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Catalytic equations appear in several combinatorial applica-
tions, most notably in the enumeration of lattice paths and in 
the enumeration of planar maps. The main purpose of this pa-
per is to show that the asymptotic estimate for the coefficients 
of the solutions of (so-called) positive catalytic equations has 
a universal asymptotic behavior. In particular, this provides a 
rationale why the number of maps of size n in various planar 
map classes grows asymptotically like c ·n−5/2γn, for suitable 
positive constants c and γ. Essentially we have to distinguish 
between linear catalytic equations (where the subexponential 
growth is n−3/2) and non-linear catalytic equations (where 
we have n−5/2 as in planar maps). Furthermore we provide 
a quite general central limit theorem for parameters that can 
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be encoded by catalytic functional equations, even when they 
are not positive.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

A planar map is a connected planar graph, possibly with loops and multiple edges, 
together with an embedding in the plane. A map is rooted if an edge e is distinguished 
and directed. This edge is called the root-edge. The initial vertex v of this (directed) 
root-edge is then the root-vertex The face to the right of e is called the root-face and is 
usually taken as the outer face. All maps in this paper are rooted.

The enumeration of rooted maps (up to homeomorphisms) is a classical subject, ini-
tiated by Tutte in the 1960’s. Tutte (and Brown) introduced the technique now called 
“the quadratic method” in order to compute the number Mn of rooted maps with n
edges, proving the formula

Mn = 2(2n)!
(n + 2)!n! 3

n.

This was later extended by Tutte and his school to several classes of planar maps: 2-
connected, 3-connected, bipartite, Eulerian, triangulations, quadrangulations, etc. Using 
the previous formula, Stirling’s estimate gives Mn ∼ (2/

√
π) · n−5/212n. In all cases 

where a “natural” condition is imposed on maps, the asymptotic estimates turn out to 
be of this kind:

c · n−5/2γn.

The constants c and γ depend on the class under consideration, but one gets systemati-
cally an n−5/2 term in the estimate.

This phenomenon is discussed by Banderier et al. [2]: ‘This generic asymptotic form 
is “universal” in so far as it is valid for all known “natural families of maps”.’ The goal 
of this paper is to provide to some extent an explanation for this universal phenomenon, 
based on a detailed analysis of functional equations for generating functions with a 
catalytic variable. Let us mention that the critical exponent −5/2 has been ‘explained’ 
previously in at least two different ways. On the one hand, in the classical reference [6]
the authors use matrix integrals to compute the generating function of 4-regular planar 
maps (which are in bijection with general maps) and obtain an asymptotic estimate for 
its coefficients; see [6, Equation 23] (the exponent is −7/2 instead of −5/2 because they 
consider unrooted maps and the growth constant is 48 instead of 12 because of a change 
of variables). Although some of the arguments in [6] were not fully rigorous, it opened 
the way to the solution of difficult enumerative problems using matrix integrals and ideas 
from statistical physics; see for instance [13] and [11].
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Another explanation for the critical exponent −5/2 comes from bijections between 
classes of planar maps and ‘decorated trees’, that is, plane trees with some additional 
information attached to the nodes or to the edges of a tree. The first such explicit 
bijection was obtained by Schaeffer between planar maps and binary trees in which a 
half-edge (a blossom) is added to each internal node (see [16] for a recent survey), which 
in particular gave the first direct combinatorial interpretation of Tutte’s formula for Mn. 
The bijection is between maps and trees ‘up to conjugation’, which means that a linear 
number of decorated trees correspond to the same map. Since the enumeration of rooted 
trees carries as a rule a subexponential term of the form n−3/2 [7], dividing by a linear 
term gives n−5/2. Since then many other classes of maps, such as 2-connected, bipartite, 
Eulerian, etc. have been shown to be in bijection with certain classes of trees up to 
conjugation, thus providing further justification for the universal exponent n−5/2. Let 
us mention that some classes of maps, such as outerplanar maps [17], behave like trees 
and have a n−3/2 term instead of n−5/2 in the asymptotic estimates.

In order to motivate the statements that follow, let us recall the basic technique for 
counting planar maps. Let Mn,k be the number of maps with n edges and in which the 
degree of the root-face is equal to k. Let M(z, u) =

∑
n,k Mn,ku

kzn be the associated 
generating function. As shown by Tutte [19], M(z, u) satisfies the quadratic equation

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u) −M(z, 1)

u− 1 . (1.1)

In this context the variable u is usually called a “catalytic variable” (see [5,21]). It is 
needed to formulate and solve the equation but it disappears if we are just interested in 
the generating function M(z, 1) =

∑
n Mnz

n related to the numbers Mn =
∑

k Mn,k of 
all rooted planar maps with n edges.

It turns out that

M(z, 1) =
∑
n≥0

Mnz
n = 18z − 1 + (1 − 12z)3/2

54z2 = 1 + 2z + 9z2 + 54z3 + · · · , (1.2)

from which we can deduce the explicit form for the numbers Mn. The remarkable ob-
servation here is the singular part (1 − 12z)3/2 that reflects the asymptotic behavior 
c · n−5/212n of Mn (see [12]).

A general approach to equations of the form (1.1) was carried out by Bousquet-Mélou 
and Jehanne [5]. First one rewrites (1.1) into the form

P (M(z, u),M1(z), z, u) = 0,

where P (x0, x1, z, u) is a polynomial and M1(z) abbreviates M(z, 0) or M(z, 1) Next one 
searches for functions f(z), y(z) and u(z) with4

4 Here and in what follows we denote by Px = ∂P
∂x the partial derivative of the function P with respect 

to the variable x.
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P (f(z), y(z), z, u(z)) = 0,

Px0(f(z), y(z), z, u(z)) = 0, (1.3)

Pu(f(z), y(z), z, u(z)) = 0.

The idea is to bind u and z in the function G(z, u) = Px0(M(z, u), M1(z), z, u)
so that G(z, u(z)) = 0 for a proper function u(z). By taking the derivative of 
P (M(z, u), M1(z), z, u) with respect to u one has

Px0(M(z, u),M1(z), z, u)Mu(z, u) + Pu(M(z, u),M1(z), z, u). (1.4)

Thus, if G(z, u(z)) = Px0(M(z, u(z)), M1(z), z, u(z)) = 0 then we also have Pu(M(z,
u(z)), M1(z), z, u(z)) = 0. This leads to the system (1.3) for f(z) = M(z, u(z)), y(z) =
M1(z) and u(z).

At this moment it is not completely clear that this procedure gives the correct solution. 
To show that this is the case we can argue as follows. Bousquet-Mélou and Jehanne [5]
considered in particular equations of the form5

M(z, u) = F0(u) + zQ

(
M(z, u), M(z, u) −M(z, 0)

u
, z, u

)
, (1.5)

where F0(u) and Q(α0, α1, z, u) are polynomials, that is

P (x0, x1, z, u) = F0(u) + zQ(x0, (x0 − x1)/u, z, u) − x0,

and showed that there is a unique power series solution M(z, u), and that it is also an 
algebraic function. The second equation of (1.3) is now (if we multiply by u)

zuQα0

(
M(z, u), M(z, u) −M(z, 0)

u
, z, u

)
(1.6)

+ zQα1

(
M(z, u), M(z, u) −M(z, 0)

u
, z, u

)
− u = 0.

Clearly this equation has a power series solutions u(z) with u(0) = 0. Thus, the power 
series f(z) = M(z, u(z)), y(z) = M(z, 0), u(z) solve the system (1.3).

In Section 3.1 we will rewrite the system (1.3) into an equivalent system (4.4) for 
f(z), u(z), w(z) = (f(z) − y(z))/u(z). Again we get a power series solution by setting 
f(z) = M(z, u(z)) and w(z) = (M(z, u(z)) − M(z, 0))/u(z). It will then be shown (in 
Section 3.1) that this system (4.4) has unique power series solutions. Consequently these 
solutions coincide with M(z, u(z)), u(z), (M(z, u(z)) − M(z, 0))/u(z). Hence, we get 

5 Actually Bousquet-Mélou and Jehanne [5] considered more general functional equations that contain 
also higher differences.
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M(z, 0) = f(z) − u(z)w(z). Summing up, the general approach in [5] applies to obtain 
the solution of (1.5).

It should be also mentioned that all the examples that we will discuss can be rewritten 
into (almost) the form (1.5) (possibly by replacing u by u + 1). For example, for the 
equation (1.1) we have

F0(u) = 1 and Q(α0, α1, z, u) = (u + 1)2α2
0 + (u + 1)α0 + (u + 1)α1.

In the context of this paper we always assume that F0 and Q have non-negative 
coefficients. This is natural since equation (1.5) can be seen as a translation of a recursive 
combinatorial description of maps or other combinatorial objects. This also implies that 
M(z, u) has non-negative coefficients, since the equation (1.5) can be written as an 
infinite system of equations for the functions Mj(z) = [uj ] M(z, u) with non-negative 
coefficients on the right hand side.

