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We investigate the behavior of cardinal characteristics of the reals under extensions that
do not add new <κ-sequences (for some regular κ). As an application, we show that
consistently the following cardinal characteristics can be different: The (“independent”)
characteristics in Cichoń’s diagram, plus ℵ1 < m < p < h < add(N ). (So we get
thirteen different values, including ℵ1 and continuum). We also give constructions to
alternatively separate other MA-numbers (instead of m), namely: MA for k-Knaster
from MA for k + 1-Knaster; and MA for the union of all k-Knaster forcings from MA
for precaliber.
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1. Introduction

In this work, we investigate how to preserve and how to change certain cardinal
characteristics of the continuum in No New Reals (NNR) extensions, i.e. extensions

∗∗Corresponding author.
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that do not add reals; or more generally that do not add <κ-sequences of ordi-
nals for some regular κ. It is known that the “Blass-uniform” characteristics (see
Definition 2.1) tend to keep their values in such extensions (cf. Mildenberger’s [34,
Proposition 2.1]), and we give some explicit results in that direction. Other cardi-
nal characteristics tend to keep a value θ only if θ < κ. We will use this effect to
combine various forcing notions (most of them already known) to get models with
many simultaneously different “classical” characteristics.

In particular, we look at the entries of Cichoń’s diagram, which we call Cichoń-
characteristics (see Fig. 1, we assume that the reader is familiar with this diagram),
and the following characteristics.

Definition 1.1. Let P be a class of posets.

(1) m(P) denotes the minimal cardinal where Martin’s axiom for the posets in P
fails. More explicitly, it is the minimal κ such that, for some poset Q ∈ P , there
is a collection D of size κ of dense subsets of Q such that there is no filter in Q
intersecting all the members of D.

(2) m := m(ccc).
(3) Write a ⊆∗ b iff a�b is finite. Say that a ∈ [ω]ℵ0 is a pseudo-intersection of

F ⊆ [ω]ω if a ⊆∗ b for all b ∈ F .
(4) The pseudo-intersection number p is the smallest size of a filter base of a free

filter on ω that has no pseudo-intersection in [ω]ℵ0 .
(5) The tower number t is the smallest order type of a ⊆∗-decreasing sequence in

[ω]ℵ0 without pseudo-intersection.
(6) The distributivity number h is the smallest size of a collection of dense subsets

of ([ω]ℵ0 ,⊆∗) whose intersection is empty.
(7) A family D ⊆ [ω]ℵ0 is groupwise dense if

(i) a ⊆∗ b and b ∈ D implies a ∈ D and
(ii) whenever (In : n < ω) is an interval partition of ω, there is some a ∈ [ω]ℵ0

such that
⋃

n∈a In ∈ D.

The groupwise density number g is the smallest size of a collection of groupwise
dense sets whose intersection is empty.

Fig. 1. Cichoń’s diagram with the two “dependent” values removed, which are add(M) =

min(b, cov(M)) and cof(M) = max(non(M),d). An arrow x → y means that ZFC proves x ≤ y.
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We are aware of the following ZFC provable relations between these cardinals:

m ≤ p = t ≤ h ≤ g, m ≤ add(N ), t ≤ add(M), h ≤ b, g ≤ cof(d). (1.1)

Also, with the exception of m and d, all the cardinals in (1.1) are known to be regular
(and uncountable), 2<t = c and g ≤ cof(c). For details see, e.g. Blass [7]; but for
p = t see [35] with Malliaris,a and g ≤ cof(d) follows from the fact that cof((ω,
<)ω/U) = cof(d) for some ultrafilter U , due to Canjar [11], and g ≤ cof((ω,<)ω/U)
for any ultrafilter U , due to Blass and Mildenberger [8].

Recently [20] constructed, assuming four strongly compact cardinals, a ZFC
model where the ten (non-dependent) Cichoń-characteristics are pairwise different.
This orders the characteristics as shown in Fig. 2. In [19], we give a construction
that does not require large cardinals.

To continue with this line of work, we ask whether other classical cardinal char-
acteristics of the continuum can be included and forced to be pairwise different. Our
main result is that we can additionally force that ℵ1 < m < p < h = g < add(N ),
thus yielding a model where 13 classical cardinal characteristics are pairwise
different.

We now give an outline of this paper.

S. 2, p. 4: Preliminaries. We review some aspects of the Cichoń’s Maximum
construction (the construction from [19] that gives 10 different values in Cichoń’s
diagram). In particular, we mention Blass-uniform characteristics and the Linear
Cofinally Unbounded (LCU) and Cone of Bounds (COB) properties.

S. 3, p. 8: NNR extensions. We define some classes of cardinal characteristics
and show how they are affected (or unaffected) by extensions that do not add new
<κ-sequences for some regular κ; in particular: under <κ-distributive forcing exten-
sions; and when intersecting the poset with some <κ-closed elementary submodel.

S. 4, p. 11: m. Using classical methods of Barnett and Todorčević [2, 39, 40], we
modify the Cichoń’s Maximum construction to additionally force m = λm for any
given regular value λm between ℵ1 and add(N ).

Fig. 2. The model we construct in this paper; here x → y means that x < y. Any number of
the < signs can be replaced by = as desired.

aHowever, only the trivial inequality p ≤ t is used in this text.
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In addition to m, we can control the Knaster-numbers m(k-Knaster) as well.
But this does not give a larger number of simultaneously different characteristics
(as all Knaster numbers bigger than ℵ1 have the same value, which is also the value
of m(precaliber)). We give models for all possible constellations (at least for regular
λ): All Knaster numbers (and m(precaliber)) can be ℵ1. There can be a k ≥ 1 such
that m(�-Knaster) = ℵ1 for all 1 ≤ � < k and m(�-Knaster) = λ for � ≥ k (for
notational convenience, we identify 1-Knaster with ccc).

S. 5, p. 18: m(precaliber). We deal with a case that was left open in the previous
section: We construct a model where all Knaster numbers are ℵ1, and the precaliber
number is some regular λ > ℵ1.

S. 6, p. 21: h. Given a poset P , we show how to obtain a complete subposet P ′

of P forcing smaller values to g (and thus h ≤ g), while preserving certain other
values for cardinal characteristics already forced by P . This method allows us to
get p = h = g.

S. 7, p. 24: p. Based on a result with Dow [15], we show that the product of a
ξ-cc poset P with the poset ξ<ξ may add a tower of length ξ, while preserving the
cardinal h above ξ and the values for the Cichoń-characteristics that were already
forced by P .

This allows us to prove the main theorem, thirteen pairwise different character-
istics.

S. 8, p. 25: Extensions. We remark on alternative initial forcings (i.e. forcings
for the left-hand side of Cichoń’s diagram) and an alternative order.

Notation. When we are investigating a characteristic x and plan to force a specific
value to it, we will usually call this value λx. Let us stress that calling a cardinal
λx is not an implicit assumption that P � x = λx for the P under investigation; it
is just an (implicit) declaration of intent.

2. Preliminaries

We mention some of the required definitions and constructions from [19, 20]. We will
not give all required proofs and not even the complete construction, as it is rather
involved. We will have to assume that the reader either knows this construction, or
is willing to accept it as a blackbox.

2.1. LCU and COB, the initial forcing P pre for the left side

Definition 2.1. A Blass-uniform cardinal characteristic is a characteristic of the
form

dR := min{|D| : D ⊆ ωω and (∀x ∈ ωω) (∃y ∈ D) xRy}
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for some Borelb R. To avoid trivialities, we will only consider relations R for which
dR (and the dual bR in what follows) are well defined.c

Such characteristics have been studied systematically since at least the 1980s
by many authors, including Fremlin [16], Blass [6, 7] and Vojtáš [42].

Note that its dual cardinal

bR := min{|F | : F ⊆ ωω and (∀ y ∈ ωω) (∃x ∈ F ) ¬xRy}

is also Blass-uniform because bR = dR⊥ , where xR⊥y if and only if ¬(yRx).
Remark. All Blass-uniform characteristics in this paper, and many others, such
as those in Blass’ survey [7] or those in [22], are in fact of the form bR or dR for
some Σ0

2 relation R which is invariant under finite modifications of its arguments.
When we restrict to such relations, there is no ambiguity as to which Blass-uniform
cardinal characteristics are of the form bR and which are of the form dR. It was
shown by Blass [6] that for such relations R we must have bR ≤ non(M) and
dR ≥ cov(M), thus bR is always on the left side of Cichoń’s diagram, and dR is on
the right side.

Remark 2.2. It can be more practical to consider more generally relations on
X ×Y for some Polish spaces X , Y other than ωω, in particular as many examples
of Blass-uniform cardinals are naturally defined in such spaces.

To cover such cases, one can either modify the definition, or use a Borel isomor-
phisms to translate the relation to ωω.

The Cichoń-characteristics are all Blass-uniform, defined by naturald relations.
Accordingly, they come in pairs (bR, dR) for the according Borel relation R:
(add(N ), cof(N )), (cov(N ), non(N )), (add(M), cof(M)), (non(M), cov(M)) and
(b, d) (the last pair, for example, is defined by eventual domination ≤∗).

