MATHEMATICS

A Deep Math Dive into Why Some Infinities Are Bigger Than
Others

The size of certain infinite sets has been a mystery. Now, it turns out, each one is different than the next,
and they can all be ordered by size
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Simple mathematical concepts such as counting appear to be firmly anchored in the natural
process of thinking. Studies have shown that even very young children and animals possess
such skills to a certain extent. This is hardly surprising because counting is extremely useful
in terms of evolution. For example, it is required for even very simple forms of trading. And
counting helps in estimating the size of a hostile group and, accordingly, whether it is better
to attack or retreat.

Over the past millennia, humans have developed a remarkable notion of counting. Originally
applied to a handful of objects, it was easily extended to vastly different orders of magnitude.
Soon a mathematical framework emerged that could be used to describe huge quantities,
such as the distance between galaxies or the number of elementary particles in the universe,
as well as barely conceivable distances in the microcosm, between atoms or quarks.

We can even work with numbers that go beyond anything currently known to be relevant in

100

describing the universe. For example, the number 101" (one followed by 101°° zeros, with

10199 representing one followed by 100 zeros) can be written down and used in all kinds of
calculations. Writing this number in ordinary decimal notation, however, would require more

elementary particles than are probably contained in the universe, even employing just one

100

particle per digit. Physicists estimate that our cosmos contains fewer than 101°° particles.

Yet even such unimaginably large numbers are vanishingly small, compared with infinite
sets, which have played an important role in mathematics for more than 100 years. Simply
counting objects gives rise to the set of natural numbers, N = {0, 1, 2, 3, ...}, which many of us
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encounter in school. Yet even this seemingly simple concept poses a challenge: there is no
largest natural number. If you keep counting, you will always be able to find a larger number.

Can there actually be such a thing as an infinite set? In the 19th century, this question was
very controversial. In philosophy, this may still be the case. But in modern mathematics, the
existence of infinite sets is simply assumed to be true—postulated as an axiom that does not

require proof.

Set theory is about more than describing sets. Just as, in arithmetic, you learn to apply
arithmetical operations to numbers—for example, addition or multiplication—you can also
define set-theoretical operations that generate new sets from given ones. You can take unions
—{1, 2} and {2, 3, 4} becomes {1, 2, 3, 4}—or intersections—{1, 2} and {2, 3, 4} becomes {2}.
More excitingly, you can form power sets—the family of all subsets of a set.

The power set P(X) of a set X can be easily calculated for small X. For instance, {1, 2} gives
you P({1,2}) = {{}, {1}, {2}, {1, 2}}. But P(X) grows rapidly for larger X. For example, every
10-element set has 2'° = 1,024 subsets. If you really want to challenge your imagination, try
forming the power set of an infinite set. For example, the power set of the natural numbers,
P(IN), contains the empty set, N itself, the set of all even numbers, the prime numbers, the set
of all numbers with the sum of digits totaling 2021, {12, 17}, and much, much more. As it
turns out, the number of elements of this power set exceeds the number of elements in the set

of natural numbers.

To understand what that means, you first have to understand how the size of sets is defined.
For the finite case, you can count the respective elements. For instance, {1, 2, 3} and {Cantor,
Godel, Cohen} are of the same size. If you wish to compare sets with numerous (but finitely
many) elements, there are two well-established methods. One possibility is to count the
objects contained in each set and compare the numbers. Sometimes, however, it is easier to
match the elements of one set to another. Then two sets are of the same size if and only if
each element of one set can be uniquely paired with an element of the other set (in our
example: 1 — Cantor, 2 —Godel, 3 —Cohen).

This pairing method also works for infinite sets. Here, instead of first counting and then
deriving concepts such as “greater than” or “equal to,” you follow a reverse strategy. You start
with defining what it means that two sets, A and B, are of the same size—namely, there is a
mapping that pairs each element of A with exactly one element of B (so that no element of B

is left over). Such a mapping is called bijection.

Similarly, A is defined to be less than or equal to B if there is a mapping from A to B that uses
each element of B once at most.

After we have these notions, the size of sets is denoted by cardinal numbers, or cardinals. For
finite sets, these are the usual natural numbers. But for infinite sets, they are abstract

quantities that just capture the notion of “size.” For example, “countable” is the cardinal



number of the natural numbers (and therefore of every set that has the same size as the
natural numbers). It turns out that there are different cardinals. That is, there are infinite sets
A and B with no bijection between them.

