Let P and G be such that (a, x) ∈ dynperm(P,G)
and a ⊢ b. We have (c, v) ∈ statperm(P,G) and (c, u) ∈ O(G ∪ {(a,¬x)})
for some u, v and c such that c consistent but u ∧ v ⊢ ⊥. By complete-
ness, (c, u) is derivable from G ∪ {(a,¬x)} in the corresponding proof sys-
tem D. Given SI, (c, u) is derivable from G ∪ {(b,¬x)}. So by soundness
(c, u) ∈ O(G∪{(b,¬x)}), and hence (b, x) ∈ statperm(P,G). Hence dynperm
satisfies (SI)−1.

• Suppose O satisfies R-AND. Take P and G such that (a, x) ∈ O(G),
(a,¬(x ∧ y)) ∈ dynperm(P,G) and a ∧ x ∧ y 6⊢ ⊥. We have
(c, v) ∈ statperm(P,G) and (c, u) ∈ O(G ∪ {(a, x ∧ y)}) for u, v and c such
that u ∧ v ⊢ ⊥ and c consistent. By completeness, (c, u) is derivable from
G ∪ {(a, x ∧ y)} and (a, x) is derivable from G in the corresponding proof
system D. D has R-AND and a ∧ x ∧ y 6⊢ ⊥. So one can combine the two
derivations to obtain a derivation of (c, u) from G ∪ {(a, y)}. By soundness
(c, u) ∈ O(G ∪ {(a, y)}). This implies (a,¬y) ∈ statperm(P,G), and shows
that dynperm satisfies (R-AND)−1.

• Suppose O satisfies R-ACT.
· Take P and G such that (a, x) ∈ O(G), (a,¬(x∧ y)) ∈ dynperm(P,G) and
a∧x∧y 6⊢ ⊥. Then (c, v) ∈ statperm(P,G) and (c, u) ∈ O(G ∪ {(a, x ∧ y)})
for c, v and u such that c consistent and u∧v ⊢ ⊥. By completeness, (a, x)
is derivable from G, and (c, u) is derivable from G ∪ {(a, x ∧ y)} in the
corresponding proof system D. D has R-ACT as rule and a ∧ x ∧ y 6⊢ ⊥.
One can combine the two derivations to obtain a derivation of (c, u) from
G∪ {(a∧ x, y)}. By soundness (c, u) ∈ O(G∪ {(a∧ x, y)}). It follows that
(a ∧ x,¬y) ∈ dynperm(P,G). Hence dynperm satisfies the first version of
(R-ACT)−1.

· Take P and G such that (a ∧ x, y) ∈ O(G), (a,¬(x ∧ y)) ∈ dynperm(P,G)
and a ∧ x ∧ y 6⊢ ⊥. Then (c, v) ∈ statperm(P,G) and (c, u) ∈ O(G ∪
{(a, x ∧ y)} for such that there is some c, v and u such c consistent and
u ∧ v ⊢ ⊥. By completeness, (a ∧ x, y) is derivable from G and (c, u)
is derivable from G ∪ {(a, x ∧ y)} in the corresponding proof system D.
D has R-ACT and a ∧ x ∧ y 6⊢ ⊥. So one can combine the two deriva-
tions to obtain a derivation of (c, u) from G ∪ {(a, x)}. By soundness,
(c, u) ∈ O(G ∪ {a, x}), andhence(a,¬x) ∈ dynperm(P,G). This shows
that dynperm satisfies the second version of (R-ACT)−1.

✷
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7 Conclusion and Future Work

In this paper we introduce the first proof systems for permission in terms
of constrained output. We use the two logics of constrained output with a
consistency check. The proofs are generalizations of the proofs of Makinson
and van der Torre for unconstrained output [13]. Only constrained output can
handle CTD reasoning, so O1/O3 together with the permissive norms defined in
this paper is the first approach satisfying the following minimal requirements:

• detachment semantics for obligation and permissive norms (negative, static,
dynamic) which can reason about CTD and dilemmas in a consistent way

• proof systems for these semantics both for obligation and one kind of per-
mission (static)

As topics for future research, we firstly would like to find out whether the
inverse rule-set is enough to fully characterize the negative permission and the
positive dynamic permission operations. Furthermore, it would be desirable to
find general proofs, as some of the proofs we provided are tailored to O1 and
O3 specifically. This would allow to include any future systems in the analysis.

There are several papers about permission as exception/derogation [2,9,19].
We leave it as a topic for future research to investigate if the account studied
in this paper yield any new insight on this notion.

Finally, we only consider two operations O1 and O3, whereas there are
four classical I/O operations out1-out4. Indeed, only two operations with a
consistency check have been defined so far. The definition of O2/O4 such that
they satisfy all the desired properties remains an open problem.
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Abstract

We often talk about general obligations of someone towards someone given that a certain

condition holds, such as “Anyone has an obligation towards one’s mother to be with her, given

that she is lonely.” To formalize such obligations with quantifiers, it is necessary to relativize

obligations to agents and a given condition. The paper thus proposes a quantified dyadic

deontic logic, which can not only index each dyadic deontic operator by a pair of terms but also

quantify variables in the pair. The proposed logic can accommodate some class of normative

conflicts without contradictions nor deontic explosions. Hilbert system of the logic is proposed

and it is shown to be sound and strongly complete for an intended Kripke semantics. Moreover,

a cut-free sequent calculus for the logic is provided.
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1 Introduction

How can we formalize conditional obligations with quantifiers of someone to-
wards someone, such as “Anyone has an obligation towards one’s mother to be
with her given that she is old and lonely”? The idea of making obligations rela-
tivized to something like agents or conditions is often found in the literature (e.g.
[4,7,16,46,49,24,25,1,43,15]), but few deontic logics along with the idea have been de-
veloped over first order logic.
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To formalize such conditional obligations, term-modal logic developed by [44,12]
is useful since it allows us not only index each modal operator by a single term,
but also quantify variables in the term. The logic thus enables us to formalize an
obligation of someone like “Anyone has an obligation to be with one’s mother” by
∀G∀H("HG → OG,GH), where "HG,,GH, and OG stand for “H is G’s mother”, “G is
with H”, and “G has an obligation”, respectively. Moreover, [41,15,14] have developed
expansions of term-modal logic such that each modal operator is indexed by a finite
sequence of terms. 6 In these expansions, we can naturally formalize not only the obli-
gation above, but also an obligation of someone towards someone like “Anyone has
an obligation towards one’s mother to be with her” with ∀G∀H("HG → OGH,GH),
where OGH stands for “G has an obligation towards H”.

The paper thus proposes a combination of term-modal logic and conditional
logic which we call term-sequence-dyadic deontic logic (TDDL). The proposed logic
enables us to index each dyadic deontic operator by a pair of terms and even to
quantify variables in the pair. Van Fraassen’s and Chellas’ conditional deontic log-
ics [47,6] are well known in the literature, but for the sake of simplicity, term-
sequence-dyadic deontic logic is based on the conditional logic CK introduced in
[5,6]. It nevertheless makes it possible to formalize “Anyone has an obligation to-
wards one’s mother to be and talk with her given that she is old and lonely” as
∀G∀H("HG → OGH (,GH ∧ )GH |$H ∧ !H)), where$H, !H,)GH, andOGH (·|$H ∧ !H)

stand for “H is old”, “H is lonely”, “G talks with H”, and “G has an obligation towards H
given that H is old and lonely”, respectively.

Furthermore, the paper also presents a sequent calculus for TDDL to show
the cut elimination and Craig interpolation theorems via purely proof-theoretic
methods. The proof-theoretic studies for conditional logics have been done in
[9,17,37,26,2,18,33,51,39], but much of their results are for propositional conditional
logics. On the other hand, the results of [2] for first order conditional logic are ob-
tained via a semantic method. Thus our sequent calculus has a novelty in this regard.

In addition to these formal results, we argue that our TDDL can be applied to ac-
commodate two kinds of normative conflicts, i.e., situations in which incompatible
obligations are directed towards different agents and situations in which incompat-
ible obligations are directed towards the same agent under different conditions. We
also use our cut-free sequent calculus to prove in a purely proof-theoretic way that the
normative conflicts of the first and second kinds do not give rise to contradictions or
arbitrary obligations. This proof-theoretic result is desirable particularly in deontic
logic, since it does not invoke any semantic notions so that it can make TDDL to
some extent compatible with a philosophical thesis found e.g. in [30,21] that norms
are neither true nor false.

Our TDDL should be compared with Frijters’ term-modal dyadic deontic logic
NCL given in [14, pp. 130–133]. His logic NCL is a combination of a term-modal
logic and CK with the universal modal operator such that each modal operator is
indexed by a formula and a pair of agents. Thus, except that the universal modal
operator is supplemented to it, it is quite similar to TDDL. However, our TDDL still

6 For other directions of developments of term-modal logic, see e.g. [23,35,48,28].
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has a novel formal aspect, i.e., a cut-free sequent calculus.
The paper proceeds as follows. Sect. 2 introduces the syntax and semantics for

TDDL, and Sect. 3 provides an sound and strongly complete axiomatization of it
(Theorems 3.1, 3.10). Sects. 4 presents a sequent calculus for TDDL to show the cut
elimination and Craig interpolation theorems (Theorems 4.4, 4.7). Sect. 5 demon-
strates that TDDL can accommodate some class of normative conflicts. The section
also proves in a purely proof-theoretic way that the accommodated normative con-
flicts do not give rise to contradictions nor arbitrary obligations (Proposition 5.1).

2 Syntax and Semantics for TDDL

The language ! of term-sequence-dyadic deontic logic TDDL consists of a countably
infinite set Var = { G, H, . . . } of variables, a countably infinite set Con = { 2, 3, . . . }

of constants, a countably infinite set Pred = { %,&, . . . } of predicate symbols each of
which has a fixed finite arity, and the set of logical constants: ⊥,→,∀, and O. The set
Term of terms is given by Var∪Con and a formula i is defined recursively as follows:

i F %C1 . . . C= | ⊥ | (i → i) | ∀Gi | OCC (i |i),

where % is a predicate symbol with arity =, G is a variable, and C, C1, . . . , C= are terms.
The boolean connectives ¬,∧,∨,↔,⊤ and the existential quantifier ∃ are defined as
usual, i.e., ¬i ≔ i → ⊥, i ∧ k ≔ ¬(i → ¬k), i ∨ k ≔ ¬i → k, i ↔ k ≔

(i → k) ∧ (k → i), ⊤ ≔ ⊥ → ⊥ and ∃Gi ≔ ¬∀G¬i. The sets FV()), FV(Γ) of
free variables in sets ) , Γ of terms and formulas are defined respectively as usual,
except that FV(OCB (i|k)) ≔ FV(C, B) ∪ FV(i, k). Substitutions C [B/G], i[B/G] of a
term B for a variable G in a term C and a formula i are also defined as usual, where
any bound variables in i are relabelled, if necessary, to avoid clashes.

The intended reading of OCB (i |k) is “given that k, agent C has an obligation to-
wards agent B to see to it that i.” This means that, when formalizing obligatory
sentences, we often somehow insert the expression “see to it that” in the very sen-
tences which enables us to interpret the ought-to-do sentences as the ought-to-be
sentences. For example, when formalizing “Adam has an obligation towards Barbara
to be and talk with her,” we first interpret it as “Adam has an obligation towards
Barbara to see to it that he is and talks with her” and then formalize the latter. In
addition, the monadic operator OCB for obligations, the dyadic and monadic oper-
ators PCB (·|·), PCB for permissions are defined as OCBi ≔ OCB (i|⊤), PCB (i |k) ≔
¬OCB (¬i |k) and PCBi ≔ PCB (i|⊤), respectively. Analogously, we read PCB (i |k) as
“agent C is permitted towards agent B to see to it that i given that k.”

The Kripke semantics for TDDL is given as follows. A frame is a tuple � =

(,, �, 5 ), where , is a nonempty set of worlds; � is a function which maps each
world F to a nonempty set �F of agents; 5 is an indexed selection function that maps
each pair (3, 4) ∈

⋃
F∈, (�F×�F) to a selection function, i.e., 534 : , ×2, → 2, ;
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5 also satisfies the cumulative domain condition 7 :

for all F, E ∈ , , - ⊆ , and (3, 4) ∈ �F × �F , if E ∈ 534 (F, -) then �F ⊆ �E .

Amodel is a tuple " = (�, �), where � is a frame and � is an interpretation that maps
each constant 2 to an agent � (2) ∈

⋂
F∈, �F , and each world F and each predicate

symbol % with arity = to a subset � (%, F) of �=
F . An assignment U is a function

from Var to
⋃

F∈, �F and its domain is extended to Term by U(2) ≔ � (2) for any
constant 2. The assignment U(G |3) stands for the same assignment as U except for
assigning 3 to G. The satisfaction relation and validity are given as follows.

Definition 2.1 Let" = (,, �, 5 ) be a model, U an assignment, F a world in, , and
i a formula such that U(G) ∈ �F for all G ∈ FV(i). We sometimes write (U(C), U(B))
as U(C, B) for short. The satisfaction relation ", U, F |= i between ", U, F and i is
defined as follows.

", U, F |= %C1 . . . C= iff (U(C1), . . . , U(C=)) ∈ � (%, F)

", U, F 6 |= ⊥

", U, F |= k → W iff ", U, F |= k implies ", U, F |= W

", U, F |= ∀Gk iff for all agents 3 ∈ �F , ", U(G |3), F |= k

", U, F |= OCB (W |k) iff for all worlds E ∈ , ,
E ∈ 5U(C ,B) (F, [[k]]

"
U ) implies ", U, E |= W

where [[k]]"U = { E ∈ , | ", U, E |= k }.

Definition 2.2 A formula i is valid if, for all models " , assignments U, and worlds
F such that U(G) ∈ �F for all G ∈ FV(i), it holds that ", U, F |= i. A set Γ of
formulas is satisfiable if there exists a model " , an assignment U and a world F such
that ", U, F |= i for all i ∈ Γ.

Two remarks should be noted here. The first is that the terms C, B in the satisfac-
tion relation of OCB (·|·) are not the agents but their names, contrary to a usual treat-
ment in multiagents systems based on propositional logic. The second is involved in
the interpretation of the clause “E ∈ 5U(C ,B) (F, [[k]]

"
U ).” In the paper we interpret

this clause as “E is made acceptable at F to C by B given that k.” This interpretation
is intuitive to some extent in the sense that it can be regarded as a generalization of
a usual interpretation that E is acceptable at F [31].

As expected from the semantics given, converse Barcan-like formulas are valid
whereas Barcan-like formulas are not.

Proposition 2.3 OCB (∀Gi|k) → ∀GOCB (i|k) is valid if G ∉ FV(C, B) ∪ FV(k).

Proof. Suppose G ∉ FV(C, B)∪FV(k) and fix anymodel", U, F such that U(I) ∈ �F

for all I ∈ FV(OCB (∀Gi |k) → ∀GOCB (i|k)). Assume also ", U, F |= OCB (∀Gi |k).
Take any agent 3 ∈ �F and any world E such that E ∈ 5U(G |3) (C ,B) (F, [[k]]

"
U(G |3)

).

We show ", U(G |3), E |= i. Since G ∉ FV(C, B) ∪ FV(k), we find that U(G |3) (C, B) =

7 As argued e.g. in [3,14], as for deontic logic, constant domain semantics seems a tenable semantics.
However, when a constant domain semantics was adopted forTDDL, we have to present a cut-free sequent
calculus for TDDL with Barcan-like formulas, which seems not so simple. To obtain a simple cut-free
sequent calculus for TDDL, we have taken a cumulative domain semantics in this paper.
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U(C, B) and [[k]]"
U(G |3)

= [[k]]"U . Thus we have E ∈ 5U(C ,B) (F, [[k]]
"
U ). Together

with ", U, F |= OCB (∀Gi|k), we deduce that ", U, E |= ∀Gi. The cumulative domain
condition also guarantees 3 ∈ �E from E ∈ 5U(C ,B) (F, [[k]]

"
U ) and 3 ∈ �F . Hence

we obtain ", U(G |3), E |= i. �

Proposition 2.4 ∀GOCB (i|k) → OCB (∀Gi|k) is not valid even if G ∉ FV(C, B)∪FV(k).

Proof. Consider a constant 2, a formula∀GO22 (%G |⊤) → O22 (∀G%G |⊤) and amodel
" = (,, �, 5 , �) such that , = { F, E }, �F = { c }, �E = { c, d }, 5cc (F,,) =

{ E }, � (%, E) = { c } and 2� = c. It is easy to see that ", U, F 6 |= ∀GO22 (%G |⊤) →

O22 (∀G%G |⊤) and G ∉ FV(2) ∪ FV(⊤), no matter how the assignment U is given. �

Both formulas are natural counterparts to converse Barcan and Barcan formulas, but,
as far as we know, they have rarely been considered in the literature on quantified
conditional logics. For example, no mentions on converse Barcan or Barcan formulas
are found in [13,32,2]. Only a fewmentions on both formulas are found in [10, p. 121].

3 Axiomatization of TDDL

This section provides a sound and strongly complete axiomatization for TDDL. The
Hilbert system H(TDDL) for TDDL consists of axioms PC1, PC2, PC3 and U; in-
ference rules MP, G, RCEA and RCK, displayed in Table 1. When = = 0 in RCK, RCK
essentially means that we may infer OCB (i|k) from i. We define the notion of proof
in H(TDDL) as usual and sometimes write ⊢H i to mean that i is provable in
H(TDDL).

PC1 i → (k → i)

PC2 (i → (k → W)) → ((i → k) → (i → W))

PC3 (¬k → ¬i) → (i → k)

U ∀Gi → i[C/G]

MP From i → k and i, infer k
G From i → k [H/G], infer i → ∀Gk if H ∉ FV(i,∀Gk)

RCEA From k ↔ k ′, infer OCB (i|k) ↔ OCB (i|k
′)

RCK From (i1 ∧ · · · ∧ i=) → i,
infer (OCB (i1 |k) ∧ · · · ∧ OCB (i= |k)) → OCB (i|k)

Table 1

Hilbert systemH(TDDL)

It is straightforward to establish soundness.

Theorem 3.1 (Soundness) If a formula i is provable inH(TDDL) then i is valid.

For strong completeness ofH(TDDL), we employ the canonical model construc-
tion. The canonical models for propositional and first order conditional logics are
introduced in [27,5] and [10,11], respectively. As far as we know, only [11] and [2]
consider varying domain semantics for first order conditional logics, but none of
them are designed so as to have cumulative domain. The canonical models for term-
modal logics and their analogues are introduced in [41,15,48,28]. Amongst them, [48]
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and [41] construct the canonical models to have cumulative domain. 8 The canonical
model we provide in the paper can be seen as an adaptation of them for conditional
logics.

For a set + of variables, we define ! (+) as the language obtained from ! by
replacing Var with + . We also denote ! (FV(Γ)) by ! (Γ).

Definition 3.2 Let +,+ ′ be sets of variables. The notation ! (+) ⊏ ! (+ ′) means
that + ⊆ + ′ and + ′\+ is countably infinite.

Let us now say that

• a formula i is provable from Γ inH(TDDL), denoted by Γ ⊢H i, if there exists a
finite subset Δ of Γ such that ⊢H

∧
Δ → i, where

∧
Δ denotes the conjunction

of all formulas in Δ (
∧
∅ ≔ ⊤);

• Γ is inconsistent if Γ ⊢H ⊥;

• Γ is consistent if Γ is not inconsistent;

• Γ is amaximally consistent set (MCS for short) if Γ is consistent and for all formulas
i in ! (Γ), i ∈ Γ or ¬i ∈ Γ;

• Γ has ∀-property if, for all ∀Gi in ! (Γ), there exists a term C ∈ Term(Γ) such that
i[C/G] → ∀Gi ∈ Γ.

In addition to the above, we put Var+ ≔ Var∪Var
′ throughout the paper, where Var′

is a “fresh” countably infinite set of variables disjoint from Var.

Proposition 3.3 Let Γ be an MCS in ! (Var+). If Γ ⊢H i then i ∈ Γ for all i in ! (Γ).

Lemma 3.4 Let Γ be a consistent set in ! (Var+) such that ! (Γ) ⊏ ! (Var+). There

exists an MCS Γ+ with ∀-property in ! (Var+) such that Γ ⊆ Γ+ and ! (Γ+) ⊏ ! (Var+).

Definition 3.5 Define

,c
≔ { Γ | Γ is an MCS with ∀-property in ! (Var+) such that ! (Γ) ⊏ !(Var+) };

|i | ≔ {Θ ∈ ,c | i ∈ Θ }.

The canonical model "c is the tuple (,c, �c, 5 c, �c) where

• �c
Γ
= Term(Γ);

• for all (C, B) ∈
⋃

Γ∈,c (�c
Γ
× �c

Γ
), 5 cCB is defined as follows:

· if - = |k | for some formula k in ! (Γ),

Δ ∈ 5 cCB (Γ, |k |) iff { W |OCB (W |k) ∈ Γ } ⊆ Δ;

· otherwise, 5 cCB (Γ, -) ≔ ∅;

• (C1, . . . , C=) ∈ �c (%, Γ) iff %C1 . . . C= ∈ Γ;

• �c (2) = 2.

8 [48] considers a constant domain semantics, but for the lack of Barcan-like formulas, constructs the
canonical pseudo model having cumulative domain via the techniques inspired by [8].
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Proposition 3.6 For all (C, B) ∈
⋃

Γ∈,c (�c

Γ
× �c

Γ
), the canonical model’s 5 cCB is well-

defined.

Proof. Suppose |k | = |k ′ |. We show the following equivalence

OCB (W |k) ∈ Γ iff OCB (W |k
′) ∈ Γ

holds for any formula k, k ′ in !(Γ). We first establish ⊢H k → k ′. Suppose not.
Since the set { k,¬k ′ } is then consistent, by Lemma 3.4 we have an MCS Δ ∈ ,c

such that { k,¬k ′ } ⊆ Δ. Thus, we can deduce by |k | = |k ′ | that k ′,¬k ′ ∈ Δ, which
contradicts the consistency of Δ. Hence ⊢H k → k ′. Similarly, ⊢H k ′ → k. As
⊢H k ↔ k ′ holds, it follows from RCEA that ⊢H OCB (W |k) ↔ OCB (W |k

′). This gives
the above equivalence. �

Proposition 3.7 The canonical model is a model.

Proof. We need to confirm that �c (2) ∈
⋂

Γ∈,c �c
Γ
and that the frame of the canon-

ical model satisfies the cumulative domain condition, i.e., for all Γ,Δ ∈ ,c, - ⊆ ,c

and (C, B) ∈ (�c
Γ
)2, if Δ ∈ 5CB (Γ, -) then �Γ ⊆ �Δ. The former is immediate so we

confirm only the latter. Take any Γ,Δ ∈ ,c, - ⊆ ,c and (C, B) ∈ (�c
Γ
)2. Suppose

Δ ∈ 5 cCB (Γ, -) and D ∈ �c
Γ
. By 5 cCB (Γ, -) ≠ ∅, it holds that { W |OCB (W |k) ∈ Γ } ⊆ Δ

for some formula k in !(Γ) such that - = |k |. Also, OCB (%D → %D |k) ∈ Γ holds.
Therefore %D → %D ∈ Δ hence D ∈ �c

Δ
, as required. �

Lemma 3.8 Let Γ be an MCS with ∀-property in ! (Var+) such that ! (Γ) ⊏ ! (Var+).

