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Introduction
Due to their erosive power and cleaning capabilities, cav-
itation bubbles (expanding and) collapsing close to solid
boundaries have been subject of intense investigations
for several decades. Potential mechanisms of cavitational
erosion are connected to the emission of shock waves and
a high-speed axial liquid jet that pierces the bubble in
direction of the solid. Until recently, for bubbles close
to a flat solid boundary, only one type of jet was consid-
ered, which forms by involution of the bubble wall at the
distal side from the solid. For laser-generated cavitation
bubbles, this “standard jet” typically has a speed of the
order of 100 m/s under normal ambient conditions [1].
For the case of bubbles very close to the solid a quite
different type of jet is formed. Here, extremely thin jets
with speeds of the order of 1000 m/s are ejected into
the bubble as a result of the violent self-impact of annu-
lar liquid inflow at the axis of symmetry. This has been
demonstrated numerically [2, 3], with experimental con-
firmation given in [4, 5] and later also in [6]. The fast
annular inflow is “curvature induced”: around maximum
extension the bubble shape reveals a region of higher cur-
vature close to the outer rim, see Fig. 4 below. This part
collapses faster than the remainder of the bubble, the
latter being essentially of hemi-spherical shape. For a
detailed discussion on the mechanism of fast jet forma-
tion, in particular the role of viscosity, see [2, 3].

Typically, numerical modeling of the dynamics of cav-
itation bubbles considers bubbles of initially spherical
shape. However, realistic conditions of bubble genera-
tion, in general, involve asymmetries, as e.g. an elongated
plasma shape in the case of laser-generated cavitation
bubbles. Also, bubbles with non-spherical shape have
been generated on purpose, as e.g. in [7]. It is therefore
of interest, whether and to which extent the initial shape
of the bubble influences jet formation, in particular the
formation of fast jets. To this end, single (sub-)millimeter
sized bubbles with spheroidal initial shape expanding and
collapsing close to a solid boundary are investigated nu-
merically. Jet formation is investigated as a function of
the initial eccentricity and distance from the solid.

Bubble Model and Numerical Model
The bubble model consists of a bubble filled with a small
amount of non-condensable gas (air) surrounded by wa-
ter. The gas is taken to be ideal, undergoing adiabatic
changes of state. The liquid is modeled as a compressible
fluid with the Tait equation of state to allow for pressure
waves and shock waves. The vapor pressure is small com-
pared to the ambient pressure of p∞ = 101315 Pa and
therefore is neglected. Thermodynamic effects, mass ex-
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Figure 1: Sketch of the initial configuration. A bubble of
initially spheroidal shape is placed at a distance Dinit from a
flat solid boundary.

change through the bubble wall as well as gravity are
neglected. Liquid and gas are considered as viscous flu-
ids. In particular, including the viscosity of the liquid is
essential for fast jet formation here. Surface tension is
included to comply with the simulations in [3].

Initially, a small bubble of spheroidal shape is placed at
a distance Dinit from a flat solid boundary, as sketched in
Fig. 1. The initial spheroid is an ellipsoid of revolution,
satisfying the equation (x2 + z2)/a2 + y2/b2 = 1, where
the axis of rotation (the y-axis) is taken to be orthogonal
to the solid surface. This setting allows an investigation
in axial symmetry. a and b denote the semi-axes of the
ellipsoid. If a < b the spheroid is of prolate (cigar-like)
shape, if b < a the shape is oblate (lentil-like), see Fig. 1
(left). For a = b a sphere is obtained. The initial eccen-
tricity can be defined as

e =


√

1− a2

b2 a < b,prolate,√
1− b2

a2 b < a, oblate,

0 a = b, sphere.

(1)

The initial volume of the bubble, Vinit, is fixed to be
equivalent to the volume of a sphere with radius Rinit =
20 µm. Given this, the initial bubble shape is fully deter-
mined by specifying the orientation (prolate or oblate)
and the eccentricity e of the spheroid.

The initial pressure in the bubble, pg,init ' 1.1 × 109Pa,
is chosen such that a spherical bubble in an unbounded
liquid would expand to a maximum volume with Rmax =
500 µm.

The bubbles are placed at a distance Dinit from a plane
solid boundary. If Dinit < b the spheroid would be cut by
the solid surface. In this case the semi-major and semi-
minor axes are re-computed to give ā and b̄, such that the
volume of the truncated spheroid equals Vinit, see Fig. 1
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(right). As an example, for e = 0 and Dinit = 0 this
procedure leads to a hemi-sphere with ā = b̄ = 21/3Rinit.

Rmax is used as the reference length in the problem, thus
the dimensionless initial distance

D∗ = Dinit/Rmax (2)

is defined.

