Artificial Intelligence 300 (2021) 103563

Contents lists available at ScienceDirect
Artificial Intelligence

www.elsevier.com/locate/artint

kg

Abstraction for non-ground answer set programs *)

Check for
updates

Zeynep G. Saribatur *, Thomas Eiter, Peter Schiiller

Institute of Logic and Computation, TU Wien, FavoritenstrafSse 9-11, A-1040 Vienna, Austria

ARTICLE INFO

ABSTRACT

Article history:

Received 20 December 2019

Received in revised form 11 May 2021
Accepted 21 July 2021

Available online 28 July 2021

Keywords:

Abstraction

Answer set programming

Declarative problem solving

Knowledge representation and reasoning
Nonmonotonic formalisms

Explaining unsatisfiability
Counterexample-guided abstraction and
refinement

Abstraction is an important technique utilized by humans in model building and problem
solving, in order to figure out key elements and relevant details of a world of interest.
This naturally has led to investigations of using abstraction in Al and Computer Science
to simplify problems, especially in the design of intelligent agents and automated problem
solving. By omitting details, scenarios are reduced to ones that are easier to deal with
and to understand, where further details are added back only when they matter. Despite
the fact that abstraction is a powerful technique, it has not been considered much in the
context of nonmonotonic knowledge representation and reasoning, and specifically not in
Answer Set Programming (ASP), apart from some related simplification methods. In this
work, we introduce a notion for abstracting from the domain of an ASP program such
that the domain size shrinks while the set of answer sets (i.e., models) of the program
is over-approximated. To achieve the latter, the program is transformed into an abstract
program over the abstract domain while preserving the structure of the rules. We show
in elaboration how this can be also achieved for single or multiple sub-domains (sorts)
of a domain, and in case of structured domains like grid environments in which structure
should be preserved. Furthermore, we introduce an abstraction-&-refinement methodology
that makes it possible to start with an initial abstraction and to achieve automatically
an abstraction with an associated abstract answer set that matches an answer set of
the original program, provided that the program is satisfiable. Experiments based on
prototypical implementations reveal the potential of the approach for problem analysis,
by its ability to focus on the parts of the program that cause unsatisfiability and by
achieving concrete abstract answer sets that merely reflect relevant details. This makes
domain abstraction an interesting topic of research whose further use in important areas

like Explainable Al remains to be explored.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Abstraction is a technique applied in human reasoning and understanding, by reasoning over the models of the world
that are built mentally [30,68]. Although its meaning comes from “to draw away”, there is no precise definition that is
capable of covering all meanings that abstraction has in its utilizations. There is a variety of interpretations in different

* Some of the results in this article were presented in preliminary form at JELIA 2019 [113] and XAI 2019 [45]. This work has been partially supported
by the Austrian Science Fund (FWF) grant W-1255 and by the EU’s H2020 research and innovation programme under grant agreements 825619 (AI4EU)

and 952026 (HumanE-Al Net).
* Corresponding author.

E-mail addresses: zeynep@kr.tuwien.ac.at (Z.G. Saribatur), eiter@kr.tuwien.ac.at (T. Eiter), ps@kr.tuwien.ac.at (P. Schiiller).

https://doi.org/10.1016/j.artint.2021.103563

0004-3702/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.artint.2021.103563
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2021.103563&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:zeynep@kr.tuwien.ac.at
mailto:eiter@kr.tuwien.ac.at
mailto:ps@kr.tuwien.ac.at
https://doi.org/10.1016/j.artint.2021.103563
http://creativecommons.org/licenses/by/4.0/

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

® 4 @5 ®6

(a) 3-coloring of a graph (b) Sudoku

Fig. 1. Use of abstraction.

disciplines such as Philosophy, Cognitive Science, Art, Mathematics and Artificial Intelligence, with the shared consensus of
the aim to “distill the essential” [108]. Among them is the capability of abstract thinking, which is achieved by removing
irrelevant details and identifying the “essence” of a problem [71]. The notion of relevance is especially important in problem
solving, as a problem may become too complex to solve if every detail is taken into account. A good strategy to solve a
complex problem is to start with a coarse solution and then refine it by adding back more details. When planning a trip,
for instance, one may first pick the destination and determine a coarse travel plan; fleshing out the precise details of the
travel, such as taking the subway to the airport, comes later. This may be done in a hierarchy of levels of abstraction, with
the lowest level containing all of the details. Another view of abstraction is the generalization aspect, which is singling out
the relevant features and properties shared by objects. For example, features of an airplane such as color and cargo capacity
with their possible differences may be irrelevant to the travel plan; we are (mostly) only interested in the fact that there is
an airplane that takes us from Vienna to New York, say. Overall, the general aim of abstraction is to simplify the problem at
hand to one that is easier to understand and deal with.

For solving combinatorial problems and figuring out the key elements, humans arguably employ abstraction. In Artificial
Intelligence, such problems vary from planning problems like in which order to move blocks to achieve a final configuration,
to solving constraint problems such as finding an admissible coloring of the nodes of a given graph. In the latter problem,
for instance, isolated nodes can be viewed as a single node and colored the same without thinking about the specific
details (Fig. 1a). If a given graph is non-colorable, then we may try to find some subgraph (e.g., a clique) which causes
the unsolvability, and we would not care about other nodes in the graph. Similarly with the blocks: if the labels are not
important, we would disregard them when figuring out the actions. If the goal configuration cannot be achieved from the
initial one, we would aim to find out the particular blocks that cause this.

Notably, such disregard of detail also occurs for problems with multi-dimensional structures such as grid-cells in the
well-known Sudoku problem, where a partially filled 9 x 9 board must be completed by filling in numbers 1..9 into the
empty cells under constraints. If an instance is unsolvable, the reason can only be meaningfully grasped by a human by
focusing on the relevant sub-regions, as looking at the whole grid is too complex. For illustration, Fig. 1b shows the sub-
regions of an instance that contain the reason why no solution exists: as 6 and 7 occur in the middle column, they must
appear in the sub-region below in the left column, which is unfeasible as there is only one empty cell. All these examples
demonstrate abstraction abilities of humans that come naturally.

Due to its important role in knowledge representation and in reasoning, abstraction has been explored in Al research
early on as a useful tool for problem solving: solve a problem at hand first in an abstracted space, and then use the
abstract solution as a heuristic to guide the search for a solution in the original space [70,92,106]. This approach was used
in planning for speeding up the solving [64] and especially for computing heuristic functions to guide the plan search in
the state space. Several abstraction methods were introduced towards this direction, especially to automatically compute
abstractions that give a good heuristic [38,61,116]. However, it is well known that the success in solving a problem relies on
how “good” the abstraction is. For this, theoretical approaches for defining abstractions with desired properties have been
investigated [59,90]. Apart from gaining efficiency (which however may not always materialize [8,63]), abstraction forms
a basis to obtain high-level explanations and an understanding of a problem. For more details on these and other related
works see Section 7.3.

Abstraction has been studied in other areas of Al and Computer Science as well, among them model-based diagnosis
[23,89], constraint satisfaction [13,52], theorem proving [102], to name a few. Particularly fruitful were applications in model
checking, which is a highly successful approach to computer aided verification [27], to tackle the state explosion problem
by property preserving abstractions [26,32,82]. Furthermore, the seminal counterexample guided abstraction refinement
(CEGAR) method [25] allows for automatic generation of such abstractions, by starting from an initial abstraction that over-
approximates the behavior of a system to verify, and then stepwise refining the abstraction as long as needed, i.e., as long
as spurious (false) counterexamples exist.

Abstraction for Answer Set Programming. Answer Set Programming (ASP) [18,79] is a declarative problem solving paradigm
that is rooted in knowledge representation, logic programming, and nonmonotonic reasoning. A problem is represented by
a non-monotonic logic program whose answer sets (also called “stable models” [57]) correspond to the solutions of the
problem. Thanks to the availability of efficient solvers and the expressiveness of the formalism, ASP has been gaining

2

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

popularity for applications in many areas of Al and beyond, cf. [47-49] and references therein, from combinatorial search
problems (e.g. configuration, diagnosis, planning) over system modeling (e.g., behavior of dynamic systems, beliefs and
actions of agents) to knowledge-intensive applications (e.g., query answering, explanation generation), to name a few [47].
The declarative nature of ASP enables a flexible use for solving different reasoning problems, and it provides a useful
basis for investigating ways to help in understanding a problem with its key elements. Studies in understanding how ASP
programs find a solution (or none) to a problem have been conducted, which mainly focus on debugging answer sets
[16,55,93] or finding justifications [20,103,115]. These approaches could be used to aid in understanding the problem at
hand; however, as noted in [50], the explanations offered may contain a high number of details which prevent one from
seeing the crucial parts. This is where abstraction would come in handy and could be very fruitfully used.

Somewhat surprisingly, abstraction has not been considered much in the context of nonmonotonic knowledge represen-
tation and reasoning, including ASP as a premier formalism in this area. Simplification methods such as equivalence-based
rewriting [53,97], partial evaluation [17,67], or forgetting (see [73] for a recent survey), have been extensively studied;
however, they strive for preserving semantics, while abstraction provides an approximation of the answer sets of a logic
program, in a modified language. We aim here at an approximation in which no answer set is lost, i.e., each answer set of
the original program corresponds to some answer set of the abstract program. This enables us to distill all answer sets of
the original program from the abstract answer sets and to perform sound reasoning from the abstract answer sets. Specif-
ically, spurious answer sets, i.e., abstract answer sets that do not correspond to some answer set of the original program,
may be discarded, while under this over-approximation cautious reasoning from all abstract answer sets ensures soundness
with respect to cautious reasoning from all answer sets of the original program; moreover, in case no spurious answer set
exists we also have completeness (in particular, if no abstract answer set exists). This makes abstraction an interesting topic
for research.

In a recent work [110,111], a notion of abstraction for ASP was introduced that focuses on omission of atoms from the
vocabulary and ensures over-approximation by rewriting the rules of a given program. That approach is propositional in
nature and related to forgetting [112], with the difference of over-approximation vs. preserving the answer sets. Further-
more, it is for unsatisfiable programs related to minimal unsatisfiable subset/core (MUS) extraction from SAT instances and
propositional answer set programs, which aims at identifying a smallest set of clauses, respectively rules or asserted literals,
that prohibit to have a model, respectively answer set, cf. [1,2,5,76,85]. This may be exploited to give an explanation of
non-3-colorability of a graph or non-solvability of a Sudoku instance as in Fig. 1 in terms of clauses, respectively ground
literals and rules; however, such an explanation lacks structure in terms of showing subgraphs or subareas, say, which must
be extracted in post processing from the propositional encoding. For further discussion of omission abstraction and MUS
extraction, we refer to [111].

We follow an orthogonal approach to [110,111] and introduce in this work a notion of abstraction for ASP on the first-
order level that is concerned with collapsing (i.e., clustering) objects in the (Herbrand) domain of a program. It is that in
this way, multiplicity is removed in the spirit of Occam’s razor.! If the graph in Fig. 1a is represented by facts node(1), ...,
node(6) and edge(1, 2), edge(1, 3), edge(2, 3), then collapsing the nodes 4, 5, and 6 into an abstract node a would not affect
3-colorability of the graph; we thus expect that an abstract version of an ASP program that encodes all 3-colorings of the
graph would yield answer sets from which these 3-colorings can be recovered. However, if there were an edge between 4
and 5, then over-approximation would yield that this abstract program will have spurious answer sets, as the abstract node
a may have a single color in some abstract answer set I’ while 4 and 5 must have in every original answer set I different
colors, thus I cannot be mapped to I’. Similarly, if nodes 1 and 2 were collapsed, the graph would become 2-colorable
(where 1 and 2 share the same color), while the original graph is not 2-colorable. These simple examples show that a naive
use of domain abstraction - just replace individuals by a cluster of elements - does not work; and yet more subtle effects
may surface when programs have recursive definitions such as reachability.

In fact, suitable domain abstraction for ASP is non-trivial and has several challenges. First, the abstract program should be
automatically constructed, while the structure of the original rules should be preserved if this is feasible. Second, abstraction
refinement, i.e., unclustering of objects for eliminating spurious answer sets, should be automated as well. This is non-
trivial, given a large space of possible refinements and that objects might be related among each other in multiple ways,
e.g. in temporal or spatial relationships as in reasoning about actions, for instance. And third, the capability of dealing
with structure and to support hierarchical abstraction that can handle objects of different granularities at different levels of
abstraction is needed.

Contributions. We address the issues above in this work, whose main contributions can be summarized as follows.

(1) We formally introduce the notion of domain abstraction for ASP programs. To this end, we define abstraction map-
pings m from the original (concrete) domain D of the program to an abstract domain D’, and construct an abstract program
IT" over D’ such that each answer set I of IT maps to an abstract answer set I’ of IT'. We propose a systematic approach for
the construction of such an abstract program, which works modularly on the syntactic level and transforms each rule in IT
into a set of abstract rules with a similar structure. In the transformation, built-in relations and in particular equality, whose
treatment provides the backbone of the method, are lifted to the abstract level, and uncertainty caused by the abstracted

1 Often referred to as “Entia non sunt multiplicanda praeter necessitatem.” that is, entities should not be multiplied beyond necessity.

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

domain D’ is carefully respected. Our notion of abstraction can be used for different applications such as obtaining abstract
solutions from ASP programs or showing reasons of unsatisfiability in case no answer set exists. We illustrate this on various
problems expressed in ASP, among them problems from combinatorial search, planning, and agent behavior assessment.

(2) We present a method which, in case an abstract answer set I’ of a program IT w.r.t. mapping m is spurious, computes
a refinement m’ of the abstraction in order to eliminate I’. To this end, we reduce the test for spuriousness to unsatisfiability
of a non-ground ASP program IT’ constructed from I’, T1, and m. As unsatisfiability of IT" as such leaves one clueless
about how to modify m in order to eliminate spuriousness, we present a method for catching causes of the unsatisfiability.
The method uses a debugging technique via meta-programming for ASP and obtains useful information for computing a
promising refinement m’ that removes the spuriousness. Building on an ASP solver, it uses under the hood assumption-
based search. To this end, we lift the SPOCK approach [16] for tight programs to the non-ground level such that decisions
on refinements can be based on special atoms computed during the debugging. Intuitively, these atoms single out changes
for a spurious answer set I’ towards a corresponding answer set I of the original program I, where always some such
atoms will be found; based on heuristics, we introduce different refinement strategies to eliminate spurious answer sets.
These strategies are employed in a CEGAR-style [25] methodology of iterative abstraction and refinement, which starts with
a highly coarse abstraction and automatically searches for and outputs an abstraction with a non-spurious (concrete) answer
set if one exists.

(3) We introduce the possibility of multi-dimensional abstraction mappings over a domain. While the abstraction method
from above can deal with sorts, we have to modify it to form an abstraction over the relations that is akin to existential
abstraction [25], which can be viewed as a simplification of the initially presented abstraction method, in order to enable
that elements at mixed levels of abstraction can be handled properly. This in fact is needed to relate in Fig. 1b cells like the
top-left corner with abstract cells such as the mid-left 3 x 3 sub-region, and to express their abstract locations such as being
above, left-of etc. We extend the abstraction-&-refinement methodology with handling the structural aspects of grid-cells
by using an abstraction of quad-trees, a tree structure often used to partition 2-dimensional spaces, and we consider more
sophisticated decision making for the refinement to observe its effects on the resulting abstractions.

(4) We analyze semantic and computational properties of the abstraction approach, which can be exploited for modeling
and for guiding the design of suitable implementations. Among other results, we establish that abstractions for sequences
of refinements can be built incrementally (Proposition 3.6), and that abstractions of independent sorts can be naturally
composed (Proposition 3.7). Furthermore, the two variants of domain abstractions we consider are semantically equivalent,
which we demonstrate here for the basic case (Theorem 5.1), but have features making them attractive in different contexts.
As regards complexity, we show that checking whether an abstract answer set of a normal logic program is spurious is
coNEXP-complete and that deciding whether an abstraction mapping is faithful, i.e., has no spurious abstract answer sets, is
coNEXPNP-complete. Thus, the worst case complexity of these problems coincides with the one of unsatisfiability testing of
normal respectively disjunctive non-ground ASP programs [33]. Furthermore, if predicate arities are bounded by a constant,
the problems are Hg -complete and Hg—complete, respectively, and thus again have the same complexity as unsatisfiability
testing of normal and disjunctive non-ground ASP programs, respectively in the bounded predicate case [39]. Reducing
spurious checking to unsatisfiability testing of normal logic programs is thus worst-case optimal in both settings.

(5) We have implemented the abstraction-&-refinement approach in prototypical tools DASPAR and mDASPAR for plain
and multi-dimensional abstraction, respectively. They take as input a non-ground program IT and an initial coarse do-
main mapping m (which by default is the trivial mapping that clusters all elements), and output a refinement mapping
m’ and an abstract answer set I’ for the abstract program IT' that is non-spurious, if one exists; otherwise, i.e., in case Il
is unsatisfiable, they provide a refinement mapping m’ that is faithful, i.e., such that IT" has no abstract answer sets. The
implementations include different refinement strategies and support independent sorts as well as 2-dimensional abstrac-
tions with a quad-tree-style refinement process. Based on these tools, we have conducted an experimental evaluation of the
approach, where one set of experiments focused on finding non-trivial abstractions for problems expressed by well-known
ASP programs (graph coloring, scheduling), while another one consisted in detecting the unsolvability of several benchmark
problems involving grid-cells. In the experiments, different debugging strategies were considered and a measure for assess-
ing the quality of multi-dimensional abstraction was developed. The results show the potential of the approach, where in
particular a small user-study for a natural grid-cell problem indicates its capability of putting a human-like focus on the
grid to show unsatisfiability.

Summarizing, our work on domain abstraction for ASP opens an intriguing line of research which aims at making it
possible to identify the gist of a program’s domain that is responsible for matters such as inconsistency or certain solutions
of interest. The approach that we present provides the ability to adjust the granularity of abstraction towards the details
relevant for a problem in an (semi-)automated way. The experimental results indicate the value of domain abstraction for
program analysis, whose further use in important areas like Explainable Al remains to be explored.

Organization. The remainder of this article is organized as follows. The next section recalls notions from ASP as needed
for this work, and reviews the seminal approach to abstraction over (in essence) propositional ASP programs introduced
in [110,111]. After that, in Section 3, we turn to domain abstraction for non-ground ASP programs, where we present an
abstraction procedure, consider various extensions, and study semantic and computational properties of the approach. In the
subsequent Section 4, we present our refinement methodology that is based on debugging of ASP programs. After Sections 3

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

and 4 we are well equipped to apply the CEGAR-style abstraction and refinement procedure for answer set programs. As a
further consideration, in Section 5, we focus on multi-dimensional abstraction and an alternative abstraction method, based
on existential abstraction, that is needed for it, which can also be combined with the refinement method from Section 4 to
apply the CEGAR-style procedure. Implementation and evaluation of the approach for both abstraction types is considered
in Section 6, while in Section 7 we discuss further notions of abstraction and possible use cases, as well as related work.
The final Section 8 provides a summary and outlines issues for future research.

In order not to distract from the flow of reading, longer proofs and further details have been moved to the Appendix (A
and B), which also provides a further use case in agent behavior assessment (C).

2. Background
2.1. Answer set programming

In this section, we recall the concepts and notions of Answer Set Programming (ASP) that we need for this article. We
refer to [18,19,114] for more background and references. We start with syntax and semantics of ASP programs and then
recall some notions that are useful for this work.

Syntax. We consider a first-order vocabulary V = (P,(C) consisting of non-empty finite sets P of predicates and C of
constants. Let X’ represent the set of variable symbols. A term is either a constant from C or a variable from X. An atom is
an expression « of the form p(tq,...,t;) where p € P and each t; is a term; n >0 is the arity of p, and arg(a) ={tq, ..., tn}
denotes the set of arguments of «. Atoms are called propositional if n =0 and ground if they do not contain variables. A
literal is either a formula o (positive literal) or not « (negative literal), where « is an atom. Intuitively, a negative literal not o
is true if o cannot be derived using rules, and false otherwise; not is called weak or default negation.

Definition 2.1. A normal logic program I1 is a finite set of rules. A rule r is an expression of the form

o < A1,...,0m, N0t Amy1, ..., N0t 0y, O<m<n. (1)

We refer to o as the head of r, and oy, ..., am, not om+1, ..., Not &y as the body or r. We also write r as o < B(r),
such that H(r) = ap denotes the head or as H(r) < BT (r), not B—(r), where B*(r) = {aq, ..., amm} is the positive body and
B~ (r) = {Qm+1, ..., &} is the negative body of r. We may omit r from B(r), B*(r) etc. if r is clear. We refer to “normal logic

programs” as “programs” unless otherwise noted.

A rule r is a constraint if o is the propositional atom _L (then also omitted), where L is a predicate constant for falsity.
Furthermore, r is a fact if n=0 and no variable occurs in r, and r is positive if n =m. A rule is ground if all literals occurring
in it are ground.

A program IT is positive and ground if the rules in it have the respective property; it is safe if every variable that occurs
in a rule also occurs in the same rule in some positive body literal. We assume safety of the programs which usually is
achieved by making use of domain predicates, which are unary predicates that are given as facts and are true for all constants
that the variables in the program are being grounded over. We use predicate dom for the domain predicate. For simplicity
of presentation, we omit dom in the representation, unless it is necessary to ensure safety, and from the answer sets.

Choice rules are syntactic sugar of the form {a} < B, which stands for the rules a < B, not a and a < B, nota, where a is
a new atom.

Semantics. The answer set semantics is defined via ground programs. For a program IT, we define its ground instantiation
as follows.

Given a program [T, its Herbrand universe, denoted by HUpy, is the set of all constant symbols C C C appearing in IT; in
case there is no constant symbol, then HU = {c} for some arbitrary constant symbol. The Herbrand base of a program IT,
denoted by HBy, is the set of all ground atoms constructed using predicates from P and constants from C.

The ground instances of a rule r € T1, denoted by grd(r), is the set of rules obtained by replacing all variables in r with
constant symbols in HUp in all possible ways. The grounding of a program IT is then grd(I1) = | J,c; grd(r). To group the
rules in grd(IT) with the same head o, we use def(«, IT) = {r € grd(IT) | H(r) = «}, to group non-ground rules in IT that
define atoms with predicate p, we use pdef(p,I[1)={reIl|H(Tr) =p(t1,...,tn)}

Let T be a ground program. An interpretation I is a subset of HB and I satisfies a rule r € I1, denoted by I =, if
H(r) eI whenever BY(r) €1 and B~ (r) NI = . An interpretation is a model of TI, denoted by I =11, if I =r for all r e IT.
A model I is minimal if there is no model J of IT such that J C I.

Example 2.1. Consider the program IT below and the interpretation I = {a, b, d}.

c <notd.
d <not c.

a <notb,c.

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

b «d.

I is a model of II, but it is not minimal, since the interpretation I’ = {b, d} is also a model of II.

Definition 2.2 (GL-reduct). The Gelfond-Lifschitz (GL-)reduct of a program IT relative to an interpretation I C HBy, denoted by
I, is the ground positive program obtained from grd(IT) when each rule H(r) < Bt (r), not B~ (r)

(i) with B~ (r) N1 # @ is deleted, and
(i) is replaced by H(r) < B*(r), otherwise.

Informally, the first step is to remove the rules where I contradicts a default negated literal, and from the remaining
rules, the second step removes their negative body.

Definition 2.3. An interpretation I is an answer set of a program IT if it is the minimal model of the GL-reduct IT'.

Apart from the GL-reduct which is considered to be the standard definition for stable models (i.e., answer sets), a
collection of other definitions can be found in [78].
The set of answer sets of a program IT is denoted as AS(IT). A program I1 is unsatisfiable if AS(IT) = @.

Example 2.2 (ctd). TT has two answer sets, viz. I1 ={c, a} and I, = {d, b}; indeed,

o IT'" ={c;a<c;b<«d.} and I is the minimal model of IT'"; similarly,
e T2 ={d.; b «d.} has I, as its minimal model.

Dependencies. The dependency graph of a ground program IT is a directed graph G = (V, E), where the vertices V equal
HBry, and the edges E = ET U E~ consist of positive edges E* from any q=H(r) to any p; € B*(r) and negative edges E~
from any q=H(r) to any p € B~ (r), for all r € I1.

Example 2.3 (ctd). G; has positive edges a — ¢ and b — d and negative edges c — d, d — c and a — b.

The positive dependency graph is the dependency graph containing only the positive edges, denoted by fo[. A program I1
is tight if GJ{[is acyclic. A non-empty set L of ground atoms describes a positive loop of IT if for each pair p,q € L there is a
path T from p to q in GJ{[such that each atom in t is in L.

As we consider non-ground programs, we need to take care of cyclic dependencies of atoms at the non-ground level.
For that, for a given non-ground IT, we consider a non-ground dependency graph G'fjg = (V, E) where the vertices V are the
atoms appearing in I, and the edges E = ET UE~ consist of positive edges ET from any a1 (X;) =H(r) to any a(Xz) € B (r)
and negative edges E~ from any a;(X1) = H(r) to any ax(x2) € B~ (r), for all r € I1. A non-ground negative dependency cycle of
length n > 2 is of the form

aj(x1) = ax(X2) = ... = an(Xn) — a1(X1)

where o — o denotes that there is a path 7 in Gt from & to some atom «” that unifies with ' including only one
negative edge. For example, a choice rule consists of a non-ground negative dependency cycle of length 2. In this article, we
focus on the predicates a; of the atoms to determine the dependency, and we thus consider negative dependency cycles of
form a; — a; — ... — a, — ay. Accordingly, we will consider a set L. of atoms as cyclic if for each pair o1, o3 € Lc a chain
pred(ci;) — ... — pred(ay) exists. Two cyclic sets L, L, of atoms are called independent if they do not share an atom, i.e.,
Le,NLe, =0.

ASP solvers first generate a grounding of the given program, and then the search for an answer set is conducted over the
ground program.

2.2. Abstraction in ASP

Abstraction aims at discarding some details of a problem to obtain a more high-level view of a solution. This can be
done in an over-approximation, which means that each original solution has some corresponding solution in the abstraction
but one may encounter abstract solutions which do not have a corresponding original solution.

In [110], the authors introduced such a notion of abstraction in ASP for over-approximating a given ground program IT on
vocabulary A, by constructing a ground program IT' on a smaller vocabulary A, i.e., |A| > |A’|, More formally, abstraction
was defined at the semantic level as follows.

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

5

Fig. 2. Non-3-colorable graph.

Definition 2.4 (c¢f. [110]). Given two programs IT and IT" with |A|>|A’|, where A, A" are sets of ground atoms of IT and
IT', respectively, and a mapping m: A — A U{T}, where T is a propositional constant for truth, we call 1" an abstraction
of IT with respect to m, if for every answer set I of I1, I’ = {m(«) | @ € I} is an answer set of IT’. Furthermore, IT' is an
abstraction of IT, if some such mapping m exists.

We refer to m as an abstraction mapping which often will be tacitly assumed to be given. This notion of abstraction
gives us the possibility to do clustering over atoms of the program. The (abstract) program IT" on the smaller vocabulary A’
serves to represent abstract answer sets. While the reduced vocabulary eases the search for an (abstract) answer set I’, an
additional check is needed whether the original program IT has some answer that maps to I’. In [110], the focus was on
abstraction by omitting atoms from a program, i.e., by clustering them into T.

Example 2.4. Consider the program that describes the graph 3-coloring problem below (adapted from the coloring encoding
in the ASP Competition 2013) and the graphs shown in Figs. 1a and 2.
color(red). color(green). color(blue).
{chosenColor(N, C)} < node(N), color(C).
colored(N) < chosenColor(N, C).
L < not colored(N), node(N). (2)
1 <« chosenColor(N, Cy), chosenColor(N, C3), C1 # C>.
1 <« chosenColor(N1, C), chosenColor(N3, C), edge(N1, N3).

If we omit in the (ground version) of the encoding (2) with the instance shown in Fig. 1a all atoms involving the nodes
4,5, 6, the resulting abstract program will have answer sets which all correspond to some answer set of the original pro-
gram, as the omitted nodes can be colored arbitrarily without destroying 3-colorability.

We could likewise map all atoms « involving 4, 5,6 to atoms «’ in which these nodes are replaced by a new node
k; e.g., node(4) would become node(k), node(5) becomes node(k) etc. The abstract answer sets correspond then again to
original answer sets, as the coloring of 4,5,6 does not matter. On the other hand, if we consider the graph in Fig. 2 and
omit all atoms that involve nodes 5, 6, 7, 8, then the resulting abstract program has no answer sets, as the remaining clique
1—2 —3—4is not 3-colorable; also the original program has no answer set.

The latter observations are not by accident but in fact a useful property.
Proposition 2.1. Let T1’ be an abstraction of T1. If AS(IT") = @, then we have AS(IT) = @.
In general, over-approximation can cause abstract answer sets that have no corresponding original answer set.

Definition 2.5 (spurious & concrete answer sets). Let T1’ be an abstraction of IT for the mapping m. The answer set I’ € AS(IT')
is concrete if there exists an answer set I € AS(IT) such that m(I) = I’; otherwise, it is spurious.

In these terms, the abstract answer sets of the first abstract program constructed in Example 2.4 are all concrete, while
if we drop all atoms involving nodes 1,2, 3,4 from the graph in Fig. 2, the abstract answer sets of the resulting abstract
program are all spurious.

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

green blue uncolorable

1@ red 1 red 1 red 1 4

Fig. 3. Abstraction refinement upon spurious graph colorings.

Input:
I,m

Step 1 Step 5

Construct IT’ Refine m

Step 2 Step 3

AS(1T") yes Get I’ from
#0? AS(IT")

Fig. 4. Abstraction & Refinement Methodology.

2.2.1. Abstraction refinement methodology

To get rid of spurious abstract answer sets, the abstraction mapping m needs to be refined to a more fine-grained
abstraction; in case of omission abstraction, the refinement would be to add back some of the omitted atoms.

We consider a CEGAR-style [25] abstraction refinement approach which refines an initial abstraction repeatedly until a
concrete solution is found or inconsistency (i.e., absence of solutions) is detected.

Before describing the general methodology, we first illustrate the idea with the graph coloring example.

Example 2.5 (ctd). Fig. 3 shows the abstraction of omitting 7 of the 8 nodes and their edges. Deciding on a color for
the remaining node is easy. However, in the original domain, no coloring can match node 1 colored red as the graph is
uncolorable. A refinement of this abstraction would be to add back some of the nodes and the knowledge about the edges.
Until an abstraction is achieved where the four nodes causing the uncolorability are distinguished, a spurious coloring
always occurs.

Fig. 4 depicts the methodology introduced in [110]. For a program I1, we start with an initial abstraction mapping m to
construct an abstract program IT' (Step 1) that over-approximates the original program IT and then compute the abstract
answer sets. Over-approximation guarantees that if IT has an answer set I, then a corresponding abstract answer set m(I)
of the abstract program IT’ exists. If in turn the abstract program IT' has no answer set (Step 2), by Proposition 2.1 IT is
unsatisfiable. In this case, the abstract program IT’ and the mapping m are returned. When we pick an abstract answer
set I’ € AS(TT") (Step 3), we check for concreteness (Step 4). If I’ is concrete, it shows a solution to IT; in this case, the
abstract program IT’, the mapping m and the concrete abstract answer set I’ are returned. If I’ is spurious, we refine the
abstraction mapping m to m’ (Step 5) and loop back to Step 1. This loop continues until either a picked abstract answer set
is concrete, or the abstract program has no answer sets. Termination is guaranteed as in the extreme case m is refined to
the trivial identity mapping, i.e., each element of the original domain is mapped to itself; IT" will coincide with IT. Thus, if
IT is unsatisfiable, the procedure will stop at Step 2, otherwise at Step 4.

In the next section, we introduce the new abstraction method to be used in Step 1. We investigate an abstraction over
non-ground ASP programs given a mapping over their domain (i.e., the Herbrand universe) that singles out the domain
elements. The correctness checking of an abstract answer set (Step 4) and then deciding on a refinement (Step 5) is done
using a debugging approach which is introduced in Section 4.

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

3. Domain abstraction

The omission-based abstraction approach in [110,111] is propositional in nature and does not account for the fact that
in ASP, non-ground rules talk about a domain of discourse, where for the (non)existence of an answer set, the precise
set of elements may not matter, but rather how certain elements are related. For example, the graph coloring encoding (2)
expresses that each node should be colored differently from its neighbors. The names of the neighbor nodes are not relevant
to the color determination, rather the relation of having a neighbor with a certain chosen color.

In this section, we tackle the issue of automatically constructing and evaluating a suitable abstract program IT’ for a
given non-ground ASP program IT with an abstraction over its domain.

To illustrate the abstraction and its various challenges, we use the following example.

Example 3.1 (running example). Consider the following example program IT with domain D ={1, ..., 5}:
a(1).a(3).c(2).d(5). (3)
b(X,Y) < a(X),d(Y). (4)
e(X) < c(X),a(Y), X #Y. (5)
L < b(X,Y),e(X). (6)

Note that IT has the answer set I = {a(1), a(3),d(5),c(2),b(1,5),b(3,5),e(2)}.
The abstraction mapping is defined over the Herbrand universe of IT, called domain, by merging the constants.

Definition 3.1. Given a domain D of II, a (domain abstraction) mapping is a surjective function m: D — D for aset D (the
abstracted domain).

Thus, a domain abstraction mapping divides D into clusters {d’ € D |m(d’) :a} of elements that are seen as equal, where
d e D. If unambiguous, we also write d for its cluster m~1(d).

Example 3.2 (ctd). The Herbrand universe for the program TI1 is HUp = {1,2,3,4,5}. A possible mapping for II
with D1 ={kq,kz,k3} clusters 2,3 to the element kj, 4,5 to the element k3 ind 1 to singleton cluster ki, i.e.,
my ={{1}—~k1, {2, 3}—ka, {4, 5}—ks3}.> A naive mapping is my ={{1, ..., 5}—k} with Dy={k}.

Abstracting the elements in the Herbrand universe induces an abstraction of the Herbrand base. Each domain abstraction
mapping m naturally extends to ground atoms « = p(v1,...,Vy) by

m(e) =p(m(vi), ..., m(vn));
we say that « is mapped to a singleton cluster if [m~!(m(c))| =1, and is mapped to a non-singleton cluster otherwise.
Example 3.3 (ctd). In the Herbrand base HBy; the atoms with the predicates a, b, c,d, e will also be modified according to

m, i.e, a(1),b(1,5),e(2) get changed to a(ky), b(ky, ks3), e(ky); a(1) is mapped to a singleton cluster while b(1,5), e(2) are
mapped to non-singleton clusters.

Given a program IT and an induced mapping m: A — A from the Herbrand base A of T to A = m(A) ={m(a) |a € A},
we want an abstract program I1’ that achieves over-approximation as in Definition 2.4. However, even in the ground case,
simply applying m to IT does not work in general. Moreover, we want domain abstraction that for non-ground IT results in
a non-ground program IT’. Building a suitable IT" turns out to be challenging and needs to solve several issues, which we
discuss in the next section.

3.1. Towards an over-approximation
Given a mapping m that describes an abstraction over the domain of a program IT, we start with the intuition of applying

m to each rule, i.e., each atom in a rule is modified according to m, in order to obtain an abstraction IT" of IT.
To this end, we extend the mapping m to the non-ground case as follows.

2 By abuse of notation, we write {e], 4..,en}»—>a for e1»—>&, e, B> a, where {eq, ..., en} :m’l(fl).

9

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Definition 3.2 (extended non-ground mapping). For any domain mapping m: D — D, we let m(X) = X for each X € X (ie.,
variables remain unchanged). Furthermore, we extend m to atoms « = p(ty,...,t;), negated atoms notw, and sets L of
literals by m(p(t1, ..., ty)) = p(m(t1), ..., m(ty)), m(nota) = notm(x), and m(L) = {m(1) | A € L}, respectively.

One may think that simply keeping the rules in IT and considering the abstract domain for evaluation should be enough
to achieve an over-approximation. However, this does not hold in general.

Example 3.4 (ctd). If we keep the (non-fact) rules (4)-(6) in the program I the same, but lift the domain and the facts to
D, with the mapping my, the resulting program becomes unsatisfiable. Indeed, lifting the facts yields a(kq), a(kz), c(k2),
and d(ks). Thus rule (4) derives b(ki,k3) and b(ky, k3), while rule (5) derives e(kz). Consequently, the constraint (6) fires
for X =k; and Y = k3. If we lift the domain to D3 = {k1, ky} with the mapping m3={{1, 2, 3}+>kq, {4, 5}—k>}, then the
resulting program has the answer set {a(k1),d(k2), c(k1),b(kq,ky)} as lifting the facts yields a(ky), c(ky), and d(ky), from
which rule (4) derives b(kq, k2) while rules (5) does not fire. The original answer set I is not mapped to this abstract answer
set as m3(e(2)) = e(k1) does not occur in it.

We will now look into why the naive approach may fail to achieve over-approximation and present the idea of our
approach to deal with the arising issues.

If we consider the rule (4), then keeping this rule unchanged in the abstraction does not cause issues: it ensures that
b(X,Y) holds true in the answer set whenever a(X) and d(Y) hold true, where X and Y can take any value. This is similar
for rules in which the arguments of body literals are unconstrained, i.e., they can take independently of each other any
value from the domain and no (in)equality relations occur in the body. Issues arise if this is not the case.

Shared arguments. Arguments in a rule body that are shared may cause an issue depending on the abstraction mapping.
This is because if an atom p(k) in the abstract program holds true for a cluster k, then this represents that for some, but
not necessarily all, original domain elements x in the cluster k the atom p(x) holds true. If another atom q(k) occurs in the
body, then both p(k) and g(k) might be true while for some x, x" in k the atoms p(x) and q(x') might have different truth
values, and the original rule would not fire. Hence the interaction of shared arguments at the abstract level must be treated
by considering different cases of how the involved predicates might behave at the original level.

Instead of doing this ad hoc, we adopt a uniform approach in which the treatment is relegated to auxiliary atoms. To
this end, we are standardizing apart the shared arguments, which effects that non-relation literals can remain untouched.

Example 3.5 (ctd). The constraint (6), i.e., L < b(X,Y),e(X), has a shared use of the variable X. If the constraint is kept
the same, then for the mapping m; the rules (4) and (5) derive b(ka,k3) and e(ky) from a(ky),d(ks) and c(k2),a(ky),
respectively. As (6) excludes that both b(k,, k3) and e(ky) are true, no abstract answer set exists. This issue arises as ky =
{2, 3} is a non-singleton cluster and for X =k, Y = k3 not every atoms b(x, y) and e(x) that are mapped to b(kz, k3) and
e(ky), respectively, hold both true in the original answer set, e.g., b(3,5), e(2). We address this by standardizing apart the
multiple occurrence of X, i.e., we replace its second occurrence by a fresh variable X; that is equated to X, leading to the
rule

1 < b(X,Y),e(X1), X = X;. (7)

In this way, the focus of abstraction is directed towards the relation, i.e., X = X1, in the rule.

In a similar way, also constants that may interact with other arguments in rule bodies are standardized apart. Details are
given in Section 3.1.1.

(In)equality relation over the abstract domain. The domain clustering might cause that (in)equality relations in the abstract
domain fail to hold in the original domain, resulting in an uncertainty to be treated in the abstraction process.

Example 3.6 (ctd). The uncertainty caused by applying relation = on the abstract domain is observed in Example 3.5, where
although k; = k; holds in the abstraction, not all elements mapped to ky satisfy this relation, e.g., 2 # 3.