Let us consider the first case, where Q is linear in α0 and α1, that is, we can write 
(1.5) as

M(z, u) = Q0(z, u) + zM(z, u)Q1(z, u) + z
M(z, u) −M(z, 0)

u
Q2(z, u) . (1.7)

Here we are in the framework of the so-called kernel method. We rewrite (1.7) as

M(z, u)(u− zuQ1(z, u) − zQ2(z, u)) = uQ0(z, u) − zM(z, 0)Q2(z, u), (1.8)

where

K(z, u) = u− zuQ1(z, u) − zQ2(z, u)

is the kernel. The idea of the kernel method is to bind u and z so that K(z, u) = 0, that 
is, one considers a function u = u(z) such that K(z, u(z)) = 0. Then the left hand side of 
(1.8) cancels and M(z, 0) can be calculated from the right hand side by setting u = u(z). 
Of course, the kernel equation is precisely the equation (1.6). The kernel method is just 
a special case of the general procedure of Bousquet-Mélou and Jehanne [5].

Proposition 1. Suppose that Q0, Q1, and Q2 are polynomials in z and u with non-negative 
coefficients and let M(z, u) be the power series solution of (1.7). Furthermore let u(z)
be the power series solution of the equation

u(z) = zQ2(z, u(z)) + zu(z)Q1(z, u(z)), with u(0) = 0.

Then M(z, 0) is given by

M(z, 0) = Q0(z, u(z))
.
1 − zQ1(z, u(z))
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There are three particular degenerate cases, where the solution function M(z, 0) is a 
rational function (or even a polynomial). In these cases the asymptotic analysis of Mn

is trivial:

• If Q0 = R0(z) and Q1 = R1(z) depend only on z, then

M(z, 0) = R0(z)
1 − zR1(z)

.

• If Q1 = R1(z) depends only on z and if Q2 = T0(z) + T1(z)u is at most linear in u
then

u(z) = zT0(z)
1 − zR1(z) − zT1(z)

and M(z, 0) = Q0(z, u(z))
1 − zR1(z)

are rational functions.
• If Q2 has u as a factor, then u(z) = 0 and we have

M(z, 0) = Q0(z, 0)
1 − zQ1(z, 0)

is a rational function.

In all other cases M(z, 0) has universally a dominant square-root singularity as our 
first main theorem states. We recall that M(z, 0) is an algebraic function and has, thus, 
a Puiseux expansion around its (dominant) singularity.

Theorem 1. Suppose that Q0, Q1, and Q2 are polynomials in z and u with non-negative 
coefficients such that none of the three above mentioned cases occurs.

Let M(z, u) be the power series solution of (1.7) and let z0 > 0 denote the radius of 
convergence of M(z, 0). Then the local Puiseux expansion of M(z, 0) around z0 is given 
by

M(z, 0) = a0 + a1(1 − z/z0)1/2 + a2(1 − z/z0) + · · · , (1.9)

where a0 > 0 and a1 < 0. Furthermore, there exist b ≥ 1, a non-empty set J ⊆
{0, 1, . . . , b − 1} of residue classes modulo b and constants cj > 0 such that for j ∈ J

Mn = [zn]M(z, 0) = cjn
−3/2z−n

0

(
1 + O

(
1
n

))
, (n ≡ j mod b, n → ∞) (1.10)

and Mn = 0 for n ≡ j mod b with j /∈ J if Q1 depends on u or Mn = O((z0(1 + η))−n)
for some η > 0 and n ≡ j mod b with j /∈ J if Q1 does not depend on u.
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This result is quite easy to prove (see Section 3). We just want to mention that there 
are variations of the above model, for example equations of the form

M(z, u) =Q0(z, u) + zM(z, u)Q1(z, u) + z
M(z, u) −M(z, 0)

u
Q2(z, u)

+ uM(z, 0)Q3(z, u),

that can be handled in the same way; see [15]. However, the asymptotics can be slightly 
different. For example one might have n−1/2 instead of n−3/2 in the subexponential 
growth of Mn (namely if z0Q1(z0, u(z0)) + u(z0)Q3(z0, u(z0)) = 1; if Q3 = 0 then we 
have z0Q1(z0, u(z0)) < 1).

In the non-linear case the situation is more involved. Here we find the solution function 
M(z, 0) in the following way.

Proposition 2. Suppose that Q is a polynomial in α0, α1, z, u with non-negative coeffi-
cients that depends (at least) on α1, that is, Qα1 
= 0, and let M(z, u) be the power 
series solution of (1.5). Furthermore we assume that Q is not linear in α0 and α1, that 
is, Qα0α0 
= 0, or Qα0α1 
= 0 or Qα1α1 
= 0.

Let f(z), u(z), w(z) be the power series solution of the system of equations

f(z) = F0(u(z)) + zQ(f(z), w(z), z, u(z)),

u(z) = zu(z)Qα0(f(z), w(z), z, u(z)) + zQα1(f(z), w(z), z, u(z)), (1.11)

w(z) = F ′
0(u(z)) + zQu(f(z), w(z), z, u(z)) + zw(z)Qα0(f(z), w(z), z, u(z)),

with f(0) = F0(0), u(0) = 0, w(0) = F ′
0(0). Then

M(z, 0) = f(z) − w(z)u(z).

The meaning of w(z) will become clear later in the proof of the proposition in Section 4. 
In Theorem 2 we assume that Qα0u 
= 0, which implies that the system (1.11) is strongly 
connected. This means that the dependency di-graph of the system is strongly connected 
as discussed in Section 4.

Again there are some degenerate cases. We do not provide a complete list and we 
just discuss some of them. We also comment on the case Qα1 = 0. Given a multivariate 
function f we replace one of its variables with a dot if f actually does not depend on 
this variable.

• Suppose that Qu = F ′
0 = 0, that is, F0 is constant and Q does not depend on u. 

Here w(z) = 0 and consequently

M(z, 0) = f(z),
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where f(z) is the solution of the equation

f(z) = F0 + zQ(f(z), 0, z, ·).

Thus, depending on the degree of α0 in Q(α0, 0, z, ·), the solution function M(z, 0)
is either a polynomial, a rational function, or it has a square-root singularity as in 
(1.9); see [1].

• Next suppose that Qu = Qα0 = 0 but F ′
0 
= 0. Here we are left with the equations

f(z) = F0(u(z)) + zQ(w(z), z), u(z) = zQα1(w(z), z), w(z) = F ′
0(u(z)).

Thus, we have to solve the equation u = zQα1(F ′
0(u), z) to obtain u = u(z) and 

consequently w(z) = F ′
0(u(z)) and f(z) = F0(u(z)) + zQ(w(z), z). Hence, depending 

on the structure of zQα1(F ′
0(u), z) we obtain a polynomial, a rational function, or a 

square-root singularity for

M(z, 0) = f(z) − w(z)u(z)

= zQ(w(z), z) + F0(u(z)) − u(z)F ′
0(u(z)).

• Finally, if Qα1 = 0, then we have an equation of the form

M(z, u) = F0(u) + zQ(M(z, u), z, u).

In this case the catalytic variable u is not necessary and we can set it to 0. Hence, 
depending on the structure of Q we just get a polynomial, a rational function, or a 
square-root singularity for M(z, 0) (see [1]).

We again recall that M(z, 0) is an algebraic function and has, thus, Puiseux expansions 
around its singularities.

Theorem 2. Suppose that Q is a polynomial in α0, α1, z, u with non-negative coefficients 
that depends (at least) on α1, that is, Qα1 
= 0 and let M(z, u) be the power series 
solution of (1.5). Furthermore, we assume that Q is not linear in α0 and α1, that is, 
Qα0α0 
= 0 or Qα0α1 
= 0 or Qα1α1 
= 0. We assume additionally that Qα0u 
= 0.

Let z0 > 0 denote the radius of convergence of M(z, 0). Then the local Puiseux expan-
sion of M(z, 0) around z0 is given by

M(z, 0) = a0 + a2(1 − z/z0) + a3(1 − z/z0)3/2 + O((1 − z/z0)2), (1.12)

where a0 > 0 and a3 > 0.
Furthermore there exists b ≥ 1 and a residue class a modulo b such that

Mn = [zn]M(z, 0) = c n−5/2z−n
0

(
1 + O

(
1
))

, (n ≡ a mod b, n → ∞) (1.13)

n
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for some constant c > 0, and Mn = 0 for n 
≡ a mod b.

It should be mentioned that Theorem 2 remains valid in slightly more general situ-
ations than (1.5). It remains true if M(z, u) is a solution of a catalytic equation of the 
form

M(z, u) = Q(M(z, u), (M(z, u) −M(z, 0))/u, z, u),

where the polynomial Q(α0, α1, z, u) has non-negative coefficients and the system of 
equations

f(z) = Q(f(z), w(z), z, u(z)),

u(z) = u(z)Qα0
(f(z), w(z), z, u(z)) + Qα1

(f(z), w(z), z, u(z)),

w(z) = Qu(f(z), w(z), z, u(z)) + w(z)Qα0
(f(z), w(z), z, u(z)),

that corresponds to the system (1.11), has power series solutions f(z), u(z), w(z). This 
more general situation appears in Examples 6 and 7.

We also want to mention that Bousquet-Mélou and Jehanne [5] considered even more 
general catalytic equations for M(z, u), that contain not only M(z, 0) as an unknown 
function but also finitely many derivatives M ′(z, 0), M ′′(z, 0), . . .. Theorems 1 and 2 do 
not apply to these cases. The method of [5] requires in this context that the corresponding 
equations have several solutions, in particular several solution functions u1(z), u2(z), . . .
that are (usually) not analytic at 0. Nevertheless we expect that similar universal prop-
erties hold (as in Theorems 1 and 2).

