

The BIGER Tool - Hybrid Textual and Graphical Modeling

of Entity Relationships in VS Code

Philipp-Lorenz Glaser and Dominik Bork

In:

2021 IEEE 25th International Enterprise Distributed Object Computing

Workshop (EDOCW), pp. 337 – 340.

©2021 by IEEE.

Final version available via DOI:

https://doi.org/10.1109/EDOCW52865.2021.00066

www.model-engineering.info

https://doi.org/10.1109/EDOCW52865.2021.00066
http://www.model-engineering.info/

The BIGER Tool – Hybrid Textual and Graphical
Modeling of Entity Relationships in VS Code

Philipp-Lorenz Glaser
TU Wien, Business Informatics Group

Favoritenstrasse 11, 1040 Vienna, Austria
Email: philipp-lorenz.glaser@tuwien.ac.at

Dominik Bork
TU Wien, Business Informatics Group

Favoritenstrasse 11, 1040 Vienna, Austria
Email: dominik.bork@tuwien.ac.at

Abstract—The Entity Relationship model is the de-facto stan-
dard for data modeling and has been in use for a long time
already. This popularity also led to the development of various
tools that support ER modeling. However, these tools are often
inflexible, proprietary, constrained to specific platforms, and
lack advanced features like (SQL) code generation. This paper
introduces the BIGER modeling tool. BIGER offers various
features for flexibly specifying and visualizing conceptual ER
data models. Within the VS Code IDE, the tool enables hybrid
and interactive modeling through a textual editor with a custom
language to specify ER elements and an accompanying view
to display and modify the graphical ER model. The BIGER
modeling tool is one of the first tools to incorporate the Language
Server Protocol and to be distributed through the VS Code
ecosystem. Due to its web technology-based architecture, it is
platform-independent and easily extensible.

Index Terms—Data modeling, Modeling tool, Code generation,
Hybrid modeling, VS Code, Language Server Protocol

I. INTRODUCTION

The Entity-Relationship (ER) Model, first introduced by
Chen in 1976, is a simple, yet very powerful language to
conceptualize data models [1]. By using the core concepts
of Entities, Relationships, and Attributes, objects and their
associated properties can be put into relation. These objects,
properties, or relations are part of a specific knowledge domain
and can be specified to fulfill certain types of constraints
through additional classifications. ER Model elements are rep-
resented visually in an ER Diagram, which has been adopted
to different notations, depending on the respective domain.
There have been various extensions to the classical model as
well, such as the Extended Entity-Relationship (EER) Model,
to include concepts such as generalization or specialization [2].
Albeit its long history, ER modeling is still a matter of ongoing
research, see e.g. [3]

There are numerous graphical modeling tools for ER Di-
agrams, however, a combination with a textual modeling
language might yield more efficiency in creating the models
and might attract a wider user base. Textual modeling takes
advantage of the various assisting features modern code ed-
itors can provide, e.g., finding references or auto-complete.
Traditionally, these features had to be implemented separately
with specific implementations for each individual editor. By
introducing the Language Server Protocol (LSP)1 these fea-

1https://microsoft.github.io/language-server-protocol/

tures become standardized and allow the reuse of a single
language server for different clients (i.e., editors). Numerous
popular IDEs like Eclipse, Sublime Text, or VS Code already
support the protocol. The LSP, however, only addresses textual
languages, proper support for graphical language features still
has to be established, for first ideas, see e.g., [4].

With the paper at hand, we show, to the best of our knowl-
edge, the first realized blended modeling tool that realizes a
language server and that is being deployed as an extension
through the VS Code ecosystem. Thereby, we contribute first
insights into the research directions of Diagrammatic parsing
and Architectures for blended modeling user interfaces [5, p.
430], through the implementation of the resulting BIGER tool.
This research also fits nicely into the current research stream
of hybrid (or blended) modeling [5], [6].

II. THE BIGER TOOL

The aim and scope of this work is to enable hybrid textual
and graphical modeling for Entity Relationship diagrams.
Hybrid approaches to modeling are not new in itself, cf.
e.g., [7] for UML and [8] for process modeling. They aim to
be inclusive for different preferences and stakeholders involved
modeling projects. Moreover, different purposes of modeling
might be supported more efficiently by a graphical or a textual
view on the model.