Consider now the rule (5) and the domain 53 with the mapping m3 from Example 3.4. There we saw that simply keeping
the rules results in an abstract answer set which does not contain e(kq). This happens since having a(k;) and c(k;) makes
rule (5) inapplicable as ki # ki does not hold true. However, there are elements mapped to ki for which relation # holds
in the original domain, e.g., 2 # 3.

Table 1 shows all the cases of the behavior of the relations in the abstract domain for particular mappings.

In Section 3.1.2, we handle such uncertainties caused by domain clusters by assigning types to the relations with respect
to the mappings. For example, we will refer to the case where X = X; holds true in the abstract program while not all
elements mapped to X, X7 satisfy = as type IIl. The case where X #Y is false while in the original domain some elements
mapped to X, Y satisfy # will be referred to as type IV. For these cases, we turn the head of a rule into a choice in order
to capture the possible firing and the non-firing of the original rule in alternative abstract answer sets.

10

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Table 1
Behavior of the relations =, # in D with the mapping m1, and in D3 with
the mapping ms3, assuming symmetry.

| = I # |
A] | ki =k | ky =ky | k3 =k3 H k];ﬁkz | k]#kg | ko ;ﬁk3 |
1=1 2=2 4=4 14£2 1+£4 244
b 3=3 5=5 1#3 1#5 2+#5
243 445 344
3+£5
53 k] = k] | kz = kz | H k1 75 kz | | |
1= 4=4 1+£4
b 2=2 5=5 145
3=3 4#5 2#4
142 245
1#3 3£4
2+#3 3#£5

Default negation. For non-singleton clusters, negative literals may also result in losing an original answer set. This is because
default negation has issues with uncertainty, similar to (in)equality relations. However, an important difference is that the
interpretation of relations depends on the domain, thus they can be evaluated and removed from a program during the
instantiation process. So the treatment by looking at the behavior of the relations in the abstract domain for a mapping is
capable of handling the uncertainty. This is not possible for defined predicates, since when constructing an abstract program
[T’ from I1, the original program reduct IT!, for each answer set I of IT, must be appropriately reflected, such that no answer
set I gets lost.

Example 3.7 (ctd). Suppose we modify the rule (4) by adding default negation in front of d:

b(X,Y) < a(X),notd(Y), dom(Y). (8)

The answer set of the modified program IT is then I = {a(1),a(3),d(5),c(2),b(1,1),...,b(1,4),b(3,1),..., b(3,4), e(2)}.
When the modified rule remains unchanged by abstraction in I1’, we obtain with the mapping ms={{1, 2, 3}k,
{4, 5}+k;} in the abstract domain D5 the answer set I’ = {a(kq),d(k2), c(ky), b(k1,kq)}, which for the atoms b(1,4) and
e(2) does not contain their abstractions ms(b(1,4)) = b(k1, k) and m3(e(2)) = e(k1). The reason is that notd(ky) is false in
I’, and hence the body of the rule (8) is not satisfied. This makes the reduct 1'!" contain for (8) only the rule

b(k] s k]) <~ a(k1), dOﬂ”l(k]).
and no rule with k,. However, if we look at the cluster k, = {4, 5}, even though the literal notd(5) is false in the original
answer set I, still notd(4) is true in I. So the original reduct IT' also has the rules

b(1,4) < a(1),dom(4).

b(3,4) < a(3),dom(4).

for (8), which are not represented in .

The example shows that having a negative literal not« false, i.e., o true in an abstract interpretation I’ does not allow
us to conclude that all atoms o’ mapped to « are true in an original interpretation I, even if I is an answer set. However,
it would be possible if only one atom «’ is mapped to «; the latter is ensured if each argument d1 of = p(d1, .. dn) is a
singleton cluster.

We deal with this issue by adding a rule for non-singleton clusters, where in the original rule the polarity of not« is
shifted and the head is turned into a choice. Specifically, for the rule (8) above, the rule

{b(X,Y)} < a(X),d(Y), not isSingleton(Y). 9)

will be added in the abstract program; here isSingleton is an auxiliary predicate that will be introduced in Section 3.2.

In conclusion, we need a fine-grained systematic approach to deal with uncertainties. Furthermore, for Example 3.7 the
treatment described above would be sufficient, since the predicate d is not defined in terms of other predicates. One has to
pay a particular attention to cycles through negation, which, as well-known in ASP, may create alternative answer sets.

11

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Table 2

Cases for lifting a binary relation o € {=, #} from D to D according to a map-
ping m:D — D and applying the relation to some dy,dy € D. The symbol 5
stands for the complement of the relation o.

Tlo(CAh,az) : &1 oaz AVXq em’l ((?h),VXz em’l (Elz).)q o X2

JO A N K certain cases
75(dy,dz) : d15dy AVX em™1(dy), Vxz em™1(d2). X1 5%,

r;;[(a],az) cdiody Adx; em1(dy), Ix, em~1(da). X1 5% .
A A ~ ~ ~ N uncertain cases
‘[R,(d] ,dy):diody Ax1 € m-! (dy),3x; € m! (d2). X1 02

3.1.1. Standardizing apart

A rule is standardized apart if all non-relational atoms (i.e., those with predicates not in {=, #, dom}) contain only vari-
ables and no two non-relational atoms share a variable. In order to allow for a uniform treatment of the interaction of
arguments in rule bodies for abstraction, rules are rewritten as follows. Suppose r: o < B(r) is a rule of form (1). Then the
following steps are performed as long as possible:

1. If a variable X occurs in non-relational atoms «; = p;(t! ,...,t;i) eBt*TMUB~(n,i=1,2, ie, p1,p2 ¢ {=,#, dom}, as
tl.l and t?, respectively, then replace t; in «p with a fresh variable X" and add X = X’ to the rule body; here, oy = 3 is
allowed but then i # j is required, i.e., X occurs in the same atom « at different argument positions i and j.

2. If a constant symbol ¢ occurs in a non-relational atom o = p(ty,...,ty) € B (r) U B~(r), where p 5 dom, as t;, then
replace t; in o with a fresh variable X’ and add X’ =c to the rule body.

If none of the steps 1-2 is applicable, r is standardized apart.

Example 3.8 (ctd). Applying the above procedure to the rule (6), we obtain the standardized apart form (7). The rule

qX) <~ pX,X,2),q(Y,W),notr(3,Y,V),dom(V),Z#1,Y #W. (10)

is standardized apart by rewriting the second occurrence from left of X, of Y, and the occurrence of 3 in this order:
q(X) < p(X, X1, 2),q(Y, W), notr(Yz, Y1, V), dom(V), Z#1,Y #W,.X=X1,Y =Y;1,Y2 =3. (11)

Clearly, any rule r can be transformed into standardized apart form, which is equivalent under answer set semantics,
in linear time; the order in which the steps are applied and the choice of variables and their occurrence does not matter.
Notably, as a result, all arguments of non-relational atoms different from dom atoms are distinct variables; we do not need
to standardize the arguments of dom literals apart, as both in the original domain D and in the abstract domain D, every
dom atom always evaluates to true.

3.1.2. Lifted equality relation
As shown above, the (in)equality relations in the rules may cause issues in the abstraction process. To deal with them,
we focus on rules r of the form

il < B, Ty (r) (12)

where B%t(r) are the non-relation atoms standardized apart, and I, consists of relation atoms that constrain the variables
in Bt(r). If r contains no relation, then I'yey = T an arbitrary rule r is easily rewritten to this form. We use BS:* (resp.
Bstd:—) to refer to positive (resp. negative) non-relational literals standardized apart. .
__ The uncertainty that arises during the abstraction is caused by relation restrictions over non-singleton clusters d (i.e.,
|d| > 1) or by negative literals mapped to non-singleton abstract literals. In order to address the uncertainty due to relation
restrictions in the rules, we consider a notion of relation types with respect to the abstraction. For simplicity, we focus on
a binary relation o € {=, #} and a relation part I';¢(r) with at most one relation atom. Later in Section 3.3, we show how
other forms of relations can be addressed. o o

When the relation o is lifted to the abstract domain D, applying the relation to some di,d; € D with dq ods may result
in outcomes different than in the original domain, depending on the mapping, as we have seen in Example 3.6 and Table 1.

Table 2 shows the computation of the facts representing these types for a relation o. Type I, 77, and type II, 7, are
the cases of no uncertainty; they hold for abstract elements 31,82 if the relation 31 oaz is true resp. false and if for every
original elements x1, x mapped to al,az, respectively, that xj o xp is true resp. false in the original domain as well.

Example 3.9. Consider the mapping m; = {{1}+k1, {2, 3}ka, {4, 5}+>k3} in Table 1. The relation k; =k; holds and for any
X1, X2 € k1 ={1}, x1 =x holds and type I applies for having ki =k; true. Further, k; =k, does not hold, i.e., k1 # k>, and for
any x € ki ={1} and y € k3 ={2, 3}, x=y does not hold and so type II applies for k; =k; false.

12

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

As for the relation #, we have that kq # k, holds true, and for x € k1 ={1} and y € k3 ={2, 3}, x # y holds true, so type
I applies for having kq # k, true. Further, the relation ki # k1 does not hold, and for any x1, x, € k1 ={1}, X1 # x does not
hold and type II applies for having kq # kq false.

As for type IIl and type IV in Table 2, they are the cause for uncertainty. Type III, 7y, (resp. Type 1V, 7y,) holds for the

abstract elements 31,a2 when Ei1 o Elz is true (resp. is not true), but for some x1, x, that can be mapped to al,flz, X1 0 X2
does not hold true (resp. holds true) in the original domain.

Example 3.10 (Example 3.9 ctd). Consider again the mapping m; in Table 1. The relation k; =k, holds but for some x1,x2 €
k1=1{2,3}, x1 =x, does not hold, e.g., 2 # 3, thus type III applies. Further, k, # k, does not hold, i.e., k; = ky, but for some
X,y €ka=1{2,3}, x#y does hold, e.g., 2 # 3 and so type IV applies.

If 31 ofiz holds for some 511 , az € 5, type Il is more common in practice in domain abstractions with clusters due to the
standardization and as the relation = often occurs, while type I occurs for singleton mappings (i.e., |a1| = |a2| =1) or for
the relation #. If a1) az does not hold for some a1,a2 eD, type Il is common (again as the relation =), whereas type IV
may occur for the relation #. In order to refer to the abstract relation atoms, we introduce the following notation.

Definition 3.3 (‘7). For an abstraction m, we let T, be the set of all atoms t,° (&1, az) where ¢ € {1, ..., IV} is the type of the
binary relation dy od, for m.

We remark that 7y, is easily computed. Armed with these techniques, we now proceed to construct an abstract program
for a given program IT and an abstraction mapping m, where we use 7 as facts.

Example 3.11 (Example 3.9 ctd). For the mapping m; shown in Table 1, we have the facts

Tmy =117 k1, k1), Ty (k2, ko), Ty ks, k3), T (k1, k2), 77 (K1, k3), T (K2, K3),
o T k1, ko), T (kauks), T (kauks), o, T (ke k), T (ka, ko), T (ks, K3))

3.2. Abstract program construction

By our analysis in Section 3.1, the basic idea to construct an abstract program I1’ for a program IT with a domain
mapping m is as follows. We either just abstract each atom in a rule, or in case of uncertainty due to domain abstraction,
we guess rule heads to catch possible cases, or we treat negated literals by shifting their polarity depending on the abstract
domain clusters. R A)

We use an auxiliary fact isSingleton(d) for the abstract domain elements d € D to denote that d is a singleton cluster, i.e.,
|m~1 (a)l =1. These atoms can also be used to represent whether an abstract atom m(«) is a singleton cluster, i.e., no other
atom o’ exists such that m(a’) = m(x): if every term t € arg(m(«)) satisfies isSingleton(t), then m(c) is a singleton cluster,
otherwise not.

Example 3.12 (Example 3.1 ctd). Consider the domain mapping m; = {{1}+k1, {2, 3}k>, {4, 5}+>k3}. For the abstract domain,
we have isSingleton(ky). For the literals, the singleton clusters are a(ky), c(k1),d(ky), e(k1) and b(ky, k1), while the remaining
literals are non-singletons.

We remark that due to their definition, if either T (al, Elz) or tl‘{,(al, Elz) holds true for some 81 , az € 5, this means that

either 31 or az is a non-singleton cluster.

For ease of presentation and a systematic treatment of the issues that we have identified in Section 3.1, we shall first
deal in Section 3.2.1 with programs under restrictions, which are then gradually lifted in Section 3.2.2 to arrive at arbitrary
programs.

3.2.1. Restricted case
We first consider programs IT with rules that fulfill the following conditions:

(R-1) Unique negative literal. Each rule has at most one negative body literal.
(R-2) Unique relation atom. Each rules has no or a single, binary relation atom.
(R-3) No negative cycles. There are no negative cyclic dependencies between non-ground literals occurring in IT.

For rules r with no relation, i.e., Iy = T, we introduce for convenience a dummy relation rel+(X,Y) that holds for all
pairs of elements of the domain D and add in the body of r an atom relt(X, Y); in every lifting of rel+ from D to D by

13

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

some mapping m, the relation type rTrElT (&1,512) similar as in Table 2 will for all dy,d, € D be true for type T=1 and false
for all other types. We then can assume that rules have a single binary relation atom t; o t; in the body.
We next define how to construct from a given rule r an abstract (set of) rule(s) r™.

Definition 3.4 (rule abstraction r™). Given a rule r: « < B%(r),t{ ot, as above and a domain mapping m, the set r™ con-
tains the following rules:

(a) m(ar) < m(B(r)), m(ty) om(tz), TP (M(t1), m(t2)).
(b) {m(a)} < m(B(r)), m(ty) om(ta), T (m(t1), m(t2)).
(©) fm()} «<m(B(r)), m(tr)5m(ta), T3, (m(t1), m(t2)).
(d) For every t € arg(a;) where BSt—(r) = (o}
(i) {m(x)} <—m(Bf)Z (), m(ty) om(ty), notisSingleton(m(t)).
(i) {m(x)} em(Bf)Z (r), m(ty) om(ta), T, (m(t1), m(t2)), notisSingleton(m(t)).

where B! (r) = BSF (1) U {a}).

In step (a), we have the case of no uncertainty due to abstraction. Steps (b) and (c) are for the cases of uncertainty due
to the behavior of the relations. The head becomes a choice, and for case IV, we flip the relation, o, in order to catch the
case where the relation holds true (which actually is the reason for the uncertainty). No rules are added for case II, since
the body of the rule will never be satisfied as the relation does not hold true in the abstract domain (similar as in the
original domain). As for constraints (e.g., (6)), we note that m(_L) = L. Consequently, in (a) the head is unchanged; as an
optimization, all other steps (b)-(d) can be omitted, since the choice {1} is ineffective (we always can choose that L is
false). Recall that the lifted relation relT will only have type I, thus for rel+(t1,t2) only the rules in steps (a) and (d.i) in
case must be added, where rel+(m(t1), m(t)) and rlre'T (m(t1), m(t2)) can be omitted as they are always true.

Example 3.13 (ctd). The abstract rules for (5) and (7) (the standardized apart version of (6)) become

e(X) < c(X),a(Y), X £Y, 77 (X, Y). (
{e(X)} < c(X),a(Y), X £Y, 57 (X, Y). (
{e(X)} < c(X),a(Y), X =Y, T}, (X, Y). (

L < b(X,Y),e(X1), X = X1, 77 (X, X1). (

13)
14)

15)
16)
Here the rule (14) can be omitted as X #Y, rgf(x, Y) is unsatisfiable (since X # Y cannot have type IlI) and thus the rule
body is unsatisfiable.

In step (d) of Definition 3.4, we grasp the uncertainty arising from negation by adding rules that shift the negative literal
only if it shares arguments that are mapped to a non-singleton cluster.

Example 3.14 (ctd). The abstract rules for the rule (8) in Example 3.7 with a default negated literal will then be>
b(X,Y) < a(X), notd(Y), dom(Y). (17)
{b(X,Y)} < a(X),d(Y), not isSingleton(Y). (18)

We remark that simply omitting all default negated literals in the abstract rule is also possible. However, this would then
cause to trigger choice rules in every case, thus resulting in more abstract answer sets than necessary, as shown below.

Example 3.15. Let the rule (8) in Example 3.7 contain in addition the relation X #Y:

b(X,Y) < a(X),notd(Y), X #Y,dom(Y). (19)

If instead of adding the rule

b(X,Y) «<a(X),notd(Y), X #Y, 7/ (X,Y). (20)

we would omit d(Y) and turn the head into a choice, thus have

3 When the negated literal contains more than one argument, rules of form (18) will be added for each argument.

14

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

{b(X,Y)} < a(X), X #Y,not isSingleton(Y), dom(Y)., (21)

then for the case where Y is a cluster while X # Y holds true, the choice would unnecessarily trigger even if actually
not d(Y) was true. To see this, consider the mapping m = {{1} — k1,{2,...,5} — k»}. The original program with the rule
(19) has the answer set I = {a(1),a(3),d(5),c(2),b(1,2),b(1,3),b(1,4),b(3,1),b(3,2),b(3,4),e(2)}. Even though in the
abstract program the fact d(k;) does not exist, the added choice rule (21) causes a guess on b(ky, k1) which results in four
spurious answer sets not containing b(ky, k1), one of them being I’ = {a(ky), a(kz), c(k2),d(k2), e(ka), b(k1,k2), b(ka, k2)}.
Adding instead the rule (20) in the abstract program avoids these spurious answer sets.

Distinguishing the different cases helps to avoid unnecessary answer sets when actually no uncertainty is caused. Thus,
the abstract rules for (19) would be

b(X,Y) «<a(X),notd(Y), X £ Y, 7/ (X,Y). (22)
{b(X,Y)} <—a(X),notd(Y),X:Y,rf\f(X,Y). (23)
{b(X,Y)} < a(X),d(Y), X #Y,not isSingleton(Y). (24)
{b(X,Y)} < a(X),dY),X=Y, rﬁ(X, Y), not isSingleton(Y). (25)

where again the rule for case (b) is omitted (X #Y, tlﬁ(X, Y) is unsatisfiable).

Semantically, the rules added in steps (a)-(b) of Definition 3.4 are to ensure that each model I of IT carries over to a
model m(I) of the rule abstraction, as either the original rule is kept or changed to a choice rule. As regards an answer set
I, steps (c)-(d) serve to catch in particular the cases that may violate the minimality in the abstraction due to a negative
literal or a relation over non-singleton clusters. The abstract program is now as follows.

Definition 3.5 (abstract program TT™, restricted case). Given a (standardized apart) program IT as above and a domain abstrac-
tion m, the abstract program for m, denoted IT™, consists of the rules

nm= U ™ U x| x€Tm} U {m(p(©)). | p(©). € I} U {isSingleton(d) | |m~'(d)| = 1}. (26)

r: o <BStd(r) tyotp ell
Notably, the construction of IT™ is modular, rule by rule. The following result states that this abstraction works.

Theorem 3.1 (restricted program abstraction). Let m be a domain mapping of a (standardized apart) program I1 under the above
assumptions (R-1)-(R-3). Then for every I € AS(I1), it holds that m(I) U Ty, € AS(IT™).

The proof of this result proceeds along the intuition above more formally, where for showing that the abstraction m(I)
of an answer set I is a minimal model also recursive dependencies through negative literals ought to be considered. Since
no negative cyclic dependencies between ground literals exist, counterexamples to minimality along such dependencies can
be excluded.

3.2.2. General case
We now describe how to remove the restrictions (R-1)-(R-3) on programs from above.

(G-1) Multiple negative literals. If rule r has multiple negative literals, i.e., |[B~(r)|>1, we shift each negative literal that
shares arguments that are mapped to a non-singleton cluster. Thus, instead of shifting one literal «; € B~ (r), we consider
shifting multiple literals L € B~ (r) at a time and all combinations of (non-)shifting the literals in B~ (r).

Definition 3.6 (treating multiple negative literals). Step (d) of Definition 3.4 is modified as

(d) For each L ={a,...,0tn} € B~ (r), n>1 and each t!,...,t" where tl earg(ej), i=1,...,n:
(i) {m(a)} <—m(Bi"(r)), m(t1) om(ty), notisSingleton(m(t!)), . .., notisSingleton(m(t")).
(i) {m()} <—m(BsL“(r)), m(ty)om(ty), Ty (m(t1), m(t2)), notisSingleton(m(t1)), . .., not isSingleton(m(t")).

where BS"(r)=B%4*(r) U L, not (B¢~ (r)\L).

Shifting all the negated atoms L is for the case where all these atoms give rise to non-singleton clusters, which occurs
when for each atom «; some argument t' is mapped to a non-singleton cluster; in the original domain, the negative rule
body on L could thus evaluate to true and the rule could possible fire. The rules added for all arguments t!, ..., t" ensure

that all cases are covered. Steps (d.i) and (d.ii) coincide with steps (d.i) and (d.ii) of Definition 3.4, respectively.

15

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Table 3

Cases for lifting an n-ary relation rel’.
e dr,....dn): rel@r,....de) AVX €M7 @D, Vg €mT (@) Tel (- %)
r,}e" @, ..., dn): —rel' s, ..., dn) AVx em~1(dy), ..., Yxn € m~1(dn). —rel (x4, . .., Xn)
el @, ..., dy): reldy,..., d)AIx em~1@dy), ..., Iy em 1 (dy). —rel (x1, ..., Xn)
rﬁl/ @,..., dy): —rel @y, ..., d)AIx em~1@dy), ..., Iy emV(dy).rel (x1, ..., Xn)

Example 3.16. Consider the rule

d(X) < not c(X), not a(X1), X = X1, dom(X), dom(X7).
The constructed non-ground abstract rules following step (d.i) of Definition 3.6 will be
{d(X)} <—c(X), not a(Xy), X = X1, not isSingleton(X), dom(Xy).
{d(X)} <—not c(X), a(X1), X = X1, not isSingleton(X1), dom(X).
{d(X)} <—c(X),a(X1), X = X1, not isSingleton(X), not isSingleton(X1).
Step (d.ii) is similarly applied.

(G-2) Multiple relation atoms. A simple approach to handle multiple relations, i.e.,

Crei=t1,101t2,1, .., t1k ok b2k, k>1, (27)

is to view it as an atom of an 2k-ary relation rel'(t1 1,21, .., t1k, ta k). The atom rel (t1,1,t21, .., (1.4, L2 k) is true if all
relations t1.1 01 t21, .., t1 O ta are true, and it is false, ie., —rel'(t1.1,t2.1, .., t1 k. t2k) is true, if some relation ty; oj tp; is
false. The abstract version of such rel’ and the cases I-IV are then lifted from X1, x» to X1, .., X, as in Table 3.

Example 3.17. For 'y, = (X1=X2, X3=X4), we use a new relation rel (X1, X2, X3, X4). If for abstract values 81,..,34,
dy =dy And3 =d4 holds, then we have type 7; when all d; are singleton clusters and type ty; when some d; is non-singleton;
otherwise (i.e., —rel (d, d2, d3, d4) holds) type i applies.

(G-3) Cyclic negative dependencies. Rules which are involved in a negative cyclic dependency need special consideration.

Example 3.18 (Example 3.1 ctd). Now consider adding the following rules to the program IT and removing the facts d(5), c(2).
c(X) < notd(X),dom(X). (28)
d(X) < not c(X), dom(X). (29)

These rules create further answer sets for IT containing different appearances of ¢ and d. The abstract rules will be as
follows.

c(X) < not d(X), dom(X). (30)
{c(X)} < d(X), not isSingleton(X). (31)
d(X) < not c(X), dom(X). (32)
{d(X)} < c(X), not isSingleton(X). (33)

Now consider an answer set I of IT which contains d(1),c(2),d(3),c(4), and d(5), and the naive mapping my =
{{1,...,5}—k}. The mapping I= m(I) of the answer set I contains c(k) and d(k). Although T is a model of (™! ei-
ther c(k) or d(k) is unfounded; hence T is not minimal, i.e., not an answer set of IT™. The reason is that the negative cyclic
dependency (i.e., “choice”) of c- and d-atoms does not occur for c(k) and d(k) in the constructed I1™.

To resolve this, the literals of IT that are involved in a negative cycle are treated specially. We can lift the restriction
(R-3) in the restricted case as follows.

Definition 3.7 (treating negative cyclic dependency). Suppose that L,, ..., L, are all independent sets of literals involved in a
negative cyclic dependency. If [> 0, item (d) of Definition 3.4 is changed as follows:

(d) For every t € arg(c;) where B~ () = {o;}, for every j=1,...,1:

16

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

(i) {m)y <m(B", (1), m(t1) om(tz), notisSingleton(m(t)).

o, Le;
(i) {m(c)} < m(BS" LJ (M), m(t1) sm(tz), T, (m(t1), m(t2)), not isSingleton(m(t)).
1 Cj
where
B (= | BH T V) if{era) & Loy,
@ile; ¥ pstdt(p) if i,) C Le;.

In the generalization of step (d) of Definition 3.4, the newly defined foh 1. (r) eliminates the atoms «; that are involved
1 Cj

in a negative cycle with the head « of the rule r, ie, {o, a} € L¢; for some j, from the body instead of shifting their
polarity. Since the sets Lc,,..., L are independent, a rule can be involved with at most one cyclic set L¢; of literals, and
thus the cycles can be treated one at a time.

Example 3.19 (ctd). For the program IT consisting of the rules (4)-(6) and (28)-(29), the abstract non-ground rules are

c(X) < not d(X), dom(X). 34

(34)
{c(X)} < not isSingleton(X), dom(X). (35)
d(X) < not c(X), dom(X). (36)
{d(X)} < not isSingleton(X), dom(X). (37)
b(X,Y) «a(X),d(Y). (38)
e(X) < c(X),aY),X#Y, ‘cf(X, Y). (39)
{e(X)} < c(X),a(Y), X =Y, 15 (X, Y). (40)
L < b(X,Y),e(X1), X=Xy, 77 (X,Y). (41)

For the mapping m = {{1, ..., 5}—k}, the facts {a(1),a(3)} in IT get lifted to {a(k)} and the type facts become 7T, =
{th (k. o), 1'; (k,k)}. Note that the fact {isSingleton(k)} is not true. The abstract program I1™ consists of all the abstract rules

and the mentioned facts. Notice that when the rules are grounded to the relation type facts 7, only the rules (34)-(38)
and (40) remain to be used for the answer set computation.

(G-1)-(G-3), i.e., arbitrary programs. Lifting (R-2) to (G-2) can be easily done jointly with lifting (R-1) to (G-1) and (R-3)
to (G-3), respectively. The joint lifting of (R-1) and (R-3) is achieved by a generalization of Definition 3.4 that combines the
ideas of Definitions 3.6 and 3.7.

Definition 3.8 (treating cyclic dependency with multiple negative literals). Suppose that L,, ..., L are all independent sets of
literals involved in a negative cyclic dependency. Then item (d) of Definition 3.4 is changed as in Definition 3.6 if [=0, and
otherwise as follows:

(d) For each L ={a1,...,0tn} CB~(r), n>1, and t!, ..., t" where ti earg(e;), i=1,...,n, and for every j=1,...,I:
(i) {m(x)} <—m(BSLhL (r)), m(t1) om(ty), notisSingleton(m(tl)), ..., notisSingleton(m(t")).
) Cj

(ii) {m(x)} <—m(BsL"L (1), m(ty) om(t), Ty, (m(ty), m(t2)), not isSingleton(m(t)), . .., notisSingleton(m(t")).
il Cj

where

B4+ (ry U L, not B~ (r)\L ifor ¢ Le; or Le; N L=,

B (r) U (L\ L), not B~(n)\L ifa € Lc; and Le; N L # @ (42)

sh
By Le; = {
that is, the negative literals in L get their polarity shifted if they do not occur in some L; with the head « of rule r,
otherwise they are omitted.

As mentioned in Example 3.15, simply omitting all negated literals is also possible, though can cause more spurious
abstract answer sets. Thus in Definition 3.6 we considered the positive shift of the negated atoms by considering all combi-
nations. As for negated atoms that are involved in a negative cycle with the rule head, Example 3.18 showed that a positive
shift on them can prevent over-approximation. Definition 3.8 combines these two insights, and ensures that the atoms in
the subset L of BS®-~(r) are omitted from shifting if they are involved in a cycle with the head, while the remaining atoms
in L are shifted. As we consider all subsets L of BS~(r), we also construct abstract rules where these literals remain
untouched.

17

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Example 3.20. Consider the rules

c(X) < notd(X), dom(X).
d(X) < not c(X), not a(Xy), X = X1,dom(X), dom(X1). (43)
a(X) < not b(X), dom(X).
b(X) < not a(X), dom(X).
with independent cycles L, = {d(X), c(X)} and L., = {a(X), b(X)} The constructed non-ground abstract rules of (43) follow-
ing step (d.i) of Definition 3.8 will be
{d(X)} < not a(X1), X = Xy, not isSingleton(X), dom(X), dom(Xy). (44)
{d(X)} < c(X), not a(X1), X = X1, not isSingleton(X), dom(X1). (45)
{d(X)} < not c(X),a(X1), X = Xq, not isSingleton(X1), dom(X). (46)
{d(X)} <= a(X7), X = X1, not isSingleton(X), not isSingleton(X1), dom(X). (47)
{d(X)} < c(X),a(X1), X = X1, not isSingleton(X), not isSingleton(Xy). (48)

Observe that (44), constructed with B?h , is a stronger rule than (45), constructed with B?h due to the omission

c(X)}Ley c(X)}Ley’
of c(X). The rule (46) gets constructed with B! and B" , where a(X1) does not get omitted, since it is not
{a(XD}Le; {a(X1)}Le
sh

involved in a negative cycle with d(X). The rule (47) is an outcome of B{a(Xl),c(X)},Lcl

where c(X) gets omitted, while a(Xj)

; i ich i ; sh
is shifted, which is a stronger rule than (48) constructed with B{a(Xl),c(X)},LCZ'

The non-subsumed rules constructed following step (d.i) of Definition 3.8 then become the rules (44), (46), (47) together
with
{c(X)} < not isSingleton(X), dom(X).
{a(X)} < not isSingleton(X), dom(X).
{b(X)} < not isSingleton(X), dom(X).
Step (d.ii) is similarly applied.

We now have all bits in order to define the abstract version of an arbitrary program IT.

Definition 3.9 (abstract program I1™, general case). Given a (standardized apart) program IT and a domain abstraction m, the
abstract program for m, denoted IT™, consists of the rules as in (26), where r'™ for each r € IT is as in Definition 3.8 (the
modified version of Definition 3.4), and multiple relations as in (27) are replaced by a relation rel’ as described in the
respective case (G-2).

Note that for programs that fulfill the restrictions (R-1)-(R-3), the Definitions 3.9 and 3.5 coincide, and thus IT™ is
well-defined. The main result of this section is then as follows.

Theorem 3.2 (general program abstraction). Let m be a domain mapping of a (standardized apart) program I1. Then for every
I € AS(TT), the abstract interpretation I =m(I) U Ty, is an answer set of T1™.

This result is shown by an extension of the proof of Theorem 3.1, in which the more general conditions are taken into
account.

Example 3.21 (ctd). The constructed absfract program IT™ hgs the five answer sets 71 = {a(k),d(k), bk, k)}, iz =
{ak), c(k)}, I3 = {a(k), c(k),d(k),bck,k)}, 14 = {a(k),ck),ek)}, Is = {a(k),c(k),d(k),ek), bk, k)}. Furthermore, for every
answer set I of IT, m(I) is an answer set of IT™.

The abstraction yields in general an over-approximation of the answer sets of a program. The notion of spurious and
concrete answer sets amounts to the following.

Definition 3.10 (cf. Definition 2.5). An abstract answer set T€AS(IT™) is concrete if there exists an answer set [€ AS(IT) such
that I =m(I) U Ty, else it is spurious.

18

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

A spurious abstract answer set has no corresponding concrete answer set.
Example 3.22 (ctd). The abstract answer sets iz ={a(k), c(k)} and i3 ={a(k),c(k),d(k),b(k,k)} are spurious.

3.2.3. Abstract program size vs. over-approximation quality

The abstract program IT™ in Definition 3.9 can in general be exponentially larger than the original program IT, owing to
the fact that dealing with multiple negative literals may introduce for every subset L C B4~ (r) of the negative literals in
a rule r some rules in item (d) of Definition 3.8 respectively 3.6. On the other hand, multiple negative cycles do not cause
an exponential blowup, since the number of independent negative cycles is bounded by the number of atoms that occur in
the program I1. The items (a)-(c) of Definition 3.8 introduce few rules, which are akin to the original rules and preserve in
a way their structure.

This blowup seems to be unpleasant, both from a cognitive and a computational perspective. However, it is mitigated
by the following observations. First, the rules in item (d) of Definition 3.8 are generated systematically, and one may view
them as a subprogram that is expanded on demand, if the user wants to inspect it; this can be similarly exploited for
evaluation algorithms that avoid exponential space consumption (see Section 3.5). Second, in many cases the number of
negative literals in a rule will be bounded by a constant, which means that no exponential blowup happens. Furthermore,
grounding the rules to the relation type facts 7, may remove many of them. The size of the abstract program may also be
kept smaller at the price of a weaker over-approximation. Specifically, we may in Definition 3.8 replace each negative cycle
L¢; by an arbitrary superset S 2 L, of literals in TI, while the resulting abstract program IT™ is still an over-approximation
of I1. For example, we may choose S=1L¢, U---UL, ie, merge all negative cycles into one set, which may save half of the
rules in item (d) of Definition 3.8. As many programs in practice, including those we considered here, do not have multiple
negative cycles, we obtain the same abstraction. In fact, it can be seen that the latter also holds for multiple negative cycles
(see Appendix A.1). If we let S be the set of all literals in the program I, then (42) amounts to replacing systematically
negated atoms notc; by cluster information not isSingleton(t'). However, in the worst case, for an unbounded number of
negative literals this still incurs an exponential blowup of IT™.

We may avoid this by simply dropping in item (d) from rule r all negative literals, without adding further auxiliary
literals; this still results in an over-approximation, at the price of further spurious answer sets. For example, consider the
simple program a(X) < not d(X),dom(X). for domain {1, 2, 3} with the fact d(3). If in the abstract program we omit d(X),
then a choice on a(X) will always occur, no matter if d(3) is mapped to a singleton or not. Having further auxiliary atoms
to distinguish this case then becomes useful.

Furthermore, we can reduce the number of rules in item (d) by using auxiliary predicates hasClustery(Xi, ..., Xi) of arity
i > 1, which express that some argument X;, 1 <i <k, is a non-singleton cluster; instead of using not isSingleton(m(t')), we
then simple add for a; = p(s’, .., s*) the atom hasClustery(s', ..., s¥) to the rule bodies.

Another possibility is to simplify (for a chosen set S of literals as above) the program IT™ by eliminating subsumed
rules as in Example 3.20, or by replacing multiple rules with other rules such that the answer sets of the program are
not affected; e.g., one may think of replacing the rules in (b) and (d.i) (resp. (c) and (d.ii)) of Definition 3.4, when some
atom «; € B~ (r) exists, by a merged rule from which the atom ¢; is removed, for suitable terms t (when t is among t;
and t, of ty oty, for instance). To this end, program rewriting and optimization techniques for ASP could be exploited (see
Section 7.3.1 for more information). However this could change the structure of the resulting program significantly, such
that it may be more difficult for the user to understand the working of the abstraction program, and obtaining intuitive
explanations for spuriousness can be more difficult than when using the systematic approach. Furthermore, extending the
approach to more language constructs might be more difficult to accomplish. Exploring the tradeoff between semantic
accuracy of over-approximation, the size of the abstract program in the space of possible choices for supersets S, and
possible structure-preserving optimizations is an interesting issue but beyond this article.

3.3. Syntactic extensions and further considerations

3.3.1. Other forms of relations

It is customary to use in ASP programs other relations apart from =, # such as comparison <, < or non-binary relations
such as addition X + Y = Z or multiplication X %Y = Z. ASP solvers support them in the input syntax as built-in relations,
which are typically pre-evaluated during program grounding.

A simple way to treat such relations is as follows: (1) rewrite the relations by adding instead auxiliary atoms to represent
them, (2) standardize apart the auxiliary atom arguments similarly as the remaining atoms, and (3) add to the original
program facts of the auxiliary atom to show for which domain elements the relation holds true. In the abstraction procedure,
the facts added will be lifted to the abstract domain, and the abstraction is handled over relations for the arguments which
were standardized apart. We illustrate this on a small example.

Example 3.23. Consider the rule
b(X,Y) «a(X),d(Y),X+1=Y.

19

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

For the addition relation, an auxiliary atom plusOne(X,Y) is introduced by adding the facts plusOne(1,2), plusOne(2, 3),
plusOne(3, 4), plusOne(4, 5)} to IT stating on which domain elements this relation holds.
The respective rule gets standardized apart into the following form.

b(X,Y) <« a(X),d(Y), plusOne(X1, Y1), X=X1,Y=Y1.

Fortunately, standardizing shared arguments in frequently used built-in atoms X <Y, X <Y etc. apart, which introduces
new variables and auxiliary atoms, can be avoided; to this end, the relation types in Table 2 may be extended to the
relations o € {=, #, <, <, >, >} directly.

Respecting the order relation. If the original domain D has an order relation among its elements, i.e., X; o X, where o €
{<, <}, then o should be defined in D such that d; ody can be evaluated for abstract values d; and d;. Furthermore, the
abstraction mapping should respect the ordering of elements to avoid unnecessary uncertainty.

Example 3.24 (ctd). Consider the mapping m’ = {{4}~k1, {1, 5}—k2, {2, 3}+>ks3}, which does not allow to respect the usual
ordering < in the abstraction: as 1 <4 <5 we would need an ordering k; < ki <k, which is not possible (even resorting
to a non-strict ordering < would fail). While the relation types can still be defined for m’, they will for < be mostly of type
Il and IV, resulting in many uncertainties.

3.3.2. Strong negation and function symbols

Our abstraction method can also be applied to programs that contain strongly (“classically”) negated atoms —a. The
simple way to achieve this is to apply the traditional transformation where each strongly negated atom —p(ty,...,t,)
is replaced by an atom neg,(t1,...,tn) where neg, is a fresh auxiliary predicate and a constraint “L < p(ty,...,
tn), negp(t1, ..., tn).” is added to the program [57].

For programs with uninterpreted function symbols, auxiliary atoms that emulate terms containing function symbols with
new constant symbols can be used, similarly as discussed in [41, Section 6]. For illustration, the rule p(f(f(X))) < q(X) can
be rewritten as p(Y) < q(X), aux¢ (X, U), auxg(U, V) where informally the predicate auxs(c1,c2) links a constant symbol
c1 representing a term t; to a constant symbol ¢y that represents f(t1). Nested function terms can then be represented, as
in the example rule, using multiple atoms. The predicate aux; is precomputed and provided as facts. Notably, ASP programs
are generally evaluated on a finite grounding of the input program [3]; hence the potentially infinite Herbrand universe
does not prevent one to apply this method to such programs.

3.3.3. Treating choice rules and cardinality constraints

So far, we have considered choice rules as a shorthand for two ordinary rules (which is the standard definition of the
semantics). It make sense, however, to consider them as primitive constructs with dedicated treatment to achieve more
structure preservation. To this end, choice rules are treated by ensuring that the body is abstracted and the choice over the
abstracted head is kept.