At first sight, this definition of size seems to lead to contradictions, which were elaborated by
the Bohemian mathematician Bernard Bolzano in Paradoxes of the Infinite, published
posthumously in 1851. For example, Euclid’s “The whole is greater than the part” appears
self-evident. That means if a set A is a proper subset of B (that is, every element of A is in B,
but B contains additional elements), then A must be smaller than B. This assertion is not true
for infinite sets, however! This curious property is one reason some scholars rejected the
concept of infinite sets more than 100 years ago.

For example, the set of even numbers E = {0, 2, 4, 6, ...} is a proper subset of the natural
numbers N = {0, 1, 2, ...}. Intuitively, you might think that the set E is half the size of N. But
in fact, based on our definition, the sets have the same size because each number n in E can
be assigned to exactly one number in N (0 —0, 2 —>1, 4 —2,...,n —>n/2, ...).

Consequently, the concept of “size” for sets could be dismissed as nonsensical. Alternatively,
it could be termed something else: cardinality, for example. For the sake of simplicity, we
will stick to the conventional terminology, even though it has unexpected consequences at
infinity.

In the late 1800s, German logician Georg Cantor, founder of modern set theory, discovered
that not all infinite sets are equal. According to his proof, the power set P(X) of a (finite or
infinite) set X is always larger than X itself. Among other things, it follows that there is no
largest infinity and thus no “set of all sets.”

There is, however, something akin to a smallest infinity: all infinite sets are greater than or
equal to the natural numbers. Sets X that have the same size as N (with a bijection between
N and X) are called countable; their cardinality is denoted X, or aleph null. For every infinite
cardinal X, there is a next larger cardinal number X, . Thus, the smallest infinite cardinal

R, is followed by X, then X, and so on. The set R of real numbers (also called the real line) is

as large as the power set of IV, and this cardinality is denoted 2%0, or “continuum.”

In the 1870s, Cantor ruminated over whether the size of R was the smallest possible cardinal
above X,—in other words, whether X, = 2%, Previously, every infinite subset of R that had
been studied had turned out to be either as large as IN or R itself. This led Cantor to what is
known as the continuum hypothesis (CH): the assertion that the size of R is the smallest
possible uncountable cardinal. For decades, CH kept mathematicians busy, but a proof
eluded them. Later, it became clear their efforts had been doomed from the start.

Set theory is extremely powerful. It can describe virtually all mathematical concepts. But it
also has limitations. The field is based on the axiomatic system formulated more than 100
years ago by German logician Ernst Zermelo and elaborated by his German-Israeli colleague



Abraham Fraenkel. Called ZFC, or Zermelo-Fraenkel set theory (C stands for “axiom of
choice”), the system is a collection of basic assumptions sufficient to carry out almost all of
mathematics. Very few problems require additional assumptions. But in 1931 Austrian
mathematician Kurt Godel recognized that the system has a fundamental defect: it is
incomplete. That is, it is possible to formulate mathematical statements that can neither be
refuted nor proved using ZFC. Among other things, it is impossible for a system to prove its

own consistency.

The most famous example of undecidability in set theory is CH. In a paper published in 1938,
Godel proved that CH cannot be disproved within ZFC. Neither can it be proved, as Paul
Cohen showed 25 years later. It is thus impossible to solve CH using the usual axioms of set
theory. Consequently, it remains unclear whether sets exist that are both larger than the

natural numbers and smaller than the real numbers.

Cardinality is not the only notion to describe the size of a set. For example, from the point of
view of geometry, subsets of the real line R, the two-dimensional plane (sometimes called the
x-y plane) or the three-dimensional space can be assigned length, area or volume. A set of
points in the plane forming a rectangle with side lengths a and b has an area of a -b.
Calculating the area of more complicated subsets of the plane sometimes requires other tools,
such as the integral calculus taught in school. This method does not suffice for certain
complex sets. But many can still be quantified using the Lebesgue measure, a function that
assigns length, area or volume to extremely complicated objects. Even so, it is possible to
define subsets of R, or the plane, that are so frayed that they cannot be measured at all.

In two-dimensional space, a line (such as the circumference of a circle, a finite segment or a
straight line) is always measurable, and its area is zero. It is therefore called a null set. Null
sets can also be defined in one dimension. On the real line, the set with two elements—for
example {3, 5}—has a measure zero, whereas an interval such as [3, 5]—that is, the real
numbers between three and five—has a measure two.

