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Abstract

In epidemic or pandemic situations, resources for testing the infection status
of individuals may be scarce. Although group testing can help to significantly
increase testing capabilities, the (repeated) testing of entire populations can
exceed the resources of any country. We thus propose an extension of the theory
of group testing that takes into account the fact that definitely specifying the
infection status of each individual is impossible. Our theory builds on assigning
to each individual an infection status (healthy/infected), as well as an associated
cost function for erroneous assignments. This cost function is versatile, e.g., it
could take into account that false negative assignments are worse than false
positive assignments and that false assignments in critical areas, such as health
care workers, are more severe than in the general population. Based on this
model, we study the optimal use of a limited number of tests to minimize the
expected cost. More specifically, we utilize information-theoretic methods to
give a lower bound on the expected cost and describe simple strategies that
can significantly reduce the expected cost over currently known strategies. A
detailed example is provided to illustrate our theory.

Keywords: group testing, public health surveillance, source coding,
rate-distortion theory

1. Introduction

The current pandemic revitalized research on group testing, a methodology
to reduce the number of required tests to screen a large population for a certain
disease. The increased testing efficiency results from jointly testing groups,
instead of subjecting each individual to a test.

Specifically, we consider the scenario of probabilistic group testing as first
described by Dorfman [1], where every individual has a certain (known) proba-
bility to be infected. Probabilistic group testing is in contrast to combinatorial
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group testing [2 3] where one assumes a fixed known number of infected in-
dividuals. Furthermore, we assume that while the number of tests is limited,
all tests are perfectly accurate. Although the case of imprecise tests also leads
to interesting resource allocation problems [4], we will not consider it in this
work. Thus, if none of the individuals in a tested group are infected, the test
will yield a negative result with certainty and one test was sufficient to obtain
a definite result for several individuals. If, however, the test is positive, one
cannot say which individuals in the group are infected and further tests have to
be conducted.

Formally, a testing strategy is a deterministic algorithm, describing which
groups of individuals are pooled and jointly subjected to the test. We assume
that the choice of the next group can depend on the results of previously con-
ducted tests. This adaptive group testing, is in contrast to non-adaptive group
testing (for a recent survey see Aldridge et al. [5]), where the testing strategy is
fixed and all tests can thus be performed in parallel.

Previous work

The theoretical work on adaptive, probabilistic group testing started with
Dorfman [I] who considered the simple strategy of testing groups of M individ-
uals and subsequently, if the pooled test is positive, testing each individual in
the group separately. Although this strategy is far from optimal, it is easy to
implement and can significantly increase the testing capabilities, compared to
testing every sample individually. Further research in this direction was focused
on finding new, more efficient and practical testing strategies, e.g., nested testing
[6], binary splitting [7], and array testing [8]. The binary splitting algorithms
by Hwang [7] perform close to the theoretic optimum, within a factor of 1.11
of an information-theoretic lower bound, as shown by Aldridge [9]. However,
such a binary splitting technique requires extensive bookkeeping and many tests
need to be performed sequentially, and cannot be conducted in parallel. Sim-
pler, two-stage procedures are investigated by Berger and Levenshtein [10]. The
close relation of adaptive, probabilistic group testing to variable length source
coding is well-detailed by Wolf [L1].

Due to the current pandemic, several works rediscover slight variations of
these results and argue for the use of group testing [12, [13]. Also, the practical
implementation of group testing has seen a new surge of research, in particular,
questioning the practical use in testing for SARS-CoV-2. Here, however, the
focus was on the classical Dorfman testing strategy [14] 15 [16] and only few
works considered more elaborate non-adaptive testing strategies [17].

Hardly any works go beyond the assumptions of perfect sensitivity and in-
dependence of the infection status of tested individuals. However, Pilcher et al.
[18] takes the dilution effect into account, i.e., reduced sensitivity of tests for
large groups, and Deckert et al. [I9] performed a simulation study that found
benefits of group testing if there is positive correlation of infection status be-
tween individuals in the same group.

The common ground of all works above is that they focus on identifying
exactly, which individuals are infected. This is a valid strategy and clearly the



best outcome. However, there can be situations where not sufficiently many
tests are available to subject all potentially infected individuals to a test. This
is particularly the case when many individuals are (potentially) infected and
testing resources are scarce. Here, a strategy needs to be found that uses these
limited resources effectively. When insufficient tests for the entire population
are available, it is unavoidable that some healthy individuals will be treated as
infected and/or some infected individuals treated as healthy. For the design
of a testing strategy, it is important to note, that these two events are not
equally harmful in general. It might be considerably worse to have an unde-
tected infection (false negative) present, than to treat one healthy individual
as infected (false positive). A suitable balance has to be found and sensitive
questions like “How many false positives are we willing to accept to prevent
one false negative?” need to be answered to do so. Here, assuming that quan-
titative answers to these questions can be given, we propose a framework for
designing and evaluating group testing strategies. Mathematically, the result-
ing problem is one of rate-distortion theory, a branch of information theory,
established in the 1950s in a seminal paper by Shannon [20]. This connection
allows us to formulate bounds on the performance of any group testing strat-
egy. Although the problem of (combinatorial) group testing was extensively
explored by information-theorists (e.g., in Ch. 24-29 in Aydinian et al. [2I] and
by Aldridge et al. [5]), this rate-distortion viewpoint has apparently not been
considered so far. Thus, fundamental bounds are missing even for elementary
scenarios.

Only recently, researchers suggested that “the scarcity of tests obviously
means that it is better to use a test to detect the virus in another untested
group than to try to discover who is infected in a positive group” [12] which is
a first step into the direction of the rigorous theory developed here. Finally, the
scenario discussed in [22] is closest to our ideas but considers only a single fixed
testing strategy. We will use it in our theory for comparison and as a starting
point for some more evolved testing strategies.

Contributions

We present a rigorous mathematical framework for evaluating the cost in-
curred by false positive and false negative assignments under a given group
testing strategy. An ultimate lower bound on the expected cost that cannot
be surpassed by any testing strategy is derived and compared to existing and
novel testing strategies. We consider two basic scenarios in more detail: First,
a toy example where all individuals are equally likely to be infected and where
wrong assignments incur the same cost for each individual; and, subsequently, a
division of the population into subpopulations that have different probabilities
of being infected (e.g., individuals showing symptoms are more likely to be in-
fected than individuals without symptoms) and/or different costs associated to
false assignments (e.g., misclassified health care workers result in a higher cost).