Definition 3.11. Given a choice rule r: {«} < B(r),t; ot; and a domain mapping m, the set r™ contains the rules of
Definition 3.4 for steps (b)-(d), and for step (a), it contains

{m()} <m(B™ (), m(ty) o m(tz), T (m(t1), m(t2)).

Cardinality constraints and conditional literals are further common syntactic extensions [117]; in particular, ig{a(X):
b(X)}iy is true whenever at least i, and at most i, instances of a(X) subject to b(X) are true. Choice rules that involve
cardinality constraints, e.g., n1 < {« } <ny < B(r), cannot immediately be treated similarly. Lifting the cardinality constraints
analogously to the abstract rule causes to force the occurrence of abstract atoms for ensuring the lower bound.

Example 3.25 (ctd). Consider instead of (4) the rule

2<{b(X,Y):d(Y)} <4 <«a(X). (49)

which gets lifted to the same abstract rule. However, for the mapping m = {{1, 2, 3, 4, 5}+k}, if a(k) and d(k) holds true,
this would cause to have b(k, k) hold true and no other atoms with the same predicate. Thus, the lower bound cannot be
satisfied, causing the abstract program to become unsatisfiable.

The issue arises from the fact that if the atom in the choice head is involved in some non-singleton cluster, then multiple
original atoms may be mapped to it, thus still satisfying the lower bound constraint in the original program. Such choice
rules can be treated by modifying the lower bounds in the abstract program and adding a constraint to ensure that the
original lower bound is met if the atom is only involved with singleton clusters.

20

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Definition 3.12. Given a rule r: ny < {a} <ny < B(r), t; ot5, in the abstraction procedure the choice head is changed to
{m()} <ny, and an additional constraint of the following form is added.

1L« {m(a): isSingleton(m(sl)), e, isSingleton(m(sk))}<n1, B“d(r), m(ty) om(tz), T/ (m(t1), m(t2)), (50a)
{m(a) : not isSingleton(m(s1)); ...;m(a) : not isSingleton(m(sk))} <1. (50b)
where o = p(tl, ...,tHandst, ..., sk are the terms among t1,...,t" that are local variables in r, i.e., variables not occurring

in BS(r), t1 o to.

The idea with the additional constraint is to ensure that if the lower bound n; is not satisfied through literals mapped
to singleton clusters (50a), then some literal with a non-singleton cluster (50b) should also occur.

Example 3.26 (ctd). Instead of lifting the choice rule as in Example 3.25, we add the following abstract rules:

{b(X,Y):d(Y)} <4 «a(X).
L« {b(X,Y) :isSingleton(Y)} < 2, a(X),
{b(X,Y) : not isSingleton(Y), dom(Y)} < 1.

This way there is no lower bound on the number of occurrences of b(X,Y) that causes unsatisfiability at the abstract
program. Furthermore, for the mapping m = {{1}+kq, {2, 3, 4, 5}+>kz}, for an answer set containing b(k1, k1) the constraint
ensures it also contains b(kq, ky) so that the original lower bound is met.

By taking numeric information about cluster sizes into account, a more fine-grained treatment of the lower bound n;
is possible. On the one hand, one can eliminate in more cases than those captured by the constraint (50a)-(50b) abstract
models for which an overestimate of the number of atoms in the original answer set does not exceed nj, where the
overestimate is computed using aggregates and size of all clusters. In a dual approach, we can adjust n; to an underestimate
n} <np of the number of atoms that must be present in the abstract answer set, depending on the size of the largest cluster
of an abstract constant used to instantiate a local variable (in the example, Y in d(Y)). To illustrate, if in (49) the lower
bound would be 5 and variable Y would be instantiated with abstract constants of maximum cluster size 4, then we would
know that we need at least two of the abstractly instantiated atoms b(X,Y) to satisfy the concrete lower bound of 5. In
general, we can adapt the lower bound n; in the abstract version of the cardinality constraint to n}j = [n1/mes"™] where
mcs (= mcs(m, r)) is the maximum cluster size of an abstract constant in the mapping m that is used to instantiate a local
variable in r, and nlv (= nlv(r)) is the number of all local variables. In the example, the computation adapts the lower bound
np=>5ton) = [5/(4')] = 2. However, these adaptations depend on a concrete mapping m, and the numbers have to be
provided with (non-abstracted) auxiliary atoms or computed by a (non-abstracted) subprogram. For space reasons, we omit
here working out concrete encoding techniques.

3.3.4. Concreteness with projection

Usually the problem encodings contain auxiliary atoms that are insignificant for solutions. When constructing the abstract
program, such auxiliary atoms are treated the same, by introducing choices whenever there is an uncertainty. However, this
causes many spurious guesses over the auxiliary atoms, and making sure that the abstract answer set is concrete w.r.t. all
of these atoms becomes too ambitious, as encountering a concrete abstract answer set among many spurious ones is more
difficult. For this reason, we consider a projected notion of determining concreteness of an abstract answer set by only
focusing on a certain set of atoms.

Definition 3.13. For a set A of atoms, an abstract answer set ieAS(l‘Im) is concrete w.r.t. A if ilA =m(I|4) U Ty, for an answer
set [€ AS(IT), where A =m(A).

Example 3.27. Consider a modified instance of graph coloring where the isolated nodes are connected as shown in Fig. 5.
For the abstraction, the abstract coloring is spurious as the nodes in the cluster {4, 5,6} cannot all be colored to red in the
original graph due to the edges. However, the abstract coloring is concrete w.r.t. the nodes {1, 2, 3}.

Such a notion of concreteness becomes useful when abstraction is applied to analyze problems, as one can focus on the
atoms deemed to be important. For this, the user should have an idea of the atoms that matter for determining a valid
solution. E.g. for planning problems, this notion can help in focusing on the actions and directly affected objects, which
serve to describe a solution. One then obtains abstract answer sets that have concrete truth assignments of these atoms,
while the auxiliary atoms and their concrete truth assignments become irrelevant.

21

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Fig. 5. Concreteness w.r.t. projection over nodes {1, 2, 3}.

3.4. Properties of domain abstraction

We now consider some basic semantic properties of our formulation of program abstraction. (Non-)existing spurious
answer sets allow us to infer properties of the original program.

Proposition 3.3. For any program T1,

(i) AS(IT™id) = {1 U Ty, | I € AS(IT)} for the identity mapping mjq = {{x}~>x|x € D}.
(ii) AS(IT™) =@ implies that AS(IT) = @.
(iii) AS(IT) =@ iff some IT™ has only spurious answer sets.

Proof. (i) Having the identity mapping id causes to only have singleton clusters in the abstract domain, thus resulting in
only 7y and 7y type facts in 7pm,,. This causes for only the rules of step (a) in Definitions 3.4 and 3.11 to remain when
the rules are grounded to the relation types. Hence, the same answer sets are obtained.

(ii) Corollary of Theorem 3.2.

(iii) If AS(IT) = @, then no 1 € AS(TT™) for any m has a concrete answer set in IT; thus, all abstract answer sets of IT™
are spurious. Now assume the latter holds but AS(IT) # @. Then IT has some answer set I, and by Theorem 3.2,
m(I) U Ty € AS(TT™), which would contradict that IT™ has only spurious answer sets. O

The abstract program is built by a syntactic transformation. The abstraction over the domain can also be done incre-
mentally which in the end amounts to the overall abstraction. To establish this formally, recall from Definition 3.3 that 7,
contains all type atoms t,°(d1, dz) for a mapping m; we let 7,'111,,,,” =Tm; o 7,'11] where m; o m; is the composition of m; and
mj.

Lemma 3.4. For any program Il and mappings m,mq, my such that my(mqy(D)) = m(D), we have grd7;n}ml (rmymz2y —
grd,, (II™), where grdT, denotes the grounding of the program to the relation type facts 7.

For proving Lemma 3.4, we use the following result.

Lemma 3.5. For a relation dy o d» and mappings m, m1, my such that my(my(D)) = m(D), we have Tn‘l’z’m] =T, where T2 denotes
the set of type atoms only related with the relation o.

Proof. The relation type computation 7;,;’1 is done for mq(d;) omq(dz) and then the relation type computation 7,‘;’2.,"] for
my(m1(dq1)) oma(my(dz)) =m(di) om(dy), resulting in the same relation type facts of 7,;. O

Proof of Lemma 3.4. From the rules of IT™, the rules for (IT™)™2 will be constructed according to Definitions 3.4 and 3.11.
Consider a rule r with body BS(r), t1 ot, in II. The set r™ e II™ contains rules with body mq(BS4(r)), t1 oty, 7°(t1, £2)

where £, = m (t;) if t; is a constant; £, = t; otherwise.
For the set r™ of rules, a new set (r™)™2 will be constructed. Let r’ € r™, its body will be abstracted to

my(B(r)), rel(t1, t2), 7 (1, t2) (51)
where my(B(r')) = mz(m1(B“d(r))),mz(ri"(ﬂ,fz)) and éj = my(my(ty)) if tp is a constant; ?k = t;, otherwise. Since
my(t (1, £2)) = T2 (M2 (£1), ma(t2)) = 2 (t1. T2), (51) will take the form

m(B (), 7 (t1, £2), el(r, £2), 77 (E1, T2).

where f, = m(ty) if t; is a constant; £y =t otherwise.

22

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

c(X) <—notd(X),dom(X).
{c(X)} < not isSingleton(X), dom(X).
d(X) < not c(X), dom(X).

{d(X)} < not isSingleton(X), dom(X).

b(X,Y) <a(X),d(Y). c(X) < not d(X), dom(X).
e(ko) < c(ko), atks). e(ky) < c(ky), atky). {c(X)} < not isSingleton(X), dom(X).
e(ko) < c(ko), atkz). e(ky) < c(kz), atkz). d(X) <= not ¢(X), dom(X).
e(ky) < c(ky),a(ky). {e(ko)} < c(kg),a(ko). {d(X)} < not isSingleton(X), dom(X).
e(k1) < c(k1),a(ko). {e(k)} < c(k1),akq). b(X,Y) <a(X),d(Y).
e(ky) < c(k2),a(ko). L <« b(ka, k2),e(k).

{e(ao)} < c(ao), a(ao).

(a) grd,, (IT™) (b) grd, ,, (IT™)™)

Fig. 6. Abstract programs of Example 3.28 with m; ={{1, 2}+>ko, {3, 4}+>k1, {5}—k2} and my = {{ko, k1, k2}>ao}.

The rules in (r™)™2 where types of the relation differ, i.e., i # j for ‘L'io(l:j,?z), ‘rj"(?], %2), are insignificant as the atoms
cannot both hold true in 7m, m,, i.e., they do not appear in 8rd 7, m, ((r™m)™M2), As for the remaining rules in (r™)™2, they
correspond to the rules in r™. Thus, by Lemma 3.5 and {my(m(p(©))). | p(©). € TT} = {m(p(©)). | p(c). € T1}, we obtain
grdr,, ,, (IMM)™) = grd7, (™). O

Example 3.28 (Example 3.1 ctd). Applying first the mapping m; ={{1, 2}+>ko, {3, 4}>k1, {5}+>ka} and then the mapping
my = {{ko, k1, ka}r>ap} yields the mapping m={{1, 2, 3, 4, 5}+>ap}. Fig. 6 shows the constructed abstract programs. Notice
that the program in Fig. 6b is the same as the non-ground program in Example 3.19 updated for the mapping m, i.e., ag is
replaced with k, when it is grounded to T, m,-

An easy induction argument shows then the possibility of doing abstraction sequentially, by having abstract mappings
defined over previously abstracted domains.

Proposition 3.6. For any program IT and mappings m,my, ..., my such that mu(...(my(D))) = m(D), we have grdr, (IT™) =

In Section 5.2 below, we demonstrate further uses of having a hierarchy of abstractions.

We remark that general properties of spurious answer sets from over-approximation apply to domain abstraction as
an instance of it. Examples of such properties, mentioned for omission abstraction in [110,111], are non-reoccurrence after
elimination, i.e., if a spurious answer 1 set of a program ™ has no corresponding (cannot be mapped to some) answer set
I" in a refinement m’ of m, then no refinement m” of m’ will have an answer set I” corresponding to 1 either, and convexity,
i.e,, if on the contrary T has some corresponding answer set [’ under m’, then every refinement m” in between m’ and m
admits a spurious answer set I’ of TI"™" that corresponds with 1.

3.4.1. Abstraction over sorts
Applications of ASP usually contain sorts that form subdomains of the Herbrand universe. For example, in graph coloring
there are sorts for nodes and colors. We define an abstraction over a sort as follows.

Definition 3.14. An abstraction is limited to a sort D; C D, if all elements xe D \ D; form singleton clusters {x}r>x.

Example 3.29. In graph coloring, we have sorts node and color in the domain {1, ..., 6, red, green, blue} for the instance in
Fig. 1a. An abstraction mapping m limited to the sort node means m(x) = {x} for x € {red, blue, green}.

In order to obtain much coarser abstractions, applying abstraction over multiple sorts is also possible, given that the
individual sorts fulfill the following property.

Definition 3.15 (sort independence). For a program IT and domain D, subdomains D1, ..., D, €D are independent if DiND; =
¢ for all i # j.

For independent sorts, abstractions can be composed.

23

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

{green,blue} {green,blue}

(a) A concrete answer set (b) A spurious answer set

Fig. 7. Abstraction over the set of nodes and the set of colors.

Proposition 3.7. For every domain mappings m1 and my over independent subdomains D1 and D, it holds that grd7;nlm2 ((1'[’"2)"”)
= grd'ﬁnzm] ((Hm])mz)'

Proof. The mapping m; : DD is of form {{x}=x|xe D\ D;j}Ump,, i € {1, 2}, where mp, describes the mapping over D;
to the abstract domain ﬁ,-. We know that m;(D \ D;) = D \ Dj, and since D1 and D, are independent, we have D1 C my(D)
and Dy € my(D). Consequently, we can apply the mappings independently from each other as m;(m1(D)) = m1(mz(D)) to
achieve an abstract domain D = (D\ (D1 UDy))U Dy U D». Another mapping m can then be defined to map D to D. By
Lemma 3.4 we get the result. O

3.4.2. Cartesian abstraction

Given domain mappings my, ..., my limited to subdomains D1, ..., Dy, respectively, a cartesian abstraction of the map-
pings corresponds to the abstract domain m(Dq) x --- x m(Dy). Assuming that the subdomains D1, ..., D, are independent,
Definition 3.4 can be altered to be applied over a rule of the form

r: o < BStd(T),t] oD tr,...,t1 oPn ty

by considering all possible combinations of IjODi (m(t1), m(t2)), j=1,...,n. Alternatively, we can define cartesian abstraction
by applying abstraction over each subdomain one step at a time, by extending Proposition 3.7 to multiple sorts.

Proposition 3.8. For domain mappings mi,...,m, over independent domains D1,...,Dy, it holds that TI™1 *-->xMn —
((TITM=))-)Mxm where 7t is any permutation of {1, ...,n}.

Example 3.30 (Example 2.4 ctd). In the graph coloring instance of Fig. 1a, consider the mappings m, = {{4, 5, 634} and
me = {{red}—T, {green, blue}~>gb} over the sorts nodes and colors, respectively. The abstract program (I1™)™c has the
concrete answer set

{chosenColor(1,), chosenColor(2, éb), chosenColor(3, éb), chosenColor(fl, N}

(shown in Fig. 7a) that chooses the color cluster éb for nodes 2 and 3, which matches the intuition of coloring the neighbor
nodes of node 1 to some color different than its own color.
Notably, (IT™)™c also has the spurious answer set (shown in Fig. 7b)

{chosenColor(1, gb), chosenColor(2, gAb), chosenColor(3, gb), chosenColor(fl, M}

due to the guesses introduced for the uncertainty.

In Section 7.2 we demonstrate further uses of such an multi-step abstraction over the subdomains.
3.5. Computational complexity

In this section, we turn to the computational complexity of reasoning tasks that are associated with program abstraction.
We build on the complexity results in [33,39], which cover the basic reasoning tasks for arbitrary non-ground programs and

for non-ground programs with bounded predicate arities, i.e., the maximum arity of a predicate occurring in the program is
bounded by a constant.

Lemma 3.9. Given an arbitrary non-ground program T1, a mapping m, and an abstract interpretation 1 checking whether TeAsam
holds is feasible in A}.

24

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Intuitively, this holds because we can nondeterministically generate each rule r in II™ in polynomial time, and if I is not
a model of the reduct (IT™)! also an instance of r witnessing this fact. The minimality of I for (IT™)! can be shown by a
polynomial-size proof tree that can be guessed and checked.

Armed with this lemma, we consider the problem of identifying concrete abstract answer sets.

Theorem 3.10. Given a program 1, a domain mapping m, and an abstract interpretation 1, deciding whether 1 is a concrete abstract
answer set of [T is NEXP-complete in general and Eg -complete for bounded predicate arities. Furthermore, the complexity remains

unchanged if T € AS(TT™) is asserted.

That is, the worst case complexity is the one of answer set existence for non-ground programs [33,39]; the two problems
can be reduced to each other in polynomial time. Intuitively, in general an abstract atom in 1 may be mapped back to
exponentially many atoms in an answer set I of the original program IT that witnesses the concreteness of I: such an I
can be guessed and checked in nondeterministic exponential time. Accordingly, the complexity drops to 25’ if the domain
size |D| is polynomial in the abstracted domain size |5| and interpretations are represented as bitmaps (as customary); e.g.,
it drops if each abstract cluster is small (and multiple clusters exist). Under bounded predicate arities, each abstract atom
maps back to polynomially many original atoms, such that the guess I has polynomial size and checking I can be done
with an NP oracle in polynomial time (cf. Lemma 3.9). The matching lower bounds are shown by reductions from deciding
whether a given non-ground program has some answer set.

As an immediate consequence of Theorem 3.10, we obtain the following result for spuriousness checking.

Corollary 3.11. Given a program I1, a domain mapping m, and an abstract interpretation 1, deciding whether Tisa spurious abstract
answer set of TI™ is coNEXP-complete in general and l'Ié7 -complete for bounded predicate arities. Furthermore, the complexity remains

unchanged if T € AS(IT™) is asserted.

Next we consider deciding whether the abstract program has some spurious answer set. This problem turns out to have
higher complexity.

Theorem 3.12. Given a program I1 and a domain mapping m, deciding whether some T € AS(TT™) exists that is spurious is NEXPNP-
complete in general and Zg’ -complete for programs with bounded predicate arities.

Intuitively, compared to the previous problem we first must make a guess for T such that it is an abstract answer set of
1™ but not concrete; the size of] may be exponential in the input of the problem, and relative to this testing concreteness
is feasible in nondeterministic polynomial time, i.e., with an NP oracle. The matching hardness is shown by reductions from
evaluating second-order logic formulas of a suitable form over finite relational structures.

Faithful abstraction. An abstract program that does not have a spurious answer set is a faithful abstraction of the original
program.

Example 3.31 (Example 2.4 ctd). In the graph coloring instance of Fig. 1a, the mapping m = {{4, 5, 6}1—)21}. which maps nodes
1,2,3 to singleton clusters, yields an abstract program IT™ that has 42 answer sets, which are the combinations of 6
possible correct colorings of the nodes 1 — 3 with 7 possible colorings {{red}, {blue}, {green}, {red, blue}, {red, green},
{green, blue}, {red, green, blue}} of the node cluster 4, thus resulting in a faithful abstraction.

Ideally, we have faithfulness, but this is hard to achieve in general. From Theorem 3.12, we immediately obtain:

Corollary 3.13. Given a program I1 and a domain mapping m, deciding whether TT™ is faithful is coNEXPNP-complete in general and
Hg -complete for bounded predicate arities.

4. Refinement by debugging non-ground spuriousness
Over-approximation of an answer set program unavoidably introduces spurious answer sets. Once a spurious abstract

answer set is encountered, one can either continue searching for a concrete abstract answer set, or refine the abstraction to
reach one where less spurious answer sets occur.

Definition 4.1. Given a domain mapping m: D — D’, a mapping m’ : D — D” is a refinement of m if for all x € D,
m' =l m'(x) S m~! ().

That is, refinement is on dividing the abstract clusters to a finer grained domain.

25

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Example 4.1 (Example 3.21 ctd). The; mapping m/:{{l}nA—>k1,{2,3}r—>k2,{4,5})—>k3}Ais a refinement of the mapping
m={{1, ..., 5}~>k}. Furthermore, II™ has no answer set I’ such that m(m’~1(I")) = I, ={a(k), c(k)}; hence the spurious
answer set [, of I1™ is eliminated.

In the CEGAR methodology [25], the decision in a refinement step depends on the correctness checking of the spurious
abstract solution, through which the problematic part of the abstraction is detected. Inspired by this, we develop an alter-
native for checking the correctness of abstract answer sets that can be used to determine how the refinement should be
made.

Correctness checking using constraints. That an abstract answer set 1 is spurious means the original program IT has no
answer set matching I. In other words, querying IT for a match to an abstract answer set I would return no result exactly
if I is spurious.

Definition 4.2 (query of an answer set). Given an abstract answer set | and a mapping m, a query Q;“ for an answer set that

matches] is described by the following constraints.

1 <« {a|m@)=a}<0. &el\Tm. (52)
1<«a. Gl \ Tm m)=a. (53)

Here (52) ensures that a witnessing answer set I of IT (i.e., m(I) = ?) contains for every non-t, abstract atom in T some
atom that is mapped to it, while (53) ensures that no atom in I is mapped to an abstract atom not in I. The following is
then easy to establish.

Proposition 4.1. Suppose m is a domain abstraction mapping for a program TI1, then an abstract answer set Te ASII™) is spurious
iffliu Q;” is unsatisfiable.

Proof. As 1 is spurious, there exists no I € AS(IT) such that m(I) =1\ T, i.e., there is no match of an original answer set [
for I where the atoms in I can be mapped to the abstract atoms contained in I \ 7;; and the atoms not in I can be mapped
to the abstract atoms not contained in I\ 7m. Q; enforces such a match, thus returns unsatisfiability.

Having no match for T means that no original answer set can be mapped to it, thus Tis spurious. O

Correctness checking with debugging. We will employ an ASP debugging approach to debug the inconsistency of the
original program IT caused by checking a spurious answer set 1, referred to as inconsistency of I1 w.r.t. 1, in order to get
hints for refining the abstraction. Different from a usual ASP program debugging approach, we need to shift the focus from
“debugging the original program” to “debugging the inconsistency caused by the spurious answer set”. Unfortunately an
immediate application of the available ASP debugging tools is not possible. For our purposes, we make use of the meta-
level debugging language in [16], which is based on a tagging technique that allows one to control the building of answer
sets and to manipulate the program evaluation.

The meta-program constructed by spock [16] introduces tags to control answer set building. Given a ground program
I1 that is viewed as program over a propositional alphabet (i.e., ground atoms are propositional atoms) and a set A of
names for all rules in IT, it creates an enriched alphabet by adding propositional atoms such as ap(n;), bl(n;), ok(n;), ko(n;)
where n, € N for each r € I1. The atoms ap(n;), bl(n;) express whether a rule r is applicable or blocked, respectively, while
ok(n;), ko(n;) are used for manipulating the application of r.

For domain abstraction, debugging the non-ground program has its own difficulties. The approach in [16] is on the
propositional level, thus cannot be immediately applied. Also debugging non-ground programs is not as straightforward as
in the propositional case, as there is the additional need to debug the checking for an original answer set that can be
mapped to the given abstract answer set. However, non-ground program debugging approaches such as [36,93] are not
easily adjustable due to the need for shifting the focus towards debugging the correctness check.

Using available debuggers. Debugging non-ground ASP programs through a meta-programming [55] approach has been
studied by [93], with the drawback of considering all possible explanations why a given interpretation I is not an answer
set of the program I1. For the given input I, in order to prove that I is not an answer set of I, the debugging considers
many possible guesses of variable assignments that matches I with a faulty behavior. In our case, the input I is an abstract
answer set stating that there should be some original answer set I’ of IT such that each atom in I’ can be mapped to some
abstract atom ¢ in I. This adds a guess of some original atom that could be mapped to &. However, as the debugging aims
at showing that I is not an answer set of I1, when this additional guessing comes into play, it guesses original atoms to
create some faulty behavior for I even if these atoms do not occur in an original answer set. Thus, an immediate application
of the meta-programming approach is infeasible.

In order to use the available non-ground debugging tools off-the-shelf, one possibility is to first guess all possible com-
binations of the original atoms to match the abstract answer set 1, and then separately debug each of them. If T is in fact

26

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

spurious, this will be caught as each possible guess would return some inconsistency. If I is concrete, then at some point
some guess will correspond to an original answer set, with no inconsistency. However, this approach is too cumbersome, as
there can be many possible concrete guesses for an abstract I and checking each of them one by one until a concrete one
is found (if it exists) is highly inefficient.

Our approach to debugging. As existing non-ground debugging tools are not readily applicable, we debug the unsatisfiability
of TTU Q%" for a spurious abstract answer set 1 following the debugging approach based on [16] from above. In previous
work on domain abstraction [113], we considered a simplified debugging approach inspired from the ko atoms of [16], which
is based on detecting the rules that must be deactivated in order to keep the satisfiability while checking the concreteness
of an abstract answer set I, in case it is spurious. As the naive debugging cannot address all debugging cases, in this work
we show an extension of the refinement method by lifting the spock [16] debugging approach to the non-ground case,
confining to a class of programs that subsumes tight programs.

When demonstrating the different debugging approaches, we use a non-ground version of Qi'”.

Deﬁmtlon 4.3 (non-ground query). Given an abstract answer set Tand a mappmg m expressed as a set of facts of form
m(x, d) (where m(x) = d) a (non-ground) query for an answer set that matches 1 is described as follows:

Linp(X1, ..., X, P(Xa, oo, Xi) (X0, K1), . m(X, X)) <0 (54)
L p(X1, .o Xp), m0t inp(X1, ..., Xi), m(Xy, K1), ..o m(Xe Xe). (55)
inp (&1, ey ak). for all p(a1, ak) el \ Tm. where p # dom is a non-relational predicate. (56)

Example 4.2 (Example 3.1 ctd). For the program IT and the mapping m = {{1,2, 3,4, 5}+>k} given as facts m(1,k),
m(2,k), m(3, k), m(4, k), m(5, k), the abstract program I1™ has an answer set I = {a(k), c(k)}. The query Qi’” is

1 < noting(A1),d(X1), m(X1, A1). L «ing(Ay), {d(X1) :m(X1, A1)} <0.

1 < notinc(A1), c(X1),m(Xq,A1). L «inc(Ap), {c(X1) :m(Xy, A1)} <0.

L < noting(A1),a(X1),m(X1,A1). L <«ing(A1), {a(Xy) :m(Xy, A1)} <0.

L <« notine(A1),e(X1),m(X1, A1). L <«ine(Ar), {e(X1) :m(Xy, A1)} <0.

L < notiny(A1, A2), b(X1, X2), m(X1, A1), m(X2, A2).

L «inp(Aq, A2), {b(X1, X2) : m(Xq, A1), m(X2, A2)} <0.

ing (k). inc(k).
4.1. Non-ground debugging using tagging

We extend the refinement method described in [113] by lifting the “tagging” approach of spock [16] to the non-

ground case, confining to a class of programs that makes it possible to avoid unfounded loop checking when debugging

the spuriousness query. Given IT, we construct the meta program 7per[I1] similar to spock [16], but with an extension of
having arguments in the ap, , bl,, atoms to have information for which constants the rules are applicable and blocked.

Definition 4.4. Given a non-ground program IT, the program 7peq[I1] over the vocabulary Ve that enriches the vocabu-

lary V of IT with predicates ap,_, bln., ap;_, ko, for each n, € N, consists of the following rules for r € IT with {c1, ..., ¢;}
denoting the set of terms that are arguments of H(r), and {dq,...,dy} denoting the set of terms that are arguments of
literals in B(r):
IfB(r)=0: r
H(r) <-app, (c1, ..., Cn), not kop, .
IfH(r)#1LAn>0: apy,, (€1, ..., cn) < B().
bln,(c1, ..., cn) < not ap, (c1, ..., Cn).

H(r) <- app, (d1, ..., dy), not koy,.
apy,, (di, ..., dy) < B(r).

apy,, < apy, (d1, ..., dy).

bly, < not ap,,,.

IfHr)=1Lvn=0:

In case the head of rule r is L or does not contain arguments in the atom, we use the arguments from the body to know
whether r is applicable.

27

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

We have abnormality atoms to indicate the actions that are required to avoid the inconsistency:

e ab_deact,, signals that r was applicable under some interpretation, but had to be deactivated;

o similarly for ab_deactCons,, which only talks about the constraints; and

e ab_actp(cy,...,cp) for a=p(cy,...,cp) says that atom o must be made true while no rule deriving @ was applicable
(i.e., o is unsupported®).

Definition 4.5. Given a non-ground program IT with vocabulary V, the following additional meta-programs are constructed
over the vocabulary Vgepuz Which enriches Vierq with abnormality predicates ab_deacty,, ab_deactConsy,, and ab_acty; and
with c1,...,cn,dq,...,dy as in Definition 4.4, as follows:

1. Rule Deactivation: 7geqc[I1]: for all r € IT with B(r) # @ and H(r) # L:
kop, .
{H()} < app,(c1,....cn).
ab_deacty, (c1, ..., Cn) < app (c1,...,Cp), not H(r).
2. Constraint Deactivation: Tgeqcrcons[I1]: for all r € IT with H(r) = L:
{kop, }.
ab_deactConsp, (d1, ..., dy) < apy (d1, ..., dy), kop,.

3. Rule Head Activation: Tgc¢[IT1, V]: for all rule heads o = p(cq,...,cy) in IT with @ €V and pdef(p, I1)={rq, ..., 1} and
k>1:

{a} < blnrl (Cl1y ey Cp)y ey blnrk (c1,...,Cp).

ab_actp(c1, ..., Cn) <o, blnrl €1,...,Cn),eers bln,k (€1,...,Cn).

The arguments of ab_deact only contain the ones from the head of the rule. This is a representation choice, to avoid
dealing with many variables involved in the body while only few of them are used in the head of the rule. For the definition
of ab_deactCons however, the variables of the body must be used. Having a different representation for the deactivation of
the constraints will allow to steer the debugging towards the constraints by assigning different costs for their occurrence
when computing the answer sets with the smallest number of ab atoms.

Definition 4.6 (debugging program Ilgepyg). For a program IT over vocabulary V, we let the program Igepyg Over Vgepug be
defined by

l_[debug :,ﬁm‘ta[n]) %eact[n]) 7z-ieactCons[H]) %ct[l—LV]-

We use Ilgepug for checking the correctness of an abstract answer set and then deciding on the refinement. Adding weak
constraints over the abnormality atoms yields an answer set with fewest ab atoms. We here use weak constraints [74] of the
form

1 i~oq,...,0am, N0t Apt1, ..., N0t 0ty [W, 1, ..., L]
where w (the weight) is a positive integer constant or variable, and tq, ..., ty are terms from «q, ..., ;. For each answer
set, the set of all tuples (w,tq,...,t;) of violated weak constraints is computed, and the sum of the first components of

this set is assigned to the answer set as a cost. Among all answer sets, those whose cost is smallest are chosen as optimal
answer sets. Using weak constraints is a convenient way of performing optimizations.

Example 4.3 (Example 4.2 ctd). The program Igepye With additional weak constraints on abnormality atoms is shown in
Fig. 8. The minimal answer set of Tgepyg U Q}“ is then

{ab_deact,4(1),ab_deact,;4(2), ...,ab_deactr4(5)}.

This debugging approach is also able to handle the shortcomings of the naive approach [113], as 7gc[I1, V] is used to
activate original atoms if it is necessary for achieving satisfiability for Igepyg U Q;".

4 An atom « is unsupported by an interpretation I if for each r e def (a, IT), Bt (r) Q Ior B=(r)NI#¢ [120].

28

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

c(X) «<—apy1 (X), not korq. e(X) <—apra(X), not koys.
apr1 (X) <—not d(X). apr4(X) «<—c(X),a(Y), X #Y.
bly1 (X) <—not apy1 (X). blr4(X) < not apra(X).

d(X) <—apr2(X), not kor;. 1 «aprs5(X,Y),not kors.
apr2(X) <—not c(X). aprs(X,Y) < b(X,Y),e(X).
bly2(X) <= not apr2(X). aprs < apr5(X,Y).

bly5 <—not aps.
b(X,Y)<ap3(X,Y), not kors.
apr3(X, Y) «a(X),d(Y). a(1). a(3).
bl3(X,Y) «<—not ap;3(X,Y).

korq. {kors}.
{c(X)} < apr1(X). ab_deactCons;s(X,Y) < koys, aprs(X,Y).
ab_deacty1 (X) < ap;1(X), not c(X). L:~ab_deactCons,5(X,Y). [1,r5,X,Y]

L:~ab_deactr1 (X). [1,11, X]
{c(X)} < bl (X).

koyy. ab_act:(X) <—c(X), bly1 (X).
{d(X)} < apr2(X). L:~ab_act:.(X). [1, X]
ab_deact;, (X) <« apr2(X), not d(X).
L:~ab_deact;»(X). (1,12, X] {d(X)} < bli2(X).
ab_acty(X) < d(X), bl (X).
koys. L:~ab_actg(X). [1, X]
{b(X,Y)}<apr3(X,Y).
ab_deacty3(X,Y)<apr3(X,Y), not b(X,Y). {b(X,Y)} < bl3(X).
1:~ab_deact;3(X,Y). [1,13,X,Y] ab_acty(X,Y) < b(X,Y), bl:3(X).
L:~ab_acty(X,Y). [1,X,Y]
k0r4.
{e(X)} < apra(X). {e(X)} < blra(X).
ab_deactr4(X) < apra(X), not e(X). ab_act:(X) < e(X), bly4(X).
L:~ab_deactr4(X). [1,14, X] L:~ab_acte(X). [1, X]

Fig. 8. Debugging program Ilgepyg for Example 4.2 with weak constraints.

As a first property, we show that Mgepyg U Q}” always has an answer set, i.e., no abstract answer set] is dismissed
provided the program IT at hand obeys the following property. We call IT positive-dependency founded if no negative edge
in G points to a cycle in G7, i.e., atoms in positive loops are not negatively conditioned to any atom. Note that positive-
dependency founded programs subsume tight programs, where fo[is acyclic.

Proposition 4.2. Given a positive-dependency founded program I1 and a mapping m, for each answer set TeAS@m), Maebug Y Q%"
has an answer set.

The next result now shows that we can use Igepyg U Q%“ to obtain hints for the spuriousness reason of 1.

Proposition 4.3. Given a positive-dependency founded program I1 and a mapping m, if an answer set Te ASII™) is spurious, then
for every answer set S € AS(Igepug U Q}“) either (i) ab_deactp, (c1, ..., cn) € S or ab_deactConsy, (d1,...,dy) € S for somer € 1],

or (ii) ab_acty(c1, ..., cp) € S for somer € grd(IT) with H(r) = {p(c1, ..., cn)}.

Less surprisingly, for programs that are not positive-dependency founded, debugging the correctness check could result
in unsatisfiability (see Appendix B.1 for an example). To avoid this, unfounded loop checking can be handled by introduc-
ing an additional abnormality atom, say abjep as in [16], and lifting it to the non-ground setting. However, this solution
causes further guessing rules involved in the non-ground debugging. Also the existence of abjo,, (¢) sometimes does not
even indicate that a loop formula is violated and just makes the search more difficult due to considering many possibili-
ties of the guesses. Therefore, we choose to focus only on positive-dependency founded programs and concentrate on the
determination of a refinement.

The obtained debugging atoms during a correctness check give hints on which domain elements should not be involved
in a cluster.

Definition 4.7 (refinement-hint program Ip;y). The refinement-hint gathering program Ilp;, for a program IT contains the
following rules, with cq,...,cy,d1,...,dy as in Definition 4.4:

e For ¢; € arg(ab_deacty, (c1, ..., cn)):
refine(cy, ..., cp) <—ab_deacty, (c1, ..., cn), m(ci, a;), not isSingleton(a;).

29

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Algorithm 1: decideRefinement with Search.

Input: program I1, domain mapping m
Output: refinement m’ of m
1 if m has non-singleton clusters then
2 refinecosts = [1; allrefs =];
/* compute all 1-distance refinements of m */
3 refs = computeRefinements(m, 1)
4 forall m’ € refs do
5 ¢ = getCostOfMapping(T1, m’);
6
7
8

if c=0 then /x found a concrete abstract answer set */
return m’;
else
9 allrefs.append(m’);
10 refinecosts.append(c)
1 minrefs = getRefsMinCost (refinecosts, allrefs)
12 m = pickRandomRef (minrefs)
13 return m

15 def getCostOfMapping(I1, m)

16 ™ = constructAbsProg(I1, m);

17 Mgebug = constructDebugProg(I1);

18 Pick some | € AS(IT™)

19 Find optimum answer set I” of [gepyg U Qim /* with smallest number s of ab-atoms */

20 return |[I'ly| /% s=I|I'la] +/

e For d; € arg(ab_deactConsy, (d1, ...,dy)):
refine(ds, ..., dy) < ab_deactConsp, (d1, ..., dy), m(d;, a;), not isSingleton(a;).
e For ¢; earg(p(cy,...,cn)):

refine(ct, ..., cp) <—ab_acty(ct, ..., cn), m(ci, a;), not isSingleton(a;).

From ITpj we get as hints the domain elements that are mapped to abstract cluster elements and cause ab atoms in
the debugging.

4.2. Deciding on a refinement

The introduced debugging approach finds a set of abnormality atoms in case the abstract answer set is spurious. We
consider two ways of using the obtained debugging output for deciding on a refinement.

(v1) The smallest number of ab atoms occurring in an answer set is the cost of the corresponding mapping.
(v2) The inferred refine atoms are used to decide on a refinement of the abstraction.

In (v1), the cost is used for a local search among the possible refinements of an abstraction, where the one with the
minimum cost is picked. Approach (v2) is closer to the CEGAR-like approach [25], where a refinement is determined from
the spuriousness check. We now describe the approaches in more detail and report on a comparison in Section 6.3.

(v1) Local Refinement Search. The idea is to search among possible refinements of a mapping for deciding on a refinement.
To single out close refinements, we measure the distance dist(m,m’) between a mapping m:D — D and a refinement
m':D — D’ of it by the number of additional clusters, i.e., dist(m,m’) = [D’| — |D|. In case dist(m,m’) =1, we call m’ a
1-distance refinement of m.

Example 4.4. Each mapping m’ € UCEC{C»—>I<1, {1,...,5}\C—~ky}, where C = {{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}}, is a 1-distance
refinement of m = {{1, 2, 3, 4, 5}—k}.

Algorithm 1 shows the procedure of deciding on a refinement for a given mapping m, by doing a distance-based search
among all possible refinements of the mapping and picking the one with the least cost. All 1-distance refinements of m
are computed, and then the cost of each of them is determined, by calling getCostOfMapping. This function constructs the
abstract program IT™ according to the mapping and picks an abstract answer set 1. It then finds the answer set with
smallest number s of ab-atoms of the program Ilgepyg U Qi’” and returns s. If some refinement m’ has cost 0, it is returned.
Otherwise, all the refinements and their costs were collected. In Line 11 the refinements with minimum cost are gathered,
and then a random pick is made over them. If the given mapping contains only singleton clusters, this means the original
domain has been reached.