The concept of a null set is extremely useful in mathematics. Often, a theorem is not true for
all real numbers but can be proved for all real numbers outside of a null set. This is usually
good enough for most applications. Yet null sets may seem quite large. For example, the
rational numbers within the real line are a null set even though there are infinitely many of
them. This is because any countable—or finite—set is a null set. The converse is not true: a
subset of the x-y plane with a large cardinality need be neither measurable nor of large
measure. For example, the entire plane with its 2%0 elements has an infinite measure. But the
x axis with the same cardinality has a two-dimensional measure (or “area”) zero and thus is a

null set of the plane.

Such “negligible” sets led to fundamental questions about the size of 10 infinite cardinals,
which remained unanswered for a long time. For example, mathematicians wished to know
the minimum size a set must have for it not to be a null set. The family of all null sets is
denoted by IV, and the smallest cardinality of a non-null set is denoted by non(V). It follows



that X, < non(WV) < o%o, because any set of size R, is a null set, and the whole plane has size
2% and is not a null set. Thus, X;<non(N) < 2% because X, is the smallest uncountable

cardinal. If we assume CH, then non(V) = 2%o, because, in that case, N, = oo,

We can define another cardinal number, add(V), to answer the question, What is the
minimal number of null sets whose union is a non-null set? This number is less than or equal
to non(NV): if A is a non-null set containing non(') many elements, the union of all the
non(N') many one-element subsets of A is the non-null set A. But a smaller number of null
sets (though they would not be one-element sets) could also satisfy the requirements.
Therefore, add(V) < non(NV) holds.

The cardinal cov(V) is the smallest number of null sets whose union yields the whole plane.
It is also easy to see that add(JV) is smaller than or equal to cov(JV) because, as already
mentioned, the plane is a non-null set.

We can also consider cof(V), the smallest possible size for a basis X of V. That is, a set X of
null sets that contains a superset B of every null set A. (That means A is a subset of B.) These
infinite cardinals—add(V), cov(V), non(V) and cof(V)—are important characteristics of the
family of null sets.

For each of these four cardinal characteristics, an analogous characteristic can be defined
using a different concept of small, or negligible, sets. This other notion of smallness is
“meager.” A meager set is a set contained in the countable union of nowhere dense sets, such
as the circumference of a circle in the plane, or finitely or countably many such
circumferences. In one dimension, the normal numbers form a meager set on the real line,

while the remaining reals, the non-normal numbers, constitute a null set.

Accordingly, the corresponding cardinal characteristics can be defined for the family of
meager sets: add(.#), non(.#), cov(.#) and cof(.#). Under CH, all characteristics are the
same, namely X;, for both null and meager sets. On the other hand, using the method of
“forcing,” developed by Cohen, mathematicians Kenneth Kunen and Arnold Miller were able
to show in 1981 that it is impossible to prove the statement add(V') = add(.#) within ZFC. In
other words, the numbers of null and meager sets that must be combined to produce a non-
negligible set are not provably equal.

Forcing is a method to construct mathematical universes. A mathematical universe is a model
that satisfies the ZFC axioms. To show that a statement X is not refutable in ZFC, it is enough
to find a universe in which both ZFC and X are valid. Similarly, to show that X is not provable
from ZFC, it is enough to find a universe where ZFC holds but X fails.

MATHEMATICAL UNIVERSES WITH SURPRISING

Kunen and Miller used this method to construct a mathematical universe that satisfies
add(V) < add(.#). In this model, more meager than null sets are required to form a non-
negligible set. Accordingly, it is impossible to prove add() add(.#) from ZFC.



In contrast, Tomek Bartoszynski discovered three years later that the converse inequality
add(WV) < add(.#) can be proved using ZFC. This points to an asymmetry between the two
notions of smallness. Let us note that this asymmetry is not visible if we assume CH because
CH implies X; = add(V) = add(.#).

To summarize: add(NV) < add(-#) is provable, but neither add(N) = add(-#) nor add(V) <
add(.#) is provable. This is the same effect as with CH: it is trivial to prove that X, < 2% but

neither X, < 280 nor X, = 2¥o is provable.