Another example for a Blass-uniform pair is (s, r) = (bR, dR) where s is splitting
number and r the reaping number and R is the relation on [ω]ℵ0 that states xRy if
and only if “x does not split y”.

We will often have a situation where (bR, dR) = (λ, μ) is “strongly witnessed”,
as follows.

bWe could just as well assume that R is analytic or co-analytic. More specifically, for all results
in this paper, it is enough to assume that R is absolute between the extensions we consider; in
our case between extensions that do not add new reals. So even projective relations would be
fine. However, all concrete relations that we will actually use are Borel, even of very low rank.
Regarding “on ωω”, see Remark 2.2.
ci.e. (∀ x ∈ ωω) (∃y, z ∈ ωω)xRy ∧ ¬zRx.
dThe relations R used to define the following characteristics are “natural”, but not entirely “canon-
ical”. For example, a different choice of a natural relation R such that bR = s leads to a different
dual dR = rσ. See [7, Example 4.6].
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Definition 2.3. Fix a Borel relation R, λ a regular cardinal and μ an arbitrary
cardinal. We define two propertiese:

Linearly cofinally unbounded: LCUR(λ) means: There is a family f̄ = (fα :
α < λ) of reals such that

(∀ g ∈ ωω) (∃α ∈ λ) (∀β ∈ λ\α) ¬fβRg. (2.1)

Cone of bounds: For λ ≤ μ, COBR(λ, μ) meansf : There is a <λ-directed
partial order � on μ,g and a family ḡ = (gs : s ∈ μ) of reals such that

(∀ f ∈ ωω) (∃s ∈ μ) (∀ t � s) fRgt. (2.2)

Fact 2.4. LCUR(λ) implies bR ≤ λ ≤ dR.
COBR(λ, μ) implies bR ≥ λ and dR ≤ μ.

Remark 2.5. COBR(λ, μ) clearly implies COBR(λ′, μ) whenever λ′ ≤ λ. The
property COBR(2, μ), the weakest of these notions, just says that there is a witness
for dR ≤ μ, or in other words: there is an R-dominatingh family of size μ.

Also, COBR(λ, μ) implies COBR(λ, μ′) whenever μ′ ≥ μ.

Informally, we call the objects f̄ in the definition of LCU and (�, ḡ) for COB
“strong witnesses”, and say that the corresponding cardinal inequalities (or equal-
ities) are “strongly witnessed”.

In [20] (building on [21]) the following is shown.

Lemma 2.6. Assume GCH and ℵ1 < ν1 < ν2 < ν3 < ν4 < θ∞ are all successors
of regular cardinals. Then there is a ccc countable support iteration P pre of length
θ∞ + θ∞ forcing that

ℵ1 < add(N ) = ν1 < cov(N ) = ν2 < b = ν3 < non(M) = ν4 < c = θ∞.

Moreover, all the equalities are strongly witnessed ; all iterands in P are (σ, k)-linked
(see Definition 4.1) for all k; and in the first θ∞ many steps we add Cohen reals.

In this work, we will modify this construction P pre to get similar iterations P
that allow us to add additional characteristics. We claim that these modifications
will not change the fact that the characteristics in Lemma 2.6 are strongly witnessed.
A reader who does not know the proof of Lemma 2.6 will hopefully trust us on this;
for the others we give the (simple) argument:

• We get the required COB properties simply by bookkeeping, when forcing with
“partial random”, or “partial eventually different”, etc., forcings. This will not

eIn [10] (and in other related work), a family with LCUR(λ) is said to be strongly λ−R-unbounded
of size λ, while a family with COBR(λ, μ) is said to be strongly λ− R-dominating of size μ.
fNote that COBR(λ, μ) for λ > μ would violate our assumption that bR is well-defined: In that
case, COBR(λ, μ) would imply that μ has a top element with respect to the order �, so there is
an x ∈ ωω with yRx for all y.
gi.e. every subset of μ of cardinality <λ has a �-upper bound
hFormally: D ⊆ ωω is R-dominating iff (∀x ∈ ωω) (∃y ∈ D) xRy.
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change when we add additional iterands (as long as, cofinally often, we choose
the iterands as in the original construction).
• Fix a (left-hand) Cichoń-characteristic x other than b. We get the strong witness

LCUR(ν) (for R a relation connected to x and ν the according νi) because all the
iterands are “(ν,R)-good”.

Any forcing of size <ν is automatically good, so adding small iterands will
not be a problem.

Also, σ-centered forcings are always good for the characteristics add(N ) and
cov(N ).
• For b, it is more cumbersome to prove LCUR(ν3), but at least it is clear that

adding additional iterands of size <ν3 will not interfere with the proof.

So we can summarize:

Claim 2.7. We can add to P pre arbitrary iterands that all are

• either of size <ν1,
• or σ-centered and of size <ν3,

and still force strong witnesses for the Cichoń-characteristics of Lemma 2.6.

(Of course these new iterands have to be added in a way so that we still use the
old iterands unboundedly often; we cannot just add new iterands at the end.)

Remark. Instead of the construction of [20], one can use alternative constructions
that require weaker assumptions, cf. Sec. 8.3.

2.2. The Cichoń’s maximum construction

As before, we will not require or describe the construction in detail, but only present
the basic structure and certain properties.

The following is the main [19, Theorem 3.1]. As we will use the assumptions of
the theorem repeatedly, we make them explicit.

Assumption 2.8. Assume GCH, and that

ℵ1 ≤ κ ≤ λadd(N ) ≤ λcov(N ) ≤ λb ≤ λnon(M)

≤ λcov(M) ≤ λd ≤ λnon(N ) ≤ λcof(N ) ≤ λ∞
are regular cardinals, with the possible exception of λ∞, for which we only require
λ<κ∞ = λ∞.

Theorem 2.9. Under these assumptions, there is a ccc poset P fin forcing strong
witnesses for

ℵ1 ≤ add(N ) = λadd(N ) ≤ cov(N ) = λcov(N ) ≤ b = λb ≤ non(M) = λnon(M)

≤ cov(M) = λcov(M) ≤ d = λd ≤ non(N ) = λnon(N ) ≤ cof(N ) = λcof(N )

≤ c = λ∞.
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Note that κ does not make much sense in this theorem, as you can just set
κ = ℵ1 (resulting in the weakest requirement λℵ0∞ = λ∞). Indeed this is what is
done in [19] (where κ is not mentioned at all); but mentioning κ explicitly here will
be useful in Lemma 2.10.

The construction in [19] is as follows:

(A) Pick a sequence of successors of regular cardinals (strictly) above λ∞:

ξ1 < ν1 < ξ2 < ν2 < ξ3 < ν3 < ξ4 < ν4 < θ∞.

(B) Start with any initial κ-cc poset P pre for the “left-hand side”, which forces
“strong witnesses” for

add(N ) = ν1 < cov(N ) = ν2 < b = ν3 < non(M) = ν4 < c = θ∞

(so we can use the forcing of Lemma 2.6, or any modification satisfying
Claim 2.7).

The proof in [19] can then be formulated as the following:

Lemma 2.10. Under Assumption 2.8, and given a forcing P pre as in (A) and (B),
there is a <κ-closedi elementary submodel N∗ of H(χ) such that P fin := P pre ∩N∗

witnesses Theorem 2.9

(as usual, χ is a sufficiently large, regular cardinal).

2.3. History

We briefly remark on the history of the result of this section.
A (by now) classical series of results by various authors [1, 4, 13, 25–27, 32,

33, 36] (summarized by Bartoszyński and Judah [3]) shows that any assignments of
{ℵ1,ℵ2} to the Cichoń-characteristics that satisfy the well known ZFC restrictions is
consistent. This leaves the questions how to show that many values can be simulta-
neously different. The “left-hand side” part was done in [21] and uses eventually dif-
ferent forcing E to ensure non(M) ≥ λnon(M) and ultrafilter-limits of E to show that
b remains small. It relies heavily on the notion of goodness, introduced in [25] (with
Judah) and by Brendle [9], and summarized in, e.g. [21] or [12] (with Cardona).

Based on this construction, [20] uses Boolean ultrapowers to get simultaneously
different values for all (independent) Cichoń-characteristics, modulo four strongly
compact cardinals.

For this, the construction for the left-hand side first has to be modified to get a
ccc forcing starting with a ground model satisfying GCH.

Then Boolean ultrapowers are applied to separate the cardinals on the right
side. Paper [29] (with Tǎnasie and Tonti) gives an introduction to the Boolean

iPaper [19] uses the case κ = ℵ1, so we get only a countably closed N∗. But the proof there works
for any uncountable regular κ, with only the trivial change: We let N8 be a <κ-closed model of
size λ∞, and note that then N∗ is <κ-closed as well.
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ultrapower construction. Such Boolean ultrapowers are applied four times, once for
each pair of cardinals on the right side that are separated.