The plan of the paper is as follows. In the next section we collect some examples of 
applying Theorems 1 and 2. We then prove Proposition 1 and Theorem 1 in Section 3, 
and Proposition 2 and Theorem 2 in Section 4. Finally we provide more information 
on the solution of catalytic equations. In particular, in Section 5 we formulate a quite 
general central limit theorem involving an additional parameter.

2. Examples

2.1. The linear case

Natural examples for the linear case (Proposition 1 and Theorem 1) come from the 
enumeration of lattice paths. We consider paths on N2 starting from the coordinate 
point (0, 0) (or from (0, t), t ∈ N) and allow to move only to the right (up, straight 
or down), but forbid going below the x-axis y = 0 at each step. Define a step set 
S = {(a1, b1), (a2, b2), · · · , (as, bs)|(aj , bj) ∈ N×Z}, and let fn,k be the number of paths 
ending at point (n, k), where each step is in S. The associated generating function is 
then defined as
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F (z, u) =
∑

n,k≥0

fn,kz
nuk.

Example 1. (Motzkin Paths) We start from (0, 0) with step set S = {(1, 1), (1, 0), (1, −1)}. 
The functional equation of its associated generating function is as follows:

F (z, u) = 1 + z

(
u + 1 + 1

u

)
F (z, u) − z

u
F (z, 0)

= 1 + z(u + 1)F (z, u) + z
F (z, u) − F (z, 0)

u
,

which in the notation of (1.7) corresponds to

Q0(z, u) = 1, Q1(z, u) = u + 1, and Q2(z, u) = 1.

We let u(z) be the power series solution of the equation

u(z) = zQ2(z, u(z)) + zu(z)Q1(z, u(z)) = z + zu(z)(1 + u(z)),

that is,

u(z) = 1 − z −
√

1 − 2z − 3z2

2z .

Then F (z, 0) is given by

F (z, 0) = Q0(z, u(z))
1 − zQ1(z, u(z)) = 1

1 − z(1 + u(z)) = 1 − z −
√

1 − 2z − 3z2

2z2 ,

and

M∗
n = fn,0 = [zn]F (z, 0) =

�n/2�∑
k=0

n!
(n− 2k)!k!(k + 1)! ∼

3
√

3
2
√
π
n−3/23n.

These numbers are also called “Motzkin numbers”.

Example 2. We start from (0, k0) with step set S = {(2, 0), (1, −1)}. Here the functional 
equation is given by

F (z, u) = uk0 + (z2 + z

u
)F (z, u) − z

u
F (z, 0)

= uk0 + z2F (z, u) + z
F (z, u) − F (z, 0)

u
,

which corresponds to
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Q0(z, u) = uk0 , Q1(z, u) = z and Q2(z, u) = 1.

This is actually a degenerate case since Q1 and Q2 depend only on z. Here u(z) is a 
rational function

u(z) = zQ2(z, ·)
1 − zQ1(z, ·)

= z

1 − z2 ,

as well as

F (z, 0) = Q0(z, u(z))
1 − zQ1(z, u(z)) = u(z)k0

1 − z2 = zk0

(1 − z2)k0+1 =
∑
�≥0

(
� + k0

k0

)
zk0+2�.

Thus, we have for n ≥ k0, n ≡ k0 mod 2,

fn,0 = [zn]F (z, 0) ∼ nk0

2k0k0!
.

Example 3. We start again from (0, 0) but now with step set S = {(2, 0), (1, 1), (1, 0)}, 
and we also assume that the step (1, 0) is forbidden on the x-axis y = 0. The functional 
equation in this case is

F (z, u) = 1 + z(z + u + 1)F (z, u) − zF (z, 0)

= 1 + z(z + u)F (z, u) + zu
F (z, u) − F (z, 0)

u
,

that is, we have

Q0(z, u) = 1, Q1(z, u) = z + u and Q2(z, u) = u.

Here Q2 has u as a factor so that we are again in a degenerate case. We have u(z) = 0
and consequently

F (z, 0) = 1
1 − z2 = 1 + z2 + z4 + z6 + · · · .

Hence we have fn,0 = [zn]F (z, 0) = 1 if n is even and 0 else.

2.2. The non-linear case

We collect here some examples from the enumeration of planar maps. The starting 
point is the classical example of all planar maps.

Example 4. Let M(z, u) be the generating function of planar maps with n edges and in 
which the degree of the root-face is equal k. We have already mentioned that M(z, u)
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satisfies the non-linear catalytic equation (1.1). In order to apply Proposition 2 and 
Theorem 2 we use the substitution u → u + 1 and obtain

M(z, u + 1) = 1 + z(u + 1)
(

(u + 1)M(z, u + 1)2 + M(z, u + 1)

+ M(z, u + 1) −M(z, 1 + 0)
u

)
,

that is, we have F0(u) = 1, and Q(α0, α1, z, u) = (u + 1)2α2
0 + (u + 1)α0 + (u + 1)α1. 

Here Qα1 = u + 1 
= 0, Qα0,u 
= 0, and Qα0,α0 
= 0, so that Theorem 2 fully applies. Of 
course this is in accordance with

M(z, 1) =
∑
n≥0

Mnz
n = 18z − 1 + (1 − 12z)3/2

54z2 ,

and

Mn = [zn]M(z, 1) ∼ 2√
π
n−5/212n.

Example 5. Let E(z, u) be the generating function of bipartite planar maps which satisfies 
the catalytic equation (see [9])

E(z, u) = 1 + zuE(z, u)2 + uz
E(z, u) −E(z, 1)

u− 1 .

(Note that we have replaced u2 by u, that is, u counts now the half outer degree.) Here 
we use the substitution u = 1 + v and obtain

E(z, 1 + v) = 1 + z(v + 1)E(z, 1 + v)2 + (v + 1)zE(z, 1 + v) −E(z, 1)
v

,

which is of a type where Theorem 2 fully applies:

F (v) = 1, Q(α0, α1, z, v) = α2
0(v + 1) + α1(v + 1).

Thus, we obtain

En = [zn]E(z, 1) ∼ 2√
π
n−5/28n.

Example 6. Let B(z, u) be the generating function of 2-connected planar maps. It satisfies 
(see [4,9])

B(z, u) = z2u + zuB(z, u) + u(z + B(z, u))B(z, u) −B(z, 1)
.

u− 1
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After substituting u by u + 1 we obtain

B(z, u + 1) =z2(u + 1) + z(u + 1)B(z, u + 1)

+ (u + 1)(z + B(z, u + 1))B(z, u + 1) −B(z, 1)
u

,

which is not exactly of the form (1.5). Nevertheless the same methods as in the proof of 
Theorem 2 apply – we just have to observe that the analogue of the system of equations 
(1.11) has proper positive power series solutions (see the comment after Theorem 2)– 
and we obtain the same result:

Bn = [zn]B(z, 1) ∼ 2
√

3
27

√
π
n−5/2

(
27
4

)n

.

Example 7. Let T (z, u) be the generating function for planar, simple triangulations, 
which satisfies (see [9,18])

T (z, u) = (1 − uT (z, u)) + (z + u)T (z, u)2 + z(1 − uT (z, u))T (z, u) − T (z, 0)
u

.

Here Tn,k = [znuk] T (z, u) denotes the number of near-triangulations, that is, all finite 
faces are triangles, with n internal vertices and k + 3 external vertices. In order to get 
rid of the negative sign we use the substitution T̃ (z, u) = T (z, u)/(1 − uT (z, u)) and we 
obtain

T̃ (z, u) = 1 + uT̃ (z, u) + z(1 + T̃ (z, u)) T̃ (z, u) − T̃ (z, 0)
u

.

Again this is not precisely of the form (1.5) but our methods apply once more. Note that 
T̃ (z, 0) = T (z, 0). We finally get for the number Tn,0 or triangulations

Tn,0 = [zn]T (z, 0) ∼ 8
√

6
27

√
π
n−5/2

(
256
27

)n

.

3. Proofs of Proposition 1 and Theorem 1

3.1. Proof of Proposition 1

As already mentioned in the introduction, we rewrite (1.7) as

M(z, u) (u− zuQ1(z, u) − zQ2(z, u)) = uQ0(z, u) − zM(z, 0)Q2(z, u).

We now assume that u = u(z) satisfies the equation

u = zQ2(z, u) + zuQ1(z, u), (3.1)
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which is the same as the equation (1.6). The kernel K(z, u) = u − zuQ1(z, u) −
zQ2(z, u) is then identically zero, which implies that M(z, 0) is given by M(z, 0) =
u(z)Q0(z, u(z))/(zQ2(z, u(z))). Since zQ2(z, u(z)) = u(z)(1 −zQ1(z, u(z))), we also have

M(z, 0) = Q0(z, u(z))
1 − zQ1(z, u(z)) , (3.2)

as claimed.
We recall that the equation (3.1) has always a unique power series solution u = u(z). 