Given that ¬OCB (i |k) ∈ Γ, there exists an MCS Δ with ∀-property in ! (Var+) such

that ! (Δ) ⊏ ! (Var+), ¬i ∈ Δ and Δ ∈ 5 cCB (Γ, |k |).

Proof. Suppose¬OCB (i|k) ∈ Γ. To establish thatΔ0 ≔ { ¬i }∪{ W |OCB (W |k) ∈ Γ }

is consistent, suppose for contradiction that Δ0 is inconsistent. Then, where
OCB (W8 |k) ∈ Γ, ⊢H W1 ∧ · · · ∧ W= → i for some =. We obtain Γ ⊢H ⊥ as follows.

1. ⊢H W1 ∧ · · · ∧ W= → i Supposition for contradiction

2. ⊢H OCB (W1 |k) ∧ · · · ∧ OCB (W= |k) → OCB (i|k) 1, RCK

3. Γ ⊢H OCB (i|k) 2, OCB (W8 |k) ∈ Γ, PC

4. Γ ⊢H ⊥ 3, ¬OCB (i|k) ∈ Γ, PC

However, Γ should be consistent so a contradiction occurs. Thus Δ0 is consistent.
Also, ! (Δ0) ⊏ ! (Var+) from the definition of Δ0 and ! (Γ) ⊏ !(Var+).

By applying Lemma 3.4 to Δ0, we obtain an MCS Δ+ with ∀-property in !(Var+)

such that Δ0 ⊆ Δ+ and ! (Δ+) ⊏ ! (Var+). We need to show that ¬i ∈ Δ+ and Δ+ ∈
5 cCB (Γ, |k |). The former is obvious. For the latter, note that FV(k) ⊆ �c

Γ
and C, B ∈

�c
Γ
from ¬OCB (i|k) ∈ Γ. Then 5 cCB (Γ, |k |) = {Δ ∈ ,c | { W |OCB (W |k) ∈ Γ } ⊆ Δ }.

Therefore Δ+ ∈ 5 cCB (Γ, |k |) from { W |OCB (W |k) ∈ Γ } ⊆ Δ0 ⊆ Δ+. �

Lemma 3.9 Let "c = (,c, �c, 5 c, �c) be the canonical model and Uc the assignment

defined by Uc (G) = G for all G ∈ Var
+. For all i, Γ ∈ ,c such that i is in ! (Γ),

"c, Uc, Γ |= i iff i ∈ Γ.



Sawasaki and Sano 383

Proof. We prove only when i is OCB (W |k). For the right-to-left direction, suppose
OCB (W |k) ∈ Γ. To show "c, Uc, Γ |= OCB (W |k), fix any world Δ ∈ ,c such that
Δ ∈ 5 cCB (Γ, [[k]]

"c

Uc ). We show "c, Uc,Δ |= W. Note first that FV(k) ⊆ �c
Γ
and

C, B ∈ �c
Γ
since OCB (W |k) is in ! (Γ); that [[k]]"

c

Uc = |k | by inductive hypothesis,
where recall |k | = {Δ′ ∈ ,c | k ∈ Δ′ }. It then follows from Δ ∈ 5 cCB (Γ, [[k]]

"c

Uc ) that
{ W′ |OCB (W

′ |k) ∈ Γ } ⊆ Δ. Since W ∈ Δ from OCB (W |k) ∈ Γ, by inductive hypothesis
we obtain "c, Uc,Δ |= W, as required. For the other direction, supposeOCB (W |k) ∉ Γ.
We show "c, Uc, Γ 6 |= OCB (W |k). In this case, ¬OCB (W |k) ∈ Γ since OCB (W |k) is in
! (Γ). Hence by Lemma 3.8 we obtain an MCS Δ with ∀-property in ! (Var+) such
that ! (Δ) ⊏ ! (Var+), Δ ∈ 5 cCB (Γ, |k |) and ¬W ∈ Δ, which implies W ∉ Δ. From Δ ∈

5 cCB (Γ, |k |) and W ∉ Δ, we deduce by inductive hypothesis that Δ ∈ 5 cCB (Γ, [[k]]
"c

Uc )

but "c, Uc,Δ 6 |= W. This implies "c, Uc, Γ 6 |= OCB (W |k). �

Strong completeness ofH(TDDL) now follows from Lemmas 3.4 and 3.9.

Theorem 3.10 (Strong completeness) Any consistent set of formulas in ! is satis-

fiable.

4 Sequent Calculus for TDDL

This section presents a sequent calculus G(TDDL) for TDDL to show the cut elimi-
nation and Craig interpolation theorems.

Let us first illustrate a notion of sequents following [34, p. 7]. Given finite mul-

tisets Γ,Δ of formulas, an expression Γ ⇒ Δ we call a sequent. Intuitively, it means
that some formulas in Δ follow from all the formulas in Γ. When Γ = ∅, the sequent
⇒ Δ means that some formulas in Δ follow without any assumptions. On the other
hand, when Δ = ∅, the sequent Γ⇒ means that a contradiction follows from all the
formulas in Γ.

The sequent calculus G(TDDL) consists of initial sequents (83) and (⊥); struc-
tural rules (⇒ F), (F ⇒), (⇒ 2), (2 ⇒) and (�DC); logical rules (⇒→), (→⇒),
(⇒ ∀), (∀ ⇒) and (O), displayed in Table 2.
For short, we often write the rule (O) as

(k8 ⇔ k)1686= i1, . . . , i= ⇒ i
(O)

OCB (i1 |k1), . . . ,OCB (i= |k=) ⇒ OCB (i|k)

where k8 ⇔ k is a pair of two sequents k8 ⇒ k and k ⇒ k8 . The rule (O) is
imported in the form of the two-sided rule from the one-sided rule (CK6) introduced
in [37, p. 14]. The reader may regard (O) as “applying RCK together with RCEA.” We
define the notion of derivation in G(TDDL) as usual and write ⊢G i to mean that i
is derivable in G(TDDL).

Example 4.1 The sequent

∀G∀H("GH → OGH (,GH ∧ )GH |$H ∧ !H)), "01 ⇒ O01 (,01 |$1 ∧ !1)

is derivable in G(TDDL) as follows, where (∧ ⇒) is a derived rule in G(TDDL).
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i ⇒ i (83) ⊥ ⇒ (⊥)

Γ⇒ Δ
(⇒ F)

Γ⇒ Δ, i

Γ⇒ Δ
(F ⇒)

i, Γ⇒ Δ

Γ⇒ Δ, i, i
(⇒ 2)

Γ⇒ Δ, i

i, i, Γ⇒ Δ
(2 ⇒)

i, Γ⇒ Δ

Γ⇒ Δ, i i,Θ⇒ Σ
(�DC)

Γ,Θ⇒ Δ, Σ

i, Γ⇒ Δ, k
(⇒→)

Γ⇒ Δ, i → k

Γ⇒ Δ, i k,Θ⇒ Σ
(→⇒)

i → k, Γ,Θ⇒ Δ, Σ

Γ⇒ Δ, i[H/G]
(⇒ ∀)†

Γ⇒ Δ,∀Gi

i[C/G], Γ⇒ Δ
(∀ ⇒)

∀Gi, Γ⇒ Δ

k1 ⇒ k k ⇒ k1 · · · k= ⇒ k k ⇒ k= i1, . . . , i= ⇒ i
(O)

OCB (i1 |k1), . . . ,OCB (i= |k=) ⇒ OCB (i|k)

†: H is not a free variable in Γ,Δ,∀Gi.

Table 2

Sequent calculus G(TDDL)

"01 ⇒ "01

$1 ∧ !1 ⇒ $1 ∧ !1

,01 ⇒ ,01
(∧ ⇒)

,01 ∧ )01 ⇒ ,01
(O)

O01 (,01 ∧ )01 |$1 ∧ !1) ⇒ O01 (,01 |$1 ∧ !1)
(→⇒)

"01 → O01 (,01 ∧ )01 |$1 ∧ !1), "01 ⇒ O01 (,01 |$1 ∧ !1)
(∀ ⇒)

∀G∀H("GH → OGH (�GH ∧ )GH |$G ∧ !G)), "01 ⇒ O01 (,01 |$1 ∧ !1)

Proposition 4.2 (Equipollence) A formula i is provable inH(TDDL) iff ⇒ i is

derivable in G(TDDL).

Proof. The left-to-right direction is established by induction on length of a proof of
i. The other direction immediately follows from the claim that ⊢G Γ ⇒ Δ implies
⊢H

∧
Γ →

∨
Δ, where

∧
Γ is the conjunction of all formulas in Γ (

∧
∅ ≔ ⊤)

and
∨
Δ is the disjunction of all formulas in Δ (

∨
∅ ≔ ⊥). The claim is shown by

induction on height of a derivation of Γ ⇒ Δ. In the case that the derivation ends
with an application of (O), we obtain a proof in H(TDDL) of the corresponding
formula to Γ⇒ Δ by applying RCK together with RCEA. �

To show the cut elimination theorem for G(TDDL), let us make a few prelimi-
naries. To begin, we define two alternatives of G(TDDL).

Definition 4.3 The sequent calculus G− (TDDL) is the calculus obtained from
G(TDDL) by removing (�DC). On the one hand, the sequent calculus G∗ (TDDL)

is the calculus obtained from G(TDDL) by replacing (�DC) with the extended rule
(�DC∗) which is introduced in [34],:
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Γ⇒ Δ, i< i=,Θ⇒ Σ
(�DC∗),

Γ,Θ⇒ Δ, Σ

where i is called a cut-formula and <, = > 0 denote the numbers of occurrences of
i. The notions of derivation in G− (TDDL) and G∗ (TDDL) are defined in the same
way as in G(TDDL).

In addition, we say that a derivation D in G∗ (TDDL) is of the (�DC∗)-bottom form

if the last applied rule in D is (�DC∗) and there are no other applications of (�DC∗)
inD. We also define the complexity of cut-formula i and the weight of a derivation
D by the number of logical constants other than ⊥ occurring in i and the number
of sequents occurring in D except for its root, respectively. Finally, we assume in
what follows that free variables and bound variables in derivations are thoroughly
separated.

Theorem 4.4 (Cut elimination) If Γ⇒ Δ is derivable in G(TDDL) then it is deriv-

able in G− (TDDL).

Proof. Since (�DC) is an instance of (�DC∗), it suffices to show that ⊢G∗ Γ ⇒ Δ

implies ⊢G− Γ ⇒ Δ. It is not difficult to see that this is obtained from the following
claim:

Given a derivation D of (�DC∗)-bottom form of a sequent Γ ⇒ Δ in G∗ (TDDL),
there is a derivation of Γ⇒ Δ in G− (TDDL).

We establish the claim by double induction on complexity of cut-formula and weight
of such a derivation D. Since the other cases are dealt with in the same way as in
first order logic, we confine ourselves to the case that both of the left and right upper
sequents (of the only one application) of (�DC∗) in D are obtained by (O). We may
also assume that both of the numbers<, = of cut-formula are more than zero, because
otherwise a derivation of Γ⇒ Δ in G− (TDDL) is immediately obtained from one of
the upper sequents of (�DC∗) by applying (⇒ F) and (F ⇒) repeatedly. Thus,D is
now of the form

·
·
·

(k8 ⇔ k)1686:

·
·
·

i: ⇒ i
(O)

OCB (i: |k:) ⇒ OCB (i |k)

·
·
·

(k ⇔ k′)=

·
·
·

(k′
9
⇔ k′)16 96;

·
·
·

i= , i′
;
⇒ i′

(O)
(OCB (i |k))

= ,OCB (i
′
;
|k′

;
) ⇒ OCB (i

′ |k′)
(�DC)∗

OCB (i: |k:) ,OCB (i
′
;
|k′

;
) ,⇒ OCB (i

′ |k′)

where OCB (i: |k:) = OCB (i1 |k1) , . . . ,OCB (i: |k:), OCB (i
′
;
|k′

;
) = OCB (i

′
1 |k

′
1) , . . . ,OCB (i

′
;
|k′

;
),

i: = i1, . . . , i: , and i′
;
= i′1, . . . , i

′
;
. Put derivationsD8

1,D
8
2 andD3 as

·
·
·

k8 ⇒ k

·
·
·

k ⇒ k′
D8

1 = (�DC∗)
k8 ⇒ k′

·
·
·

k′ ⇒ k

·
·
·

k ⇒ k8
D8

2 = (�DC∗)
k′ ⇒ k8

·
·
·

i: ⇒ i

·
·
·

i= , i′
;
⇒ i′

D3 = (�DC∗)
i: , i

′
;
⇒ i′

respectively. Note that each (�DC∗) is eliminable by inductive hypothesis since the
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complexities ofD8
1,D

8
2 andD3 are reduced. By usingD

8
1,D

8
2 andD3,we can construct

a derivation of the same sequent in G− (TDDL) as follows.

D8
1,D

8
2

(k8 ⇔ k ′)1686:

··
·

(k ′9 ⇔ k ′)1686;

D3

i: , i
′
;
⇒ i′

(O)
OCB (i: |k:),OCB (i

′
;
|k ′

;
) ⇒ OCB (i

′ |k ′)

Hence the claim was established. �

It is remarked that the Craig interpolation theorem for conditional logic CK [6]
was established in [36, Theorem 6.11]. We can still preserve the theorem in our
setting. That is, we show that G(TDDL) enjoys the Craig interpolation theorem by
Maehara method [29] as a corollary of the cut elimination theorem.

Definition 4.5 A partition of a sequent Γ ⇒ Δ is a pair ((Γ1,Δ1), (Γ2, Γ2)) of pairs
of finite multisets of formulas such that Γ = Γ1, Γ2 and Δ = Δ1,Δ2. In what follows,
a partition is denoted by (Γ1 : Δ1), (Γ1 : Δ2).

Lemma 4.6 Let Γ ⇒ Δ be a sequent derivable in G(TDDL). If (Γ1 : Δ1), (Γ2 : Δ2)

is a partition of the sequent Γ ⇒ Δ, then there is an interpolant i of it, i.e., i satisfies

the following: the sequents Γ1 ⇒ Δ1, i and i, Γ2 ⇒ Δ2 are provable in G(TDDL),

FV(i) ⊆ FV(Γ1,Δ1) ∩ FV(Γ2,Δ2), and Pred(i) ⊆ Pred(Γ1,Δ1) ∩ Pred(Γ2,Δ2).

Proof. Suppose that Γ ⇒ Δ be a sequent derivable in G(TDDL) hence also in
G− (TDDL). Our proof is done by induction on the height of the derivation D of
Γ ⇒ Δ in G− (TDDL). In what follows, we exclude partitions of the form (∅ : ∅),
(Γ : Δ) or (Γ : Δ), (∅ : ∅), since ⊤ and ⊥ are easily seen to be interpolants for these
partitions, respectively. We skip the base case and directly move to the inductive
step. Here we only show the cases where Γ⇒ Δ is obtained by (O).

Let us deal with the case where a sequent is obtained by (O). Let

(i8 ⇔ i)1686= (Σ81, Σ82)1686= ⇒ k
O

(OGH (Σ81 |i8),OGH (Σ82 |i8))1686= ⇒ OGH (k |i)

be the last step of a derivation where Σ8 := Σ81, Σ82 and OGH (Σ |i) means
{OGH (W |i) | W ∈ Σ }. There are two cases depending on which side of a parti-
tion of the lower sequent contains OGH (k0 |i0). We show only the case that
OGH (k0 |i0) lies in the right side of a partition of the lower sequent. Let
((OGH (Σ81 |i8))1686= : ∅), (OGH (Σ82 |i8))1686= : OGH (k0 |i0)) be a partition. It is
remarked that (OGH (Σ81 |i8))1686= is not empty. Fix such : . Since i0 ⇒ i: is deriv-
able by assumption, our inductive hypothesis implies there is an interpolant d: for
(i0 : ∅), (∅ : i:), i.e., both of i0 ⇒ d: and d: ⇒ i: are derivable in G(TDDL)
and X(d:) ⊆ X(i0) ∩ X(i:) where X is FV or Pred. Since i: ⇒ i0 is derivable
in G(TDDL) (by assumption), we can also obtain that d: ⇒ i0 is derivable in
G(TDDL). By a similar argument we can show that all sequents in (i8 ⇔ d:)1686=,
i.e., { d: ⇒ i8 , i8 ⇒ d: | 1 6 8 6 = } are derivable in G(TDDL).

Moreover, by inductive hypothesis to the other premises of the above last appli-
cation of (O), we obtain:

• both (Σ81)1686= ⇒ j and j, (Σ82)1686= ⇒ k0 are derivable in G(TDDL),
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• X(j) ⊆ X((Σ81)1686=) ∩ X((Σ82)1686=, k0) where X is FV or Pred.

Then, it is easy to see thatOGH (j |d:) is an interpolant for our partition. This finishes
to show the case where a sequent is derived by the rule (O). �

Theorem 4.7 (Craig interpolation theorem) If ⇒ i → k is derivable in

G(TDDL), then there is a formula j such that both ⇒ i → j and ⇒ j → k are

derivable inG(TDDL),Var(j) ⊆ Var(i)∩Var(k), and Pred(j) ⊆ Pred(i)∩Pred(k).

Proof. Suppose that⇒ i → k is derivable in G(TDDL). By the following deriva-
tion:

⇒ i → k

i ⇒ i k ⇒ k
→⇒

i, i → k ⇒ k
(�DC)

i ⇒ k

the sequent i ⇒ k is also derivable in G(TDDL), i.e., also in G− (TDDL) . Consider
a partition (i : ∅), (∅ : k) of i ⇒ k. It follows from Lemma 4.6 that there is an
interpolant j of the partition. Then, both ⇒ i → j and ⇒ j → k are derivable
in G(TDDL) and Var(j) ⊆ Var(i) ∩ Var(k) and Pred(j) ⊆ Pred(i) ∩ Pred(k), as
required. �

5 Application to Normative Conflicts

In this final section, we argue that TDDL can accommodate some class of norma-
tive conflicts. We also show in a purely proof-theoretic way that the accommodated
normative conflicts do not give rise to contradictions or arbitrary obligations. This
proof-theoretic result is desirable particularly in deontic logic since it makes TDDL
to some extent compatible with the thesis that norms are neither true nor false.

It is widely accepted in the literature [21,20,31] that the standard deontic logic
SDL (i.e., the normal modal propositional logic KD) cannot properly formalize situa-
tions called normative conflicts in which an agent has obligations to do incompatible
things. In SDL, the only natural formalization of such situations isO%∧O¬%, which
contradicts an axiom D (¬(Oi∧O¬i)) in SDL. As is often pointed out, the logic ob-
tained from SDL by removing D, i.e., the smallest normal modal propositional logicK,
still fails to formalize normative situations properly. It is because an arbitrary obliga-
tionOk follow from a normative conflictO%∧O¬% via a formula (O%∧O¬%) → Ok

provable in K (e.g. [20, pp. 297–8]). Therefore, it has been explored by many deon-
tic logicians how normative conflicts can be accommodated, i.e., how they can be
formalized without giving rise to a contradiction nor an arbitrary obligation.

Our approach to accommodate normative conflicts is to relativize obligations to
a pair of agents and a condition. It is a familiar strategy in the literature and in
fact found e.g. in [24,25,19,50]. However, TDDL can accommodate a larger class of
normative conflicts than their logics can.

Normative conflicts of the first kind that TDDL can accommodate are situations
in which incompatible obligations are directed towards different agents. Consider a
situation in which Adam (0) has obligations towards Barbara (1) and Charles (2)
to be with her and him, respectively, but cannot be with both. Let ,01 and ,02

represent “Adam is with Barbara” and “Adam is with Charles”. Since we may identify
,02 with ¬,01 in this specific example, the current situation is simply formalized
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in TDDL by
O01,01 ∧ O02¬,01.

We can confirm that the formula does not give rise to a contradiction or an arbitrary
obligation because Barbara and Charles are different persons. More precisely, we
can falsify the following two formulas by considering an interpretation � such that
� (1) ≠ � (2):

(O01,01 ∧ O02¬,01) → ⊥

(O01,01 ∧ O02¬,01) → OCB (i |k)

Deontic logics with no indices are difficult to accommodate normative conflicts of
the first kind with a succinct formulation.

Normative conflicts of the second kind that TDDL can accommodate are situa-
tions in which incompatible obligations are directed towards the same agent under
different conditions. For example, consider a situation in which Adam has a condi-
tional obligation towards Barbara to be with her given that she is old. Assume also
that in the situation he has another conditional obligation towards her not to be with
her given that COVID-19 is still spreading. Let,01, $1 and � represent “Adam is
with Barbara”, “Barbara is old” and “COVID-19 is spreading”, respectively. Then the
current situation is formalized in TDDL by

O01 (,01 |$1) ∧ O01 (¬,01 |�).

We can confirm that the formula does not also give rise to a contradiction or an
arbitrary obligation because the conditions $1 and � are not logically equivalent.
More precisely, we can falsify the following two formulas considering a model "
and an assignment U such that [[$1]]"U ≠ [[�]]"U :

(O01 (,01 |$1) ∧ O01 (¬,01 |�)) → ⊥

(O01 (,01 |$1) ∧ O01 (¬,01 |�)) → OCB (i |k)

Deontic logics with no conditional obligations face difficulties in accommodating
normative conflicts of the second kind. The most well-known difficulty is that such
logics cannot express non-monotonicity of obligations. For example, consider the
above situation in which Adam has a conditional obligation towards Barbara to be
with her given that she is old. Consider also another situation in which Adam has a
conditional obligation towards Barbara to be with her given that she is old but not
lonely. Let also !1 represent “1 is lonely”. Then, the most natural formalizations in
deontic logics with no conditional obligations would be $1 → O01,01 and $1 ∧

¬!1 → O01,01. However, since the former implies the latter, these formalizations
do not reflect our intuition that the latter may fail even if the former holds. Thus,
deontic logicswith no conditional obligations are difficult to accommodate normative
conflicts of the second kind while keeping non-monotonicity of obligations.

Normative conflicts of the second kind need more fine-grained formalizations
when they follow from another situations involved in quantification. Consider a
situation in which Adam has an obligation towards Barbara not to be with her given
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that COVID-19 is still spreading but in which she is his mother. Suppose also that we
accept that anyone has an obligation towards one’s mother to be with her given that
she is old. Then, from the current situation, a normative conflict of the second kind
follows in which Adam has an obligation towards Barbara not to be with her given
that COVID-19 is still spreading, as well as another obligation towards her to be with
her given that she is old. We shall call such a normative conflict derived normative

conflict.
Our TDDL can formalize derived normative conflicts as well. Let,01,$1,� and

"10 represent “Adam is with Barbara”, “Barbara is old”, “COVID-19 is spreading”
and “Barbara is Adam’s mother”, respectively. Then, the first situation is formalized
in TDDL by

O01 (¬,01 |�) ∧ "10 ∧ ∀G∀H("HG → OGH (,GH |$H)),

from which the derived normative conflict above is obtained in the following form:

O01 (¬,01 |�) ∧ O01 (,01 |$1).

