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Abstract

This paper studies the provision of occupational safety when the labor market is subject
to search frictions, and the safety level is determined endogenously. While safety measures
are costly for firms, they lower workers’ mortality. We show that the presence of search fric-
tions leads to excess mortality compared to a frictionless labor market. In a decentralized
setting where wages and safety levels are bargained at the firm level, matching externalities
and a labor supply externality may lead to further increases in mortality. We obtain condi-
tions under which these externalities are internalized by firms and workers, and discuss the
role of policy for promoting occupational safety.

Keywords: occupational safety, mortality, search frictions, wage bargaining
JEL classification: J17, J28, J32, J38, J64

1 Introduction

In light of increasing demographic pressure on public welfare and healthcare systems, policy-
makers emphasize occupational safety as a key factor for longer working lives and healthy aging.
Initiatives like those of the European Commission (2021) and the National Institute for Occupa-
tional Safety and Health (2019) are warranted since the level of occupational safety arising from
the interplay of firm and worker incentives is likely to be inefficient (Henderson, 1983). This is
due to the presence of asymmetric information and psychological biases as well as externalities
on co-workers and society that individual firms and workers do not take into account (Pouliakas
and Theodossiou, 2013).

Another source of inefficiencies that so far has received little attention in the context of
occupational safety provision are labor market imperfections that arise from frictions in the
matching of unemployed to job openings. Stronger frictions increase the time that unemployed
need to find and take up a job. This reduces the worker’s outside option when bargaining
with a firm, which potentially results in the acceptance of lower safety standards if the level
of occupational safety is determined at the firm-level. Suggestive evidence for this channel
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is provided by Robinson (1988, 1990) who finds that workers in more hazardous workplaces
are more inclined to vote for unions, thus trying to increase their impact on workplace safety
policies. In a frictionless labor market, these workers could freely move to other employers such
that competition between firms leads to efficient safety levels. Since search frictions make quits
costly, workers seek other ways to improve their working conditions.1

Unions indeed seem to be an important mediator in the provision of workplace safety. Don-
ado and Wälde (2012) argue that in a historical perspective, worker movements have played a
crucial role in making workplaces safer by providing more accurate information about occupa-
tional risk and raising worker voice.2 Additionally, unions can help to overcome a labor supply
externality that potentially arises when workplace safety is determined at the firm-level. Private
negotiations may fail to take into account that a worker dying due to occupational risks is not
only lost for the current employer but for all firms in the economy, as aggregate labor supply
shrinks. In this case, the privately agreed level of occupational measures is below the socially
optimal one.

This paper studies the provision of occupational safety in the presence of search frictions as
featured in the workhorse model of modern labor economics, the Diamond-Mortensen-Pissarides
(DMP) model. Since occupational safety ultimately affects workers’ mortality, we extend the
basic DMP model (Pissarides, 2000, Ch. 1) for mortality shocks. The mortality rate of em-
ployed individuals is endogenously determined and our main variable of interest. We solve
three versions of our model to identify (i) the effect of search frictions and (ii) the effect of
externalities.

We find that the presence of search frictions increases the socially optimal mortality rate.
The socially optimal level trades off the current costs of safety measures with their long-term
benefits. The latter accrue from worker’s higher life expectancy, which translates into higher
lifetime income and utility. Phases of involuntary unemployment reduce lifetime income and
utility, thereby lowering the long-term benefits of safety measures and increasing the optimal
mortality level.

Even higher mortality may result if safety measures are not imposed centrally but deter-
mined at the firm-level. First, private agents may not take into account the full social costs of
occupational risk via reduced aggregate labor supply. We observe that whether or not this is
the case crucially depends on the structure of bargaining and the enforceability of contracts.
Second, even if the labor supply externality is internalized, the mortality rate is still affected
by the matching externalities common to the DMP framework. Any deviation from the Hosios
(1990) condition is found to increase mortality. From a policy perspective, we discuss how
taxes can be used to internalize the externalities and show how to design tax schemes that
increase occupational safety while keeping the potentially resulting loss in aggregate output at

1This is what Freeman and Medoff (1984) coined the “collective voice” function of unions. Robinson (1990)
tests the effect of self-reported hazard exposure on quits and prounion sentiment. Although both responses
are statistically significant, the estimated marginal effect on the sentiment toward unions is both quantitatively
stronger and more precisely estimated.

2Empirically, unions have been associated with a lower incidence of fatal work accidents, while their impact
on non-fatal work accidents is less clear (Donado, 2015).
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a minimum.
The paper proceeds as follows. Section 2 solves the planner’s problem for the socially optimal

mortality rate in a frictionless labor market. Section 3 introduces the search frictions and solves
the planner’s problem once again, before turning to the decentralized economy in Section 4.
Section 5 concludes. All mathematical proofs are delegated to the appendix.

2 Frictionless labor market

To assess the impact of search frictions on mortality, we first solve the social planner’s problem
in a frictionless labor market. Each period, the planner can freely allocate the mass N of living
individuals between employment and unemployment. The mass of employed and unemployed
is denoted by L and U , respectively. While unemployed die at an exogenous rate mU , the
mortality rate of employed, m, is endogenously chosen by the planner. Assuming an exogenous
mass of newborns B, the population size evolves according to3

Ṅ = B −mL−mUU. (1)

Every unemployed generates a home production of z > 0 per period. The production of
an employed individual is measured in terms of effective output y(m), which captures output
minus the costs of safety measures. These costs can be explicit, like regular maintenance of
machines or purchasing safety equipment, as well as implicit through lower productivity due
to shorter work shifts or time spent on safety routines. The properties of the effective output
function are summarized in Assumption 1.

Assumption 1. For m ≥ 0, effective output y(m) is twice continuously differentiable and
satisfies

(i) monotonicity and concavity, y′(m) > 0, y′′(m) < 0, with lim
m→∞

y′(m) = 0,

(ii) in present discounted value terms, individuals can produce more with than without a job,
∃m > 0 such that y(m)

r+m > z
r+mU ,

(iii) but this is not the case at m = 0, y(0)
r ≤

z
r+mU .

By property (i), the current effective output of an employment relation can be increased by
allowing higher mortality as this reduces prevention costs. Concavity implies that these output
gains become smaller with increasing mortality. Equivalently, reducing mortality becomes more
and more costly the lower it already is. This reflects that an initial drop in mortality can be
achieved by relatively cheap measures such as buying safety gloves or glasses, while further
reductions in mortality require increasingly expensive measures.