Our work is focused on a simple model that requires as few parameters as
possible. Thus, it does not capture several aspects that might be relevant in



practical scenarios, such as dependence of the infection status between individ-
uals, compliance of individuals with their assigned health status, or imperfect
test results, nor does it incorporate testing strategies into a larger disease model.
Nevertheless, basic questions that were so far answered by “common sense,” can
be discussed on a sound mathematical basis. For example, optimal testing pri-
orities can be shown to depend heavily on the specific scenario and subjecting
only symptomatic individuals to a test is often a suboptimal decision.

The rest of this article is organized as follows. In Section [2| we formulate
the problem, give a mathematical definition of testing strategies, and introduce
the expected cost associated with a testing strategy, as well as the minimal
expected cost. Our main theoretical results are presented in Section We
establish fundamental lower bounds on the minimal expected cost and calculate
the expected cost of various simple testing strategies. A first simple example
is given to illustrate the bound and the strategies. Section [4] showcases a more
complicated example. It illustrates how to allocate limited testing resources to
obtain significant improvements using simple testing strategies. In Section @,
we discuss our results and their limitations. Finally, in Section [5| we provide
the information-theoretic statements that underlie our main results. Detailed
proofs are relegated to a technical appendix.

2. Problem formulation

We assume that we have a sequence of individuals and the infection status
of the n-th individual is given by a binary random variable X, on © := {0,1},
where X,, = 1 corresponds to being infected and X,, = 0 to being healthy. All
X, are assumed to be independent but not necessarily identically distributed.
Thus, each X,, is a Bernoulli(p,,) random variable with possibly different prob-
ability Pr[X,, = 1] = p, € (0,1). The second ingredient we need is a cost
function pp(Zn,yn) that models the cost of wrong assignments, i.e., assigning
an estimated infection status y, to the n-th individual with actual infection
status z,,. In contrast to communication scenarios where 0 and 1 are usually
interchangeable, the cost p,(0,1) of false positive assignment (i.e., a healthy
individual is wrongly assigned an infected status) is not necessarily the same
as the cost p,(1,0) of a false negative assignment (i.e., an infected individual is
wrongly assigned a healthy status). Thus, we define

pn(oa 1) = by, and pn(LO) =Cn, (1)

where by, ¢, > 0. The cost of correct assignments is set to zero, i.e., p,(0,0) =
pn(1,1) = 0 and the total cost p: Q¥ x QN — R is given by summation (x,y)
p(x,y) = Zib\[:l Pr(Trs Y )-

We now turn to the mathematical description of testing strategies. A
testing strategy for N individuals consists of a test procedure and a decision
procedure. An (N, K)-test procedure is given by n = (n1,m2,...,nx) where
m € P({l,Q,...,N}) and for k > 1, n: QF1 — P({l,?,...,N}), where
7?({1, 2,... ,N}) denotes the collection of all subsets of {1,2,..., N}. Here, the



set 71 indicates the group used for the first test and the set-valued function
N, indicates the group used for the k-th test, given the results of the pre-
vious k — 1 tests. The corresponding test function 9: QN — QF is given
by ¥1(x) = max{z,|n € m} and for k > 1, we have ¥x(x) = max {z,|n €
N (91(x), 92(x), ..., 9k-1(x)) }. Thus, the k-th component 95 corresponds to
the result of the k-th test.

A (K, N)-decision procedure is a mapping k: Q% — QF that assigns, based
on the outcome of K tests, a status (infected /healthy) to all N individuals.

The concatenation of ¥ and x maps the true status X := (Xy,..., Xy) of
all N individuals to an estimated status (Y1,...,Yy) = s(9(X1,..., Xn)) of
these individuals using K group tests. In total, this corresponds to R = K/N
tests per individual (Tpl) which is referred to as the rate of the testing strategy.
If R < 1, which is the regime we are interested in, there is a positive probability
that the tests will not enable a perfect identification of all infected individuals.
Note that such an estimate (0: not infected, 1: infected) has to be given for all
N individuals. We do not allow for individuals to be “skipped,” which would
correspond to a ternary output alphabet.

To assess the average cost of the wrong assignments for given test and deci-
sion procedures, we use the expected cost per individual, defined as the expected
value

N
1
Dy (9, k) =E[N > pn(Xn,Yn)] (2)
n=1

Because there are only finitely many possible choices for 9 and k, we can define

the minimum
D(x,p)(K) = rgi'? DEQ’;”) (9, k), (3)

where ¥ and & range over all (N, K)-test and (K, N)-decision procedures, re-
spectively. The quantity D) (K) specifies the minimal cost, measured by
p, that can be achieved by using K tests for the N individuals with random
infection status X.

3. Results

Calculating D) (K) directly from is computationally infeasible, unless
N and K are very small. Nevertheless, we can use information-theoretic ideas
to provide bounds. These bounds are based on the idea of keeping the rate
R = K/N fixed, while letting N approach infinity. Our first result is a lower
bound, that holds if all individuals share the same parameters. Here, and in the
remainder of the paper, we use the symbol Hs(p) = —plogp — (1 —p) log(1 —p)
for the binary entropy function, log(-) denotes the logarithm to base 2, and
we adopt the convention that “0-log0 = 0.” The proofs of the results in this
section are presented in Section [5] and in the appendices.

The following theorem presents a lower bound on D?)(K) for the case
when infection is equally likely and independent across the entire population.



It follows immediately from the more general Theorem which will be stated
later in this section.

Theorem 3.1. Let X := (X1,...,Xn) be N independent and identically dis-
tributed Bernoulli(p) random variables describing the infection status of a given
population. The cost of wrong assignments is given by with b, = b and
¢n, = ¢ for all n. Furthermore, set a 1= ¢/b > 0. For v € [0,v9) define

_ v av® a a + votl
Do) =p( = 12 ) e - @

1—v 1—n0o 1—ve 1—ypotl

_ 1 —pott 1—w
R(p, a,v) = D(p, a,v)logv + Hy(p) —log ( w——2— ) +plog { 7—= | (5)

and for v > vy, define D(p,a,v) = min {1 —p, ap} and R(p,a,v) = 0. Here, vy
is the smallest solution v > 0 of the equation

(Pt +1—p—v)(pr T +1-p—vt)=0. (6)

Then there cannot exist a testing strategy that uses fewer than R(p,a,v)

Tpl (i.e., R(p,a,v)N tests in total) and achieves an expected cost less than
bD(p, a,v), i.e., D&P)(K) > bD(p,a,v) for all K < R(p,a,v)N.