As before, we can confirm that the formula does not give rise to a contradiction ⊥ or
an arbitrary obligation OCB (i|k).

Against our claim requiring conditionals for the second kind, there might be the
following objection: no additional machineries are necessary to accommodate the
second kind, since we can formalize even such conditions just by adding the third
index to modal operators. For example, consider the aforementioned situation in
which Adam has an obligation towards Barbara to be with her given that she is
old and in which he has another obligation towards her not to be with her given
that COVID-19 is still spreading. According to the objection, it can be formalized
as O01>,01 ∧ O012,01, where > and 2 denotes the conditions that Barbara is old
and that COVID-19 is spreading. Clearly, it does not give rise to contradictions or
arbitrary obligations. For ease of reference, we shall refer to an approach formalizing
conditions in such a way as the indexing approach.

However, the use of indices representing conditions should be avoided to keep
the same interpretation of logical constants in a given context. Consider a situation
in which Adam has an obligation to be and talk with Barbara given that she is old
and lonely. Whatever formalization is given to it, we would require that two logical
constants “and” in it be formalized in the same way. The indexing approach basi-
cally faces a difficulty when formalizing logical constants appearing in both of the
antecedent and the consequent of a conditional obligation. Amongst those which
might fall into the indexing approach, Gabbay [16] and Tamminga [43] can avoid the
difficulty. It is because the former allows indices to be formulas and the latter repre-
sents conditionals by actions of some group which have no logical forms. However,
they are based on propositional logic, so difficult to accommodate derived normative
conflicts requiring quantifiers to formalize.

Against our claim that derived normative conflicts require quantifiers for formal-
ization, one might think that finite conjunctions or disjunctions are enough and that
quantifiers are not necessary in deontic logic, since we may assume the number of
agents to be finite. We can answer this criticism by putting forth two points.
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First, as pointed out e.g. in Hilpinen and McNamara [22, p. 53] and Frijters [14, p.
70], there are deontic sentences inwhich the de re/de dicto distinction should bemade.
For example, it may be the case that Adam has an obligation towards Barbara to take
someone’s class in the university (since she is sending him money for class), but not
that there is someone such that he has an obligation towards her to take the person’s
class in the university. Given a formula �0G representing “Adam takes G’s class in
the university”, the intuition can be captured in TDDLwith formulasO01∃G�0G and
∃GO01�0G since the former does not imply the latter. It seems difficult to capture
this intuition in the framework of propositional deontic logic. See Frijters [14, p. 70]
for a similar example.

Second, even when the domain of quantification is a finite set { 01, . . . , 0= } of
agents, it is not a decisive proposition in deontic logic that a finite conjunction %01∧

· · · ∧ %0= and a universally quantified sentence ∀G%G have the same truth value. It
is because we sometimes consider a universally quantified sentence like “everyone
should be honest” to be true without knowing how the domain of quantification is
like. We can find this interesting idea in F. Ramsey’s Philosophical Papers [38, p.
145], in which he calls such universal sentences variable hypotheticals. Of course our
current semantics is not suitable for this idea. However, with this idea we can claim
the need of quantifiers for deontic logic.

To sum up, TDDL can accommodate the class of normative conflicts of the first
and second kinds. As is often said, SDL andK cannot accommodate the first kind, nor
the second kind. Kooi and Tamminga [24,25], Glavanicova[19] and Yamada [50] can
accommodate the first kind, but not the second kind due to the lack of conditional
obligations. Gabbay [16] and Tamminga [43] can be applied to accommodate some
of the second kind, but not all. They cannot be applied to accommodate derived
normative conflicts due to the lack of quantifiers.

Finally, we show in a purely proof-theoretic way that the normative conflicts of
the first and second kinds do not give rise to contradictions nor arbitrary obligations.

Proposition 5.1 Let G, H, I, F be pairwise distinct variables and %,&, ', (, ) pairwise

distinct nullary predicate symbols.

1. A sequent OGH% ∧ OGI¬% ⇒ ⊥ is not derivable in G(TDDL).

2. A sequent OGH% ∧ OGI¬% ⇒ OGF( is not derivable in G(TDDL).

3. A sequent OGH (% |&) ∧ OGH (¬% |') ⇒ ⊥ is not derivable in G(TDDL).

4. A sequent OGH (% |&) ∧ OGH (¬% |') ⇒ OGF (( |)) is not derivable in G(TDDL).

Proof. We first give proofs of items 1, 2. Recall that¬i, i∧k andOCBi are abbrevia-
tions of i → ⊥, ¬(i → ¬k) andOCB (i|⊤), respectively. Recall also that G

− (TDDL)
is the sequent calculus obtained from G(TDDL) by removing (�DC). By induction
on 8 ∈ N, we can establish the fact that a sequent

OGH%
9 ,OGI¬%

: , (OGH% ∧ OGI¬%)
; ⇒ (OGH% → ¬OGI¬%)

<,¬OGI¬%
=,⊥>,OGF(? , (@

is not derivable in G− (TDDL) with at most height 8 for any 9 , :, ;, <, =, >, ?, @ > 0,
where each superscript denotes the number of occurrences of each formula. We can
use the fact to show items 1, 2. We first show item 1, i.e., that OGH% ∧ OGH¬% ⇒
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⊥ is not derivable in G(TDDL). Suppose not. By the cut elimination theorem of
G(TDDL) (Theorem 4.4), OGH% ∧ OGH¬% ⇒ ⊥ is derivable in G− (TDDL). On the
other hand, the above fact implies that it is not derivable in G− (TDDL). This is a
contradiction so item 1 holds. By the same argument, item 2 also holds.

We then give proofs of items 3, 4. By induction on 8 ∈ N, we can establish the
fact that a sequent

OGH (% |&)
9 ,OGH (¬% |')

: , (OGH (% |&) ∧ OGH (¬% |'))
; ⇒

(OGH (% |&) → ¬OGH (¬% |'))
<,¬OGH (¬% |')

=,⊥>,OGF (( |))
? , (@

is not derivable in G− (TDDL) with at most height 8 for any 9 , :, ;, <, =, >, ?, @ > 0,
where each superscript denotes the number of occurrences of each formula. Thus,
by the same argument as for items 1, 2, we can prove items 3, 4. �

Therefore, we can claim that TDDL is to some extent compatible with the thesis
that norms are neither true nor false.

Conclusion

We shall close the paper by listing four directions for further studies.
The first direction to be pursued is to change the framework of TDDL on condi-

tionals. For example, the transition of the current framework CK to the influential
framework CD introduced in [6] probably makes TDDL more acceptable as deontic
logic.

The second direction is to add function symbols and the equality symbol. As done
in Fitting et al. [12], we may include function symbols into our syntax without any
technical difficulty, i.e., we can still keep all the technical results in this paper. It is
interesting to consider if we may further include the equality symbol. (It is remarked
that Fitting et al. [12] did not consider the equality symbol in their syntax.)

The third direction to be studied is to change the framework of TDDL on domain.
The semantics of TDDL is a varying domain semantics but induces the cumulative
domain condition on it. The condition, however, is hard to accept from philosophical
viewpoints. This challenge might be overcome by combining TDDL with common
sense modal predicate logics recently developed by [45,42,40], which do not require
such any conditions on domain.

Finally, the fourth possible direction is to find how to accommodate normative
conflicts in which incompatible obligations are directed towards the same agent un-
der the same conditions. However, as for this final direction, we can also take a philo-
sophical position denying that such normative conflicts actually exist. For example,
see Yamada [50].
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Abstract

One main goal of argumentation theory is to evaluate arguments and to determine

whether they should be accepted or rejected. When there is no clear answer, a third

option, being undecided, has to be taken into account. Indecision is often not con-

sidered explicitly, but rather taken to be a collection of all unclear or troubling cases.

However, current philosophy makes a strong point for taking indecision itself to be

a proper object of consideration. This paper aims at revealing parallels between the

findings concerning indecision in philosophy and the treatment of indecision in argu-

mentation theory. By investigating what philosophical forms and norms of indecision

are involved in argumentation theory, we can improve our understanding of the dif-

ferent uncertain evidential situations in argumentation theory.

Keywords: Labelling Approach, Statement Labelling, Indecision, Doxastic

Indecision, Suspension of Judgement

1 Introduction

Abstract argumentation theory is concerned with modelling arguments
and their relation of defeat. One main goal of argumentation theory is to
determine of a given set of arguments which of those should be accepted
and which of those should be rejected. This yields an extension – a set of
accepted arguments – and an antiextension – a set of of rejected arguments.
Additionally, it is possible to distil a third set of arguments that is sometimes
not characterised explicitly, which is the set of arguments one is undecided
about. The involvement of indecision is made explicit in the labelling-approach
of abstract argumentation theory, where arguments are labelled according to
three different labels: in, out and undecided.
Very often indecision is only seen as a quite useful but rather unimportant
byproduct when characterising the acceptability and rejectability of argu-
ments. From a philosophical point of view, however, besides acceptance and
rejection, indecision is the third main doxastic response, and it should be taken
to be equally important. Especially in the last couple of years, researchers in

1 daniela.schuster@uni-konstanz.de
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the philosophical disciplines of epistemology and philosophy of mind started
to focus more on this third, neutral stance. They try to investigate the norms
of indecision (which is done in epistemology) and the different phenomena
involved in this broad concept (which is done in philosophy of mind), see
for example [18] for the distinction. The philosophical investigations in both
of these areas can be very useful when applied to argumentation theory.
Investigating the notion of indecision more precisely can help us to observe
the different options of how to use indecision as a tool to describe uncertain,
doubtful, or conflicting information. This will allow us to find ways to improve
the representation of the given knowledge and to make certain decisions less
bold and more understandable and trust-worthy.

In this paper, I aim at taking the first steps in transferring the men-
tioned philosophical considerations to argumentation theory and in revealing
important parallels. I will shed some light on the different forms of indecision
that can be found in abstract argumentation theory and in what way they
correspond to particular philosophical phenomena. Moreover, I want to
illustrate by what means the various semantics of abstract argumentation
theory treat indecision differently and how this relates to the epistemological
debate about rationality norms.
In a second step, I want to dive deeper into the more structured level of
statement-labelling, by considering not only the argument as such, but also
its conclusion. I will attempt to reveal some of the philosophical norms and
forms of indecision in these conclusions. Although statement evaluation has
barely been considered explicitly in argumentation theory, this enterprise
is even more important from a philosophical perspective, as arguably what
determines our actions, is more our beliefs in the form of statements and less
the arguments we have in mind themselves.

The paper is structured in the following way. In Section 2, some philo-
sophical findings about indecision will be presented, first from the sub-field
of epistemology, which is concerned with rationality norms (Section 2.1), and
second from the sub-field of philosophy of mind, which can provide insights
into the different forms of indecision (Section 2.2). In Section 3 possible
transfers from the philosophical findings to the area of argumentation theory
will be suggested. In Section 3.1, parallels will be drawn between indecision
in philosophy and indecision in abstract argumentation theory. Here we are
operating on the level of arguments. For this, some formal backgrounds will be
introduced (Section 3.1.1), such that the different forms of indecision (Section
3.1.2) and the norms of indecision involved in abstract argumentation theory
(Section 3.1.3) can be revealed. In a second step, in Section 3.2, parallels
between indecision in philosophy and indecision on the statement level of
argumentation theory will be considered. Finally, in the outlook (Section 4), I
will conclude these considerations and point to some further areas where the
philosophical notion of indecision can be applied fruitfully.
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2 Indecision in Philosophy

In Philosophy, the concept of indecision generally refers to a neutral stance that
a person can take towards something. This stance lies somewhere in between
believing and disbelieving. Philosophers take the “something” one is undecided
about (and which is also the object of belief and disbelief) 2 to be a proposi-
tion. Although there is quite some dispute about the nature of propositions
and their representation, in this paper I will assume that propositions can sim-
ply be represented by sentences. The philosophical investigations concerning
indecision can broadly be divided into belonging to one of the two philosophical
areas: philosophy of mind and epistemology. In Section 2.1, I will focus on the
epistemological part, discussing philosophical norms of indecision. In Section
2.2, the investigations of philosophers of mind will help us to understand dif-
ferent forms of indecision.
The terminology concerning indecision is not uniform in philosophy. There are
different terms (such as non-belief, indecision, suspension, agnosticism, with-
holding belief) that are used differently in the literature, see [9, p. 166]. I
will comment on this briefly in Section 2.2, when describing different forms of
indecision. Generally, I will use the term “indecision” (in philosophical termi-
nology) to refer to any neutral position that a subject can adopt towards a
topic, besides believing or disbelieving it.

2.1 Norms about Indecision in Philosophy

Epistemologists focus on providing rules (or norms) for when to adopt a
certain doxastic attitude. Until recently, modern epistemologists were mostly
only concerned with formulating norms about when a proposition should be
believed or disbelieved, see [9, p. 165]. The third option of being neutral
was not investigated as such, but merely considered a byproduct. At best,
the third option of being undecided has been seen as a base case or fall-back
position for not-considered propositions before “proper” reasoning yields to a
decision about the truth of a proposition, i.e., believing or disbelieving it.
One can find such philosophical attitudes in the history of philosophy. For
example, Descartes formulated in his Meditationes [6] very strict necessary
conditions of when one should believe a proposition. He thought that he should
only believe the things he was absolutely certain about. In order to fulfil
these very strict rules for belief, he used his approach of methodological doubt
and considered every possible statement as undecided. 3 In his approach, he
laid no restrictions on when something can or cannot be undecided, hence
disregarding any norms concerning indecision.

2 For reasons of treating the the three doxastic stances: belief, disbelief and indecision
equally, we will assume here that in the philosophical considerations indecision has proposi-
tional content, although this has been questioned, for example, in [7].
3 In his strategic doubt, Descartes actually first tried to disbelieve every proposition he used
to belief, so e.g., disbelieve that he has two hands, yielding to his desired point of departure
of being in doubt about everything.
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Only recently philosophers became more interested in epistemological
concepts tied to this third neutral stance. They started to investigate such
phenomena as indecision and formulated norms about when one should or
should not be undecided about a proposition. Friedman’s ignorance norm
in [10], for example, suggests a necessary condition for indecision, 4 stating
that a person is only allowed to be undecided about a certain proposition, if
she does not know the proposition or its negation already. This requirement
forbids being undecided when the proposition in question is already known by
the subject. In [11] she even suggests a norm that forbids to be undecided on a
matter, if one already entertained a belief on that matter. Thereby Friedman
formulates a necessary condition for indecision: not knowing or respectively
not believing the relevant proposition already. Other norms, in the form of
principles, are, for example, discussed in [16]. Two very basic norms that
one can find in the philosophical literature on indecision are the Absence of

Evidence Norm, stating that you should be undecided about a proposition p,
when there is no evidence speaking in favour or against p, see [8, p. 60], and
what one could call the Balanced Evidence Norm, stating that you should be
undecided about p, when the evidence for and against p is equally balanced,
see for example [17].
In Sections 3.1.3 and 3.2 I will discuss how these norms about indecision find
parallels in argumentation theory. First, however, I want to present some
findings from philosophy of mind that show the diversity of the phenomenon.

2.2 Forms of Indecision in Philosophy

Recent investigations in philosophy of mind suggest that there is not just one
way in which a person can take a neutral stance or be undecided about a
proposition. Most of the philosophers in the current discussion aim at describ-
ing what one does if one “suspends judgement” or “suspends belief” about a
matter. Accordingly, these philosophers argue that this is the third attitude,
besides believing and disbelieving, that one can take towards a proposition.
Although current scholars strongly disagree on how to use the term of suspen-
sion of judgement, most of them do agree that there are different ways in which
a person can be neutral about a proposition.

Example 2.1 Let us consider the following example situations of indecision:

1) A caveman, who is undecided about the proposition that quarks exist.

2) Me, being undecided about the proposition that the guava fruit has a lot of
vitamin C.

3) Me, being undecided whether the covid pandemic will be over next year.

4) Me, being undecided about the proposition that a God exists.

Furthermore, let us assume, first, that I only briefly heard about the guava

4 In fact, Friedman is here talking about suspension and not about indecision. As mentioned
before, we will use the term “indecision” instead and come back to the discussion about the
differences in the next sub-section.
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fruit and I never thought about its nutritional values. Secondly, that I do
think about the covid pandemic a lot and whether it will be over soon, but
that I cannot decide the question by looking at my evidence. Thirdly, let us
assume that I also thought about the existence of God, but decided that there
is no way to find out, so I will stay undecided.

In the few different situations, different forms of indecision are involved.
Situation 1 is a famous example going back to Hájek [12, p. 205, footnote],
that describes a typical case of mere non-belief. With the term non-belief

philosophers describe situations in which a person neither believes nor
disbelieves a certain proposition, i.e., a lack of both belief and disbelief. Most
philosophers agree that phenomena like suspension of judgement or indecision
as such should not be identified with mere non-belief. Wedgwood [19, p. 272]
for example notices that non-belief is in fact not even an attitude, a position
one can take, or a “mental state” at all, since, for instance stones can be in this
situation of non-belief as well and we would not say that stones can suspend
judgement about something. Situation 1 is somehow similar to this, as the
caveman could not even understand the concepts involved in the proposition.
Clearly, situations 2, 3 and 4 already all involve a more sophisticated form of
indecision than situation 1 does.

Even so, philosophy of mind also makes a point for distinguishing situa-
tion 2, 3 and 4 from each other. What we want to describe with suspension
of judgement is a higher or more sophisticated form of indecision; a situation
in which we cognitively consider the proposition but are still neutral about
its truth. Some sort of “considering” or “thinking about” condition has to be
fulfilled, when we want to say that someone suspends judgement. Although the
form of indecision involved in situation 2 already comes closer to suspension
of judgement (because I do understand the relevant sentence), I am still
lacking the so-called cognitive contact to the proposition, as I have never even
thought about it. Most scholars would not describe me as suspending about
the proposition that the Guava fruit has a lot of vitamin C, if I never even
thought about it.
This “considering” element is given both in situation 3 and 4. In both cases,
I had the respective proposition at least temporally in mind. Still, scholars
like Friedman [9], Wagner [18], or Raleigh [15] argue that there is still some
important and somehow categorical difference between the two situations 3
and 4. In situation 3, although I am undecided, I still continue to think about
the question whether the covid pandemic will be over next year. In fact,
almost every day I get new evidence speaking for and new evidence speaking
against the proposition. Moreover, I might be strongly motivated to find out
about the matter, because I might want to plan a trip for next year. This is
what distinguishes situation 3 from situation 4, according to [9] or [18]. In
situation 4, I “settled” the indecision and thereby closed the question about
God’s existence. Friedman argues that this settlement comes with forming
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a sui generis attitude of suspension, that is not reducible to non-belief in
any sense, while Wagner takes the settling element, that is necessary for
proper suspension, to be an endorsement of my own indecision. According
to this account, non-belief is constitutive but not sufficient for suspension. 5

Regardless of what the specific accounts take this settling element to be, it can
be noticed that in situation 3 this kind of settlement or “closing the question”
is missing.

To illustrate the differences, I think it can be helpful to set the different
forms in relation to each other by visualising them along an axis of “engaging”
or “being concerned” or “being involved” with a proposition.
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The caveman does not engage with the proposition about the existence of
quarks at all, as he does not even understand it. While I do understand the
proposition about the nutrition of the Guava fruit, I still do not really engage
with it, as I never even entertained it in thought. Compared to this, I engage
with the proposition about the covid pandemic a lot. In fact, I constantly
think about it. Situation 4, though, falls a bit out of the pattern. One the one
hand one could argue that I, in fact, engage less with the proposition about
God’s existence than with the proposition about the Covid pandemic, in the
sense that I do not think about the proposition constantly anymore. On the
other hand, however, I am still in some sense more bound to the proposition in
situation 4, as I definitely include the proposition into (the third category of)
my belief sets. In this sense, although I do not think about it a lot anymore,
I am yet more identified and involved with the proposition and I am further
in the evaluating process than I am with the proposition about the covid
pandemic. I closed the question about God’s existence and I integrated the
proposition into my doxastic household. In this sense situation 4 has to be
placed on the very right of the axis.

In the next section, I will relate these different philosophical forms and
the epistemological considerations from Section 2.1 to the field of argumenta-
tion theory.

5 For scholars like Raleigh [15] or Wedgwood [19] it is sufficient that I form some sort of meta-
belief about my own doxastic situation. This can be regarded as a “committing” element,
too.
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3 Indecision in Argumentation Theory

As stated in the introduction, the main goal of this paper is to connect the
usage of indecision in argumentation theory with the philosophical concept of
indecision. We will do this on two levels: first on the argument level (Section
3.1) and second on the statement level (Section 3.2). The doxastic trisection of
philosophy (believing, disbelieving and indecision) finds correspondence both
on the argument level of abstract argumentation theory and on the statement
level of structured argumentation theory. As described above, philosophers
take propositions, that are structurally equal to statements or sentences, to
be the object of the doxastic stances. Hence, parallels between philosophy
and the statement level of argumentation theory are easier to draw than the
parallels with the argument level. At the argument level, in abstract argu-
mentation theory, arguments are the relevant objects for evaluation, which are
structurally very different from propositions. Nevertheless, a correspondence
between the three doxastic responses one can take towards a proposition in
philosophy and three possible reactions one can show towards an argument in
abstract argumentation theory can still be found.

3.1 Indecision on the Level of Arguments

3.1.1 Formal Background

Before I can shed some light on the parallels between indecision in abstract ar-
gumentation theory and philosophy, some basic notions of abstract argumenta-
tion theory have to be introduced. This sub-section does not aim at providing
a complete overview of the definitions and theorems of abstract argumentation
theory. Only the parts that are directly relevant for the considerations con-
cerning indecision are presented. The following definitions can for example be
found in [1].
Abstract Argumentation Theory focuses on modelling arguments and their re-
lation of attack on an abstract level. This is modelled in argumentation frame-
works, which allow for an illustration of arguments (nodes of the graph) and
their attack (edges of the graph). More precise features, such as the internal
structure of the arguments and how they attack each other is not representable
at this abstract level.

Definition 3.1 [Argumentation Framework] An Abstract Argumentation
Framework is a pair (Ar, att), where Ar is a set of arguments and att ⊂ Ar×Ar
is a relation of attack between the arguments.

Besides the modelling challenge, abstract argumentation theory also deals with
evaluating arguments in order to choose a proper subset of acceptable argu-
ments among the modelled ones.
In general, there are two approaches for this: the extension approach and the
labelling approach. The labelling approach provides a function that maps each
argument to a label, that is either in, out or undec (undecided).

Definition 3.2 [Labelling] Given a set of labels, {in, out, undec}, a labelling
is a function Lab : Ar → {in, out, undec} which maps each argument to one of
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the three possible labels.