In addition to the cardinal numbers defined so far, there are two important cardinal
characteristics—b and d—that refer to dominating functions of real numbers. For two
continuous functions (of which there are 2% many) fand g, fis said to be dominated by g if
the inequality f{x) < g(x) holds for all sufficiently large x. For example, a quadratic function

such as g(x) = x2 always dominates a linear function, say f{x) = 100x + 30.

The cardinal number b is defined as the smallest possible size of a set of continuous functions

sufficient to dominate every possible continuous function.

A variant of this definition gives the cardinal number b, namely the smallest size of a family B
with the property that there is no continuous function that dominates all functions of B. It
can be shown that X, < b < b < 2% holds.

Several additional inequalities have been shown to hold between the 12 infinite cardinals we
just defined. All these inequalities are summarized in Cichon’s diagram, introduced by British
mathematician David Fremlin in 1984 and named after his Polish colleague Jacek Cichon.

For typographical reasons, the less-or-equal signs are replaced by arrows.

Ry —> add(N) — add(M) — cov(M) —> non(N)

Credit: Jakob Kellner

There are two additional relations: Add(.#) is the smaller one of b and cov(.#). Likewise,
cof(.#) is the larger of b and non(.#). These two “dependent” cardinals are marked with a
frame in the Cichon diagram. The diagram thus comprises 12 uncountable cardinalities of
which no more than 10 can be simultaneously different.

If CH holds, however, X, (the smallest number in the diagram) is equal to 2% (the largest

number in the diagram), and thus all entries are equal. If, on the other hand, we assume CH



to be false, then they could be quite different.

For several decades, mathematicians tried to show that none of the less-or-equal relations in
Cichon’s diagram can be strengthened to equalities. To do that, they constructed many
different universes in which they assigned the two smallest uncountable cardinals, X, and X,

to the entries of the diagram in various ways. For example, they created a universe for which
X, = add(V) = cov(V) and R, = non(.4) = cof(. ).

This work enabled researchers in the 1980s to confirm that for all pairs of cardinals, only the
relationships indicated in the diagram can be proved in ZFC. More precisely, for every

labeling of the (independent) Cichon diagram entries with the values X, and X, that honors

the inequalities of the diagram, there is a universe that realizes the given labeling.

So we have known for nearly four decades that all assignments of X; and X, to the diagram
are possible. But what can we say for more than two values? Could, for example, all the
independent entries be simultaneously different? Some cases with three characteristics have
been known for 50 years, and in the 2010s, more universes were discovered (or constructed)
in which up to seven different cardinals appeared in the Cichon diagram.

In a 2019 paper we constructed with Israeli mathematician Saharon Shelah of the Hebrew
University of Jerusalem, a universe in which the maximum possible number of different
infinite values—10, that is—appears in Cichoni’s diagram. In doing so, however, we used a
stronger system of axioms than ZFC, one that assumes the existence of “large cardinals,”
infinities whose existence is not provable in ZFC alone.

While we were very pleased with this result, we were not entirely satisfied. We worked for two
more years to find a solution using only the ZFC axioms. Together with Shelah and
Colombian mathematician Diego Mejia of Shizuoka University in Japan, we finally succeeded
in proving the result without these additional assumptions.

We have thus shown that the 10 characteristics of the real numbers can all be different. Let us
note that we did not show that there can be at least, at most or precisely 10 infinite cardinals
between X, and the continuum. This was already proved by Robert Solovay in 1963. In fact,
the size of the set of real numbers can vary greatly: there could be eight, 27 or infinitely many
cardinal numbers between X, and 2¥o—even uncountably many. Rather our result proves that

there are mathematical universes in which the 10 specific cardinal numbers between X, and

2% turn out to be different.

This is not the end of the story. As is usual for mathematics, many questions remain open,
and new ones arise. For example, in addition to the cardinal numbers described here, many
other infinite cardinalities lying between X, and the continuum have been discovered since
the 1940s. Their precise relationships to one another are unknown. To distinguish some of
these characteristics in addition to those in Cichon’s diagram is one of the upcoming
challenges. Another one is to show that other orderings of 10 different values are possible.
Unlike in the case for the two values X, and X,, where we know that all possible orders are



consistent, in the case of all 10 values, we could only show the consistency of two different
orderings. So, who knows, there may still be hitherto undiscovered equalities—involving
more than two characteristics—hidden in the diagram.

This article originally appeared in Spektrum der Wissenschaft and was reproduced with

permission.
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