Considering that ER models are primarily in use by people
who are already familiar with textual programming languages
and given the benefits of efficiency and stability, the BIGER
tool uses the textual representation as its leading model.
Consequently, the graphical representation always follows the
elements specified textually, and all sorts of editing actions
modify the text first before changing the graphical model.
This choice also enables the use of the LSP, even if an action
is initiated within the graphical view, allowing for improved
portability of the tool and standardized communication be-
tween the components (see Fig. 1).

A. Features

The BIGER modeling tool consists of three core compo-
nents, a textual editor for the specification of ER models
with a textual language, a corresponding Diagram View to
display and interact with the model graphically, and a Code
Generator to generate SQL statements of a database schema.

https://microsoft.github.io/language-server-protocol/

Synchronization between all the components is performed
automatically, however, editing the generated SQL code does
not change the underlying model. The rest of the section
provides a brief overview of available features of BIGER, for
a more complete list refer to the GitHub repository2 or the VS
Code Marketplace page3 of the extension.

The textual editor with its language gets activated once a
.erd file is opened. Within such an opened file, entities and
relationships can be freely specified with attributes included
within curly brackets. The textual language is designed to
cover the classical concepts of ER models. Table I shows
the mapping of the ER concepts to the corresponding textual
concrete syntax. On the left side of Fig. 2, the use of the textual
concrete syntax in our running example is shown. The editor
of course also uses syntax highlighting to easily differentiate
the ER language concepts from the domain-specific terms of
the current model and includes numerous additional rich text
editing features, such as Validation, and Hyperlinking.

Once the diagram view is opened, the model elements are
transformed and a graphical ER Diagram is rendered. The
diagram view also offers additional features to customize the
view or modify the underlying model through the toolbar or by
interacting with elements within the diagram directly, e.g., to
create new entities and relationships or to edit attribute values.

B. Architecture

Fig. 1 shows the architecture of the BIGER tool which
conforms to the requirements of the underlying technologies
used for the implementation. This section explains the general
responsibilities of the components and the reason behind de-
sign choices on a more abstract level, while the next subsection
provides more insights into concrete technologies.

BIGER is realized in a client-server architecture. The server-
side, implemented as a language server, provides language-
specific functionality for both the textual as well as the
graphical model. The syntax and semantics of the textual
language are realized by specifying a grammar and implement-
ing additional Validation and Scoping. The Code Generator is
also included on the server side. For the graphical model an
additional Diagram Server is added, which generates and syn-
chronizes the diagram elements with the current textual model.
The Layout Engine adds auto-layout to the diagram, together
with additional implementations for graphical features.

Activation events in the extension define when the language
client is activated, establishing the communication between
client and server. The extension also contains configuration
files for syntax highlighting, language configurations (e.g.
bracket matching) and the extension manifest containing meta-
data, dependencies, and VS Code specific contribution points.

In addition to the extension, which is responsible for the
textual editor, the webview is also part of the client side and
renders the generated diagram elements in a custom view next
to the textual editor. Actions on the diagram are first passed

2https://github.com/borkdominik/bigER
3https://marketplace.visualstudio.com/items?itemName=

BIGModelingTools.erdiagram

Fig. 1. Architecture of the BIGER Tool

TABLE I
TEXTUAL CONCRETE SYNTAX OF BIGER

ER Concept Textual Concrete Syntax

Strong Entity entity
Weak Entity weak entity
Inheritance A extends B

Binary Relationship A -> B
Recursive Relationship A -> A
Ternary Relationship A -> B -> C
Basic Cardinality A[1] -> A[N]
Custom Cardinality Notation A["0..1"] -> A["1..N"]

Simple Attribute with data type attribute: datatype
Optional / Nullable optional
Derived derived
Multi valued multi-valued

Primary key key
Partial key partial-key

to the extension, which either handles the actions on the client
side or propagates them to the server.

C. Technical Realization

The language together with its textual editor features is
implemented with the Xtext4 language workbench. Xtext only
requires a grammar file to specify the syntax of the ER
language and how it is mapped to a semantic model. This
also generates a language server with default implementations
for various language features, which can be communicated
to in form of LSP messages. The grammar for the BIGER
language cannot be shown here given the limited space,
but is is visible from the open Github repository2. To add
further customization’s to the tool, the default Validator and

4https://www.eclipse.org/Xtext/

https://github.com/borkdominik/bigER
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.erdiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.erdiagram
https://www.eclipse.org/Xtext/

Fig. 2. An example Entity Relationship model (center) with excerpts of the textual concrete syntax (left) and the generated SQL code (right) in BIGER

ScopeProvider are replaced. With the use of Xtend5, a code
generator for an SQL schema is implemented.