We emphasize that, in contrast to similar results in classical information
theory, the lower bound in Theorem cannot always be achieved arbitrarily
closely for increasing N. For example, for p = %(3 —+/5) ~ 0.381 and v = 0,
we obtain D(p,a,v) = 0 and R(p,a,v) = Ha(p) ~ 0.959, although it is known
[23] that only individual testing (i.e., R = 1) can achieve D) (K) = 0 in this
setting.

Even though the lower bound in Theorem [3.1]is somewhat cumbersome and
difficult to grasp intuitively, it can easily be calculated for a given scenario.
We will compare it to proposed testing strategies in Figure (1] to illustrate its
applicability.

We next calculate the necessary number of tests and the resulting cost for
some simple testing strategies. We first consider the strategy, proposed by
Jonnerby et al. [22], to separate the population into equally sized and disjoint
groups, test each group, and assign an infected status to each member of a
positive group without conducting further tests. We refer to this strategy as
one stage group testing (1SG) and designate the size of the group in parenthesis,
e.g., 1SG(50) for a group size of 50 individuals. We restate the following simple
result from Section 2.3.1 in Jonnerby et al. [22], which is a special case of the
more general Lemma below.

Lemma 3.2. The 1SG(u) testing strategy has a rate of 1/u Tpl and an expected
cost of DisG) = b(l —-p—(1 —p)“).

Note that the exact rate and expected cost can be achieved only for a popu-
lation N that is an integer multiple of the group size u. However, the overhead
is at most 1 additional test for a final group of smaller size, resulting in an
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Figure 1: Testing of a population with probability of infection p = 0.01 and cost parameters
b =1 and ¢ = 50. The lower bound from Theorem is compared to the binary splitting
algorithm, and our strategies 1SG and 2SG as well as the significantly worse individual testing.
Markers with associated numbers indicate the testing strategy used to achieve the given point,
e.g., (32) indicates the use of 1SG(32) and (66, 22) indicates the use of 25G(66,22).



additional 1/N Tpl and a negligible decrease of the expected cost. Since we are
usually concerned with large N, we ignore these terms in this and the following
testing strategies.

Of course, 1SG(uy) can be further extended by testing those individuals
again, that belong to a positively tested group of size u;. Specifically, we can
separate the group into disjoint subgroups of smaller size uy and subject these
subgroups again to a group test. This two stage group testing (25G) strategy is a
generalization of Dorfman testing [I] which corresponds to the case ug =1, i.e.,
each individual in a positive group is tested separately. The decision strategy
remains the same as in 1SG: Those individuals that belong to a positively tested
subgroup (of size us) are declared infected. We again designate the group sizes
in parenthesis, e.g., 2SG(50, 10) for a group size of 50 individuals that is divided
into five subgroups of 10 individuals each, if the first group test is positive.
Again, we can calculate the rate and expected cost in closed form.

Lemma 3.3. The 25G(ui,us) testing strateqy has an expected rate of
RasGuruz) 14 e

up
Doscuyus) = b(1 —p— (1 —p)*2).

Evidently, more than 2 stages could be used, but even more bookkeeping
is then required and, typically, very large group sizes are needed to obtain a
benefit. Thus, this extension may not be practically useful anymore. For the
sake of completeness, we nevertheless provide the rate and expected cost of
k stage group testing, abbreviated as kSG(uq,...,ux), where uy denotes the
group size at stage ¢. Here, positive groups of size u, are separated into smaller
subgroups of size ugyy for £ = 1,...,k — 1 and individuals that belong to a
positive subgroup at stage k are declared infected, while all others are declared
healthy. A proof of the result is given in Appendix [C]

and an expected cost per individual of

Lemma 3.4. The kSG(uq,...,ux) testing strategy has an expected rate of

k—1

1 — 1 — (1 —p)
Ryscus,...,u) = —+) ————— 7
kSG(u1, ,uk) uy ezzl Ugg1 ( )
and an expected cost per individual of
Dysciu,...oun) =0(1 —p— (1 —p)**). (8)

Example 3.5. We consider the setting p = 0.01, b =1, and ¢ = a = 50, i.e., we
assume that we have a prevalence of 1% and a false negative is fifty times worse
than a false positive assignment. We begin with some trivial observations. First,
if we do not have any tests available, the best strategy is to assign everyone to
be healthy. This is because the expected cost of declaring an individual healthy
is E[p(Xn, 0)] =p-a+ (1 —p)-0= 0.5 while the expected cost for declaring
someone infected is E[p(X,,1)] = p-0+ (1 —p) -1 = 0.99. On the other
extreme is the case of zero cost, i.e., to determine exactly which individuals are
infected. Here, clearly individual testing at a rate of 1 Tpl could be applied, but



Theorem 2 in Aldridge [9] shows that it is also possible using a binary splitting
algorithm at a rate of 0.0855 Tpl. Any rate-cost tradeoff between these extreme
points can be achieved by applying the available tests to as many individuals as
possible, while declaring all others as healthy by default. Unfortunately, using
approaches like a binary splitting algorithm do not come without problems:
There is a significant amount of bookkeeping required and individuals usually
have to be tested many times in a row delaying the notification about the result.
Shifting to the strategies 1SG and 2SG that do not aim at identifying the status
of each individual but to minimize the overall expected cost can lead to simpler
procedures and better performance at the same time. Our lower bound in
Theorem the binary splitting algorithm, and the strategies 1SG and 2SG,
as well as individual testing, for comparison, are illustrated in Figure [I} Note,
that for all strategies, one can always subject only part of the individuals to a
test and simply declare the rest healthy. In particular, we see that the optimal
2SG strategy when tests are scarce (less than 0.037 Tpl) is to use the testing
strategy 2SG(66,22) for as many individuals as possible, outperforming the
binary splitting approach.

The example above illustrates that the proposed strategies, although very
simple, can outperform the best known testing strategies if there are not suffi-
cient tests available to test all individuals. This is because previous strategies
always aimed at exactly identifying the infection status and did not consider the
possibility to declare an infection status based on imperfect information. How-
ever, there are also many situations where the simple strategies we discussed
above are useless. In particular, if the relative cost a is small, then it is hardly
ever useful to declare an individual infected if one is not very sure about the
infection status.

We now turn to the more general setting of a heterogeneous population,
i.e., individuals may have different prevalence p,, and also different costs b,, and
¢n. One simple example of this situation is to distinguish between individuals
with symptoms (that have a higher prevalence p,) and individuals without
symptoms. Additionally, different costs may occur for individuals in critical
areas, e.g., health care. There, a higher risk of infecting vulnerable individuals
may increase the cost ¢, of false negatives, and additionally, a higher false
positive cost b, might be incurred due to the importance of the work being
performed by these individuals. We will discuss a specific scenario in Section [4]
but first present the lower bound, an extension of Theorem The proof of
the following theorem will be presented at the end of Section [f] as it requires
several results from rate-distortion theory which are introduced there.