30

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

(v2) Abstraction Refinement Using Hints. The abstract answer set correctness checking returns ab-atoms that contain the
domain elements involved in the debugging of the unsatisfiability. The latter can be used as hints on which part of the
mapping to refine. The idea of the refine atoms is to get hints about which domain elements should not be involved in a

cluster. Given a hint atom refine(cq, ..., ¢y), we consider two actions to describe a refinement m’ of m:
(1) For refine(cq,...,cq) and i€ {1, ..., n} such that m~1(m(c;)) > 1, the refinement m’ satisfies m’ =1 (m’(c;)) = 1.
(2) For refine(ct, ..., cn) and c;#cj€{cy, ..., cp} such that m(c;) =m(c;), the refinement m’ satisfies m’(c;) #m’(cj).

Applying refinement action (1) means to refine the abstraction by mapping all elements occurring in some refine atom to
singletons, while the refinement action (2) should ensure that distinct elements occurring in the same refine atom are no
longer mapped to the same cluster.

Example 4.5 (Example 4.3 ctd). The hint atoms for the minimal answer set of Igepyg U Q%" are {refine(1),..., refine(5)}.
Applying refinement action (1) means to map each of the elements 1,...,5 to singletons in m’, making the refinement the
trivial abstraction m’ = {{1}—~k1, {2}+>k>, {3}—>ks, {4}—ka, {S}—>ks}.
As for the other spurious answer set I3 = {a(k), c(k),d(k),b(k,k)} of TI™ (from Example 3.21), the minimal answer
set of Tgepyg U Q;" is {ab_deact;4(1)} resulting in the hint atom refine(1). When the abstraction mapping is refined to
3

m’ = {{1}~kq, {2, 3,4, 5}—k>}, the spurious answer set no longer appears.

Note that obtaining some refine atom during the correctness checking is not guaranteed whenever I is spurious, as the
ab atoms may contain only domain elements that are mapped to singleton clusters. In this case, another abstract answer
set I’ of TT™ can be picked for the correctness checking.

5. Multi-dimensional domain abstraction

With the methods for abstraction and refinement in Sections 3 and 4 at hand, we are well equipped to run a CEGAR-style
abstraction and refinement procedure for answer set programs. As we have seen from Proposition 3.8, it is possible to deal
with sorts, which is important for some practical applications. We can construct an abstract program over multiple sorts in
the manner of cartesian abstraction, which is achieved by doing abstraction over the sorts one at a time. However, this has
the drawback that we cannot take certain interdependencies among the sorts into account, which in some scenarios may be
needed. We illustrate this need on some examples and will then present an alteration of the abstraction method that can
take interdependencies between sorts into account.

Example 5.1 (Example 3.30 ctd). An interesting abstraction would be to assign a color cluster r/g\b only for the nodes {4, 5, 6},
which are clustered to a node 4, while for nodes {1, 2, 3} the original colors are considered (see Fig. 9). Such an abstraction
cannot be achieved with a cartesian style abstraction, since the color cluster @ is only meant to be considered for the
node cluster 4. Thus, the desired abstraction can only be defined with a multi-dimensional mapping m: D, x D¢ — 5n X 5C
as follows:

@, j) ie{l,2,3},je{red, green, blue}

m(, j) = { (4, rgh) ie{4,5,6}, j € {red, green, blue}

To further motivate the need for multi-dimensionality, we consider grid-cell domains, which are commonly used.

Example 5.2 (grid-cell domains). Usually the grid-cells are represented by using two sorts row and column. The following
rules show the part of a Sudoku encoding that guesses an assignment of symbols to the cells and ensures that each cell has
a number.

{sol(X,Y, N)} < not occupied(X, Y), num(N), row(X), column(Y).
hasNum(X,Y) <—sol(X, Y, N), row(X), column(Y). (57)
1 <«<—not hasNum(X, Y), row(X), column(Y).
Further constraints ensure that cells in the same column (58) or same row (59) do not contain the same symbol.
1L <sol(X,Y1,M),sol(X, Y2, M), Y1 <Ys. (58)
1 «so0l(X1,Y, M), sol(X2,Y, M), X1 < X3. (59)

A further more involved constraint (cf. Appendix B.2) ensures that the cells in the same sub-region also satisfy this.

31

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

s . 4 e . 5 e . 6 . . (red green,blue}

Fig. 9. Joint abstraction of nodes and colors.

—_

L | o -

<l
—_
N
w
N
<l
—_
[}
w
N
<
N CUEEN N ._n<—l><
U
—_
N
w
S

AW

(a) (b) (0)

Fig. 10. Abstractions over grid-cells.

An abstraction over the grid-cells would be to cluster the rows and columns together in order to define an abstract
grid-cell. Although abstraction over the sorts one at a time can achieve certain abstract cell structures, to obtain more so-
phisticated abstractions these sorts must be jointly abstracted. Consider for example the abstractions in Fig. 10. Those in
Figs. 10a-10b can be achieved by independent mappings over the rows and columns such as myoy =meo ={{123}+>a123,
{4}>a4} and mpow =meo = {{12}+>a12, {34}+>as34}. For a given program II, one can construct the abstract program
(ITMrow)Meol, However to achieve Fig. 10c, rows and columns must be jointly abstracted. While the cells (a;,bj),1<1i, j<2
are singletons mapped from (i, j), the other abstract regions are only given by

(a12,b34) x€{1,2},y (3,4}
Mrow,col X, ¥) = | (@34,b12) x€ (3,4}, y €{1,2} (60)
(asa,b3q) x€(3,4},y€(3,4}

Observe that the abstract row aq, describes a cluster that abstracts over the individual abstract rows aq,a;. The original
rows {1, 2} are mapped to {a;2} only in combination with columns {3, 4}, otherwise they are mapped to {ay, ax}.

5.1. Existential abstraction on relations

The abstraction method described in Section 3.1.2 aims at keeping the built-ins in the abstract program and finds a way
to handle their different behavior in the abstract domain. However, this approach cannot be used to achieve the above
mentioned multi-dimensional abstraction. Consider the rule (58) standardized apart over rows and columns, thus having
relations X; = X, and Yy < Y». If for the mapping m;,w co in Fig. 10c these relations are lifted following Section 3.1.2, while
the relation over the y-axis is still defined (as A is located above of B), i.e.,, Ay < By, the relation Ax = Bx is unclear as the
abstract clusters for X-values are different due to different levels of abstraction.

To tackle this issue, an alternative abstraction method is needed that also abstracts over the built-in relations and reasons
over the abstracted relation (in the abstract domain). This leads us to a notion of abstraction that is similar in spirit to so
called existential abstraction [25] and allows us to introduce domain mappings over multiple sorts such as

m:D1x ... xDp— Dy x ... xDy,

and to handle relations over different levels of abstraction.
For this, we introduce an abstract relation rel for a k-ary relation rel as follows:

(V*_,d; e Dyreld;.dy) < I x em 1 @y).rel(xy. ... x). (61)

(V*_,d; € Dyneg_rel(d;, ... dy) & I x e m™ " (dy).~rel(x, . .., x). (62)

Le., r/e\l(cAh, el ak) is true if for some corresponding original values the original relation holds; the opposite of r/e\l(cAh, el ak),
i.e. neg_rel(dy, ...,dy), is true otherwise. Notably, both versions may hold simultaneously, depending on the domain clusters.

32

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Example 5.3 (Example 3.1 ctd). For the mapping {1,...,5}k the abstract relation k <k holds true, as X <Y for all X,Y
mapped to k. Both k=k and kneg_=k hold true, as X; = X> holds only for some X1, X values mapped to k.

Notice that having both rel and neg_rel hold means an uncertainty on the truth value of the relation in the abstract
clusters. This brings us to determining the types of the relations over the abstract clusters, similar as before.

Abstract relatlon types. The following cases t; — Ty occur in a mapping for the abstract relation predicates rel(d1, e, ak)
and neg_ rel(dl,... dk)

f?’@ ,ak) : rAel(cAh, .. dk) A notneg_ rel(ds, ..., dy)
T ’(d1,... dk) neg_ rel(dl,.. dk) /\notrel(dl,...,d;f) (63)
trel(dy, ... dy): rel(dy, ..., dy) A neg_rel(ds, ..., dy)

Type 1 is the case where the abstraction does not cause uncertainty for the relation, thus the rules that contain rel
with type I can remain the same in the abstract program. Type Il shows the cases where rel does not hold in the abstract
domain. Type III is the case of uncertainty, which needs to be dealt with when creating the abstract rules. To ensure that
an over-approximation is achieved, the head of the respective rule will be changed into a choice.

For an abstraction m, we compute the set 7y, of all atoms ‘l:[el(dl, .. dk) where ¢ € {I, I, IlI} is the type of rel(d1, e, Ak)
for m.

5.1.1. Abstraction procedure
For simplicity and ease of presentation, we consider programs with rules having (i) a single relation atom; and (ii) no
cyclic dependencies between non-ground literals.

Definition 5.1 (rule abstraction). Given a rule r: o < BS(r), rel(t1, ..., t;) and a domain mapping m, the set I contains the
following rules.

(a) m(@) < m(Br), 7. ... B,
(b) {m(e)} < m(B (), 71, ..., E)-
(c) For all L € B~ (r): ~
{m(a)} <—m(Bih(r)), r{fl(ﬁ, ..., tx), not isSingleton(m(t)).

sh P o o tearg(ay),a; €l
{m(a)} <~m(B}"(r), Tyjf (t1, . . ., tk), not isSingleton(m(t)).

where BS"(r)=B%4(r) UL, not BS%~ (r)\L.

The idea is to introduce guesses when there is an uncertainty over the relation holding in the abstract domain (b),
or over the negated atoms due to the abstract clusters (c) (by considering all combinations of the negative literals), and
otherwise just abstracting the rule (a).

The abstraction procedure introduced in Definition 5.1 obtains semantically the same abstract program as in Defini-
tion 3.4 for rules of form

o < BU(r), rel(ty, ty).
where rel(tq, tp) =t oty is a binary relation with o € {=, #, <, <, >, >}.
Definition 5.2 (existential abstract program I15'). Given a program IT and a domain mapping m, we denote by

ny = U MU (X | X€ Tms} U {m(p(©)). | p(©). € T} U {isSingleton(d) | m~" (d)| =1}. (64)

o< Bstd(r), rel(t ,t2)ell

the program obtained from IT under existential abstraction using m.
We then have

Theorem 5.1. For any domain mapping m of a (standardized apart) program I1 with rules having a single relation atom and no cyclic
dependencies between non-ground literals, AS(IT™) and AS(I15') coincide (modulo auxiliary atoms).

A generalization to multiple relation atoms and handling cyclic dependencies by removing the restrictions (i)-(ii) can be
done similarly as in cases (G-II) and (G-III) of Section 3.2.

33

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Example 5.4 (Example 3.1 ctd). For the program IT in (4)-(6) with the choice rules (28)-(29) and m = {{1, ..., 5}—k}, the
program ITJ is

c(X) < notd(X), dom(X).

{c(X)} < not isSingleton(X), dom(X). (65)
d(X) < not c(X), dom(X).
{d(X)} < not isSingleton(X), dom(X). (66)

b(X,Y) < a(X),d(Y).
e(X) < c(X),a(y), rfé(x, Y).

(e(X)} < c(X), a(y), rlﬁ(x, Y).
L« b(X,Y),e(X1), 1 (X, X1).

with the abstract fact a(k); furthermore, we have 75 = {rﬁf (k, k), rl;:I (k,k)}. Note that the atoms d(X) and c(X) are omitted
in (65) and (66) respectively, as they are involved in a negative cycle, similar as in rules (35) and (37) of Example 3.19.

The abstract program is similar to the one constructed by lifting the relations in Example 3.19. As can be easily checked,
the programs have modulo the auxiliary atoms the same abstract answer sets.

We note that the previous refinement methods can be applied to the abstract program constructed in this way as well,
since nothing changes with regard to how this program can be refined. Furthermore, we observe that for treating n-ary
relations where n > 2, we can modify Definition 5.1 to create finer abstractions.

Example 5.5. Consider the argument Z of the following rule involving addition:

r:e(Z) < cX),ay),Z=X+Y. (67)

We denote Z = X + Y with the relation plus(X,Y, Z). Regarding the arguments, we have arg(e(Z)) N arg(plus(X,Y,
Z))={Z}#@ while arg(e(2)) N{X, Y} =0, where X, Y are the shared arguments of the body literals with the relation plus,
i.e, arg(B(r)) Narg(plus(X,Y, Z)) = {X, Y}. Consider the mapping m : {1} — ay, {2, 3} — az3, {4,5} — as5 and X=aq, Y=a;.
For the abstract relation p’lzs both p’lgs(ah ai, dzs) and neg_p’lgs(a1,a1,a23) hold true, due to 1+1=2and 1+1+#3.As Z
is not used in the body literals, it does not cause uncertainties for applying the rule in the abstraction, which is caught by

e(Z) < c(X),a(y), rl?fl(x’y’z), isSingleton(X), isSingleton(Y).

In general, by adding in Definition 5.1 the rule
m(a) < mBYm), T 1, - By Aiycarg, el argla) isSingleton ().

ifarg(o) Narg(rel) # ¢ and arg(o) Narg(B4(r) Narg(rel)) = ¢

the guess in (b) can be avoided, if all arguments of rel not involved in the head [are singleton clusters.
The use of abstract relations opens a wide range of possible applications, as it simplifies the use of a given program
without preprocessing it to match the restrictions over the forms of the relations for the previous abstraction method.

5.1.2. Computing joint abstract relation types

Abstract relations can be easily employed with abstraction mappings over several sorts in the domain as m: D1 X - -+ X
Dy — Dq x -+ x Dyp. If a rule has relations over the sorts, a joint abstract relation combining them must be computed We
show an example of grid-cell abstraction for illustration.

Example 5.6 (abstracting grid-cells). Consider the relations rel1 (X1, X2): X1 =Xz and rely(Yy, Y2): Y1 <Y; for Xy, Xz erow, Yy,
Y; € column, from standardizing apart the variables in (58). The rules to compute the types ‘L'Irel ‘l:{lfl, where rel combines
rel; and rely, are as follows:

1. Define the abstract relations. This step corresponds to the existential abstraction (61).

rel; (X1, ¥1), (X2, V2)) < reli (X1, X2), m((X1, Y1), (X1, Y1), m((Xa, Y2), (X2, ¥2)).
rely (X1, ¥1), Xz, V2)) < rela (Y1, Y2), m((X1, Y1), (X1, Y1), m((X2, Y2), (X2, V2)).

34

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

reli€1, .., &) < reli(dh, ..., dy), m((@d}, ..., d), &), ..., m((@d}, ..., d[),). i=1,...m
neg_rel; €1, ..., &) < —reli(di, ...,), m(@}, ..., d{), e, ..., m(@}, ... d?), &) i=1,..n
‘L'Ir;li @1.....&) <Teli(Ey..... &), not neg_rel; é. ..., Cr)- i=1,..., ny
rlfel" €1,.-es &) < not rely(¢y, ..., &), neg_rel @y, ..., Ck)- i=1,..., n
‘[Iﬁl"(éh..‘,fk)<—1:Eli(€1,..‘,6k),neg_r/§l,'(61,...,fk)‘ i=1....m

T 8 T 1 B T G 8.

~ rel: o .
C],...,Ck)%‘[m’(ﬁ ~~~~~ Ck) /\j 1}#,n0tru (Cl - Ck)- i=1,...,m

Fig. 11. Computation of multi-dimensional relation types (¢; = (d!

The negations neg_r’e-ﬂ, neg_re’E are computed similarly as (62).
neg_rel (X1, Y1), (X2, ¥2)) < =rel1 (X1, X2), m((X1, Y1), (X1, Y1), m((Xa, Y2), (X2, ¥2)).
neg_rely (X1, Y1), (X2, Y2)) < =rely (Y1, Y2), m((X1, Y1), (X1, Y1), m((X2, Y2), (X2, ¥2)).
2. Compute the types of each abstract relation r?li,i € {1, 2} with the objects C; = (X;, ¥i),i € {1,2} as (63).

reli(é] 62) (—TTCT((AH 62) not neg_ 1%7(61 62)

rel;

(1 ’(C1 Cz) <—notrel (C1 Cz) neg_rel (C1 Cz)

rel,

L (€1, Cy) <—rel (C1,Cy), neg_ rel (€1, Cy).
3. Compute the types of the joint abstract relation rel over r’e\li, ie{l,2}:
T(Cr, E) < T (1, G, TR (o Ca).
¥(Cr, 65) < not T (G, &), TR (Eq. Ey).
rqu’(q,cz) <—z{lf” (€1, Cy), notrre’z(cl,cz).

The mapping (60) shown in Fig. 10c gives the types rla((ahb]), (aq, by)), rer"’((az, b1), (az, by)) and r{;‘” for the remain-
ing abstract pairs.

Fig. 11 presents the multi-dimensional case, that is computing abstract k-tuple relations for given relations rely, ..., reln,
over variables from D1, .. Dn2 We assume for 51mp11c1ty a uniform arity k.

Note that for the joint abstract relation rel type rr” computation is not needed, as the abstract rule construction only

deals with types I and IIl. To emphasize the abstracted relations, we may denote rel in 7' with the combination of the
relations the abstract relation is built on; e.g., for the joint relation type of rel{ (X1, X2): X1 =X, and rely(Yq, Y2): Y1 <Yy
we write 7,77, 7.

The multi-dimensional abstraction constructs an abstract structure, ie., object, over the abstracted sorts where not all
combinations of the abstract sorts yield a valid object. To illustrate this, in Example 5.1 the color cluster rgb can only be
considered with the node cluster 4. This also needs to be taken into account when constructing the abstract program.

Example 5.7. The abstract program for Sudoku (57)-(59), where the occurrences of row(X), column(Y) are replaced by
cell(X,Y), is as follows.

hasNum(X,Y) <—sol(X,Y,N),cell(X,Y).
{sol(X,Y, N)} < not occupied(X,Y),num(N), cell(X,Y).
{sol(X,Y, N)} «<—occupied(X, Y), num(N), not isSingleton(X), cell(X, Y).
{sol(X,Y, N)} «<—occupied(X, Y),num(N), not isSingleton(Y), cell(X, Y).
1 «<—not hasNum(X,Y), cell(X,Y).
L < sol(X1, Y1, M), sol(Xa, Y2, M), 77"~ (X1, Y1, X2, Y2), cell(X, Y1), cell(X2, Y2).
1 «sol(Xy, Y1, M), sol(X3, Yz, M), ‘L’l<’=(X1, Y1, X2, Y2),cell(X1,Y), cell(X2, Y2).

35

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

a a 4 a5 4 ags
by [(1) (2)
bz

b3

by

- A /N X
Level | 3) bse7s (4) bse7s
W W)

)) 1234 as678

Fig. 12. Quad-tree representation for regions.

5.1.3. Refinement of multi-dimensional abstractions

The refinement method introduced in Section 4 can be used for multi-dimensional abstractions as well. For this to work,
we need the k-tuples, on which the abstraction will be made, to occur in the rules. For example, for a 2-dimensional ab-
straction, the pairs X, Y should appear in the rules together. This will ensure that when the meta-programs are constructed
as in Definitions 4.4 and 4.5, the abnormality atoms will contain these tuples.

The non-ground query Qim in Definition 4.3 must be updated with mappings of form m((X1, Y1), (5(1, ?1)) instead of

m(Xq, 5(1). The program Ilp;,, that gets hints refine(cy, ..., cy) about which cluster to refine in Definition 4.7 also needs
to be updated, so that it can be used to refine the multi-dimensional abstraction mapping. For example, in case of a 2-
dimensional abstraction mapping, for cy,, ¢y, € arg(ab_deacty, (cx,y)), where cxy = Cx;,Cy,, ..., Cx,, Cy,, We will have

refine(cy,y) <— ab_deacty, (cx,y), m(Cx;, Cy;, Ax;, Ay;), not isSingleton(ay,). (68)
refine(c,y) < ab_deacty, (cx,y), m(cy;, Cy;, Ax;, Ay,), not isSingleton(ay,). (69)

In fact, if we focus only on the abstract region that needs to be refined, we may use atoms refine(ay;, ay;) in the heads
of the rules (68) and (69), and then decide on a refinement for the region (ay;, ay;). A similar change will be needed for
ab_deactConsy,, and ab_act.

After these changes the refinement method can be applied to multi-dimensional abstractions. More information on our
approach to deciding on a refinement in the implementation is given in Section 6.2.2.

5.2. Quad-tree abstraction

Grid-cell environments are a particular type of environment which describes a structure. For problems over grid-cells, it
is often the case that certain parts of the environment are crucial to finding a solution. In order to obtain an abstraction
over a grid-cell that allows to adjust its granularity, multi-dimensionality must be considered. Multi-dimensional abstraction
allows us to express abstractions where one sort in the domain (e.g., an X coordinate) is abstracted depending on its context,
i.e., depending on a second sort in the domain it occurs with (e.g., a Y coordinate).

For a systematic refinement of abstractions on grid-cell environments, we consider a generic quad-tree representation
(Fig. 12), which is a concept used, e.g., in path planning [69]. Initially, an environment may be abstracted to four regions
of n/2 x n/2 grid-cells each. This amounts to a tree with four leaf nodes that correspond to the main regions. Each region
then contains 4 leaves of smaller regions. The leaves of the quad-tree are then the original cells of the grid-cell at level 0. A
refinement of a region amounts to dividing it into four subregions, i.e., sprouting the respective node to four children. Given
the original X and Y coordinates aq,...,a, and by, ..., by, respectively, we represent the coordinates of an abstract region
with level logy (k+1), for 0 <k <n, defined over the cells within the coordinates aj, ..., aj1x and bj, ..., bjk, respectively,
by the shorthand notation (a;...itk,bj.. jyk)-

Starting with an initial abstraction of level log;(n), using quad-tree split operations as abstraction refinement operations,
we can automatically search for suitable quad-tree-structured abstractions in grids (see Section 6.2.2). Importantly, multi-
dimensional abstraction refinement is structure aware: refining one of the squares of a quad-tree (e.g., area (3) in Fig. 12)
maintains the structure of the abstraction of all other squares.

We illustrate next how such a structure can be used to adjust the granularity of the abstraction over the grid-cell.

Example 5.8 (Reachability). Suppose one wants to check whether all cells are reachable from a given starting point in a grid
with obstacles. In case there are unreachable cells, this is due to obstacles separating them from other cells. For a person,
a glance over the area with the obstacles will be sufficient to realize that some cells are unreachable. The rules below
compute the obstacle-free cells (i.e., points) that are reachable from the starting point; an additional constraint (75) checks
whether all points are reachable.

point(X, Y) <—not obsAt(X,Y), row(X), column(Y). (70)

36

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Fig. 13. Original grid-cell domain.

(a) Initial abstraction (b) Distinguishing the obstacles that cause unreachability

start(ai234, b1234). ° . start(ayz, b12).

. . . . obsAt(ay, bs). obsAt(az, bs).

obsAt(@1234. b1234). obsAt(as, bs). obsAt(aa, bs).

obsAt(ai234, bse78). obsAt(as, b7). obsAt(aa, bs).

obsAt(ai2, b12).

obsAt(ase7s, b1234)- . obsAL(@se7s. B1234).

. . obsAt(ase7s, bses).- obsAt(ase7s, 05678)-

Fig. 14. Abstractions over the grid-cell domain with obstacles in Fig. 13.

reachable(X,Y) < start(X, Y). (71)
reachable(X, Y1) < reachable(X,Y), point(X1, Y1), neighbor(X, Y, X1, Y1). (72)
neighbor(X,Y, X1,Y) < |X — X1|=1, column(Y). (73)
neighbor(X, Y, X, Y1) < |Y —Y{| =1, row(X). (74)
1 < point(X, Y), not reachable(X, Y), row(X), column(Y). (75)

Fig. 13 shows an instance of a grid-cell domain with obstacles; the program is unsatisfiable on it due to the unreachable
cells in the lower left area. Fig. 14 shows two abstractions over the grid-cells, including the abstracted start and obstacle
positions, the initial abstraction dividing the grid-cell into 4 regions (Fig. 14a), and an abstraction that distinguishes the area
which shows the obstacles causing unreachable cells in the lower-left corner (Fig. 14b). Appendix B.3 provides a detailed
example of applying automatic refinement (Section 5.1.3) and the mDASPAR tool (Section 6.2.2) to this example.

6. Implementation and evaluation
6.1. Overall methodology

The abstraction and refinement method for domain abstraction is shown in Algorithm 2. In the initialization phase, the
abstract program is constructed for the mapping m depending on the mode of abstraction (lifted or existential) on the built-
ins (Line 2); the relation types are also computed in this step. After constructing the debugging program (Line 3), some
abstract answer set is computed (Lines 5), and its concreteness checked with a call to the function getASWithMinAbAtoms
on the non-ground query Qim (Definition 4.3) for m and 1 (Line 6), which returns an answer set of Igepyg U Qi’” with

minimal number of ab atoms. If the latter is positive (i.e., Tis spurious), m is refined given the ab atoms found in the check
(Line 9) and the abstract program and the relation types are recomputed before looping back to evaluation. Among possible
variations of the algorithm, we want to mention the following.

Abstraction over subdomains/sorts For abstraction over a particular subdomain resp. sort, Algorithm 2 can be extended with
a predicate name s for the sort in the input and the computation of the abstract program, the relation types and the
debugging program focused on the domain elements related with s.

Correctness checking for relevant atoms The correctness checking of abstract answer sets can be confined to the relevant
atoms describing the solution by constructing Q;“ (Line 6) only for these atoms. An abstract answer set will then pass as

concrete as long as it describes a concrete solution with respect to them.

37

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Algorithm 2: Domain-Abs&Ref.

Input: program I1, domain mapping mj;;, mode (lifted or existential)
Output: 1I™, a mapping m refining mini, and an abstract answer set 1 of TI™ resp. @ if IT™ is unsatisfiable.
m = Minj¢;
[T1™, Tm] = constructAbsProg(I1, m, mode);
Mgebug = constructDebugProg(TT);
while AS(TT™" U Ty) # @ do
Get 1€ AS(II™ U Tny);
C = getASWithMinAbAtoms(Igepug U Qi’”);

if C|qp =0 then /= 1 is concrete */
return 1™, m, |

m = decideRefinement(m, C|qp);

[TI™, Tm] = constructAbsProg(I1, m, mode);

return 1", m,

OO N U A WN =

-
oy

Diverse abstract answer sets The refinement decision may be made by looking at multiple abstract answer sets rather than
a single one. Lines 5-8 are changed to collect the checking results Cq,...,C, for abstract answer sets Iq,...,I; then
decideRefinement can use the collected results Cq|gp, ..., Cnla (all assumed to be nonempty) for deciding on a refinement.
We call (v1) the refinement approach where the answer set C; with the least cost (aggregated from the collection) is
picked, while refinement approach (v2) decides by choosing the refine atom that occurs most frequently in the answer sets
Ci,...,Cph.

6.2. Implementation

The methodology in Section 6.1 has been implemented in tools called DASPAR and mDASPAR based on clingo 5.2.2,
Python and the Ouroboros debugging tool [93], whose MetaTranslator is exploited to obtain a reified program for which then
the debugging program is constructed (cf. Section 4); negative cycles are merged as described in Section 3.2.3. More de-
tails are provided in the next subsections. The implementations are online available at http://www.kr.tuwien.ac.at/research/
systems/abstraction/.

6.2.1. DASPAR

The program DASPAR supports abstraction from sorts, but the input program IT must adhere to certain restrictions: each
variable in a rule must be guarded by a domain predicate; if the abstraction should be on some subset S of sorts, then the
variables referring to the sorts in S must be standardized apart. For example, a rule of form

a(X) < b(X, X1),c(X2),d(X2), X < Xi.

needs to be converted into

a(X) < b(X, X1),c(X2),d(X3), X < X1, X3 = X3, dom(X), dom(X1), dom(X2), dom(X3).

with domain predicate dom. In order to support the case of having more than one relation, a syntactic change on the rule
has to be made. These relations need to be combined into an auxiliary relation atom which represents the combination of
the relations. The above rule needs to be converted into

a(X) <b(X, X1),c(X2),d(X3), leqgEqud(X, X1, X2, X3).

where leqEqu4(X, X1, X2, X3) is an auxiliary atom which holds true whenever the respective relation holds true for its
arguments. A basic set of auxiliary relation combinations are built into the tool, and more can easily be added.
DASPAR is invoked as follows.

python daspar.py prog mapping pred ref type <focus atoms>

Here prog contains the original program in the input format and the mapping the abstraction mapping information.
DASPAR supports abstraction on one sort (see Section 6.2.2 for multi-dimensional tool mDASPAR), thus pred should be the
name of the sort to the abstracted. The parameter ref type allows to specify whether the refinement should respect an
order relation (1) or not (0) (see Section 3.3.1). If 1 is given, the refinement step considers only splitting the domain, while
when 0 is given the refinement step is unrestricted. The parameter <focus_atoms> is an optional input for projection in
the correctness check (see Section 6.1).

DASPAR has different settings for picking abstract answer sets and for deciding on a refinement. For the former, by
default the first computed answer set is picked. This can be changed to considering a diverse set of abstract answer sets.
For deciding on a refinement, the two forms mentioned in Section 4 are implemented. Later, we evaluate the effects of
having these different settings in the methodology on the achieved resulting abstractions.

38

http://www.kr.tuwien.ac.at/research/systems/abstraction/
http://www.kr.tuwien.ac.at/research/systems/abstraction/

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

point (X,Y) :- not obsAt(X,Y), row(X), column(Y).
reachable (X,Y) :- start(X,Y), row(X), column(Y).
reachable (X1,Y1) :- reachable(X,Y), point(X1l,Y1l), neighbor(X2,Y2,X3,Y3),

equEqu4 (X,X2,X1,X3), equEqu4 (Y,Y2,Y1,Y3)
row(X), column(Y), row(X1l), column(Yl),
row (X2), column(Y2), row(X3), column(Y3).

:- point (X,Y), not reachable(X1,Y1l), X=X1, Y=Y1,

row(X), column(Y), row(X1l), column(Y1l).
neighbor (X,Y,X1,Y1) :- distl(X,X1), Y=Y1, row(X), column(Y), row(Xl), column(Y1l).
neighbor (X,Y,X1,Y1l) :- X=X1, distl(Y,Y1l), row(X), column(Y), row(Xl), column(Y1l).

Fig. 15. Input program with the rules (70)-(75). Subdomain predicates are row and column.

For practical purposes, sorts can be overlapping, provided that all occurrences of a sort are guarded by subdomain
predicates. E.g., the blocksworld has sorts block and time which both can use integers. Note that this restriction is to aid
the machine knowing about the relations of the arguments, which the user implicitly knows when encoding the problem.
With this guidance, it becomes clear which arguments in the rule the abstraction should focus on.

6.2.2. mDASPAR

The program mDASPAR extends DASPAR to multi-dimensional domain abstraction. It handles 2-dimensional abstractions
with a quad-tree style refinement process, and it can be applied to problems over cells in grids of size n = 2¥ for k > 2. We
discuss some challenges of multi-dimensional abstractions that are tackled in the system.

Abstract objects A multi-dimensional abstraction creates abstract objects for tuples of concrete objects; not all combinations
of the abstracted sorts, e.g., row and column, correspond to a valid object. To avoid such combinations, the constructed
abstract program should comply to only using the abstract objects in the rules. For this, mDASPAR post-processes the
abstract program and replaces the occurrence of the abstracted sorts with a new object name.

Note that for “grouping” objects automatically and correctly, the system needs some guidance. For a given encoding,
humans are capable of detecting the cells implicitly, whereas a machine cannot do this readily. The user must provide it
with some guidelines to recognize the objects, by adjusting the encoding so that the grids are explicitly shown. For this, we
impose some syntactic restrictions on the input program, on which the post-processing technique relies.

Given two sorts s1, sy for a 2-dimensional abstraction, the input program should adhere to the following restrictions in
order to achieve a correct object naming:

(1) The rules should have atoms that contain pairs X, Y of variables where X €s1,Y €55, and
(2) the subdomain predicates for sorts s1, s should be written in the order of the pairs.

If these restrictions are satisfied, then mDASPAR can correctly convert the sort names to the abstract object name cell. For
example, row(X1), column(Yq) is changed to cell(X1, Y1).

Example 6.1 (ctd). The rule (72) will be standardized apart into

reachable(X1, Y1) < reachable(X,Y), point(X1, Y1), neighbor(X3, Y2, X3,Y3),
X=X2,X1=X3,Y=Y2, Y1 =Y3.

Then the multiple relations related with a sort should be converted into an auxiliary relation atom:

reachable(X1, Y1) < reachable(X,Y), point(X1, Y1), neighbor(X3, Y2, X3,Y3),
equEqud(X, X2, X1, X3), equEqu4(Y, Y2, Y1, Y3).

The subdomain predicates for the rule above also need to be written in a format where the pairs (X, Y), (X1, Y1), (X2, Y2),
and (X3, Y3) appear together. Fig. 15 shows the resulting rules in the input program, including all subdomain predicates.

Relation type computation When abstracting a rule, mDASPAR gathers the relations in it related with the abstracted sorts
and creates an abstract relation atom following the description in Section 5. The relation type facts () are computed using
auxiliary programs.

The program mDASPAR is invoked similarly to DASPAR, but with an additional parameter size which is the number n.
The next example shows the input format of mDASPAR and the created abstract program.

Example 6.2 (ctd). Fig. 15 shows the input program for mDASPAR with the rules (70)-(75) where variables are standardized
apart. The program constructed for abstracting over the sorts row, column is shown in Fig. 16, where the occurrence of
the sorts are renamed with a new object cell. The rules of the original program are numbered (rq, ..., 1) and the relation

39

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

point (X,Y) :- cell(X,Y), not obsAt(X,Y).
{ point (X,Y) } :- cell(X,Y), obsAt(X,Y), not isSingleton(X).
{ point (X,Y) } :- cell(X,Y), obsAt(X,Y), not isSingleton(Y).
)

reachable (X,Y) :- start(X,Y), cell(X,Y
)

reachable (X1,Y1) :- reachable(X,Y), point(X1l,Y1l), neighbor (X2,Y2,X3,Y3),
cell (X2,Y2), cell(X3,Y3), cell(X,Y), cell(X1,Y1)

relr3 (X,Y,X2,Y2,X1,Y1,X3,Y3,1).

{ reachable (X1,Y1) } :- reachable(X,Y), point(X1,Y1l), neighbor(X2,Y2,X3,Y3),
cell (X2,Y2), cell(X3,Y3), cell(X,Y), cell(X1,Y1),
relr3(X,Y,X2,Y2,X1,Y1,X3,Y3,1iii) .

:- point(X,Y), cell(X,Y), cell(X1,Y1),
not reachable(X1,Y1l), relr4(X,Y,X1,Y1,1i).

neighbor (X,Y,X1,Y1) :- distl(X,X1l), cell(X,Y), cell(X1,Y1l), relr5(Y,¥1,1i).
{ neighbor(X,Y,X1,Y1) } :- distl(X,X1), cell(X,Y), cell(X1l,Y1l), relr5(Y,¥1l,iii).
neighbor(X,Y,X1,Y1l) :- distl(Y,Y1l), cell(X,Y), cell(X1,Y1l), relr6(X,X1,i).
{ neighbor(X,Y,X1,Y1) } :- distl(Y,Y¥1l), cell(X,Y), cell(X1l,Y1l), relr6(X,X1,iii).

Fig. 16. Non-ground abstract program constructed by mDASPAR.

atoms in the abstract program are named w.r.t. the rule number. For example, the constraint (75) is numbered r4, and
the standardization creates the relations X = X7 and Y = Yq; in the abstraction the joint relation type atom becomes
777 (X,Y, Xq,Yq) for type L. The abstracted constraint containing the type III relation atom, i.e., 7~ (X, Y, X1, Yy), in its
body is unsatisfiable and gets omitted in the abstraction (similar to omitting (14) in Example 3.13).

Furthermore, standardizing apart the variables of the negative literal in (75) relaxes its aim of ensuring that all points
are reachable to hold only when the abstraction is refined enough to satisfy the relation atom relr4 (X,Y,X1,Y1,1i).
Having (75) without standardization would ensure it is satisfied in coarser abstractions. We standardized apart the variables
of the negative literal as well to obtain more fine-grained abstractions that distinguish the original cells to reach a concrete
solution. This makes it easier to visualize the resulting abstractions and understand solutions obtained.

6.2.3. Implementation aspects of mDASPAR

Two-phase debugging. The multi-dimensionality of the domain mapping gives rise to many possible causes of spuriousness.
Debugging the non-ground spuriousness by searching for the answer set with smallest number of ab atoms can become
more difficult. To handle this, we implemented a two-phase debugging approach. In phase 1, the debugging program Igepyg
is created by modifying the debugging atoms ab_deact, ab_deactCons of Definition 4.5 to have only the rule name as argu-
ments. We denote this program by Ilgepyg,. This then results in an easier computation of an answer set with minimal ab
atoms. In phase 2 a new program Ilgepyg is created according to the original definition, but the ab atoms are only created
for the rule names or atoms occurring in the ab atoms of I. This way, the search for an optimal answer set focuses on the
trouble-making rules/atoms.

Steer debugging towards constraints. In the problems we focus on, the constraints in the program cause to have unsatisfi-
ability or to obtain a particular solution for a given instance. In order to help with reaching abstractions where the relevant
constraints are distinguished, we assign less cost to obtaining answer sets with ab_deactCons atoms in the optimal answer
set search during debugging.

Getting hints. Since the refinement of a region means to split it into four subregions, we only need to get the hint of
which region to refine. This is different from the hints obtained for DASPAR, as there a decision for refinement relies on
the domain elements occurring in the debugging atoms. We alter the refine atoms to get the information of which abstract
domain occurs as a reason for spuriousness.

Modular concreteness checking. In some cases, even the two-phase checking may not help with easily finding the optimal
answer set during the debugging step as the original domain is large or many atoms cause to consider many possible
concretizations. We thus considered two orthogonal approaches:

(1) For programs that are modular and contain a clear order on the atoms (e.g. in a plan), the checking is done incrementally
over the approach, similar in spirit to [53] which builds on the concept of modules [94].

(2) Using a hierarchy of abstractions (as possible by Proposition 3.6), the checking is done via incrementally concretizing
the abstract domain, following an iterative deepening style (Fig. 17).

The aim of Approach (1) is to avoid checking the whole ordered sequence of atoms (e.g., a plan), and catching the
spuriousness in some prefix. Approach (2) is applied to avoid making the concreteness check directly at the original domain.
If the abstract answer set is spurious, this may be detected in the partially concretized domain. We then check correctness
of 1 on the abstract level m; using I1™i. If T is concrete w.rt. the partially concretized abstraction, the concretization is

40

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Fig. 17. Step-wise partial concretization of a grid-cell abstraction.

increased for redoing the check. However, if spuriousness is detected, the mapping is refined and the partial concretization
continues from the updated mapping.
Further details on the implementation can be found in Appendix B.4.

6.3. Evaluation: obtaining abstract solutions

The main aim of our evaluation was to see whether the domain abstraction and refinement method from above can
find automatically non-trivial domain abstractions that yield concrete answer sets. We also wanted to observe the effect of
variants of picking abstract answer sets (Section 6.1) or making refinement decisions (Section 4).

6.3.1. Experiments
We used DASPAR v0.2 for the experiments, which employs the sophisticated debugging program for concreteness check-
ing.> The variations we considered are as follows.

e When computing abstract answer sets, we either (s) pick a single abstract answer set or (div) pick a (diverse) set of
answer sets w.r.t. the focus atoms.

e Deciding on a refinement is either done (v1) by assigning costs to possible refinements and picking the one with
smallest cost or (v2) by using the hints obtained from the debugging atoms while checking. For (v2), it is ensured that
the distinct domain elements in the picked debugging atom do not occur in the same cluster.