For this it is required that there is a strongly compact cardinal between two val-
ues corresponding to adjacent cardinals characteristics on the left side, so the car-
dinals on this side are necessarily very far apart. Paper [10] improves the left-hand
side construction of [21] to include cov(M) < d = non(N ) = c. This is achieved
by using matrix iterations of partial Frechet-linked posets (the latter concept is
originally from [31]). Then the same method of Boolean ultrapowers as before can
be applied, in the same way, to force different values for all Cichoń-characteristics,
modulo three strongly compact cardinals.

Finally, in [19], we can get the result without assuming large cardinals; this is
the construction we use in this paper.

3. Cardinal Characteristics in Extensions Without
New <κ-sequences

Let us consider <κ-distributive forcing extensions for some regular κ (in particular
these extensions are NNR, i.e. do not add new reals). For such extensions, we can
also preserve strong witnesses in some cases.

Lemma 3.1. Assume that Q is θ-cc and <κ-distributive for κ regular uncountable,
and let λ be a regular cardinal and R a Borel relation.

(1) If LCUR(λ), then Q � LCUR(cof(λ)).
So if additionally λ ≤ κ or θ ≤ λ, then Q � LCUR(λ).

(2) If COBR(λ, μ) and either λ ≤ κ or θ ≤ λ, then Q � COBR(λ, |μ|).
So for any λ, COBR(λ, μ) implies Q � COBR(min(|λ|, κ), |μ|).

Proof. For (1) it is enough to assume that Q does not add reals: Take a strong
witness for LCUR(λ). This object still satisfies (2.1) in the Q-extension (as there
are no new reals), but the index set will generally not be regular any more; we can
just take a cofinal subset of order type cof(λ) which will still satisfy (2.1).

Similarly, a strong witness for COBR(λ, μ) still satisfies (2.2) in the Q extension.
However, the index set is generally not <λ-directed any more, unless we either
assume λ ≤ κ (as in that case there are no new small subsets of the partial order)
or Q is λ-cc (as then every small set in the extension is covered by a small set from
the ground model).

If P forces strong witnesses, then any complete subforcing that includes names
for all witnesses also forces strong witnesses.

Lemma 3.2. Assume that R is a Borel relation, P ′ is a complete subforcing of P,
λ regular and μ is a cardinal, both preserved in the P -extension.

(a) If P � LCUR(λ) witnessed by some ˙̄f and ˙̄f is actually a P ′-name, then P ′ �
LCUR(λ).
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(b) If P � COBR(λ, μ) witnessed by some (�̇, ˙̄g), and (�̇, ˙̄g) is actually a P ′-name,
then P ′ � COBR(λ, μ).

Proof. Let V2 be the P -extension and V1 the intermediate P ′-extension. For LCU:
(2.1) holds in V2, V1 ⊆ V2 and (fi)i<λ ∈ V1, and R is absolute between V1 and V2,
so (2.1) holds in V1. The argument for COB is similar.

We now define three properties of cardinal characteristics (more general than
Blass-uniform) that have implications for their behavior in extensions without new
<κ-sequences. We call these properties, e.g. t-like to refer to the “typical” repre-
sentative t. But note that this is very superficial: There is no deep connection or
similarity to t for all t-like characteristics, it is just that t is a well-known example
for this property, and “t-like” seems easier to memorize than other names we came
up with.

Definition 3.3. Let x be a cardinal characteristic.

(1) x is t-like, if it has the following form: There is a formula ψ(x) (possibly with,
e.g. real parameters) absolute between universe extensions that do not add
reals,j such that x is the smallest cardinality λ of a set A of reals such that
ψ(A).

All Blass-uniform characteristics are t-like; other examples are t, u, a and i.
(2) x is called h-like, if it satisfies the same, but with A being a family of sets of

reals (instead of just a set of reals).
Note that t-like implies h-like, as we can include “the family of sets of reals

is a family of singletons” in ψ. Examples are h and g.
(3) x is called m-like, if it has the following form: There is a formula ϕ (possibly

with, e.g. real parameters) such that x is the smallest cardinality λ such that
H(≤λ) � ϕ.

Any infinite t-like characteristic is m-like: If ψ witnesses t-like, then we can
use ϕ = (∃A) [ψ(A)&(∀a ∈ A) a is a real] to get m-like (since H(≤λ) contains
all reals). Examples arek m, m(Knaster), etc.

(Actually, we do not know anything about t-like characteristics in general, apart
from the fact that they are both m-like and h-like).

Lemma 3.4. Let V1 ⊆ V2 be models (possibly classes) of set theory (or a sufficient
fragment), V2 transitive and V1 is either transitive or an elementary submodel of
HV2(χ) for some large enough regular χ, such that V1 ∩ ωω = V2 ∩ ωω.

(a) If x is h-like, then V1 � x = λ implies V2 � x ≤ |λ|.

jConcretely, if M1 ⊆ M2 are transitive (possibly class) models of a fixed, large fragment of ZFC,
with the same reals, then ψ is absolute between M1 and M2.
km can be characterized as the smallest λ such that there is in H(≤λ) a ccc forcing Q and a family
D̄ of dense subsets of Q such that “there is no filter F ⊆ Q meeting all Di” holds.
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In addition, whenever κ is uncountable regular in V1 and V <κ
1 ∩ V2 ⊆ V1:

(b) If x is m-like, then V1 � x ≥ κ iff V2 � x ≥ κ.
(c) If x is m-like and λ < κ, then V1 � x = λ iff V2 � x = λ.
(d) If x is t-like and λ = κ, then V1 � x = λ implies V2 � x = λ.

Proof. First note that (d) follows by (a) and (b) because any t-like characteristic
is both m-like and h-like.

Assume V1 is transitive. For (a), if ψ witnesses that x is h-like, A ∈ V1 and V1

satisfies ψ(A), then the same holds in V2. For (b) and (c), note that HV1(≤ μ) =
HV2(≤ μ) for all μ < κ (easily shown by ∈-induction).

The case V1 = N 
 HV2(χ) is similar. Note that HV2(χ) is a transitive subset
of V2, so (a) follows by the previous case. For (b) and (c), work inside V2. Note
that κ ⊆ N (by induction). Whenever μ < κ, μ is regular iff N |=“μ regular”, and
H(≤μ) ⊆ N . So N |=“H(≤μ) |= φ” iff H(≤μ) |= φ.

Alternatively, the case V1 
 HV2(χ) is a consequence of the first case. Work
in V2. Let π : V1 → V̄1 be the transitive collapse of V1. Note that π(x) = x for
any x ∈ ωω ∩ V1, so ωω ∩ V̄1 = ωω ∩ V1 = ωω. To see (a), V1 � x = λ implies
V̄1 � x = π(λ), so x ≤ |π(λ)| ≤ |λ| by the transitive case.

Now assume V <κ
1 ⊆ V1 (still inside V2), so we also have V̄ <κ

1 ⊆ V̄1. To see (b),
V1 |= x ≥ κ iff V̄1 |= x ≥ π(κ) = κ, iff V2 |= x ≥ κ by the transitive case. Property
(c) follows similarly by using π(λ) = λ (when λ < κ).

We apply this to three situations: Boolean ultrapowers (which we will not apply
in this paper), extensions by distributive forcings and complete subforcings.

Corollary 3.5. Assume that κ is uncountable regular, P � x = λ, and

(i) either Q is a P -name for a <κ-distributive forcing, and we set P+ := P ∗ Q
and j(λ) := λ;

(ii) or P is ν-cc for some ν < κ, j : V → M is a complete embedding into a
transitive <κ-closed model M, cr(j) ≥ κ, and we set P+ := j(P ),

(iii) or P is κ-cc, M 
 H(χ) is <κ-closed, and we set P+ := P ∩M and j(λ) :=
|λ ∩M | (so P+ is a complete subposet of P ; and if λ ≤ κ then j(λ) = λ).

Then we get

(a) If x is m-like and λ ≥ κ, then P+ � x ≥ κ.
(b) If x is m-like and λ < κ, then P+ � x = λ.
(c) If x is h-like then P+ � x ≤ |j(λ)|. Concretely,

for (i): P+ � x ≤ |λ|;
for (ii): P+ � x ≤ |j(λ)|;
for (iii): P+ � x ≤ |λ ∩M |.

(d) So if x is t-like and λ = κ, then for (i) and (iii) we get P+ � x = κ.

Proof. Case (i). Follows directly from Lemma 3.4.
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Case (ii). Since M is <κ-closed and P is ν-cc, P (or rather: the isomorphic image
j′′P ) is a complete subforcing of j(P ). Let G be a j(P )-generic filter over V . As
j(P ) is in M (and M is transitive), G is generic over M as well. Then V1 := M [G]
is <κ closed in V2 := V [G].

First note that V1 and V2 have the same <κ-sequences of ordinals. Let ˙̄x =
(ẋi)i∈μ be a sequence of j(P )-names for members of M with μ < κ. Each ẋi is
determined by an antichain, which has size <ν and therefore is in M , so each ẋi is
in M . Hence, ˙̄x is in M .