Theorem 3.6. Let X := (Xi,...,Xn) be N independent Bernoulli ran-
dom wvariables describing the infection status of a given population. Assume
further that the total population is separated into I subpopulations, of sizes
N ND | and that all N individuals in the i-th subpopulation have the
same probability p™ of infection and are measured using the same cost function
with parameters b, () as in . Define a9 = C(i)/b(i) > 0 and forv € [0,1],



let

I I

D(v) = %Z NOD (), a(i)’vb(l)), R(v) = %Z NOR(p®, a(i)yvb(”),
=1 =1

(9)

where D(p,a,v) and R(p,a,v) are defined in Theorem |3.1. Then there cannot
exist a testing strategy that uses fewer than R(v) Tpl (i.e., R(v)N tests in
total) and achieves an expected cost less than D(v), i.e., DX (K) > D(v) for
all K < R(v)N.

4. Historic example case

We consider the SARS-CoV2 pandemic situation in Austria in mid November
2020. On average there were N = 8916 845 individuals living in Austria in
2020 [24]. During the three days from 12th of November 2020 until 14th of
November 2020 a total of Ny = 103 621 individuals were subjected to a PCR-test
for SARS-CoV2 [25]. Of these N, individuals, 20349 tested positive [25]. This
corresponds to a prevalence of p; = 0.196 in this tested subpopulation. We will
refer to this subpopulation as the high prevalence subpopulation. At the same
time, a prevalence study found that approximately 3.1% of the total population
were infected [26]. Thus, in the untested population of N, = 8813224 the
prevalence was about p,, = 0.029. We will refer to this subpopulation as the low
prevalence subpopulation.

To illustrate the full potential of our model, we further consider individuals
working in health care separately and will assign a higher cost for wrong assign-
ments within this subpopulation. The most recent count of health care profes-
sionals working in hospitals and health care centers in Austria was Nj, = 121 567
at the end of 2019 [27]. Note that a finer separation into subpopulations is of
course possible but avoided for the sake of simplicity.

It is difficult to argue for the choice of specific costs of wrong assignments.
However, in mid November 2020, a lockdown was issued in AustriaEI which
we interpret as the turning point where considering all (untested) individuals
as infected is less costly than considering these individuals as healthy. This
implies (1 —p)b = pc, thus, at a prevalence of p = 0.029 in the untested, general
population, we obtain ¢ ~ 33b. We normalize b = 1 and choose ¢ = 33. Since
health-care facilities were not closed during this time, we assume that individuals
working in health care have a different trade-off between b and c. Specifically,
we assume that a false positive assignment for this subpopulation is significantly
more expensive and we set b = 6 for these individuals. Although also a different
¢ value could be argued, we assume that the professional training counters the

Ihttps://www.ris.bka.gv.at/Dokumente/BgblAuth/BGBLA_2020_II_479/BGBLA_2020_II_
479.pdfsig (in German)
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higher risk due to closer contact with susceptible individuals and we keep c the
same.

Since there is no data available on the prevalence within the health care
system, we assume that it is the same as in the general population. In particular,
also the split into the high prevalence and low prevalence subpopulations is
assumed to be the same. We thus end up with the following four subpopulations

e The first subpopulation consists of individuals working in health care that
belong to the high prevalence subpopulation with p(*) = 0.196 and costs
b =6, (1) = 33. We assume that N() = 1413 belong to this subpopu-
lation.

e The second subpopulation consists of individuals working in health care
that belong to the low prevalence subpopulation with p® = 0.029 and
costs b2 = 6, ¢® = 33. We assume that N(?) = 120154 belong to this
subpopulation.

e The third subpopulation consists of individuals not working in health care
that belong to the high prevalence subpopulation with p(®) = 0.196 and
costs b(®) =1, ¢®) = 33. We assume that N®) = 102208 belong to this
subpopulation.

e The fourth subpopulation consists of individuals not working in health
care that belong to the low prevalence subpopulation with p®* = 0.029
and costs b =1, ¢ = 33. We assume that N} = 8693070 belong to
this subpopulation.

Our lower bound and the performance of the optimal combinations of 1SG
and 2SG strategies for these specific parameters are illustrated in Figure
in comparison to optimized binary splitting algorithms and individual test-
ing. More specifically, the depicted curves correspond to the optimal use of
the available tests under the given strategy. For individual testing and the bi-
nary splitting algorithms, this means that depending on the number of tests, a
certain amount of people can be tested and correctly informed about their sta-
tus, while many untested individuals remain and are assigned a status without
being tested resulting in the depicted cost.

For the 103621 tests used during the discussed period, which correspond to
0.0116 Tpl, the optimized strategy is to subject as many individuals from the
fourth subpopulation as possible to a test using a 1SG(33) testing strategy. By
this approach, the expected cost is 0.816. Individual testing could only reduce
the expected cost to 0.944, hardly any improvement over not testing at all at
an expected cost of 0.956. Note that in all subpopulations and strategies we
assume that an optimal decision for untested individuals is used, namely, that
a healthy status is assigned to untested individuals in subpopulations two and
four and an infected status to untested individuals in subpopulations one and
three.

To illustrate the implications of this kind of strategy, we calculate the ex-
pected number of individuals that are considered infected. First, this number

11
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Figure 2: Testing of the Austrian population grouped into 4 different sub-populations in mid
November 2020. The lower bound from Theorem is compared to the binary splitting
algorithm, and an optimal combination of strategies 1SG and 2SG as well as the significantly
worse individual testing. Markers with associated numbers indicate the four testing strategies
used to achieve the given point, where co indicates that the given subpopulation is not tested,
e.g., (2)(00)(00)(30,10) indicates that subpopulations 2 and 3 are not tested, subpopulation
1 is tested using 1SG(2), and subpopulation 4 is tested using 25G(30,10).

includes all individuals in the subpopulations one and three. Furthermore, each
1SG(33) test in subpopulation four has a probability of 1—(1—0.029)3® ~ 0.621
to result in a positive outcome. Thus, an additional expected number of
2124712 individuals would be considered infected in this subpopulation. In
total, an expected number of 2228 333 individuals would be considered infected.