In contrast to this, there is the extension approach. The extension approach
simply yields a subset of the considered arguments (the extension) which
consists of the accepted arguments. The arguments that are rejected or
undecided are then defined in terms of the extension. Although the two
approaches are convertible into each other, see [1], the labelling approach
provides a straight-forward way to distinguish the three possible states of an
argument and speaks about an undecided evaluation explicitly. Therefore, I
will focus on the labelling approach in this paper.

The challenge then is to decide which argument should get which label.
This decision is not to be made arbitrarily, but has to follow certain rules.
These rules are given by different so-called semantics. Quite basic rules are
provided by admissible semantics.

Definition 3.3 [Admissible Semantics] Let (Ar, att) be an argumentation
framework. A labelling Lab is called an admissible labelling (or a labelling
according to admissible semantics), iff the following two conditions hold:

• every in-labelled argument A ∈ Ar is legally in, i.e., ∀B ∈ Ar: if (B,A) ∈ att
then Lab(B) = out.

• every out-labelled argument A ∈ Ar is legally out, i.e., ∃B ∈ Ar, such that
(B,A) ∈ att and Lab(B) = in.

Admissible semantics demand that only arguments that are legally in or out,
should get the respective label. Informally speaking, an argument is legally
in, if all its attackers (if there even are any) are labelled out. An argument is
legally out, if it has at least one attacker that is labelled in.

Another semantics, that we we will introduce here and need in Section
3.1.3, as it differs from admissible semantics in some important manner, is
complete semantics.

Definition 3.4 [Complete Semantics] Let (Ar, att) be an argumentation
framework. A labelling Lab is called a complete labelling (or a labelling ac-
cording to complete semantics), iff the following three conditions hold:

• every in-labelled argument A ∈ Ar is legally in, i.e., ∀B ∈ Ar: if (B,A) ∈ att
then Lab(B) = out.

• every out-labelled argument A ∈ Ar is legally out, i.e., ∃B ∈ Ar, such that
(B,A) ∈ att and Lab(B) = in.

• every undec-labelled argument A ∈ Ar is legally undec, i.e., ∃B ∈ Ar, such
that (B,A) ∈ att and Lab(B) 6= out and ∀B ∈ Ar: if (B,A) ∈ att then
Lab(B) 6= in

Complete semantics fulfil the requirements of admissible semantics and fulfil
on top of that the requirement that every undec-labelled argument has to be
also legally undec. An argument is legally undec, iff it is neither legally in
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nor legally out. This means that an argument is legally undec iff none of its
attackers are labelled in and it has at least one attacker that is not labelled out.

Admissible and complete semantics are only two of the many possible
semantics that have been investigated in argumentation theory. All semantics
make demands on the labellings of the arguments. Some semantics (e.g.,
grounded semantics) only yield one allowed labelling. Most semantics, like
admissible and complete semantics, however, usually allow for a plurality of
possible labellings. In such situations the question of the justification status
of an argument is raised. If an argument is, for example, labelled in according
to one complete labelling and labelled out in another one, how should we
evaluate that argument after all?
A rather detailed analysis of different justification statuses is provided in [20].
Wu et. al. consider in particular the case of complete semantics and note
that the labellings produced by complete semantics can be interpreted as the
different reasonable stances one can take towards an argument. They suggest
a function that maps each argument to its justification status, which they
take to be the set of all possible labels each argument gets from the different
complete labellings.

Definition 3.5 [Justification Status] Let (Ar, att) be an argumentation frame-
work. For A ∈ Ar let J(A) be the justification status of A, given by the function
J : Ar → P({in, out, undec}).[20, p. 16]

J maps every A ∈ Ar to a subset of {in, out, undec} consisting of all the labels
A gets by one or more complete labelling.
Considering complete semantics, in [20, p. 16] 6 possible justification statuses
are obtained: 6 {in, out, undec}, {in, undec}, {out, undec}, {in}, {out}, {undec}.

The basic idea behind justification statuses and about abstract argumentation
theory in general can be visualised in the following example:

Example 3.6 Imagine you get introduced to a group of friends and you are
trying to evaluate the different people and their relationships. You get the
following information: 7

A: Alice says that Carole is a Liar.
C: Carole says that David is a Liar.
D: David says that Alice is a Liar.
B: Everybody agrees that Bob is really trustworthy.
E: Emily says that Fred is a funny guy.
F : Fred says that Emily does not know him.

6 Note that the two remaining options {∅} and {in, out} are not considered, as [20] only
take non-empty labelling-sets into account and complete semantics have the characteristic of
being “abstention allowing”, meaning that if there is a complete labelling that labels A in
and there is another complete labelling that labels A out, there has to be a third one that
labels A undec, [1, p. 27].
7 The example is an adapted version from the example in [20, p. 21].
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The argumentation graph of the argument can be visualised like this:

A

B

C

D

E F

The admissible labellings of the given graph are the following:

{

{B,F}, {E}, {A,C,D}
}

,
{

{B,E}, {F}, {A,C,D}
}

,
{

{B}, ∅, {A,C,D,E, F}
}

,
{

{F}, {E}, {B,A,C,D}
}

,
{

{E}, {F}, {B,A,C,D}
}

,
{

∅, ∅, {B,A,C,D,E, F}
}

,

while only the first three are also complete labellings. 8

The justification status of the arguments (according to complete semantics) are:

J(A) = {undec}, J(C) = {undec}, J(D) = {undec},
J(B) = {in}, J(E) = {in, out, undec}, J(F ) = {in, out, undec}.

3.1.2 Forms of Indecision on the Argument Level

As we have seen, in abstract argumentation theory arguments are generally
evaluated by labelling them according to the three labels: in, out, undec.
Although philosophy is concerned with propositions rather than arguments,
this trisection still finds some correspondence. Philosophers are concerned
with determining when a person does (or should) believe, disbelieve or
be undecided about a proposition. Believing a proposition can be said to
correspond to labelling an argument in, disbelieving to labelling it out and
being undecided to labelling it undec. If a subject believes a proposition, she
takes this proposition to be true, if we label an argument in, we accept it
to be valid and possibly even sound and thereby take its conclusion (and its
premises) to be true.
Within this correspondence, parallels between the different forms of indecision
in philosophy and the different forms of indecision in argumentation theory can
be drawn. These parallels can be useful to transfer important insights from
philosophy to argumentation theory and vice versa. The parallels can then be
used to also apply further developments in the philosophical considerations
about indecision to argumentation theory.

The authors in [20] interpret arguments with justification status {out}
to be clearly (or strongly) rejected and arguments with the justification
status {in} to be strongly accepted. In comparison to that, they interpret

8 Note that the notation
{

{A}, {B}, {C}
}

corresponds to a labelling in which A is labelled
in, B is out and C is undec.
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arguments with justification status {in, undec} to be only weakly accepted
(and arguments with justification status {out, undec} respectively only weakly
rejected). So, two of the six possible statuses represent (two forms of)
acceptance and another two represent rejection. Finally, the remaining two
justification statuses {in, out, undec} and {undec} represent indecision. In [20]
{in, out, undec} is called an undetermined borderline case, while {undec} is
taken to be a determined borderline case.

The difference between determined and undetermined resides exactly in
the difference between committed and uncommitted indecision. In the case of
the justification status {in, out, undec} all options are still available, i.e., the
argument may be labelled in, it may be labelled out and it may be labelled
undec. In the determined borderline case of the justification status {undec}, it
is decided that the argument has to be labelled undec. In all possible (in this
case complete) labellings the argument is labelled undec. Hence, the question
“What label does the argument get?” is no longer open. The only plausible la-
bel in this case is undec. In comparison to this, in the undetermined borderline
case of the justification status {in, out, undec}, the different labellings disagree
on how to label the argument. This can be interpreted as a situation of a vote
for which there are some voices voting for in, some for out and some for undec.
It is also possible to interpret this situation within one reasoning subject.
The different voters would then correspond to different points of evidence one

subject has, that are pointing in different directions, i.e., towards in, out or
undec. Both interpretations take the question of what label the argument
should get to be not settled, i.e., to be still an open question. This shows
us that the difference between suspension of judgement as a settled form of
indecision and other non-committing forms of “mere indecision”, investigated
by philosophers, is reflected in the two different undecided justification statuses
an argument can get. In the example situations from section 2.2, we would,
give the proposition 9 that the covid pandemic will be over next year, the
justification status {in, out, undec}, as it is still an open question whether we
will accept, reject or stay undecided about the matter, whereas the proposition
that a God exists will get the committing justification status {undec}, as it is
a closed question in the sense that I committed myself to be undecided about it.

This can also be visualised in Example 3.6. While argument A, C, and
D get the justification status {undec}, argument F and E get the justification
status {in, out, undec}. In the case of A, C and D each argument attacks one
of the other three, yielding a circle of attack. Given the information of the
example, there is no way to decide who is a Liar and who is not. 10 Hence,
the only reasonable thing to do is to label all three arguments undec. The

9 Again, note the different object of the justification statueses: arguments in the case of
abstract argumentation theory vs. propositions in the philosophical example.
10Of course this is a reformulation of the famous Liar Paradox.
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justification status expresses this commitment to the indecision. On the other
hand, for the arguments F and E we have more options. We could label both
undec, or we could, for example, label F in and E out. In this scenario, we
might believe that Fred has a good insight on who of the group actually knows
him and, therefore, we should believe him when he says that Emily does not
know him. Then, however, we should not trust any of Emily’s statements
about Fred, and argument E is labelled out. The situation for argument E
and F is more open and flexible, and less committed to indecision, than the
situation for A, C and D.

One can observe that the different justification statuses of E and F
compared to A, C and D do not stem from the different arguments as such,
but simply from the fact that E and F are involved in an even cycle of
attack, while A, C and D form an odd cycle of attack. This can be seen
more clearly when we change the argument E to “Emily says that Fred is
a Liar” and F to “Fred says that Emily is a Liar”. Although, in terms of
content, we seem to have the same situation with E and F now as we have
with A, C and D, the arguments E and F will still get the justification status
{in, out, undec}. 11 The situation of A, C and D, i.e., the situation that all
involved arguments have to be labelled undec in fact only occurs in odd-length
attacking cycles. This was observed in [14, p. 242] and also revisited later,
e.g., in [1, p. 21]. Many scholars regard the unequal treatment of odd and
even cycles in semantics like complete semantics as problematic. Therefore,
other not-admissible based semantics have been developed that allow for an
equal treatment of the cycles, see [2].
For the purpose of this paper, however, it is only relevant that there are cases,
in which the justification status is purely {undec} and that those cases can be
seen to represent a committed form of indecision, as in the example above and
that there also are cases of arguments with the non-committing justification
status {in, out, undec}.
Although I think that the example as it is presented in 3.6 is better suited
than the adapted example to describe, why the situation for E and F is less
committed, than the situation for A, C and D, there is still some difference
between the situations, even when changing the content of argument E and
F to the respective Liar sentences. The difference consists in how “easy” it
is for a person that is presented with the arguments to give the arguments
a label that is different from undec. Although in the adapted example of E
and F , it still might seem to be the most reasonable action to label both
arguments undec, you can still do otherwise. If you, for example, happen
to believe women more than men, you might think that Emily is more
trustworthy. In believing what Emily says, you thereby believe that Fred
is a Liar and take argument E to defeat argument F . Then you will reject
argument F and thereby all of the attackers of E are labelled out, allowing

11 I thank an anonymous reviewer for stressing this point.
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you to label E in. This is not possible in the same way for the threefold
attacking cycle of A, C and D. Say, that you, for some external reason,
believe Alice. Hence, you will believe what she says and argument A will
successfully defeat argument C. You take Alice’ word and believe that Carole
is a Liar and hence you will reject argument C. Then, argument D has no
(not-rejected) attacker anymore; so that you should accept it. As argument D,
however, tells you that Alice is a Liar, you will have to question your starting
point, which is that you belief Alice, again. One can argue that in such odd
cycles of attack, you will not manage to break out of the cycle and hence you
will not be able to react otherwise than to take each argument to be undecided.

In the next section, I will move from considerations about different forms of
indecision in abstract argumentation theory to the involved norms concerning
indecision.

3.1.3 Norms of Indecision on the Argument Level

In Section 2.1, I described the development in epistemology that started with
not considering explicit norms for indecision and treating indecision merely
as a lack of belief and disbelief and as a fallback position for propositions
that do not fulfil the requirements of belief and disbelief or are simply not
investigated yet. This was typified by the story of Descartes. Only in the last
couple of years, epistemologists started to investigate norms about indecision
specifically. This development finds some correspondence in the different
semantics of argumentation theory.

One can note that admissible semantics only formulate rules (or neces-
sary conditions) about when an argument can be accepted (labelled in) or
rejected (labelled out). There is no such requirement for when an argument
is labelled undec. A labelling that simply labels all arguments undec always
fulfils the requirements of admissible semantics. This means that admissible
semantics only provide norms (in the form of restrictions) for acceptance
and rejection, but no norms about when an argument should or should not
be regarded as undecided. Hence, the label undec is always suitable for any
argument.
Complete semantics, on the other hand, expand admissible semantics (as they
adopt the necessary conditions on when an argument is legally in or out), but
also provide restrictions on when an argument can be labelled undec. The
treatment of the undecided-label is what distinguishes complete semantics
from admissible semantics. While in admissible semantics, the set of undecided
arguments is basically only a collection of whatever is left over, (because it
has not been determined yet or because it does not manage to be labelled in
or out,) in complete semantics there are rules about when an argument can
legally be called undecided. 12

12The attitude that the undec label represents arguments for which there is no decision yet,
although there should be a clear decision is even better illustrated in preferred or stable
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The difference is also visible in Example 3.6. While the last labelling, in which
every argument is labelled undec, is admissible, this labelling is not complete.
In particular, complete labellings forbid to label the argument B that is
not attacked by any other argument undec. This rule can be interpreted in
philosophical terminology as a norm stating that, if there is good evidence
for a proposition, then one should not be undecided about it, but believe it,
and if there is good evidence against a proposition, then one should not be
undecided either, but disbelieve it.

Moreover, the different justification statuses also show some parallels
with the different norms of indecision from epistemology. In [20, p. 17], it is
proven that an argument A gets the justification status {undec}, iff A is not
labelled in in any admissible set and A is not labelled out in any admissible set.
Moreover, an argument A gets the justification status {in, out, undec}, iff A is
labelled in in at least one admissible labelling and A is labelled out in at least
one admissible labelling, see [20, p. 19-20]. The first case can be interpreted
as having no evidence for or against the argument (or having no one voting
pro or con the argument), while the second case can be interpreted as having
evidence for and evidence against the argument (or having both voices that
vote for the argument and against it). Hence, the first case corresponds to the
absence of evidence norm from philosophy and the second case to the balanced
evidence norm, that were introduced in Section 2.1.
It can be concluded that different philosophical norms concerning indecision
as well as the epistemological development are represented on the argument
level of argumentation theory. Next, I want to consider statements, instead of
arguments and reveal parallels with philosophical investigations on this level,
too.

3.2 Indecision on the Level of Statements

Up to now, I have only addressed the evaluation of arguments as such. It
can be argued, however, that it is not so much the arguments themselves,
but sentences or propositions that form the doxastic situation of an agent,
on which the agent ultimately bases her actions on. In order to reveal this
doxastic situation, one has to dive deeper and extract the inner structure of
the arguments, i.e., revealing the premises and conclusions involved. By doing
this, we end up on the level of statements. In the following sub-section, I
will present some transfers of the philosophical findings concerning forms and
norms of indecision to the statement level of argumentation theory. When
philosophical considerations come into play, the concentration on the statement
level is particularly desirable, because statements are structurally similar to
propositions, which are, as described, the main objects of investigation in
philosophy. The parallels can therefore be drawn more straight-forwardly.

semantics, that try to maximise the number of accepted and rejected arguments or even try
to bring the set of undecided arguments to be the empty set, see [1] for an overview
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Considering all this, it is quite astonishing that assessing justification
statuses to statements has gotten, in comparison to arguments, only little
attention. Just recently, Baroni and Riveret describe in [4] possibilities
to transfer the justification of arguments to justification of statements by
evaluating the conclusions of the arguments in question. 13 In general, they
distinguish two approaches, which they call an argument-focused and a
statement-focused approach, to determine the status of statements. In both
approaches the status of a statement is eventually determined by the statuses
of the arguments speaking for or against that statement. For the purpose of
this paper, the different approaches are not directly relevant. What I will
focus on here, is the different types of statement labellings that are considered
in [4]. They distinguish basically between three types of statement labellings.

• Bivalent Labellings: Bivalent statement labellings only allow for two possible
labels a statement can obtain. [4, p. 839] take the possible labels to be
{yes, no}.

• Doubt-Tolerant Labellings: doubt-tolerant labellings allow for a third label
between the definite answers of yes and no of the bivalent labellings. This
third, intermediate label expresses some sort of doubt. Baroni et. al. call in
[4, p. 848] the three labels {yes, fal, ni} where yes means that a statement is
accepted (or verified), fal means that a statement is falsified and ni means
that there is doubt about the status of the statement.

• Ignorance-Aware Labllings: ignorance-aware labellings further divide the
group of undetermined statements. Besides yes and fal there are two in-
termediate labels: unk and ni, yielding the set {yes, fal, unk, ni}, where unk
stands for unknown statements and is meant to capture statements for which
there is no evidence or lack of knowledge, and ni captures the statements for
which the evidence indicates indecision.

The differences of the three labelling-types can be understood best, when one
takes a look at the following example from [4], which was introduced in [3, p.
489]:
“Suppose that Dr. Smith says to you: ‘Given your clinical data I conclude
you are affected by disease D1’. Suppose then that another equally competent
physician Dr. Jones says to you: ‘Given your clinical data I conclude you are
not affected by disease D1’. Your view on the justification of the statements
s1=‘I am affected by disease D1’ and ¬s1=‘I am not affected by disease
D1’ may become quite uncertain. In a different situation, at home, you use
an off-the-shelf test kit suggesting you have caught disease D2. You then
undertake a serious and reliable clinical test, which excludes disease D2.
Would you consider the same status for the statement s2=‘I am affected by
disease D2’ and the statement s1? [....] Consider [as well the] statement s3=‘I

13 In fact Wu et. al. consider in [20] also briefly how to transfer the justification statuses to
statements.
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am affected by D3’, where D3 is a poorly studied and initially asymptomatic
disease you only know by name.” [4, p. 793–794]

The authors in [4] appeal to the intuition that there should be a differ-
ent justification status for the statement s1 and the statement s2, although
in both cases there are arguments for and arguments against the statement.
Moreover, we want to say that the status of statement s3 should be different
from the statuses of s1 and s2, too. s3 should intuitively get a justification
status of “full ignorance” as there is no evidence that concerns the third
disease (and thereby statement s3).
In fact, the evaluation of the different labellings 14 by means of the example
shows that only the ignorance-aware labelling can account for this intuition.
The different labellings provide the following results:

s1 ¬s1 s2 ¬s2 s3
Bivalent Labellings no no no yes no
Doubt-Tolerant Labellings ni ni fal yes ni
Ignorance-Aware Labellings ni ni fal yes unk

One can see that the bivalent labellings cannot even illustrate the different
intuitive justification statuses of statement s1 and s2. The doubt-tolerant
labellings already do a better job, recognising that the question about s1 is, in
comparison to s2, not decided, and hence taking both s1 and its negation to be
ni, while s2 is labelled fal and its negation is labelled yes. However, there is no
way to distinguish the justification status of s1 (and ¬s1) from the justification
status of s3. This is only achievable in the ignorance-aware labellings. Recall
that ignorance-aware labellings distinguish between two forms of the middle,
undetermined status: the label ni represents “conflicting support”, while unk
represents the “absence of support”, [4, p. 848]. This fits our intuitions of the
example, as s3 is a statement, for which there is no support at all, while s1 is
a statement for which the support is conflicting.

With the two different labels from ignorance-aware labellings that repre-
sent indecision, the authors in [4] want to distinguish cases where the evidence
is absent from cases where the evidence is equally balanced. This distinction
is exactly reflected in the two basic norms for indecision from epistemology:
the absence of evidence norm and the balanced evidence norm.
Moreover, the different forms of indecision, found in our philosophical range
are represented in the example and covered (at least to some extent) by the
ignorance-aware labellings. As we have seen, there is no evidence at all,

14They first investigate different formalism of structured argumentation and how the dif-
ferent types of labellings can be implemented there. They then investigate which outcomes
the different labellings yield for the provided example. For some formalisms they distinguish
between a sceptical and a credulous approach. This distinction only yields a different treat-
ment of statement s1 and its negation, but is silent on the other statements. For reason of
simplicity, we will only consider the results of the sceptical labellings.
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speaking for or against s3, so s3 is labelled unk. The subject has not even
considered s3, and hence it is comparable to the statement “The guava fruit
has a lot of vitamin C”, that I have never considered. Thus, in the range of
indecision, s3 similarly has to be placed quite at the beginning of the axis of
engaging. It is clear that we have some form of “not engaged” indecision, as
the subject is not concerned with the statement at all. On the other hand,
s1 is a statement the subject already collected evidence for. There is one
physician arguing for s1 and another, equally competent physician, arguing
against s1. The subject has engaged with the statement in question and came
to the conclusion that she cannot tell, whether she has the disease. This is
clearly a form of more engaged indecision, as the subject not only considered
the statement s2, but actually collected quite some evidence for (and against)
it. This can be compared to the example of me wondering whether the covid
pandemic will be over next year. I, too, collected evidence for and against the
proposition (and in fact new evidence gets through to me every day), but I
still cannot decide, because the evidence seems more or less balanced.

We see that the ignorance-aware labellings allow us to distinguish two
distinct forms of indecision. It might be valuable, however, to represent even
more than two forms of indecision in this framework. When we look back
to the axis that represented the example situations of 2.1, we already find
four distinct forms of indecision. As said above, the situation of me being
undecided about the Guava fruit’s nutritional value can be compared to the
indecision concerning statement s3, saying that I have disease D3 that I never
heard of. Both cases represent a rather passive and not engaged form of
indecision as I have not considered the respective statement or proposition. In
the philosophical example, however, the cavemen’s case exemplifies another
form, that is even more left on the axis and hence even less engaged. In
argumentation theory, it can also be eligible, to make a more fine-grained
distinction between such little-engaged forms. Although s3 is a statement
that has not been considered yet, the reasoning subject or system at least
understands the statement. However, there can be cases in which the system
cannot grasp or process the statement, when, for example, the statement
contains words or phrases which do not belong to the language of the respective
argumentation theory system. Such cases would correspond to the cavemen
being undecided 15 about whether quarks exist. In such a case, the system
should be able to reply a different form of indecision than in the case of s3.
While s3 is a statement with respect to which the system is not equipped with
any argument for or against it, it still could in principle evaluate the statement
with a decisive label if, for example, at some later point new arguments would
come into play. With a statement that is not even included in the system’s
language, this is different. The system here should give a reply that shows full
ignorance about what to to with that statement.