For the numerical simulations the two fluids, liquid and
gas, are modeled as a single compressible medium. The
Navier-Stokes equations and continuity equation are dis-
cretized with the finite volume method. The interface
is captured with the volume of fluid method. We have
adapted a two-phase solver from the open source software
package OpenFOAM[8, 9] for our purpose [10].

Results
Spheroidal bubbles of prolate and oblate shape and ec-
centricities e = 0, 0.9, 0.99 positioned at distances D∗ ∈
[0, 0.3] from the solid are studied. For the special case of
D∗ = 0 also the more extreme values of e = 0.995 are
included.

On a coarse scale, the overall dynamics of the bubbles
in this parameter range is hemi-spherical to a good ex-
tent. For the case of D∗ = 0 this is demonstrated in
Fig. 2, which shows a measure for asphericity of the
bubble shape as a function of time. The ratio ζ :=
xmax/(ymax − ymin) of the maximum radial extension,
xmax, over the maximum extension in direction orthog-
onal to the solid, ymax − ymin, is shown (see also Fig. 4,
right column, top frame, where these quantities are in-
dicated). For an ideal hemi-sphere ζ = 1. The bubbles
with e > 0 loose most of their initial eccentricity within
the first few micro seconds. For the major part of the
bubble evolution ζ is close to unity. Only at the late
stages of bubble evolution – before the formation of the
fast jet – stronger deviations, that depend on the initial
eccentricity, are observed. Bubbles with 0 < D∗ ≤ 0.3
quickly almost attach to the solid at the beginning of
the expansion phase. Deviations of the corresponding ζ
from unity – both in magnitude of ζ and in portion of
the bubble life time – increase with D∗ (not shown).

The maximum volume the bubbles expand to decreases
with increasing D∗ and with increasing eccentricity (not
shown). However, variations in the maximum equivalent
radius Req

max := (3Vmax/(4π))1/3 are small: Req
max varies

less than 5% in the D∗ interval considered and less than
2% with eccentricity. The time from generation of the
bubble (corresponding to t = 0 µs in the numerical sim-
ulations) and the first collapse, t(Vmin), is very close to
twice the Rayleigh collapse time, Tc, of a sphere with
radius 21/3Req

max ' 1.26Req
max. This relation reflects the

predominantly hemi-spherical collapse. The numerical
simulations give

t(Vmin) ' 2× 1.28× 0.915×Req
max ×

√
ρ∞/p∞︸ ︷︷ ︸

Tc(1.28×Req
max)

, (3)

as shown in Fig. 3, for the whole parameter range under
consideration. The pre-factor 1.28 instead of 1.26 might
be attributed to the non-condensable gas in the bubble.
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Figure 2: Asphericity, xmax/(ymax − ymin), as a function of
time for bubbles expanding and collapsing right at the solid
surface, D∗ = 0. The evolution is shown up to the formation
of the fast jet. The insert shows a zoom into the first few micro
seconds of bubble evolution. The initial bubble shapes are
spherical as well as oblate (“o”) and prolate (“p”) spheroids
with eccentricity “exx”.
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Figure 3: Time from generation of the bubble to the first
collapse t(Vmin) as a function of D∗. Tc(R

eq
max) denotes the

Rayleigh collapse time of a spherical bubble with radius Req
max.

A closer inspection of the bubble shapes, in particular
during the collapse phase, reveals important and strik-
ing deviations from hemi-spherical shape. Fig. 4 shows
the bubble shapes for the case D∗ = 0 at three special
moments of bubble evolution, namely close to the mo-
ment of maximum extension (top row), shortly before
the formation of the fast jet (middle row) and shortly
after the formation of the fast jet (bottom row). Around
maximum extension the bubble shape reveals a small gap
between the outer rim of the bubble and the solid. This
can be attributed to the action of viscosity during the
rapid expansion of the bubble. Although this deviation
from hemi-spherical shape might seem marginal for bub-
bles in water, it is decisive for the fast jet forming in
the late collapse phase. The high curvature region at the
outer rim collapses faster than the remainder of the bub-
ble leading to an indentation and the typical bell shape
of the collapsing bubble (not shown here), that first has
been photographically presented in [11]. In the middle
row of Fig. 4 the bubble shape is captured at a moment
shortly before the high speed annular inflow (showing as
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Figure 4: Bubbles generated right at the solid boundary, D∗ = 0. The initial shapes of the bubbles are hemi-spheroids (prolate,
“p”, left column and oblate, “o”, right column) with given eccentricity e. Shown is the bubble shape (a cut through the bubble)
at maximum extension (top row), shortly before the formation of a fast jet (middle row) and shortly after the formation of a
fast jet (bottom row). The time intervals between middle row and bottom row are 0.1 µs. The parameters xmax and ymax−ymin

for measuring asphericity are indicated in the top frame of the right column. The definition of yjf – the distance of the point
of self impact at the axis from the solid – is indicated in the middle frame of the right column for the initially oblate spheroid
with e = 0.995.

an indentation) impacts onto itself at the axis. The next
row shows the bubble shapes only 100 ns later, with the
fast jet rushing through the bubble towards the solid.
The middle and last rows show clear deviations in shape
among the bubbles with different initial shape.