We see that the decrease in expected cost is very limited with such a low
number of tests, even if an optimized strategy is used. In particular, our lower
bound shows that no strategy can reduce the expected cost below 0.609 using
the assumed 103621 tests. However, our theory can also be used to estimate
how many tests are required to achieve a certain reduction in expected cost. For
example, we can find the number of tests necessary to obtain half the expected
cost than without testing, i.e., 0.478. Our lower bound shows that at least 0.0226
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Tpl (201256 tests in total) are necessary, while our optimized strategies show
that 0.0419 TpI (373636 tests in total) are sufficient. Our optimized strategies
suggest to use a 1SG(4) strategy to test all individuals in subpopulation one
and a mix of 15SG(24) and 1SG(23) strategies to test all individuals in subpop-
ulation four. We also want to point out that an astonishing number of 0.499
Tpl (4447461 tests in total) would be required to achieve the same goal with
individual testing; and even the previously best known binary splitting testing
strategies require 0.102 TpI (909 637 tests in total).

A second example case is presented in Appendix [A] analyzing the situation
in Austria during the SARS-CoV-2 pandemic in early April 2020. The two
examples showcase how our theory can be used to explore possible strategies
for a given set of parameters and a given number of tests. Furthermore, they
already illustrate that the specific scenario can affect all parts of the optimal
testing strategy, e.g., there is no general rule that the testing of individuals
with highest prevalence has priority. Maybe surprisingly, the examples also
illustrate that there are situations where our approach can result in substantial
gains using very simple testing strategies. Any other parameter choices can
be explored using the Jupyter notebook and Python code, available at https:
//github.com/g-pichler/group-testing. This software was created using a
Jupyter Notebook [28], as well as SciPy [29], NumPy [30], and Matplotlib [31].

Finally, we want to emphasize, that the historic example cases discussed
here certainly do not completely reflect the reality of testing in Austria in 2020.
In addition to the somewhat arbitrary choices of values b, ¢, our analysis suffers
from the shortcomings that are to be discussed in Section [6] E.g., considering
the first example case (Figure [2), a 1SG(33) test is positive with probability
around 0.621, while the chance of infection is less than 0.03. One would not
expect this strategy to be viable, as compliance will be low.

5. Information theoretic details

Readers familiar with information theory will see the obvious analogues be-
tween our problem formulation and classical rate-distortion theory [32]. In-
deed, an (N, K)-test function can be seen as a specific encoder of a binary
sequence, whereas the corresponding (K, V)-decision procedure is a specific de-
coder. Thus, DX*)(K) defined in is the minimal expected distortion of a
restricted class of source codes of rate R = K/N for the vector X.

A fundamental information-theoretic result provides a lower bound on the
minimal expected distortion of an arbitrary source code of rate R, the so-called
information distortion-rate function.

Definition 5.1. Let X be a random variable on QN and p: Q¥ x QY - R, a
distortion function. The information distortion-rate function of (X, p) is given

by

1
X,
D; P)(R) —

- lex:Igl(i.rxl{)<NREPpr|x [NP(X, Y):| , (10)
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where I( -; ) denotes mutual information in bits [32, Sec. 2.6].

Because DI(X’p )(R) is a lower bound on the minimal expected distortion of

an arbitrary source code of rate R, it can be used to obtain a lower bound on
D(X’p)(K ). The following lemma is a direct consequence of Theorem 3.2.1 in
[32] and a proof is thus omitted.

Lemma 5.2. The minimal cost D) (K), as defined in 1s lower-bounded
by the information distortion-rate function Dgx’p)(R), i.e., for all R > 0,
DXp) (K) > Dgx’p)(R), when K < RN. In particular, no testing strateqy can
achieve an expected cost strictly less than Dgx’p)(R) if only R Tpl are available.

To prove our main results, it remains to characterize the information
distortion-rate function DI(X7p )(R). We first focus on the case N = 1 and will
subsequently extend our setting to prove Theorem [3.6] The following result is
based in the variational description of the information distortion-rate function
(see Section 2.4 in Gray [32]) and a detailed proof is provided in Appendix

Theorem 5.3. Let X € Q be a Bernoulli(p) random variable and p: Q* —
[0,00) a distortion function satisfying p(0,0) = p(1,1) = 0, p(0,1) = 1, and
p(1,0) = a. Then the entire information distortion-rate function is parame-
terized as DgX’p) (R(p,a,v)) = D(p,a,v) with v € [0,1]. Here, D(p,a,v) and

R(p,a,v) are defined in Theorem .

Remark 5.4. For later use, we note that under the assumptions of Theo-
rem 1/(logv) is the slope of the information distortion-rate function [32]

p. 86] for v € [0, vo], i.e., DI(X’p) (R(p,a,v)) = (logv)~!. Furthermore, note that
(R(p,a,vo), D(p,a,vp)) is the point (0, min{ap,1 — p}) on the distortion-rate
curve. Thus, in particular, D%X’p)(O) = (logvg) L.

We can now state the central characterization result of the information
distortion-rate function in the setting of Theorem A detailed proof of the
result is provided in Appendix

Theorem 5.5. Let X be as in Theorem . Then DEX,p) (R(v)) = D(v) for
every v € [0,1], where D(v) and R(v) are given in|(9)

Combining the previous results, we can now prove Theorems [3.1] and [3.6]

Proof of Theorems@ and[3-6 By Lemma [5.2] we have for all R > 0, that
DX (K) > DI(X’p (R) if K < NR. Using the characterization of the infor-
mation distortion-rate function in Theorem this yields D) (K) > D(v)
whenever K < NR(v), concluding the proof of Theorem |3.6

Theorem [3.1] is merely a special case of Theorem [3.6] with I = 1. O

Finally, we want to point out that many information theoretic questions
about the problem remain open. In particular, the characterization of a “group
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testing distortion-rate function” that can be defined as the infimum of all ex-
pected distortions that are achievable at a given rate as the population size NV
goes to infinity is a challenging new problem that can also be formulated as a
problem in classical rate-distortion theory with significant restrictions on the
encoder. Here, non-adaptive group testing may be easier to analyze because the
encoder is essentially restricted to the max(-) function. Another direction for
future work is to incorporate testing errors, resulting in a joint source-channel
coding scenario. It is not clear whether the source—channel separation theorem
holds in this case. Nevertheless, we expect that a lower bound similar to the
one presented here can be obtained, by adding the additional bits (i.e., tests)
necessary for error-free communication over a binary (most likely asymmetric)
channel.