By elementaricity, P � x = λ implies M |=“j(P ) � x = j(λ)”. So V1 |= x = j(λ),
and we can apply Lemma 3.4: In the case that x is m-like, if λ ≥ κ, then j(λ) ≥
j(κ) ≥ κ, so V2 |= x ≥ κ; If λ < κ, then j(λ) = λ, so V2 |= x = λ; if x is h-like, then
V2 |= x ≤ |j(λ)|.
Case (iii). Let π0 : M → M̄ be the transitive collapse. Set P̄ := π0(P ) ∈ M̄ . Note
that π0(κ) = κ and that M̄ is <κ-closed. Also, any condition in P is M -generic
since, for any antichain A in P , A ∈M iff A ⊆M (by <κ-closedness).

Let G+ be P+-generic over V . We can extend G+ to a P -generic G over V (as
P+ is a complete subforcing of P ), and we get G+ = G∩P+ = G∩M . Now, work in
V [G]. Note that M [G] is an elementary submodel of HV [G](χ) (and obviously not
transitive), and that the transitive collapse π : M [G]→ V1 extends π0 (as there are
no new elements of V in M [G]). We claim that V1 = M̄ [Ḡ+], where Ḡ+ := π0′′G+

(which is P̄ -generic over M̄ , also Ḡ+ = π(G)), and that τ̄ [Ḡ+] = π(τ [G]) for any
P -name τ ∈M , where τ̄ := π0(τ).l So in particular, V1 is a subset of V2 := V [G+]
(the P+-generic extension of V ) because π0 and M (and therefore M̄) are elements
of V , so G+ (and therefore Ḡ+) are elements of V [G+]. In fact, Ḡ+ is P̄ -generic over
V because M̄ is <κ-closed and P̄ is κ-cc, moreover, V2 = V [Ḡ+] (this is reflected
by the fact that, in V , π0�P+ is an isomorphism between P+ and P̄ ).

We claim:

V2 is an NNR extension of V1, moreover V1 is <κ-closed in V2. (∗)
To show this, work in V . We argue with P̄ . Let τ be a P̄ -name of an element of
V1 = M̄ [Ḡ+]. So we can find a maximal antichain A in P̄ and, for each a ∈ A,
a P̄ -name σa in M̄ such that a �P̄ τ = σa. Since |A| < κ and P̄ ⊆ M̄ and M̄

is <κ-closed, A, as well as the function a → σa, are in M̄ . Mixing the names σa

along A to a name σ ∈ M̄ , we get M̄ � a �P̄ σa = σ for all a ∈ A, which implies
V � a �P̄ σa = σ because the forcing relation of atomic formulas is absolute. So
P̄ � τ = σ.

Now, fix a P̄ name �τ = (τα)α<μ of a sequence of elements of V1, with μ < κ.
Again we use closure of M̄ and get a sequence (σα)α<μ in M̄ such that P̄ forces
that τα = σα[Ḡ+], and so the evaluation of the sequence �τ is in M̄ [Ḡ+] = V1. This
proves (∗).

lThis can be proved by induction on the rank of τ , and uses that M [G] � HV [G](χ).
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Now assume that x is either h-like or m-like, and P � x = λ. By elementaricity,
this holds in M , so M̄ � P̄ � x = π0(λ). Now, let Ḡ+ be P̄ -generic over V , V1 :=
M̄ [Ḡ+] and V2 := V [Ḡ+], so V1 |= x = π0(λ). If x is h-like then, by Lemma 3.4(a),
V2 |= x ≤ |π0(λ)| = |λ ∩M |; if x is m-like and λ < κ, then V1 |= x = λ and so the
same is satisfied in V2 by Lemma 3.4(c); otherwise, if λ ≥ κ then V1 |= x = π0(λ) ≥
π0(κ) = κ, so V2 |= x ≥ κ by Lemma 3.4(b).

In any of the cases above, (d) is a direct consequence of (a) and (c).

4. Dealing with m

We show how to deal with m. It is easy to check that the Cichoń’s Maximum
construction from [20] forces m = ℵ1, and can easily be modified to force m =
add(N ) (by forcing with all small ccc forcings during the iteration). With a bit
more work it is also possible to get ℵ1 < m < add(N ).

Let us start by recalling the definitions of some well-known classes of ccc forcings.

Definition 4.1. Let λ be an infinite cardinal, k ≥ 2 and let Q be a poset.

(1) Q is (λ, k)-Knaster if, for every A ∈ [Q]λ, there is a B ∈ [A]λ which is k-linked
(i.e. every c ∈ [B]k has a lower bound in Q). We write k-Knaster for (ℵ1, k)-
Knaster; Knaster means 2-Knaster; (λ, 1)-Knaster denotes λ-cc and 1-Knaster
denotes ccc.m

(2) Q has precaliber λ if, for every A ∈ [Q]λ, there is a B ∈ [A]λ which is centered,
i.e. every finite subset of B has a lower bound in Q. We sometimes shorten
“precaliber ℵ1” to “precaliber”.

(3) Q is (σ, k)-linked if there is a function π : Q→ ω such that π−1({n}) is k-linked
for each n.

(4) Q is σ-centered if there is a function π : Q → ω such that each π−1({n}) is
centered.

The implications between these notions (for λ = ℵ1) are listed in Fig. 3. To
each class C of forcing notions, we can define the Martin’s Axiom number m(C)
in the usual way (recall Definition 1.1). An implication C1 ← C2 in the diagram
corresponds to a ZFC inequality m(C1) ≤ m(C2). Recall that m(σ-centered) = p =
t. Also recall that, in the old constructions, all iterands were (σ, k)-linked for all k.

Lemma 4.2. (1) If there is a Suslin tree, then m = ℵ1.
(2) After adding a Cohen real c over V, in V [c] there is a Suslin tree.

Fig. 3. Some classes of ccc forcings.

mThis is just an abuse of notation that turns out to be convenient for stating our results.
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(3) Any Knaster poset preserves Suslin trees.
(4) The result of any finite support iteration of (λ, k)-Knaster posets (λ uncountable

regular and k ≥ 1) is again (λ, k)-Knaster.
(5) In particular, when k ≥ 1, if P is a f.s. iteration of forcings such that all

iterands are either (σ, k)-linked or smaller than λ, then P is (λ, k)-Knaster.
(6) Let C be any of the forcing classes of Fig. 3, and assume m(C) = λ > ℵ1

(or just assume that C is a class of ccc forcings closed under Q → Q<ω, the
finite support product of countably many copies of Q, and under (Q, p) → {q :
q ≤ p} for p ∈ Q).

If Q ∈ C, then every subset A of Q of size <λ is “σ-centered in Q” (i.e.
there is a function π : A→ ω such that every finite π-homogeneous subset of A
has a common lower bound in Q).

So in particular, for all μ < λ of uncountable cofinality, Q has precaliber μ
and is (μ, �)-Knaster for all � ≥ 2.

(7) m > ℵ1 implies m = m(precaliber).
m(k-Knaster) > ℵ1 implies m(k-Knaster) = m(precaliber).

Proof. (1) Clear.
(2) See [37, 40] or Velleman [41].
(3) Recall that the product of a Knaster poset with a ccc poset is still ccc.

Hence, if P is Knaster and T is a Suslin tree, then P × T = P ∗ Ť is ccc, i.e. T
remains Suslin in the P -extension.

(4) Well-known, see, e.g. Kunen [30, Lemma V.4.10] for (ℵ1, 2)-Knaster. The
proof for the general case is the same, see, e.g. [31, Sec. 5].

(5) Clear, as (σ, k)-linked implies (μ, k)-Knaster (for all uncountable regular μ),
and since every forcing of size <μ is (μ, k)-Knaster (for any k).

(6) First note that it is well knownn that MAℵ1(ccc) implies that every ccc
forcing is Knaster, and hence that the class C of ccc forcings is closed under Q →
Q<ω (for the other classes C in Fig. 3, the closure is immediate).

So let C be a closed class, m(C) = λ > ℵ1, Q ∈ C and A ∈ [Q]<λ. Given a filter
G in Q<ω and q ∈ Q, set c(q) = n iff n is minimal such that there is a p̄ ∈ G with
p(n) = q. Note that for all q, the set

Dq = {p ∈ Q<ω : (∃n ∈ ω) q = p(n)}

is dense, and that c(q) is defined whenever G intersects Dq. Pick a filter G meeting
allDq for q ∈ A. This defines c : A→ ω such that c(a0) = c(a1) = · · · = c(a�−1) = n

implies that all ai appear in G(n) and thus they are compatible in Q. Hence, A is
the union of countably many centered (in Q) subsets of Q.

(7) Follows as a corollary.

nSee, e.g. Jech [24, Theorem 16.21] (and the historical remarks, where the result is attributed to
(independently) Kunen et al.) or [3, Lemma 1.4.14] or Galvin [17, p. 34].
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This shows that it is not possible to simultaneously separate more than two
Knaster numbers. More specifically: ZFC proves that there is a (unique) 1 ≤ k∗ ≤ ω
and, if k∗ < ω, a (unique) λ > ℵ1, such that for all 1 ≤ � < ω

m(�-Knaster) =

{ℵ1 if � < k∗,

λ otherwise
(4.1)

(recall that m(1-Knaster) = m(ccc) by our definition). So the case k∗ = ω means
that all Knaster numbers are ℵ1.