15As said above, philosophers would not use the term indecision, but mere non-belief here.
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On the other side of the axis, there is room for finer distinctions, too.
Philosophers distinguish between rather open, but yet reflective forms of
indecision (the Covid case) from settled forms of indecision (the question
about God’s existence). As we have seen, the example of s1 and ¬s1 represent
a similar situation as the Covid case, as the subject will be undecided whether
she has disease D1 but will still look for further evidence, possibly changing
the label of the statement with the help of further arguments. There might
be other examples, however, where the argumentation framework is build
in a way in which it is clear that a statement cannot get a different label
than that of being undecided. The cycles of attack that have been regarded
in section 3.1.2 provide an outline of a possible example of such situations.
To distinguish these two forms with two different labels can be helpful for a
system to recognise when there is no need for further deliberation or further
arguments concerning a certain statement, and when it is worth to allow
further arguments in order to reevaluate.

4 Conclusion and Outlook

In this paper I laid out some first steps toward a better understanding of the
forms of indecision involved in argumentation theory. For this end, I presented
philosophical considerations concerning different phenomena related to indeci-
sion and norms about when a subject should or should not be undecided about
a matter. I tried to show that a lot of the philosophical investigations find some
correspondence both on the argument level of abstract argumentation theory
and on the level of statement evaluation. By having revealed parallels of this
kind, we took the first steps toward using philosophical arguments to better
evaluate how indecision is used in argumentation theory. The philosophical
considerations can, for example, be used to evaluate the status of indecision
in different semantics. Once we have drawn these parallels, and understood
the use of indecision and the different forms involved in argumentation theory,
we are able to apply further developments in philosophy concerning indecision
or other neutral stances to argumentation theory, too. This is interesting, be-
cause indecision can be a useful tool for indicating unclear or critical situations.

For this enterprise, investigating indecision on a statement level seems
crucial. For further research, it is, hence, desirable to concentrate on the
different ways to evaluate statements and on the different ways to transfer
justification of arguments to justification of statements, yielding statement-
labellings. Although recent work already allows for a distinction between two
kinds of indecision-labels on a statement level, I argued that it is necessary to
distinguish even more forms of indecision. It is desirable that an argumentation
system is capable of distinguishing cases in which it cannot deal with the
input, from cases in which it has no evidence for or against a statement;
and cases for which the evidential situation seems balanced, so it might need
further arguments, from cases that clearly cannot be decided. Additionally,
the system should be capable of storing the information and reporting these
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different situations. These skills can help the system to signal when it reaches
its limits of application or when it needs further evidence or arguments to
decide. This can help to reduce random decisions and make the systems
choices more grounded and traceable.
Another challenge in the field of statement evaluation will be to not only
consider the conclusions of an argument but also the premises. This is
especially relevant when considering the different forms of defeat, such as
undercutting or rebutting defeat, see [13].
On the other hand, it can also be interesting to take a look at an even
higher level than arguments. When non-unique semantics are considered,
the question about which labelling (or extension) is to choose suggests itself
immediately. For example, Dauphin et. al. investigate in [5] certain principles
that decision graphs that are used for choosing among multiple extensions
should satisfy. Concerning such choosing strategies, a better understanding of
the underlying concepts of indecision can also be very useful for cases in which
the available evidence does clearly point to one direction.
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Abstract

Input/Output (I/O) logics address the abstract study of conditional norms. Here,
norms are represented as pairs of formulas instead of statements that themselves
carry truth-values. I/O logics have been studied thoroughly in the past, including
further applications and refinements. In this paper, a class of automated reasoning
procedures is presented that, given a set of norms and a concrete situation, decide
whether a specific state of affairs is obligatory according to the output operations of
I/O logics. The procedures are parametric in the underlying logical formalism and
can be instantiated with different classical objects logics, such as propositional logic
or first-order logic. The procedures are shown to be correct, and a proof-of-concept
implementation for propositional I/O logics is surveyed.

Keywords: Deontic logic, I/O logics, Automated reasoning, Normative reasoning.

1 Introduction

Input/Output (I/O) logics have been devised by Makinson and van der Torre [8]
as a class of formal systems for norm-based deontic reasoning. Intuitively, they
formalize the question which obligations can be detached from a given set of
conditional norms and a specific situation. I/O logics differ from other deontic
logics, such as Standard Deontic Logic (SDL, a modal logic of type KD) and
Dyadic Deontic Logic (DDL) [1], in the sense that the norms themselves are
not part of the object logic and hence do not carry truth values. Furthermore,
in SDL and DDL the deontic operators are evaluated with respect to a set of
possible words, whereas in I/O logics they are evaluated with respect to a set of
norms. An overview of deontic logic formalisms can be found in the literature,
see e.g. [7].

The field of automated reasoning studies the conception, implementation,
application and evaluation of methods for automating logical inferences on the
computer [14]. This includes, among others, methods for deciding satisfiability
and tautology, for model generation, and for computer algebra systems. The

1 E-Mail: alexander.steen@uni.lu; ORCID ID: 0000-0001-8781-9462
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study of automated deduction systems denotes one of the earliest concerns of ar-
tificial intelligence, and is today often referred to as symbolic AI; in contrast to
recently successful approaches using statistical and learning-based approaches.
One of the core applications is automated theorem proving (ATP): ATP sys-
tems are computer programs that, given a set A of axioms and a conjecture C
as input, try to prove that C is a logical consequence of A, i.e., that C is true
whenever every formula in A holds. In this context, the search for a proof is
conducted autonomously so that no intervention or advice from human users
is necessary. Unfortunately, most ATP systems focus on classical logics only
and hence there are only few systems available for automating logics relevant
to deontic reasoning. Notable exceptions are ATP systems for (normal) modal
logics, but since these logics suffer from various theoretical drawbacks, their
application to normative reasoning in, e.g., legal contexts [5] is limited.

In this paper, a first structured step is taken towards automation of I/O
formalisms: Decision procedures for four different deontic operators of (un-
constrained) I/O logic are presented that decide whether a formula x can be
detached as an obligation given a set of norms and a situation (put in I/O
logic terms: the procedures decide whether a formula x is in the output given
a certain input). They are shown to be sound and complete, and to be decid-
able if the underlying logical language is decidable. Furthermore, a prototype
implementation of the procedures is presented. This implementation is freely
available as a web application and can be used to conduct own experiments.

Related work. I/O logics have also been employed in the context of studying
conditional permissions [10]. Also, there exist extensions of I/O logics, called
constrained I/O logics, that address the classical deontic paradoxes [9] such as
contrary-to-duty scenarios. Recent work furthermore addresses weaker notions
of I/O logic that allow for a fined-grained control over employed inference
principles [12].

From a computational perspective, there are comparably few related ap-
proaches available. Complexity aspects of I/O logics have been studied [17].
However, the methods used in the analysis do not yield means for implementing
respective decision procedures. Quite recent work focuses on automating other
deontic logics via shallow semantical embeddings into classical higher-order
logic [3]. However, such an approach is not yet available for all unconstrained
I/O logic operations [2], and indeed seems more complex than for other logi-
cal systems in the context of deontic reasoning [4]. There are representation
results available for expressing I/O logics in modal logic; and there exists an
alternative proof-theoretic (dynamic) characterization of I/O logic [16]. How-
ever, these results have, up to the author’s knowledge, not yet been utilized in
the context of automated reasoning systems.

2 I/O Logics

I/O logic is used for studying conditional norms, e.g., obligations under some
legal code. Here, conditional codes are represented as pairs of formulas and
therefore do not carry truth values themselves, whereas declarative statements
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are usual Boolean formulas that come from some logical language L.
Let L be a logical language that is closed under the truth-functional con-

nectives such as conjunction (∧) and disjunction (∨). From a semantical per-
spective, it is assumed that the eligible logical languages considered in the
following come with a derivation relation ⊢ for which the operation Cn(A),
given by Cn(A) = {x ∈ L | A ⊢ x}, is a Tarskian closure operator. A promi-
nent example for L in the context of I/O logics is the language of classical
propositional logic with the usual consequence relation (often assumed in the
literature). However, also first-order logic or even higher-order logic languages
are possible. In the following, it is assumed that L comes from a classical logic.

A normative system N ⊆ L × L is a set of pairs (a, x) of formulas. The
pair (a, x) represents the conditional obligation that given a, it ought to be x.
By convention, given a norm (a, x) the first element a is also referred to as
the body and the second element x is referred to as the head. The image of
N , denoted N(A), where A is a set of formulas, is given by N(A) = {x ∈ L |
(a, x) ∈ N for some a ∈ A}. Given a normative system N and a set of formulas
A (the input set), out(N,A) denotes the output of A under N where out is the
respective output operator.

The semantics of I/O logics is operational in the sense that the meaning of
normative concepts is given by generated outputs given a set of norms and an
input. The four output operators outi, i ∈ {1, 2, 3, 4}, studied in the literature
are defined as follows [8]:

out1(N,A) = Cn(N(Cn(A)))
out2(N,A) =

⋂
{

Cn(N(V )) | V ⊇ A, V complete
}

out3(N,A) =
⋂

{

Cn(N(B)) | A ⊆ B = Cn(B) ⊇ N(B)
}

out4(N,A) =
⋂

{

Cn(N(V )) | A ⊆ V ⊇ N(V ), V complete
}

where a set V ⊆ L is called complete iff V = L or V is a maximally consistent
set.

A proof-theoretic characterization of the different output operations can
be achieved by putting outi(N) =

{

(A, x) | x ∈ outi(N,A) for some A ⊆ L
}

,
i ∈ {1, 2, 3, 4}. The specific inference rules are the following (the first
component of each pair are assumed to be singleton sets and the curly braces
are omitted):

SI : From (a, x) to (b, x) if b ⊢ a
WO : From (a, x) to (a, y) if x ⊢ y
AND : From (a, x), (a, y) to (a, x ∧ y)
OR: From (a, x), (b, x) to (a ∨ b, x)
CT : From (a, x), (a ∧ x, y) to (a, y)

In earlier work [8] it is shown that (a, x) is in the respective set outi(N) if and
only if it is contained in the least superset of N ∪ (⊤,⊤) that is closed under
the inference rules as follows: {SI ,WO ,AND} for out1, {SI ,WO ,AND ,OR}
for out2, {SI ,WO ,AND ,CT} for out3, and {SI ,WO ,AND ,OR,CT} for out4.
For non-singleton sets A, derivability of (A, x) from N is reduced to derivability
of (a, x), where a = a1 ∧ . . . ∧ an is some conjunction of the elements of A.
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The empty input is interpreted as an empty conjunction and assumed to be a
tautology; hence (∅, x) is reduced to derivability of (⊤, x).

Although there is an adequate syntactic characterization for I/O logics that
can be used to derive outputs, the above calculi are not machine-oriented in
the sense that they can be implemented as-is in an effective manner on a com-
puter. This is, in particular, because the rules SI and WO allow to derive an
infinite number of outputs, and it is not immediately clear what intermediate
derivations actually contribute to the ultimate proof goal. However, without
effective means of automation it is challenging, or even impossible, to apply
I/O logics to practical scenarios, e.g., in the context of multi-agent systems or
legal reasoning use cases [13].

3 Decision Procedures for I/O logic

In this section, four different decision procedures are presented, one for each
output operation, that allow automated reasoning within I/O logics in an ef-
fective way. It is implicitly assumed that ⊢ is a sound and complete derivation
relation for L. Furthermore, it is assumed that inputs to the decision proce-
dures are finite, i.e. N is a finite set of norms and A is a finite set of formulae.

Let In-Outi, i ∈ {1, 2, 3, 4}, denote the following decision problem: Given
a formula x ∈ L, a set of norms N and an input A, is it the case that x ∈
outi(N,A)? The decision procedure that addresses the respective decision
problem In-Outi is denoted IO⊢

i
. By convention, (N,A, x) ∈ IO⊢

i
is written iff

IO⊢
i

gives ”yes” for a set of norms N , input A and prospective output x; i.e., it
is identified with the subset of parameter tuples for which it decides positively.

Note that because it is not fully specified what logical formalism L is em-
ployed, the procedures IO⊢

i
presented in the following in fact describe a class

of parametric decision procedures that can be used in different contexts. As
an example, if L is taken as classical propositional logic the implementation of
the IO⊢

i
is straight-forward, and they are guaranteed to terminate and to yield

correct results.
It is also possible to apply each IO⊢

i
to logics that are not decidable: Already

existing automated theorem provers can be utilized as oracle for ⊢, e.g., in the
context of first-order logic or higher-order logic. This way a wide range of
input-output logic reasoners can be implemented with comparably low effort.
Of course, for logics that are not decidable the procedures IO⊢

i
might never

terminate; as usual in automated reasoning in expressive logics.
The decision procedures are given in pseudo-code in the following. Apart

from the usual set-theoretic functions, a function for calculating the disjunc-
tive normal form (DNF) of a formula is used: For a given formula x, the
function DNF(x) gives the disjunctive normal form of x, represented as a set
{x1, x2, . . . , xn} of formulas where each xi does not contain any disjunction.

3.1 Simple-minded output

Listing 1 shows the decision procedure IO⊢
1 for deciding In-Out1 with respect

to a logical language L with underlying derivation relation ⊢.
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1 Input: N = {(b1, h1), (b2, h2), . . .} set of norms

2 A = {a1, . . . , am} set of formulae

3 x formula

4 Output: Yes or No

5

6 N ′ := {(b, h) ∈ N | A ⊢ b}

7 if {h | (b, h) ∈ N ′
} ⊢ x then

8 return Yes

9 else

10 return No

11 endif

Listing 1: Decision procedure IO⊢
1 for In-Out1.

The general idea of IO⊢
1 is the following: First, the subset N ′ of norms whose

body is satisfied by the input A is calculated. Then, the procedure returns Yes
if and only if the heads of N ′ satisfy x. Note that this approach allows to
effectively handle the infinite sets Cn(A) and Cn(N(Cn(A))) that cannot be
computed exhaustively in an explicit way. The procedure ⊢ used here acts as
oracle. Depending on the logic L that is assumed, the effort for implementing
such a procedure may vary. An example implementation is described in §4.

Adequateness of IO⊢
1 is ensured as shown in the following:

Theorem 3.1 (Partial correctness of IO⊢
1 ) IO⊢

1 is sound and complete for
In-Out1; in particular, x ∈ out1(N,A) if and only if (N,A, x) ∈ IO⊢

1 .

Proof For the first direction, assume x ∈ out1(N,A) for some formula
x ∈ L. By definition, N(Cn(A)) ⊢ x hence there exists some subset
{(b1, h1), . . . , (bm, hm)} ⊆ N of norms such that A ⊢

∧

m

i=1 bi and
∧

m

i=1 hi ⊢ x.
Since N ′ as computed in line 6 is the largest subset of N for which each body
of (b, h) ∈ N ′ it holds that A ⊢ b, by monotony of ⊢ it also holds that
{h | (b, h) ∈ N ′} ⊢ x. As a consequence, the if condition in line 7 is true
and thus (N,A, x) ∈ IO⊢

1 .
For the second part, assume (N,A, x) ∈ IO⊢

1 . Then, by definition, there is a
subset N ′ of norms such that {h | (b, h) ∈ N ′} ⊢ x. It furthermore holds that
A ⊢ b for each (b, h) ∈ N ′ by construction. As a consequence, it holds that
x ∈ Cn(N ′(Cn(A))). Since N ′ ⊆ N it follows that x ∈ Cn(N(Cn(A))) and
hence x ∈ out1(N,A). ✷

Theorem 3.2 (Total correctness of IO⊢
1 ) Let ⊢ be a decidable derivation

relation for L. IO⊢
1 terminates and is sound and complete for In-Out1.

Proof Theorem 3.1 already yields soundness and completeness. Termination
is straight-forward: As all input is finite and since ⊢ is decidable by assumption
the set N ′ can be constructed in finite time. Also, the if-condition in line 7
can be evaluated in finite time as ⊢ is decidable by assumption. ✷

3.2 Basic output

Listing 2 presents the decision procedure IO⊢
2 for deciding In-Out2.
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1 Input: N = {(b1, h1), (b2, h2), . . .} set of norms

2 A = {a1, . . . , am} set of formulae

3 x formula

4 Output: Yes or No

5

6 D := DNF(
∧

A)

7 for all d ∈ D do

8 N ′ := ∅

9 for all (b, h) ∈ N do

10 C := {(b′, h′) ∈ N | h′
⊢ h}

11 if d ⊢
∨

{b′ | (b′, h′) ∈ C} then

12 N ′ := N ′
∪ {(b, h)}

13 endif

14 endfor

15 if {h | (b, h) ∈ N ′
} 0 x

16 return No

17 endif

18 endfor

19

20 return Yes

Listing 2: Decision procedure IO⊢
2 for In-Out2.

IO⊢
2 is a modified version of the respective procedure for In-Out1, adapted

to incorporate the validity of the OR rule. If the output of a formula can
be established for different inputs, then it is also in the output set for the
disjunction of these inputs. From a semantical perspective this amounts to
incorporating reasoning by cases (cf. definition of out2 in §2): If a norm n
is triggered by every complete extension of the input, then the head of n is
contained in the output set. In order to reflect this in IO⊢

2 , the DNF of input A
is computed first and the following steps are done for each clause d ∈ DNF(A):
The subset of triggered norms N ′ (with respect to d) is generated. If n ∈ N is
a norm, then let n′ ∈ N denote a n-compatible norm if and only if the body of
n′ is at least as strong as the body of n, i.e., it holds that h′ ⊢ h where h and
h′ are the heads of n and n′, respectively. Intuitively, every n-compatible norm
can be considered a conditional case in which n’s head is triggered. In order
to check whether the head of a given norm n is triggered in every complete
extension of d, the set of n-compatible norms is first collected in a set C (cf.
line 10). Subsequently, it is checked whether the disjunction of every body in
C is entailed by d (if-condition in line 11). If this is the case, the norm n is
added to the set of triggered norms N ′. This is iteratively conducted for every
norm on N ; as soon as the for-loop (cf. lines 9–14) has terminated, the set
N ′ contains every norm that is triggered by d in the basic setting. Finally,
similar to IO⊢

1 , is it checked whether the prospective output x is entailed by
the heads of N ′ (cf. line 15). If this is not the case, No is returned prematurely.
Conversely, if this condition holds for every clause d, IO⊢

2 ultimately returns
Yes (cf. line 20).

The following results establish adequateness for In-Out2:
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Theorem 3.3 (Partial correctness of IO⊢
2 ) IO⊢

2 is sound and complete for
In-Out2; in particular, x ∈ out2(N,A) if and only if (N,A, x) ∈ IO⊢

2 .

Proof For the left-to-right direction, the contrapositive is shown. Assume that
(N,A, x) /∈ IO⊢

2 . By definition, it follows that {h | (b, h) ∈ N ′} 0 x, where N ′

is the set generated in lines 9-14 with respect to some d ∈ DNF(A). It remains
to be shown that there is no norm n ∈ N that was incorrectly not included in
N ′. Let n = (b′, h′) ∈ N \N ′ be a norm such that {h | (b, h) ∈ N ′} 0 h′. By
construction it holds that d 0

∨

{b | (b, h) ∈ N and h ⊢ h′}, and hence there
exists at least one complete extension V ⊇ A ∪ {d} ⊇ A such that V ⊢ ¬b for
every (b, h) with h ⊢ h′. It follows that N(V ) 0 h′ for some complete V ⊇ A.
By generalization, it holds that N(V ) 0 x and thus x /∈ out2(N,A).

For the second part, assume (N,A, x) ∈ IO⊢
2 . Then, by construction, for

every clause d ∈ DNF(A) there exists a set N ′ ⊆ N such that {h | (b, h) ∈ N ′} ⊢
x. Let d ∈ DNF(A) and let (b, h) ∈ N ′ be some norm from the respective set
N ′. It follows that there exists some set of norms {(b′1, h

′
1), . . . , (b

′
m
, h′

m
)} ⊆ N

such that h′
i
⊢ h, for each 1 ≤ i ≤ m, and d ⊢ b′1 ∨ . . . ∨ b′

m
. By monotony, it

also holds that V ⊢ b′1 ∨ . . . ∨ b′
m

for every complete set V ⊇ {d}. Since V is
complete, it follows that V ⊢ b′

i
for some 1 ≤ i ≤ m and hence N(V ) ⊢ h. By

generalization, it holds that N(V ) ⊢
∧

{h | (b, h) ∈ N ′} and thus N(V ) ⊢ x.
Since this is the case for every d ∈ DNF(A), it follows that N(V ) ⊢ x for every
complete V ⊇ A and hence x ∈ out2(N,A).

✷

Theorem 3.4 (Total correctness of IO⊢
2 ) Let ⊢ be a decidable derivation

relation for L. IO⊢
2 terminates and is sound and complete for In-Out2.

Proof Theorem 3.3 already yields soundness and completeness. The termina-
tion argument is analogous to the the IO⊢

1 case if ⊢ is decidable. ✷

3.3 Reusable output

Listing 3 shows the decision procedure IO⊢
3 for deciding In-Out3 with respect

to a logical language L with underlying derivation relation ⊢.
In IO⊢

3 a more complex proof search is conducted in order to accommodate
the interdependence between the operators Cn(.) and N(.) in the semantics of
out3. The basic approach is quite similar to the IO⊢

1 procedure for out1: A set
N ′ of norms is calculated that is triggered by the input A; then, it is checked
whether the heads of these norms N ′ satisfy the output x. However, since
out3 validates the CT rule, it is also possible that x it not satisfied directly
by the heads of N ′ but rather by some superset of N ′ which is triggered by
A∪{h | (b, h) ∈ N ′}. Put differently, the output is reused to further strengthen
the input and, in turn, to possibly trigger more outputs. As this can be done
repeatedly, the IO⊢

3 procedure iteratively updates the input (called A′) by the
heads of the triggered norms, and subsequently collects all newly triggered
norms (by A′) in an updated set N ′. If in some iteration N ′ satisfies the
output x, the proof search succeeds; if, however, x is not satisfied and there
are no new norms triggered, the process is terminated and a negative answer
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1 Input: N = {(b1, h1), (b2, h2), . . .} set of norms

2 A = {a1, . . . , am} set of formulae

3 x formula

4 Output: Yes or No

5

6 A′ := A

7 N ′ := {(b, h) ∈ N | A′
⊢ b}

8 N := N \N ′

9

10 while not {h | (b, h) ∈ N ′
} ⊢ x do

11 A′ := A′
∪ {h | (b, h) ∈ N ′

}

12 M := {(b, h) ∈ N | A′
⊢ b}

13 if M = ∅ then

14 return No

15 else

16 N ′ := N ′
∪M

17 N := N \M

18 endif

19 endwhile

20 return Yes

Listing 3: Decision procedure IO⊢
3 for In-Out3.

is returned. The termination condition intuitively reflects that N ′ is a fixed
point with respect to Cn(.) and N(.) and moreover does not satisfy x.

Let A∗ be the least superset of A that is closed both under Cn and N .
The following results establish adequateness for In-Out3, using so-called bulk
increments [15]:

Theorem 3.5 (Partial correctness of IO⊢
3 ) IO⊢

3 is sound and complete for
In-Out3; in particular, x ∈ out3(N,A) if and only if (N,A, x) ∈ IO⊢

3 .