Property (ii) and (iii) are technical. Essentially, property (ii) guarantees that employment
is positive in optimum. Property (iii) ensures that the mortality rate of employed individuals

3We generally omit time indices to simplify notation. We do not model individual mortality as a state variable
in order to keep the model tractable.
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is strictly positive, as reducing the mortality rate to 0 would be too costly to make market
production preferable over home production.

2.1 Social planner solution

Assuming that all agents have linear utility, the planner’s objective is to find time paths of
(m,U,L) that maximize the present discounted value of aggregate output,∫ ∞

0
[y(m(t))L(t) + zU(t)]e−rt dt,

subject to the dynamics of the aggregate population (1) as well as L+ U = N and U ∈ [0, N ].
Ignoring the constraint on U for the moment and substituting L = N − U , the current value
Hamiltonitian of the planner’s problem reads

H = y(m)(N − U) + zU + ν[B −m(N − U)−mUU ],

where ν is the costate to N . Assuming U < N , the first order condition with respect to m is

∂H
∂m

= 0 ⇔ y′(m) = ν. (2)

By condition (2), the optimal mortality rate equates the marginal gain of mortality in terms
of output, y′(m), to the marginal cost of mortality, which equals the economic value of a life
lost, ν. In an optimum, the latter variable evolves over time according to

∂H
∂N

= −ν̇ + rν ⇔ ν̇ = (r +m)ν − y(m). (3)

From this point onwards we focus on stationary solutions, ṁ = 0, which by (2) implies ν̇ = 0
and reduces (3) to

ν = y(m)
r +m

. (4)

Hence the value of a life lost equals the present discounted value of foregone production. Com-
bining this with (2), the optimal mortality rate solves

y′(m) = y(m)
r +m

. (5)

Proposition 1 establishes uniqueness of the planner’s solution and verifies that the associated
optimal level of unemployment is zero. Correspondingly, the population size is N = L = B

m in
steady state.4

4Full employment is clearly due to our agents being ex ante homogeneous. If Assumption 1(ii) applied only
to a fraction of the individuals (e.g. due to heterogeneity in z or mU ), the model would feature voluntary
unemployment. While this is not the point of the paper, it is interesting to note from (5) that as long as the
production function is homogeneous, any employed individual faces the same mortality rate.
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Proposition 1. Without search frictions, the social planner’s problem has a unique stationary
solution with U∗∗ = 0 and mortality rate m∗∗ > 0 characterized by (5).

Condition (5) reveals that the mortality rate m∗∗ depends on the discount rate r as well as
on the effective production function. The higher r, the less the planner values the future output
gains relative to the current output costs of occupational safety, and the higher is the optimal
mortality rate. To illustrate the dependence on the shape of the production function, assume
y(m) = Amα with A > 0 and α ∈ (0, 1). It is easy to verify m∗∗ = α

1−αr. Hence the tighter
the link between mortality and effective output, the higher is the optimal mortality rate. For
α → 0, a reduction in mortality has no detrimental effect on output and thus m∗∗ → 0. For
α→ 1, reducing mortality becomes increasingly costly and m∗∗ →∞.5

3 Frictional labor market

3.1 Labor flows

From now on assume that the labor market dynamics are subject to the search and matching
frictions typical in the DMP framework. Each period, the mass of unemployed U and the mass
of vacancies V are brought together by a constant returns to scale matching function M(U, V ).
The rate at which vacancies are filled is denoted by q(θ) := M(U,V )

V = M(1
θ , 1) where θ := V

U is
the labor market tightness. The rate at which unemployed find a job is p(θ) := M(U,V )

U = q(θ)θ.
These rates satisfy the standard properties of Assumption 2.

Assumption 2. The job-finding rate p(θ) and the vacancy-filling rate q(θ) are continuously
differentiable with

(i) lim
θ→0

p(θ) = 0, lim
θ→∞

p(θ) =∞, p′(θ) > 0,

(ii) lim
θ→0

q(θ) =∞, lim
θ→∞

q(θ) = 0, q′(θ) < 0,

(iii) the elasticity η(θ) := − q′(θ)θ
q(θ) is non-decreasing.

Everybody is assumed to participate in the labor market, such that N = L + U . The
population dynamics are governed by the differential equations

L̇ = −(m+ s)L+ p(θ)U, (6)

U̇ = B + sL− (p(θ) +mU )U, (7)

Ṅ = B −mL−mUU. (8)
5Note that the model does not take a stance whether the mortality of employed exceeds the mortality of

unemployed. Depending on the parameterization, both outcomes can be achieved. Empirically, mortality rates
of unemployed have been found to be higher than those of employed workers in most occupations (Paglione
et al., 2020). This is related to increased psychological distress after job loss (Bloemen et al., 2018; Junna et al.,
2020), which has been shown to have long-lasting effects on individual mortality (Sullivan and Von Wachter,
2009; Browning and Heinesen, 2012).
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The dynamics of the aggregate population (8) are as above. The evolution of the mass of
employed and unemployed are described by (6) and (7), respectively. Each period, unemployed
find a job at rate p(θ), while employed move into unemployment at an exogenous rate s. As
before, employed individuals die at rate m, while unemployed individuals face an exogenous
mortality rate mU . Newborns start their economic lives without a job.

In a stationary economy with constant inflows, Ḃ = 0, equations (6)–(8) yield

L = p(θ)
p(θ)m+mU (m+ s)B, U = m+ s

p(θ)m+mU (m+ s)B, N = m+ s+ p(θ)
p(θ)m+mU (m+ s)B.

The steady state unemployment rate is U
N = m+s

m+s+p(θ) .