We add some comments on this fact. On a formal level this is immediately clear by 
comparing coefficients and rewriting (3.1) as a recurrence for the coefficients of u(z); 
for instance, this implies that we always have u(0) = 0. Analytically we can argue 
in various ways. We can apply the implicit function theorem (for analytic functions) 
and obtain a convergent power series solution u(z), provided that z is sufficiently small 
in modulus. Alternatively we can consider (3.1) as a fixed point equation, which is a 
contraction if z and u are sufficiently small. This means that the recurrence u0(z) = 0, 
uk+1(z) = zQ2(z, uk(z)) + zuk(z)Q1(z, uk(z)), k ≥ 0, has an analytic limit u(z) (if z is 
sufficiently small in modulus). Note that this approach also implies that the coefficients 
of u(z) are non-negative.

3.2. Proof of Theorem 1

Since u(z) has non-negative coefficients the dominant singularity is positive and equals 
the radius of convergence of u(z).

We do not comment on the degenerate cases that are discussed after Theorem 1, since 
the generating functions involved are only rational functions. In the non-degenerate case 
equation (3.1) is a non-linear positive polynomial equation for u(z), that is, the right 
hand side of (3.1) a polynomial in z, u with non-negative coefficients. These kinds of
functional equations are very well studied (see for example, [1] and [7, Theorem 2.19]) 
It follows that u(z) has a square-root singularity at the radius of convergence z0:

u(z) = u0 + u1(1 − z/z0)1/2 + u2(1 − z/z0) + u3(1 − z/z0)3/2 + · · · , (3.3)

where z0 > 0 and u0 > 0 are (uniquely) given by the system of equations

u0 = z0Q2(z0, u0) + z0u0Q1(z0, u0),

1 = z0Q2,u(z0, u0) + z0Q1(z0, u0) + z0u0Q1,u(z0, u0).

It is important to note that u1 
= 0. By inserting the local expansion (3.3) into the 
equation (3.1) and by comparing coefficients we have (compare also with [7, Theorem 
2.19])
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u1 = ±
√

2Q2(z0, u0) + 2u0Q1(z0, u0) + 2z0u0Q1,z(z0, u0)
Q2,uu(z0, u0) + 2Q1,u(z0, u0) + u0Q1,uu(z0, u0)

.

Note also that the positive sign cannot occur. It would imply asymptotically negative 
coefficients for u(z). Therefore we actually have u1 < 0.

By (3.2) and the property that z0Q1(z0, u0) < 1 it follows that M(z, 0) has a corre-
sponding square-root singularity:

y(z) = y0 + y1(1 − z/z0)1/2 + y2(1 − z/z0) + y3(1 − z/z0)3/2 + · · · ,

where y0 = M(z0, 0) > 0 and y1 < 0.
More precisely, u(z) can be represented as u(z) = zaU(zb), where a ≥ 0, b ≥ 1, 

and U(z) is a power series with a square-root singularity at z = z
1/b
0 , that is the only 

singularity on the circle |z| ≤ z
1/b
0 , compare with [1, Lemma 8]. From (3.1) it follows 

that zaU(zb) = zQ2(z, zaU (zb)) + za+1U(zb)Q1(z, zaU (zb)) and consequently (by non-
negativity of the coefficients) that zU(zb)Q1(z, zaU(zb)) is an analytic function of zb. 
Hence, zQ1(z, u(z)) can be represented as zQ1(z, u(z)) = Q̃1(zb, U(zb)), where Q̃1(z, U)
is a polynomial with non-negative coefficients. Next we represent Q0(z, u(z)) as

Q0(z, u(z)) =
b−1∑
j=0

zjQj(zb, U(zb)),

where Qj(z, U) are polynomials with non-negative coefficients.
First suppose that Q1(z, u) depends on u and let J be the set of j ∈ {0, 1, . . . , b − 1}

for which Qj 
= 0. Hence we get

M(z, 0) =
∑
j∈J

zj
Qj(zb, U(zb))

1 − Q̃1(zb, U(zb))
.

Clearly the functions

Qj(z, U(z))
1 − Q̃1(z, U(z))

have a square-root singularity at z = z
1/b
0 , that is the only singularity on the circle 

|z| ≤ z
1/b
0 . Thus, it follows that, as k → ∞,

[zk]
Qj(z, U(z))

1 − Q̃1(z, U(z))
= cjz

−k/b
0 k−3/2

(
1 + O

(
1
k

))
(3.4)

for certain positive constants cj > 0 (see [12] or [7, Corollary 2.15]). Clearly this com-
pletes the proof of Theorem 1 by considering residue classes modulo b in this case.
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If Q1(z, u) = R1(z) does not depend on u then Q0(z, u) has to depend on u. Similarly 
as above we have R1(z) = R̃1(zb) and consequently

M(z, 0) =
b−1∑
j=0

zj
Qj(zb, U(zb))
1 − R̃1(zb)

.

Here we define J as the set of j ∈ {0, 1, . . . , b −1} for which Qj(z, u) depends on u. Hence, 
for j ∈ J we get again a square-root singularity of Qj(z, U(z))/(1 − R̃1(z)) at z = z

1/b
0

and deduce an asymptotic relation as in (3.4). If j 
= J then Qj(z, U(z))/(1 − R̃1(z))
is just a rational function in z (the function U(z) does not appear) that has radius of 
convergence > z

1/b
0 . This completes the proof of Theorem 1.

4. Proof of Proposition 2 and Theorem 2

4.1. Proof of Proposition 2

As mentioned in the introduction, general catalytic equations can be solved with the 
help of the method of Bousquet-Mélou and Jehanne [5]. In our present case we set

P (x0, x1, z, u) = F0(u) + zQ(x0, (x0 − x1)/u, z, u) − x0 (4.1)

and are looking for solutions of the equation

P (M(z, u),M(z, 0), z, u) = 0.

The next step is to find functions x0 = f(z), x1 = y(z), and u = u(z), that are power 
series in z, such that the system of equations (1.3) is satisfied, that is, we have P = 0, 
Px0 = 0, and Pu = 0 (where we set x0 = f(z), x1 = y(z), and u = u(z)). We recall that 
this procedure leads to the unique power series solution M(z, u) (see [5]), in particular 
we have f(z) = M(z, u(z)) and y(z) = M(z, 0) if the system (1.3) has unique power 
series solutions.

In our situation the system of equations (1.3) rewrites to

f(z) = F0(u(z)) + zQ(f(z), (f(z) − y(z))/u(z), z, u(z)),

1 = zQα0(f(z), (f(z) − y(z))/u(z), z, u(z))

+ z

u(z)Qα1(f(z), (f(z) − y(z))/u(z), z, u(z)), (4.2)

0 = F ′
0(u(z)) + zQu(f(z), (f(z) − y(z))/u(z), z, u(z))

− z
f(z) − y(z)

u(z)2 Qα1(f(z), (f(z) − y(z))/u(z), z, u(z)). (4.3)
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As already mentioned, we slightly modify this system by setting w = w(z) = (f(z) −
y(z))/u(z). We also multiply the second equation by u(z) and replace zQα1/u(z) by 
1 − zQα0 in the third equation. This leads to the equivalent system

f(z) = F0(u(z)) + zQ(f(z), w(z), z, u(z)),

u(z) = zu(z)Qα0(f(z), w(z), z, u(z)) + zQα1(f(z), w(z), z, u(z)), (4.4)

w(z) = F ′
0(u(z)) + zQu(f(z), w(z), z, u(z)) + zw(z)Qα0(f(z), w(z), z, u(z)),

which is precisely (1.11). This is a (so-called) positive polynomial system of equations 
for the unknown functions f(z), w(z), and u(z); recall that the coefficients of F0 and Q
are non-negative.

As in the case of one equation it is easy to show that the system (4.4) has unique 
power series solutions. Clearly we have to have f(0) = F0(0), w(0) = F ′

0(0), u(0) = 0. 
Then we can apply the implicit function theorem (compare also with Section 1). We can 
solve the system (4.4) iteratively (and observe as a byproduct that all the coefficients of 
the power series f(z), u(z), w(z) are non-negative).

Hence, M(z, 0) = f(z) − u(z)w(z). This completes the proof of Proposition 2.