In this section, we will show how these constellations can be realized together
with the previous values for the Cichoń-characteristics.

In the case k∗ < ω, we know that m(precaliber) = λ as well. We briefly comment
that m(precaliber) = ℵ1 (in connection with the Cichoń-values) is possible too. In
the next section, we will deal with the remaining case: k∗ = ω, i.e., all Knaster
numbers are ℵ1, while m(precaliber) > ℵ1.

The central observation is the following, see [39, 40; 2, Sec. 3].

Lemma 4.3. Let k ∈ ω, k ≥ 2 and λ be uncountable regular. Let C be the finite
support iteration of λ many copies of Cohen forcing. Assume that C forces that P
is (λ, k + 1)-Knaster. Then C ∗ P forces m(k-Knaster) ≤ λ.

The same holds for k = 1 and λ = ℵ1.

For k = 1 this trivially follows from Lemma 4.2: The first Cohen forcing adds a
Suslin tree, which is preserved by the rest of the Cohen posets composed with P .
So we get m = ℵ1. The proof for k > 1 is done in the following two lemmas.

Remark 4.4. Adding the Cohen reals first is just for notational convenience. The
same holds, e.g. in a f.s. iteration where we add Cohen reals on a subset of the
index set of order type λ; and we assume that the (limit of the) whole iteration is
(λ, k + 1)-Knaster.

Lemma 4.5. Under the assumption of Lemma 4.3, for k ≥ 1: We interpret each
Cohen real ηα (α ∈ λ) as an element of (k + 1)ω. C ∗ P forces: For all X ∈ [λ]λ,

(∃ ν ∈ (k + 1)<ω) (∃ oα0, . . . , αk ∈ X) (∀0 ≤ i ≤ k)ν	i � ηαi . (∗∗)

Proof. Let p∗ ∈ C ∗ P force that X ∈ [λ]λ. By our assumption, first note that
p∗�λ forces that there is some X ′ ∈ [λ]λ and a k + 1-linked set {rα : α ∈ X ′} of
conditions in P below p∗(λ) such that rα �P α ∈ X for any α ∈ X ′.

Since X ′ is a C-name, there is some Y ∈ [λ]λ and, for each α ∈ Y , some pα ≤
p∗�λ in C forcing α ∈ X ′. We can assume that α ∈ dom(pα) and, by thinning out
Y , that dom(pα) forms a Δ-system with heart a below each α ∈ Y , 〈pα�a : α ∈ Y 〉
is constant, and that pα(α) is always the same Cohen condition ν ∈ (k + 1)<ω.

For each α ∈ Y let qα ∈ C ∗ P such that qα�λ = pα and qα(λ) = rα. It is
clear that 〈qα : α ∈ Y 〉 is k + 1-linked and that qα � α ∈ X . Pick α0, . . . , αk ∈ Y
and q ≤ qα0 , . . . , qαk

. We can assume that q�λ is just the union of the qαi�λ. In
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particular, we can extend q(αi) = ν to ν	i, satisfying (∗∗) after all. This proves
the claim.

Lemma 4.6. Under the assumption of Lemma 4.3, for k ≥ 2: In V C define RK,k

to be the set of finite partial functions p : u→ ω, u ⊆ λ finite, such that (∗∗) fails
for all p-homogeneous X ⊆ u.o Then P forces the following:

(a) There is no filter on RK,k meeting all dense Dα (α ∈ λ), where we set Dα =
{p : α ∈ dom(u)}.

(b) RK,k is k-Knaster.

Note that this proves Lemma 4.3, as RK,k is a witness.

Proof. Clearly each Dα is dense (as we can just use a hitherto unused color). If
G is a filter meeting all Dα, then G defines a total function p∗ : λ→ ω, and there
is some n ∈ ω such that X := p∗−1({n}) has size λ. So (∗∗) holds for X , witnessed
by some α0, . . . , αk. Now, pick some q ∈ G such that all αi are in the domain of q.
Then q contradicts the definition of RK,k.

RK,k is k-Knaster: Given (rα : uα → ω)α∈ω1 , we thin out so that uα forms
a Δ-system of sets of the same size and such that each rα has the same “type”,
independent of α, where the type contains the following information: The color
assigned to the n-the element of uα; the (minimal, say) h such that all ηβ � h are
distinct for β ∈ uα, and ηβ � h+ 1.

We claim that the union of k many such rα is still in RK,k: Assume towards a
contradiction that there is a

⋃
i<k ri-homogeneous set α0, . . . , αk in

⋃
i<k ui such

that (∗∗) holds for ν ∈ (k + 1)H for some H ∈ ω. Assume H ≥ h. Note that ηβ � h
are already distinct for the different β in the same ui, so all k + 1 many αj have
to be the n∗th element of different ui (n∗ fixed), which is impossible as there are
only k many ui. So assume H < h. But then ηβ � H + 1 and the color of β both
are determined by the position of β within ui; so without loss of generality all the
αj are in the same ui, which is impossible as ri : ui → ω was a valid condition.

To summarize: P forces that there is a k-Knaster poset RK,k and λ many dense
sets not met by any filter. Therefore, P forces that m(k-Knaster) ≤ λ.

Let P pre be the initial forcing of Lemma 2.6; recall that it forces add(N ) = ν1
and b = ν3.

Lemma 4.7. For each of the following items (1)–(3), and ℵ1 ≤ λ ≤ ν1 regular,
P pre can be modified to some forcing P ′ which still strongly witnesses the Cichoń-
characteristics, and additionally satisfies:

(1) Each iterand in P ′ is (σ, �)-linked for all � ≥ 2; and P ′ forces

ℵ1 = m = m(precaliber) ≤ p = b.

oSay that X ⊆ u is p-homogeneous if p�X is a constant function.
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(2) Fix k ≥ 1. Each iterand in P ′ is k + 1-Knaster, and additionally either (σ, �)-
linked for all � or of size less than λ; and P ′ forces

ℵ1 = m = m(k-Knaster) < m(k + 1-Knaster)

= m(precaliber) = λ ≤ p = b.

(3) Each iterand in P ′ is either (σ, �)-linked for all �, or ccc of size less than λ; and
P ′ forces

m = m(precaliber) = λ ≤ p = b.

Proof. An argument like in [9] works. We first modify P pre as follows:
We construct an iteration P with the same index set δ as P pre; we partition δ

into two cofinal sets δ = Sold ∪ Snew of the same size. For α ∈ Sold we define Qα

as we defined Q∗
α for P pre. For α ∈ Snew, pick (by suitable book-keeping) a small

(less than ν3, the value for b) σ-centered forcing Qα.
As cof(δ) ≥ λb, we get that P forces p ≥ ν3. Also, P still adds strong witnesses

for the Cichoń-characteristics, according to Claim 2.7. All new iterands are smaller
than ν3 and σ-centered.

Note that all iterands are still (σ, k)-linked for all k (as the new ones are even
σ-centered).

To deal with �-Knaster, recall that the first λ∞ iterands are Cohen forcings; and
we call these Cohen reals ηα (α ∈ λ∞). Given �, we can (and will) interpret the
Cohen real ηα as an element of (�+ 1)ω.

(1) Recall from [2, Sec. 2] that, after a Cohen real, there is a precaliber ω1 poset Q∗

such that no σ-linked poset adds a filter intersecting certain ℵ1-many dense subsets
of Q∗.p Therefore, the P we just constructed forces m(precaliber) = ℵ1.

(2) Just as with the modification from P pre to P , we now further modify P to force
(by some bookkeeping) with all small (smaller than λ) k + 1-Knaster forcings. So
the resulting iteration obviously forces m(k + 1-Knaster) ≥ λ.

Note that now all iterands are either smaller than λ ≤ ν1 or σ-linked (so we
can again use Claim 2.7); and additionally all iterands are k + 1-Knaster. So P

is both (ℵ1, k + 1)-Knaster and (λ, �)-Knaster for any �. Again by Lemma 4.3, P
forces both m(k-Knaster) = ℵ1 and m(�-Knaster) ≤ λ for any � (which implies
m(k + 1-Knaster) = λ).

(3) This is very similar, but this time we use all small ccc forcings (not just the
k + 1-Knaster ones). This obviously results in m ≥ λ; and the same argument as
above shows that still m(�-Knaster) ≤ λ for all �.

pTo be more precise, after one Cohen real there is a sequence r̄ = 〈rα : ω → 2 : α ∈ ω1 limit〉 such
that, for any ladder system c̄ from the ground model, the pair (c̄, r̄), as a ladder system coloring,
cannot be uniformized in any stationary subset of ω1. Furthermore, this property is preserved
after any σ-linked poset. Also recall from [14] (with Devlin) that m(precaliber) > ℵ1 implies that
any ladder system coloring can be uniformized.
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This, together with Corollary 3.5 and Lemma 2.10 gives us 11 characteristics.
However, we postpone this collorally until a time we can also add h = g = p = κ in
Lemma 6.4.