3.2 Social planner solution

If the planner is not bound by the matching frictions and can freely move individuals between
employment and unemployment, the analysis is as in Section 2.1. The typical assumption in the
matching literature, however, is that the planner cannot overcome the matching frictions and
must work through the matching function (Pissarides, 2000, Ch. 8). In contrast to Section 2,
the planner cannot control U directly but only indirectly via creating vacancies V . Assuming a
flow cost c > 0 per vacancy, the planner maximizes∫ ∞

0
[y(m(t))L(t) + zU(t)− cV (t)]e−rt dt

subject to the population dynamics (6)–(8) as well as L + U = N and U ∈ [0, N ]. While the
planner essentially chooses time paths for (m,V ), it is convenient to reformulate the problem in
terms of (m, θ) by writing V = θU . Furthermore, we substitute L = N −U and omit (6) as well
as the static constraint on U from the maximization problem. The current value Hamiltonian
then reads

H = y(m)(N − U) + zU − cθU + µ[B + s(N − U)− (p(θ) +mU )U ] + ν[B −m(N − U)−mUU ],

where µ and ν are the costates to U and N , respectively. Assuming 0 < U < N , the first order
conditions for an interior optimum read

∂H
∂m

= 0 ⇔ y′(m) = ν, (9)

∂H
∂θ

= 0 ⇔ c = −p′(θ)µ. (10)

Condition (9) coincides with (2), while condition (10) balances the costs of an additional vacancy
with the benefits of lower unemployment.
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In an optimum, the dynamics of the costate variables are

∂H
∂U

= −µ̇+ rµ ⇔ µ̇ = (r + s+mU + p(θ))µ+ y(m)− z + cθ − ν(m−mU ), (11)

∂H
∂N

= −ν̇ + rν ⇔ ν̇ = (r +m)ν − y(m)− sµ. (12)

From this point onwards we again focus on stationary solutions, ṁ = θ̇ = 0. By the first order
conditions, this implies ν̇ = µ̇ = 0. Equation (12) gives the economic value of a life lost as

ν = y(m) + sµ

r +m
. (13)

Similar to (4), ν equals the present discounted value of a worker’s forgone production in case
of death. Yet, it now takes into account that the worker may have become unemployed in the
future due to a separation shock. Combining (9) and (13) yields

y′(m) = y(m) + sµ

r +m
. (14)

Comparing this condition to (5) reveals that the search frictions lower the marginal cost of
mortality since unemployment reduces a worker’s lifetime production in present discounted
value terms (µ < 0 by (10)). As a result, search frictions increase the optimal mortality rate,
see Section 3.3 for a more thorough analysis.

Substituting (10) and (13) into (11) to replace c and ν, the steady state value of an additional
unemployed is

µ = − (r +mU )y(m)− (r +m)z
[r +mU + p(θ)η(θ)](r +m) + s(r +mU ) , (15)

where η(θ) := − q′(θ)θ
q(θ) is the elasticity of the vacancy-filling rate. The value of µ corresponds to

the change in the present discounted value of output if a worker switches from employment to
unemployment. In optimum, this is negative by (10), such that frictional unemployment lowers
aggregate output.

Substituting (15) back into (10) yields

(1− η(θ)) (r +mU )y(m)− (r +m)z
[r +mU + p(θ)η(θ)](r +m) + s(r +mU ) = c

q(θ) . (16)

Like in the basic DMP model, this equation determines optimal job creation. To pin down the
optimal mortality rate, use (15) to eliminate µ from (14), which after some algebra yields

y′(m) = [r +mU + p(θ)η(θ)]y(m) + sz

[r +mU + p(θ)η(θ)](r +m) + s(r +mU ) . (17)

With search frictions, a solution to the planner’s problem satisfies (16)–(17).
While not immediately visible, it is important to note that (17) is equivalent to ∂µ

∂m = 0
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with µ given in (15). Intuitively, the optimal mortality rate minimizes µ, such that a planner
faced with search frictions chooses mortality to make the output loss resulting from frictional
unemployment as small as possible. This observation is key to our proof of existence and
uniqueness of a solution, which solely focuses on the planner’s job creation curve θ∗(m) defined
by (16). By Lemma 2 in the appendix, this curve is hump-shaped, which reflects that the
planner creates fewer vacancies if the mortality of employed workers is very high (as the expected
duration of a production relation is short) but also if mortality is very low (as the required safety
measures depress effective output). Since µ = − c

p′(θ) by (10), µ is minimized when the tightness
θ is maximized. Hence the planner’s solution corresponds to the unique peak of the job creation
curve as postulated by Proposition 2.

Proposition 2. With search frictions, the social planner’s solution (m∗, θ∗) is unique and
corresponds to the maximum of the job creation curve θ∗(m) defined by (16).

This result is graphically illustrated in Figure 1, where JC corresponds to the hump-shaped
job creation curve defined by (16). The job destruction curve JD is defined by (17) and
downwards sloping. Intuitively, a higher tightness θ increases the job-finding rate and thus µ
as the expected output lost in case of unemployment decreases. By (13), this increases the
valuation of a worker, ν, and thus the marginal cost of mortality. Therefore, the optimal
mortality rate is decreasing in θ along JD. The planner’s optimum lies at the intersection of
the two curves, which by Proposition 2 coincides with the peak of JC.

Figure 1. Planner’s solution in the presence of search frictions

3.3 The impact of search frictions on mortality

Since the job-finding rate p(θ) enters the right-hand side of (17), the presence of labor market
frictions affects the optimal mortality rate. Hence, in the presence of search frictions, the
solution to the planner’s problem m∗ is only constrained efficient.
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The difference in the optimality conditions for mortality (5) and (17) essentially arises from
the altered value of ν, which measures the value of a life lost in terms of foregone output. Since
workers are more productive in jobs than at home (µ < 0), the presence of frictional unemploy-
ment decreases a worker’s expected lifetime production and thus decreases the marginal costs
of mortality. This implies that the optimal mortality rate is higher in the presence of labor
market frictions. Proposition 3 shows that this excess mortality increases with the severity of
the frictions.

Proposition 3. Let φ := s
r+mU+p(θ)η(θ) . The constrained efficient mortality rate m∗ given in

(17) is strictly increasing in φ. For φ → 0, the frictionless mortality rate m∗∗ given in (5) is
attained.

It is straightforward to see from (17) that the optimal mortality rate depends on the labor
market frictions only via φ = s

r+mU+p(θ)η(θ) . For s → 0 or θ → ∞, this fraction approaches
zero and the frictionless mortality rate is attained. Ceteris paribus, the excess mortality caused
by the frictions is higher the higher the separation rate and the lower the job-finding rate or
the elasticity of the vacancy-filling rate. The fact that m∗ > m∗∗ is also evident from Figure 1.
Proposition 3 implies that the job destruction curve JD approaches the vertical line m = m∗∗

for θ → ∞ and lies to the right of m∗∗ for any finite θ. The intersection with the JC curve
must thus necessary lie above m∗∗.