6. Discussion

We introduced a rigorous mathematical formulation of optimal testing
strategies for a given number of available group tests. The problem is for-
mulated as a one-time testing procedure in the sense that we assume that the
infection status of the population does not change during the testing procedure
and we do not consider any time evolution. This enables us to use only very few
parameters that describe a current pandemic situation and we do not require
any detailed personal information such as contact maps between individuals.
However, even these few parameters can be difficult to estimate and may also
result in ethical challenges. The prevalence p is the easiest and most obvious
parameter and can be estimated using a negligible number of tests for a pilot
study and the estimate can be improved as the testing strategy is applied. The
costs b and ¢ of wrong assignments are more difficult to choose. They can be
adapted to the infectiousness of the disease, the cost and effectiveness of quar-
antine, non-pharmaceutical interventions that reduce the risk of infection, and
most likely many more variables. How to exactly choose these costs is beyond
the scope of our work and very specific for a given situation. It may also in-
clude political decisions by weighing health factors (e.g., minimize the number
of infections by quarantining many individuals) against economic factors (e.g.,
minimize the number of quarantined individuals). Note however that at least
implicitly these costs are used in political decisions: A society-wide lockdown
can be interpreted as the assertion, that assigning all (untested) individuals an
infected status is less costly than considering them to be healthy. Thus, at a
prevalence p, this implies (1 — p)b < pe.

Once the parameters are fixed for a given scenario, our theory on the one
hand gives ultimate bounds on how large a cost reduction can be achieved by
group testing, and on the other hand suggests optimal allocation of resources
for simple (suboptimal) testing strategies.

The present work is only a first step towards establishing a mathematical
theory of group testing. Thus, we do not consider the most general scenario and
focus on basic scenarios that are simplified in many aspects. In particular, the
scope of our results is limited by the following assumptions:
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We assume that tests are perfect, i.e., a group test of w individuals is
negative if and only if all u individuals are healthy. However, we expect
that a small error probability will not significantly influence the results
and simple simulations incorporating these errors can be used to check
the robustness in a specific scenario. A rigorous theoretical treatment on
the other hand should not only consider a fixed error probability for a
group test, but the error probability should rather depend on the group
size and the number of infected individuals within the group (cf. Pilcher
et al. [18]). Thus, an extension of our work in this direction would imply a
more quantitative approach of testing outcomes and not merely the binary
options we consider here.

In this work, no upper bound on the group size is assumed a priori. The
information theoretic lower bounds would not be affected by such a lim-
itation, but certain points of the kSG strategy will become infeasible,
requiring minor modifications to the published code. However, a more
thorough analysis would not impose a hard limit on the group size, but
consider the trade-off between test accuracy and group size, as mentioned
in the previous point.

We assume that the infection status of different individuals is independent.

We assume that the choice of testing strategy does not alter the cost of
wrong assignment. This assumption may be violated in reality, as e.g.,
individuals that are assigned an “infected” will likely show different levels
of compliance, depending on whether they were tested individually, in a
group, or not at all. Going beyond this assumption could be achieved
by changing the infection status from a binary decision to a probability
assignment and using a suitably adapted cost function.

The cost function is fixed and applied independently to each individual.
E.g., we cannot express the fact, that quarantining a small number of in-
dividuals working in critical areas is hardly problematic but once a critical
threshold is passed the cost of quarantining further individuals becomes
more costly than the linear increase assumed in our model.

We do not consider the collection of samples from individuals as a limiting
factor, but merely the number of tests is limited.

The testing strategies presented in this work are not at all optimal but
merely illustrate the potential of our approach. For example, we do not
consider testing individuals in several groups at the first stage (as, e.g.,
in the array testing approach by Phatarfod and Sudbury [§]), nor mixing
individuals from different subpopulations within a group. Nevertheless,
our suggested strategies are surprisingly simple and can outperform even
the best (significantly more complicated) strategies currently known.

We consider testing as a stand-alone task and do not incorporate it into
a larger disease model, as is done, e.g., in Berger et al. [33]. In particular,
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the probabilities of infection and the cost functions are assumed to be
fixed and do not change over time.

From a theoretical viewpoint, our analysis reveals several surprising insights
that are in contrast to long established fundamental statements in group testing
theory. First, an established statement is that group testing is beneficial exactly
in the regime p < (3 — /5) ~ 0.381 [23], i.e., in this regime, group testing
cannot outperform individual testing. However, this result was proven under the
assumption that perfect identification of the infection status of each individual
is required. Maybe surprisingly, this statement does not extend to our setting.
Indeed, for the specific case of p = %(3 —+/5), b =1, and ¢ = 10, using the
testing strategy 1SG(2) has a strictly lower expected cost than individually
testing every second individual (both have rate 1/2 Tpl). Similarly, in the non-
adaptive regime (i.e., all tests are performed in parallel) an established result is
that individual testing is optimal if all individuals are independent and have a
fixed prevalence p [34]. Again, this result only holds if perfect identification of
the infection status of each individual is required. In our setting, the simple 1SG
testing strategy is a non-adaptive strategy and is clearly superior to individual
testing (see Figure [1]).

A. Second example case

As a second example with significantly different prevalences, we consider the
SARS-CoV2 pandemic situation in Austria in early April 2020. More specif-
ically, another prevalence study was conducted from 1st of April until 6th of
April 2020. Here, a prevalence of approximately p = 0.0033 was found [35]
Section 3.2]. Since most of the samples were collected on the 4th of April, we
consider a timeframe from 3rd of April until 5th of April. On these three days
a total of Ny = 16226 tests were conducted [25]. Of those, 778 did yield a posi-
tive result [25]. Thus, the prevalence in this high prevalence subpopulation was
p; = 0.048. The resulting untested population is NV, = 8900619 with a preva-
lence of p, = 0.0032. We consider the same separation into subpopulations as
before as well as the same costs.

e The first subpopulation consists of individuals working in health care that
belong to the high prevalence subpopulation with p(*) = 0.048 and costs
b =6, ¢V = 33. We assume that N(1) = 221 belong to this subpopu-
lation.

e The second subpopulation consists of individuals working in health care
that belong to the low prevalence subpopulation with p(® = 0.0032 and
costs b?) = 6, ¢ = 33. We assume that N(?) = 121 346 belong to this
subpopulation.

e The third subpopulation consists of individuals not working in health care
that belong to the high prevalence subpopulation with p® = 0.048 and
costs b®) =1, ¢(® = 33. We assume that N®) = 16005 belong to this
subpopulation.
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e The fourth subpopulation consists of individuals not working in health
care that belong to the low prevalence subpopulation with p*) = 0.0032
and costs b = 1, ¢® = 33. We assume that N = 8779273 belong to
this subpopulation.