5. Dealing with the Precaliber Number

Recall the possible constellations for the Knaster numbers and the definition of k∗

and λ given in (4.1) (and recall that if k∗ < ω, i.e. then m(precaliber) = λ as well).
In this section, we construct models for k∗ = ω, i.e. all Knaster numbers being

ℵ1, while m(precaliber) = λ for some given regular ℵ1 < λ ≤ add(N ) (and for the
“old” values for the Cichoń-characteristics, as in the previous section).

Definition 5.1. Let λ > ℵ1 be regular. A condition p ∈ Pcal = Pcal,λ consists of

(i) finite sets up, Fp ⊆ λ,
(ii) a function cp : [up]2 → 2,
(iii) for each α ∈ Fp, a function dp,α : P(up ∩ α)→ ω satisfying

(�) if α ∈ Fp and s1, s2 are 1-homogeneous (with respect to cp)q subsets of
up ∩ α with dp,α(s1) = dp,α(s2), then s1 ∪ s2 is 1-homogeneous.

The order is defined by q ≤ p iff up ⊆ uq, Fp ⊆ Fq, cp ⊆ cq and dp,α ⊆ dq,α for any
α ∈ Fp.

Lemma 5.2. Pcal has precaliber ω1 (and in fact precaliber μ for any regular
uncountable μ) and forces the following:

(1) The generic functions c : [λ]2 → {0, 1} and dα : [α]<ℵ0 → ω for α < λ are
totally defined.

(2) Whenever (si)i∈I is a family of finite, 1-homogeneous (with respect to c) subsets
of α, and dα(si) = dα(sj) for i, j ∈ I, then

⋃
i∈I si is 1-homogeneous.

(3) If A ⊆ [λ]<ℵ0 is a family of size λ of pairwise disjoint sets, then there are two
sets u �= v in A such that c(ξ, η) = 0 for any ξ ∈ u and η ∈ v.

(4) Whenever u ∈ [λ]<ℵ0 , the set {η < λ : ∀ ξ ∈ u(c(ξ, η) = 1)} is unbounded in λ.

Proof. For any α < λ, the set of conditions p ∈ Pcal such that α ∈ Fp is dense.
Starting with p such that α /∈ Fp, we set uq = up, Fq = Fp ∪ {α}, and we

pick new and unique values for all dq,α(s) for s ⊆ uq ∩ α = up ∩ α, as well as new
and unique values for all dq,β(s) for s ⊆ uq ∩ β with α ∈ s. We have to show that
q ∈ Pcal, i.e. that it satisfies (�): Whenever s1, s2 satisfy the assumptions of (�),
then α /∈ si (for i = 1, 2), as we would otherwise have chosen different values. So
we can use that (�) holds for p.

(1) and (4) For any ξ < λ, the set of q ∈ Pcal such that ξ ∈ uq is dense.
Starting with p with ξ /∈ up, we set uq = up∪{ξ} and Fq = Fp. Again, pick new

(and different) values for all dq,α(s) with ξ ∈ s, and we can set c(x, ξ) to whatever

qSay that s ⊆ up ∩ α is 1-homogeneous with respect to cp if cp(ξ, ζ) = 1 for any ξ �= ζ in s.
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we want. The same argument as above shows that q ∈ Pcal. In particular we can
set all c(x, ξ) = 1, which shows that Pcal forces (4).

(2) follows from (�) for I = {1, 2}, and this trivially implies the case for arbitrary
I (for x1, x2 ∈

⋃
i∈I si, pick i1, i2 ∈ I such that x1 ∈ si1 and x2 ∈ si2 ; then apply

(�) to {i1, i2}).
Precaliber. Pcal has precaliber μ for any uncountable regular μ.

Let A ⊆ Pcal have size μ. We can assume that the up’s and Fp’s for p ∈ A form
Δ-systems with roots u and F , respectively, and we can assume that all p ∈ A have
the same “type (over u, F )”, which is defined as follows.

Let i be the order-preserving bijection (Mostowski’s collapse) of up ∪ Fp to
some N ∈ ω. This induces sets ū ⊆ ūp ⊆ N and F̄ ⊆ F̄p ⊆ N and partial
functions c̄p : [ūp]2 → 2, d̄p,ᾱ : P(ūp ∩ ᾱ) → ω (for ᾱ ∈ F̄p), such that i is an
isomorphism between the structures p = (up ∪ Fp, up, Fp, u, F, cp, (dp,α)α∈Fp) and
p̄ = (N, ūp, F̄p, ū, F̄ , c̄p, (d̄p,ᾱ)ᾱ∈F̄p

); the latter structure is called the type of p (over
u, F ).

Let us note some trivial facts: There are only countably many different types;
between any two conditions with same type there is a natural isomorphism; and if
p and q have the same type (over u = up ∩ uq and F = Fp ∩ Fq), then cp and cq
agree on the common domain, and the same holds for dp and dq.r

To summarize: Given A ⊆ Pcal of size μ, we can find a μ-sized subset B forming
a Δ-system such that all elements have the same type (over the root). We claim
that then any finite subset of B has a common lower bound q (which implies that
Pcal has precaliber μ, as required). This is done by amalgamation, as follows.

Amalgamation. Fix p0, . . . , pn−1 of the same type over (u, F ), such that ui ∩uj =
u and Fi ∩ Fj = F for all i, j in n (where we set ui := upi , etc.). We define an
“amalgam” q of these conditions as follows: uq :=

⋃
i∈n ui, Fq :=

⋃
i∈n Fi, dq

extends all di and has a unique new value for each new element in its domain,
cq extends all ci; and yet undefined cq(x, y) are set to 0 if x, y > max(F ) (and 1
otherwise).

To see that q ∈ Pcal, assume that α ∈ Fq and s1, s2 are as in (�) of Definition 5.1.
This implies that dq,α(sk) for both k = 1, 2 were already defineds by one of the pi

(for i ∈ n), otherwise we would have picked a new value.
If they are both defined by the same pi, we can use (�) for pi. So assume

otherwise, and for notational simplicity assume that si is defined by pi; and let
xi ∈ si. We have to show cq(x1, x2) = 1. Note that α ∈ F1 ∩F2 = F . If x1 or x2 are
not in u, then we have set cq(x1, x2) to 1 (as xi < α ∈ F ), so we are done. So assume
x1, x2 ∈ u. The natural isomorphism between p1 and p2 maps s1 onto some s′1 ⊆ u2,
and we get that s′1 is 1-homogeneous and that d2,α(s2) = d1,α(s1) = d2,α(s′1). So

ri.e. for α < β in u, cp(α, β) = cq(α, β), and for α ∈ F and s ⊆ u, dp,α(s) = dq,α(s).
sBy which we mean α ∈ Fi and sk ⊆ ui for both k = 1, 2.
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we use that p2 satisfies (�) to get that c2(a, b) = 1 for all a ∈ s2 and b ∈ s′1. As the
isomorphism does not move x1, we can use a = x2 and b = x1.

(3) Let p ∈ Pcal and assume that p forces that Ȧ ⊆ [λ]<ℵ0 is a family of size λ of
pairwise disjoint sets. We can find, in the ground model, a family A′ ⊆ [λ]<ℵ0 of
size λ and conditions pv ≤ p for v ∈ A′ such that v ⊆ upv , and pv forces v ∈ Ȧ. We
again thin out to a Δ-system as above; this time we can additionally assume that
the heart of the Fv is below the non-heart parts of all uv, i.e. that max(F ) is below
uv\u for all v.

Pick any two pv, pw in this Δ-system, and let q be the amalgam defined above.
Then q witnesses that pv, pw are compatible, which implies v ∩ w = 0, i.e. v, w are
outside the heart; which by construction of q implies that cq is constantly zero on
v × w (as their elements are above max(F )).

The poset Pcal,λ adds generic functions c and dα. We now use them to define a
precaliber ω1 poset Qcal witnessing m(precaliber) ≤ λ.

Lemma 5.3. In V Pcal , define the poset Qcal := {u ∈ [λ]<ℵ0 : u is 1-homogeneous},
ordered by ⊇ (by 1-homogeneous, we mean 1-homogeneous with respect to c). Then
the following is satisfied (in V Pcal):

(1) Qcal is an increasing union of length λ of centered sets (so in particular it has
precaliber ℵ1).

(2) For α < λ, the set Dα := {u ∈ Qcal : u � α} is open dense. So Qcal adds a
cofinal generic 1-homogeneous subset of λ.

(3) There is no 1-homogeneous set of size λ (in V Pcal). In other words, there is no
filter meeting all Dα.

Proof. For (1) set Qα
cal = Qcal∩[α]<ℵ0 . Then dα : Qα

cal → ω is a centering function,
according to Lemma 5.2(2). Precaliber ℵ1 is a consequence of λcal > ℵ1.

Property (2) is a direct consequence of Lemma 5.2(4), and (3) follows from
Lemma 5.2(3).

This shows that Pcal,λ � m(precaliber) ≤ λ. We now show that this is preserved
in further Knaster extensions.

Lemma 5.4. In V Pcal , assume that P ′ is a ccc λ-Knaster poset. Then, in V Pcal∗P ′
,

m(precaliber) ≤ λ.