By Proposition 3, reforms that accelerate the matching of unemployed to jobs reduce the
mortality rate of employed through higher occupational safety. Although not captured by our
model, such a reform may at the same time reduce the mortality rate of unemployed mU due
to lower risk of long-term unemployment. Indeed, empirical evidence suggests a positive link
between high local unemployment and mortality rates after job loss (Browning and Heinesen,
2012). It is straightforward to verify that the marginal costs of mortality on the right-hand side
of (17) are decreasing mU , such that this channel amplifies the negative effect of search frictions
on the provision of occupational safety. Intuitively, a worker’s expected lifetime production
not only drops due to the presence of unemployment spells, but also because the mortality
experienced during unemployed depends on the expected length of these spells.

4 Frictional labor market and bargaining

Having understood the planner’s incentives with and without search frictions, we now decentral-
ize the economy studied in the previous section. Mortality is no longer centrally mandated but
negotiated by firms and workers together with wages. The attained labor market equilibrium
may differ from the planner’s solution (m∗, θ∗) due to a range of externalities that are present
in the model.

The classical matching externalities may lead the equilibrium tightness to deviate from θ∗

(Pissarides, 2000, Ch. 8). This results from the fact that private agents do not take into account
that opening an additional vacancy lowers the vacancy-filling probability of all firms, while on
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the workers’ side an additional job-seeker reduces the job-finding probability for all other job-
seekers. Additionally, our model features an externality that directly affects the mortality rate.
As safety measures are bilaterally negotiated between a firm and a worker, the fact that a
worker’s death not only terminates the current employment relation but permanently lowers
the production capacity of the economy is in general not taken into account.

4.1 Value functions

Each firm consists of one job that can either be filled or vacant. Assuming stationarity, the
value of a filled and vacant job are, respectively,

rJ = y(m)− w − (s+m)(J − V ),

rV = −c+ q(θ)(J − V ).

A filled job generates a flow profit of y(m)−w and is destroyed by an exogenous separation at
rate s and by death of the worker at rate m. Assuming free market entry of firms, the value of
a vacancy is zero in equlibrium, V = 0, implying J = c

q(θ) .
The value of employment and unemployment for the worker are, respectively,

rW = w − s(W − U)−mW,

rU = z + p(θ)(W − U)−mUU.

An employed worker consumes her wage, moves to unemployment at rate s and dies at rate m.
Unemployed workers consume their home production, find a job at rate p(θ) and die at rate
mU . The value of death is set to zero since the individual’s consumption permanently drops to
zero.

4.2 Bargaining

Each period, firm and worker choose a wage w and a mortality rate m that jointly maximize
the generalized Nash product

Ψ = (W − U)γJ1−γ

where γ ∈ (0, 1) is the bargaining power of the worker.6 From above, observe J = y(m)−w
r+m+s and

W = w+sU
r+m+s . The value of unemployment U is an equilibrium object and taken as given in the

bargaining process.
6The view that workers and firms bargain over a compensation package that includes non-wage components,

has, for instance, been adopted in Dey and Flinn (2005), where the worker’s coverage by health insurance is
negotiated together with the wage. We study the effect of alternative determination schemes for wages and
occupational safety in Section 4.6.
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Assuming W > U and J > 0, the first order conditions are

∂Ψ
∂w

= 0 ⇔ γJ = (1− γ)(W − U), (18)

∂Ψ
∂m

= 0 ⇔ y′(m) = J + γJ

(1− γ)(W − U)W. (19)

Condition (18) gives rise to the familiar Nash sharing rule, W − U = γS and J = (1 − γ)S
where S = J +W − U = y(m)−(r+m)U

r+m+s is the joint surplus of the match. Substituting this into
(19) yields

y′(m) = J +W = y(m) + sU

r +m+ s
. (20)

Similarly to the planner’s conditions, the left-hand side of (20) measures the marginal benefit
of higher mortality in terms of additional output. The right-hand side captures the marginal
cost of higher mortality, which in the decentralized economy amounts to losing the match value
J+W . This value comprises the expected output generated on the current job, y(m)

r+m+s , and (via
U) the expected income earned on future jobs and during unemployment spells. The negotiating
parties internalize the labor supply externality if and only if U is such that (20) coincides with
(17), compare Section 4.4.

Notice that the bargaining outcome can be interpreted sequentially. Anticipating that each
party will receive a fixed share of the joint surplus, m is chosen to maximize S. This is evident
from (20) being equivalent to ∂S

∂m = 0, which will be central to the analysis of the equilibrium
below.7

4.3 Equilibrium

By the Nash sharing rule, the equilibrium value of unemployment satisfies (r + mU )U = z +
p(θ)γS. Substituting this into the definition of S gives equilibrium surplus

S = (r +mU )y(m)− (r +m)z
(r +mU + p(θ)γ)(r +m) + (r +mU )s. (21)

We note for further reference that the equilibrium value of unemployment equals

U = p(θ)γy(m) + (r +m+ s)z
(r +mU + p(θ)γ)(r +m) + (r +mU )s. (22)

Plugging (21) into the free entry condition, noting J = (1− γ)S, yields

(1− γ) (r +mU )y(m)− (r +m)z
(r +mU + p(θ)γ)(r +m) + (r +mU )s = c

q(θ) , (23)

7Formally, max(w,m) (W −U)γJ1−γ = maxm
{

maxw (W − U)γJ1−γ} = γγ(1 − γ)1−γ maxm S. In Section 4.6
we discuss the generality of this result.
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while substituting (22) into (20) gives, after some algebra,

y′(m) = (r +mU + p(θ)γ)y(m) + sz

(r +mU + p(θ)γ)(r +m) + (r +mU )s. (24)

A labor market equilibrium (m̂, θ̂) is characterized by equations (23)–(24). Similar to the
planner’s solution in Section 3.2, it can be verified that the labor market equilibrium corresponds
to the peak of the job creation curve θ̂(m), which is now defined by (23). This hinges on the
fact that m̂ maximizes (21) for θ = θ̂. Imposing the free entry condition, maximizing (21) is
equivalent to maximizing θ along the job creation curve since S = c

(1−γ)q(θ) .

Proposition 4. The equilibrium (m̂, θ̂) is unique and corresponds to the maximum of the job
creation curve θ̂(m) defined by (23).