The language and its language server are built and bundled
into a single distribution, making it available as a CLI tool
for the VS Code language client. Furthermore, a TextMate
grammar is added to the extension for syntax highlight-
ing. Besides Xtext, the BIGER tool also takes advantage of
the Sprotty framework6 for its versatile diagram modeling
features. Adding a Diagram Generator with additional glue
code provided through sprotty-xtext, maps the textual model
elements to corresponding graphical representations. Sprotty
also enables the use of the Eclipse Layout Kernel (ELK) to
add auto-layout the ER model on the server. The graphical
model is then sent to the client and with additional glue code
provided by sprotty-vscode, the extension renders the diagram.

The next step is to display the diagram within the webview.
Using the client part of Sprotty, the graphical model is passed
to the webview and rendered into style-able SVG views. Such
SVG rendered models are highly scalable, which is one of the
shortcomings of many existing modeling tools when handling
large models. Sprotty is based on actions and commands to add
interactivity to diagrams and even extend the LSP to tunnel
Sprotty Actions. BIGER takes advantage of this approach and
thereby enables the final hybrid modeling support.

III. USING THE BIGER TOOL

To showcase the key features of the BIGER Tool we provide
an example, which models a basic university environment
and contains different ER concepts. Figure 2 shows the full
example with the textual editor (left), the diagram (center),

5https://www.eclipse.org/xtend/
6https://projects.eclipse.org/projects/ecd.sprotty

and the generated SQL code (right) opened in VS Code with
the dark theme being activated.

To define a new model, we use the erdiagram keyword
followed by an appropriate name at the top (line 1). Next we
include the optional generateSql flag (line 2) to enable
the SQL code generation and then start with the specifica-
tion of the actual model elements. Students take exams of
courses, which are held by one professor, so we specify a
ternary relationship between those entities (line 26). Points
are also saved for exams. They become visible in the diagram
when hovering over the takes exam relationship. The entities
professor and student are defined by means of an inheritance
(lines 9 and 13) to the generic person entity as both share
the common attributes name, birthday, and age. Within the
person entity the name acts as the primary key and since
the age can be computed from the birthday, the attribute
is marked as derived (line 7). Lectures are part of courses,
however, they can not be identified on their own, so we specify
lecture as a weak entity, provide a partial key and declare the
corresponding relationship as weak as well (lines 20 and 23).
Professors can publish publications and publications can be
written by professors, which is modeled as a binary many-to-
many relationship.

IV. RELATED WORK

A wide variety of tools are available for ER modeling.
However, the majority of them are more general database
applications, disregarding the semantics of the underlying ER
model and are solely intended for graphical representations,
e.g. diagrams.net7. The focus of this section is on a brief
comparison of related ER modeling tools.

7https://www.diagrams.net/

https://www.eclipse.org/xtend/
https://projects.eclipse.org/projects/ecd.sprotty
https://www.diagrams.net/

TABLE II
RELATED ER MODELING TOOLS AND VS CODE EXTENSIONS FOR ER

DBDiagram ERD Plus EERDSL ERText ERD Editor ERD Preview BIGER

Web-based X X X X

IDE Integration Eclipse Eclipse VS Code, Atom VS Code VS Code

Open Source X X X X X

Textual Editor X X X X X X

LSP Implementation X X X X X X

Diagram View X X X X X X

SQL Generation X X X X X

Model Validation X X X X

Interactive Diagram X X X

In the context of VS Code, there are two relevant extensions
available, ERD Editor8 with a focus on graphical modeling and
ERD Preview9 with a more basic diagram view, but offering
textual modeling. Both extensions support generating SQL
code but lack an interactive diagram.

When looking at web applications, DBDiagram10 offers
the Database Markup Language (DBML) to define database
schemas, together with graphical modeling. ERD Plus11 does
not contain a textual language, but also allows the creation of
ER diagrams by a purely graphical approach and additional
transformations to Relational Schemas, Star Schemas, and
SQL DDL statements.

Apart from web-based tools, the domain-specific language
ERText allows specifying conceptual ER models and trans-
forming them into logical ones [9]. For EER models the
Multi-Paradigm Information System Modeling Tool with the
EERDSL uses a bidirectional (graphical and textual) approach
for conceptual modeling and supports transformations into a
relational data model, or a class model [10].