0.12 T T

------ Individual Testing

— 1SG/2SG

....................................... - Binary Sphttlng
............. —— Lower Bound

0.1

8.1072

6-1072

Cost per individual

T

4-1072 (8,2)(c0)(18,6)(72,12) =

9.10-2| (5,1)(26,2)(9,3)(49,7)

(5,1)(18,1)(5,1)(26,2)

|
0 0.2 0.4 0.6 0.8 1 1.2
Tests per 100 000 individuals 104

Figure A.3: Testing of the Austrian population grouped into 4 different sub-populations in
early April 2020. The lower bound from Theorem is compared to the binary splitting
algorithm, and an optimal combination of strategies 1SG and 2SG as well as the significantly
worse individual testing. Markers with associated numbers indicate the four testing strategies
used to achieve the given point, where co indicates that the given subpopulation is not tested,
e.g., (8,2)(00)(18,6)(72,12) indicates that subpopulation 2 is not tested and subpopulations
1, 3, and 4 are tested using 2SG(8,2), 2SG(18,6), and 25SG(72,12), respectively.

Our lower bound and the performance of the optimal combinations of 1SG
and 2SG strategies for these specific parameters are illustrated in Figure
For the 16 226 tests used during the discussed period, which correspond to 0.0018
Tpl, the optimized strategy is to subject all individuals in subpopulation one
to a test using a 2SG(8,2) testing strategy, all individuals in subpopulation
three using a 2SG(18,6) testing strategy, and as many individuals from the
fourth subpopulation as possible using a 2SG(72,12) testing strategy. Using
this approach yields an expected cost of 0.1023. Individual testing could only
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reduce the expected cost to 0.1054, while not testing at all results in an expected
cost of 0.1072.

B. Proofs of information theoretic results

In this appendix, we provide detailed proofs of the two main information
theoretic results in the main manuscript, namely Theorem [5.3]and Theorem [5.5]

B.1. Proof of Theorem[5.3

The following variational description of the information distortion-rate func-
tion is a particularization of Corollary 4.2.1 in Gray [32] to our setting of binary
random variables with an asymmetric distortion function, substituting v = 2.

Corollary B.1. Let X be a Bernoulli(p) random variable and p: Q* — [0,00) a
distortion function satisfying p(0,0) = p(1,1) =0, p(0,1) = 1, and p(1,0) = a.
Then for every v € [0,1] a point (R,,D,) on the graph of the information
distortion-rate function, i.e., DﬁX’p)(Rv) = D,, is given as

R, = D,logv+ min (*plog (g+(1—q)v") = (1—p)log (qv+(1*q))) (B.1)
qE[O,l]

and

p @A =) (g v+ (1 -g))v" +¢ (1 =p)(q" + (1= g)0")v (B.2)
v (q* + (1 _ q*)va) (q*v 4 (1 _ q*))
where q* solves the minimization in .

The minimization in |(B.1)| can easily be done exactly. Although one could
use existing results, e.g., Theorem 4.2.3 in Gray [32], it is easier to derive the
optimization directly than to particularize these general results.

Lemma B.2. Forv,p € (0,1) and a > 0, the function ¢: [0,1] — R defined by

¢(q) = —plog (¢ + (1 — g)v*) — (1 = p)log (qv + (1 — q)) (B.3)

is convex and
¢ if g €(0,1)

argming(q) = 40 if gy <0 (B.4)
aclo] 1 if qp > 1,
where
1 —p)o*tl 4 p— o
Qv = ( ) pa . (B.5)
(1 —-v)(1 =22

Proof. The derivative of ¢ is given as

1—0? v—1

¢/(Q) _ _pm - (1 —p)m .
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Thus, ¢'(¢) = 0 if and only if
0= —plg(v - 1)+ 1)(1—v") = (1= p)(g(1 —v") +v)(w—1)  (B.T)
which is equivalent to
p(1=v*) + (1 =p)o*(v—1) = q(1 —v)(1 -7 (B.8)
and in turn to ¢ = ¢q,. The second derivative is given as

(1-v")?
(q+ (1 —q)v)?

(v—1)?
(qu+(1—q))?

which is positive and thus ¢ is convex. Thus, if the critical value g, is in (0, 1)
then it is the global minimum. Otherwise, ¢, > 1 implies ¢'(¢) < 0 on (0,1)
and thus the global minimum is at 1, and ¢, < 0 implies ¢'(q) > 0 on (0,1) and
thus the global minimum is at 0. O

"(q)=p +(1—-p) (B.9)

To prove Theorem [5.3] it remains to combine Corollary and Lemma [B.2]
and to note that, by [32] Theorem 4.2.1b], the entire distortion-rate curve is
parameterized by v.

We first show that ¢, € (0,1) (i.e., the first case in |(B.4)]) if and only if
v € (0,vg). By the definition of ¢, in q» > 0 is equivalent to

(1—p* ™ +p—0v*>0 (B.10)
and ¢, < 1 is equivalent to
(1—p*™ 4+ p—v® < (1 —v)(1—20). (B.11)
These equations are, in turn, easily seen to be equivalent to
pr= @D L (1 —p)—v >0 (B.12)
and
p*tt 4 (1—p)—v>0. (B.13)

The function f(u) := pu®*t + (1 — p) — u has derivatives f'(u) = (a +1)pu® — 1
and f”(u) = (a+1)au®"! and is thus convex for u > 0. Furthermore, f(1) = 0,
f(0) =1—p >0, and lim,_,o f(u) = oo and hence the function has either
one more zero or is nonnegative everywhere. In either case, |(B.12)| and |(B.13
are satisfied if and only if v € (0,v). Thus, the assumptions of Theorem [5.3
imply that the minimum in is ¢, and we can insert it into D, and R, in
Corollary B.I] To this end, we first derive 1 — ¢, as

pott 4+ (1—p) —w
Lo =00 =w

(B.14)
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Next, we note that

u D 1_,Ua+1
@+ (1 = q)v _ =) 0 ) (B.15)

and

(=)o)

v+ (1 —q,) = 1— o

(B.16)
Inserting these relations into D, in simple algebraic manipulations yield
D, = D(p,a,v). Similarly, inserting the relations into we obtain R, =
R(p,a,v).

On the other hand, consider the case v € [vg,1). Assuming f(vo) = 0, we
must have f’(1) > 0, which is equivalent to 1 — p < ap. Furthermore, v lies
between two zeros of a convex function and is thus nonpositive, i.e., is
not satisfied. Thus, ¢, > 1, which in turn yields R, = 0 = R(p,a,v) and
D, =1-p= D(p,a,v). The case f(vy =0, ie. ap <1 —p, similarly yields
R, =0= R(p,a,v) and D, = ap = D(p,a,v).