The equilibrium looks qualitatively identical to the planner’s solution in Figure 1. To gain
further economic insights, let us conduct a small comparative static analysis of the equilibrium
with respect to the main model variables. Increasing the slope of y around m̂ increases joint
surplus (21) and hence θ̂(m) for m > m̂ and results in a higher equilibrium mortality rate. The
same happens if z or p(θ) are lowered (for all θ), since surplus decreases relatively more for large
m. Thus, ceteris paribus, higher mortality rates should be observed in jobs in which prevention
measures are most costly and for workers whose outside options are poorest. As shown in
Section 4.4.2, the relationship between equilibrium mortality and the bargaining power γ is not
monotonic.

4.4 The impact of externalities on mortality

4.4.1 The labor supply externality

The fact that a diseased worker reduces aggregate labor supply is internalized in the firm-level
negotiations if the private costs of mortality equal the social costs of mortality. In this case,
conditions (14) and (20) coincide, which proofs equivalent to

U = y(m) + (r +m+ s)µ(m, θ)
r +m

(25)

where µ(m, θ) is the shadow price that a planner assigns to an additional unemployed for given
(m, θ). This shadow price can be obtained from (11)–(12) and equals

µ(m, θ) = − (r +mU )y(m)− (r +m)(z − cθ)
(r +mU + p(θ))(r +m) + s(r +mU ) . (26)

Next, note that free entry and Nash bargaining imply cθ = θq(θ)(1−γ)S = (1−γ)p(θ)y−(r+m)U
r+m+s

for any U . Substituting this into (26) and plugging the resulting expression into (25) after some
algebra yields (22). Therefore, the labor supply externality is internalized in any labor market
equilibrium. Even though private agents do not explicitly take into account that a dead worker
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Figure 2. Equilibrium mortality as a function of γ

reduces labor supply on aggregate, in equilibrium this is accurately reflected in the worker’s
outside option considered in bargaining.

The observation that the labor supply externality is internalized in equilibrium hinges on a
particular property of the bargaining scheme studied in Section 4.2. As mentioned there, the
bargained mortality rate maximizes the joint surplus of firms and workers. This is essential,
since the production potential outside the firm is only taken into account by the worker, but
not by the firm. In Section 4.6 we investigate alternative schemes to determine safety levels and
their ability to internalize the labor supply externality.

4.4.2 Matching externalities

Even though the labor supply externality is internalized, the equilibrium mortality rate need
not be efficient. It may still be distorted by the presence of externalities that arise from the
matching process and affect the equilibrium value of U in (20). Indeed, we observe that the
equilibrium conditions (23)–(24) coincide with the planner’s conditions (16)–(17) if and only if
γ = η(θ), which corresponds to the familiar Hosios (1990) condition. In this case, the labor
market equilibrium is constrained efficient and attains the mortality rate m∗.

Even if the Hosios condition holds, mortality is higher than in a frictionless labor market.
Therefore, one may ask whether a deviation from the Hosios condition may lead to lower
mortality rates. Proposition 5 negates this. It shows that any deviation from the Hosios
condition increases the mortality rate above its constrained efficient level m∗. Hence both a too
low and a too high degree of worker representation in wage negotiations aggravates the negative
effects of search frictions on mortality.

Proposition 5. The equilibrium attains the constrained efficient mortality rate m∗ if and only
if γ = η(θ∗). Otherwise, the equilibrium mortality rate exceeds m∗.
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The result of Proposition 5 is illustrated in Figure 2. The relation between bargaining power
and equilibrium mortality is U shaped. This reveals that unionization can help to move the
economy closer to efficient provision of occupational safety only if worker’s individual bargaining
power is sufficiently low. At the same time, however, the bargaining power of the union should
not be too high since the mortality rate starts to increase in γ at some point. This is because
high negotiated wages reduce worker’s job finding rates, which reinforces the search frictions
and increases mortality.

The turning point occurs at γ = η(θ∗), i.e. when the Hosios condition is satisfied. This is
because the equilibrium mortality rate is inversely related to the equilibrium value of unem-
ployment U . Lemma 3 in the appendix shows that U peaks at γ = η(θ∗) such that mortality
achieves its minimum at this point, where it attains the constrained efficient rate m∗.8 Even
if all externalities are internalized, the mortality rate is still higher than in a frictionless labor
market, where it equals m∗∗. While appropriately designed policies can reduce mortality below
m∗, this comes with a loss in aggregate output as discussed in the next section.

4.5 Policy

Suppose that there is a government who, while maximizing output, wants to keep the equilibrium
mortality rate below some m̄. For m̄ ≥ m∗, it is clear from Section 3.2 that the desired pair is
the planner’s solution (m∗, θ∗). By Proposition 5 this is attained as equilibrium if the Hosios
condition is satisfied, such that the government’s efforts should concentrate on enforcing this
condition. If the bargaining power of the negotiating parties cannot directly be adjusted, a
transfer between workers and firms may implement to the same labor market outcomes. We
return to this towards the end of this section.

For now, let us assume that the matching elasticity is constant η(θ) ≡ η and that the
Hosios condition holds, γ = η. As argued above, no policy intervention is necessary if m̄ ≥ m∗.
Otherwise, we know from the analysis of Section 3.2 that the optimal mortality rate is m̄ and
the associated tightness θ̄ lies on the planner’s job creation curve (16) illustrated by the solid
line in Figure 3.

We now seek for policies that decentralize (m̄, θ̄) as an equilibrium. To this purpose, we
consider a mortality-dependent tax on firms, which changes effective output from y(m) to
y(m)−∆(m). In equilibrium, all tax revenue is equally distributed among all individuals by a
lump sum transfer t. With this policy, the job creation curve in the decentralized economy (23)
becomes

(1− η)(r +mU )(y(m)−∆(m) + t)− (r +m)(z + t)
(r +mU + p(θ)η)(r +m) + (r +mU )s = c

q(θ) .

For the equilibrium to lie on the planner’s job creation curve (16), the terms arising from the
8The property that the equilibrium value of unemployment is maximized under the Hosios condition is in-

herited from the basic DMP model, see Pissarides (2000, p.187). Endogenous mortality does not destroy this
property since ∂U

∂m
= ∂S

∂m
= 0 for any given γ.
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policy must cancel, i.e. (r +mU )∆(m̄) = (mU − m̄)t. Additionally, a balanced budget requires

∆(m̄)L = tN ⇔ p(θ̄)∆(m̄) = (m+ s+ p(θ̄))t.