4.2. Proof of Theorem 2

Positive polynomial systems of equations are discussed in detail in [1]. In particular 
if the system is strongly connected then we know that there is a common dominant 
singularity z0 and f(z), w(z), and u(z) have a square-root singularity at z0 of the form 
(1.9):

f(z) = f0 + f1Z + f2Z
2 + f3Z

3 + · · · ,

u(z) = u0 + u1Z + u2Z
2 + u3Z

3 + · · · , (4.5)

w(z) = w0 + w1Z + w2Z
2 + w3Z

3 + · · · ,

with Z =
√

1 − z/z0 and where f1 < 0, u1 < 0 and w1 < 0. The situation is analogue 
to a single non-linear positive equation. Thus, it follows that M(z, 0) = f(z) −w(z)u(z)
has the same kind of singularity:

y(z) = y0 + y1Z + y2Z
2 + y3Z

3 + · · · . (4.6)

Hence, in order to prove Theorem 2 we have to show the following properties:

(1) If Qα0u 
= 0 then the system (4.4) is strongly connected.
(2) We have y1 = 0 in the expansion (4.6).
(3) We have y3 > 0 in the expansion (4.6).
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With these properties the singular structure of M(z, 0) at z0 is precisely of the form 
(1.12). Furthermore, the asymptotics of Mn follows in the following way. Since the system 
(4.4) is non-linear and strongly connected we know from [1] that there exist a1, a2, a3 ≥ 0
and b ≥ 1 such that f(z) = za1F (zb), w(z) = za2W (zb), u(z) = za3U(zb), where F , W , 
and U have square-root singularities at z = z

1/b
0 but no other singularities on the circle 

|z| ≤ z
1/b
0 . It also follows that M(z, 0) = za1F (zb) − za2+a3W (zb)U(zb). If a1 
≡ a2 +

a3 mod b then M(z, 0) would have negative coefficients Mn for n ≡ a2+a3 mod b which is 
impossible. Thus, a1 ≡ a2 + a3 mod b and we have positive coefficients for n ≡ a1 mod b

(if n is sufficiently large) and zero coefficients else. From M(z, 0) = za1M̃(zb), where 
M̃(z) has z = z

1/b
0 as a singularity of type (1.12) and no other singularities on the circle 

|z| ≤ z
1/b
0 , we obtain the asymptotics (1.13).

Finally we comment on the computation of z0. Let J = J(f, w, u, z) denote the Ja-
cobian matrix (with derivatives with respect to f, w, u) of the right hand side of (4.4). 
Then we consider the extended system of equations

f0 = F0(u0) + z0Q(f0, w0, z0, u0),

u0 = z0u0Qα0(f0, w0, z0, u0) + z0Qα1(f0, w0, z0, u0), (4.7)

w0 = F ′
0(u0) + z0Qu(f0, w0, z0, u0) + z0w0Qα0(f0, w0, z0, u0),

0 = det(I − J(f0, w0, u0, z0)),

and search for the unique positive solution (f0, w0, u0, z0) such that the spectral radius 
of J(f0, w0, u0, z0) equals 1. This gives the correct value z0.6

4.2.1. Strong connectedness
Let yj = Fj(z, y1, . . . , yd) be a d-dimensional system of equations. The dependency 

di-graph of such a system consists of vertices {y1, . . . , yd} and there is an oriented edge 
from yi to yi if Fj depends on yi, that is, Fj,yi


= 0. We say that the system is strongly 
connected if the dependency di-graph is strongly connected (see [1,7]). In our present 
situation our vertex set is {f, u, w}. By assumption we have Qα1 
= 0. Thus, there is 
always an edge from w to f .

Suppose first the Qα0α0 
= 0. Then by the second equation there is an edge from f to 
u. By assumption we always have Qα0u 
= 0 which implies that there is an edge from u
to w. This implies a circle w → f → u → w and consequently strongly connectedness.

Second suppose that Qα0α1 
= 0 or Qα1α1 
= 0. In this case there is certainly an edge 
from w to u. Furthermore, since Qα0u 
= 0 there is an edge from u to w and another one 
from f to w. This again leads to a strongly connected di-graph and completes the proof 
of the first assertion.

6 If we just consider the system of these four equations then the solution is not necessarily unique, even if 
we are searching for positive solutions. The key property is that 1 is the largest eigenvalue of J(f0, w0, u0, z0). 
This ensures uniqueness and allows us to compute the (common) radius of convergence z0. This was not 
explicitly stated in [7, Theorem 2.33], however this was then clarified in [3] and later in [1].
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4.2.2. The condition y1 = 0
In order to prove that y1 vanishes we recall first the approach by Bousquet-Mélou and 

Jehanne [5]. Starting with the function P (x0, x1, z, u) that is given by (4.1) we have to 
solve the system

P (f(z), y(z), z, u(z)) = 0,

Px0(f(z), y(z), z, u(z)) = 0, (4.8)

Pu(f(z), y(z), z, u(z)) = 0

that is precisely the system (4.2). The system (4.2) transfers into the system (4.4) by 
the substitution w(z) = (f(z) −y(z))/u(z) and by an elementary linear operation. Thus, 
as long as u(z) 
= 0 the Jacobian determinant of the system (4.2) (with respect to 
the unknown functions f(z), w(z), u(z)) equals zero if and only if the Jacobian deter-
minant of the system (4.4) (with respect to the unknown functions f(z), y(z), u(z)) 
equals zero. For the system (4.4) we know that this actually happens for (f, w, u, z) =
(f(z0), w(z0), u(z0), z0). Consequently the Jacobian determinant of the system (4.8) (that 
is the same as (4.2)) has to be zero, evaluated at (f(z0), y(z0), z0, u(z0)). By (4.8)
Px0 = Pu = 0 at (f(z0), y(z0), z0, u(z0)). Hence, we get (at (f(z0), y(z0), z0, u(z0)))∣∣∣∣∣∣∣

Px0 Px1 Pu

Px0x0 Px0x1 Px0u

Px0u Px1u Puu

∣∣∣∣∣∣∣ = −Px1

(
Px0x0Puu − P 2

x0u

)
= 0.

By assumption Qα1 is a non-zero polynomial with non-negative coefficients. Hence Qα1 
=
0 at (f(z0), y(z0), z0, u(z0)) which implies that Px1 = −zQα1/u 
= 0 at this point. Thus, 
we obtain the relation Px0x0Puu = P 2

x0u (at (f(z0), y(z0), z0, u(z0))).
We now discuss the analytic function P at the point (f0, y0, z0, u0) = (f(z0), 

y(z0), z0, u(z0)) in more detail. We already know that Px0 = 0 (at this point). How-
ever, by differentiating (4.1) it follows that

Px0x0 = z0Qα0α0 + 2 z0

u0
Qα0α1 + z0

u2
0
Qα1α1 > 0.

Hence by the Weierstrass preparation theorem7 [14] it follows that P can be locally 
written in a unique way as

P (x0, x1, z, u) = K(x0, x1, z, u)
(
(x0 −G(x1, z, u))2 −H(x1, z, u)

)
,

7 The Weierstrass preparation theorem says that every non-zero function F (z1, . . . , zd) with F (0, . . . , 0) =
0 that is analytic at (0, . . . , 0) has a unique factorization F (z1, . . . , zd) = K(z1, . . . , zd)W (z1; z2, . . . , zd)
into analytic factors, where K(0, . . . , 0) �= 0 and W (z1; z2, . . . , zd) = zd

1 + zd−1
1 g1(z2, . . . , zd) + · · · +

gd(z2, . . . , zd) is a so-called Weierstrass polynomial, that is, all gj are analytic and satisfy gj(0, . . . , 0) = 0.
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where K, G and H are analytic functions with the properties that K(f0, y0, z0, u0) 
= 0, 
G(y0, z0, u0) = f0, and H(y0, z0, u0) = 0.

Since P (f(z), y(z), z, u(z)) = 0 if and only if (f(z) − G(y(z), z, u(z)))2 = H(y(z), z,
u(z)) (if z is sufficiently close to z′0, and since

Px0 = Kx0

(
(x0 −G)2 −H

)
+ 2K(x0 −G),

Pu = Ku

(
(x0 −G)2 −H

)
+ K (−2(x0 −G)Gu −Hu)

it follows from (4.8) that

H(y(z), z, u(z)) = 0 and Hu(y(z), z, u(z)) = 0

for z close to z0. We note that this is precisely a system of equations that appears in the 
context of the quadratic method (see [5,9]).

Next we will show how the singular condition Px0x0Puu = P 2
x0u at (f0, y0, z0, u0)

translates into Huu(y0, z0, u0) = 0. Since

Px0x0 =Kx0x0

(
(f −G)2 −H

)
+ 4Kx0(f −G) + 2K,

Puu =Kuu

(
(f −G)2 −H

)
+ 2Ku (−2(f −G)Gu −Hu)

+ K
(
2G2

u − 2(f −G)Guu −Huu

)
,

Px0u =Kx0u

(
(f −G)2 −H

)
+ 2Ku(f −G) + Kx0 (−2(f −G)Gu −Hu)

+ K (−2Gu − 2(f −G)Gx0u)

it follows that we have at (f0, y0, z0, u0)

Px0x0 = 2K,

Puu = (2G2
u −Huu)K,

Px0u = −2GuK.

Consequently the condition Px0x0Puu = P 2
x0u at (f0, y0, z0, u0) implies Huu(y0, z0, u0) =

0.
In a similar (but much easier way) it also follows that Px1 = −KHx1 at (f0, y0, z0, u0). 

This also implies that Hx1 
= 0 at this point since Px1 
= 0 (by assumption Qα1 
= 0).
Next we recall that u(z) and y(z) = f(z) − u(z)w(z) have singular (and convergent) 

expansions of the form

u(z) = u0 + u1Z + u2Z
2 + u3Z

3 + · · · ,
y(z) = y0 + y1Z + y2Z

2 + y3Z
3 + · · · ,

where Z =
√

1 − z/z0 and u1 < 0. By using the Taylor expansion of H at (y0, z0, u0)
and the property H(y(z), z, u(z)) = 0 it follows that
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0 =Hx1

(
y1Z + y2Z

2 + y3Z
3 + · · ·

)
− z0HzZ

2 + 1
2Hx1x1

(
y2
1Z

2 + 2y1y2Z
3 + · · ·

)
+ Hx1u

(
y1u1Z

2 + (y1u2 + y2u1)Z3 + · · ·
)
− z0Hzu(u1Z

3 + · · · ) (4.9)

− z0Hx1z(y1Z
3 + · · · ) + 1

6Huuu(u3
1Z

3 + · · · ) + 1
2Hx1uu(u2

1y1Z
3 + · · · )

+ 1
2Hx1x1u(u1y

2
1Z

3 + · · · ) + 1
6Hx1x1x1(y3

1Z
3 + · · · ) + O(Z4).