Proof. We claim that in V Pcal∗P ′
, Qcal still has precaliber ℵ1, and there is no filter

meeting each open dense subset Dα ⊆ Qcal for α < λ.
Precaliber follows from Lemma 5.3(1). So we have to show that λ has no

1-homogeneous set (with respect to c) of size λ in V Pcal∗P ′
.

Work in V Pcal and assume that Ȧ is a P ′-name and p ∈ P ′ forces that Ȧ
is in [λ]λ. By recursion, find A′ ∈ [λ]λ and pζ ≤ p for each ζ ∈ A′ such that
pζ � ζ ∈ Ȧ. Since P ′ is λ-Knaster, we may assume that {pζ : ζ ∈ A′} is linked. By
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Lemma 5.2(3), there are ζ �= ζ′ in A′ such that c(ζ, ζ′) = 0. So there is a condition
q stronger that both pζ and pζ′ forcing that ζ, ζ′ ∈ Ȧ and c(ζ, ζ′) = 0, i.e. that Ȧ
is not 1-homogeneous.

We can now add another case to Lemma 4.7.

Lemma 5.5. For ℵ1 ≤ λ ≤ ν1 regular, P pre can be modified to some forcing P ′

which still strongly witnesses the Cichoń-characteristics, and additionally satisfies:
For all k ∈ ω, m(k-Knaster) = ℵ1; m(precaliber) = λ; and p = b.

Proof. The case λ = ℵ1 was already dealt with in the previous section, so we
assume λ > ℵ1.

We modify P pre as follows: We start with the forcing Pcal,λ. From then on, use
(by bookkeeping) all precaliber forcings of size <λ, all σ-centered ones of size <ν3,
the value for b (and in between we use all the iterands required for the original
construction). So each new iterand either has precaliber ℵ1 and is of size <λ, or
is (σ, k)-linked for any k ≥ 2. Therefore, the limits are k + 1-Knaster (for any k).
Accordingly, the limit forces that each k-Knaster number is ℵ1.

Also, each iterand is either of size <λ or σ-linked; so the limit is λ-Knaster, and
by Lemma 5.4 it forces that the precaliber number is ≤ λ; our bookkeeping gives
≥ λ. As before, we get p ≥ ν3 by bookkeeping.

6. Dealing with h

The following is a very useful tool to deal with g.

Lemma 6.1 (Blass [5, Theorem 2]). Let ν be an uncountable regular cardinal
and let (Vα)α≤ν be an increasing sequence of transitive models of ZFC such that

(i) ωω ∩ (Vα+1�Vα) �= ∅,
(ii) (ωω ∩ Vα)α<ν ∈ Vν , and
(iii) ωω ∩ Vν =

⋃
α<ν ω

ω ∩ Vα.

Then, in Vν , g ≤ ν.
This result gives an alternative proof of the well known.

Corollary 6.2. g ≤ cof(c).t

Proof. Put ν := cof(c) and let (μα)α<ν be a cofinal increasing sequence in c formed
by limit ordinals. By recursion, we can find an increasing sequence (Vα)α<ν of
transitive models of (a large enough fragment of) ZFC such that (i) of Lemma 6.1
is satisfied, μα ∈ Vα, |Vα| = |μα| and

⋃
α<ν ω

ω ∩ Vα = ωω. Set Vν := V , so
Lemma 6.1 applies, i.e. g ≤ ν = cof(c).

tA more elementary proof can be found in [7, Theorem 8.6, Corollary 8.7].
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The following lemma is our main tool to modify the values of g and c via
a complete subposet of some forcing, while preserving m-like and Blass-uniform
values from the original poset. This is a direct consequence of Lemmas 3.2 and 6.1
and Corollary 3.5. As we are only interested in finitely many characteristics, the
index sets I1, I2, J and K will be finite when we apply the lemma.

Lemma 6.3. Assume the following:

(1) ℵ1 ≤ κ ≤ ν ≤ μ, where κ and ν are regular and μ = μ<κ ≥ ν.
(2) P is a κ-cc poset forcing c > μ.
(3) For some Borel relations R1

i (i ∈ I1) on ωω and some regular λ1
i ≤ μ: P forces

LCUR1
i
(λ1

i ).
(4) For some Borel relations R2

i (i ∈ I2) on ωω, λ2
i ≤ μ regular and a cardinal

ϑ2
i ≤ μ: P forces COBR2

i
(λ2

i , ϑ
2
i ).

(5) For some m-like characteristics yj (j ∈ J) and λj < κ: P � yj = λj .
(6) For some m-like characteristics y′k (k ∈ K): P � y′k ≥ κ.
(7) |I1 ∪ I2 ∪ J ∪K| ≤ μ.

Then there is a complete subforcing P ′ of P of size μ forcing

(a) yj = λj , y′k ≥ κ, LCUR1
i
(λ1

i ) and COBR2
i′
(λ2

i′ , ϑ
2
i′) for all i ∈ I1, i′ ∈ I2, j ∈ J

and k ∈ K;
(b) c = μ and g ≤ ν.

Proof. Construct an increasing sequence of elementary submodels (Mα : α < ν)
of some (H(χ),∈) for some sufficiently large χ, where each Mα is <κ-closed with
cardinality μ, in a way that M := Mν =

⋃
α<ν Mα satisfies:

(i) μ ∪ {μ} ⊆M0,
(ii) I1 ∪ I2 ∪ J ∪K ⊆M0,
(iii) M0 contains all the definitions of the characteristics we use,
(iv) M0 contains all the P -names of witnesses of each LCUR1

i
(λ1

i ) (i ∈ I1),
(v) for each i ∈ I2 and some chosen name (�̇i

, ˙̄gi) of a witness of COBR2
i
(λ2

i , ϑ
2
i ):

for all (s, t) ∈ ϑ2
i × ϑ2

i , ġ
i
s ∈ M0 and the maximal antichain deciding “s�̇i

t”
belongs to M0,

(vi) Mα+1 contains P -names of reals that are forced not to be in the P ∩ Mα-
extension (this is because P forces c > μ).

Note that M is also a <κ-closed elementary submodel of H(χ) of size μ, and that
Pα := P ∩Mα (for α ≤ ν) is a complete subposet of P . Put P ′ := Pν .

According to Corollary 3.5, in the P ′-extension, each m-like characteristic below
κ is preserved (as in the P -extension) and for the others “y′k ≥ κ” is preserved; and
according to Lemma 3.2 the LCU and COB statements are preserved as well. This
shows (a).
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It is clear that Pα is a complete subposet of Pβ for every α < β ≤ ν, and
that P ′ is the direct limit of the Pα. Therefore, if V ′ denotes the P ′-extension and
Vα denotes the Pα-intermediate extensions, then ωω ∩ Vα+1�Vα �= ∅ (by (vi)) and
ωω ∩ V ′ ⊆ ⋃

α<ν Vα. Hence, by Lemma 6.1, V ′ |= g ≤ ν. Clearly, V ′ |= c = μ.

We are now ready to add h = g = p to our characteristics.

Lemma 6.4. For ℵ1 ≤ λm ≤ κ ≤ ν1 regular, P pre can be modified to some forc-
ing P ′ which still strongly witnesses the Cichoń-characteristics, and additionally
satisfies :

m = λm ≤ h = g = p = κ.

In addition to m = λm we can get m = m(precaliber), which is Case 3 of
Lemma 4.7; and instead of m = λm we can alternatively force Case 1 or 2 of
Lemma 4.7, or the situation of Lemma 5.5.

Proof. We start with the (appropriate) P from Lemma 4.7 (or from Lemma 5.5);
but for the “inflated” continuum θ+∞ instead of θ∞.

We then apply Lemma 6.3 for μ := θ∞, and ν := κ. This gives a subforcing P ′

which still forces:

• Strong witnesses for all the Cichoń-characteristics;
as they fall under Lemma 6.3(3,4).
• p ≥ κ; an instance of Lemma 6.3(6) as P forces p = ν3 ≥ κ.
• g ≤ ν; according to Lemma 6.3(b).

As ZFC proves p ≤ h ≤ g and ν = κ, this implies p = h = g = κ.
• If λm < κ, we get m = λm < κ as instance of Lemma 6.3(5).
• If λm = κ, we get m ≥ κ by Lemma 6.3(6);

but as m ≤ p this also implies m = λm.
• Alternatively: The same argument for m(precaliber) and/or m(k-Knaster) instead

of / in addition to m; as required by the desired case of Lemma 4.7 or 5.5.

We can now get twelve different characteristics.

Corollary 6.5. Under Assumption 2.8, and for ℵ1 ≤ λm ≤ κ regular, we can get
a ccc poset P ′′ which forces, in addition to Theorem 2.9,

m = λm ≤ h = g = p = κ

(the comment after Lemma 6.4 regarding various Martins axiom numbers applies
here as well).