The speed of the fast jet – as obtained from simulations
on a computational grid with a minimum grid spacing
of 1 µm – is given in Fig. 5 as a function of D∗. Note,
that fast jet formation is a nearly singular phenomenon.
Correspondingly, grid convergence of the jet speed could
not be obtained in axial symmetry [3]. Nevertheless, the
figure might indicate the trend in variations of the jet
speed. The speed of the fast jet is of the order of 1000 m/s
and shows strong variations both with D∗ and with the
orientation and eccentricity of the initial spheroid. An
initial oblate shape tends to result in a smaller jet speed,
while an initial prolate shape with sufficient eccentricity

leads to larger jet speeds for D∗ & 0.1. The insert in
Fig. 5 gives the values for the standard jet for 0.23 .
D∗ ≤ 0.3, the standard jet being more than one order
of magnitude slower than the fast jet. Deviations of up
to ±20% in the jet speed are observed when varying the
initial shape of the bubble.

Discussion and Outlook
The dynamics of bubbles of initially spheroidal shape has
been investigated numerically for a range of initial dis-
tances D∗ ∈ [0, 0.3]. The bubbles quickly loose most of
their eccentricity (up to even slightly “reversing” the ori-
entation, see Fig. 2). This might be attributed to a kind
of “flow de-focusing”: more strongly curved parts of the
bubble surface expand slower than less curved parts (for
a discussion of “flow focusing” for collapsing bubbles see
[3, Appendix C]).
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Figure 5: Jet speed as a function of D∗ as obtained from
simulations on a computational grid with a minimum grid
spacing of 1 µm. The main frame shows the speed of the fast
jet for D∗ . 0.2, the insert shows the speed of the standard
jet for D∗ values & 0.23. Note the different scales on the
y−axes.

Bubbles in the considered parameter range show a col-
lapse time that differs from the Rayleigh collapse time
by a uniform factor of 1.28 in our model. This relation is
of interest, e.g., for laser generated bubbles: information
on the maximum extension of the bubble (Req

max) can be
drawn from measuring the time difference between the
shock wave emitted at bubble generation and the shock
wave emitted upon the first collapse of the bubble via
Eq. (3).

It has been shown, that fast jet formation is a robust phe-
nomenon with respect to initial shape deformations. The
transition from fast jet formation to standard jet forma-
tion when varying D∗ is complex, as described in [3] for
initially spherical bubbles. The initial bubble shape has
a small influence on the D∗ values of the transition re-
gion as well as on the precise phenomena at the transition
(not shown here).

For fixed D∗, characteristic quantities of both types of
jets (“fast” and “standard”) visibly are influenced by the
initial shape of the bubble. In particular, the speed of
the jet, vjet, varies by up to 20% with the initial ec-
centricity. For D∗ . 0.2 and the formation of fast jets
there is a tendency that the jet speed increases from ini-
tially oblate bubbles with high eccentricity over initially
spherical bubbles to initially prolate bubbles with high
eccentricity. Further investigations are necessary, to see
whether this trend can be related directly to curvatures
of the bubble shape at maximum extension (see Fig. 4).
For the speed of the standard jet forD∗ & 0.23 this order-
ing in jet speeds is unambiguous (oblate with e = 0.99
leading to the lowest, prolate with e = 0.99 leading to
the highest jet speed). The influence of initial eccentric-
ity on the jet speed for larger D∗ values will be subject
of further research.

Acknowledgments
The work was supported in part by the German Science
Foundation (DFG) under contracts Me 1645/8-1 and Me
1645/8-3 and the Austrian Science Fund (FWF) (Grant

No. I 5349-N).

References
[1] Philipp, A. and Lauterborn, W.: Cavitation erosion

by single laser-produced bubbles. Journal of Fluid
Mechanics 361 (1998), 75–116

[2] Lechner, C., Lauterborn, W., Koch, M. and Mettin,
R.: Fast, thin jets from bubbles expanding and col-
lapsing in extreme vicinity to a solid boundary: A
numerical study. Physical Review Fluids 4 (2019),
021601

[3] Lechner, C., Lauterborn, W., Koch, M. and Mettin,
R.: Jet formation from bubbles near a solid bound-
ary in a compressible liquid: Numerical study of dis-
tance dependence. Physical Review Fluids 5 (2020),
093604

[4] Koch, M.: Laser cavitation bubbles at objects:
Merging numerical and experimental meth-
ods. PhD thesis, Georg-August-Universität
Göttingen, Third Physical Institute (2020).
Http://hdl.handle.net/21.11130/00-1735-0000-
0005-1516-B
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