We conducted experiments on two benchmark problems from ASP competitions, viz. graph coloring and disjunctive
scheduling. For graph coloring, we randomly generated 20 graphs on 10 nodes with edge probability 0.1,0.2,...,0.5 each;
out of the 100 graphs, 74 were 3-colorable. We used two different graph coloring encodings shown in Fig. 18, to see their
effect in the resulting abstractions. In the first encoding GCenc1 (Fig. 18a), a color assignment to each node is guessed as
(76)-(78) with the common approach of using default negation, the auxiliary atom hasEdgeTo(X, C) shows which colors C
the node X has as its neighbors. The second encoding GCepcy (Fig. 18b) uses a choice rule (83) to guess an assignment and
then ensures with (84) that a node is not assigned more than one color. The rules (85)-(86) are an alternative way of writing
the rule L <« chosenColor(X1, C), chosenColor(X,, C), edge(X1, X2), X1 < X». so that when the variables are standardized
apart for the sort node, fewer relation atoms occur in one rule. Also notice that GCepcp imposes an order relation among the
nodes, to reduce duplications of the constraints.

For disjunctive scheduling, for each t {10, 20,30}, we generated 20 instances with 5 tasks over time {1,...,t}. We
used the encoding® from ASP Competition 2011 and precomputed the deterministic part (i.e., not involved in unstratified
negation resp. guesses) of the program, so that they are lifted to the abstract program without introducing (unnecessary)
nondeterminism (see Appendix B.2). The initial abstraction mapping is the single-cluster abstraction, i.e., clustering all nodes
into one for graph coloring and all time points into one for disjunctive scheduling.

In the experiments, we use the lifted relation approach. While in existential abstraction on the relations (Section 5.1)
there are fewer relation types to consider, we observed no improvement in the computation effort, since type III for abstract
relations is a combination of type Il and IV of lifted relations. Thus, it does not make a difference which relation type
approach is used in the experiments.

5 Results for version v0.1 were reported in [113].
6 www.mat.unical.it/aspcomp2011/files/DisjunctiveScheduling/disjunctive_scheduling.enc.asp.

41

http://www.mat.unical.it/aspcomp2011/files/DisjunctiveScheduling/disjunctive_scheduling.enc.asp

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

chosenColor (X, r) < not chosenColor(X, g), not chosenColor(X, y), node(X). (76)
chosenColor(X, g) <—not chosenColor(X, r), not chosenColor(X, y), node(X). (77)
chosenColor (X, y) < not chosenColor(X, g), not chosenColor(X,r), node(X). (78)
hasEdgeTo(X, C) < edge(X, Y), chosenColor(Y, C). (79)
1 <« hasEdgeTo(X, C), chosenColor(X, C). (80)
colored(X) < chosenColor(X, C). (81)
1 < node(X), not colored(X). (82)

(a) GCenc1
{chosenColor(X, C)} < node(X), color(C). (83)
L« chosenColor(X, C1), chosenColor(X, C2), C1 # C. (84)
adj(X,Y) < edge(X,Y), X <Y. (85)
L «adj(X,Y), chosenColor(X, C), chosenColor(Y, C). (86)
colored(X) < chosenColor(X, C). (87)
1 < node(X), not colored(X). (88)

(b) GCenc2

Fig. 18. Two encodings of the Graph Coloring problem: GCepc1 and GCenca.

Table 4
Experimental results for graph coloring.
full projected
() (div) (s) (div)
(v1) (v2) (v1) (v2) (v1) (v2) (v1) (v2)
number of steps 7.38 7.83 7.04 7.69 5.24 6.48 4.83 6.14
abstraction domain size 8.38 8.84 8.04 8.69 6.24 748 5.83 714
cc faithful abstraction domain size 6.84 8.04 6.12 751 6.02 5.71 5.65 5.82
encl
trivial abstractions (id) 13% 23% 4% 12% 2% 1% 2% 2%
faithful & non-id abstractions 30% 32% 29% 27% 56% 61% 50% 47%
non-faithful abstractions 57% 45% 67% 61% 42% 38% 48% 51%
number of steps 7.01 6.40 6.56 6.37 3.53 3.76 3.40 3.52
abstraction domain size 8.01 8.64 7.56 8.29 4.53 6.73 4.40 6.36
oc faithful abstraction domain size 8.88 8.62 7.97 8.66 4.86 5.44 4.75 5.72
enc2
trivial abstractions (id) 19% 13% 5% 13% 3% 2% 3% 2%
faithful & non-id abstractions 22% 24% 25% 22% 54% 59% 54% 48%
non-faithful abstractions 59% 63% 70% 65% 43% 39% 43% 50%

6.3.2. Results
We report the average results over 10 runs for each variation. To ease presentation, we discuss the results for each
benchmark separately by concentrating on the different observations made throughout the experimental evaluation.

Graph coloring. The evaluation results of the obtained abstractions are presented in Table 4. The first two rows show the
average number of refinement steps and the average domain size (i.e., the number of clusters) of the resulting abstractions.
The best abstraction (i.e., with smallest domain size) found for each instance in the runs is further checked for faithfulness,
to observe whether the corresponding abstract program only contains concrete answer sets. The domain size of the faithful
abstractions is shown in the third row. The frequencies of the abstractions that are trivial (thus faithful), non-trivial and
faithful, and non-faithful are shown in the last three rows.

The left column shows the results of full concreteness checking with different variations. We can observe that deciding
on a refinement based on single abstract answer set (s) results in finer abstractions (i.e., with larger domain size) than
on diverse set of abstract answer sets (div). The number of trivial abstractions obtained is also smaller for (div) (better
decisions are made) and the chance of encountering a concrete abstract answer set is larger. The latter causes to obtain
more non-faithful abstractions, as then no refinement to an abstraction with less spurious answer sets is made. As for using
(v2), i.e., to decide on refinements, we can observe that this is not better for obtaining coarser abstractions than the minimal

42

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Table 5
Experimental results for scheduling.
time (s) (div)
(v1) (v2) (v2") (v1) (v2) (v2’)
number of steps 7.22 4.81 3.56 6.04 4.81 3.54
t=10 abstract domain size 8.22 8.48 8.46 7.04 8.38 8.35
calls abstract program 4135 5.81 4.56 40.72 5.81 4,54
calls debugging program 40.90 5.36 411 56.30 6.87 5.44
number of steps 14.71 7.65 547 12.00 7.53 533
t=20 abstract domain size 15.71 14.16 14.12 13.00 14.16 13.81
calls abstract program 168.48 8.65 6.47 157.41 8.53 6.33
calls debugging program 168.28 8.45 6.27 244.45 12.08 8.74
number of steps 22.82 9.57 7.76 20.57 9.56 7.68
=30 abstract domain size 23.82 19.02 19.12 21.57 19.07 18.68
calls abstract program 391.88 10.57 8.76 366.09 10.56 8.68
calls debugging program 39143 10.12 8.31 580.23 14.59 12.24

cost method (v1) in general; it also yields more trivial abstractions than (v1), as splitting the domain repeatedly to break
up clusters of certain abstract elements quickly ends up with the original domain.

The right column shows the results for a projected notion of concreteness that limits checking to a set of relevant atoms;
for this, we picked the nodes 1,2,3 and their assigned colors. As expected, a concrete abstract answer set is encountered
in much coarser abstractions, as the colors assigned to the other nodes do not matter. In case of projection, the trivial
abstraction is reached much less often; moreover, more non-trivial faithful abstractions are reached. This is beneficial, as
the computed abstractions can be used to obtain all (concrete) solutions over the nodes focused on.

The main difference of the various encodings is the size of the achieved abstract domains. GCe, requires fewer refine-
ment steps to achieve an abstraction with a concrete solution than GCenc1, as the need to preserve the node ordering leaves
fewer refinement possibilities. On average, the resulting abstractions are coarser than by GCepc1 While the domain sizes of
the faithful abstractions are larger. This may be due to the choice rule in GCency, causing spurious answer sets that must
treated by further refinement steps.

Disjunctive scheduling. We compared the effects of the variations for the resulting abstractions and the calls to the ASP
solver to obtain an abstract answer set, respectively, to check concreteness with debugging; Table 5 shows the collected
results. For the refinement search, we considered besides (v1) and (v2) the variant (v2’) of (v2) where each abstract element
in the obtained debugging atom is mapped to a singleton cluster in the refinement.

As expected, the minimal cost method (v1) causes much more calls to the ASP solver, as the cost for each possible
refinement must be computed. While it achieves coarser abstractions in half of the cases, the large number of calls is
a clear disadvantage. For example, for the case t = 20, (v1) achieves with (div) on average an abstract domain of 13.00
clusters with 400 calls to the ASP solver, while (v2’) achieves an average of 13.81 clusters with only around 15 calls.

For the instances with t = 20, refinement through hints (v2) achieves coarser abstractions than (v1) when single abstract
answer sets are picked. Here hints guide the refinement much better than the cost from a single abstract answer set. For
the cost from a diverse set of abstract answer sets, significantly coarser abstractions are achieved. Looking at t = 30, we can
observe that the cost approach (v1) results in much finer abstractions than the hint based approaches (v2) and (v2’), which
provide better guidance. This shows that a local search over the 1-step refinements does not always yield the best outcome,
and it is moreover also more expensive.

We can also observe that (v2') mostly achieves coarser abstractions than (v2); immediately singling out the domain
elements connected with the spuriousness helps. It also needs the smallest number of refinement steps compared to other
approaches, as it reaches a concrete solution much faster with the refinement decisions.

The results show that with larger domains, the effect of the abstraction can be seen much better; e.g., the best abstract
domain size reached for t =10 on average is 70.4% (= 7.04/10) of the original domain size, while for t =30 it shrinks to
62% (= 18.68/30).

Summary. The results show that with domain abstraction it is possible to achieve concrete solutions while abstracting
over some of the details of the program. Reaching faithful abstractions is desired; however it does not occur often, unless
a projected concreteness check is considered that only distinguishes the details relevant for a solution of the problem.
Obtaining hints from a set of abstract spurious answer sets instead from a single such answer set results in better decisions
and thus coarser abstractions.

6.4. Evaluation: unsolvable problem instances in grid-cells

We investigated obtaining explanations of unsatisfiable grid-cell problems by achieving an abstraction over the instance
to focus on the troubling area. We considered the following benchmark problems:

43

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

@) cm = g3t =0.076 (b) cm = 2t =0.299

Fig. 19. Measure for quality of a quad-tree abstraction.

e Reachability (R): This problem needs the neighboring cell information and can be encoded without introducing guesses.
We check whether every cell is reachable; unsatisfiability is due to the layout of the obstacles.

e Knight’s Tour (KT): This problem is on finding a tour on which a knight visits each square of a board once and returns to
the starting point. It is commonly used in ASP Competitions, with possible addition of forbidden cells. Unsolvability is
due to forbidden cells that prevent the knight from moving. In ASP competitions, this problem is encoded by guessing
a set of move(X1, Y1, X2, Y2) atoms and ensuring that each cell has only one incoming and one outgoing movement.’
There is no time sort (as in planning) which would describe an order.

o Visitall: We extended the planning problem of visiting every cell (without revisiting a cell) with obstacles. This problem
needs the neighboring cell information and can be encoded in two forms;

(V) as a planning problem, in order to find a sequence of actions that visits every cell, or

(Vkr) as a combinatorial problem similar to the Knight's Tour encoding.

To allow for shorter plans, we encoded (V) using go(X, Y, T) actions that can move horizontally/vertically to a cell X,Y
(without passing through obstacles) and the passed cells become visited; we set a limit of 30 time steps.

e Sudoku (S): This problem has also been used in ASP competitions.® Its encoding consists of a guess of numbers in the
cells combined with simple constraints such as one symbol per column, one symbol per subregion etc. The unsolvability
occurs due to violation of these constraints.

We generated 10 unsatisfiable instances complying to the following properties so that the unsolvability can be explained
by focusing on a troubling area’

In Reachability instances, a group of neighboring cells is unreachable due to the obstacles surrounding them.

For Knight's Tour instances, one or two cells are picked to have only one valid movement to an obstacle-free cell. This

way, these cells and the obstacles that do not allow the valid movements become a reason for unsolvability.

e The Visitall instances consist of either two dead-end cells or areas with only one cell passage, so that one is forced to
pass some cells more than once, which is not allowed.

e For Sudoku, we generated a layout of numbers that force to violate the constraints when solving the problem.

Measuring abstraction quality We consider a quality measure of the quad-tree abstraction by normalizing the number of
abstract regions of certain size and their level in the quad-tree. The cost of a mapping m over an n x n grid is

4 l
cmy= rpmye—iy /> n227" (e,
i=0 i=0

where ¢ =log,(n) — 1 is the level, r,i (m) is the number of abstract regions of size 2! x 2! in m, and n22="" is the number of
abstract regions of size 2! x 2! in the n x n-sized cell. The factor £—i is a weight that gives higher cost to abstractions with
more low-level regions. An abstraction mapping with the smaller cost, i.e., intuitively smaller level of detail, is considered
to be of better quality.

Fig. 19 shows measures of two abstraction mappings. The abstraction in Fig. 19a is coarser than the one in Fig. 19b, and
this is reflected in the computed measures. Assigning more weight to having coarser regions would stress the importance of
having a coarse abstraction even more. The computation of the measure is purely structural and domain-independent. Other
measures can be defined that are dependent on the domain which considers further aspects, e.g., such that an abstraction
that singles out the smallest number of cells with obstacles is preferred.

7 www.mat.unical.it/aspcomp2013/KnightTour.

8 dtai.cs.kuleuven.be/events/ASP-competition/Benchmarks/Sudoku.shtml.
9 All benchmark instances and encodings as well as user explanations for Visitall and Reachability are available at www.kr.tuwien.ac.at/research/systems/
abstraction/mdaspar_material.zip.

44

http://www.mat.unical.it/aspcomp2013/KnightTour
http://dtai.cs.kuleuven.be/events/ASP-competition/Benchmarks/Sudoku.shtml
http://www.kr.tuwien.ac.at/research/systems/abstraction/mdaspar_material.zip
http://www.kr.tuwien.ac.at/research/systems/abstraction/mdaspar_material.zip

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Table 6
Evaluation results of applying different debugging approaches.
debugging average minimum best
type steps cost steps cost steps cost
R default 5.4 0.227 5.4 0.227 50 0208
2-phase 5.5 0.233 53 0.222
S default 6.5 0.696 5.1 0.550 32 0371
2-phase 4.3 0.476 34 0.391
KT 2-phase 143 0.643 104 0.460 56 0.245
grid-inc 101 0.442 6.3 0.277
. a
v 2-phase 16.2 0.708 13.9 0.608 87 0360
time-inc 16.3 0.712 135 0.569
Vir 2-phase 15.7 0.693 13.0 0.572 76 0317
grid-inc 13.0 0.569 103 0.449

2 A total of 16 runs could not be completed due to memory errors. The results are computed
among the runs that have been completed.

(a) inst. #10 (b) V - spurious action transitions (c) Vg - separate action sequences that visit the
cells reachable with single-cell passages

Fig. 20. Spurious plans in abstractions that distinguish the single-cell passages.

6.4.1. Effects of different debugging approaches

We compared different debugging approaches from Section 6.2.3 to observe their effects on the resulting abstractions
and the taken refinement steps. Due to their encodings and constraints, the Knight's Tour and Visitall problems are the
challenging ones. To observe whether an incremental checking could help in deciding on a refinement and achieve better
abstractions, we applied for KT and Vir partial concretization and for V incremental time checking. To evaluate how far a re-
sulting abstraction is from the best possible abstraction showing unsolvability, we also checked whether a coarser abstraction
with this property exists.

Table 6 shows the main evaluation results. We compare different debugging approaches in terms of the average re-
finement steps and average costs of the resulting abstractions over 10 runs, and also on the best outcome obtained (with
minimum refinement steps and minimum mapping cost). The two right-most columns concern the existence of a coarser
abstraction for best outcome obtained. The time to find an optimal solution in the debugging step was limited to 50 seconds.
If exceeded, the refinement is decided on the basis of suboptimal analyses by considering the optimal debugging solution
that could be computed within the time limit.

For Reachability and Sudoku, we observe that abstractions close to the best possible ones can be obtained. Better ab-
stractions were obtained with 2-phase debugging in these cases (the majority with a clear margin for S), as after the first
step the focus was on the right part of the abstraction. For Knight’s Tour and Visitall, we observe that incremental checking
can obtain better abstractions. This is because for 2-phase debugging, the programs mostly had due to timeouts to decide
on suboptimal concreteness checking outputs. Moreover, for the V encoding 2-phase debugging caused memory outages
(limit 500 MB) on some runs for some instances, thus not all 10 runs could be completed.

We can also see a difference of the resulting abstractions for the two encodings of Visitall. The planning encoding
achieves unsatisfiability with less coarse abstractions. Guesses of spurious sequences of actions in the abstraction cause
the debugging to decide on refinements that avoid these sequences. The focus moves towards the unsolvability when the
abstract action sequence is not executable due to an obstacle. In some instances where the reason for unsolvability is not
easily caught by having two dead-ends, focusing on the existence of obstacles does not achieve unsatisfiability: the abstract
encoding manages to find a plan passing through different sized regions by avoiding the constraints due to uncertainty. For
these instances, the abstraction needs to be fine-grained enough to get rid of most of the uncertainty.

Fig. 20a shows an example of such an instance. An abstraction that distinguishes the one-passage-entries and the obsta-
cles that surround the cells cannot achieve unsatisfiability for encoding V. Fig. 20b shows some spurious action transitions

45

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

(e} O
(a) inst. #6 : expected (b) inst. #6 : unexpected (c) inst. #6 - DASPAR
e U o
e @ ’
O O
(d) inst. #10: expected (e) inst. #10: unexpected (f) inst. #10 - DASPAR

Fig. 21. Explanatory abstractions for unsatisfiable Reachability instances.

that are determined in a plan found with the V encoding among regions by avoiding the constraints due to uncertainty.
Unsatisfiability cannot be achieved for Vgr as well. This is due to guess of move atoms which achieve that every cell is
visited, but lack a corresponding original order of movements. Fig. 20c shows the spurious order of movements that is split
to visit each cell that is only reachable through a one-passage-entry. If the abstraction is refined to distinguish the cells in
the respective corners, then unsatisfiability is realized.

6.4.2. User study on unsatisfiability explanations

We were interested in checking whether the obtained abstractions match the intuition behind a human explanation. For
Reachability and Visitall, finding the reason for unsolvability of an instance is possible by looking at the obstacle layout.
Thus, we conducted a user study for these problems in order to obtain the regions that humans focus on to realize the
unsolvability of the problem instance.

As participants, we had ten PhD students of Computer Science at TU Wien. We asked them to mark the area which
shows the reason for having unreachable cells in the Reachability instances and the reason for not finding a solution that
visits all the cells in the Visitall instances; multiple reasons are to mark with different colors. Explanations for 10 instances
of each problem were collected.” We discuss the results for both problems by showing two of the responses (expected and
unexpected) and the best abstraction obtained from mDASPAR when starting with the initial mapping.

Reachability. The expected explanations (e.g., Figs. 21a and 21d) focus on the obstacles that surround the unreachable
cells, as they prevent them from being reachable. When their respective abstraction mappings are given to mDASPAR, the
constructed abstract program is also unsatisfiable. The explanation in Fig. 21b puts the focus on the unreachable cells
themselves, and Fig. 21e distinguishes a particular obstacle as a reason. The mark in Fig. 21e is actually a possible solution
to the unreachability of the cells, since removing the marked obstacle makes all the cells reachable. When the respective
abstraction mappings are given to mDASPAR, it needs to refine the abstraction further to distinguish more obstacles and to
realize the unsatisfiability.

In ASP, checking whether all cells are reachable is straightforward, without introducing guesses. This is also observed
to be helpful for mDASPAR, as most of the resulting abstractions were similar to the gathered answers. Since in the initial
abstraction, the abstract program only knows that the agent is located in the upper-left abstract region, in instance #10,
mDASPAR follows a different path in refining the abstraction, and reaches the abstraction shown in Fig. 21f. Although
different from the one by the users, it also shows a reason for having unreachable cells. Humans use the implicit knowledge
that the agent is located in the upper-left corner in order to determine the reason for unreachability of the cells, and thus
focus on a different area than mDASPAR. Such an abstraction can also be achieved with the method, by influencing the
refinement decisions towards singling out the initial location of the agent.

The abstractions achieved by mDASPAR are more general as the precise initial location of the agent is immaterial to
distinguish the unreachable cells: it can be in any of the cells mapped to the respective abstract region. The precise obstacle
layout in the abstracted regions also plays no role in determining the unreachability of the distinguished cells.

46

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

o)4)) .

B .

(a) inst. #1: expected (b) inst. #1: unexpected (c) inst. #1 - DASPAR
Q O] o] !
g|ujo
g|an

(d) inst. #10: expected (e) inst. #10: unexpected (f) inst. #10 - DASPAR

Fig. 22. Explanatory abstractions for unsatisfiable Visitall instances.

Visitall. Most of the users picked two dead-end cells in the instances (if such occur) as an explanation for unsatisfiability,
instead of the obstacles surrounding these cells (see Fig. 22a), which are the actual cause for them being dead-end cells.
Even with abstraction mappings that also distinguish the surrounding obstacles of these dead-end cells, the corresponding
abstract program still remains satisfiable. Then mDASPAR needs to further refine the abstraction to distinguish the neigh-
boring cells (as in Fig. 22c) and to realize that it can only pass through one grid-cell when reaching the dead-end cells, and
thus achieve unsatisfiability. Unexpectedly, some users marked only one of the dead-end cells as an explanation (Fig. 22b),
which is actually focusing on a possible solution to the unsolvability, since if the marked area was not a dead-end, all cells
could have been visited.

Some instances do not contain two dead-end cells, but single-cell passages to some regions. Fig. 22d shows an entry
that distinguishes these passages, while again focusing only on the cells themselves. For these instances, the results of
mDASPAR are quite different. A discussion on why having an abstraction that distinguishes the one-passage-entries and the
obstacles that surround the cells cannot achieve unsatisfiability was given for Fig. 20 in Section 6.4.1. Fig. 22f shows the best
abstraction achieved for Vir. Instead of focusing on the passages, it distinguishes all cells in the one-passage-entry regions
to realize that a desired action sequence that will manage to visit all cells without revisiting one cannot be found.

The generality of the achieved abstractions is also here observable: the precise agent position and obstacle layout in the
abstracted areas do not change the unsatisfiability result as not all cells in the distinguished parts can be visited.

Observations The abstraction method can demonstrate the capability of human-like focus on certain parts of the grid to
show the unsolvability reason. However, humans implicitly also use their background knowledge and do not need to explic-
itly state the relations among the objects. Empowering machines with such capabilities remains a challenge. The study also
showed a difference in understanding the meaning of “explanation”. For some study participants, showing how to get rid
of unsolvability was also seen as an explanation. This discrepancy shows that one needs to clearly specify what is wanted
(e.g., “mark only the obstacles that cause to have unreachable cells”), to achieve less variety of results.

7. Discussion

In this section, we first discuss a possible way to achieve abstraction over predicates using our method, and we then
focus on the ASP planning use case in order to highlight the potential of domain abstraction in finding the essence of
planning problems. After that, we discuss related work in the literature.
7.1. Predicate abstraction

Predicate abstraction in ASP would introduce literals involving new predicates that describe an abstraction of original
literals, and rewriting the program to mention only the new literals. Naively replacing literals with the abstract ones would

not always achieve an over-approximation.

47

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Example 7.1 (Example 3.1 ctd). Consider a predicate abstraction that maps the atoms a(X) and d(X) to ad(X), i.e., if a(d) or
d(d) holds true for some d € D, then ad(d) holds true. When we replace the a- and d-atoms in Example 3.1, we obtain the
following program:

b(X,Y) <—ad(X), ad(Y).
e(X) < c(X),ad(Y),X#Y.
L < b(X,Y),eX).
ad(1). ad(3). c(2). ad(5).
However, the answer set of the program contains {b(1, 1), b(3,1),...} and it does not match the original answer set.
A simple way to achieve predicate abstraction is via domain abstraction after reification of predicates of the original

program. For example, p(X,Y) is written to x(p, X, Y) and a sort of predicate names (viewed as constants) is introduced.
By standardizing apart the variables, predicate names can be clustered via the built-in relations.

Example 7.2 (ctd). Rewriting the atoms a(X) and d(X) to x(a, X) and x(d, X), respectively, yields the program

b(X,Y) < x(P1, X),x(P2,Y), P1 =a, P, =d, pred(P1), pred(P2).
e(X) «<c(X),x(P,Y),P=a,pred(P), X #Y.
L < b(X,Y),e(X).
x(a, 1). x(a,3).c(2).xd,5).
pred(a). pred(d).
Then an abstraction m over the sort pred such as {a, d}+>ad can be applied.

This approach works for predicate abstraction where the corresponding literals have arguments from the same sort in
the same argument position. In case a literal has fewer arguments, dummy values can be used to fill in the remaining
argument positions.

Another way to achieve predicate abstraction is by following the motivation behind existential abstraction of the rela-
tions. The idea is to introduce a new set of predicates along with their relation types according to the abstraction; then the

abstract rules will be formed for all combinations of the abstraction types in the bodies, where choice is added to the head
unless all are type .

Example 7.3 (ctd). Similar to Example 7.1, the abstract predicate name ad is introduced with the relation type tl‘[’ld. Note that
the arguments of the literal are not important, as the abstraction is over the predicate name and not over domain elements.
The abstract program is then as follows:

{(b(X,Y)} < ad(X),ad(Y), .
{e(X)} < c(X),ad(Y), T4 X #Y.
L < b(X,Y),e(X).
ad(1). ad(3). c(2). ad(5).

We remark that this approach is similar to using the rewriting of the original program with reification of predicates, and
applying existential abstraction on the relations.

7.2. Use case: abstraction in ASP planning

Domain abstraction gives us the possibility to adjust the granularity of a problem towards the relevant details. By achiev-
ing abstract answer sets that are concrete and thus catch all the relevant details, it also allows for problem solving over
abstract notions, which can be useful in a wide range of applications. We discuss here the possible use of domain abstraction
in ASP planning, in particular, in understanding planning problems expressed in ASP by abstracting over the unnecessary
details. Another use case about policy refutation is described in Appendix C.

Planning problems in ASP are represented by using a time sort to describe the sequence of states and the changes
according to actions taken [77]. There are usually two types of objects, represented with different sort types:

e objects on which the actions have a direct effect, e.g., the blocks in the blocksworld which can be moved, and

48

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

m
[b1] b3 _)

t 15} 1o 1 t2

Fig. 23. Initial state of a blocksworld with multiple tables (concrete e abstract).

o other objects unaffected by the actions but involved in the decision making, e.g., the table in the blocksworld onto
which blocks can be moved.

We discuss how to use domain abstraction over these objects such that we can talk about abstract states and plans.

Describing actions in ASP First, we emphasize on the blocksworld example the different ways of expressing planning prob-
lems in ASP. The effects of moving a block on top of another block are expressible by the following rules:

onB(B, By, T + 1) <~ moveToBlock(B, B1, T). (89)
—onB(B, By, T) «<-onB(B, B1,T), B1 # B>. (90)

where (89) models the direct and (90) the indirect effect. Alternatively, all effects are expressed as direct effects by

onB(B, B1, T + 1) < moveToBlock(B, By, T). (91)

—onB(B, By, T) < moveToBlock(B, B1, T), B1 # B3. (92)

The preconditions of an action can either be described through constraints, or as a condition for an action to become
applicable. For example, that a block cannot sit on a block with a smaller name can be expressed as a constraint

1 <onB(B,By,T), By <B.

Alternatively, the respective action can be forbidden if the condition is not satisfied using the following rules:

1 < moveToBlock(B, B1, T), not precondmtb(B, By, T).
precondmtb(B, B1, T) < B < By, block(B), block(B1).

Note that the alternative version is much closer to the PDDL-style encoding. The law of inertia is described by the rule
onB(B, By, T+1) «<—onB(B, B1, T), not monB(B, B1, T +1).

7.2.1. Abstracting over irrelevant details
We first show the possibility of abstraction over the details of the objects that are indirectly affected by the actions. For
demonstration, we consider two extensions of well-known planning domains.

e Multi-table blocksworld (MTB): here blocks can be moved onto one of multiple tables (where each table can hold multiple
blocks); a plan is needed that piles the blocks up on a given specific table.

o Package delivery with checkpoints (PDC): packages must be carried from an initial to a goal location, while passing through
a checkpoint reachable from the initial location.

Multi-table blocksworld. Fig. 23 illustrates an instance of MTB where the blocks must be piled up on table t; such that by
is above b, and b, is above bs3. Here reaching the goal state does not depend on the concrete tables to which blocks are
moved before moving them to the goal table. However, when computing a plan based on the original program, the planner
has to consider all possible movements.

Fig. 24 shows a (natural) encoding of the problem with the actions moveToT(B, Ta, T) and moveToB(B, B’, T) for moving
block B onto table Ta and onto block B’, resp., at time T. Consider the initial state shown in Fig. 23:

onT(bq,t1), onB(by, b3), onT(bs, t2), chosenTable(tq).

After ensuring that all variables are guarded by domain predicates and those related with the table sort are standardized
apart, we run DASPAR with the initial mapping {{t, ..., t}~>{}. The abstraction obtained is shown in Fig. 23; it singles out
the chosen table £; and clusters all others into f;. We then can compute a concrete abstract answer set

{moveToT(by, ty, 0), moveToT (b3, t1, 1), moveToB(by, b3, 2), moveToB(b1, by, 3)}.

49

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

% action choice
{moveToB(B, By, T) : bl(B), bl(B1); moveToT(B, L, T) : bl(B), thl(L)} <1« T < tmax-

% inertia
onB(B, By, T+1) < onB(B, B, T),
not —onB(B, By, T+1), T <tmax-

onT(B, L, T+1) < onT(B, L, T),

not —onT(B, L, T+1), T <tmax-
% state constraints
1 «<onB(B1, B, T),onB(Bz, B, T), B1#B>.
1 <«onB(B, By, T),onB(B, B2, T), B1#B:.
1 «<onB(B,B1,T),onT(B,L,T).
1 < onB(B,By,T), By <B.
1 < onT(B, Ly, T),onT(B, Ly, T), L1 #Ly.
% goal constraints
notblockgoal(T) < onT(B, L, T),onT(B1, Ly, T), B#Bj.
1 <—notblockgoal(T), T = tmax.
1 <—not notblockgoal(T), onT(B, L, T), not chosenTable(L).

% no gaps between moves

done(T) < moveToB(B, B1, T).

done(T) < moveToT(B, L, T).

1 <done(T+1), not done(T), T < tmax-

% preconditions

1 < moveToB(B, B, T),onB(B1,B, T).

1 < moveToB(B, By, T),onB(B1, B3, T).

1 < moveToT(B, L, T),onB(B1, B, T).

1 < moveToT(B, L, T),onT(B, L, T).

% effects

onB(B, By, T+1) <~ moveToB(B, B1, T), T <tmax.
onT(B, L, T+1) <~ moveToT (B, L, T), T <tmgx-
—onB(B, B2, T) <—onB(B, By, T), B1#B;.
—onT(B,L, T) < onB(B, By, T).

—onB(B, B1,T) < onT(B, L, T).

—onT(B, L1,T) < onT(B, Ly, T), L1#L;.

Fig. 24. Encoding for Multi-table Blocksworld.

rid b rid
20 LN p20 O >0 >O
p30 4 ho ps0 7, [I3
pad psd

lo

Fig. 25. Initial state of a package delivery with checkpoints (concrete =z abstract).

that describes a plan without going into detail on which table the blocks are moved. The abstraction shows that for solving
the problem, it is essential to distinguish the picked table from all others; the number of tables is irrelevant. Furthermore,
this abstraction is faithful for projection to the actions moveToB, moveToT.

Package delivery with checkpoints. Fig. 25 illustrates an instance of PDC where the packages in location I; must be carried
to location l19. As these locations are not directly connected, the truck has to pass through a middle point; through which
point the truck passes is immaterial for reaching the goal state.

For this problem, we used the Nomystery encoding from ASPCOMP2015 and altered it to have no fuel computation
(shown in Fig. 26). Furthermore, for a drive(T, L1, L2, S) action to be possible we added an additional condition that the
locations L and L; should be connected by an edge, edge(Lq, L). Consider the initial state shown in Fig. 25: {atT(t, [, 0),
atP(p1,11,0), atP(p2,h,0), atP(ps,11,0), atP(pa,l, 0), goal(p1, o), goal(pz,l10), goal(ps,lio), goal(pa,lip)} with the de-
picted edge facts. Running DASPAR with the mapping {{l1,...,l10}~>1} over the sort location results in the abstraction
mapping {{11}|—>i1, {h,..., lg}l—)iz, lmn—)l;} (shown in Fig. 25). With this abstraction, the following concrete abstract answer
set is computed:

{load(pa, t,11, 1), load(ps, t,11,2), load(p1. t, 11, 3), load(p2. t, 11, 4),
drive(t, i1 , fz, 5),drive(t, iz, ig, 6),
unload(ps, t,ig, 7), unload(p1, t,ig, 8), unload(pa, t, i3, 9), unload(p2, t,fg, 10)}.

It describes a plan that loads all the packages, moves to the middle cluster location, moves to the goal location, and unloads
the packages; the resulting abstraction is faithful for the projection to the actions load, unload, drive.

Domain abstraction simplified details that are unimportant for the essence of whether the plan is feasible. The faithful
abstraction gives an understanding of the problem by realizing its neuralgic points. If however there are further constraints
over details needed to construct a plan, then faithfulness might not be achievable in a non-trivial abstraction.

7.2.2. Computing abstract plans

Abstracting over the objects directly affected by the actions would empower us to talk about abstract plans. How-
ever, in ASP-style encodings, abstracting over the object sort only causes the abstract program to compute plans with
the original time sort. For example, say in the Package Delivery problem (with no checkpoints and two locations

50

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

% action choice
{unload(P, T, L,S) : package(P), truck(T), loc(L);
load(P, T, L,S): package(P), truck(T),loc(L);
drive(T, Ly, Ly, S) :edge(Ly, Ly),loc(Ly),loc(Ly), truck(T)} <1 < step(S), S > 0.

% no gaps between moves % precondition check

done(S) < unload(P, T, L, S). 1 <« unload(P, T, L,S), not precondu(P,T,L,S).
done(S) < load(P, T,L,S). precondu(P,T,L,S) < atT(T,L,S—1),

done(S) < drive(T, L1, Ly, S). in(P, T,S-1).

1 <—done(S+1), not done(S). 1 «load(P,T,L,S),not precondl(P,T,L,S).

% effects precondl(P,T,L,S) < atT(T,L,S—1),
atP(P,L,S) < unload(P,T,L,S). atP(P,L,S—1).

—in(P, T, S) < unload(P,T,L,S). 1 <«drive(T, L1, Ly, S), not precondd(T, L1, L2,S).
—atP(P,L,S) < load(P,T,L,S). precondd(T, L1,Ly,S) < atT(T,Ly,S—1).
in(P,T,S) < load(P, T,L,S). % inertia

—-atT(T, Ly, S) <drive(T, Ly, Ly, S). atT(T,L,S) < atT(T,L,S—1),not —atT(T,L,S).
atT(T, Ly, S) < drive(T, Ly, L3, S). atP(P,L,S) < atP(P,L,S—1),not —atP(P,L,S).

in(P,T,S) < in(P,T,S—1),not —-in(P, T, S).
% goal check
1 <« goal(P, L), not atP(P, L, S), maxstep(S).

Fig. 26. Encoding for Package Delivery.

I1,13) we cluster the packages into one abstract package, po. Then, the abstract program will have the abstract actions
load(po, t, 1, s), unload(po, t, 1, s) which then lead to a plan

load(po, t, 11, 1), drive(t, 11,15, 2), unload(po, t, I3, 3).

However, this plan is clearly spurious as no original action can match load(po, t, 11, 1), which loads all packages in one step;
thus many spurious answer sets will result. In order to avoid this, also abstraction over the time sort is necessary. By doing
this, we can talk about abstract instances of actions and abstract from the concrete order of their application. Given that
the sorts (i.e., blocks and time, respectively, packages and time) are independent, multiple calls of DASPAR to abstract over
each sort one-by-one achieves the desired abstract program.

For the Package Delivery problem, consider two abstraction mappings mpgckage = {{P1. P2, P3, Pa}—>p} and Miime =
{{1,2,3,4}>11, {5}—12, {6,7, 8, 9}>13}. The constructed abstract program yields the abstract plan

load(p, t,lo, 1), drive(t, I, 2, 1), unload(p, t, I, t3)

which abstracts over the order of package (un)loading and includes abstract actions over time clusters.

Unfortunately, finding a suitable abstraction over multiple sorts, especially if one is over the time domain, is non-trivial.
The abstraction over time via time clusters steers the plan computation and the action ordering. For example, for the time
mapping {{1}+>{1, {2, 3}—1f2, {4,5,6,7, 8, 9}—f3} the abstract plan from above is spurious.

To summarize, while the use of abstraction in ASP planning appears to be attractive from a cognitive perspective, further
research on several issues is needed in order to unleash the potential of this approach.

7.3. Related work

In the context of logic programming, abstraction has been considered many years back in the classic work of Cousot
and Cousot [29]. However, the focus of their studies was on the use of abstract interpretations and termination analysis of
programs, and moreover stable semantics was not addressed.

The work most related to our notion of abstraction in ASP are the simplification methods that strive for preserving the
semantics. Such methods have been extensively studied over the years; we give here an overview of some notions. Notice
that, different from these simplification methods, abstraction may lead to an over-approximation of the answer sets of a
program, which changes the semantics, in a modified language.

Over-approximation by abstraction reduces the vocabulary which makes it different from relaxation methods [58,81].
These methods translate a ground program into its completion [24] and search for an answer set over the relaxed model. As
they focus only on ground programs, they can be compared with the abstraction that omits atoms from the program, which
does not need to account for loop formulas when searching for a concrete abstract answer set. However, finding the reason
for spuriousness of an abstract answer set is trickier than finding the reason why a model of the program completion is not
an answer set of the original program, since the abstract answer set contains fewer atoms and a search over the original
program is needed to detect the reason why no matching answer set can be found.

7.3.1. Equivalence-based rewriting and program transformations in ASP
Equivalence of logic programs is considered under answer set semantics as follows: a program I1; is equivalent to a
program [T, if AS(IT{) = AS(IT3). Strong equivalence [80] is a much stricter condition: ITy and I, are strongly equivalent

51

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

if, for any set R of rules, [1; UR and Il U R are equivalent. This notion makes it possible to replace a part Q of a
logic program by a strongly equivalent (simpler) program Q’, without looking at the rest; [42,95,97,119] show ways of
transforming programs by ensuring that the property holds. A more liberal notion is uniform equivalence [86,107] where R is
restricted to a set of facts; that is Q and Q' are equivalent with respect to all factual inputs [40]. The notions of strong and
uniform equivalence have been generalized to relativized equivalence [43], where the alphabet of R is restricted and further
to a notion where in addition the occurrence of atoms in heads and bodies of the rules in R can be distinguished [122];
relativized strong equivalence with projections [56,104] allows to remove from answer sets auxiliary atoms. Relativized
equivalence is related to our projected notion of concreteness, where certain (usually auxiliary) atoms are not considered
for concreteness checking, see Section 3.3.4.