By comparing coefficients of Z this implies

0 =Hx1y1,

0 =Hx1y2 − z0Hz + 1
2Hx1x1y

2
1 + Hx1uy1u1, (4.10)

0 =Hx1y3 + Hx1x1y1y2 + Hx1u(y1u2 + y2u1) − z0Hzuu1 − z0Hyzy1 + 1
6Huuuu

3
1

+ 1
2Hx1uuu

2
1y1 + 1

2Hx1x1uu1y
2
1 + 1

6Hx1x1x1y
3
1 ,

where the derivatives of H are evaluated at (y0, z0, u0). In particular, since Hx1 
= 0 (at 
(y0, z0, u0)) it follows that y1 = 0, which completes the proof of the second property.

4.2.3. The condition y3 > 0
The idea of the proof is to relate it with an elimination procedure that leads to the 

singular behavior of u(z). We note that it is sufficient to prove y3 
= 0. It is impossible 
that y3 < 0. If so, we would get asymptotically negative coefficients for y(z) = M(z, 0).

First we have to obtain a proper representation for y3. By taking also into account 
the second and third relations from (4.10) and by using y1 = 0 we get

y2 = z0Hz

Hx1

,

y3 = u1

Hx1

(
z0Hzu −Hx1uy2 −

1
6Huuuu

2
1

)
,

where the derivatives of H are evaluated at (y0, z0, u0). Next we expand Hu locally (as 
we did it for H in (4.9)), compare coefficients, and obtain by using the property Huu = 0
the additional relation

Hx1uy2 − z0Hzu + 1
2Huuuu

2
1 = 0. (4.11)

(Again all derivatives of H are evaluated at (y0, z0, u0).) Hence, y3 can be also represented 
as

y3 = 2u1z0
2 (Hx1Hzu −HzHx1u) .
3Hx1
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We already know that u1 
= 0 and Hx1 
= 0. Thus it remains to show that

Hx1Hzu −HzHx1u 
= 0, (4.12)

where we evaluate at (y0, z0, u0). This will show that y3 
= 0.
Next we show that (4.12) holds if and only if the Jacobian determinant

Δ =

∣∣∣∣∣∣∣
Px0 Px1 Pz

Px0x0 Px0x1 Px0z

Px0u Px1u Puz

∣∣∣∣∣∣∣ = − Px1 (Px0x0Puz − Px0zPx0u)

+ Pz (Px0x0Pux1 − Px0x1Pux0) 
= 0, (4.13)

where we evaluate at (f0, y0, z0, u0), so that Px0 = 0.
Since

Px1 =Kx1

(
(f −G)2 −H

)
+ K (−2(f −G)Gx1 −Hx1) ,

Pz =Kz

(
(f −G)2 −H

)
+ K (−2(f −G)Gz −Hz) ,

Px0x1 =Kx0x1

(
(f −G)2 −H

)
+ 2Kx1(f −G) + Kx0 (−2(f −G)Gx1 −Hx1)

− 2KGx1 ,

Px0z =Kx0z

(
(f −G)2 −H

)
+ 2Kz(f −G) + Kx0 (−2(f −G)Gz −Hz) − 2KGz,

Px1u =Kx1u

(
(f −G)2 −H

)
+ Kx1 (−2(f −G)Gu −Hu)

+ Ku (−2(f −G)Gx1 −Hx1) + K (2Gx1Gu − 2(f −G)Gx1u −Hx1u) ,

Pzu =Kzu

(
(f −G)2 −H

)
+ Kz (−2(f −G)Gu −Hu)

+ Ku (−2(f −G)Gz −Hz) + K (2GzGu − 2(f −G)Gzu −Hzu) ,

it follows that we have (at (f0, y0, z0, u0))

Px1 = −Hx1K,

Pz = −HzK,

Px0x1 = −Kx0Hx1 − 2Gx1K

Px0z = −Kx0Hz − 2GzK, (4.14)

Px1u = −KuHx1 + K (2Gx1Gu −Hx1u) ,

Pzu = −KuHz + K (2GzGu −Hzu) .

Thus, we obtain
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Δ = − Px1 (Px0x0Pzu − Px0zPx0u) + Pz (Px0x0Px1u − Px0x1Px0u)

=Hx1K
(
2K

(
−KuHz + K (2GzGu −Hzu)

)
− 2GuK (Kx0Hz + 2GzK)

)
−HzK

(
2K

(
−KuHx1 + K (2Gx1Gu −Hx1u)

)
− 2GuK (Kx0Hx1 + 2Gx1K)

)
=Hx1K

(
2K

(
−KuHz −KHzu

)
− 2GuKKx0Hz

)
−HzK

(
2K

(
−KuHx1 −KHx1u

)
− 2GuKKx0Hx1

)
= − 2K2(Ku + GuKx0)(Hx1Hz −HzHx1) + 2K3(Hx1Hzu −HzHx1u)

=2K3 (Hx1Hzu −HzHx1u) .

Together with the fact K(f0, y0, z0, u0) 
= 0, we proved that (4.12) holds if and only if 
(4.13) holds.

We recall that the system (4.8) is up to the substitution w = (f − y)/u and up to an 
elementary operation the same as the system (4.4). More precisely the system (4.4) can 
be rewritten as

P (f, f − uw, z, u) = 0,

u Px0(f, f − uw, z, u) = 0, (4.15)

Pu(f, f − uw, z, u) + wPx0(f, f − uw, z, u) = 0.

We just put all terms to the left hand side of the equations.
The system (4.4) is a positive strongly connected polynomial system of equations. 

In order to handle such systems we apply an elimination procedure. In our context 
we consider the first and the third equation (of (4.4) or equivalently of (4.15)) and 
solve them as functions f = f(z, u), w = w(z, u) in two independent variables z, u. 
These functions are the unique power series solutions of the first and third equation, and 
they have non-negative coefficients (see [1] for a thorough discussion). They also satisfy 
f(z0, u0) = f0 and w(z0, u0) = w0 = f0 −u0y0. Due to the strong connectedness and the 
positivity properties it follows that the corresponding Jacobian determinant (evaluated 
at (f0, w0, z0, u0))

Δ1 =

∣∣∣∣∣ Px0 + Px1 −uPx1

Pux0 + Pux1 + wPx0x0 + wPx0x1 −uPux1 − uw Px0x1 + Px0

∣∣∣∣∣
= uPx1 (Pux0 + wPx0x0)

is non-zero so that by the implicit function theorem the functions f = f(z, u), w =
w(z, u) are analytic in a neighborhood of (z0, u0). Actually this can directly checked, 
too. We have u0 > 0, Px1 
= 0, and

Pux0 + wPx0x0 = zQα0u + z
Qα1u + zwQα0α0 + zw

Qα0α1 > 0,

u u
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(if we evaluate at (f0, w0, z0, u0)).
In order to solve the whole system we finally substitute these two functions into the 

second equation and get a final relation between u and z:

P (z, u) := uPx0(f(z, u), f(z, u) − uw(z, u), z, u) = 0, (4.16)

or more explicitly (and rewritten into a positive equation):

u = zuQα0(f(z, u), w(z, u), z, u) + zQα1(f(z, u), w(z, u), z, u).

Clearly this equation fully determines the function u(z) as a power series, and by unique-
ness, this is the same function u(z) as considered before. Furthermore, for this equation 
we have the following properties:

P (z, u(z)) = 0, P (z0, u0) = 0, Pu(z0, u0) = 0

and

P z(z0, u0) > 0, Puu(z0, u0) > 0,

where u(z) is the (unique) power series solution, z0 denotes (as above) the radius of 
convergence of u(z), and u0 = u(z0). The last two properties are immediate due to the 
positivity assumptions. (All together these properties imply that u(z) has a square-root 
singularity (3.3) with u1 
= 0, compare also with [7, Theorem 2.19].)

In a final step we show that

P z(z0, u0) = u2
0

Δ
Δ1

. (4.17)

Since we know that P z(z0, u0) 
= 0, u0 
= 0, and Δ1 
= 0 it then follows that Δ 
= 0.
By taking the derivative of (4.16) with respect to z we get

P z = u
(
(Px0x0 + Px0x1)fz − uPx0x0wz + Px0z

)
.

The derivatives fz, wz can be calculated from (4.15) by implicit differentiation. In par-
ticular for (z, u) = (z0, u0) (where we can use the property Px0 = 0) we obtain

fz(z0, u0) = u0

Δ1
(Pz(Px1u + w0Px0x1) − Px1(Pzu + w0Px0z)) ,

wz(z0, u0) = 1
Δ1

(Pz(Px0u + Px1u + w0Px0x0 + w0Px0x1) − Px1(Pzu + w0Px0z)) .