Proof. The resulting P ′ we just constructed still satisfies the requirements for
Lemma 2.10, so we apply this lemma and get P ′′ := P ′ ∩N∗ (for a <κ-closed N∗)
which forces the desired values to all Cichoń-characteristics. Additionally P ′′ forces:

• p ≥ κ, by Corollary 3.5(iii)(a), as P ′ forces p = κ.
• g ≤ κ, by Corollary 3.5(iii)(c), as P ′ forces g = κ.
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• p = h = g = κ, as ZFC proves p ≤ g.
• In case λm < κ: m = λm by Corollary 3.5(iii)(b).
• In case λm = κ: m ≥ κ by Corollary 3.5(iii)(a), which again implies m = λm, as

ZFC proves m ≤ p = κ.

7. Products, Dealing with p

We start reviewing a basic result in forcing theory.

Lemma 7.1 (Easton’s lemma). Let ξ be an uncountable cardinal, P a ξ-cc poset
and let Q be a <ξ-closed poset. Then P forces that Q is <ξ-distributive.

Proof. See, e.g. [24, Lemma 15.19]. Note that there the lemma is proved for suc-
cessor cardinals only, but literally the same proof works for any regular cardinal;
for singular cardinals ξ note that <ξ-closed implies <ξ+-closed so we even get
<ξ+-distributive.

Lemma 7.2. Assume ξ<ξ = ξ, P is ξ-cc, and set Q = ξ<ξ (ordered by extension).
Then P forces that QV preserves all cardinals and cofinalities. Assume P � x = λ

(in particular that λ is a cardinal), and let R be a Borel relation.

(a) If x is m-like: λ < ξ implies P ×Q � x = λ; λ ≥ ξ implies P ×Q � x ≥ ξ.
(b) If x is h-like: P ×Q � x ≤ λ.
(c) P � LCUR(λ) implies P ×Q � LCUR(λ).
(d) P � COBR(λ, μ) implies P ×Q � COBR(λ, μ).

Proof. We call the P+-extension V ′′ and the intermediate P -extension V ′.
In V ′, all V -cardinals ≥ξ are still cardinals, and Q is a <ξ-distributive forcing

(due to Easton’s lemma). So we can apply Lemma 3.1 and Corollary 3.5.

The following is shown in [15].

Lemma 7.3. Assume that ξ = ξ<ξ and P is a ξ-cc poset that forces ξ ≤ p. In the
P -extension V ′, let Q = (ξ<ξ)V . Then,

(a) P ×Q = P ∗Q forces p = ξ.
(b) If in addition P forces ξ ≤ p = h = κ then P ×Q forces h = κ.

Proof. Work in the P -extension V ′. Q preserves cardinals and cofinalities, and it
forces p ≥ ξ by Lemma 7.2.

There is an embedding F from 〈Q,�〉 into 〈[ω]ℵ0 ,�∗〉 preserving the order and
incompatibility (using the fact that ξ ≤ p = t and that every infinite set can be
split into ξ many almost disjoint sets). Now, Q adds a new sequence z ∈ ξξ\V ′

and forces that Ṫ = {F (z � α) : α < ξ} is a tower (hence t ≤ ξ). If this were not
the case, some condition in Q would force that Ṫ has a pseudo-intersection a, but
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actually a ∈ V ′ and it determines uniquely a branch in ξξ, and this branch would
be in fact z, i.e. z ∈ V ′, a contradiction. So we have shown P ×Q � t = ξ.

For (b), we already know that Q � h ≤ κ. To show that h does not decrease,
again work in V ′. Note that 〈[ω]ℵ0 ,⊆∗〉 is <κ-closed (as t = κ). We claim that Q
forces that 〈[ω]ℵ0 ,⊆∗〉 is <κ-distributive (which implies Q � h ≥ κ).

If κ = ξ then 〈[ω]ℵ0 ,⊆∗〉 is still <ξ-closed because Q is <ξ-distributive; so
assume ξ < κ. Then Q is κ-cc (because |Q| = ξ), so 〈[ω]ℵ0 ,⊆∗〉 is forced to be
<κ-distributive by Easton’s Lemma (recall that Q does not add new reals).

We are now ready to formulate the main theorem, the consistency of 13 different
values (see Fig. 2).

Theorem 7.4. Assume GCH, and that

ℵ1 ≤ λm ≤ ξ ≤ κ ≤ λadd(N ) ≤ λcov(N ) ≤ λb ≤ λnon(M)

≤ λcov(M) ≤ λd ≤ λnon(N ) ≤ λcof(N ) ≤ λ∞
are regular cardinals, with the possible exception of λ∞, for which we only require
λ<κ
∞ = λ∞. Then we can force that

ℵ1 ≤ λm ≤ p = ξ ≤ h = g = κ

≤ add(N ) = λadd(N ) ≤ cov(N ) = λcov(N ) ≤ b = λb ≤ non(M) = λnon(M)

≤ cov(M) = λcov(M) ≤ d = λd ≤ non(N ) = λnon(N ) ≤ cof(N ) = λcof(N )

≤ 2ℵ0 = λ∞

and we can additionally chose any one of the following:

• m = m(precaliber) = λm.
• For a fixed 1 ≤ k < ω, m(k-Knaster) = ℵ1 and m(k + 1-Knaster) = λm.
• m(k-Knaster) = ℵ1 for all k < ω, and m(precaliber) = λm.

Proof. Start with the appropriate forcing P ′′ of Corollary 6.5. Then P ′′ × ξ<ξ

forces:

• Strong witnesses to all Cichoń-characteristics; by Lemma 7.2(c,d).
• p = ξ and h = κ; by Lemma 7.3.
• g ≤ κ by Lemma 7.2(b) as P ′′ forces g = κ and g is h-like. This implies g = κ, as

ZFC proves h ≤ g.
• The desired values to the Martin axiom numbers; by Lemma 7.2(a) (and by the

fact that m ≤ p, in case λm = ξ).

8. Alternatives

The methods of this paper can be used for other initial forcings on the left-hand
side and for the Boolean ultrapower method instead of the method of intersections
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with elementary submodels. Also, they allow us to compose many forcing notions
with collapses while preserving cardinal characteristics.

All these topics are described in more detail in [18]; in the following we just give
an overview.

8.1. Another order

In [28], another ordering of Cichoń’s maximum is shown to be consistent (using
large cardinals), namely, the ordering shown in Fig. 4.

The initial (left-hand side) forcing is based on ideas from [38], and in particular
the notion of finite additive measure (FAM) limit introduced there for random
forcing. In addition, a creature forcing Q2 similar to the one defined in [23] (with
Horowitz) is introduced, which forces non(M) ≥ λnon(M) and which has FAM-limits
similar to random forcing (which is required to keep b small).

In [19], we show that we can remove the large cardinal assumptions for this
ordering as well (using the same method).

It is straightforward to check that the method in this paper allows us to add m,
p, h to this ordering as well; so we get Theorem 7.4 with both (b and cov(N )) and
(d and non(N )) exchanged. In particular, we get (see Fig. 4).

Theorem 8.1. Consistently,

ℵ1 < m < p < h < add(N ) < b < cov(N ) < non(M)

< cov(M) < non(N ) < d < cof(N ) < 2ℵ0 .

8.2. Boolean ultrapowers

As mentioned in Sec. 2.3, the original Cichoń Maximum construction [20] uses four
strongly compact cardinals: First, the left side of Cichoń’s diagram is separated
with P pre of 2.6, where we assume that there are compacts between each of ℵ1 <

ν1 < ν2 < ν3 < ν4. Then four Boolean ultrapowers are applied to this poset (one
for each compact cardinal) to construct a forcing P ∗ that separates, in addition,
the right-hand side, while preserving the left side values already forced by P pre.

In view of Corollary 3.5(ii), we can use the methods of Secs. 4–7 to force, in
addition, m < p < h < add(N ).

Fig. 4. An alternative order that we get when we start with the initial forcing from [28] (any →
can be interpreted as either < or = as desired).
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In contrast with Theorem 7.4, we can now force not only the continuum to be
singular, but also cov(M). The reason is that the poset for the left side can force
cov(M) = c singular,u and the value of cov(M) is not changed after Boolean ultra-
powers (and the other methods). The same applies to the alternate order from [28]
as well.

8.3. Alternative left-hand side forcings

According to Sec. 2.3, [10] provides an alternative proof of Cichoń’s maximum, using
three strongly compact cardinals. As in [20], this results from applying Boolean
ultrapowers to a ccc poset that separates the left side, but the new initial forcing
additionally gives cov(M) < d = non(N ) = c, where this value of d can be singular.
The methods of this work also apply, and we can obtain a consistency result as in
Theorem 7.4, but there d and c are forced to be singular.

8.4. Reducing gaps with collapsing forcing

To be able to apply Boolean ultrapowers, it is necessary to have strongly com-
pact cardinals between the left-hand side values. Accordingly these values have to
have large gaps. The methods of this paper allow to collapse these gaps; and more
generally to compose collapses with a large family of forcing notions.

For example, if P forces x = λ < y = κ, and λ and κ are far apart; but you
would prefer to have x = λ < y = λ+, then the methods of [18] allow us to compose
P with a collapse of κ to λ+, provided x is reasonably well behaved.
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[28] J. Kellner, S. Shelah and A. Tănasie, Another ordering of the ten cardinal charac-
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