Proof Assume x ∈ out3(N,A) for some formula x ∈ L. Then, it holds
that x ∈ Cn(N(A∗)). This implies that there exists a subset N ′ =
{(b1, h1), . . . , (bm, hm)} ⊆ N of norms such that A∗ ⊢

∧

m

i=1 bi and
∧

m

i=1 hi ⊢ x.
By construction, in every iteration it holds that A ⊆ A′ and either N(A′) ⊢ x in
which case already Yes is returned, or A′ will eventually reach a fixed point that
is A∗. In the latter case N(A′) ⊢ x iff N(A∗) ⊢ x, which holds by assumption,
and Yes is returned. In either case, (N,A, x) ∈ IO⊢

3 .
For the second part, assume (N,A, x) ∈ IO⊢

3 . Then, by construction there
exists some A′ such that A ⊆ A′ ⊆ A∗ and N(A′) ⊢ x. Since N is monotone,
it also holds that N(A∗) ⊢ x and hence x ∈ out3(N,A). ✷

Theorem 3.6 (Total correctness of IO⊢
3 ) Let ⊢ be a decidable derivation

relation for L. IO⊢
3 terminates and is sound and complete for In-Out3.

Proof Theorem 3.5 already yields soundness and completeness. As ⊢ is decid-
able and every input is finite, every loop iteration itself terminates. There are
only a finite number of loop iterations, as the set N is monotonously decreasing
and Cn(.) is monotone and idempotent. If no new norms can be triggered, the
loop is terminated. ✷
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1 Input: N = {(b1, h1), (b2, h2), . . .} set of norms

2 A = {a1, . . . , am} set of formulae

3 x formula

4 Output: Yes or No

5

6 N ′ := ∅

7 N := N \N ′

8

9 while {h | (b, h) ∈ N ′
} 0 x do

10 D := DNF(a1 ∧ . . . ∧ am ∧
∧

{h | (b, h) ∈ N ′
})

11 M := ∅

12 for all d ∈ D do

13 M ′ := ∅

14 for all (b, h) ∈ N do

15 C := {(b′, h′) ∈ N | h′
⊢ h}

16 if d ⊢
∨

{b′ | (b′, h′) ∈ C} then

17 M ′ := M ′
∪ {(b, h)}

18 endif

19 endfor

20 M := M ∩M ′

21 endfor

22 if M = ∅ then

23 return No

24 else

25 N ′ := N ′
∪M

26 N := N \M

27 endif

28 endwhile

29

30 return Yes

Listing 4: Decision procedure IO⊢
4 for In-Out4.

3.4 Basic reusable output

Listing 4 shows the decision procedure IO⊢
4 for deciding In-Out4 with respect

to a logical language L with underlying derivation relation ⊢.
The procedure IO⊢

4 combines the incremental proof search approach of IO⊢
3

with the method for calculating the triggered norms in the basic output scenario
as incorporated by IO⊢

2 : In the resulting procedure, the set of (basic) triggered
norms is collected by N ′, initially empty. The set N will store the subset of
norms from N not (yet) triggered. As long as the heads contained in N ′ do not
entail the prospective output x (cf. while condition in line 9) the while loop
will incrementally augment the set N ′ with norms triggered by the input A and
the heads of N ′. To that end, the disjunctive normal form D of this expression
is calculated first (cf. line 10). In contrast to IO⊢

3 , the set M of newly triggered
norms in each iteration cannot be calculated directly, but rather proceeds in
a similar fashion to IO⊢

2 : After the inspection of each clause d ∈ D, the set
M invariantly contains all triggered norms by all earlier clauses including the
current clause d (cf. line 20). If no new norms can be triggered in the basic
setting, i.e., after termination of the for-loop in lines 14–19, the procedure
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Figure 1. The I/O Logic Workbench: An open-source implementation of the IO
⊢
i

procedures as a browser-based application.

returns No. Otherwise, the outer loop is continued with the augmented set of
triggered norms N ′. If the while-loop terminates, the output x is entailed by
the heads in N ′ and IO⊢

4 returns Yes.
The following results establish adequateness for In-Out4:

Theorem 3.7 (Partial correctness of IO⊢
4 ) IO⊢

4 is sound and complete for
In-Out4; in particular, x ∈ out4(N,A) if and only if (N,A, x) ∈ IO⊢

4 .

Proof The argument is analogous to the proof of Theorem 3.5. However, in
every incremental step, the set of triggered norms corresponds to the basic
output, hence accommodating the principle of reasoning by cases analogously
to Theorem 3.3. ✷

Theorem 3.8 (Total correctness of IO⊢
4 ) Let ⊢ be a decidable derivation

relation for L. IO⊢
4 terminates and is sound and complete for In-Out4.

Proof Theorem 3.7 already yields soundness and completeness. As ⊢ is de-
cidable and every input is finite, every loop iteration itself terminates. There
is only a finite number of while loop iterations as the set N is monotonously
decreasing and Cn(.) is monotone and idempotent. If no new norms can be
triggered, the loop is terminated directly. ✷

4 Implementation

A prototype implementation of the decision procedures presented in this paper
is freely available as an open-source software library at GitHub. 2

2 See github.com/I-O-Logic for the source code files and further information.
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This above library constitutes the basis for the I/O Logics Workbench
(IOLW) that provides graphical means for reasoning in I/O logics. IOLW
is a browser-based application and is implemented in JavaScript. There is no
need for any backend server infrastructure, as IOLW is implemented purely as
a client-side application. Hence, it runs in every reasonably current browser,
ready-to-use for conducting own experiments without any installation or set-up.
An instance of IOLW is hosted at the author’s personal web site. 3

The user interface of IOLW is presented in Fig. 1. In the left menu panel, a
user can choose which out operation should be used for the reasoning process.
On the right side, the input A, the set of norms N and a prospective output
x can be entered. The input language is an ASCII representation of propo-
sitional logic, where |, & and ˜ denote disjunction, conjunction and negation,
respectively. The input A is a comma separated list of formulas, whereas the
set of norms N is, as usual, represented as a set of pairs. Every norm is entered
as a separate line in the text area. Additionally, some example scenarios can
be loaded using the respective buttons at the top.

The implementation of the decision procedure library and the IOLW will
be extended with further I/O operations and input logics, cf. further work in
§5 below for more details.

5 Conclusion

In this paper four decision procedures are presented, one of each outi operation,
i ∈ {1, 2, 3, 4}, that abstract from the underlying classical logical language L.
These procedures are designed to decide whether a given formula x ∈ L is
in the output outi(N,A), given a set of norms N and an input A. They are
shown to be correct (sound and complete) and to be decidable if the derivation
relation ⊢ of the underlying logic L is decidable.

Instead of deciding for every prospective output x ∈ L individually, the
ideas underlying the decision procedures can also be used to calculate a finite
base {x1, . . . , xn} ⊂ L of the output set outi(N,A) itself. Such a set can
be constructed by modifying the presented procedures in such a way that all
triggered norms are collected in a result set. Deciding In-Outi can then be
reduced to checking entailment with respect to {x1, . . . , xn}.

The output operators with so-called throughput [8], denoted out+
i

for i ∈
{1, 2, 3, 4}, can easily be covered by the procedures presented in this paper:
Intuitively, these operators behave similar to the respective operators without
throughput with the exception that the input A is incorporated into the output
set (in addition to the generated output). It is known that out+2 and out+4
coincide and that they collapse to classical consequence (cf. [9] for details).
Moreover, the operators out+1 and out+3 can be expressed in terms of their non-
throughput counterpart [9]. As a consequence, the decision procedures for all
the out+

i
operators can simply be reduced to the underlying routines for ⊢ (in

case of out+2 and out+4 ) and to the routines for out1 and out3 (in case of out+1

3 See alexandersteen.de/iol for details.
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and out+3 , respectively).
On the practical side the procedures are quite simple to implement, since

already existing implementations of decision procedures for ⊢ can be used as
a black box. A prototypical browser-based implementation for classical propo-
sitional logic as underlying logical language is presented. The implementation
is open-source, publicly available at GitHub, and can be used for conduct-
ing (small) independent normative experiments. The browser-based graphical
user interface is primarily intended to serve as a pedagogical tool, e.g., to be
used in university teaching for a more interactive exposure to logical reason-
ing. However, the decision procedures themselves can easily be used as general
components in larger software systems.

Future work. The presented procedures only address unconstrained in-
put/output operations. While they are interesting operations for different ap-
plications, it is pointed out in the literature that they are not fully fit for usage
in normative and deontic context [9]; e.g. due to lack of robustness to the usual
deontic paradoxes. Further work thus focuses on generalizing the procedures
to constrained input/output logics [9] that address these aspects.

It is planned to investigate whether the presented decision procedures may
contribute to the practical employment of so-called logical input/output nets [6],
lions for short, which combine different normative systems and output oper-
ators in a graph structure. Each node of a lion could be implemented by an
independent instance of some appropriate IO⊢

i
procedure.

Furthermore, a prototypical implementation for first-order logic as an un-
derlying formalism is ongoing work. Also, empirical studies have to be con-
ducted for assessing the practical effectiveness of the proposed approach for
larger normative systems, e.g., in the context of reasoning with large legal
knowledge bases [13].

Finally, the computational approach presented in this paper may be gener-
alized to allow for the employment of non-classical logics as underlying logical
formalism, e.g., for intuitionistic I/O logics [11] and further variants.
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Abstract

Default logic and formal argumentation are paradigmatic methods in the study of
nonmonotonic inference. Defeasible information often comes in different strengths
stemming from different degrees of reliability in epistemic applications or from varying
strengths of authorities issuing norms in deontic applications. In both paradigms
methods have been developed to deal with prioritized knowledge bases. Questions of
comparability of these methods therefore naturally arise. Argumentation theory has
been developed with a strong emphasis on unification. It is therefore a desideratum
to obtain natural representations of various approaches to (prioritized) default logic
within frameworks of structured argumentation, such as ASPIC. Important steps in
this direction have been presented in Liao et al. (2016, 2018). In this work we identify
and address some problems in earlier translations, we broaden the focus from total
to modular orderings of defaults, and we consider non-normal defaults.

Keywords: Argumentation, Defaults, Priorities, Argument Strength, ASPIC+, ASP,
Hypothetical reasoning,

1 Introduction

In [11] Dung proposed formal argumentation as an abstract unifying framework
for nonmononotonic inference types. He demonstrated how default logic and
other formal methods can be embedded in it. By now, several frameworks of
structured argumentation have been proposed such as ASPIC+ [22], ABA [7]
and sequent-based argumentation [2] that share the same ambition but with a
stronger emphasis on providing a logical form to arguments and attacks. Their
unifying nature has been demonstrated by embedding nonmonotonic logics and
other logical systems in them (see [14] for a recent survey).

Default logic has been considered, e.g. in assumption-based argumentation
[7]. More recently the focus turned on prioritized forms of default logic, in
particular we mention [19,18] and [26]. In this paper we continue these inves-
tigations. The advantages of such characterizations are manifold (see below
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for applications in deontic logic). First, they substantiate the unifying status
of argumentation theory as an overarching framework for nonmonotonic rea-
soning; second, they allow for a dialectical perspective on default reasoning;
third, the highly parametrizable argumentative characterizations may give rise
to intuitive variants of existing approaches; fourth, such characterizations may
inspire new variants for measuring argument strength in structured argumen-
tation (see [3] for a survey) and highlight shortcomings; and fifth, (variants of)
the translations may give rise to argumentative characterizations of other non-
monotonic logics. For an example of the latter, in [18] a new disjoint variant of
weakest link lifting has been proposed to characterize greedy default reasoning.

Such considerations are of particular interest in the context of deontic logic.
Clearly, depending on the source of a norm or its role in a normative framework
(such as an ethical or legal system), norms come in different strengths. Both
default logic [16] and argumentation theory [6,25] allow to aggregate deontic
reasons in the form of arguments, albeit argumentation theory allows for a more
direct model of their interplay, i.e. the way they support and defeat each other.
Methods of dealing with prioritzed defaults have been shown to be based on
different intuitions that give rise to different results when applied to deontic
scenarios such as the order puzzle [16,18] (Ex. 6.5 below).

In this paper we study whether formal argumentation is able to make these
intuitions formally precise, i.e., whether and how they can be explicated as an
interplay of arguments of different strengths. This gives rise to a new perspec-
tive on and understanding of these intuitions and so may help in demarcating
their use for different applications of defeasible reasoning. In [23] logical studies
of the interplay of reasons have been motivated to investigate the way reasons
of various strengths defeat and accrue. Formal argumentation offers a very
natural formal framework for representing this type of dynamics. Moreover,
answering the how question leads to conceptual insights of interest to argumen-
tation theorists. For instance, in our study, we delineate a role for hypothetical
arguments when reasoning with prioritized default information (see e.g., Sec-
tion 6).

In this paper we identify and solve some problems in previous character-
izations of default logics and generalize some of them from total to modular
orders. After a brief presentation of default logics (Section 2) and elements
of structured argumentation (Section 3), we sketch how these elements induce
a translation from defaults to arguments, and define what does it mean that
an argumentation semantics characterizes a default logic (for an order type)
under a given translation. Then we proceed with characterizations of the de-
fault logics: Greedy (Section 4), Hansen (Section 5) and Brewka-Eiter (Section
6). After this, we move to non-normal default theories as proposed by Reiter
[24] and Lukaszewicz [20] (Section 7) and offer characterizations for them as
well (Section 8). This way we also obtain an argumentative characterization of
answer set programming. The paper concludes with Section 9.



Strasser, Pardo 429

2 Prioritized Normal Defaults

In this section we define three central approaches to reasoning with priori-
tized default information: the greedy, Hansen [13] and Brewka-Eiter [9,10]
approaches. 1 Following [19,18], we work with a simplified language Lit⊤ =
Lit ∪ {⊤} consisting of a set Lit of literals ℓi ∈ {pi,¬pi} and a true proposition
⊤. We also define negation for literals −ℓ by: −p = ¬p and −¬p = p.

Definition 2.1 A default theory is a triple N = (F ,N ,�) consisting of:

• a consistent 2 set of facts F ⊆ Lit⊤ with ⊤ ∈ F ,

• a set of defaults N ⊆ Lit⊤ × Lit, written ℓ⇒ ℓ′, with ℓ′ 6= −ℓ; and

• an order � ⊆ N ×N .

We define head(ℓ⇒ ℓ′) = ℓ′, body(ℓ⇒ ℓ′) = ℓ and r ≺ r′ iff r � r′ and r′ 6� r.

Throughout the paper, the reader may interpret a default theory in terms
of a normative system, consisting of prioritized conditional norms (N ,�) and
factual information F in view of which some norms are triggered and give rise
to obligations. We also assume that N = (F ,N ,�) is a default theory for
which � is a partial, total, modular or flat order on a finite set N . A reflexive
and transitive relation � on N is called a modular order [17] if it admits a
ranking: an order-preserving function f : N → N satisfying f(r) ≤ f(r′) iff
r � r′. A flat order is a modular order with � = N × N . 3 For total or
modular orders, moreover, � will be defined from an assignment of strengths
to defaults, denoted ℓ ⇒k ℓ′, with smaller numbers meaning lower strength.
The same convention will apply later on to defeasible rules, arguments and
non-normal defaults. Finally, for any function f applied to a set X, we denote
the resulting set of values by f [X] = {f(x) : x ∈ X}.

Definition 2.2 LetN ′ ⊆ N be a set of defaults. outN(N
′) is the⊆-smallest set

X satisfying: ℓ ∈ F ∪X and ℓ⇒ ℓ′ ∈ N ′ implies ℓ′ ∈ X. 4 TrigN(N
′) is the set

of rules in N whose bodies are contained in outN(N
′)∪F . ConN(N

′) is the set
of rules in N whose heads are consistent with outN(N

′). And TrigConN(N
′) =

TrigN(N
′) ∩ ConN(N

′).

We now discuss three central approaches for reasoning with prioritized de-
fault theories. Typically one proceeds by iteratively building a scenario (a
set of defaults) so that its extension (the set of propositional commitments)

1 In [19] the Hansen approach is called Optimization and Brewka-Eiter is called Reduction.
2 A set X ⊆ Lit⊤ is consistent, denoted X 0 ⊥, iff ¬⊤ /∈ X and for all atoms p, {p,¬p} * X.
3 A partial order � on N is a reflexive, transitive and antisymmetric relation; � is total in
case r � r′ or r′ � r for each r, r′ ∈ N . Note that partial (unlike modular) orders allow for
incomparable defaults while modular (unlike partial) orders allow for defaults of the same
strength. Although a flat order �= N ×N is obviously a total relation, in this paper total
only refers to the antisymmetric case, that is a total (partial) order.
4 This is the definition for deontic applications. While in epistemic applications facts are
part of the output, in the deontic case literals are only part of the output if they are detached
from defaults, read as conditional norms.
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p q ¬p⊤
2 3

4

1

Fig. 1. The greedy extension {p, q} for Ex. 2.4 is highlighted.

remains consistent; that is, the set of literals detachable from the given facts
and the defaults collected. The first approach is greedy reasoning. A greedy
reasoner will in each iteration select and detach a maximally strong default
that is triggered by her propositional commitments.

Definition 2.3 A greedy scenario for N is given by gr =
⋃

i≥0 gri where

gr0 = ∅ and gri+1 =

{

gri TrigConN(gri) \ gri = ∅

gri ∪ {r} r ∈ max�(TrigConN(gri) \ gri).
5

X is a greedy extension of N, denoted X ∈ greedy(N), iff there is a greedy
scenario gr for which X = outN(gr) (= head[gr]).

Example 2.4 Consider the default theory N based on fact F = {⊤} and
defaults N = {⊤ ⇒1 p, p ⇒2 q, q ⇒3 ¬p, ¬p ⇒4 q}. Fig. 1 depicts the only
greedy scenario gr = {⊤ ⇒1 p, p⇒2 q}, with extension X = {p, q}.

The Hansen approach, designed for deontic reasoning, always selects a
strongest default preserving output consistency —be it triggered or not.

Definition 2.5 A Hansen scenario ha for N is obtained by the following con-
struction: ha =

⋃

i≥0 hai where ha0 = ∅ and

hai+1 =

{

hai {r ∈ N \ hai | outN(hai ∪ {r}) 0 ⊥} = ∅

hai ∪ {r} r ∈ max�({r ∈ N \ hai | outN(hai ∪ {r}) 0 ⊥})

X is a Hansen extension of N, denoted X ∈ hansen(N), iff there is a Hansen
scenario ha for which X = outN(ha) (⊆ head[ha]).

Example 2.6 (Ex. 2.4, cont’d.) The only Hansen scenario is ha = {¬p ⇒4

q, q ⇒3 ¬p, p⇒2 q}, with extension X = ∅. While the propositional commit-
ments did not increase, the inferential commitments (scenario) did.

In [19,18] Brewka-Eiter (in short: BE) extensions X have been characterized
as fixpoints of greedy reasoning, in the sense of being greedy extensions for the
defaults triggered by X itself.

Definition 2.7 X is a BE extension of N, denoted X ∈ be(N), iff X ∈
greedy(NX), where the default theory NX = (F ,NX ,�X), is defined by:
NX = {⊤ ⇒ ℓ | ℓ′ ⇒ ℓ ∈ N , ℓ′ ∈ X ∪ F} and ⊤ ⇒ ℓ �X ⊤ ⇒ ℓ′ iff
max�{ℓ0 ⇒ ℓ ∈ N}ℓ0∈X � max�{ℓ0 ⇒ ℓ′ ∈ N}ℓ0∈X .

5 In case � is a partial order, max� X must be read as the set of �-maximal elements of X.
In a modular order �, all �-maximal elements are ≤-maximum in the ranking function, in
which case we abusively let max� X denote an arbitrary element of this set (e.g. in Def. 2.7).
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Example 2.8 (Ex. 2.4 cont’d.) The unique BE extension is X = {¬p, q}.
Note that NX = {⊤ ⇒1 p, ⊤ ⇒3 ¬p, ⊤ ⇒4 q} and {¬p, q} is the only greedy
extension of NX . Also observe that X ′ = {p, q} is not a BE extension, since
the greedy extension for NX′ = {⊤ ⇒1 p, ⊤ ⇒2 q, ⊤ ⇒3 ¬p} is X, not X ′.

We note that the original characterization [10] is more stringent in that it
demands that X is both a greedy extension of N and of NX .

Definition 2.9 X is a BEo extension (original BE extension) of N, denoted
X ∈ beo(N), iff X ∈ greedy(N) ∩ greedy(NX), where NX is defined as in
Def. 2.7. 6

Example 2.10 (Ex. 2.4 cont’d.) N has no BEo extension since its unique BE
extension {¬p, q} is not a greedy extension of N.

As shown in [10], the BEo extensions have an alternative characterization. 7

Proposition 2.11 Let N = 〈F ,N ,�〉 be a default theory based on a total order
�. Then, X ∈ BEo(N) iff (i) X ∈ greedy(N) and (ii) for every ℓ1 ⇒

k ℓ′ ∈ N
for which ℓ1 ∈ X and ℓ′ /∈ X there is a ℓ2 ⇒

k′ −ℓ′ ∈ N for which ℓ2,−ℓ
′ ∈ X

and k′ > k.

3 Argumentative Characterizations

In the following sections, we translate prioritized default logics into structured
argumentation. Our characterizations are phrased in a simple ASPIC+ setting
[18]. We denote defeasible rules by double arrows ⇒ and strict rules by sin-
gle arrows →. For each default logic approach and order type, we translate a
default theory N = (F ,N ,�) into Narg = (Arg, defeat), an abstract argumen-
tation framework [11] (AF, in short). Arg is the set of arguments obtained as
in Fig. 2 by specifying:

(i) a formal language L based on Lit⊤,

(ii) a map N 7→ D from defaults to sets of defeasible rules D ⊆ ℘(L)× L,

(iii) a set of strict rules S ⊆ ℘(L)× L.

defeat is a relation over Arg obtained from defining (iv)–(vii):

(iv) a (partial) contrariness function · : L → ℘(L),

(v) a lifting of the order � 7→ �arg from defeasible rules to arguments, 8

(vi) an attack relation over Arg: (a, b) ∈ attack iff there is a b′ ∈ Sub(b) with a
last rule of the form r = head(b′′)⇒ φ and such that

6 We thank an anonymous reviewer for pointing out this difference between [19,18] and the
original Brewka-Eiter definiton found in [10]. We also note that the original definition is
phrased in a richer language.
7 This is a simplified version of Prop. 2 in [10], adapted to the present setting.
8 All of the proposed translations map each default ℓ ⇒k ℓ′ into an identical defeasible
rule ℓ ⇒k ℓ′ and (possibly) additional defeasible rules. The ordering � on N is uniformly
expanded to all defeasible rules in D and subsequently lifted to the level of arguments.
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a = ℓ⇒ φ a1 . . . am ⇒ φ a1 . . . am → φ

condition
ℓ ∈ F

ℓ⇒ φ ∈ D

a1, . . . , am ∈ Arg

r = φ1 . . . φm ⇒ φ ∈ D

a1, . . . , am ∈ Arg

φ1 . . . φm → φ ∈ S

head(a) = φ φ φ

D(a) = {ℓ⇒ φ} {r} ∪
⋃m

i=1D(ai)
⋃m

i=1D(ai)

Sub(a) = {a} {a} ∪
⋃m

i=1 Sub(ai) → idem

PSub(a) = ∅
⋃m

i=1 Sub(ai) → idem

Fig. 2. From facts F and rules D ∪ S one inductively defines the set Arg of argu-
ments (top), and the functions (bottom) mapping each argument to: its conclusion
head : Arg → Lit, its set of defeasible rules D : Arg → ℘(D), and its (proper) subar-
guments (PSub) Sub : Arg → ℘(Arg). φi denotes the conclusion head(ai) = φi.

rebut : head(a) ∈ φ or undercut (when needed): head(a) ∈ r, 9

and in either case we say a attacks b in b′. Items (iv)–(vi) determine defeat :

(a, b) ∈ defeat iff a attacks b in some b′ and, in case of a rebut, a 6≺ b′.