Combining the two equations reveals t = ∆(m̄) = 0, such that in equilibrium the size of the
intervention should be zero. Furthermore, the policy changes equation (24) to

y′(m)−∆′(m) = (r +mU + p(θ)η)(y(m)−∆(m) + t) + s(z + t)
(r +mU + p(θ)η)(r +m) + (r +mU )s .

Evaluating this in equilibrium, using t = ∆(m̄) = 0, yields

∆′(m̄) = y′(m̄)− (r +mU + p(θ̄)η)y(m̄) + sz

(r +mU + p(θ̄)η)(r + m̄) + (r +mU )s
. (27)

For m̄ < m∗ the right-hand side of (27) is positive, such that ∆′(m̄) > 0. Hence although the
tax is zero in equilibrium, the tax schedule is upwards sloping, which increases the marginal cost
of mortality. The gradient of the tax schedule must be such that marginal costs and marginal
benefits of higher m are equalized at m̄.

Note that the above conditions only pin down ∆(m̄) and ∆′(m̄), but not the function values
in other points. The specific shape of ∆ in fact does not matter as long as no additional
equilibrium arises. This is granted if the altered effective output function y(m)−∆(m) satisfies
Assumption 1. One such tax schedule is

∆(m) = λ[y(m)− y(m̄)],

with which the government captures a share λ of the production gain that arises from producing
with a mortality rate above the target. By construction, ∆(m̄) = 0, while ∆′(m̄) = λy′(m̄).
Substituting this into (27) pins down λ as

λ = 1− (r +mU + p(θ̄)η)y(m̄) + sz

[(r +mU + p(θ̄)η)(r + m̄) + (r +mU )s]y′(m̄)
.

The resulting job creation curve is illustrated by the dashed line JC ′ in Figure 3. To
implement (m̄, θ̄) as an equilibrium, the policy must be such that the job creation curve of the
decentralized economy is maximized in this point, compare Proposition 4. While mortality is
lower in the new equilibrium, this comes at the cost of lower job creation due to additional
safety measures. Since aggregate production is maximized at m∗, the policy leads to a loss in
output.

If the Hosios condition is not satisfied, γ 6= η, and the government cannot directly affect the
bargaining weight, the tax scheme presented above can be adjusted to take this into account.
The required tax is then no longer zero in equilibrium, but accounts for the deviation between γ
and η. The tax on firms will be negative (reflecting a transfer) if the workers’ bargaining power
is too high, γ > η. Otherwise, the tax is positive in equilibrium. Since this intervention alters
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Figure 3. Labor market equilibrium with and without policy

the marginal costs of mortality in equilibrium, the slope of the tax schedule is no longer given
by (27), but includes an additional term reflecting γ − η.

4.6 Alternative determination schemes for occupational safety

As demonstrated in Section 4.4.1, the joint bargaining of wages and safety measures as assumed
in Section 4.2 leads to the internalization of the labor supply externality in equilibrium. The
same is true if occupational safety is determined differently, as long as the outcome maximizes
joint surplus.

Consider, for instance, that just the wage is bargained, while m is unilaterally set by the
firm before the wage negotiation. Since firms anticipate that the joint surplus will be shared
according to the Nash rule by (18), they solve

max
m

J = (1− γ)S ⇔ max
m

S

at the first stage. Hence the equilibrium obtained under this bargaining protocol coincides with
the equilibrium of Section 4.3. This also holds if the worker could unilaterally decide on m by
maximizingW , or if m would be the result of yet another bargain, irrespective of the bargaining
weights.

It is essential, however, that the level of safety measures is determined before wages or
simultaneously with wages. Otherwise, the firm has an incentive to underinvest. To see this,
assume that firms can unilaterally choose m after wages w have been set. Their optimal choice
maximizes J subject to W ≥ U for the given wage level w. The first order condition for an
interior optimum is

y′(m) = J = y(m)− w
r +m+ s

.
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The marginal cost of mortality considered is now only the firm’s private cost J that results from
the termination of the match. The cost of the worker is not taken into account. Comparison
with (20) reveals that, irrespective of the wage, mortality is higher than in the equilibrium of
Section 4.3.9

This observation implies that in the equilibrium of Section 4.3, firms have an incentive to
deviate from negotiated levels of m and underinvest into safety measures to increase their profit
ex post. The equilibrium is thus not feasible if firms lack commitment and negotiation outcomes
cannot be enforced by courts. In this case, a strong collective voice as provided by unions or
other forms of worker representation may help to keep firms accountable for their promises
(Freeman and Medoff, 1984). Alternatively, a tax scheme as suggested in Section 4.5 can align
the firm’s marginal cost of mortality with the social marginal cost. This eliminates the firm’s
incentive to deviate ex post, implementing the equilibrium of Section 4.3 even if the firm cannot
commit to any ex ante agreed level of m.10

Firms may also underinvest into safety measures when these are set before wages if part
of their costs are irretrievable in case no agreement is reached in the wage negotiations. This
changes a firm’s threat point in the bargain as it would incur a loss in case the worker walks
away. This is an example of the classical hold-up problem.11 Assuming sunk costs d(m) > 0,
the bargaining problem becomes

max
w

(W − U)γ(J + d(m))1−γ

since the firm’s outside option is now −d(m). The solution implies J = (1 − γ)S − γd(m).
Assuming that the firm unilaterally chooses the level of safety measures before wages are nego-
tiated, the first order condition for m is

∂S

∂m
= γ

1− γ d
′(m).

If higher safety measures require more upfront costs, d′(m) < 0, the firm chooses a point on
the downwards sloping part of the surplus curve, ∂S

∂m < 0. Therefore, joint surplus is no longer
maximized. The above optimality condition is equivalent to

y′(m)− γ

1− γ d
′(m)(r +m+ s) = y(m) + sU

r +m+ s
,

which shows that the firm’s marginal gain of mortality increases because part of the additional
expenditures on safety measures cannot be shared with the worker. Even if d′(m) = 0, the
presence of sunk costs affects the mortality rate via U as the worker effectively receives a higher
share in surplus.

9This also holds ifm is the result of a bargain, provided thatm is bargained after w and the worker’s bargaining
weight is smaller than in the wage negotiation.

10To implement the equilibrium (m̂, θ̂) of Section 4.3, the tax must satisfy ∆(m̂) = 0 and ∆′(m̂) = W = γS
with equilibrium surplus S given in (21).