This directly leads to (4.17) and completes the proof of the property y3 
= 0.
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5. Central limit theorems for additional parameters

Let M(z, x, u) denote the generating function of rooted planar maps, where the vari-
able z corresponds to the number of edges, x to the number of vertices and u to the root 
face valency. Then by the usual combinatorial decomposition of maps we have

M(z, x, u) = x + zu2M(z, x, u)2 + zu
M(z, x, 1) − uM(z, x, u)

1 − u
.

Thus, for every positive x this is a catalytic equation of the form (1.5) so that Proposi-
tion 2 and Theorem 2 apply. In particular we obtain an expansion and asymptotics of 
the form

M(z, x, 1) = a0(x) + a2(x)
(

1 − z

ρ(x)

)
+ a3(x)

(
1 − z

ρ(x)

)3/2

+ · · · , (5.1)

where z = ρ(x) satisfies the equation

768x4z4 − 1536x3z4 − 512x3z3 + 2304x2z4 + 768x2z3 − 1536xz4

+ 96x2z2 + 768xz3 + 768 z4 − 96xz2 − 512 z3 + 96 z2 − 1 = 0

with ρ(1) = 1
12 and where a0(1) = 4

3 , a2(1) = −4
3 , a3(1) = 8

3 , and consequently

[zn]M(z, x, 1) = c(x)n−5/2ρ(x)−n

(
1 + O

(
1
n

))
.

Actually all the functions ρ(x), c(x), and aj(x) are not only defined for positive x but 
extend to analytic functions around the positive real axis, and by inspection of the proof 
even the asymptotics can be extended to non-real x that are close to the positive real 
axis.

Let Xn denote the random variable equal to the number of vertices in a random planar 
rooted map with n edges, where each map of size n is considered to be equally likely. 
Then the probability generating function E[xXn ] can be written as

E[xXn ] = [zn]M(z, x, 1)
[zn]M(z, 1, 1) = c(x)

c

(
ρ(1)
ρ(x)

)n (
1 + O

(
1
n

))
.

At this stage we can apply standard tools (see [7, Chapter 2]) to obtain a central limit 
theorem for Xn of the form (Xn − μn)/

√
σ2n → N (0, 1), where μ = −ρ′(1)/ρ(1) and 

σ2 = μ + μ2 − ρ′′(1)/ρ(1). Since ρ′(1) = − 1
24 and ρ′′(1) = 19

384 we immediately obtain 
μ = 1 and σ2 = 5 . We also have E[Xn] = μn +O(1) and Var[Xn] = σ2n +O(1). In this 
2 32



26 M. Drmota et al. / Journal of Combinatorial Theory, Series A 185 (2022) 105522
special case Euler’s relation and duality can be used to obtain (the even more precise 
representation) E[Xn] = n/2 + 1.8

Actually we can easily generalize Proposition 2 and Theorem 2 in order to obtain the 
following central limit theorem.

Theorem 3. Suppose that Q is a polynomial in α0, α1, z, x, u with non-negative coefficients 
that depends (at least) on α1, that is, Qα1 
= 0, and F0(x, u) is another polynomial with 
non-negative coefficients. Let M(z, x, u) be the power series solution of the equation

M(z, x, u) = F0(x, u) + zQ

(
M(z, x, u), M(z, x, u) −M(z, x, 0)

u
, z, x, u

)
.

Furthermore assume that Q is not linear in α0 and α1, that is, Qα0α0 
= 0, or Qα0α1 
= 0
or Qα1α1 
= 0 and additionally that Qα0u 
= 0.

Furthermore we denote by a and b integers with the property that [zn] M(z, 1, 0) > 0 for 
n ≡ a mod b and n ≥ n0, whereas [zn] M(z, 1, 0) = 0 for n 
≡ a mod b (see Theorem 2).

Let Xn with n ≡ a mod b, n ≥ n0, be a sequence of random variables defined by

E[xXn ] = [zn]M(z, x, 0)
[zn]M(z, 1, 0) .

For positive x, let ρ(x) > 0 denote the radius of convergence of z �→ M(z, x, 0). Then 
ρ(x) can be extended to an analytic function around the positive real axis and we have 
with

μ = −ρ′(1)
ρ(1) , σ2 = μ + μ2 − ρ′′(1)

ρ(1)

the following asymptotic moment properties:

E[Xn] = μn + O(1) and Var[Xn] = σ2n + O(1),

for n ≡ a mod b. Furthermore, if σ2 
= 0 then we also have a central limit theorem of the 
form

Xn − E[Xn]√
Var[Xn]

→ N (0, 1) (n ≡ a mod b).

Proof. It is easy to show that, for every positive x, we can apply Proposition 2 and 
Theorem 2 and obtain (for n ≡ a mod b)

8 This central limit theorem seems to be a folklore result. However, to the best of our knowledge it was 
first explicitly mentioned by the second author at the Alea-meeting 2010 in Luminy: https://www -apr .lip6 .
fr /alea2010/. However, it also follows from Schaeffer’s bijection between pointed quadrangulations and 
well-labeled trees [16].

https://www-apr.lip6.fr/alea2010/
https://www-apr.lip6.fr/alea2010/
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[zn]M(z, x, 1) = c(x)n−5/2ρ(x)−n

(
1 + O

(
1
n

))
(5.2)

for some positive valued function c(x). Note that the error term comes from the remainder 
terms

a4(x)
(

1 − z

ρ(x)

)2

+ O

((
1 − z

ρ(x)

)5/2
)

in the singular expansion (5.1) of M(z, x, 1). The term a4(x) (1 − z/ρ(x))2 has no asymp-
totic contribution, whereas the other term gives rise to the error term O(n−7/2ρ(x)−n); 
see also [7]. This proves (5.2). Furthermore, since F0 and Q are polynomials it follows that 
ρ(x) is an algebraic function since it is determined by the algebraic system of equations 
(4.7), where we just have to add the algebraic dependence on x.

Actually it can be shown that ρ(x) has no singular point for x > 0. As explained in the 
proof of Proposition 2, we can reduce the solution of the catalytic equation to a system of 
three positive polynomial equations. Such a system can be reduced to a single equation 
u(x, z) = F (x, z, u(x, z)) in one unknown function u = u(x, z), where u = F (x, z, u) has 
a power series expansion with non-negative coefficients (see [7]). Note that we certainly 
have Fz 
= 0 and Fuu 
= 0. The system of equations that determines the values z = ρ(x)
and u = u(x, ρ(x)), where the solution function z �→ u(x, z) gets singular, is given by

u = F (x, z, u), 1 = Fu(x, z, u).

The Jacobian determinant of this system, when we solve it for z = ρ(x) and u =
u(x, ρ(x)), is given by

FzFuu − (Fu − 1)Fuz = FzFuu 
= 0.

By the implicit function theorem z = ρ(x), as well as u = u(x, ρ(x)) are analytic. 
Moreover ρ′(x) = −Fx/Fz < 0, since Fx > 0 and Fz > 0.

By the methods of [7] it also follows that the singular expansion (4.5), where Z has to 
be replaced by

√
1 − z/ρ(x) and all coefficient functions fj , uj , wj depend on x, can be 

extended to complex x that are sufficiently close to the positive real axis. Accordingly 
the asymptotic expansion (5.2) holds uniformly if x varies in a compact subset of the 
complex plane, where ρ(x) is well defined.

As mentioned during the discussion of the example ahead of Theorem 3 an expansion 
of the form (5.2) is sufficient to prove the asymptotic expansion for E[Xn], Var[Xn], as 
well the central limit theorem (see again see [7, Chapter 2]). �

We note the crucial point in the proof of Theorem 3 was to prove a singular expansion 
of the form (5.1) that holds in a complex neighborhood of x = 1. We finally add a theorem 
for catalytic equations, where we do not necessarily have a polynomial equation with non-
negative coefficients. Again, we assume that there is an additional variable x, where we 
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non necessarily assume that the defining catalytic equations contain only non-negative 
coefficients. This kind of approach was first applied in [8], where the number of faces 
of given valency in random planar maps was discussed; see below. (It was first stated 
without a proof in [10].)

Theorem 4. Suppose that M(z, x, u) and M1(z, x) are the solutions of the catalytic equa-
tion P (M(z, x, u), M1(z, x), z, x, u) = 0, where the function P (x0, x1, z, x, u) is analytic 
and M1(z, 1) has a singularity at z = z0 of the form

M1(z, 1) = y0 + y2

(
1 − z

z0

)
+ y3

(
1 − z

z0

)3/2

+ · · · , (5.3)

with y3 
= 0 such that for x0 = M(z0, 1, u0), x1 = M1(z0, 1), z = z0, x = 1, and u = u0
we have

P = 0, Pu = 0, Px0 = 0, Px1 
= 0, Px0x0Puu = P 2
x0u. (5.4)

Furthermore, let z = ρ(x), u = u0(x), x0 = x0(x), x1 = x1(x) for x close to 1 be defined 
by ρ(1) = z0, u0(1) = u0, x0(1) = M(z0, 1, u0), x1(1) = M1(z0, 1) and by the system

P = 0, Pu = 0, Px0 = 0, Px0x0Puu = P 2
x0u. (5.5)

Then for x close to 1 the function M1(z, x) has a local singular representation of the 
form

M1(z, x) = a0(x) + a2(x)
(

1 − z

ρ(x)

)
+ a3(x)

(
1 − z

ρ(x)

)3/2

+ · · · (5.6)

where the functions aj(x) are analytic at x = 1 and satisfy aj(1) = yj.