In terms of abstraction, there is the abstraction mapping that needs to be taken into account, since the constructed
program may contain a modified language and the mapping may relate it back to the original language. Thus, to define
equivalence between the original program IT and its abstraction IT™ according to a mapping m, we need to compare
m(AS(IT)) with AS(TT™). The equivalence of IT and IT™ then becomes similar to the notion of faithfulness. However, as we
have shown, even if the abstract program IT™ is faithful, refining m may lead to an abstract program having spurious answer
sets. Thus, simply lifting the current notions of equivalence to abstraction may not achieve useful results.

Refinement-safe faithfulness, however, would allow one to use of IT™ instead of II, as it preserves the answer sets.
This property is achieved when the abstract program is unsatisfiable (which then implies that the original program was
unsatisfiable). However, for original programs that are consistent, reaching an abstraction that is refinement-safe faithful is
not easy; dividing the domain cluster may immediately cause a guess that introduces spurious solutions.

The notions of equivalence from above have been complemented with further ones that allow for relating logic programs
over different alphabets. Correspondence frameworks for ASP programs [46] are triples of the form F = (4, C, p), where
U is a set of propositional atoms, C (the context) is a class of programs over I/, and p is a binary relation over 2¥; two
programs P and Q over U/ are then corresponding (with respect to F) if for every R € C the answer sets of PUR and Q UR
are in relation p. These very generic frameworks allow one to capture the notions of equivalence from above; furthermore,
the notion of over-approximation can be simply expressed by setting C = {#}, i.e., to consist of the empty program, and
pu to check for over-approximation of the answer sets of P UR by the answer sets of Q U R, relative to a set of atoms /'.
However, while [46] discussed how to characterize equivalence for correspondence frameworks with p;4 in semantic terms
using non-classical here-and-there models [98] and presented some general complexity results, the issue of how to obtain
programs Q that over-approximate the answer sets of Q was not addressed; furthermore, the setting was propositional.

Synonymous theories [99,101] aimed to lift the notion of strong equivalence between programs to a setting where the
programs have been formulated in different languages, but each language is bijectively interpretable in the other. To this
end, the authors developed the notion of synonymous theories for quantified equilibrium logic, which is a well-known
extension of the quantified logic of here-and-there that provides a logical reconstruction of answer set semantics [98,
100]. In this notion, the equilibrium models of synonymous theories T1 and T, (representing logic programs) are in a
one-to-correspondence and remain so under addition of new formulas in a suitable sense. It builds on definability and
interpretation as in classical logic, which are extended to the non-classical setting. For Herbrand models as in our setting,
synonymous theories do not allow for domain shrinking, and the faithful and bijective interpretation property preserves
in a sense equilibrium models and does not permit strict over-approximation; the same would apply to non-Herbrand
models with static domains, where elements would be clustered while preserving equivalence. Exploring our notion of
over-approximation in the framework of [98,100] and to consider its possible application is an interesting issue for future
research.

Other transformation methods, especially to help with grounding and solving of ASP programs, were investigated. A
preprocessing technique was considered in [54] along with an assignment and a relation expressing equivalences among
the parts of the program that could be assigned. Another form of preprocessing in [12,88] was applied to each rule of a
program by computing a tree decomposition and then splitting the rule into multiple, smaller rules accordingly.

7.3.2. Abstraction in planning and agent verification

Starting from the early years of Al planning, applications of abstraction to help with the search and planning for complex
domains have received a lot of attention. One main research focus has been on hierarchical planning, which considers
different abstraction levels over the problem space. A plan is searched at the abstract level and then the solution is refined
successively to more detailed levels in the abstraction hierarchy, until a concrete plan is computed at the original level.
Sacerdoti [106] showed an abstraction notion that keeps the “critical” preconditions of actions and ignores the rest. For
example, Knoblock [70] proposed an ordered monotonicity property to ensure that solving the subproblems by refining
certain parts of the plan does not change the remainder of the abstract plan. A similar property was considered by Bacchus
and Yang [7], which states that if the original problem is solvable, then any abstract solution must have a refinement.
Anderson and Farley [4] constructed operator hierarchies by having classes of operators that share common effects and
forming new abstract operators with the shared preconditions.

Another research focus has been on using abstractions to compute heuristics, which are estimates of the distances to the
solution that guide the plan search. Pattern databases [31] are constructed from the results of projecting the state space
to a set of variables of the planning task, called a pattern, which is to be solved optimally. The omission abstraction in
[110] matches the intuition behind this projection notion. Edelkamp [38] was the first to apply this technique in planning.

52

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

He showed that a pre-compiled look-up table with the costs of abstract solutions can help the heuristic search in finding
optimal solutions. The merge & shrink abstraction method of Helmert et al. [61] starts with a suite of single projections
and then computes an abstraction by merging them and shrinking. A CEGAR-inspired method was proposed by Seipp and
Helmert [116] based on cartesian abstractions, which form a general class of abstractions. The reason for the abstract plan
being spurious is detected when trying to construct a concrete plan, and the abstraction is refined by splitting the states.
Obtaining such a cartesian abstraction is also possible with domain abstraction introduced in Section 3; we further empower
abstraction with a multi-dimensional handle in Section 5 that has the capability of representing a hierarchy of abstraction
levels.

Giunchiglia and Walsh [59] presented a theory of abstractions which provided a basis to understand different types of ab-
stractions, while characterizing abstractions as syntactic mappings between programs. Later, Nayak and Levy [90] considered
a semantic theory, where first the original domain is abstracted and then the domain model gets abstracted to capture the
abstracted domain. Their notion of model increasing (MI) abstractions is similar to our abstraction by over-approximation
notion in ASP.

Although not investigated in detail, notions related to domain abstraction were also considered in heuristic-search plan-
ning. Hernadvolgyi and Holte [62] presented a domain abstraction notion over the states which are represented as fixed
length vectors of labels; they also noted the possibility of encountering spurious states with some abstractions. Hoffman
et al. [63] considered variable domain abstraction by modifying the add and delete lists of the operators accordingly. They
argued that obtaining efficient results from abstraction in planning mostly relies on the how much irrelevance is in the
problem; this is an observation we similarly made in our experiments. To further investigate the structure of problems that
can obtain good results, especially in the context of ASP, is an interesting research direction.

The notion of irrelevant information and its effects were analyzed for planning by Nebel et al. [91], in which different
heuristics were introduced to omit such information. Fox and Long [51] described a method for detecting symmetries in a
problem which are then treated as indistinguishable to help the planner.

Abstraction was studied for situation calculus action theories by Banihashemi et al. [9], who imposed a bisimulation
restriction on the abstraction in order to ensure that reasoning about the actions of an agent at the abstract level can be
mapped to concrete reasoning. They later showed how this restricted notion of abstraction can be used in reasoning about
a strategy for an agent to achieve a goal at the high level and then mapping it back into a low-level strategy [10]. However,
their focus was not on how such an abstraction can be found.

For verifying the behavior of multi-agent systems, the use of abstraction has been investigated by Lomuscio et al. for ab-
stracting over each agent to construct an abstract system while preserving the properties expressed in a temporal-epistemic
logic [28] or alternating-time temporal logic [83]. In [28] the focus is not on how such an abstraction can be built. In [83],
an abstraction over the states is made that have the same possible actions to execute and action abstraction keeps the ac-
tions of certain agents while omitting the rest. They considered a three-valued logic and the abstraction also preserves the
behavior of not satisfying a property. Spuriousness may occur for the case of achieving an “uncertain” result for checking a
specification in the abstract level, which then forces one to refine the abstraction by splitting the states after investigating
the subformulas of the specification. They later extended this work to infinite state models [84] and abstracted them to
finite models using predicate abstraction, and they presented an interpolant-based refinement method [11].

In the context of ASP and action languages, Dix et al. [35] proposed a way of formulating and solving hierarchical
planning under the ASP semantics, with a focus on ordered task decomposition, which is planning each step in the order
it will later be executed. For a particular application of mobile robot planning, Zhang et al. [123] performed hierarchical
planning using the action language BC.

7.3.3. Generalized planning

Finding a plan that can achieve the goal for a class of problem instances can give an understanding of the details
relevant for these problems. The plan can then be used for any particular problem instance without the need for further
search. Note that, as discussed in Section 7.2, the plans that are computed with our domain abstraction method can also be
seen as generalized plans as they work for any original problem instance that maps to the abstract instance.

Srivastava et al. [118] proposed an abstraction method for constructing generalized plans with loops, by focusing on
classical planning; however, selecting a good abstraction was beyond their scope. Bonet and Geffner [15] considered a
setting where uncertainty is represented by a set of states, by clustering the states that provide the same observations. This
view is similar to the indistinguishability notion we proposed in [109]. They studied the conditions for a policy (i.e., plan)
to be general enough to work on other instances. Later they considered also trajectory constraints [14].

Illanes and Mcllraith [65] studied abstraction for numeric planning problems by compiling them into classical planning.
Recently, they used abstraction for problems with quantifiable objects [66], e.g., a number of packages to deliver to points
A and B, to find by abstracting from the quantification generalized plans that work for multiple instances. For this, they
built a quantified planning problem by clustering indistinguishable objects using reformulation techniques [105] to reduce
symmetry, and then compute a general policy. While the quantifiability conditions of [66] restrict applicability, our method
has the potential drawback of spurious answers.

53

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

8. Conclusion

Abstraction is an important aspect of Artificial Intelligence aiming at the omission of detail and fine-grained structure
in problem solving, to reduce the cognitive and/or the computational complexity in order to better understand respectively
effectively find solutions. In this spirit, we have introduced the notion of domain abstraction to Answer Set Programming,
where the size of the domain of an ASP program shrinks while the collection of its answer sets is over-approximated, i.e.,
every original answer set can be mapped to some abstract answer set. We have shown how this can be applied to single or
multiple sorts of the domain, and how multi-dimensionality can be handled that enables a hierarchical view of abstraction,
with quad-tree abstractions as a showcase for multi-granular abstraction over grids.

More specifically, we have introduced two structure-preserving approaches that apply abstraction to the rules. The first
approach keeps built-in relations in rules, which then must be lifted to the abstract domain, while the second approach,
existential abstraction, loses their original format at the benefit of the ability to handle different levels of abstractions among
the abstract elements, as needed in hierarchical abstraction.

As over-approximation may result in spurious abstract answer sets that do not correspond to original answer sets, we
have presented a method for refining abstractions which uses ASP-debugging techniques to obtain hints for refinements and
a CEGAR-style methodology of iterated abstraction refinement [25]. The approach has been implemented in tools DASPAR
and mDASPAR (for multi-dimensional domain mappings), which given an ASP program and an initial abstraction, auto-
matically refine it until for the induced abstract program either a concrete answer set is encountered or unsatisfiability is
detected (which proves that the original program is unsatisfiable).

Our experiments showed the potential of the approach for understanding the core parts of an ASP program. In case of
satisfiability, abstract answer sets focus on relevant details, as in case of planning problems such as Blocksworld and Package
Delivery; a justification technique in ASP (cf. [20,103]) can be used to understand why a particular abstract answer set is
computed, and moreover, if the abstraction is faithful, to identify details which are irrelevant for finding a solution. In case
of unsatisfiability, the automatic abstraction refinement was able to catch the unsatisfiability without refining back to the
original program. Furthermore, in grid-cell problems, a multi-dimensional view of abstraction enables zooming in to the
area of the grid-cell which shows the reason for unsolvability; compared to the results of a small user study, explanations
of decent quality were achieved, which suggests to continue this line of research.

8.1. Outlook

This article has provided seminal concepts and notions for domain abstraction in ASP, an assessment of semantic and
computational properties, and results for a prototypical evaluation. The work on domain abstraction can be continued and
extended in several directions.

One direction is to obtain more general notions of abstraction, and to apply abstraction to larger classes of ASP programs.
As for the former, we remark that domain abstraction can be combined with omission abstraction [110] to obtain an
abstraction that omits certain details and also abstracts over some part of the domain. This can be achieved with the
current definitions, by first applying the desired domain abstraction to the program and then grounding the constructed
non-ground abstract program to omit some of the atoms from it. The refinement decisions then need to take into account
two causes for spuriousness; bad clustering of domain elements or bad omission of atoms. As regards larger classes of ASP
programs, further language constructs like disjunction in rule heads, aggregates, or weak constraints as in the ASP Core-
2 standard [21] are natural targets. Furthermore, extensions with nested rules, external atoms, or constraint solving are
interesting other target languages.

An important aspect of the abstraction&refinement method is the inital abstraction mapping. Starting with too coarse
abstractions may mislead the method into refining irrelevant parts of the abstraction. To overcome this, an understanding
of a good initial abstraction needs to be investigated. Employing symmetry breaking techniques [34,37] in order to get hints
on a good initial abstraction is a promising subject of future research. Furthermore, as the use of abstraction depends on
the problem structure at hand, characterizations of different problem types and a better understanding of the effects of
abstraction are necessary.

Another research direction concerns abstraction refinement. Different methods can be explored to help with the decision
making in the refinement step. On the one hand, further heuristics for deciding about a refinement from a collection of
abstract answer sets may be considered, where the range for local search may be increased and in addition domain-specific
knowledge is exploited. On the other hand, by using justification methods such as [20,103] we can obtain an explanation of
how an abstract answer set is built and check it on the original program. In case of failure, a reason for the spuriousness of
the abstract justification may be distilled and exploited for abstraction refinement.

Related to this is the issue of abstraction assessment, where the question of what is a “good” abstraction needs to
be further studied. Different criteria can be relevant in this respect, from technical ones like the degree of spuriousness
(measured e.g. by the number of spurious answer sets) or the level of abstraction (measured e.g. by the granularity of
clustering), to the cognitive appeal from a human user perspective in terms of understandability of the abstraction and
the abstract program. Addressing the latter appears to be challenging and harder than developing measures for technical
criteria, given that humans have implicit background knowledge about the domain.

54

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

A further research direction is advanced implementations beyond tuning the current prototypes. An apparent bottleneck
is concreteness checking, which can be costly due to the need for grounding the original program in this process. Here
one could explore the use of lazy-grounding, e.g. [22,72,96,121] and non-ground ASP solving, e.g. [6,87], or develop native
techniques for concreteness checking. Further improvements may be using justification methods to explain abstract answer
sets (as mentioned above), which as a further benefit mitigates the grounding issue and can yield substantial gains, or to
embed the debugging program into the evaluation of the abstract program, such that hints can be obtained during the
embedded checking; however, to achieve that this works efficiently is non-trivial.

Last but not least, the use of domain abstraction remains to be explored for applications. Different possibilities can be
envisaged, with ASP program development as an obvious candidate. Different from common debugging techniques, domain
abstraction aims to not just show the rules themselves that effect a certain behavior, but can moreover be used to identify
the gist of the domain that is responsible for the latter and thus aids in gaining more insight into a program at hand.
Another possible use of domain abstraction is as a solving technique to address scalability. While the state-of-the-art ASP
solvers are quite efficient in solving problems, they may struggle with problems that create huge search spaces or require
optimization. For such problems, abstraction could be useful. However, achieving a good abstraction that could help with
solving is non-trivial, and advances in performance and in particular of concreteness checking would be necessary for a
fruitful deployment. Finally, we believe that domain abstraction has potential for building systems that explain matters to
a human end user, and thus can be a useful tool for realizing explainable Al. Our experiments with grid cell puzzles have
nurtured this view, since the reasons for unsolvability obtained in an automated way by our tools are a good match with
human intuition. However, this is just an initial step, and significant research efforts will have to be invested to make this
view become reality.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements
We are grateful to the reviewers for their helpful and constructive comments to improve this work and its presentation.
Appendix A. Proofs

Proof of Theorem 3.1. Let | and TI denote m(I) and IT™, respectively. Towards a contradiction,A assume that there exists
some [€ AS(IT) s.t. zu7,’11 ¢ AS(ﬁ). This can occur either because (i) U 75, is not a model of Y7 or (i) 1 U T is not a
minimal model of [1/Y7m,) X

(i) Suppose 1U T, is not a model of TI!V7m. Then there exists some rule # € TT!Y7m where 1U 7y, k= B(F) and 1U T H@).
By construction of IT, 7 is only obtained by step (a), otherwise 7 would be a choice rule with head H() = {m(«)}, and 7
would be satisfied. Consequently 7 is a rule from step (a) for r in II.

Since 1 U Tp k= m(B(r)), di oda, 70(d1,d2), we have 1U Ty = m(B(r)). If we have p(é1,...,é,) € m(BS+(r)),
some e; € &; exists such that p(eq,...,ep) €I as all variables are standardized apart, I = BS@*(r) for this choice. As for
p1,...,6n) e m(B—(r)), then p(eq,...,en) ¢ I for all e; € &;. So we can instantiate the abstract body m(B*(r)) to some
original body B%t(r) where [= BSt(r). Also having 1 |:EI1 oaz, rl"(al,az) means | =dqj od, for all d; € ai, thus we have
=B, dyody. So r:o < B (r),dyody is in TI'. As I is a model, it follows that I &= ¢, which then means 1 Em(a);
this is a contradiction. .

(ii) Suppose there exists some] C I such that J U7y is a model of TI'V7m. We claim that J =m~1(J) N1 is a model
of T1!; as J c I holds, this would contradict that I € AS(IT). Assume J#TII'. Then J does not satisfy some rule r: o <«
B(r),dq ody in T, ie., J = B(r),d; ody but J#a. As J C 1 and I is a model of T1', we have I =, thus, @ €I\ J.

Now, we look at the cases for applying the mapping m to r, by considering the abstractions m(Bs(r)) and m(d;) o m(da),
and show that a contradiction is always achieved.

Firdst, assume that] = m(B%t(r)). There are the following cases for m(J): (1-1) m(J) = m(B(r)), or (1-2) m(J)¥
m(BS4(r)).

(1-1) As m(J) = m(B*(r)), we look at m(dq) o m(d;). We know that | =d od.

e If m(d1) om(dz) has the relation type 7 (m(d1), m(d)), this means that we have m(J) = m(di) o m(dz), and thus
m(J) U Tm =m(dr) om(dy), 72 (m(d1), m(d2)). As] =m(J) and] I, we also get 1 U T, k=m(d1) o m(da), T (m(d1),
m(dy)), thus the non;ground rule created by step (:3) has an instantiation m(a) < m(B(r)), m(di) om(dz),
7P (m(d1), m(da)) in TI'Ym. As] and T are models of T1'V7m, we have] =m(a) and I =m(a). Thus, @ em~'(J) and
«o € I; by definition of J, we get « € | thus J = «, which is a contradiction.

e If m(dy) om(dy) has the relation type 7,(m(dy), m(dz)), this again means that we have m(J) = m(d) o m(d3), and
thus m(J) U Ty = m(d1) om(d), Tj5(m(d1), m(dz)) and Tu Tm =m(d1) om(d), Tj5,(m(d1), m(dz)). Thus, as m(x) € i

55

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

the non-ground choice rule created by step (b) amounts to m(«) <« m(Bst(r)), m(dy) o m(da), T (m(dy), m(dz)) in
f1/Y7m, which again achieves] = m(w), thus | &= «, a contradiction.

e If m(dy) o m(d) has the relation type 7y,(m(dq), m(dz)), then we have m(J)¥m(dq) o m(dz), i.e, m(J) =m(d) om(dy),
and thus m(J) U Ty = m(d1)om(dz), Ty, (m(d1), m(d2)). With similar reasoning as above, we find an instantiation of
the non-ground rule created by step (c) and achieve] = «, a contradiction.

(1-2) We show that there is no p0551b111ty to have j#m(BStd(r)) for] m(J), while i = m(B*(r)). In order to have

JEm(B(r)), some positive literal &; € m(B™®*(r)) must occur in I\ J so that J#m(B%*(r)). However, this contra-

dicts with J = BS4+(r).

Now, assume that i#m(BS[d(r)) As I = B(r), we know that fi: m(B%*(r)) holds. So we have the rule r in the
form | < BStd-+(r), not. o, dq ody (according to restriction (R-1) on having at most one negative literal) where «; # « and
TEm(B(r)) means] = m(a;) for o; € B (r) while I¥q;, ie., o ¢ 1. So we get 1 = m(BSh (r)). Then there are the

following cases for m(J): (2-1) m(J) &= m(fo’f (r)), or (2-2) m(j)#m(Bf)Z).

(2-1) As we have m(J) |=m(Bf)Z (r)), we look at m(dy) o m(dy). We know that | =d; ods.

e For cases 77(m(d1),m(dz)) and 7j(m(d1),m(dz)), as we have | |=djody, we get] = m(dy) om(dy) and ﬂ:
m(d1) o m(dy). Notice that since m(e;) € I, there must be some «;’ € I such that m(a;) =m(e’), thus «; is mapped to
a non-singleton cluster m(ocj). So the atom not isSingleton(m(j)) holds true in J and I for some j € arg(«;) for which
[m=1(m(j))| > 1. Thus in T1'Y7m we get an instantiation m(x) < m(B}(r)), m(d1) om(da), not isSingleton(m(j)) of the
non-ground rule created by (step d-i), and again achieve | = «, which is a contradiction.

e For the case t5,(m(dy), m(dz)), with similar reasoning as in (1-1), we find instantiations of the non-ground rules
created by (step d-ii) and achieve] = «, which is a contradiction.

(2-2) We show that there is no possibility to have m(J)¥m(B (r)), while e m(Bff[_(r)). As | = B(r), we know that
m(J) = m(B*4*(r)) holds. So m(]))fm(Bf)Z (r)) means m(J)¥m(cj) while 1 = m(ej). Now, we take a look at TT'. As
there must be some «;’ € I (such that m(c;) = m(e;’)), this means that there is some rule 1’ : o’ < BSt(r"), dj od), in
IT'. We then take a look at the abstraction of r’. By doing the same case analysis of (1-1), (1-2) and (2-1), we achieve
m(]J) = m(e’), ie, m(J) = m(a;), which yields a contradiction. As for (2-2), this means the rule r’ is of form r’ :
a;’ < B4+, not aj,, d} od’, where we want to claim m(J)#m(a;,). For this, we take a look at another rule r” in iyl
of form r” : a{z <—B“d(r”),d/{ odj with m(a{z) =m(wj,). By restriction (R-3) on no negative cyclic dependency among
the atoms, this recursive process eventually ends, say, after n steps, at some rule '™ :ozlfn <—B“d(r/”),d/1” ody" where
case (2-2) is not applicable, and m(J) = m(alfn) is achieved. Then by tracing the rules back to r we get m(J) = m(w;).
Thus m(J) ¥ m(Bf)Z (r)) is not possible. O

Proof of Theorem 3.2. Similar to proof of Theorem 3.1, we assume towards a contradictign that there exists some I € AS(IT)
such that 1 U 7y, ¢ AS(ﬁ). This can occur either because (i) 1U 7y, is not a model of oV7m or (ii) 1 U 7y, is not a minimal
model.

(i) Let TU 7y, be not a model of [/V7n . Then there exists some rule 7 € [1Y7 where 1UTm B and 1U T H(?). For
cases (G-1) and (G-3), the contradiction is achieved similar to the proof of Theorem 3.1, since 7 is a rule from step (a). As
for case (G-2), we will have TU Tr, = rel’(a), t{el/ (a), where d is a shorthand for al,l,am, .. .,(Ai”(, az_k; then by definition
of rel’ this means I k= BS(r),dy.1 o1 da.1,....d1 o da i for some dyj €dy1.day €day,....dyy €dyg.day€doy and 1 in
I1'. This reaches a contradiction as I is a model and I = o, which means 1 Em(w).

(ii) Now let there be 7 c 1 such that 7U Tm is a model of MY, We claim that = mfl(’]\) N1 cC I is a model of
I1'; which would contradict that I € AS(IT). Assume J¥TI'. J does not satisfy some rule r:« < BS(r), rel'(d) in IT', ie.,
JE Bs“’(r),d“ o1d1,...,d1koxdyk but JFa,ie, a ¢ J.As J CI and I is a model of !, we have [=a, ie, a el J.
We consider the abstractions m(B%(r)) and m(di,1) o1 m(dz,1), ..., m(dq k) op m(dy k).

First, assume | = m(B%*(r)). There are the following cases for m(J): (1-1) m(J) & m(BS4(r)), or m(J)Em(BStd(r)).

(1-1) As m(J) &= m(B“d(r)), we look at m(dy 1) o1 m(dz1), ..., m(dl,k) ok m(dy k). We know that J =d1q01d21, ..., dl,k Ok
d2,k-
(1-1-a) If all m(dy ;) o; m(d2,;) have the relation type rl°‘ (m(dy ;) o; m(dy,;)), this means that we have m(J) &= m(dq,1) o1
m(dz,1), ..., m(dq k) o m(dz k), and thus

m(J) U Tm = rel' @), 7 @). (93)

As] =m(J) and] c 1, we also get TUTnm rel’(fi), r{e’/ (&), thus the non-ground rule created by step (a) has an
instantiation m(a) < m(B%t(r)), rel' (d), 7/ (d) in T1'Y7m. As] and 1 are models of f1'7n, we have] = m(a) and
i = m(w). Thus, by definition of], we get | &= «, which is a contradiction.

56

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

(1-1-b) If at least one m(d1 i) ojm(dy,;) has the relation type r{l’l" (m(dy,;), m(dz,;)), while no m(dy j) ojm(dz ;) has the
relation type 'Clv(d1 i do .j)» above (93) is achieved for rl{e’ (cl) in place of r{e’/ (fi).
(1-1-c) If at least one m(dy,;) o; m(dz ;) has the relation type rl‘i}(m(d1,,~),m(d2,i)), this means that we have m(J)
.,m(dq ;) o; m(dy;), Thus, for rel (d) we have m(J)¥rel'(d) but m(J) =T7el (d), and

m(J) U T b= T7el @), 7! (). (94)

By the same reasoning in (1-1-a), we get that the non-ground choice rule created by step (c) amounts to

m(e) < m(BStd(r)), 7el (d), e rel' () in filVTn and thus we reach a contradiction.
(1-2) This case is handled the same as in proof (1-2) of Theorem 3.1.

Now, we focus on the case 1¥m(BS4(r)). As I = B(r), we know that T = m(BS4+(r)) should hold. Then 1¥m(BS4(r))
means that for a non-empty set L C B~ (r) of atoms, we have T q; for each o €L, 1 <i <n, while [¥q;, ie., o ¢l
Assume we further have a set L; of atoms involved in a negative cycle with «. Since in BSLhL (r) the literals «; in L either

Lej

get shifted or get omitted if {a;, &t} € L¢; (by (42)), we get [|= m(B}",_ (r)) and I Em(ot B (r)\ L).
J
Then there are the following cases for m(J): (2-1) m(J) & m(BSLhL (r)) and m(J) & m(not B4-—(r) \ L), or (2-2)
i Cj
m())Em(B3", (r)) or m(J)¥m(not B4~ (1) \ L).
) Cj

(2-1) As m(J) |=m(BL L, (r)) and m(J) = m(not B¢~ (r)\ L), similar to proof (1-1) above and (2-1) of Theorem 3.1, the

abstraction dm o1 dz,], ey EiLk ok az’k on relations is considered, and the contradiction J =1 is achieved.

(2-1-a) By (1-1-a) and (1-1-b), we get the case (93) and same for rﬁf”(a). We know that for each oj € L,1 <i<n as
m(J) Em(a;) and as «; ¢ J (since J €I and «; ¢ I), this means that not isSingleton(m(j;)) holds true in m(J) and
T for some Ji € arg(e). Thus we have m(J) U Ty rel/(a), not isSingleton(m(j1)), ..., not isSingleton(m(j,)), which
means that m(«) € I, thus o € I and by definition of J, o € J, which is a contradiction.

(2-1-b) By (1-1-c), we get the case (94) and by a similar reasoning as in (2-1-a) we also have m(J) E
not isSingleton(m(j1)), ..., not isSingleton(m(j,)), hence m(J) U Ty & r_el/(a), rre’ (d) not isSingleton(}]),
not isSingleton(}'n). Thus we similarly achieve a contradiction.

(2-2) We first show that there is no possibility to have m(])}?fm(Bst’LCj (r)), while i = m(Bi’chj (). As] = B(r), we know

that m(J) & m(B*%*(r)) should hold. So m(])#m(BsL’chj (r)) means m(J)¥m(a;) for some o € L\ L¢;, showing that

{oi, a} & L, while i k= m(c;). Now, we take a look at TT!. As there must be some «;’ € I (such that m(c;) = m(e;’)), this

means that there is some rule 1’ : ;' < BS(r), djjordyq,... d1 i Ok d5 xin IT'. We then take a look at the abstraction

of r’. By doing the same case analysis of (1-1), () and (2-1), we achleve m(J) Em(a;’), ie, m(J) = m(a;), which

yields a contradiction. As for (2-2) (i.e., m(J)¥ m(BLqLE‘/ (")) for some L C B~ (r) and for some Lcj, with o’ € Lcj,),
J

this means the rule 1’ is of form
td, td,—
e’ < BT (), BT (), d) g o1 dy g, d ok dy g

where some [;, € BSt:— (1) exists s.t. li, € L\LC , (e, {l,, '} ¢ LC ,) and we want to claim m(J)#m(l;,). For this, we take
a look at another rule r” in I1' of form r” o i <« Bty d”1 01 d2 1o] ok d/z’ With m(a) =m(a,). Since this
backwards traverse is done over the negated literals not involved in negative cycles with the head of the respective rules,
this recursive process eventually ends, say, after n steps, at some rule r'" :ozlfn eB“d(r’“),d’]’:’] o1 dyy, .. A o dy
where case (2-2) is not applicable, and m(J) &= m(a{n) is achieved. Then by tracing the rules back to r we get that
m(J) = m(w;) actually holds. Thus m(J) ¥ m(BSL”LC (r)) is not possible.
e

The case m(J) ¥ m(not B“d’(r)A\ L) also cannot hold, since that would mean that there exists some «; € lism"(r) \L
such that m(J) = m(a;), while T¥m(a;) (since T = m(not BS'®—(r) \ L)), which is a contradiction to m(J) C 1. O

Proof of Lemma 3.9. By definition, we need to check (1) that T is a model of (I"Im)i and (2) that T is minimal, no] clisa
model of (Hm)i. .

As for (1), we can refute the property by guessing a rule r € IT™ and a variable substitution 6 and verifying that I does
not satlsfy (r@)’ where r6 denotes the ground instance of r obtained by applying 6 to its variables; note that in this case
6)! e (™! holds.

Each rule r € IT™ has polynomial size in the input. Checking whether r € I[1™ holds is feasible in polynomial time, as
computing the independent negative cycles L¢,, ..., L, of the program IT is feasible in polynomial time as well. Furthermore,

57

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

checking whether an instance ' =6 of r over the abstract domain is in the GL-reduct (IT™)! of the abstract program IT™
with respect to 1 is feasible in polynomial time. Overall, refuting (1) is consequently in NP.

As forﬁ(2), T is minimal if each atom a € I has a proof, given by a sequence ri, 13, ...r, of applications of rules from
r; € (IT™)! where each positive body literal of r; occurs in some head of rj, j <i. Note that w.lo.g. 1= {ai,...,ax} and
a; has as proof r1,...,rj, i=1,...,k. As the proof can be guessed and nondeterministically verified in polynomial time, it
follows that (2) is in NP. Hence it follows that the problem is in Ag (more precisely, in the class DP). O

Proof of Theorem 3.10. To show that] is a concrete abstract answer set of IT™, we can guess an interpretation J of IT and
check that (a) m(J) = 1, (b) m(J) € AS(IT™), and (c) J € AS(IT). Testing (a) is clearly polynomial in the size of J, and by
Lemma 3.9, (b) and (c) are feasible in Ag in the size of J and IT (and thus in exponential time in the size of I and IT);
consequently, deciding whether T is a concrete abstract answer set of TI™ is in NEXP. For bounded predicate arities, the
guess for J has polynomial size in the input, and we can check the conditions (b) and (c) by Lemma 3.9 with an NP oracle
in polynomial time; this establishes Zg membership.

The matching lower bounds are shown by a reduction from deciding whether a given non-ground program IT has some
answer set, which is NEXP-complete in the general case and 2§-complete for bounded predicate arities [33,39].

Without loss of generality, IT involves a single predicate p (which can be achieved by reification and padding arguments)
and contains some fact p(a). The mapping we define is m = {{d4, ..., dn}»—>a} where dq, ...,d, form the Herbrand domain.
Then | = {p(a, .. .,a)} is a concrete abstract answer set of I1™ iff IT has some answer set. Note that actually 1 e AS(IT™)
holds; thus the overall complexity does not change if this property is asserted. This proves the result. O

Proof of Theorem 3.12. For the membership, one can guess an interpretation T of ™ such that T is an answer set of
1™, and then check whether 1 is spurious. By Theorem 3.10, the spuriousness check can be done with a coNEXP oracle in
general and with a ES oracle in the bounded predicate case. However, by applying standard padding techniques,'? it follows
that a coNP oracle is sufficient in the general case. This proves membership of the problem in NEXPN? in the general case
and in Eg in the bounded predicate case, respectively.

The NEXPNP-hardness in the general case is shown by a reduction from evaluating second-order logic formulas of a
suitable form over finite relational successor structures, i.e., relational structures S = (D, R®) with a universe D and inter-
pretations R,.S for the relations R; in R = Ry, ..., R, which include the relations first(x), next(x, y) and last(x) associated
with a linear ordering < of D.

Lemma A.1. Given a second-order (SO) sentence of the form ® =3PVYQ .¢p where P =P1, ..., Py, and Q = Qy, ..., Qm, are predi-
cate variables and ¢ = \/ ; @; is FO such that each @; is of the form ¢j = 3x1, ..., xnlj1 A --- Alj where eachl; j is a FO-literal, and
a finite relational successor structure S, deciding whether S = ® is NEXPNP-complete.

This lemma can be obtained from the facts that (1) evaluating SO-sentences of the form W = 3PVQ .¢, where ¢ is a first-
order formula, over finite relational successor structures is NEXPNP-complete, cf. [60], and (2) that ¥ can be transformed
into some @ of the form described in polynomial time; the latter is possible using second-order skolemization and auxiliary
predicates for quantifier elimination, cf. [44] and for denoting subformulas, such that @(X) = P, (%) and ¢(X) = ¢1(X) A @2(X)
is expressed by Py (X) = Py, () A Py, (%) etc.

We first describe how to encode evaluating the sentence ® =3P3Q —¢ into an ordinary program Ilp, and then extend
the encoding to prove the result. We define the rules of ITg as follows, where D serves as a domain predicate for constants
C={x1,...,x}:

Pj,,-(XL...,Xn)enotm(xh...,xn),D(Xl),...,D(Xn). foreach Pj; e P (95)
H(XL...,XH)(—not P;i(X1,...,Xn), D(X1),...,D(Xy). foreachPj;eP (96)
Qji(Y1,...,Yn) < not Qji(Y1,...,Yn),D(Y1),...,D(Yy). foreachQj;eQ (97)
@(Yl,...,Yn)} <not Qji(Y1,...,Yn),D(Y1),...,D(Yp). foreachQ;;eQ (98)
sat <—l;1"°t /\-~-/\l;£"°t (99)
ok < not ok. (100)
ok < not sat. (101)

where /™t denotes the replacement of — in [by not."!

10 The input x to the oracle is changed to (x, y), where y is an (exponentially) long string y, and the oracle query considers x from the input only. This
artificially lowers the time bound within the query (measured in the size of (x, y)) can be answered.
1 To make the rules (99) safe, in their body atoms D(X) can be added for unsafe variables X.

58

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Informally, the rules (95), (96) and (97), (98) guess extensions for the predicates in P and Q, respectively, while the
rules (99) evaluate the formula ¢. A guess for P and Q yields an answer set of I1p augmented with S (provided as positive
facts) iff ¢ evaluates over S to false; in this case, no rule (99) fires and thus sat cannot be derived, which means in turn
that ok can be derived by (101) and thus the constraint (100) is satisfied. On the other hand, deriving ok is necessary to
have an answer set, which means that sat must not be derived from the guess for P and Q.

We extend the program Iy now for spuriousness checking. To this end, we introduce for the domain D = {x1, ..., X} at
hand a copy D’ = {y1,...,¥n} and link x; to y; via a predicate eq(x, y) that holds for x,y e DUD’ iff x=x; A y = y; for
some i =1,...,n. The idea is to use D and D’ in the predicates from P and Q, respectively, and to abstract D’ into a single

element, such that for every guess x for P, some abstract answer set ix of the abstract program IT™ will exist; and that,
moreover, ix will be concrete if for some guess for Q, we have an answer set of I, where the latter program is equivalent

to Ip; thus ix will be spurious iff no guess for Q will yield an answer set of ITp, which means that the formula 3PVQ .¢
evaluates to true.
We make the following adjustments.

—

. First, we replace in (97) and (98) the predicate D with D’.

2. Next, for each rule r from (99) we add for each term t that occurs in the rule body a “typing” atom D(t), we replace
each term t that occurs in a Q -literal with a fresh variable X; and add the atoms D’(X;) and eq(t, X;).

3. To each rule r obtained from the previous step we add not succ(y1, y1) in the body; this literal evaluates to true with
no abstraction, while under abstraction it will cause uncertainty and thus lead to a choice rule.

4. We add facts eq(x;, y;) and D(x;), D'(y;), fori=1,...,n.

5. We add facts Q; (Yo, ..., Y0), Qji(¥o,...,yo0) forall Q;; e Q, where yo is a fresh constant.

It is not hard to establish that the answer sets I of the resulting program IT (over S) correspond to the answer sets Iy of Iy
over S; each I is obtained from some Ig by replacing in the Q; ;- and @—atoms the constant x; with the corresponding
yi, adding all facts Q;i(yo, ..., Y0), Qji(¥o,--.,Yo), and adding the eq(x;, y;), D'(y;) facts, i=1,...,n.

The mapping that we construct is m = {{x1}>x1, ..., {Xa}~>X1} U {{¥0, Y1, ..., Yn}>y}. In the abstract program 1™, the
rules (95), (96) are carried over, while the modified rules (97), (98) are turned into rules to derive abstract atoms over Qj ;
resp. Q j ;. However, since IT™ contains the abstracted facts Q;;(¥,...,), Qji(¥,...,y), these rules are redundant.

The modified rules (99) are turned into guessing rules for sat, while the other rules (100) and (101) remain unchanged.
The abstract answer sets of TI™ correspond to guesses x for P to which ok and all Q;;(J,..., %), Qji(J,...,y) are added
(sat is guessed false); denote this answer set by Iy .

The answer set I, is concrete, if there is some guess p for Q such that we obtain an answer set I of the program IT
that is mapped to I, i.e, m(I1) = Iy; this Iy corresponds to some answer set Io as described above. Thus I, is spurious, if
no such guess w for Q exists.

Putting it all together, it holds that IT has with respect to the mapping m = {{x1}>x1,..., {Xp}—=>x1} U {{yo, ¥1,---,
Yn}—3} some spurious answer iff the formula ® in Lemma A.1 evaluates over S to true. Since IT and m are constructable
in polynomial time from & and S, this proves coNEXPNP hardness in the general case.