11See Malcomson (1997) for a summary of this literature.
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Joint determination of wages and safety levels as in Section 4.2 can correct these distortions
and avoid hold-up. It is likely, however, that some safety expenditures cannot be postponed
for technical reasons. Consider, for example, structural safety facilities that are planned in
a new plant well in advance of workers being hired. Similarly, new employees benefit from
already existing safety facilities. In such cases, unions could be efficiency enhancing, for example
by negotiating a firm-level collective bargaining agreement through which also future workers
participate in the costs through lower wages. These positive effects on safety may be offset,
however, if collective bargaining at the same time increases workers’ bargaining power, which
reduces the firm’s incentive to invest. Alternatively, a policy along the lines of Section 4.5 can
be used to redistribute a part of the firm’s upfront expenditures to the households.

While in a bargaining setting, hold-up and matching externalities may lead to suboptimal
outcomes, efficiency may arise automatically if the labor market is organized differently. Assume
that firms post and credibly commit to contracts (m,w) to which workers apply in the manner
of directed search (Moen, 1997; Acemoglu and Shimer, 1999). The equilibrium is characterized
as the solution to

max
(m,w,θ)

p(θ)W s.t. q(θ)J = c.

It is easy to verify that the directed search equilibrium satisfies the planner’s conditions (16)–
(17) and thus internalizes all externalities. Additionally, directed search reduces the potential
for hold-up problems (Acemoglu and Shimer, 1999).

5 Conclusion

This paper studied the provision of occupational safety in a labor market with search frictions.
To this purpose, the basic Diamond-Mortensen-Pissarides model was extended for mortality
shocks whose probability is determined endogenously. The presence of search frictions was found
to increase the socially optimal mortality rate. While the marginal costs of safety measures are
unaffected by the frictions, periods of involuntary unemployed decrease a worker’s expected
lifetime production and hence the long-run gains of safety measures.

In a decentralized setting, a range of externalities may lead to a further increase in mortality.
Assuming joint bargaining of wages and safety levels, we found that the negotiating parties
internalize the labor supply externality, i.e. the effect of a higher mortality rate on aggregate
labor supply. This is far from obvious, since none of the parties explicitly takes the aggregate
effects of their decisions into account. Yet, in equilibrium the worker’s outside option reflects
the correct “price” of mortality. This requires, however, that firms can be held accountable
for their promises as they could increase their profit ex post by underinvesting into workplace
safety.

Even if the labor supply externality is internalized, the Hosios (1990) condition is required to
attain the planner’s constrained efficient mortality rate. Any deviation from the Hosios condition
leads to inefficiently high mortality due to matching externalities. Thus, while unionization can
help move the economy closer to efficient provision of occupational safety, too high bargaining
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power of unions is detrimental.
Public policies that mandate or incentivize firms to invest more into occupational safety

can be effective to align private and social costs of mortality. While in our model misguided
private incentives only stem from labor supply and matching externalities, many other factors
potentially distort the private provision of occupational safety in the real world (Pouliakas and
Theodossiou, 2013). The recent policy initiatives in the EU and the US reflect that policymakers
acknowledge these problems and are willing to take action.

Such policies, however, are less suitable to address the excessive mortality caused by search
frictions. As we demonstrated, once all externalities have been internalized, a further policy-
induced reduction in mortality inevitably lowers aggregate economic output and hence welfare.
To address the detrimental mortality effects of search frictions, these should be addressed more
directly. Accelerating the matching of unemployed to job openings, for example, at the same
time increases occupational safety and aggregate output. Along these lines, the recent rise in
long-term unemployment after the COVID crisis may inhibit the success of the recent policy
initiatives to boost occupational safety if labor market frictions remain elevated.12

The model presented in this paper was purposefully kept simple to identify the main mech-
anisms that affect the provision of occupational safety in a labor market with search frictions.
We believe that these mechanisms will remain of central importance in more complex versions
of the model. Indeed, our model is general enough to be extended in many directions. For
instance, premature death of a worker is arguably the most extreme implication of low occupa-
tional safety. A lot of adverse economic effects already occur during the worker’s lifetime in the
form of health deficits that lead to chronic diseases or permanent disability. In modern welfare
states, a big part of health expenditures are born by the public and are thus not reflected in pri-
vate decision-making. This creates an externality absent in the presented model. Furthermore,
we abstracted from modeling individuals’ education decisions, which ultimately determines the
characteristics of their future potential jobs. Distortions in the provision of occupational safety
are likely to distort schooling decisions and occupational choices as well. We also neglected life-
cycle features. Individual attitudes towards health hazards may vary over a worker’s lifetime
depending on age, health, and socioeconomic factors. This may call for policies that focus on
particular subpopulations. These and further questions are left for future research.
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A Mathematical appendix

This section contains auxiliary results and proofs to the propositions stated in the article.

A.1 Auxiliary results

Lemma 1. The function φ(m) := y(m)
r+m satisfies lim

m→∞
φ(m) = 0. It is unimodal with a single

peak m > 0, which satisfies y(m)
r+m > z

r+mU .

Proof. Assumption 1(i) implies lim
m→∞

φ(m) = 0 by L’Hopital’s rule. The derivative is φ′(m) =
r

r+m [y′(m)− y(m)
r+m ]. At any point that satisfies φ′(m) = 0, the second derivative is r

r+my
′′(m) < 0.

Hence any local optimum of φ is a maximum. Assumption 1(ii) guarantees an m̃ > 0 such that
φ(m̃) > z

r+mU ≥ 0. As φ asymptotically approaches 0, it either has a single peak m > 0
or is monotonically decreasing. The latter is ruled out by Assumption 1(iii), which implies
φ(0) < φ(m̃). Finally, φ(m) ≥ φ(m̃) > z

r+mU , since m maximizes φ.

Lemma 2. Equation (16) defines a function θ∗(m) with the following properties:

(i) the domain of θ is a non-empty interval M = (m,m) ⊂ R+ whose boundaries satisfy
y(m)
r+m = z

r+mU ,

(ii) the sign of dθ∗

dm is the opposite of ∂µ
∂m where µ is given in (15),

(iii) the function is unimodal with a single peak and approaches zero at the boundaries of M .