Finally, the argumentation semantics (stable, in our case) also depends on:

(vii) a notion of conflict-freeness: a set X ⊆ Arg is conflict-free [21] iff for no
a, b ∈ X , (a, b) ∈ defeat.

(Only in Sections 6.2 and 8, item (vii) will consist of an attack-based notion
of conflict-freeness, where X is conflict-free iff for no a, b ∈ X , (a, b) ∈ attack).
A simple illustration of a translation defined by these components can be found
at the beginning of Section 4.

Definition 3.1 Where (Arg, defeat) is an AF, a set X ⊆ Arg is stable iff it is
conflict-free and for each a ∈ Arg \ X there is a b ∈ X such that (b, a) ∈ defeat.

The set of stable sets of Narg, the stable extensions, is written stb(Narg).
Where D′ ⊆ D, Arg(D′) denotes the set of a ∈ Arg for which D(a) ⊆ D′.

Definition 3.2 Let headlit[X ] =df head[X ] ∩ Lit. 10 A translation N 7→ Narg

characterizes method ∈ {greedy, hansen, be, . . . } for a class C of orders (total,
modular, . . . ) if for each default theory N = (F ,N ,�) with � ∈ C:

(1) X ∈ method(N) implies X = headlit[X ] for some X ∈ stb(Narg), and

(2) X ∈ stb(Narg) implies headlit[X ] ∈ method(N).

While the weakest link lifting is the predominant notion of argument
strength, in this paper we will often work with disjoint weakest link [18].

Definition 3.3 Weakest link ≻w ⊆ Arg×Arg is defined by: a ≻w b iff there is
an r ∈ D(b) such that for all r′ ∈ D(a), r′ ≻ r. 11

9 Here we suppose that the names of rules are part of L. Note that in line with [22] for
undercuts the strengths of arguments don’t matter.
10For some of the translations presented and their stable extensions X , headlit[X ] 6= head[X ].
11Since we focus on modular and total orders we do not consider more fine-grained variants
such as democratic or elitist weakest link [22].
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Definition 3.4 Disjoint weakest link ≻ ⊆ Arg × Arg is defined by: a ≻ b iff
there is a r ∈ D(b) \ D(a) such that for all r′ ∈ D(a) \ D(b), r′ ≻ r.

Given that our focus is on flat, total and modular orders, we can define
a � b iff b 6≻ a. Our characterizations make use of the following results about
disjoint weakest link ≻.

Fact 3.5 a ≻ b iff D(b) \ D(a) 6= ∅ and (i) D(a) \ D(b) = ∅ or (ii) there is a
r′ ∈ min�(D(b) \ D(a)) such that for all r ∈ min�(D(a) \ D(b)), r ≻ r′.

Fact 3.6 (i) a � a and a 6≻ a and (ii) if a ≻ b and D(c) ⊆ D(a), then c ≻ b.

Lemma 3.7 Where � ⊆ N ×N is modular, if a1 ≻ a2 ≻ a3 then a1 ≻ a3.

Proof Sketch. Let Di = D(ai). By Fact 3.5, the claim ai ≻ aj splits into
cases (αij) Di ⊆ Dj and Dj \ Di 6= ∅ and (βij) rji ≺ Di \ Dj 6= ∅ for some
rji ∈ Dj \ Di. Thus, a1 ≻ a2 and a2 ≻ a3 give four cases to prove a1 ≻ a3,
but only the proof from (β12, β23) is not immediate. For this, the subcase
r21 /∈ D3 \ D1 gives r32 ≺ r21 which can be shown to make r32 a witness for
(β13), i.e. r32 = r31; for the subcase r21 ∈ D3 \ D1 the witness r31 for (β13)
is either a �-minimum of {r21, r32} (if r32 /∈ D1) or r21 (if r32 ∈ D1, as this
implies r21 ≺ r32). In all cases (β13) follows, which implies a1 ≻ a3. ✷

Lemma 3.8 Where � ⊆ N ×N is total, (i) (a � b and b � a) iff D(a) = D(b)
iff (a 6≻ b and b 6≻ a), and (ii) � ⊆ Arg × Arg is also total.

Proof Sketch. Similar to the proof of Lemma 3.7. ✷

Fact 3.9 Let a0 ∈ Sub(a). (i) If a ≻ b, a0 ≻ b. (ii) If b ≻ a0, b ≻ a.

4 Greedy extensions

Before generalizing the greedy approach to non-normal default theories in Sec. 8
we report on previous results and demonstrate why it is difficult to go beyond
total or flat orders. For the greedy approach the translation Narg of a default
theory N = (F ,N ,�) with a total order � is very simple [19,18,26]:

(i) L = Lit⊤ (ii) D = N (iii) S = ∅
(iv) ℓ = {−ℓ} (v) disjoint weakest link (vi) only rebut.

Proposition 4.1 The translation above characterizes greedy(N) for default
theories N = (F ,N ,�) where � is a total or flat order.

Example 4.2 Prop. 4.1 does not generalize to modular or partial orders. For
the modular case, Fig. 3 (left) depicts the ranked defaults in N = 〈{⊤}, {⊤ ⇒1

p,⊤ ⇒1 q, p ⇒2 ¬q, q ⇒2 ¬p},�〉. Note that {⊤ ⇒1 p,⊤ ⇒1 q} is not a
greedy scenario, but it is a stable extension of Narg in view of defeats. 12

Fig. 3 (right) shows the partial order � = {(⊤ ⇒ p,⊤ ⇒ ¬q), (⊤ ⇒ q,⊤ ⇒
¬p)}. This renders ⊤ ⇒ p,⊤ ⇒ ¬p incomparable, as well as ⊤ ⇒ q,⊤ ⇒
¬q. Now, a greedy reasoner will first choose between ⊤ ⇒ ¬p and ⊤ ⇒ ¬q.
However, in the argumentative setting {⊤ ⇒ p,⊤ ⇒ q} is a stable extension.

12We thank Leon van der Torre for proposing this example.
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p

q

¬p

¬q

⊤

1

1

2

2

⊤ ⇒ p ⊤ ⇒ q

⊤ ⇒ ¬p ⊤ ⇒ ¬q

Fig. 3. Greedy vs. stable semantics in non-flat or non-total orders. (Left) A modular
order for which no greedy scenario matches the stable extension (in green); red arrows
represent defeat under disjoint weakest link. (Right) A similar case with a partial
order; ordered pairs are represented by dotted arrows.

Despite such direct counterexamples, an indirect characterization exists via
linear extensions of modular orders �, i.e. total orders ⊑ satisfying � ⊆ ⊑,
denoted ⊑ ∈ lin(�). 13

Proposition 4.3 Let N� = (F ,N ,�) be based on a modular order �. Then,
X is a greedy extension of N� iff X is a greedy extension of N⊑ = (F ,N ,⊑) for
some linear extension ⊑ of �. That is, greedy(N�) =

⋃

⊑∈lin(�) greedy(N
⊑).

Proof Sketch. (⊆) Let X ∈ greedy(N�) be based on a scenario gr =
⋃n

k=1 grk. We find a ⊑ ∈ lin(�) such that X ∈ greedy(N⊑). Enumerate N by
〈ri〉i≤|N| and define ⊑ by: ri ⊏ rj iff (1) ri ≺ rj or (2) rank(ri) = rank(rj) and
(2a) rj ∈ grk and ri /∈ grk for some k ≥ 1, or else, (2b) i < j. An induction
over the rounds k = 1, . . . , |N | shows that gr is a greedy scenario for N⊑. (⊇)
Let now ⊑ ∈ lin(�) and X ∈ greedy(N⊑) be based on gr =

⋃n

k=1 grk. An
induction over k shows that gr is also a greedy scenario for N�. ✷

So, in order to characterize a default theory N based on a modular order �,
we need to translate all linear extensions of ≺ and apply Prop. 4.1. The next
example shows that this strategy does not work for partial orders.

Example 4.4 Consider again N = {⊤ ⇒ q,⊤ ⇒ p, p ⇒ ¬q, q ⇒ ¬p} (Fig. 3,
left) but now with the partial order ≺ = {(⊤ ⇒ p, p⇒ ¬q), (⊤ ⇒ q, q ⇒ ¬p)}.
Note first that gr = {⊤ ⇒ p,⊤ ⇒ q} is a greedy scenario. The set of linear
extensions < of ≺ splits into two classes: (1) ⊤ ⇒ q < ⊤ ⇒ p and (2) ⊤ ⇒
p < ⊤ ⇒ q. For linear extensions satisfying (1), any greedy scenario will first
choose ⊤ ⇒ p and then p⇒ ¬q. All remaining cases satisfy (2), in which case
any greedy scenario will first choose ⊤ ⇒ q and then q ⇒ ¬p.

5 Hansen extensions

We now present a translation for Hansen extensions that is adequate for mod-
ular orderings. But first we show that the translations offered in the literature
so far are not adequate for this purpose.

13 In view of the order-extension principle such an extension always exists.
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⊤

¬q ¬p ¬s

s p q

1

5
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3

3

4

s

¬s

¬p

p

⊤

aux

1

1

3

1

Fig. 4. Left: Counter-example for the Hansen translation in [18]; dashed arrows
represent ⇒r rules, and red arrows defeat. Right: Counter-example with a modular
order for the Hansen translation in [19]; defeats on super-arguments are omitted.

5.1 Problems with previous characterizations

In [18] the proposed translation of Hansen for linear orders introduces a second
type of defeasible rule, denoted by ⇒r. The ⇒r rules read as conditional
permissions (resp. possibilities, in the epistemic case), and so they are not part
of the propositional commitments for obligations (resp. beliefs). Arguments
can chain ⇒ and ⇒r rules all the same, but conclusions inherit the permissive
reading of any ⇒r rule occurrying in them. Permission (p-)arguments and the
previous obligation (o-)arguments attack each other, and again defeat is based
on strength. The translation of N = (F ,N ,�) in [18] defines D as the closure
of N under weak contraposition and using the same strength:

(i) L = Lit⊤ (ii) D = N ∪ {−ℓ′ ⇒k
r −ℓ}ℓ⇒kℓ′∈N (iii) S = ∅

(iv) ℓ = {−ℓ} (v) disjoint weakest link (vi) oo, po, op rebuts.

Example 5.1 Let N = (F ,N ,�) contain the sets F = {⊤} and N = {⊤ ⇒5

s,¬p ⇒4 ¬s, p ⇒3 q,⊤ ⇒1 ¬q}. Fig. 4 (left) shows how weak contraposition
gives inter alia s ⇒4

r p and so in [18] the p-argument a : ⊤ ⇒5 s ⇒4
r p ⇒3 q

defeats the argument b : ⊤ ⇒1 ¬q. In this case, the unique stable extension
does not conclude ¬q. In contrast, the unique Hansen scenario ha is built
through ha3 = {⊤ ⇒5 s,¬p ⇒4 ¬s, p ⇒3 q}, detaching only s, and then
ha = ha4 = ha3 ∪ {⊤ ⇒

1 ¬q}, so now we conclude ¬q.

In [19] another construction was proposed to tackle Hansen extensions based
on total orders. It employs an auxiliary argument aux and a function warg :
Arg → ℘(Arg) given by warg(a) = ↑b where b ∈ sub(a) is the subargument of
a with the weakest defeasible top-rule, and ↑b is the set of all super-arguments
of b. The translation is then:

(i) L = Lit⊤, (ii) D = N , (iii) S = ∅,
(iv) ℓ = {−ℓ} (v) weakest link (vi) rebut based on defeat,

where now defeat is extended into Arg ∪ {aux} as follows:

if a defeats b then

{

a defeats each c ∈ warg(b) if a /∈ warg(b)

aux defeats each c ∈ warg(b) if a ∈ warg(b).

Unfortunately this translation does not work for rankings.

Example 5.2 Consider the modularly ordered N = (F ,N ,�) in Fig. 4 (right)
with F = {⊤} and N = {⊤ ⇒1 ¬p, ⊤ ⇒1 p, p ⇒3 s, p ⇒1 ¬s}. Note
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that ha = {⊤ ⇒1 p, p ⇒3 s} forms a Hansen extension. Moving to the
argumentative setting of [19] let a′ = ⊤ ⇒1 p, a = a′ ⇒3 s and b = a′ ⇒1 ¬s.
Since warg(b) = ↑a′ = {a′, a, b} and a defeats b, the argument aux defeats a′, a
and b. Hence, the set {a, a′} that would match ha is not a stable extension.

5.2 A new translation

For a default theory N = (F ,N ,�) with a modular order �, we define its
translation into an AF Narg. To this end, we express a commitment to a default
ℓ ⇒ ℓ′ in the object language by ℓ 7→ ℓ′ and encode weak contraposition
(⇒r rules in [18]) with the help of strict rules. (This maneuver restricts the
chaining of rules, which was problematic in Ex. 5.1). We also make explicit the
above permissive reading with an operator !ℓ denoting −ℓ is permissible (or
−ℓ is possible, in the epistemic case). Commitments to defaults ℓ 7→ ℓ′ can be
attacked by stating ℓ in conjunction with !ℓ′ or −ℓ′. Altogether our translation
looks as follows:

(i) L = ℓ⊤ | ℓ⊤ 7→ ℓ | !ℓ | !ℓ ∨ !ℓ′ | ℓ⊤ ∧ ℓ′
⊤
| ℓ⊤ ∧ !ℓ′

where ℓ⊤, ℓ
′

⊤
∈ Lit⊤ and ℓ, ℓ′ ∈ Lit

(ii) the set D = τ [N ] is defined by τ(ℓ⇒k ℓ′) = {(ℓ⇒k ℓ′), (⊤ ⇒k (ℓ 7→ ℓ′))}

(iii) strict rules in S consist of all instances of the form (for literals 6= ⊤): 14

R!1 (ℓ1 7→ ℓ), −ℓ → !ℓ1 R!∨ (ℓ1 7→ ℓ), (ℓ2 7→ −ℓ) → !ℓ1 ∨ !ℓ2
R!2 (ℓ1 7→ ℓ), !ℓ → !ℓ1 R2∨ !ℓ1 ∨ !ℓ2, (ℓ3 7→ ℓ2) → !ℓ1 ∨ !ℓ3

RAG1 ℓ, ℓ′ → ℓ ∧ ℓ′ ROR !ℓ ∨ !ℓ → !ℓ
RAG2 ℓ, !ℓ′ → ℓ ∧ !ℓ′

(iv) contraries are: ℓ = {−ℓ, !ℓ} and (ℓ 7→ ℓ′) =
{
ℓ ∧ φ | φ ∈ ℓ′

}

(v) disjoint weakest link, and (vi) rebut.

Example 5.3 (Ex. 5.1, cont’d) The translation handles the problems in
Ex. 5.1. Now we have, inter alia, the following (six) arguments:

⊤ ⇒5 s
⊤ ⇒4 (¬p 7→ ¬s)

]

→ !¬p
⊤ ⇒1 ¬q

⊤ ⇒3 (p 7→ q)

]

→ !p

Since there are no defeats, Arg is a stable extension. Its conclusions in Lit

correspond to the Hansen extension: headlit[Arg] = {s,¬q} = head[ha]. The
conclusions not in Lit provide additional information: e.g., !p tells us that our
conclusion ¬q ∈ head[ha] is non-robust under learning that p. I.e., if we were
to learn that p is true or obligatory, then ¬q would cease to be obligatory.

Proposition 5.4 The translation above characterizes hansen(N) for default
theories N = (F ,N ,�) where � is a modular order.

Proof Sketch. (1) Let X ∈ hansen(N) be based on the scenario ha. We show
that X = Arg(

⋃
τ [ha]) ∈ stb(Narg). (X is conflict-free.) This follows from the

!-operator tracking of conflicts: if a ∈ X and head(a) ∈ {!ℓ1 ∨ !ℓ2, !ℓ1} then

14 In order to keep things simple we don’t consider ∧-elimination rules.
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d :

b
︷ ︸︸ ︷

⊤ ⇒1 p
︸ ︷︷ ︸

a

⇒2 q ⇒3 ¬p

︸ ︷︷ ︸

c

⇒4 q
c

a b d

Fig. 5. Counter-example for the translation of Brewka-Eiter in [19,18]. (Left) Argu-
ments obtained under last link. (Right) Defeats prevent any stable extension.

{ℓ1, ℓ2} 6⊆ head[X ]. (X defeats every a ∈ Arg \ X .) Note that any commitment
to a default inN\ha is defeated by X : (†) if ℓ⇒k ℓ′ /∈ ha, there are {b1, b2} ⊆ X
stronger than k and with heads {ℓ, !ℓ′}. Let, without loss of generality, a /∈ X
satisfy PSub(a) ⊆ X . It is easy to see that the top-rule of a is defeasible, leaving
us with two cases: a = a1 ⇒

k ℓ′ where head(a1) = ℓ; and a = ⊤ ⇒k (ℓ 7→ ℓ′).
In either case, ℓ⇒k ℓ′ /∈ ha. By (†), there is a b ∈ X that defeats a.

(2) Let X ∈ stb(Narg) and haX = {ℓ ⇒k ℓ′ | ⊤ ⇒k (ℓ 7→ ℓ′) ∈ X}. One
can show that (i) D[X ] ⊆ haX and (ii) Arg(haX ) ⊆ X . We enumerate N by
〈ri = ℓi ⇒

ki ℓ′i〉
n
i=1 so that (a) ki ≥ ki+1 and (b) if ki = kj and ri ∈ haX while

rj /∈ ha′, then i < j. Consider a Hansen-style construction but based on this
enumeration, i.e. hai+1 = hai ∪ {r

i+1} in case outN(hai ∪ {r
i+1}) 0 ⊥, and let

ha =
⋃

i hai. One can prove by induction: that ha always selects an available
max�-element (and so ha is a Hansen scenario); and, using (i)–(ii), that haX =
ha. These claims imply: headlit[X ] = head[haX ] = head[ha] ∈ hansen(N). ✷

6 Brewka-Eiter extensions

6.1 Brewka-Eiter extensions as defined in Liao et al.

Let us start by pointing out some problems with the translation proposed in
[18,19] for total orders. There, the translation of be is defined as the translation
for greedy except for the lifting, now using last link. That is,

(i) L = Lit⊤ (ii) D = N (iii) S = ∅
(iv) ℓ = {−ℓ} (v) last link (vi) rebut.

Definition 6.1 Last link ≻la ⊆ Arg × Arg is defined by: a �la b iff the last
defeasible link of a is greater than or equal to (�) the last defeasible link of b.

Example 6.2 (Ex. 2.4, cont’d) Consider again the theory N based on the de-
faults N = {⊤ ⇒1 p, p⇒2 q, q ⇒3 ¬p,¬p⇒4 q}, see Fig. 1. Now, if we choose
X = {q,¬p}, we have NX = {⊤ ⇒1 p,⊤ ⇒3 ¬p,⊤ ⇒4 q}. The only greedy
extension for NX will collect the heads {¬p, q} = X, so X is a greedy fixpoint
of N and so is a BE extension. Now, for the stable semantics with last link [18],
things look differently: no stable extension exists in such argumentation frame-
work, depicted in Fig. 5. If, moreover, inconsistent arguments such as c are
filtered out [19], then the stable extension concludes X ′ = {p, q} which does
not correspond to the BE extension X = {¬p, q} (recall Ex. 2.8).

Given a default theory N, its BE extensions result from a sort of hypothetical
reasoning from candidate theories NX . Thus, the function ℓ ⇒ ℓ′ ∈ N 7→
⊤ ⇒ ℓ′ ∈ NX turns each ℓ ∈ X into a hypothesis and asks us to reason about
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its direct consequences ℓ′ and beyond. What is more, BE extensions allow for
hypothetical bootstrapping: in Fig. 5, X = {q,¬p} is not factually grounded,
as any chaining of N rules from ⊤ to q leads to p; instead, a BE reasoner
hypothesizes q and ¬p and justifies one in terms of the other. Let us capture
the BE method by adding hypothetical arguments in structured argumentation.
To this end, we expand the language Lit⊤ with: (1) hypotheses [ℓ], introduced
via defeasible rules of maximal strength rℓ = ⊤ ⇒ω [ℓ], and (2) undercuts
¬rℓ against hypotheses, via rules of minimal strength ⊤ ⇒0 ¬rℓ. In turn,
any (possibly hypothetical) argument for ℓ can defeat such undercutter ¬rℓ.
Altogether the translation looks as follows:

(i) L = ℓ⊤ | [ℓ] | rℓ | ¬rℓ for arbitrary ℓ⊤ ∈ Lit⊤ and ℓ ∈ Lit

(ii) D = N ∪ {[ℓ]⇒k ℓ′}ℓ⇒kℓ′∈N ∪ {rℓ = ⊤ ⇒
ω [ℓ]}ℓ∈Lit ∪ {⊤ ⇒

0 ¬rℓ}ℓ∈Lit

(iii) an empty set of strict rules S = ∅

(iv) contraries defined by: ℓ = {−ℓ}, ¬rℓ = {ℓ} and rℓ = {¬rℓ}

(v) weakest link lifting, and (vi) rebut and undercut defeats.

Henceforth we let Arg(Narg) denote the set of all arguments for the theory
Narg. Our translation generates arguments of the following types:

• factual arguments: FArg(Narg)

{

ℓ1 ⇒
k2 ℓ2 ⇒ . . .⇒kn ℓn

⊤ ⇒0 ¬rℓ

• hypothetical arguments: HArg(Narg) ⊤ ⇒ω [ℓ1]⇒
k2 ℓ2 ⇒ . . .⇒kn ℓn.

where the undercutting arguments ⊤ ⇒0 ¬rℓ are further collected in a set
UArg(Narg). The attack dynamics plays out as follows. A reasoner is always
free to introduce hypotheses via ⊤ ⇒ω [ℓ], but these arguments are by default
undercut by arguments of the type ⊤ ⇒0 ¬rℓ. The hypothesis [ℓ] thus needs to
be backed up by an argument with conclusion ℓ that defeats the undercutter
(note that ¬rℓ = {ℓ}). Such an argument can rest upon hypotheses, e.g.
⊤ ⇒ω [ℓ1]⇒ . . .⇒ ℓ. 15 As we will see in Section 6.2 this is exactly responsible
for the bootstrapping occurring in Examples like Ex. 2.4 for BE extensions.
This bootstrapping does not occur in the original BE extensions, and so the
characterization of BEo will disallow attacks from hypothetical arguments on
factual ones. But more on that in Sec. 6.2.