For the bounded predicate arities case, the evaluation of a formula & as in Lemma A.1 is Zg -complete; furthermore, all
steps in producing the program IT preserves bounded arities. Thus with the same argument, we obtain Eg -hardness for
deciding whether some spurious answer set exists for bounded predicate arities. This proves the result. O

Proof of Proposition 4.2. Let X be any interpretation over V such that m(X) = 1. We will show that with the help of the
auxiliary rules/atoms, some interpretation X’ over Vgepyg Which is a minimal model of '* where I’ = Myepug U Q%" can
be built starting from X. To this end, we first add all facts « from IT to X and all atoms koy,,, where H(r) = L or B(r) # ¢

for a rule in r € grd(IT). The resulting X" will satisfy all rules in grd(ITgepyg), and thus in l'[(’fébug, that are facts from IT or

have either notkop, in the body or ko, in the head. Furthermore, by construction X’ will satisfy Q;". We now satisfy the
remaining rules (i) in Tmera[T1] by adding ap,,, and bl, atoms, in this order and (ii) in Tgeac:[TT] U Tgeactcons[TT] U Tace[T1, V]
by auxiliary atoms p(c1, ..., cy) for the choice-rules and ab_x atoms for the deactivation/activation rules.

(i) For every instance r’ of a rule r € IT such that X’ = B(r’), we add to X’ (a) the atom app, (c1, ..., ¢y) Where arg(H(r')) =
{c1,...,cn}, if H(r) # L and n > 0, and (b) the atoms ap,, , app, (dy, ..., dy) where arg(B(r)) ={dy,...,dy}if Hor) = L
or B(r) = 0. After that, we add to X’ all ground atoms bl (c1,...,cs) and bl such that ap, (c1,...,cn) ¢ X' and
apn, ¢ X', respectively.

For every instance 1’ of a rule r € IT with B(r) # @ and H(r) # L where arg(H(")) ={c1,...,cn}, if ap, (c1,....cn) € X’
and H(r') ¢ X’ we add H(r") and ab_deacty, (c1, ..., cp) to X’; furthermore, for every instance 1’ of a rule r € IT with
H(r) = L where arg(B(r'")) ={d1, ..., dy}, if ap, (d1,...,dy) € X’ we add ab_deactConsy, (d1, ...,dy) to X’. Finally, for
every atom p(cy,...,Cn) € A, if no instance ' of a rule r € IT exists such that Hr') = p(c1,...,¢n) and X' = B(1)
(that is, by, (c1,...,cp) € X’ for all rules r defining p), then we add (a) p(c1....,cy) to X" if p(cq,...,cn) ¢ X" and (b)
ab_acty(cy, ..., cn) to X" if p(c1,...,cp) € X\

(i

=

59

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

As X’ and X coincide on V (i.e., X’ N"HBy = X NHBp = X) we have X' &= Qi’" as claimed, and thus X' &= X', To show that

X’ is a minimal model of IT’X’, we can by [75] show that IT" has no unfounded set U w.r.t. X’ such that U":=U N X' # 0,
i.e, no U C HBpy such that U’ # ¢ and for each atom o € HBry and each r’ € grd(I1’), either X’ = B(') or BT (') NU #£@.

Towards a contradiction, suppose such an U exists. By construction of X/, it is easily checked that for every o € X/,
some 1’ € grd(IT’) exists such that H(') =« and X’ = B(r’). Thus in particular for « € U’, every such rule r’ must satisfy
BT(r') N U’ # . Inspecting the rules in I1/, we can see that by construction of X’ no bl, -atoms and no ko, atoms can
occur in U’, and & atoms and ab_sx-atoms only if U’ contains some apj,, -atoms resp. atom « from HByj.

Now in the case app, (c1, ..., cn) € U’, we must have some atom « € BT (') in U’ where 1’ has the form apy, (c1, ..., cn) <
B(r'); similarly if apy, (d1, ..., dy) € U’, we must have some atom « € BT () in U’ where 1’ has the form apy (d1, ..., dy) <
B(r’). In turn, if & € U’, we must have some atom apy, (c1, ..., cy) € U’ for r’ of the form o < apy, (c1, ..., cp), note where
o =p(cy,...,cy) (from the choice rule {H(r)} < app,(c1,...,Cn)).

Continuing this argument, we obtain that each atom « € U’ N HByy is on a positive cycle in GH,. Since IT is positive-
dependency founded, every rule r € IT that has an instance r’ with H(r') = « must thus have B=(r) =@ and B*(r) # 0.
Define now the abstract interpretation I’ =] \ {m(a) | @ € U'NHBy} and consider IT™. The abstraction of r introduces there
only the rules (a)-(c) from Definition 3.4, but no rules with body shifts or literal removals. Hence, each instance r’ of such
a rule to derive m(«) for o € U’ N HBy has some atom m(B) in B*(r) such that 8 € U’ N HBy. Consequently, T’ satisfies

(l'[’")’ However, this means that] is not a minimal model of 1'[’ which contradicts T € AS(TT™). Thus, an unfounded set

U as supposed cannot exist. Consequently, X’ is a minimal model of X and thus an answer set of T/, which proves the
result. O

Proof of Proposition 4.3. If Tis spurious, by Proposition 4.1 the program ITU Q%" is unsatisfiable. We focus on debugging
the cause of inconsistency. Since IT is positive-dependency founded, this inconsistency can either be due to (i) an unsatisfied
rule, (ii) an unsupported atom, or (iii) a supported atom that is on a positive cycle and has only positive atom dependencies.
Indeed, if all rules are satisfied by IT and S is not an answer set of I1, then some unfounded set U of IT w.r.t. S exists such
that U NS # @, cf. [75]; if all atoms in S are supported, then every atom @ € UN S is on a positive cycle in Gﬁ with nodes
in UNS and « has only positive atom dependencies as IT is positive-dependency founded. Consider now the three cases:

(i) Let r € IT be an unsatisfied rule w.r.t. S. This means that the constraints in Q}” is causing H(r) to be false while B(r)
is satisfied. By the program Tpetq[I1], depending on r, either ap, (c1,...,cn) or ap, (d1,...,dy) is true. By Tgeqce[I1],
we get ab_deacty, (c1,...,cp) € S. If H(r) =L, then by Tgeqctcons[I1], we have kop, € S (else L € S by Timerq[I1]), and
we get ab_deactCons,, (d1, ...,dy) € S.

(ii) Let @ = p(c1,...,Ccp) € S be an unsupported atom in IT w.r.t. S for the domain elements c1, ..., cy. Then, for each rule

instance r deriving o, we have bl (c1,...,¢y) € S and by T[T, V], we have ab_actp(cy,...,cp) €.

Assuming all rules in IT are satisfied and all atoms in S are supported, we show that this case is not possible by

deriving a contradiction. For some U as described, every instance r’ of a rule r: « < B(r) in I1 such that « e UNS

and S satisfies B(r') has B~ (') = ¢, which means B~ (r) = (. Thus, the abstract program IT™ includes for r only
rules without body-shifts, i.e., rules (a)-(c) in Definition 3.4. By positive- dependency foundedness, the interpretation

S\ (UNS) satisfies all rules in IT. Consequently, the abstract interpretation I\m(UﬂS) satisfies the rules (a)- (c)

constructed for r and is a model of TI™; this means that I is not a minimal model of the GL-reduct of IT™ w.rt. I,

which contradicts | € AS(IT™). O

(iii

=

Proof of Theorem 5.1. For an assignment I, we need to show that I U 7p, is a minimal model of (l'I'H")’ if and only if 1U 7,
is a minimal model of (IT™)’.

(=) Towards a contradiction, assume I U 7,5 is @ minimal model of (H?)’ but I U 7y, is not a minimal model of (IT™).
Then either (i) I U 7y, is not a model of (IT™)!, or (ii) I U 75, is not a minimal model of (IT™) .

(i) There is a rule 7 € (IT™)! such that I U 7Ty, = B(F) but I H(). By construction of 1™, # is only obtained by step (a)
of Definition 3.4, otherwise 7 would be a choice rule with head H(f) = {m(l)} and 7 would be satisfied. Consequently
7 is a rule from step (a) for r in I1. Thus, we have I U Ty, = m(B4(r)), d1 odz,rl (dl,dz) Since the definitions of
relation type I for lifted relations and abstract relations correspond to each other, we have Ty = (d1,dz) —
Tms k= 7¢1(d1, d2). This means we get I U T, = m(B*4(r)), 7/¢(d;, d>) which is the abstract rule of r constructed by
step (a) of Definition 5.1. Since I U 7y, is @ minimal model of (1'1’3“)’, I |= H(F). Hence, we reach a contradiction.

Let there be J I such that J U7, is a model of (IT™)!. We claim that J U Tmy is a model of (1'[’3")’, which would
contradict I'U Tpyy € AS(TTY). Assume [U ’7?,,3#(1'['3")'. Then there is a rule 7 ¢ (H'H")’ such that J U Ty = B() but
JEH®), while I = H(F). We need to show that there is a corresponding rule in (IT™)! for #, which would then
achieve the contradiction that is J = H(F). Below, we denote by B(7) \ [, the abstract body excluding the abstracted
relation (and its relation type atom).

(ii

=

60

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

o If 7 contains r{;’(&l,az) (step (a) or (c) of Definition 5.1), then since we know T & rlo(&l,az) = Tmy E
r{a(fl,fz), we achieve | U Ty, = d; oda, rl°(fl1,32) (also J U Tm =dq ody). Since 7 € (I, we know that I = B(7)
and also I k= B(%) \ I';. Thus we get H() < B(#)\ [}, d1 oda, 7°(d1, d>) (also H(F) < B(#)\ Iy, d1 o da) in (IT™)". Since
J UTm is a model of (l'['”)’ we get J = H(f), which is a contradiction.

e If 7 contains rﬁ‘f (dl dz) (step (b) or (c) of Definition 5.1), then JU Tp, = Tm (d1 dz) means that there exist some
di1,di2 e m~1(dy), da1,dap €m ~1(dy) and some J’ emfl(]) such that J' =diq ody; and J'Edqz odyy. There are
the following cases for d1 od2 (1) J |:d1 odz. or (2)]#dl od2

(1) Since we know J'#dj3 o dp, this case obtains 7y (al,az), thus JU Ty E 31 oaz, rl‘l’l(a1,a2). With similar rea-
soning as above on obtaining H(f) < B(#) \ [y, d; o dy, 75(d1,d2) in (IT™)! (also H() < B(#) \ [y, d1 ody in
(IT™!), we achieve J = H(?), a contradiction.

(2) Since we know |’ |=dq1 odyq, this case obtains rf\’,(al,az), thus JU Ty &= 31632,1&(31,32). With similar
reasoning as above we reach a contradiction.

(«<=) Towards a contradiction, assume I U 7y, is a minimal model of (IT™)! but | U Tmy is not a minimal model of (H?)’.
Then either (i) I U 7my is not a model of (1'1’3")’, or (ii) I U7y is not a minimal model of (1'[';’)’.

(i) There is a rule 7 € (1—[51)1 such that I U Ty = B(F) but [H(F). By construction of I1T, 7 is only obtained by step (a)
of Definition 5.1. With an analogous reasoning as above item (i), we achieve a contradiction.

(ii) Let there be J C I such that J U 7Tn, is a model of (1'[’3”)'. We claim that J U7, is a model of (IT™)!, which would
contradict U7y, € AS(IT™). Assume | U7 # (IT™M)!. Then there is a rule # e (IT™)! such that J U7, = B(7) but J¥ H(#),
while I = H(f). We need to show that there is a corresponding rule in (Hgl)’ for 7, which would then achieve the
contradiction that J): H().

o If 7 contains d1 odz,rl (dl dz) (step (a) of Definition 3.4), an analogous reasoning as above item (ii) obtains
H() < B(F) \ Yy, rlre’(d1 dz) in (l'I'”)’ which achieves | = H(F) a contradiction.

e If 7 contains d1 odz, rm(d1,d2) (step (b) of Definition 3.4), then JU Ty & d1 odz, rm(d1,d2) means that | = d1 odz
and there exist some di € m 1(d1) dy e m‘l(dz) and some |’ € m~1(J) such that J'¥d; od2 This obtains abstract
relation type rﬁf’(deZ) thus J U Ty = 7 (d1,d2) Notice that also] = not lsSmgleton(d) holds for some i e

{1, 2}. With similar reasoning as above on obtaining H(7') < B(F') \ Fr, ‘rﬁfl(dl,dz) in (l'lg")’, we achieve | = H(F), a
contradiction. o o .

e If 7 contains djodo, Ty,(d1,d2) (step (c) or (d.ii) of Definition 3.4), then | U Tp, k=djoda, T3,(d1,d2) means that
J¥dy ody and there exist some dye m=1(dy), dp em™1 (82) and some J' e m~1(J) such that J' =d; od,. This again
obtains abstract relation type T/ (dl,az), ie, JUTny E tﬁe’(dl dz) thus reaches a contradiction as above.

e If T contains only d1 od2 (step (d.i) of Definition 3.4), then this means either | U Ty = 7° (d1,d2) or JUTny E

T (&1 , az) holds. Also we know that | &= not isSingleton(Eli) holds for some i € {1, 2}. So similar as above, we achieve
a contradiction. O

A.1. Merged vs. individual independent cycles

Ly denote the program constructed in Definition 3.8 for L,,..., Ly, and let ITs denote the program con-

structed by considering a big cycle S =L¢, U... UL (ie, using S in instead of L; for defining BSL’jS(r)). Then we obtain the
following result.

Proposition A.2. For every program I1, it holds thatAS(l'[Lc1 vl) = AS(ITs).

Proof. Let L= L,,..., Ly. We first observe that the rules in ITy and IIs are related in the following way. We say that a
rule r is a tightening of a rule r/, if Hor) = H('), B¥(r) CB* (') and B—(r) C B—(1").

Lemma A.3. For each rule r € 1y, according to (d), there exists a tightening r’ of r in I1s, and for each rule r € T1s according to (d),
there exists a tightening r’ of r in Iy.

To see the first part, if o € LC]. then €S, and if . e LN Lcj then o € LN S. Suppose a rule r in (d) is included in Iy
with B;hLC (ro) for some rule ro € I1. If in (42) the condition & € L¢; and L¢; N L # ¢ applies, then a tightening " of r will be
e

included in ITs for Bi’fs (ro) by condition o € L and Le;NL# @; if in (42) the condition « ¢ LjorLe;NL= ¢ applies, then

61

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

likewise a tightening r’ of r will be included in ITs for Bi’?S (ro) by either the condition o ¢ L¢; or Le; N L= (then (r=r')
or by the condition « € L; and Le;NL#D.

For the second part, r stems from a rule ro € IT for S and some L. For each L, from ro some rule r’ for L and L is
added to ITg; If r =1/, we are done. Otherwise, it follows that « € L and LN L¢; # ¥ must hold.

Consider now the set L' =L\ Uj,¢j Le,. As each cycle L, j' # j, is disjoint from L¢;, we have @ € L; and L'n Le; #9.
Consequently, in (d) stemming from ro some rule r” is put in Iy for L’ and L; by the condition & € L¢; and L¢; N L # @ in
(42). Since L'\ L; =L\ S and L’ C L, the rule r” is a tightening of r. This proves the lemma.

The result follows now from this and the following lemma.

Lemma A4. Let T1; and I1, be programs that differ only on choice rules and such that, for each choice rule r in 11, some tightening
1’ of r in T exists. Then AS(IT1) C AS(I1>).

Indeed, consider I € AS(I17) and any choice rule r’ € ITy. If ' is the tigthening of some rule r € T1; such that I = B(r) and
I = H(r), then we keep r for building an nswer set; otherwise, if I = B(r’) we discard r’. Then by construction I = I1!, and
since for each rule r in l'I{ such that I = B(r) a tightening in l'[é exists, no smaller model | of l'[é is possible (otherwise I
would not be the least model of Hﬁ). Thus, I is answer set of IT,, which proves the lemma.

Putting things together, the programs Iy and ITs differ only on choice rules according to (d), and by Lemma A.3 the
condition of Lemma A.4 is verified to conclude AS(ITy) € AS(I1s) and AS(ITs) € AS(Ip), respectively, which completes the
proof. O

Appendix B. Further details
B.1. Correctness checking failure for non-positive-dependency founded programs

The following example shows that the procedure for correctness checking does not work for programs that are not
positive-dependency founded in general.

Example B.1. Consider the program below which is unsatisfiable and also contains a positive loop.

r1:a(X) < nota(X),dom(X).
ry:a(X) «—a(X).
dom(1). dom(2). dom(3).

For the mapping m = {{1, 2, 3}+>k}, the constructed abstract program IT™ is

a(X) < not a(X), dom(X).

{a(X)} < not isSingleton(X), dom(X).
a(X) <a(X).

dom(k).

which has the abstract answer set | = {a(k)}. Checking the correctness using Igepy,g U Q;“ results in unsatisfiability, because

it requires to have some a(c) for c e m~!(k) to hold true through a loop, which is not covered in the definition of Mgepug-
More in detail, the program ITgepyg contains among others the following rules:

{a(X)} <—apr, (X). {a(X)} < apr,(X).
apy, (X) <—nota(X), dom(X). apr, (X) < a(X).
bl (X) <—not ap;, (X), dom(X). bl;,(X) <—not ap;, (X), dom(X).

{a(X)} < bl (X), blr, (X).

Then we may pick X = {a(1)} (omitting the domain facts) as starting set for building an answer set X’ of IT" = Mgepyg U
Qim as in the proof of Proposition 4.2. Following the steps, we obtain X' = {a(1), ap,(1), b, (1), apr,(2), bl;,(2),a(2),

apr, (3), blr,(3),a(3), ...}. This is not an answer set of IT’, however, as the atoms a(1), ap,,(1) form a cycle in G;, that

is an unfounded set of IT" w.r.t. X’. Notice that m(a(1)) = a(k) has in 1™ founded support from the choice rule, which
allows for having I as answer set of IT™. We would obtain a similar picture if we would choose any other X € A such that
m(X) = Tasa starting set, viz. that for each c € {1, 2, 3} such that a(c) € X, we have ap,,(c) € X’ for the X’ constructed and
U = {a(c), apy,(c)} is an unfounded set of TT™ w.r.t. X'.

62

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

B.2. Grid-cell problem encodings

In this appendix, we provide details about the slight modifications made from the existing (or common) encodings, in
order to use them in our experiments. The full encodings can be found in www.kr.tuwien.ac.at/research/systems/abstraction/
mdaspar_material.zip.

Sudoku We used the encoding from DLV group in ASPCOMPO09 with slight modifications. The guessing of the assignment
of numbers to the free cells is written as

{sol(X,Y, N) :num(N)} < not occupied(X, Y), row(X), column(Y).
hasNum(X,Y) <-sol(X,Y,N).
1 <—not hasNum(X, Y), row(X), column(Y).

The constraints of assigning one symbol per column and one symbol per row are the same as in the original encoding, but
with standardizing apart over the sorts row and column.

1 «sol(X, Y1, M),sol(X3,Y2, M), X=X,,Y1 <Y).
1 <—SOl(X1, Y, M),SOI(Xz, Yz, M), X1 < Xz, Y:Yz.

For the constraint of assigning one symbol per subregion, standardizing apart the original rules caused to have relations
with many arguments, thus we converted them into the rules

L «sol(X1, Y1, M), sol(Xz2, Y2, M),
sameSubSquareLessThan(X1, Y1, X2, Y2).
sameSubSquareLessThan(X1, Y1, X2, Y2) < sameSubSquare(Xy, Y1, X2, Y2), X1 < Xa.
sameSubSquareLessThan (X1, Y1, X2, Y2) <—sameSubSquare(Xy, Y1, X2, Y2), Y1 < Y>.
sameSubSquare(X1, Y1, X2, Y2) < subrangeR(X1, M), subrangeR(X2, M),
subrangeC(Y1, R), subrangeC(Y>, R).
with the hardcoded facts subrangeR(X, M) and subrangeC(Y, R) for subregions w.r.t. rows and columns, respectively.

Knight's tour We used the encoding from ASPCOMP11'? with slight modifications. At most one move atom is made for each
valid movement among the cells.

{move(X1, Y1, X2, Y2)11 < valid(Xq, Y1, X2, Y2).
In the original encoding, the valid cells computations were done using rules of the form
valid(Xq, Y1, X2, Y2) < point(X1, Y1), point(X,Y2), X1 =X +2,Y1 =Y, + 1.
which are modified as
validcell(X1, Y1, X2, Y2) < dist1(X1, X2),dist2(Yq, Y2).
validcell(X1, Y1, X2, Y2) <—dist2(X1, X3), dist1(Y1, Y2).
valid(X1, Y1, X2, Y2) < validcell(X1, Y1, X2, Y2), point(X1, Y1), point(X2, Y2).

where the auxiliary facts dist1(Xq, X2), dist2(X1, X3) represent the arithmetic operations X1 =X, +2,Y1 =Y, + 1.
The constraints to ensure that exactly one entering/leaving movement is made for each cell is the same as the original
encoding. Having each cell visited is ensured by the following rules

reached(X, Y) < move(Xy, Y1, X, Y), start(X1, Y1).
reached(X>, Yo) < reached(X1, Y1), move(X1, Y1, X2, Y2).
1 <« point(X,Y), not reached(X, Y), row(X), column(Y).

where the atom start(X, Y) is used to show the starting point, instead of having in the rule the atom move(1,1, X, Y) as it
is originally. This change makes treating the program more convenient, as the rules do not contain constants that need to
mapped to different abstract constants depending on the mapping.

12 \www.mat.unical.it/aspcomp2011/files/KnightTour/knight_tour.enc.asp.

63

http://www.kr.tuwien.ac.at/research/systems/abstraction/mdaspar_material.zip
http://www.kr.tuwien.ac.at/research/systems/abstraction/mdaspar_material.zip
http://www.mat.unical.it/aspcomp2011/files/KnightTour/knight_tour.enc.asp

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Visitall We encoded a planning problem along the guidelines in Section 7.2 on representing actions and change. We con-
sidered go(X, Y, T) actions that can move horizontally/vertically to a cell X, Y. For such an action, we must ensure that
the action does not pass through an obstacle or a previously visited cell, and that all the passed cells become visited. A
common way of encoding this is to have auxiliary atoms that keep track of the cells that are in between, such as

aux_passed(X, Y2, T +1) «<rAt(X,Y,T),go(X,Y1,T),Y <Yy, Yy < Y.
aux_passed(X,Y,, T +1) «<rAt(X,Y,T),go(X,Y1,T),Y1 <Yy, Y, <Y.
aux_passed(Xz, Y, T+ 1) «<rAt(X,Y,T),go(X1,Y,T), X < X2, X2 < Xj.
aux_passed(X, Y, T+ 1) «<rAt(X,Y,T),go(X1,Y,T), X1 < X2, X2 < X.
passed(X,Y) < aux_passed(X,Y, T).
which are then used to ensure the above conditions.

1 < passed(X,Y), obsAt(X,Y).
visited(X, Y, T) < aux_passed(X, Y, T).

1 <« aux_passed(X,Y, T + 1), visited(X, Y, T).

We follow the remark in Section 5 on handling different abstraction levels on variables in a rule. For example, for the
first rule, in addition to the standardizing apart the rule as

aux_passed(X,Y,, T+ 1) «<rAt(X,Y,T),go(X1,Y1,T),X=X1,Y <Yy,Y, <Yi.
we add the additional rule
aux_passed(X1,Y2, T+ 1) «<rAt(X,Y,T),go(X1,Y1, 7)), X=X1,Y <Yy, Y2 <Yq.

We proceed similarly with the remaining rules.
Furthermore, knowing that the action go(Xj, Y1, T) will only be picked in a horizontal (resp. vertical) direction of
rAt(X,Y,T), we drop the relation X = X; (resp. Y = Y1) from the body to make it smaller.

B.3. Example run of mDASPAR

To illustrate further considerations for debugging and refinement, we show an example run of mDASPAR.

Example B.2 (ctd). We run mDASPAR with the input program (Fig. 15) and the instance shown in Fig. 13, with the initial
mapping m of clustering the grid-cell into four regions (Fig. 14a).

Step1 After constructing the non-ground abstract program (Fig. 16) and computing the relation types, mDASPAR com-
putes an abstract answer set

{reachable(a234, b1234), reachable(ase7s, b1234), reachable(ai234, bse78)}.

Step2 Correctness checking first uses I1gepyg, Where the ab atoms only contain rule names (Fig. 27) to obtain the optimal
answer set

{ab_deactCons,3, ab_deact,}.

Step3 Tlgepyg is constructed only for r2,r3 now respecting variables in the rules, and by defining ab_deact;»(X1, Y1) as

ab_deactr» (X1, Y1) < apr2(Xq, Y1), not reachable(Xq, Y1).
1L :~ab_deact(X1,Y1). [1,12, X1, Y1]
1 :~ab_deact;»(X1, Y1), mapTo(Xy, Y1, A1, B1),
isSingleton(A1), isSingleton(B1). [20,12, X1, Y1]
refine(A1, B1) < ab_deact,» (X1, Y1), mapTo(X1, Y1, A1, B1), not isSingleton(A1).
refine(A1, B1) < ab_deact;» (X1, Y1), mapTo(X1, Y1, A1, B1), not isSingleton(B1).

and similarly ab_deactCons,3(X, Y, X1, Y1). Correctness checking finds an optimal answer set with the atoms
refine(ai234, bse7s), refine(dse7s, bse7s).

64

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

kOr] .
{reachable(X,Y)} <—ap1(X,Y).
ab_deactr; < apr1(X,Y), not reachable(X,Y).
L :~ab_deacty. [1,11]
kOrz.
{reachable(X1, Y1)} < apr2 (X1, Y1).
ab_deact;, < apr(Xy, Y1), not reachable(Xy,Y1).
1 :~ab_deacty,. [1,12]
k0r3.
ab_deactCons;3 < ko3, apr3(X,Y, X1, Y1).
L :~ab_deactCons,s. [1,13]
k0r5.
{neighbor(X, Y, X1, Y1)} < aprs(X,Y, X1, Y1).
ab_deact;s < apy5(X,Y, X1, Y1), not neighbor(X, Y, X1, Y1).
1 :~ab_deact;s. [1,15]
kOrG.
{neighbor(X, Y, X1, Y1)} < apre(X,Y, X1, Y1).
ab_deact;s < ape(X,Y, X1, Y1), not neighbor(X, Y, X1, Y1).
1 :~ab_deact;s. [1,16]

{neighbor(X, Y, X1, Y1)} < blys(X, Y, X1, Y1), blie(X, Y, X1, Y1).
ab_act(neighbor(X, Y, X1, Y])) <~ b[r5(X, Y7 X1, Y]), blrs(X, Y, X] N Y]),
neighbor(X,Y, X1, Y1).
1~ ab,actne,-ghbor(x, Y, X1,Yy). [1,X,Y, Xq,Yq]

{reachable(X,Y)} < bl-1(X,Y),bl2(X,Y).
ab_act(reachable(X,Y)) < bly1(X,Y),bl:2(X,Y), reachable(X, Y).
L~ ab_actreqchaple (X, Y)- [1, X, Y]

Fig. 27. Constructed debugging program Tgeact[I1] U Tgeactcons[T11 U Taet [I1, A].

Step4 The region (aj234, bss7g) is randomly picked to refine to {(ai2, bsg), (a12, b7g), (ass, bsg), (ass, b7g)} by updating
the corresponding mapping m.

Step5 Relation types according to the new mapping are computed and the loop goes back to step 1 to compute a new
abstract answer set.

The loop continues until unsatisfiability is achieved. The abstraction shown in Fig. 14b is one such abstraction where
unsatisfiability is observed.

B.4. Modular concreteness checking

Ordered modularity An incremental approach to ASP solving proposed by Gebser et al. [53] builds on the concept of modules
[94] and gradually increases the bound to the solution size, represented by a parameter k, to help with both grounding and
solving. They are searching for an answer set with minimum size over k, thus they increment the parameter until an
answer set is computed. We use a similar idea to detect the spuriousness of an abstract answer set by gradually increasing
the parameter. However, in our case, the increment is continued until the spuriousness is realized with debugging, i.e.,
an answer set with an abnormality atom is obtained. We take a simpler view by limiting the generated grounding of the
program to the parameter.

Let IT be a program with the Herbrand base HBy; = Lp U Ly, for parameter k ranging over the natural numbers, where
Lp represents the static literals with arguments independent of parameter k, and £ represents the dynamic literals which
have an argument k. For a set X of literals, we denote by grd(IT)|x = {r | H(r) U B(r) € X} the set of ground rules that
contain only literals over X. Let X; C HBy; denote the set of literals until the parameter value i, i.e.,, X; = Lp U U'j:o Ly
where Ly,; denotes the set of literals with the respective argument of value j. The rules of grd(IT) until parameter value i
are then given by grd(IT)|x;, simply denoted grd(IT)|;.

Let I<; denote the projection of an interpretation I to the literals related with the parameter value i, i.e., I<;=1N(LpU
U0§j5i L;). We say that IT is ordered modular, if for each I € AS(IT) it holds that I<; € AS(grd(IT)|;) for all 0 <i <k. We
then know that determining the occurrence of a literal | in an answer set I<; relies only on the decisions made until point i.

Proposition B.1. Let T1 be an ordered modular program, m a domain mapping for T1, and let 1 € AS(TT™). Ifigi < 1 is spurious for
some i <n, then I is spurious.

Proof. Assume | is concrete. This means that there exists some I e IT such that m(l) = 1. As TI is ordered modular, I<i e
AS(grd(IT)|;). Thus, m(I<;) = I; is concrete. 0

We describe in detail the implementation of these approaches.

65

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Incrementing time. Approach (1) is implemented in mDASPAR to handle planning problems with atoms having time argu-
ments. By Proposition B.1, we know that if the first few actions of a potential plan described by the abstract answer set
have no corresponding original plan, one can conclude that this plan is spurious.

A common description of the planning problem in ASP uses two sorts for time: timea = {0, ...,n — 1}, which is used for
action atoms, and time = {0, ..., n} which is used to for the fluents. For a given program IT with a description of a planning
problem that contains facts for sort time, mDASPAR works as follows. We denote by Tpmeta[I1]]; the meta-program 7meta[I1]
which contains time facts (resp. timea) until domain element i (resp. i — 1), and by Igepyg|i the analogous restricted version
of Tgebug. For a computed abstract answer set 1 encoding a plan (sg, ag, S1,...,Sn1—1,an—1, Sp) We denote by f|i the part of
the plan until time point i.

Starting with i =1, we continue the iteration below while i <n.

Step (1) Create Tmera[I1]li—1 and Tlgepugli-
Step (2) Check correctness of I|; with Mgepugli U TmetalT1]]i—1 U Q;’l’

Step (3) If f|i is spurious, exit loop; otherwise, increase i by 1.

This way, we check the correctness of T for the action taken at time i, by debugging only for time point i as the guessing
for time points t < i is restricted by using Tneta[I1]]i—1. The time is increased incrementally while the partial solution yields
a concrete partial plan. Once spuriousness is observed, the checking is stopped.

Partial concretization. For approach (2), we use the possibility to have a hierarchy of abstractions mentioned in Propo-
sition 3.6. The idea is to partially concretize the abstract domain, by fully concretizing certain regions and keeping the
remaining ones abstract. Fig. 17 shows the hierarchy of some partial concretizations of the initial mapping. For a given
mapping m, we consider a set of possible partial concretizations. We then check the correctness of an abstract answer set
I over the program with partially concretized domain. As the latter still describes an abstraction compared to the original
domain, this check cannot be immediately done over the original program. For that, we have must check correctness with
debugging over the abstract program relative to the partial concretization.

The approach is implemented in mDASPAR as follows. For a given mapping m, starting with j =1, the iteration focuses
on concretizing j regions at a time, and checks the correctness in each such j-region combination. The iteration continues
until spuriousness is detected or m = mjq:

step (1) Compute j-region concretizations of m, say mq, ..., my,.
step (2) For every m; € {mq,...,my};
1. Create II™ with 7, and the set {m;(p(c)). | p(c). € IT} of facts, and nngug'
2. Create the mapping m’ such that m’(m;(D)) = m(D).
3. Check correctness of I with Hngug u le/.
4. If spurious, exit loop with debug answer C.

step (3) If C # ¢, refine m according to C and go back to step (1); otherwise, increase j by 1, and go back to step (1)

We do correctness checking on the abstract level m; using IT™i. If [is concrete w.r.t. the partially concretized abstraction,
this does not guarantee that [is concrete; thus, the concretization is increased to redo the check. If spuriousness is detected,
the mapping is refined and the partial concretization continues from the updated mapping.

Appendix C. Use case: abstraction for policy refutation

As a further example, consider checking whether an agent always manages to find a missing person with a given policy
in a grid environment with obstacles. If the policy does not work, a counterexample trajectory over some part of the
environment will reveal this; by inspecting the latter, one may guess why it fails. Depending on the problem, the focus
points may have different nature. For the reachability example shown in Section 5.2, the focus area in the environment can
remain local, while for the person search example the path of a trajectory needs to be distinguished.

For illustration, we use the following running example.

Example C.1 (Example 5.8 cont'd). Consider the reachability problem described in the following encoding, where reachability
((72)-(74)) is redefined by prioritizing the east neighbor over the rest, and in case the east neighbor has an obstacle,
choosing the south neighbor.

point(X, Y) <—not obsAt(X,Y), row(X), column(Y). (102)
reachable(X,Y) < start(X,Y). (103)

66

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

(a) Original domain (b) Distinguishing the cells reachable under the restrictions

start(ay, by). obsAt(aq, bq).
. . !: obsAt(as, b1). obsAt(az, by).
obsAt(az, bg). obsAt(aiz, ass).
. obsAt(asg,as4). obsAt(asg, asg).
0bsAt(a1234, ase78)-

Fig. 28. Reachability abstraction under east neighbor prioritization.

neighborE(X,Y, X1,Y) < X1 — X=1, column(Y). (104)

neighborS(X,Y, X, Y1) < Y1 —Y =1, row(X). (105)

reachableE(X, Y, X1, Y) <—reachable(X, Y), point(X1,Y), (106)
neighborE(X,Y, X1,Y).

hasNeighborE(X, Y) <—reachableE(X,Y, X1, Y1). (107)

reachable(X, Y1) < reachableE(X, Y, X1, Y1). (108)

reachable(X, Y1) < reachable(X, Y), point(X, Y1), (109)

neighborS(X, Y, X, Y1), not hasNeighborE(X, Y).

For the instance shown in Fig. 28a the reachable cells are determined in the order —2|—° 5. The abstraction shown in
Fig. 28b singles out the area that contains the cells that are reachable according to the restrictions.

We now focus on using the abstraction over grid-cells for the problem of checking policies on whether they manage to
guide the agent towards the goal. We consider two versions of this problem and discuss the use of abstraction.

As a running example, we consider an agent trying to find its way in a maze towards a goal point (similar in spirit to
the example of finding a missing person). For representing and generating the mazes, we use an altered version of the Maze
Generation encoding from ASP Competition 2011.> A policy that may come to one’s mind when talking about mazes is the
well-known “right-hand rule”, which is known to work in many maze instances, except when the goal is in the middle area
and the agent is forced to loop due to the obstacle layout.

Does the policy work on a given instance? For fixed problem instances, this check is done by a search of a counterexample
trajectory which follows the policy but does not reach the goal. If none is found (i.e., unsatisfiability is achieved), we
conclude that the policy works for this instance. Abstraction can be used to focus on the part of the instance which is
enough to show that the policy fails or works; notice that the latter case becomes similar to having unsatisfiable problems.
The necessary granularity of the abstraction depends on the complexity of the policy. As demonstrated in Fig. 30, for refuting
the “right-hand rule” policy the abstraction must refine at least the outer area (if not more).

To observe how the policy type affects the resulting abstraction, we did some experiments. To help with the refinement
decisions, the initial abstraction distinguishes the starting point of the agent and abstracts over the rest.

We consider the following two policies:

(A) Right-hand rule: Follow the wall on the right-hand side.
(B) Naive policy: Choose the direction to move to with the priority right > down > left > up.

We generated 20 instances where on some of them both, one, or none of the policies work. For the debugging method
we picked time increment, as we wanted it to focus on each step of the abstract trajectory starting from the beginning,
and on whether or not the steps match the policy’s decisions in the corresponding original trajectory. Furthermore, the
refinement decision is made only from one abstract answer set, to avoid that a concrete answer set is encountered among
spurious ones; this would finalize the search and achieve a clearly non-faithful abstraction.

Table 7 shows the results of using mDASPAR to achieve an abstraction with a concrete solution. Obtaining SAT means
that the program found a concrete solution, i.e., a concrete counterexample trajectory, which shows that the policy does
not work, while having UNSAT means that the policy works. As expected, the naive policy failed to work for most of the

13 https://www.mat.unical.it/aspcomp2011/files/MazeGeneration/maze_generation.enc.asp.

67

https://www.mat.unical.it/aspcomp2011/files/MazeGeneration/maze_generation.enc.asp

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

Table 7
Policy checking in maze instances.
sat/unsat avg. step avg. cost avg. best step avg. best cost
naive 16/4 7.2 0.391 6.5 0.362
right-hand 6/14 125 0.630 118 0.599

(b) Supporting the naive policy (c) Refuting the right-hand policy

(e) Refuting the naive policy (f) Supporting the right-hand policy

(g) naive: works, right-hand: works (h) Supporting the naive policy (i) Supporting the right-hand policy

Fig. 29. Abstractions on policy checking in maze instances (with the supporting/refuting paths).

instances. Since the right-hand rule forces to traverse the environment more, mDASPAR required to have finer abstractions
to figure out the concrete solution. In both cases, the obtained abstractions were not too distant from the best possible ones,
although still sometimes the focus was shifted to the irrelevant parts of the grid. All of the obtained resulting abstractions
were faithful, which means that they were able to show the actual behavior of the policy. Fig. 29 shows the resulting
abstractions for three of the instances.

Does the policy always work? This is a more involved check, since a set of possible instances has to be considered and a
search of a counterexample trajectory among each instance needs to be done. If the policy works, then all possible policy
trajectories in all instances have to be checked to conclude this result. For this case, considering an abstraction that focuses
on a certain part of the grid may not be useful, since depending on the structure of the instances different parts of the grid
may need to be singled out. However, if the policy does not work, it is enough to find an instance in which a counterexample
policy trajectory can be shown. Thus, an abstraction that focuses on a certain part of the grid where some instance can show
a counterexample would be useful.

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

(a) A counterexample instance

(c) A counterexample instance (d) Spurious counterexample trajectories due to abstract regions

Fig. 30. Can we refute the right-hand rule policy in all maze instances with one abstraction?

In ASP, such a check can be done by making two sets of guesses: (1) choose a valid instance, by guessing the layout of the
environment and the position of the goal, and (2) determine a counterexample trajectory, by guessing the movements of the
agent following the policy which do not achieve the goal in the instance. If the policy is deterministic (i.e., chooses exactly
one action at a state), then the second guessing part becomes straightforward. However, for nondeterministic policies, a
choice of possible actions to take exists, which adds to the complexity of the search.

The experiments showed that combining these guesses and those introduced in the syntactic transformation causes many
spurious abstract answer sets, which sometimes force refinement decisions towards useless parts of the grid. For example,
in general policy checking for the right-hand rule, mDASPAR must go back to the original domain to catch an instance with
a counterexample trajectory, as the policy forces to traverse the environment and in the abstract encoding the guesses of the
instance and the movements cause to create many spurious trajectories. As for the naive policy, mDASPAR can encounter
a counterexample trajectory in few refinement steps: it is sufficient to realize that this policy fails by creating a partial
instance where the agent enters a dead-end and has to leave by moving left; it then starts looping by moving right and left.