Proof. Property (i): Since q(θ) is positive for any finite θ by Assumption 2, a solution to (16)
can only exist if µ < 0, which requires m ∈ M := {m ≥ 0 : y(m)

r+m > z
r+mU }. On the other

hand, for any m ∈ M the properties of Assumption 2 ensure that (23) has a unique solution
θ∗(m) > 0. Hence the domain of θ∗ is M , which by Assumption 1(iii) does not include zero.
The unimodality result of Lemma 1 implies that M is a non-empty open interval.

Property (ii): Applying the implicit function theorem to (16) gives

dθ∗

dm
=

−(1− η(θ)) ∂µ∂m
(1− η(θ))∂µ∂θ − η′(θ)µ−

c
q(θ)2 q′(θ)
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with µ given in (15). Since µ < 0, ∂µ
∂θ > 0, and Assumption 2, the denominator is strictly

positive. Furthermore, 1− η(θ) = p′(θ)θ
p(θ) > 0, such that the sign of dθ∗dm equals the sign of − ∂µ

∂m .
Property (iii): At the boundaries of M , y(m)

r+m →
z

r+mU and thus c
q(θ) → 0. By Assump-

tion 2(ii), this implies θ → 0. Since θ(m) > 0 for m ∈ M , θ must attain a local maximum
on M . To verify that this maximum is unique, I rule out the existence of inner local minima.
Property (ii) of this Lemma implies that dθ∗

dm = 0 if and only if ∂µ
∂m = 0. Every such point is a

local maximum since d2θ∗

dm2 becomes proportional to − ∂2µ
dm2 = ry′′(m)

(r+mU+p(θ)η(θ))(r+m)+s(r+mU ) < 0.
By continuity, dθ∗dm cannot change its sign more than once such that the maximum is unique.

Lemma 3. The equilibrium value of unemployed U is unimodal in γ and peaks at γ = η(θ).

Proof. Plugging (21) into (r +mU )U = z + p(θ)γS yields

U = p(θ)γy(m) + (r +m+ s)z
(r +mU + p(θ)γ)(r +m) + (r +mU )s.

Differentiation with respect to γ gives

dU

dγ
= ∂U

∂m

dm

dγ
+ ∂U

∂[p(θ)γ]
d[p(θ)γ]
dγ

.

Observe that ∂U
∂m = 0 and ∂U

∂[p(θ)γ] = r+m+s
(r+mU+p(θ)γ)(r+m)+(r+mU )sS. Hence the sign of dUdγ coincides

with the sign of d[p(θ)γ]
dγ , which is shown to equal the sign of η(θ)−γ in the proof of Proposition 5.

The rest of the proof is analogous to there.

A.2 Proofs of propositions

Proof of Proposition 1. We first show that (5) defines a unique mortality rate. Note that (5)
corresponds to the first order condition of maxm y(m)

r+m . By Lemma 1, this function is unimodal
with a single peak, such that there is exactly one m that satisfies this condition.

Next, note that (5) was obtained assuming U < N . The maximized value of the Hamiltonian
is H∗∗ = ry(m∗∗)

r+m∗∗ (N−U)+zU+ y(m∗∗)
r+m∗∗ [B−mUU ]. To determine the optimal value of U , observe

∂H∗∗
∂U = z− r+mU

r+m∗∗ y(m∗∗). Asm∗∗ maximizes y(m)
r+m , the derivative is strictly negative by Lemma 1.

Therefore, U∗∗ = 0 and the initial assumption is satisfied.

Proof of Proposition 2. By Lemma 2, θ∗(m) has a unique peak that is characterized by ∂µ
∂m = 0

where

∂µ

∂m
= − r +mU

(r +mU + p(θ)η(θ))(r +m) + rs

[
y′(m)− (r +mU + p(θ)η(θ))y(m) + sz

(r +mU + p(θ)η(θ))(r +m) + (r +mU )s

]
.

Hence the point (m, θ) that maximizes θ∗(m) solves the planner’s problem since it satisfies
(16)–(17). On the other hand, any solution satisfies ∂µ

∂m = 0 and therefore corresponds to an
interior extremum of θ∗(m). Since θ∗(m) is unimodal, the only interior extremum is the unique
global maximum.
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Proof of Proposition 3. Equation (17) can be rewritten y′(m) = y(m)+φz
r+m+φ(r+mU ) . For φ = 0, the

condition simplifies to (5). The implicit function theorem implies dm
dφ = µ

y′′(m)[r+m+φ(r+mU )] .
The derivative is positive since y′′(m) < 0 and µ < 0.

Proof of Proposition 4. The result immediately follows from Lemma 2 and Proposition 2 by
setting η(θ) = γ and noting that µ = −S.

Proof of Proposition 5. I first verify that like in the basic DMP model, the equilibrium tightness
is strictly decreasing in γ. Consider the total derivative of (23),

[
(1− γ)∂S∂γ − S

]
dγ +

[
(1− γ)∂S∂θ + c q

′(θ)
q2(θ)

]
dθ + (1− γ) ∂S∂mdm = 0,

where all expressions are evaluated in equilibrium and S is given in (21). Since m maximizes
S, the last term is zero and evaluating the remaining terms yields

dθ

dγ
= − (r +mU + p(θ))(r +m) + (r +mU )s

[p(θ)γ + η(θ)(r +mU )](r +m) + η(θ)(r +mU )s ·
θ

1− γ < 0.

Second, observe from (24) that the equilibrium mortality rate depends on γ only via the
joint term p(θ)γ. The implicit function theorem reveals

∂m

∂[p(θ)γ] = y(m)− y′(m)(r +m)
y′′(m)[(r +mU + p(θ)γ)(r +m) + (r +mU )s] < 0.

The sign follows from y′′ < 0 and substituting (24) by which y(m) > y′(m)(r+m). Furthermore,

d[p(θ)γ]
dγ

= p(θ) + p′(θ)γ dθ
dγ

= p(θ)
[
1 + (1− η(θ))dθ

dγ

γ

θ

]
.

Substituting dθ
dγ from above and collecting terms yields

d[p(θ)γ]
dγ

= p(θ) (r + γp(θ))(r +m) + rs

[γp(θ) + η(θ)r](r +m) + η(θ)rs
η(θ)− γ

1− γ .

Putting things together, the sign of dm
dγ = ∂m

∂[p(θ)γ]
d[p(θ)γ]
dγ equals the sign of γ − η(θ). Since

dθ
dγ < 0 and η′ ≥ 0, it follows that γ− η(θ) is strictly increasing in γ. Therefore, m has a unique
minimum, which satisfies γ = η(θ).
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