Example 6.3 Consider the default theory N = (N ,F ,�) given by F = {⊤}
and N = {⊤ ⇒2 ¬p,⊤ ⇒1 p, p ⇒3 p}. Our translation gives, among oth-
ers, the arguments depicted in Fig. 6. The dark arguments form one stable
extension, the light ones the other. They correspond to the BE extensions.

Proposition 6.4 The translation above characterizes be(N) for any default
theory N = (F ,N ,�) with a modular order �.

15The contrariness function avoids a particular type of circularity: [ℓ] cannot reinstate itself
(or arguments based on it). Still, arguments based on [ℓ] can reinstate [ℓ] (see Ex. 6.3).
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a = ⊤ ⇒2 ¬p
c = ⊤ ⇒1 p
b = c⇒3 p

h1 = ⊤ ⇒ω [p]⇒3 p
h2 = ⊤ ⇒ω [¬p]
d1 = ⊤ ⇒0 ¬rp
d2 = ⊤ ⇒0 ¬r¬p

⊤

¬p

p

2

1
3

Fig. 6. Stable sets and BE extensions in Ex. 6.3. (Left) The two stable extensions of
Narg. (Center) Arguments in Narg. (Right). The two BE extensions of N.

Proof Sketch. (1) Let X ∈ greedy(NX). Let X be the set of all arguments
a such that for all b ∈ Sub(a), head(b) ∈ {ℓ, [ℓ]} for some ℓ ∈ X. When proving
that X ∈ stb(Narg), we have to show that it is (i) conflict-free and it (ii) attacks
every a ∈ Arg \ X . We show (ii). As in the proof of Prop. 5.4, we can assume
that the top-rule of a is defeasible. So head(a) has the form (a) ℓ or (b) ¬rℓ, or
(c) [ℓ] for some ℓ ∈ Lit. In case (a), the top-rule of a is φ⇒l ℓ with φ ∈ {ℓ′, [ℓ′]}
for some ℓ′ ∈ X. So, ⊤ ⇒l′ ℓ ∈ NX for some l′ ≥ l. Since ℓ /∈ X, −ℓ ∈ X and
so there is a l′′ ≥ l′ for which ⊤ ⇒l′′ −ℓ ∈ NX . Thus, b = [ℓ′′] ⇒l′′ −ℓ ∈ X
defeats a. Cases (b) and (c) are shown similarly.

(2) Let X ∈ stb(Narg), X = headlit[X ], and enumerate NX by 〈ri = ⊤ ⇒
ki

ℓ′i〉
n
i=1 in accordance with: (1) if ki > kj then i < j and (2) if ki = kj and some

ℓi ⇒ ℓ′i ∈ D[X ] but there is no ℓj ⇒ ℓ′j ∈ D[X ], then i < j. Define:

gr0 = ∅ and gri+1 =

{

gri ∪ {ri+1} if −ℓ′i+1 /∈ head[gri]

gri+1 = gri else

and let gr =
⋃

i≥0 gri. We then prove that gr is a greedy scenario of

NX satisfying head[gr] = X, by inductively showing that (a) gri+1 \ gri ⊆
max�(TrigConNX (gri+1) \ gri); and (b) ri ∈ gri iff ℓ′i ∈ X. ✷

6.2 The original Brewka-Eiter extensions

We now move to a characterization of the original BE extensions. These are also
not characterized by last link. A way to see this is the order puzzle ([18,16]).

Example 6.5 Let N = {⊤ ⇒1 q, q ⇒3 p,⊤ ⇒2 ¬p}. Let a1 = ⊤ ⇒1 q.
According to last link the argument a2 = a1 ⇒

3 p defeats b = ⊤ ⇒2 ¬p and
{a1, a2} will form the only stable extension in the characterization by Liao et
al. However, as can easily be seen, there is no BEo extension of this theory. 16

Moreover, in theories that do have BEo extensions the characterization in
terms of last link lifting is also not adequate.

Example 6.6 Let N = {⊤ ⇒1 p, p ⇒4 ¬q,⊤ ⇒2 q, q ⇒3 ¬p}. We consider
the arguments and the argumentation framework based on last link in Fig. 7.

16Given the importance of the Order puzzle in the discussion of prioritized obligations, the
existence of a BE extension justifies [18,19] in their removal of the Greedy condition from
the original Brewka-Eiter method, at least in the context of deontic applications.
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a2 =

a1

︷ ︸︸ ︷

⊤ ⇒1 p⇒4 ¬q

b2 = ⊤ ⇒2 q
︸ ︷︷ ︸

b1

⇒3 ¬p a1

a2 b1b2

Fig. 7. Example 6.6. The highlighted arguments form a stable extension with last
link that does not represent a BEo extension.

The only BEo extension of this theory is {q,¬p}, while {a1, a2} form a stable
extension in last link with conclusions {p,¬q}.

We now show that our translation for BE extensions presented above can be
adjusted with a minor twist to also account for the original BE extensions. In
Section 6.1 we have allowed for attacks without type restrictions. In particular,
hypothetical arguments could attack factual arguments. In order to character-
ize the original BE extensions we use the same translation, but restrict the range
of the attack relation to Arg(Narg)×Arg(Narg))\(HArg(Narg)×FArg(Narg)). That
is, we don’t allow for attacks from hypothetical to factual arguments. This may
create situations in which factual arguments attack but do not defeat hypothet-
ical arguments, which is why conflict-freeness has now to be considered on the
basis of attacks, not defeats.

Let in the remainder of the section Narg stand for the translation of a given
normative theory N = (F ,N ,�) based on a total order �.

Stable extensions X of Narg have the property that the (literal) conclusions
of the factual arguments in X stand in a 1:1 relation to the conclusions of the
hypothetical arguments in X . Formally, where for a ∈ Arg(Narg) \ UArg(Narg),
head⋆(a) = ℓ iff head(a) ∈ {ℓ, [ℓ]}, we have:

Lemma 6.7 Let X ∈ stb(Narg) and X = headlit[X ]. Then, headlit[X ∩
FArg(Narg)] = head⋆[X ∩ HArg(Narg)] (= X).

Proof Sketch. We show (⇒) by an induction over the length of a factual
argument for ℓ in X . The other direction is shown analogously. Base. Suppose
ℓ ∈ F ∩ X . The only attacker of h = ⊤ ⇒ω [ℓ] is ⊤ ⇒0 ¬rℓ. The latter is
attacked by ℓ. So, h ∈ X and [ℓ] ∈ X. Inductive step. Consider a = ℓ1 ⇒

1

ℓ2 ⇒ . . . ⇒n−1 ℓn ∈ X . By the inductive hypothesis ℓn−1 ∈ X. Consider
h = ⊤ ⇒ω [ℓn−1]⇒

n−1 ℓn. The only attack in ⊤ ⇒ω [ℓn−1] is by ⊤ ⇒0 ¬rℓn−1
.

The latter is defeated by ℓ1 ⇒
1 ℓ2 ⇒ . . . ⇒n−2 ℓn−1 ∈ X and thus defended

by X . So, ⊤ ⇒ω [ℓn−1] ∈ X . The only way to attack h is by an argument with
conclusion −ℓn. Since such an argument is attacked by a and since X is stable,
it is defeated by X . So h is defended by X and thus [ℓn] ∈ X. ✷

We are now in a position to prove the adequacy of our translation.

Proposition 6.8 The translation above characterizes BEo(N) for default the-
ories N = (F ,N ,�) where � is total.

Proof Sketch. For Item (1) let X ∈ BEo(N). Let N′arg be the translation
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h2 =

h1

︷ ︸︸ ︷

⊤ ⇒ω [q]⇒3 ¬p

u1 = ⊤ ⇒0 ¬rq

u2 = ⊤ ⇒0 ¬rp

g2 = ⊤ ⇒ω [p]
︸ ︷︷ ︸

g1

⇒4 ¬q

b1

a2

g2u1

b2 a1

h1

h2

u2 g1

Fig. 8. Example 6.9. Dotted arrows present attacks that are not defeats.

of N adequate for greedy extensions from Sec. 4. By Prop. 4.1, there is an
X ′ ∈ stb(N′alg) for which headlit[X

′] = X. Let X = X ′ ∪ {h ∈ HArg(Narg) |

head⋆[Sub(h)] ⊆ X}∪{⊤ ⇒0 ¬rℓ | ℓ ∈ Lit\X}. Note that, (⋆), headlit[X ] = X.
So, we only have to show that X ∈ stb(Narg).

The conflict-freeness of X follows immediately in view of (⋆) and the conflict-
freeness of X ′. Consider now an a ∈ Arg(Narg) \ X . If a is in Arg(N′arg), by the
stability of X ′ it is defeated by X ′. If a is of the form ⊤ ⇒0 ¬rℓ, by the
definition of X , ℓ ∈ X. So, there is a b ∈ X ′ with conclusion ℓ that defeats a.
Suppose now that a ∈ HArg(Narg). Without loss of generality we assume that
PSub(a) ⊆ X . If a is of the form ⊤ ⇒ω [ℓ], ℓ /∈ X and so ⊤ ⇒0 ¬rℓ ∈ X which
defeats a. Suppose a is of the form ⊤ ⇒ω [ℓ1] ⇒

k1⇒ . . . ⇒kn−1 ℓn. Since
⊤ ⇒ω [ℓ1] ⇒

k1 . . . ⇒kn−2 ℓn−1 ∈ X , ℓn−1 ∈ X. Since a /∈ X , ℓn /∈ X. By
Prop. 2.11, there is a ℓ′ ⇒k −ℓn ∈ N for which ℓ′,−ℓn ∈ X and k > kn−1.
Then, ⊤ ⇒ω [ℓ′]⇒k −ℓn ∈ X defeats a. In sum, we have shown X ∈ stb(Narg).

For Item (2) let X ∈ stb(Narg) and X = headlit[X ]. We use Prop. 2.11 and
show that (i) X ∈ greedy(N) and that X also satisfies Prop. 2.11 (ii).

Concerning (i), we first notice that the fragment of our translation for BEo
without hypothetical and undercutting arguments is identical to the translation
for greedy. Let X ′ = X \ (HArg(Narg)∪UArg(Narg)). Let N′arg be the translation
for greedy of N. Then, X ′ ∈ stb(N′arg) due to the fact that there are no attacks
from hypothetical and from undercutting arguments on factual arguments. By
Lemma 6.7, X = headlit[X

′] ∈ greedy(N). Concerning (ii), suppose ℓ1 ⇒
l

ℓ′ ∈ N , ℓ1 ∈ X and ℓ′ /∈ X. Consider h = ⊤ ⇒ω [ℓ1] ⇒
k ℓ′. By Lemma 6.7,

h′ = ⊤ ⇒ω [ℓ1] ∈ X and h /∈ X . Since h /∈ X and by the stability of X there is a
defeater a of h in X . Since h′ ∈ X , the defeat is in ℓ′ and so head⋆(a) = −ℓ′. So,
a is of the form . . .⇒ ℓ2 ⇒

k′ −ℓ′. Since a > h, k′ > k, and ℓ2 ⇒
k′ −ℓ′ ∈ N .✷

Example 6.9 We take another look at the theory from Example 6.6. Fig. 8
shows the argumentation framework and the additional arguments for our
translation of the original BE construction. As desired, the only stable exten-
sion {b1, b2, h1, h2, u2} corresponds to the unique original BE extension {q,¬p}.

7 Non-Normal Defaults

We now move to a more general setting, in which defaults include a list of
literals, called justifications. Defaults are now of the form:
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r =
ℓ0 ℓ1, . . . , ℓn

ℓ

where justif(r) = {ℓ1, . . . , ℓn} are the justifications, and as before head(r) = ℓ
and body(r) = ℓ0. A default is non-normal in case justif(r) 6= {head(r)}.

Definition 7.1 A default theory N = (F ,N ,�) is as in Def. 2.1 except that
now N is a set of (possibly) non-normal defaults. For X,X ′ ⊆ Lit we define:

ConN(X) = {r ∈ N | each ℓ′ ∈ justif(r) is consistent with X}

TrigCon⋆N(N
′, X ′) = (TrigN(N

′) \ N ′) ∩ ConN(X
′).

Definition 7.2 ([24]) A set X ⊆ Lit is a Reiter extension of N if it is obtained
by the following procedure: 17

guessX ⊆ Lit; X ′ ← ∅; N ′ ← ∅

loop until max�
(
TrigCon⋆N(N

′, X ′)
)
∩ ConN(X) = ∅

r ← max�
(
TrigCon⋆N(N

′, X ′)
)
∩ ConN(X)

X ′ ← X ′ ∪ {head(r)}; N ′ ← N ′ ∪ {r}

if (X ′ = X) returnX

We write reiter(N) for the set of Reiter extensions of N.

Being dissatisfied with the pseudo-inductive Def. 7.2, the fact that for some
default theories no Reiter extensions exists, and some possibly counter-intuitive
outputs, Lukaszewicz proposed the following variant.

Definition 7.3 ([20]) Where N = (F ,N ,�) has a total or flat order �, let

ConN(X, J) = {r ∈ N | each ℓ′ ∈ J ∪ justif(r) is consistent with X ∪ {ℓ}} .

We say that X is a Lukaszewicz extension if it is obtained as follows: 18

X ← ∅; J ← ∅; N ′ ← ∅

loop until (TrigN(N
′) \ N ′) ∩ ConN(X, J) = ∅

r ← max�
(
(TrigN(N

′) \ N ′) ∩ ConN(X, J)
)

X ← X ∪ {head(r)}; J ← J ∪ justif(r); N ′ ← N ′ ∪ {r}

returnX

We write luk(N) for the set of all Lukaszewicz extensions of N.

Fact 7.4 Every Lukaszewicz extension X produced by the algorithm in Def. 7.3
is consistent with every justification ℓ collected in J .

Example 7.5 (Adapted from [20]) Let the flat default theory N consist of: 19

17Our definitions Defs. 7.2–7.3 generalize the deontic versions of Reiter and Lukaszewicz
(featuring no priorities). The original definitions correspond to flat orders.
18See Section 5 of [20] for this characterization of what are there called m-extensions.
19Read e = evening, d = doing the dishes, t = before test and s = study. The defaults then
read: in the evening you ought to do the dishes (if possible and unless you have to study);
and before a test, you have to study (if possible).
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a0 = e⇒ d ∧ 〈d〉 ∧ 〈¬s〉
b0 = t⇒ s ∧ 〈s〉
a1 = a0 → d
a2 = a0 → 〈d〉
a3 = a0 → 〈¬s〉
b1 = b0 → s
b2 = b0 → 〈s〉

a0

a1

a2

a3

b0

b1

b2

a0

a1

a2

a3

b0

b1

b2

Fig. 9. Examples 8.1 and 8.5. (Left) The arguments. (Center) The argumentation
framework for Reiter. (Right) The argumentation framework for Lukaszewicz.

F = {⊤, e, t} and N =

{

e d,¬s

d
, t s

s

}

.

While the only Reiter extension is X1 = {s}, besides X1 we have the additional
Lukaszewicz extension X2 = {d}.

8 Translating Non-Normal Defaults

Let us then characterize the Reiter and Lukaszewicz methods argumentatively.
Since both methods are generalizations of Greedy reasoning, they face the same
problems for partial and modular orders (Ex. 4.2). Hence, our translations
only concern total and flat orders. In both cases we translate a default r with
a consistency requirement ℓ ∈ justif(r) into a defeasible rule τ(r) containing an
expression 〈ℓ〉 that represents this consistency of ℓ. The two translations only
differ in the contrariness function: justifications 〈ℓ〉 are allowed to attack in
Lukasiewicz, while in Reiter they are not.

8.1 Prioritized Reiter

We provide a translation of a default theory N = 〈F ,N ,�〉 based on a total or
flat order � (induced by a ranking f) to Narg by:

(i) L = ℓ⊤ | 〈ℓ〉 | φ ∧ . . . ∧ φ′ where ℓ⊤ ∈ Lit⊤ and ℓ ∈ Lit

(ii) D = τ [N ] with τ(r) = body(r)⇒k head(r) ∧
∧

ℓ∈justif(r)〈ℓ〉 for f(r) = k

(iii) S consists of all instances of the form (AGG) (. . . ∧ φ ∧ . . .)→ φ

(iv) contraries are: ℓ = {−ℓ}, 〈ℓ〉 = {−ℓ}, and φ1 ∧ . . . ∧ φn =
⋃n

i=1 φi

(v) disjoint weakest link

(vi) defeat based on rebut, and (vii) conflict-freeness based on attacks.

Example 8.1 (Ex. 7.5 cont’d) In this example we have, inter alia, the argu-
ments and the argumentation framework presented in Fig. 9. The unique stable
extension including b1 corresponds to the unique Reiter extension {s}.

Proposition 8.2 The above translation characterizes reiter(N) for any non-
normal default theory N = (F ,N ,�) with a total or flat order �.

Proof Sketch. (1) We sketch the case for a total order �. Let X =
⋃n

i=1 Xi ∈
reiter(N) be based on the scenario rei =

⋃n

i=1 reii = {r1, . . . , rn}. Let X
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consist of all arguments a for which D(a) ⊆ τ [rei]. We have to show that X
is (a) conflict-free and (b) X defeats every b ∈ Arg \ X . One can show that
(⋆), where b ∈ X with τ(ri+1) ∈ D(b), for each ℓ ∈ Xi there is an a ∈ X with
head(a) = ℓ and a ≻ b. We show (b). Without loss of generality we assume
PSub(b) ⊆ X . Let τ(r) be the defeasible top-rule of b = b0 ⇒ ℓ′∧〈ℓ′1〉∧. . .∧〈ℓ

′
m〉

and l be minimal such that b0 ∈ Arg(τ [
⋃l

i=1 reii]). Since r /∈ rei, one can
show that there is a minimal k ≥ 0 such that r /∈ ConN(Xl+k) and rl+k′ ≻ r
for all 1 ≤ k′ < k. So, −ℓ′i ∈ Xl+k. In view of (⋆) we can then construct an
a ∈ X that defeats b.

(2) Let X ∈ stb(Narg). We show that X = headlit[X ] ∈ reiter(N). We
build the scenario rei =

⋃n

i=0 reii by performing a greedy search over the
arguments of X : we let rei0 = ∅ and add to reii in the (i+1)-th step the
strongest default r with τ(r) ∈ D[X ] \ τ [reii] that extends an argument in
Arg(τ [reii]). It can be shown that rei is a Reiter scenario with extension X.✷

Remark 8.3 Answer set programming is closely related to Reiter’s default
logic. For an extended logic program Π over Lit (with default negation ∼ℓ), its
clauses translate into non-normal defaults as follows:

τ : ℓ← ℓ1, . . . , ℓn,∼ℓ
′
1, . . . ,∼ℓ

′
m 7−→

ℓ1 ∧ . . . ∧ ℓn −ℓ′1, . . . ,−ℓ
′
m

ℓ
.

resulting in a default theory N = (F ,N , ·) with N = τ [Π] and without facts
F = ∅ (since in logic programming facts are empty-bodied clauses ℓ ←). For
the case of flat orders, this translation establishes a one-one correspondence
between Reiter extensions of N and answer sets of Π, as shown in [12, Prop. 3].

An immediate corollary of Prop. 8.2 is thus an ASPIC+-based representa-
tion of answer set programming. 20 Let us remark that this ASPIC+ repre-
sentation applies not just to the epistemic setting originally assumed in [12,
Prop. 3] but also to the deontic setting. The reason is that a logic program
translates into a default theory without facts F = ∅, so that both settings give
rise to the same Reiter extensions under the above correspondence. 21

Example 8.4 Conflict-freeness based on defeat does not work for the proposed
translation, as shown by the prioritized defaults and the generated arguments:

N =
{
⊤ p, s

p 2,
p ¬s
¬s 1

}

Args =

{
a = ⊤ ⇒2 (p ∧ 〈s〉 ∧ 〈p〉), a′ = a→ p,
b = a′ ⇒1 (¬s ∧ 〈¬s〉), b′ = b→ ¬s

}

Based on defeat, the set X = {a, a′, b, b′} is conflict-free since b′ only attacks

20Since in this paper we restricted the attention to single-body rules, the result –strictly
speaking– only applied to logic programs with n = 1 in the clauses. One would have to add
an aggregation rule to our translation: ℓ1, . . . , ℓn → ℓ1 ∧ . . . ∧ ℓn to obtain the full result.
21Recall that in the epistemic setting facts are part of the output. In a nutshell, this setting
redefines Def. 2.2 with the output function outN(N

′) = the ⊆-smallest superset X of F
satisfying: ℓ ∈ X and ℓ ⇒ ℓ′ ∈ N ′ implies ℓ′ ∈ X. For Reiter extensions, then, Def. 7.2
initializes with X′

← F (instead of X′
← ∅).
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(but does not defeat) the other arguments in X . In contrast, under conflict-
freeness based on attack, X is not anymore conflict-free. Moreover, there is no
stable extension and neither is there a Reiter-extension of the default theory.

8.2 Prioritized Lukaszewicz

For total or flat orders � the translation N 7→ Narg is as in Reiter for (i)–(iii)
and (v)–(vii); for contraries, justifications 〈ℓ〉 now attack arguments for −ℓ:

(iv) contraries are: ℓ = {−ℓ, 〈−ℓ〉}, 〈ℓ〉 = {−ℓ}, and φ1 ∧ . . . ∧ φn =
⋃n

i=1 φi.

Example 8.5 (Ex. 7.5 cont’d) We have the argumentation framework depicted
in Fig. 9 (right). We highlight the arguments in the stable extension that
represents the Lukaszewicz extension that is not a Reiter extension.

Proposition 8.6 The above translation characterizes luk(N) for any non-
normal default theory with a total or flat order �.

Proof Sketch. The proof is very similar to that of Prop. 8.2. ✷

9 Conclusion

In this paper we have advanced the state of the art concerning argumenta-
tive representations of (prioritized) default logic by (a) identifying and fixing
problems in previously proposed embeddings, (b) generalizing some of them
from total to modular orders, and (c) by considering non-normal defaults. In
future work we will investigate: (1) multiple-body rules, (2) more liberal or-
derings (e.g., partial and pre-orders), (3) fully propositional languages, and (4)
embeddings in other argumentation systems such as ABA and (assumptive [8]
and prioritized [1]) sequent-based argumentation. Of course, also the inverse
question may be asked of how much of structured argumentation can be ex-
pressed in default logic. 22 Finally, making use of hypothetical reasoning within
structured argumentation theory deserves more future investigations in its own
right (see e.g., [5,4]). In this article we have demonstrated that hypothetical
reasoning helps to adequately characterize reasoning with priorities that has
been proposed in the context of default logic and logic programming [9,10].
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