Finally, observing that the case v € {0,1} follows by continuity concludes
the proof of Theorem [5.3]

B.2. Proof of Theorem

We first establish a general result for the joint information distortion rate
function of several independent sources particularized to the setting of Theo-

rem We will use the shorthand Df' = DI(X"’p ") for the n-th individual and

‘ () () S
DI(Z) = DI(X #) where X, p() are the random infection status and the cost
function of an arbitrary individual in the i-th subpopulation.

Lemma B.3. The information distortion-rate function DgX’p)(R) can be
decomposed as
(X.p) L\
D) (R) = i —N"D"¢,NR B.17
I (R) se[O,l]Nm:liln eom1 N Z 7€ ) ( )

:E co. 1]12 .g()N() 1NZN(1)D()(§(1)NR) (B.18)

Proof. In|(10)} the right-hand side can be rewritten as

. 1 .
lex:I&l;%)SNRprPYm |:NP(X,Y):| = py‘x:IgI(I;Ile)SNR PXPY |X |: an XnaY :|

N
1
_ py‘x Igl(l%KN N Z PXDPY|X pn Xn,Y )}
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N

1

= — E n(Xn, Yo )l .
py‘xlgliuﬁlf)<NRN — PXnPYn|Xn [on )]

(B.19)
Furthermore, we can expand the mutual information as
I(X;Y)=H(X)—- H(X|Y)
N
=Y H(X,)-H(X,|Y,X1,..., X0 1)
n=1
N
n=1
N
= Z I(X,;Y,) (B.20)
n=1

with equality if pyx (¥|x) = I, Py, |x, (Un|Tn). We can thus restrict the mini-
mization in to pyx (yx) = [1,, Pv,|x, (Yn|2zn) and obtain

N
1
DX (R) = — i E (XY, B.21
P (R) prxiEn?(l)l(I}z,;Yn)SNR; pxapy i [Pn(Xn Vi) (B.21)
1 N
_ n(Xn, Yn
N [0 1%1ﬂv‘|1 1 Py, |Xn* I(gllvril/ <fn ; PXnPYn|Xn p ( )]

(B.22)

which immediately yields [(B.17)|

Note that the only difference between [[B.17)] and [[B.18)|is that all £, for X,
belonging to the same subpopulation are chosen to be equal, i.e., &, = £®. To
justify this choice, we have to show that this indeed minimizes the sum, i.e.,

N®
NODP(EINR) <3 DI(€,NR) (B.23)

n=1

) Lo
for Zi\;l & = NWegW | The convexity of the information distortion-rate func-
tion [32] Sec. 4.1] implies that

N@® 1 N@® 1
(i) (1)
D; (Zl 0 n) < Z N D () (B.24)
which is precisely for R, = £, NR. O

Theorem 5.5/ now follows by solving the minimization in[(B.18)] More specif-
ically, we can write the optimization problem in |(B.18)| as an unconstrained

22



optimization problem using a Lagrangian formalism [36], Sec. 5.5.3]

LE N\ p ZN IDW(EDNR) + A (1 — Zf i) N (i )) _ Zu(%(”
e Z (B.25)

and obtain the associated Karush-Kuhn-Tucker (KKT) conditions for A € R
and p € RZ,

RNODW(EDNR) = AND — @D =0 forieT (B.26)
_ Z EOND =g (B.27)
€D >0, x>0, DD =0 for i € Z. (B.28)

By the convexity of DI(i) [32] Sec. 4.1], the minimization problem |(B.18)| is
convex and the KKT conditions therefore necessary and sufficient.

Recall that we actually want to solve the minimization problem for a given
v at the fixed R

1 o= . i
=~ STNORE®D, a® "), (B.29)

. B0 (i i (4)
Choosing ¢ = %ﬁz”b) now obviously satisfies [(B.27)l To check
|(B 26)| and | B.28 | for all i € I, we consider two cases. If v*" < v(()z),
where vé) is defined as vy in Theorem [3.1) then Remark m implies that
Dl(l (R(pD,a®,v o¢ >)) = loé’(ﬁ. Hence, settmg p =0, [(B.28)| is satisfied
and (B.26) reduces to choosing A = %, such that |(B.26)| is satisfied for all 4
with v < véz).
Tf 0" > v(()z), we obtain from the definition of R(p®, a(®, vbm) that ¢ = 0.

According to Remark the derivative Dl(i)(O) = Z(i)m and |(B.26)| becomes
O, ’UO
ul® = RN@ Lo — RNO)

which is nonnegative due to s > v[()i) and

log
thus is satlsﬁed
) s (1) (1) b1 )
Thus, the choices ¢ = %};“b)’ A = %, and p =
RN(i) b(l) — RN()@ for v > v(()l) and p() = 0 otherwise, satisfy

the KKT condltlons. The equations @ then follow by inserting éNR =
R(pW, a(i),vb()) into Dl(z) (€Y NR) and noting that, by Theorem we have
DI(l)(R(p(i)7 a®, vb(”)) _ b(i)D(p(i), o, vbm),
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C. Evaluation of k stage group testing

To calculate the expected rate, we denote by Ty the Tpl used in the ¢-th
stage of the testing procedure. Then

k k
RisGuy,. .. un) = E[ZTE] = > E[T}]. (C.1)

Since in the first stage all individuals are tested in groups of size u, the expecta-
tion is simply E[T] = i In the (£+1)-th stage for £ > 1 only those individuals
that belong to groups of size uy including at least one positive individual are
tested. We can thus condition the expectation on the event that the group of
size u, the individual belongs to is negative, which has probability (1 — p)“, or
positive, which has probability 1 — (1 — p)“¢. Hence, the expectation expands
to 1
E[Tp] = [1 = (1 = p)"] —— + (1= p)" -0 (C2)
Ue+1
concluding the proof of
To prove first note that kSG(uq, ..., ux) never declares an infected in-
dividual as healthy. Indeed, the only cases of wrong assignment can happen in
groups that are positive at the k-th stage. Here, all individuals in the group
are declared infected, although there may be several healthy individuals in the
group. Thus, the expected cost of a single individual is the probability of itself
being negative times the probability that at least one of uy — 1 other individuals
is infected times the false positive cost b, i.e.,

DkSG(ul,‘.‘,uk) = b(l _p)(l - (1 _p)uk_l)
=b(1-p—(1—-p)"). (C.3)
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