Table II provides a compact comparison of various related
approaches. It shows that many features have been realized
in other tools, however, BIGER remains the only tool that
provides an interactive diagram. Moreover, we can state that
BIGER is the first real modeling tool realized following the
Language Server Protocol and being distributed through the
VS Code ecosystem. Being based on web technologies, BIGER
can also easily be embedded in conventional web pages.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the BIGER Entity Relationship
modeling tool. The tool is one of the first in its kind by
realizing a language server and being distributed via the
VS Code marketplace3. We released version 0.0.2 of BIGER
together with the publication of this paper while already
working on the next releases.

8https://github.com/vuerd/
9https://github.com/kaishuu0123/vscode-erd
10https://dbdiagram.io/
11https://erdplus.com/

We are proposing the tool to colleagues in our networks
responsible for teaching data modeling courses, hoping they
would add BIGER amongst the tools they recommend for their
course. Future versions of the tool will provide a richer set
of functionality, e.g., the generation of different SQL dialects
to ease the use of the code with different relational database
management systems. Moreover, we are currently integrating
advanced layouting algorithms to improve the rendering of
the models, particularly the routing of the relations. From a
research perspective, we also see potential of using BIGER
to investigate the perceived usefulness and ease of use of
graphical and textual modeling editors. A video showcasing
BIGER in use can be found at: https://youtu.be/0jw05xChp7I.

REFERENCES

[1] P. P.-S. Chen, “The entity-relationship model—toward a unified view of
data,” ACM Trans. Database Syst., vol. 1, no. 1, p. 9–36, Mar. 1976.

[2] B. Thalheim, “Extended entity-relationship model.” Encyclopedia of
Database Systems, vol. 1, pp. 1083–1091, 2009.

[3] D. Bork, A. Garmendia, and M. Wimmer, “Towards a multi-objective
modularization approach for entity-relationship models,” in ER Forum,
Demo and Poster 2020, J. Michael and V. Torres, Eds. CEUR, 2020,
pp. 45–58. [Online]. Available: http://ceur-ws.org/Vol-2716/paper4.pdf

[4] R. Rodrı́guez-Echeverrı́a, J. L. C. Izquierdo, M. Wimmer, and J. Cabot,
“Towards a language server protocol infrastructure for graphical model-
ing,” in Proceedings of the 21th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, 2018, pp. 370–380.

[5] F. Ciccozzi, M. Tichy, H. Vangheluwe, and D. Weyns, “Blended
modelling-what, why and how,” in 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems
Companion. IEEE, 2019, pp. 425–430.

[6] J. Cooper and D. Kolovos, “Engineering hybrid graphical-textual lan-
guages with sirius and xtext: Requirements and challenges,” in 2019
ACM/IEEE 22nd International Conference on Model Driven Engineer-
ing Languages and Systems Companion. IEEE, 2019, pp. 322–325.

[7] L. Addazi, F. Ciccozzi, P. Langer, and E. Posse, “Towards seamless
hybrid graphical–textual modelling for uml and profiles,” in Modelling
Foundations and Applications, A. Anjorin and H. Espinoza, Eds. Cham:
Springer International Publishing, 2017, pp. 20–33.

[8] A. Abbad Andaloussi, J. Buch-Lorentsen, H. A. López, T. Slaats, and
B. Weber, “Exploring the modeling of declarative processes using a
hybrid approach,” in Conceptual Modeling, A. H. F. Laender, B. Pernici,
E.-P. Lim, and J. P. M. de Oliveira, Eds. Cham: Springer International
Publishing, 2019, pp. 162–170.

[9] J. Lopes, M. Bernardino, F. P. Basso, and E. d. M. Rodrigues, “Textual
approach for designing database conceptual models: A focus group.” in
MODELSWARD, 2021, pp. 171–178.

[10] M. Čeliković, V. Dimitrieski, S. Aleksić, S. Ristić, and I. Luković, “A
dsl for eer data model specification,” 2014.

https://github.com/vuerd/
https://github.com/kaishuu0123/vscode-erd
https://dbdiagram.io/
https://erdplus.com/
https://youtu.be/0jw05xChp7I
http://ceur-ws.org/Vol-2716/paper4.pdf

	Introduction
	The bigER Tool
	Features
	Architecture
	Technical Realization

	Using the bigER Tool
	Related Work
	Conclusion and Future Work
	References