Proof. As in the proof of Theorem 2 we can replace the (catalytic) equation P (M(z, x, u),
M1(z, x), z, x, u) = 0 by

(M(z, x, u) −G(M1(z, x), z, x, u))2 = H(M1(z, x), z, x, u)

around z = z0, x = 1, u = u0. In particular we have

H = 0, Hu = 0, Huu = 0, Hx1 
= 0

for x0 = M(z0, 1, u0), x1 = M1(z0, 1), z = z0, x = 1, and u = u0.
In the next step we set x = 1 and apply the methods from [9, Lemma 2] that ensure 

that there exist precisely two (local) solutions u(z) and y(z) of the system of equations

H(y(z), z, 1, u(z)) = 0, Hu(y(z), z, 1, u(z)) = 0
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with y(z0) = M1(z0, 1) and u(z0) = u0 and with local expansions

u(z) = u0 ± u1Z + u2Z
2 ± u3Z

3 + · · · , y(z) = y0 + y2Z
2 ± y3Z

3 + · · · ,

where Z =
√

1 − z/z0 (and the signs are either all positive or all negative). By assump-
tion, one of these two solutions has to be equal to M1(z, 1) which implies that y3 
= 0.

By the methods of the proof of Theorem 2 we also have

y3 = 2u1z0

3H2
x1

(Hx1Hzu −HzHx1u) .

Recall that Hx1 
= 0. Thus it follows that z0 
= 0, u1 
= 0, and Hx1Hzu −HzHx1u 
= 0. 
Furthermore, since y2 = z0Hz/Hx1 it follows from the relation (4.11) that

Huuu = 2z0

u2
1

(Hx1Hzu −HzHx1u) 
= 0.

We want to do a similar analysis for x close to 1. For this purpose we have to check 
whether the conditions (5.4) can be extended to x different from 1, that is, whether it 
is possible to solve the system (5.5) for z = ρ(x), u = u0(x), x0 = x0(x), x1 = x1(x) (if 
x is close to 1). Note that the condition Px1 
= 0 certainly extends to a neighborhood. 
By the same procedure as in the proof of Theorem 2 it follows that the system (5.5) is 
equivalent to the system

H = 0, Hu = 0, Huu = 0 (5.7)

for x1 = x1(x), z = ρ(x), u = u0(x). Note that x1(x), ρ(x), u0(x) are the same functions 
as above; and the function x0(x) can be recovered by x0(x) = M(ρ(x), x, u0(x)). Now 
the Jacobian determinant of the system (5.7) is given by∣∣∣∣∣∣∣

Hx1 Hux1 Huux1

Hz Huz Huuz

Hu Huu Huuu

∣∣∣∣∣∣∣ = Huuu (Hx1Huz −HzHux1)

which is non-zero at x1 = M1(z0, 1), z = z0, x = 1, and u = u0. Hence by the implicit 
function theorem the system (5.7) has an analytic (and unique) local solution x1 = x1(x), 
z = ρ(x), u = u0(x) with x1(1) = M1(z0, 1), ρ(1) = z0, u0(1) = u0.

Summing up, we can apply the same techniques as in [9, Lemma 2] that are now valid 
uniformly in a small (complex) neighborhood of x = 1 and leads to an expansion of the 
form (5.6). �

Expansions of the form (5.3) or (5.6), respectively, are in particular useful if z = z0
or z = ρ(x) is the only singularity on the slit disc
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{z ∈ C : |z| < z0 + ε} \ [z0,∞) or {z ∈ C : |z| < |ρ(x)| + ε} \ [ρ(x),∞)

for some ε > 0. In this case it follows directly that, as n → ∞,

[zn]M1(z, 1) = 3y3

4
√
π
z−n
0 n−5/2

(
1 + O

(
1
n

))
or

[zn]M1(z, x) = 3a3(x)
4
√
π

ρ(x)−nn−5/2
(

1 + O

(
1
n

))
.

Thus, if

M1(z, x) =
∑
n≥0

E[xXn ] · [zn]M1(z, 1) · zn

encodes the distribution of a sequence of random variables Xn it follows that

E[xXn ] = [zn]M1(z, x)
[zn]M1(z, 1) = a3(x)

y3

(
z0

ρ(x)

)n (
1 + O

(
1
n

))
,

and we obtain a central limit theorem by standard tools (see [7] and the above discussion).

Example 8. Let k ≥ 2 be a fixed integer and let M(z, x, u) be the ordinary generating 
function enumerating rooted planar maps, where z corresponds to the number of edges, 
x to the number of non-root faces of degree k, and u to the root-face degree. In [8, 
Lemma 2] it was shown that M(z, x, u) satisfies the equation

M(z, x, u)
(
1 − z(x− 1)u−k+2) =1 + zu2M(z, x, u) + zu

uM(z, x, u) −M(z, x, 1)
u− 1

− z(x− 1)u−k+2G(z, x,M(z, x, 1), u),

where G(z, x, y, u) is a polynomial of degree k− 2 in u with coefficients that are analytic 
functions in (z, x, y) for |z| ≤ 1/10, |x − 1| ≤ 21−k, and |y| ≤ 2. It should be noted that 
the function G is not explicitly given but is (one of) the solution(s) of in infinite system 
of equations that can be solved with the help of Banach’s fixed point theorem. It also 
not granted that G has only positive (or negative) coefficients, but this is not needed in 
Theorem 4.

Clearly, M(z, 1, u) is just the usual planar map counting generating function for which 
we know that M(z, 1, 1) is explicitly given by (1.2) so that all assumptions of Theorem 4
are satisfied. Alternatively we could have used Theorem 2 to obtain the local expansion 
of M(z, 1, 1). Furthermore a central limit theorem follows, where Xn is just the number 
of non-root faces of valency k in a random planar map with n edges. (This is also one of 
the main results of [8].)
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Example 9. We say that a face is a pure k-gon (k ≥ 2) if it is incident exactly to k
different edges and k different vertices. Let P (z, x, u) be the ordinary generating function 
enumerating rooted planar maps, where z corresponds to the number of edges, x to the 
number of non-root faces that are pure k-gons, and u to the root-face degree. Similarly 
to the previous case it can be shown (see [20]) that P (z, x, u) satisfies an equation of the 
form

P (z, x, u) =1 + zu2P (z, x, u) + zu
uP (z, x, u) − P (z, x, 1)

u− 1
− z(x− 1)u−k+2G̃(z, x, P (z, x, 1), u),

where G̃(z, x, y, u) is a polynomial of degree k− 2 in u with coefficients that are analytic 
functions in (z, x, y) for |z| ≤ 1/10, |x − 1| ≤ 21−k, and |y| ≤ 2.

Again, if we set x = 1 we recover M(z, u) = P (z, 1, u) so that all assumptions of 
Theorem 4 are satisfied. Hence, for fixed k ≥ 2, the number of pure k-gons in a random 
planar map satisfies a central limit theorem.

Example 10. A planar map is simple if it has no loops and no multiple edges. The 
corresponding generating function S(z, u) (where z corresponds to the number of edges 
and u to the root face valency) satisfies the catalytic equation (see [20])

S(z, u) =1 + zu2S(z, u)2 + zu
uS(z, u) − S(z, 1)

u− 1
− zuS(z, u)S(z, 1) − (S(z, u) − 1)(S(z, 1) − 1)

and the solution S(z, 1) is explicitly given by

S(z, 1) = 1 + 20z − 8z2 + (1 − 8z)3/2

2(z + 1)3 .

Let k ≥ 2 be a fixed integer and let S(z, x, u) be the ordinary generating function 
enumerating simple rooted planar maps, where z corresponds to the number of edges, x
to the number of non-root faces of degree k, and u to the root-face degree. In [20] it was
shown that S(z, x, u) satisfies the equation

S(z, x, u) =1 + zu2S(z, x, u) + zu
uS(z, x, u) − S(z, x, 1)

u− 1
− zuS(z, x, u)S(z, x, 1) − (S(z, x, u) − 1)(S(z, x, 1) − 1)

+ (x− 1)
(
zu−k+2S(z, x, u)G1(z, x, S(z, x, 1), u)

− zuS(z, x, u)G2(z, x, S(z, x, 1))
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− (S(z, x, u) − 1)G3(z, x, S(z, x, 1))
)
,

where G1(z, x, y, u) is a polynomial of degree k−2 in u with coefficients that are analytic 
functions in (z, x, y) for |z| ≤ 2/25, |x − 1| ≤ 2−k−5, and |y − 1| ≤ 2/5. Similarly the 
functions G2(z, x, y) and G3(z, x, y) are analytic functions in (z, x, y) for |z| ≤ 2/25, 
|x − 1| ≤ 2−k−5, and |y − 1| ≤ 2/5.

Again all assumptions of Theorem 4 are satisfied. Hence, for fixed k ≥ 2, the number 
of faces of valency k in a random simple planar map satisfies a central limit theorem.
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