We remark that for a failing policy we may not expect to have one abstraction mapping that can be applied with any
possible instance and catch a counterexample trajectory, the less a mapping that is faithful for any instance. Fig. 30a shows
an instance in which the right-hand policy is unable to reach the (green) goal point from the (red) entry point in the upper
left corner. An abstraction such as Fig. 30b is enough to realize that a loop occurs and a goal cannot be reached (it is a
faithful abstraction for this instance). However, this abstraction does not always distinguish the cells that force to obtain a
counterexample trajectory in each possible refuting instance. For example, the instance in Fig. 30c also forces the agent to
loop; since with the same abstraction (Fig. 30d) there is uncertainty among the abstract regions, it is still possible to create
spurious counterexample trajectories. Thus, faithfulness cannot be achieved. Here the identity abstraction would be the one
that can be used to (faithfully) refute the policy in all possible instances.

References

[1] M. Alviano, C. Dodaro, Anytime answer set optimization via unsatisfiable core shrinking, Theory Pract. Log. Program. 16 (2016) 533-551.

[2] M. Alviano, C. Dodaro, M. Jdrvisalo, M. Maratea, A. Previti, Cautious reasoning in ASP via minimal models and unsatisfiable cores, Theory Pract. Log.
Program. 18 (2018) 319-336, https://doi.org/10.1017/S1471068418000145.

[3] M. Alviano, W. Faber, N. Leone, Disjunctive ASP with functions: decidable queries and effective computation, Theory Pract. Log. Program. 10 (2010)
497-512, https://doi.org/10.1017/S1471068410000244.

[4] J.S. Anderson, A.M. Farley, Plan abstraction based on operator generalization, in: Proceedings of the 7th National Conference on Artificial Intelligence,
AAAI 1988, 1988, pp. 100-104.

[5] B. Andres, B. Kaufmann, O. Matheis, T. Schaub, Unsatisfiability-based optimization in clasp, in: Technical Communications of the 28th International
Conference on Logic Programming, ICLP 2012, Schloss Dagstuhl-Leibniz-Zentrum Fuer Informatik, 2012, pp. 211-221.

[6] J. Arias, M. Carro, E. Salazar, K. Marple, G. Gupta, Constraint answer set programming without grounding, Theory Pract. Log. Program. 18 (2018)
337-354.

[7] E. Bacchus, Q. Yang, Downward refinement and the efficiency of hierarchical problem solving, Artif. Intell. 71 (1994) 43-100.

69

http://refhub.elsevier.com/S0004-3702(21)00114-4/bib10FC4EAC4D41777A034FA89DA923BAB6s1
https://doi.org/10.1017/S1471068418000145
https://doi.org/10.1017/S1471068410000244
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibE0D5EBD7F2B1D28E66B7F061CC0DDA8Fs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibE0D5EBD7F2B1D28E66B7F061CC0DDA8Fs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib54E7ED448BA7726E006363DB7E8D2EE9s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib54E7ED448BA7726E006363DB7E8D2EE9s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib5D9941961D4D88CD83D22C1DD98D88E3s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib5D9941961D4D88CD83D22C1DD98D88E3s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibBF6355DC9693863F7EE5728C0E429C51s1

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

[8] C. Backstrom, P. Jonsson, Planning with abstraction hierarchies can be exponentially less efficient, in: Proceedings of the 14th International Joint
Conference on Artificial Intelligence, vol. 2, [JCAI 1995, Morgan Kaufmann Publishers Inc., 1995, pp. 1599-1604.

[9] B. Banihashemi, G. De Giacomo, Y. Lespérance, Abstraction in situation calculus action theories, in: Proceedings of the 31st AAAI Conference on
Artificial Intelligence, AAAI 2017, 2017, pp. 1048-1055.

[10] B. Banihashemi, G. De Giacomo, Y. Lespérance, Abstraction of agents executing online and their abilities in the situation calculus, in: Proceedings of
the 27th International Joint Conference on Artificial Intelligence, [JCAI 2018, 2018, pp. 1699-1706.

[11] F. Belardinelli, A. Lomuscio, J. Michaliszyn, Agent-based refinement for predicate abstraction of multi-agent systems, in: Proceedings of the 22nd
European Conference on Artificial Intelligence, ECAI 2016, I0S Press, 2016, pp. 286-294.

[12] M. Bichler, M. Morak, S. Woltran, The power of non-ground rules in answer set programming, Theory Pract. Log. Program. 16 (2016) 552-569.

[13] S. Bistarelli, P. Codognet, F. Rossi, Abstracting soft constraints: framework, properties, examples, Artif. Intell. 139 (2002) 175-211.

[14] B. Bonet, G. De Giacomo, H. Geffner, S. Rubin, Generalized planning: non-deterministic abstractions and trajectory constraints, in: Proceedings of the
26th International Joint Conference on Artificial Intelligence, I[JCAI 2017, 2017, pp. 873-879.

[15] B. Bonet, H. Geffner, Policies that generalize: solving many planning problems with the same policy, in: Proceedings of the 24th International Joint
Conference on Artificial Intelligence, IJCAI 2015, AAAI Press, 2015.

[16] M. Brain, M. Gebser, J. Piihrer, T. Schaub, H. Tompits, S. Woltran, Debugging asp programs by means of asp, in: Proceedings of the 9th International
Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2007, Springer, 2007, pp. 31-43.

[17] S. Brass, J. Dix, Characterizations of the disjunctive stable semantics by partial evaluation, J. Log. Program. 32 (1997) 207-228.

[18] G. Brewka, T. Eiter, M. Truszczyiski, Answer set programming at a glance, Commun. ACM 54 (2011) 92-103.

[19] G. Brewka, T. Eiter, M. Truszczynski (Eds.), Answer Set Programming, Al Mag. 37 (3) (2016), AAAI Press.

[20] P. Cabalar, J. Fandinno, M. Fink, Causal graph justifications of logic programs, Theory Pract. Log. Program. 14 (2014) 603-618.

[21] F. Calimeri, W. Faber, M. Gebser, G. lanni, R. Kaminski, T. Krennwallner, N. Leone, M. Maratea, F. Ricca, T. Schaub, ASP-core-2 input language format,
arXiv:1911.04326, 2019.

[22] B.D. Cat, M. Denecker, M. Bruynooghe, PJ. Stuckey, Lazy model expansion: interleaving grounding with search, J. Artif. Intell. Res. 52 (2015) 235-286,
https://doi.org/10.1613/jair.4591.

[23] L. Chittaro, R. Ranon, Hierarchical model-based diagnosis based on structural abstraction, Artif. Intell. 155 (2004) 147-182.

[24] K.L. Clark, Negation as failure, in: Logic and Data Bases, Springer, 1978, pp. 293-322.

[25] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement for symbolic model checking, J]. ACM 50 (2003) 752-794.

[26] E.M. Clarke, O. Grumberg, D.E. Long, Model checking and abstraction, ACM Trans. Program. Lang. Syst. (1994) 1512-1542.

[27] E.MM. Clarke, T.A. Henzinger, H. Veith, R. Bloem, Handbook of Model Checking, Springer, 2018.

[28] M. Cohen, M. Dam, A. Lomuscio, F. Russo, Abstraction in model checking multi-agent systems, in: International Conference on Autonomous Agents
and Multiagent Systems, vol. 2, 2009, pp. 945-952.

[29] P. Cousot, R. Cousot, Abstract interpretation and application to logic programs, J. Log. Program. 13 (1992) 103-179.

[30] K.J.W. Craik, The Nature of Explanation, vol. 445, CUP Archive, 1952.

[31]]J.C. Culberson, J. Schaeffer, Pattern databases, Comput. Intell. 14 (1998) 318-334.

[32] D. Dams, R. Gerth, O. Grumberg, Abstract interpretation of reactive systems, ACM Trans. Program. Lang. Syst. 19 (1997) 253-291.

[33] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic programming, ACM Comput. Surv. 33 (2001) 374-425.

[34] J. Devriendt, B. Bogaerts, M. Bruynooghe, M. Denecker, On local domain symmetry for model expansion, Theory Pract. Log. Program. 16 (2016)
636-652, https://doi.org/10.1017/S1471068416000508.

[35] J. Dix, U. Kuter, D. Nau, Planning in answer set programming using ordered task decomposition, in: Annual Conference on Artificial Intelligence,
Springer, 2003, pp. 490-504.

[36] C. Dodaro, P. Gasteiger, B. Musitsch, F. Ricca, K. Shchekotykhin, Interactive debugging of non-ground asp programs, in: Logic Programming and Non-
monotonic Reasoning, LPNMR, Springer, 2015, pp. 279-293.

[37] C. Drescher, O. Tifrea, T. Walsh, Symmetry-breaking answer set solving, Al Commun. 24 (2011) 177-194, https://doi.org/10.3233/AIC-2011-0495.

[38] S. Edelkamp, Planning with pattern databases, in: Proceedings of the 6th European Conference on Planning, ECP 2001, 2001, pp. 13-24.

[39] T. Eiter, W. Faber, M. Fink, S. Woltran, Complexity results for answer set programming with bounded predicate arities and implications, Ann. Math.
Artif. Intell. 51 (2007) 123.

[40] T. Eiter, M. Fink, Uniform equivalence of logic programs under the stable model semantics, in: International Conference on Logic Programming,
Springer, 2003, pp. 224-238.

[41] T. Eiter, M. Fink, T. Krennwallner, C. Redl, HEX-programs with existential quantification, in: M. Hanus, R. Rocha (Eds.), Declarative Programming
and Knowledge Management - Declarative Programming Days, KDPD 2013, Unifying INAP, WFLP, and WLP, Kiel, Germany, September 11-13, 2013,
Springer, 2013, pp. 99-117, Revised Selected Papers, https://doi.org/10.1007/978-3-319-08909-6_7.

[42] T. Eiter, M. Fink, H. Tompits, S. Woltran, Simplifying logic programs under uniform and strong equivalence, in: V. Lifschitz, I. Niemeld (Eds.), Proceed-
ings of the 7th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2004, Springer, 2004, pp. 87-99.

[43] T. Eiter, M. Fink, S. Woltran, Semantical characterizations and complexity of equivalences in answer set programming, ACM Trans. Comput. Log. 8
(2007) 17, https://doi.org/10.1145/1243996.1244000.

[44] T. Eiter, G. Gottlob, Y. Gurevich, Normal forms for second-order logic over finite structures, and classification of NP optimization problems, Ann. Pure
Appl. Log. 78 (1996) 111-125.

[45] T. Eiter, Z.G. Saribatur, P. Schiiller, Abstraction for zooming-in to unsolvability reasons of grid-cell problems, in: Proceedings of the IJCAI 2019 Work-
shop on Explainable Artificial Intelligence (XAI), 2019, pp. 7-13, Online available at https://drive.google.com/file/d/1ma5wilaj31A0d5KC412fYaTC_Lqm_
d9X/view and http://arxiv.org/abs/1909.04998.

[46] T. Eiter, H. Tompits, S. Woltran, On solution correspondences in answer-set programming, in: L.P. Kaelbling, A. Saffiotti (Eds.), [JCAI-05, Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005, Professional Book Center,
2005, pp. 97-102, http://ijcai.org/Proceedings/05/Papers/1177.pdf.

[47] E. Erdem, M. Gelfond, N. Leone, Applications of answer set programming, Al Mag. 37 (2016) 53-68.

[48] E. Erdem, V. Patoglu, Applications of ASP in robotics, Kiinstl. Intell. 32 (2018) 143-149.

[49] A.A. Falkner, G. Friedrich, K. Schekotihin, R. Taupe, E.C. Teppan, Industrial applications of answer set programming, Kiinstl. Intell. 32 (2018) 165-176.

[50] J. Fandinno, C. Schulz, Answering the “why” in answer set programming - a survey of explanation approaches, Theory Pract. Log. Program. 19 (2019)
114-203.

[51] M. Fox, D. Long, The detection and exploitation of symmetry in planning problems, in: Proceedings of the 16th International Joint Conference on
Artificial Intelligence, [JCAI 1999, 1999, pp. 956-961.

[52] E.C. Freuder, Eliminating interchangeable values in constraint satisfaction problems, in: AAAI, 1991, pp. 227-233.

[53] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, S. Thiele, Engineering an incremental ASP solver, in: Proceedings of the 24th Interna-
tional Conference on Logic Programming, ICLP 2008, 2008, pp. 190-205.

[54] M. Gebser, B. Kaufmann, A. Neumann, T. Schaub, Advanced preprocessing for answer set solving, in: Proceedings of the 18th European Conference on
Artificial Intelligence, ECAI 2008, 10S Press, 2008, pp. 15-19.

70

http://refhub.elsevier.com/S0004-3702(21)00114-4/bibEFA25D865534A38BDF9D5CC69B5E2418s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibEFA25D865534A38BDF9D5CC69B5E2418s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib5EE3E3631D989B34F3702DA1CFF64647s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib5EE3E3631D989B34F3702DA1CFF64647s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib7CB9FB87A51A47B2B94DBB328D0E768Ds1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib7CB9FB87A51A47B2B94DBB328D0E768Ds1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib88764AF0467A0DA42E7F3CF69774FF83s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib88764AF0467A0DA42E7F3CF69774FF83s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib65BB0727567C0C0CD80DB5979BB2A2C5s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibDD3E39C91882B3B10CE687A116D500F5s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib9ED38562BFA36BF46A78A11C282CE524s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib9ED38562BFA36BF46A78A11C282CE524s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib781319E3EF2A2A6479F453CB8D7A3D10s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib781319E3EF2A2A6479F453CB8D7A3D10s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib52BBD5A945CA708C664236488F0BB40Es1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib52BBD5A945CA708C664236488F0BB40Es1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibE5339622FC150FF58E1F7765E44EE237s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibDC694C82C5E9C5A9FCDAB766EF884810s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibFEE2F4DF4C88CD0CC2969BAE2B3AF679s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib04DD1088436C5CF640E66928A3028E01s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibC39FBD6DFD46638131E0D7B4EFB8132As1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibC39FBD6DFD46638131E0D7B4EFB8132As1
https://doi.org/10.1613/jair.4591
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib5BCC3068B4A5FC15C14927E3A936D094s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib7F726AC57529606CF05E7DD37294EC75s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib3968C0027842DAABA5CE72DE5A6744B1s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib4A0E60C9243C4B838DF7B3D3D6253151s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib1F2C4932145574FED859C46335DFE5A6s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib9035C7ABF21C9D6B43C3BB3D773CF992s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib9035C7ABF21C9D6B43C3BB3D773CF992s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib266AC639047674C0236B5603F949A434s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibA12569EA8DFF05BEC9FADD8A581B0517s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib26D703E1A8CFA260F6D316D3D26B3E37s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib60C7A0A62BD68609293E048F6D519296s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib231597DBF60C875216FCA936484BAA6Bs1
https://doi.org/10.1017/S1471068416000508
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib98759E82B66C5F36FC005BFAFC3675E0s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib98759E82B66C5F36FC005BFAFC3675E0s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib61F7E550D77B7DEAAFD9A901A916DA01s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib61F7E550D77B7DEAAFD9A901A916DA01s1
https://doi.org/10.3233/AIC-2011-0495
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib967317D5BD959F8C59FAA05957A88D0Ds1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib16275A2F807EDA7BA73F58BE88A55426s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib16275A2F807EDA7BA73F58BE88A55426s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib081D1C8BE242E05343B9D7B7AF9E7995s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib081D1C8BE242E05343B9D7B7AF9E7995s1
https://doi.org/10.1007/978-3-319-08909-6_7
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib29DA5FCA59C0FD98555A0515F36AFD03s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib29DA5FCA59C0FD98555A0515F36AFD03s1
https://doi.org/10.1145/1243996.1244000
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib38D03CBB6F4F6DC9A2A64FB37F5360EAs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib38D03CBB6F4F6DC9A2A64FB37F5360EAs1
https://drive.google.com/file/d/1ma5wilaj31A0d5KC4I2fYaTC_Lqm_d9X/view
https://drive.google.com/file/d/1ma5wilaj31A0d5KC4I2fYaTC_Lqm_d9X/view
http://arxiv.org/abs/1909.04998
http://ijcai.org/Proceedings/05/Papers/1177.pdf
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibFB254EDF14DE1740082366C9E04696EDs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib9EF11284B89DABC9CBF7142086446CFCs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib4A5F248FA9F881AC823D7684229D628Fs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibA6D3F19EA59B91A43C718147F4B8A1F1s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibA6D3F19EA59B91A43C718147F4B8A1F1s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib69836BDD2A17EDF5857E7A1AFDBCB698s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib69836BDD2A17EDF5857E7A1AFDBCB698s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibAC9F1150473EF8AB79D1A35AE4A04CE8s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibFB40E7240C40975B088169538A8B99CEs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibFB40E7240C40975B088169538A8B99CEs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib5009FAEEF7BF3D79A938E475414ABA1Bs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib5009FAEEF7BF3D79A938E475414ABA1Bs1

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

[55] M. Gebser,]. Piihrer, T. Schaub, H. Tompits, A meta-programming technique for debugging answer-set programs, in: Proceedings of the 23rd AAAI
Conference on Artificial Intelligence, AAAI 2008, 2008, pp. 448-453.

[56] T. Geibinger, H. Tompits, Characterising relativised strong equivalence with projection for non-ground answer-set programs, in: F. Calimeri, N. Leone,
M. Manna (Eds.), Logics in Artificial Intelligence - 16th European Conference, Proceedings, JELIA 2019, Rende, Italy, May 7-11, 2019, Springer, 2019,
pp. 542-558.

[57] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Gener. Comput. 9 (1991) 365-385.

[58] E. Giunchiglia, Y. Lierler, M. Maratea, Sat-based answer set programming, in: Proceedings of the 19th National Conference on Artificial Intelligence,
AAAI 2004, 2004, pp. 61-66.

[59] F. Giunchiglia, T. Walsh, A theory of abstraction, Artif. Intell. 57 (1992) 323-389.

[60] G. Gottlob, N. Leone, H. Veith, Succinctness as a source of complexity in logical formalisms, Ann. Pure Appl. Log. 97 (1999) 231-260.

[61] M. Helmert, P. Haslum, J. Hoffmann, et al., Flexible abstraction heuristics for optimal sequential planning, in: Proceedings of the 17th International
Conference on Automated Planning and Scheduling, ICAPS 2007, 2007, pp. 176-183.

[62] LT. Hernddvolgyi, R.C. Holte, Psvn: A Vector Representation for Production Systems, 1999.

[63] J. Hoffmann, A. Sabharwal, C. Domshlak, Friends or foes? An Al planning perspective on abstraction and search, in: Proceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2006, 2006, pp. 294-303.

[64] R.C. Holte, T. Mkadmi, RM. Zimmer, A.J. MacDonald, Speeding up problem solving by abstraction: a graph oriented approach, Artif. Intell. 85 (1996)
321-361.

[65] L. Illanes, S.A. Mcllraith, Numeric planning via search space abstraction, in: Proceedings of the Workshop on Knowledge-Based Techniques for Problem
Solving and Reasoning, 2016.

[66] L. Illanes, S.A. Mcllraith, Generalized planning via abstraction: arbitrary numbers of objects, in: Proceedings of the 33rd AAAI Conference on Artificial
Intelligence, AAAI 2019, 2019.

[67] T. Janhunen, I. Niemeld, D. Seipel, P. Simons, J.H. You, Unfolding partiality and disjunctions in stable model semantics, ACM Trans. Comput. Log. 7
(2006) 1-37.

[68] P.N. Johnson-Laird, Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness, Harvard University Press, 1983.

[69] S. Kambhampati, L. Davis, Multiresolution path planning for mobile robots, IEEE]. Robot. Autom. 2 (1986) 135-145.

[70] C.A. Knoblock, Automatically generating abstractions for planning, Artif. Intell. 68 (1994) 243-302.

[71]]. Kramer, Is abstraction the key to computing?, Commun. ACM 50 (2007) 36-42.

[72] C. Lefévre, C. Béatrix, 1. Stéphan, L. Garcia, Asperix, a first-order forward chaining approach for answer set computing, Theory Pract. Log. Program. 17
(2017) 266-310.

[73]]. Leite, A bird’s-eye view of forgetting in answer-set programming, in: Proceedings of the 14th International Conference on Logic Programming and
Nonmonotonic Reasoning, LPNMR 2017, Springer, 2017, pp. 10-22.

[74] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello, The DLV system for knowledge representation and reasoning, ACM Trans.
Comput. Log. 7 (2006) 499-562.

[75] N. Leone, P. Rullo, F. Scarcello, Disjunctive stable models: unfounded sets, fixpoint semantics, and computation, Inf. Comput. 135 (1997) 69-112.

[76] M.H. Liffiton, K.A. Sakallah, Algorithms for computing minimal unsatisfiable subsets of constraints, J. Autom. Reason. 40 (2008) 1-33.

[77] V. Lifschitz, Answer set planning, in: International Conference on Logic Programming, ICLP, 1999, pp. 23-37.

[78] V. Lifschitz, Twelve definitions of a stable model, in: M. Garcia de la Banda, E. Pontelli (Eds.), Logic Programming, Springer, Berlin Heidelberg, 2008,
pp. 37-51.

[79] V. Lifschitz, What is answer set programming?, in: Proceedings of the 23rd AAAI Conference on Artificial Intelligence, AAAI 2008, 2008, pp. 1594-1597.

[80] V. Lifschitz, D. Pearce, A. Valverde, Strongly equivalent logic programs, ACM Trans. Comput. Log. 2 (2001) 526-541.

[81] F. Lin, Y. Zhao, Assat: computing answer sets of a logic program by sat solvers, Artif. Intell. 157 (2004) 115-137.

[82] C. Loiseaux, S. Graf,]. Sifakis, A. Bouajjani, S. Bensalem, D. Probst, Property preserving abstractions for the verification of concurrent systems, Form.
Methods Syst. Des. 6 (1995) 11-44.

[83] A. Lomuscio,]J. Michaliszyn, An abstraction technique for the verification of multi-agent systems against atl specifications, in: Proceedings of the 14th
International Conference on Principles of Knowledge Representation and Reasoning, KR 2014, AAAI Press, 2014.

[84] A. Lomuscio,]J. Michaliszyn, Verification of multi-agent systems via predicate abstraction against ATLK specifications, in: Proceedings of AAMAS, 2016,
pp. 662-670.

[85] I. Lynce, J.P.M. Silva, On computing minimum unsatisfiable cores, in: Proceedings of the 7th International Conference on Theory and Applications of
Satisfiability Testing, SAT 2004, 2004.

[86] M.J. Maher, Equivalences of logic programs, in: E. Shapiro (Ed.), Third International Conference on Logic Programming, Springer, Berlin Heidelberg,
1986, pp. 410-424.

[87] K. Marple, E. Salazar, G. Gupta, Computing stable models of normal logic programs without grounding, arXiv:1709.00501, 2017.

[88] M. Morak, S. Woltran, Preprocessing of complex non-ground rules in answer set programming, in: Technical Communications of the 28th International
Conference on Logic Programming, 2012, p. 247.

[89] I. Mozeti¢, Hierarchical model-based diagnosis, Int.]. Man-Mach. Stud. 35 (1991) 329-362.

[90] P.P. Nayak, A.Y. Levy, A semantic theory of abstractions, in: Proc. International Joint Conference on Artificial Intelligence, 1995, pp. 196-203.

[91] B. Nebel, Y. Dimopoulos,]. Koehler, Ignoring irrelevant facts and operators in plan generation, in: European Conference on Planning, Springer, 1997,
pp. 338-350.

[92] A. Newell, H.A. Simon, Human Problem Solving, Prentice-Hall, 1972.

[93] J. Oetsch,]. Piithrer, H. Tompits, Catching the ouroboros: on debugging non-ground answer-set programs, Theory Pract. Log. Program. 10 (2010)
513-529.

[94] E. Oikarinen, T. Janhunen, Modular equivalence for normal logic programs, in: Proceedings of the 17th European Conference on Artificial Intelligence,
ECAI 2006, I0S Press, 2006, pp. 412-416.

[95] M. Osorio, J.A. Navarro,]. Arrazola, Equivalence in answer set programming, in: A. Pettorossi (Ed.), Logic Based Program Synthesis and Transformation,
Springer, Berlin Heidelberg, 2002, pp. 57-75.

[96] A.D. Palui, A. Dovier, E. Pontelli, G. Rossi, Gasp: answer set programming with lazy grounding, Fundam. Inform. 96 (2009) 297-322.

[97] D. Pearce, Simplifying logic programs under answer set semantics, in: Logic Programming, 2004, pp. 210-224.

[98] D. Pearce, Equilibrium logic, Ann. Math. Artif. Intell. 47 (2006) 3-41.

[99] D. Pearce, A. Valverde, Synonymus theories in answer set programming and equilibrium logic, in: R.L. de Mantaras, L. Saitta (Eds.), Proceedings of the
16th Eureopean Conference on Artificial Intelligence, ECAI'2004, Including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain,
August 22-27, 2004, 10S Press, 2004, pp. 388-392.

[100] D. Pearce, A. Valverde, Quantified equilibrium logic and foundations for answer set programs, in: M.G. de la Banda, E. Pontelli (Eds.), Logic Program-
ming, 24th International Conference, Proceedings, ICLP 2008, Udine, Italy, December 9-13 2008, Springer, 2008, pp. 546-560.

[101] D. Pearce, A. Valverde, Synonymous theories and knowledge representations in answer set programming, . Comput. Syst. Sci. 78 (2012) 86-104,
https://doi.org/10.1016/j.jcss.2011.02.013.

71

http://refhub.elsevier.com/S0004-3702(21)00114-4/bibFA6646BBF998BF36E340E45A78358160s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibFA6646BBF998BF36E340E45A78358160s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibA588DF474FBDA648440A9E336D46E320s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibA588DF474FBDA648440A9E336D46E320s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibA588DF474FBDA648440A9E336D46E320s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib4E8A497646EEC3F5C85D02DD4FDB3C4Es1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib59BC9CF0917F4430C03ADB6C23D0D286s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib59BC9CF0917F4430C03ADB6C23D0D286s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibBADEB4B82CC9E20959D1E6C2B44C9FA1s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib0AFD47DF1CEF409C00C8784C9A9A17F3s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib1724F3FA2EEDA51B6E62052078C56059s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib1724F3FA2EEDA51B6E62052078C56059s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib9ED25835144E220BACF881CE24549821s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibCAECAED4E56038C0F40314E042132053s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibCAECAED4E56038C0F40314E042132053s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib8E636CE123009EBC7097A21CBD44CB81s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib8E636CE123009EBC7097A21CBD44CB81s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib7892D85FC1E33523780C47DFD58B3320s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib7892D85FC1E33523780C47DFD58B3320s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibED1C93ACA2349016D9719F9E65FFCD41s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibED1C93ACA2349016D9719F9E65FFCD41s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib8F6F475AA441B01EA4755D514EFEC062s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib8F6F475AA441B01EA4755D514EFEC062s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibBBD5676C136638AF0DB57F967B8F8082s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibFD59451091B2C38005D4D916550969A7s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibB1AA1BF48E8D449263F8BDA3637DFF00s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibD2EEB72E5194C5831F8761C561275280s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib5F8D5B7C9BB50D88792D5C6C01911464s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib5F8D5B7C9BB50D88792D5C6C01911464s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib1777022AE4B9948A3258D00D7602A1A0s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib1777022AE4B9948A3258D00D7602A1A0s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib205943C4EDBF4BEA80657A2BC941AE8Fs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib205943C4EDBF4BEA80657A2BC941AE8Fs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib3BB929E290E0767E2B7BC55FDE8B6280s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibB0E15B4307FA21B7BFBA0FDFC9B7C7DFs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibAAC615CED481F5CDAF0D206A403A27C6s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib07D04EBAF0497D874ADCF1BCDA9FD10Ds1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib07D04EBAF0497D874ADCF1BCDA9FD10Ds1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib47AD280ACA4B5882C3A4B0CD924EA4E6s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib0F10BF75BDDED9A6BC30BDDCF1309277s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib1AFEC9E49D2E2845A3AC761DFC3C73E4s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibA78F6975DFE936C166825E48C791D527s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibA78F6975DFE936C166825E48C791D527s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib283A06EAAA5FBA03C85CFBBF3B5390B2s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib283A06EAAA5FBA03C85CFBBF3B5390B2s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibEE262E39FD403F872E246DD3C8A822E6s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibEE262E39FD403F872E246DD3C8A822E6s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib64A9CD27BE9314405F6E4976E36D5916s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib64A9CD27BE9314405F6E4976E36D5916s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibC5607401D65B8DFD7B9E562C642C326As1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibC5607401D65B8DFD7B9E562C642C326As1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib64A99E51EDFF8CB088DE6F022A47B38Cs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib5E7692D44BA2E6360B0DB92EDB3CBB73s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib5E7692D44BA2E6360B0DB92EDB3CBB73s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib249EB57A28958F5458183B67084BA362s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib37D5A1F65E27DE9B8C6F015DC2F076AAs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib74733AEA4006A1099B7845106DD9895Ds1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib74733AEA4006A1099B7845106DD9895Ds1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibE29255EA5D3731A308B1CBB4B0A09265s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibD68E2DAC3432084DD9DBD56BBA781D62s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibD68E2DAC3432084DD9DBD56BBA781D62s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibD07E910A5DA71A658BB7153F009EA1A2s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibD07E910A5DA71A658BB7153F009EA1A2s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib72C4136DC67AAA8C5018D1D771A82973s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib72C4136DC67AAA8C5018D1D771A82973s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibF5FEB01052D20EA378F273BA8FE14790s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib3A89F0200C80B27F7BE1E6E971612101s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib24ED2672FA43DFB6F9CD6630CCA89AA9s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib72B4FA61A693C543B7DC2724A33B844Bs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib72B4FA61A693C543B7DC2724A33B844Bs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib72B4FA61A693C543B7DC2724A33B844Bs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibB21BC0DD01AE3F8E872BBFA91CDD69C5s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibB21BC0DD01AE3F8E872BBFA91CDD69C5s1
https://doi.org/10.1016/j.jcss.2011.02.013

Z.G. Saribatur, T. Eiter and P. Schiiller Artificial Intelligence 300 (2021) 103563

[102] D.A. Plaisted, Theorem proving with abstraction, Artif. Intell. 16 (1981) 47-108.

[103] E. Pontelli, T.C. Son, O. Elkhatib, Justifications for logic programs under answer set semantics, Theory Pract. Log. Program. 9 (2009) 1-56.

[104]]. Piihrer, H. Tompits, Casting away disjunction and negation under a generalisation of strong equivalence with projection, in: E. Erdem, F. Lin,
T. Schaub (Eds.), Logic Programming and Nonmonotonic Reasoning, 10th International Conference, Proceedings, LPNMR 2009, Potsdam, Germany,
September 14-18, 2009, Springer, 2009, pp. 264-276.

[105] P. Riddle, J. Douglas, M. Barley, S. Franco, Improving performance by reformulating PDDL into a bagged representation, in: Proceedings of the Work-
shop on Heuristics and Search for Domain-Independent Planning, HSDIP 2016, 2016, pp. 28-36.

[106] E.D. Sacerdoti, Planning in a hierarchy of abstraction spaces, Artif. Intell. 5 (1974) 115-135.

[107] Y. Sagiv, Optimizing datalog programs, in: Proceedings of the 6th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, ACM,
1987, pp. 349-362.

[108] L. Saitta, J.D. Zucker, Abstraction in Artificial Intelligence and Complex Systems, vol. 456, Springer, 2013.

[109] Z.G. Saribatur, T. Eiter, Reactive policies with planning for action languages, in: Proceedings of the 15th European Conference on Logics in Artificial
Intelligence, JELIA 2016, in: Lecture Notes in Computer Science, vol. 10021, Springer, 2016, pp. 463-480.

[110] Z.G. Saribatur, T. Eiter, Omission-based abstraction for answer set programs, in: Proceedings of the 16th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2018, AAAI Press, 2018, pp. 42-51.

[111] Z.G. Saribatur, T. Eiter, Omission-based abstraction for answer set programs, Theory Pract. Log. Program. (2020) 1-51, Extended version of [110].

[112] Z.G. Saribatur, T. Eiter, A semantic perspective on omission abstraction in ASP, in: Proceedings of the 17th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2020, IJCAI Organization, 2020, pp. 733-737.

[113] Z.G. Saribatur, P. Schiiller, T. Eiter, Abstraction for non-ground answer set programs, in: Proceedings of the 16th European Conference on Logics in
Artificial Intelligence, JELIA 2019, in: Lecture Notes in Computer Science, Springer, 2019, pp. 576-592.

[114] T. Schaub, S. Woltran, Answer set programming unleashed!, Kidney Int. 32 (2018) 105-108.

[115] C. Schulz, F. Toni, ABA-based answer set justification, Theory Pract. Log. Program. (2013) 4-5.

[116]]. Seipp, M. Helmert, Counterexample-guided Cartesian abstraction refinement, in: Proceedings of the 23rd International Conference on Automated
Planning and Scheduling, ICAPS, 2013, 2013.

[117] P. Simons, 1. Niemeld, T. Soininen, Extending and implementing the stable model semantics, Artif. Intell. 138 (2002) 181-234.

[118] S. Srivastava, N. Immerman, S. Zilberstein, A new representation and associated algorithms for generalized planning, Artif. Intell. 175 (2011) 615-647.

[119] H. Turner, Strong equivalence made easy: nested expressions and weight constraints, Theory Pract. Log. Program. 3 (2003) 609-622.

[120] A. Van Gelder, K.A. Ross,].S. Schlipf, The well-founded semantics for general logic programs, J. ACM 38 (1991) 619-649.

[121] A. Weinzierl, Blending lazy-grounding and CDNL search for answer-set solving, in: Logic Programming and Nonmonotonic Reasoning - 14th Interna-
tional Conference, Proceedings, LPNMR 2017, Espoo, Finland, July 3-6, 2017, 2017, pp. 191-204.

[122] S. Woltran, A common view on strong, uniform, and other notions of equivalence in answer-set programming, Theory Pract. Log. Program. 8 (2008)
217-234, https://doi.org/10.1017/S1471068407003250.

[123] S. Zhang, F. Yang, P. Khandelwal, P. Stone, Mobile robot planning using action language BC with an abstraction hierarchy, in: Proc. International
Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR, Springer, 2015, pp. 502-516.

72

http://refhub.elsevier.com/S0004-3702(21)00114-4/bibB85046C9733DB40230F14A82269F71CEs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib4A6F5D9DD0840D40DA2E1A46E70CDC44s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibEACC6497ADACA15CFA5E39A12020599Fs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibEACC6497ADACA15CFA5E39A12020599Fs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibEACC6497ADACA15CFA5E39A12020599Fs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibCAB3850650B5D4442676B37B9C27763Ds1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibCAB3850650B5D4442676B37B9C27763Ds1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib093612467D85DC49ADCABEF62B6079F9s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib98E2092213B77AF1155F7973385AD32Fs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib98E2092213B77AF1155F7973385AD32Fs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib8F72A4B99FF4F0C9ACB62444162FB8EDs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibB483A0C87DA00BCA9EEC93A9340BB43As1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibB483A0C87DA00BCA9EEC93A9340BB43As1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib7A195FB81F48C66904E16F1F00FBFD46s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib7A195FB81F48C66904E16F1F00FBFD46s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib5E0178DB8A81A3975D00E27538CD85CFs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib960093B521F1FC810BD202758D5FB7CAs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib960093B521F1FC810BD202758D5FB7CAs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib6DE2FC122F3365096041578E15DB7669s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib6DE2FC122F3365096041578E15DB7669s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib08B75D66901BA2BFEA730A0025B62D68s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibBEC49D390A67BC904DCCB69EAFEC94EBs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibA15DE1983EF37C554E7134E696BE9E4Es1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibA15DE1983EF37C554E7134E696BE9E4Es1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib0CD0E823981D27CA0F5FF14F7DB8B9BFs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib7F916AF9C49A9E72FC4049E7F0271912s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibEA5529B0C46536448FA05AF625BCAB1Ds1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib733CE33E953F557533FF6F3EF1852EEAs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibFF3555C0DE2AD19DF6F01281D83D6D6Fs1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bibFF3555C0DE2AD19DF6F01281D83D6D6Fs1
https://doi.org/10.1017/S1471068407003250
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib3FDB8B190A58CEA25B9258B49C7F4894s1
http://refhub.elsevier.com/S0004-3702(21)00114-4/bib3FDB8B190A58CEA25B9258B49C7F4894s1

	Abstraction for non-ground answer set programs
	1 Introduction
	2 Background
	2.1 Answer set programming
	2.2 Abstraction in ASP
	2.2.1 Abstraction refinement methodology

	3 Domain abstraction
	3.1 Towards an over-approximation
	3.1.1 Standardizing apart
	3.1.2 Lifted equality relation

	3.2 Abstract program construction
	3.2.1 Restricted case
	3.2.2 General case
	3.2.3 Abstract program size vs. over-approximation quality

	3.3 Syntactic extensions and further considerations
	3.3.1 Other forms of relations
	3.3.2 Strong negation and function symbols
	3.3.3 Treating choice rules and cardinality constraints
	3.3.4 Concreteness with projection

	3.4 Properties of domain abstraction
	3.4.1 Abstraction over sorts
	3.4.2 Cartesian abstraction

	3.5 Computational complexity

	4 Refinement by debugging non-ground spuriousness
	4.1 Non-ground debugging using tagging
	4.2 Deciding on a refinement

	5 Multi-dimensional domain abstraction
	5.1 Existential abstraction on relations
	5.1.1 Abstraction procedure
	5.1.2 Computing joint abstract relation types
	5.1.3 Refinement of multi-dimensional abstractions

	5.2 Quad-tree abstraction

	6 Implementation and evaluation
	6.1 Overall methodology
	6.2 Implementation
	6.2.1 DASPAR
	6.2.2 mDASPAR
	Abstract objects
	Relation type computation

	6.2.3 Implementation aspects of mDASPAR

	6.3 Evaluation: obtaining abstract solutions
	6.3.1 Experiments
	6.3.2 Results

	6.4 Evaluation: unsolvable problem instances in grid-cells
	6.4.1 Effects of different debugging approaches
	6.4.2 User study on unsatisfiability explanations
	Observations

	7 Discussion
	7.1 Predicate abstraction
	7.2 Use case: abstraction in ASP planning
	7.2.1 Abstracting over irrelevant details
	7.2.2 Computing abstract plans

	7.3 Related work
	7.3.1 Equivalence-based rewriting and program transformations in ASP
	7.3.2 Abstraction in planning and agent verification
	7.3.3 Generalized planning

	8 Conclusion
	8.1 Outlook

	Declaration of competing interest
	Acknowledgements
	Appendix A Proofs
	A.1 Merged vs. individual independent cycles

	Appendix B Further details
	B.1 Correctness checking failure for non-positive-dependency founded programs
	B.2 Grid-cell problem encodings
	B.3 Example run of mDASPAR
	B.4 Modular concreteness checking

	Appendix C Use case: abstraction for policy refutation
	References

